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Abstract 

Human-Machine Co-Learning Design in Controlling a Double Inverted Pendulum 

 

Kehao Zhao, M.S. 

 

University of Pittsburgh, 2019 

 

 

 

 

Effective human-machine interaction is an essential goal of the design of human-machine 

systems. This, however, is often constrained by the fundamental limitation of the human neural 

control and inability of the machine’s control system in adapting to the time-varying 

characteristics of the human operator.  It is desirable that the control system of the machine can 

learn to optimize its performance under the behavior change of the human operator. This thesis is 

aimed at enhancing the machine’s control system with learning capabilities. Specifically, an 

adaptive control framework is proposed that enables human-machine co-learning through the 

interaction between the machine and the human operator.  A dual inverted pendulum system is 

introduced as an experimental platform. Simulations are performed to implement the control of 

the two-joint inverted pendulum using the human-machine co-learning controller. The results are 

compared with those using a controller without learning ability. The parameters of the two 

controllers are adjusted to explore the effect of the value changing of each parameter on the 

control performance. Simulation results indicate the superior performance of the proposed 

adaptive controller design framework.  
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1.0 Introduction 

Human–machine system is a system that integrates the functions of a human operator  

and a machine [1]. The study of human-machine systems aims to develop the theories and 

methodology to analyze, design and evaluate the interaction between human and machine, and 

the expectation of the system is to combine the advantages of humans and machines. Human 

have stronger perception and flexible decision-making ability while machine can reduce the 

probability of occurrence of danger, effectively resist fatigue, and is suitable for repetitive tasks 

with high precision requirements. Human-machine systems have a wide range of applications in 

medical, automotive, aerospace and other fields. The aircraft is a typical example. In order to 

improve the stability of the aircraft and improve the damping characteristics of the aircraft, the 

manual control system is combined with the automatic control to introduce the stability 

augmentation system into the manual control system.  

As a typical human-machine system, the inverted pendulum under manual control has 

become a major research direction [2]. The performance of human manual control was evaluated 

when dealing with a difficult task to understand human movement behavior as well as human 

limitations. Thus, human strategies in balancing an inverted pendulum with different time delay 

was studied. An experimental platform was developed consisting of a joystick connected to the 

computer and a virtual inverted pendulum. The operator balances the virtual inverted pendulum 

with the joystick and obtains visual feedback through the computer screen. Experimental results 

showed that the human response is intermittent rather than continuous when balancing a short-

length inverted pendulum [3].  
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However, many difficulties need to be solved in the design of a controller involving 

human. On one hand, the machine not only needs to adjust the control strategy according to 

different individuals, but also need to adjust the control parameters online according to the 

change of human’s behavior in the process of human-machine control. For example, in the case 

of self-driving, vehicles could develop the best control strategy to assist the driver by monitoring 

and learning the driver's habits. For of exoskeleton systems, the systems need to provide 

assistance according to the state and the force provided by the user's limbs [4].  

On the other hand, it is not well studied how humans adapt to a nonstationary robot 

whose behavior will change related to human actions. In the early days, humans were abstracted 

as a single-input linear time-invariant controller. A quasi-linear model was established for 

analyzing state regulation tasks [5]. In 1970s, the optimal control and estimation theory are 

applied to the linear dynamical system with white noise to solve the problem of human manual 

control. It was supposed that after being trained, people could behave optimally under certain 

circumstances. Humans were abstracted into a feedback controller with the consideration of 

human inherent psychophysical limitations. Then, a mathematical model of human was 

established which conclude a reaction time delay, an equalization network and some equivalent 

neuromuscular dynamics [5], [6]. The model was originally used to simulate a simple single-axis 

control task. After that, the optimal control model of human was used to analyze more complex 

manual control tasks involving the control of longitudinal position of a hovering Vertical Take-

Off and Landing aircraft [6]. The experiments result showed that the model can reproduce the 

essential characteristics of humans as well as system performance scores. However, there is no 

general established rule to ensure a synergistic partnership so more research is needed to ensure 

the stability and optimization of the human-machine systems. 
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In this thesis, we concentrate on the design of a human machine co-learning optimal 

controller. A second-order inverted pendulum system is introduced as an experiment platform. 

Human controls the lower inverted pendulum and machine controls the upper one. It is supposed 

that human has the ability to make corresponding changes which are based on the optimization 

strategy given by the machine to optimize their control parameters. A co-learning controller and 

a controller without learning ability were established. Simulations were made to control the 

second-order inverted pendulum, and the two sets of results were compared. At the same time, 

the initial control feedback gains, iterative updating rate and the weighting matrix Q and R were 

adjusted in the simulation to get the performances of the co-learning controller. 

The thesis is organized as follows: Chapter 1 is a brief introduction to the inverted 

pendulum system and the control theory applied on them. The innovation of the research is also 

expressed in this chapter. The background information on inverted pendulum system, control 

methods, and human manual control are discussed in the second chapter. Chapter 3 shows the 

development of the second-order inverted pendulum system and the design of the human-

machine co-learning controller. The simulation results are shown in Chapter 4. The last chapter 

summarizes the thesis and shows some ideas for the future work.  
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2.0 Background 

2.1 General Description of an Inverted Pendulum System 

In the late 1960s, as a typical unstable nonlinear example, the concept of inverted 

pendulum was proposed. In 1966, Schaefer and Cannon applied Bang-Bang control theory to 

stabilize a crankshaft in an inverted position. Since the inverted pendulum system has become 

the experimental and teaching tool of the automatic control field, researchers have studied both 

the theoretical research and the experimental research on the control of the inverted pendulum 

system. In 1969, Lindorff achieved the control of the single inverted pendulum system 

successfully [7]. In 1972, Sturgeon and Loscutoff controlled the double inverted pendulum [8].  

As early as 1970, Bryon and Luenberger first pointed out the application of the observer to 

reconstruct the state of the system which could realize stable control of inverted pendulum 

system. In 1985, K. Furutat realized the stable control of the three-stage inverted pendulum [9]. 

In 1986, Chung systematically identified the inverted pendulum system and designed PD 

feedback control [9]. In 1989, Anderson successfully generated an optimized feedback controller 

using function minimization and LyaPunov stabilization [9]. Li controlled the quadruple inverted 

pendulum successfully in 2002 [10]. 



 5 

2.2 Review of Control System Design 

Many papers have implemented the inverted pendulum cart dynamical system with 

various control schemes.  

1. State feedback control 

The process of state feedback control is to multiply each state variable of the 

system by the corresponding feedback gain and added to the reference input. The sum of 

the signal is used as the control input of the controlled system. Based on the dynamic 

model of the inverted pendulum, state equations and output equations are derived using 

state space theory, and state feedback is applied to control the inverted pendulum. 

Common methods for using state feedback are: 1) linear quadratic optimal control; 2) 

pole placement; 3) state feedback control; 4) robust control. 

2. PID control 

The PID control is composed of a proportional unit P, an integral unit I, and a 

differential unit D. Based on the dynamic model of inverted pendulum, the nonlinear 

model is derived by using state space theory, then the state equation and output equation 

of the inverted pendulum system are obtained by linearization at the equilibrium point. 

The PID controller is designed according to the state equation and output equation of the 

inverted pendulum system to realize the control of the inverted pendulum [11], [12].  

3. Adaptive Control 

The object of adaptive control is a system with a certain degree of uncertainty. 

The uncertainty inside the system comes from the unknown structure and parameters of 

the mathematical model of the controlled object. Uncertain externalities come from 

unpredictable disturbances and measurement errors. The control parameters are 
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automatically adjusted as conditions change by methods such as model reference 

adaptive control or self-tuning control  which could optimize the performance of the 

system. [13]. 

4. MPC control 

Model predictive control can predict the performance of the system over a limited time 

frame using mathematical models. The control signal over a limited time range is 

calculated by minimizing a predefined cost function. The current state is used as an initial 

condition for the next iteration. Only the first input of the optimal control sequence is 

applied on the system, and the state is updated in the next iteration. The prediction 

horizon is shifted one time step backward, and the procedure is repeated [14], [15].  

5. Neural network control 

Neural networks are used to handle systems that are difficult to describe with 

models or rules. Neural network adopts parallel distributed information processing, which 

is highly fault-tolerant and can process a large number of different types of inputs 

simultaneously. The goal of the neural network controller is to find an effective way to 

modify the network connection weight matrix or network structure, so that the control 

signal output by the network controller can ensure that the output of the system can 

follow the desired output of the system.[16], [17]. 

6. Fuzzy control.  

Fuzzy control theory is a kind of advanced control strategy based on fuzzy mathematics 

and decision making by fuzzy reasoning. Fuzzy control does not have to establish a 

complete mathematical model for the controlled object, thus simplifying the complexity 
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of the system design. At the same time, the fuzzy control has strong robustness and better 

fault tolerance for system parameter changes. [18], [19]. 

2.3 Review of Human Manual Control 

The study of manual control of dynamic systems began in the 1940s and was proposed by 

Phillips [20], Wiener [21] and Tustin [22]. By 1965, Russell [23], Elkind [24], McRuer and 

Krendel [25] and McRuer, Graham, Krendel and Reisener [26] abstracted the manual control 

model into a series of quasi-linear models that could predict human behavior. 

In 1960, researchers began to analyze more complex manual control systems. Manual 

control systems were attempted to abstract into multivariate linear models. Early research relied 

mainly on classical control theory to extend a single variable to a multivariate case. Later 

research relies on modern control theory and optimization theory which deal with multivariable 

systems under the of state space system. In 1970, D. L. Kleinman, S. Baron and W. H. Levison 

applied optimization and estimation theory to the manual control and established a mathematical 

model of the human as a feedback controller. In this model, the manual controller is decomposed 

into a time delay, an equalization network and some neuromotor dynamics [26].  
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3.0 Controller Development 

3.1 Double Inverted Pendulum System Development 

The inverted pendulum is a multivariable, unstable and nonlinear system [16] that covers 

many key features of the control domain such as stabilization, robustness and tracking [27].  The 

inverted pendulum system is widely used to test the correctness and practicability of the new 

control theory or method [28].  The inverted pendulum system is cheap and easy to operate 

which has been widely used as experimental platform. Meanwhile, the inverted pendulum has a 

wide range of applications in military, aerospace, robotics and general industrial processes, such 

as robotic walking, rocket launching, and satellite flight [29]. 

The double inverted pendulum system contains two pendulums, motors and encoders. 

The two pendulums are joined by a motor and the starting point of lower pendulum is attached to 

a motor fixed on the ground. Encoders are used to measure the position and velocity of the two 

pendulums. The double inverted pendulum system is shown in Figure 1 and the parameters of the 

system are given in Table 1.  
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Figure 1. Double inverted pendulum system. 

 

 

 

 

Table 1. Parameters of DIP system 

𝑀1=1.5 Kg, 𝑀2=0.5 Kg, 𝑀3=0.75 Kg Mass of the lower pendulum, 

upper pendulum and joint 

𝐿1=1 m, 𝐿2=1.5 m Length of lower pendulum (= 2𝑙1), 

length of upper pendulum (= 2𝑙2 ) 

g=9.8 m/s
2
 Acceleration due to gravity 

𝜃1, 𝜃2 The angle between pendulum 1, 2 

with vertical direction in radian 

T Torque generated by the motor 

 

 



 10 

Dynamic equations of inverted pendulum system is established by the Lagrange equation 

which can be expressed as 

𝑑

𝑑𝑡

𝑑𝐻

𝑑�̇�𝑖
−

𝑑𝐻

𝑑𝑞𝑖
= 𝐹𝑖 (3.1) 

where H = G−V is a Lagrangian, 𝐹𝑖 is a force vector applied on the generalized coordinates 𝑞𝑖, V 

and G are potential and kinetic energy of the system respectively.  

Kinetic energy of pendulum A is 

𝐾𝐴 =
1

6
𝑚1(𝐿1�̇�1)

2
=

2

3
𝑚1𝑙1

2�̇�1
2
. (3.2) 

Kinetic energy of motor M is 

𝐾𝑀 =
1

2
𝑚3(𝐿1�̇�1)

2
= 2𝑚3𝑙1

2�̇�1
2
. (3.3) 

Speed at both ends of pendulum B is 

𝑉𝑀 = 𝐿1�̇�1cos𝜃1𝑖̅ + 𝐿1�̇�1sin𝜃1𝑗̅ (3.4) 

𝑉𝑁 = (𝐿1�̇�1cos𝜃1 + 𝐿2�̇�2cos𝜃2)𝑖̅ + (𝐿1�̇�1sin𝜃1 + 𝐿2�̇�2sin𝜃2)𝑗.̅ (3.5) 
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Kinetic energy of pendulum B is 

                                         𝐾𝐵 =
1

6
𝑚2 (�̅�𝑀

2
+ �̅�𝑁

2
+�̅�𝑀 ∙ �̅�𝑁) 

                    =
1

6
𝑚2 (3𝑙1

2�̇�1
2
+ 𝑙2

2�̇�2
2
+ 3𝑙1𝑙2cos(𝜃1 − 𝜃2)�̇�1�̇�2)            

                                 = 2𝑚2𝑙1
2�̇�1

2
+

2

3
𝑚2𝑙2

2�̇�2
2
+ 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̇�1�̇�2. (3.6) 

Total kinetic energy of the system is 

𝐺 = 𝐾𝐴 + 𝐾𝑀 + 𝐾𝐵 

                                                 =
2

3
𝑚1𝑙1

2�̇�1
2
+ 2𝑚3𝑙1

2�̇�1
2
+ 2𝑚2𝑙1

2�̇�1
2

 

                                                                       +
2

3
𝑚2𝑙2

2�̇�2
2
+ 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̇�1�̇�2. (3.7) 

Potential energy of pendulum A is 

𝑃𝐴 = 𝑚1𝑔𝑙1cos𝜃1. (3.8) 

Potential energy of motor M is 

𝑃𝑀 = 2𝑚3𝑔𝑙1cos𝜃1. (3.9) 

Potential energy of pendulum B is 

𝑃𝐵 = 𝑚2𝑔(2𝑙1cos𝜃1 + 𝑙2cos𝜃2). (3.10) 
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Total potential energy of the system is 

𝑉 = 𝑃𝐴 + 𝑃𝑀 + 𝑃𝐵 = 𝑚1𝑔𝑙1cos𝜃1 + 2𝑚3𝑔𝑙1cos𝜃1 + 𝑚2𝑔(2𝑙1cos𝜃1 + 𝑙2cos𝜃2). (3.11) 

Therefore, Lagrangian H is  

𝐻 = 𝐺 − 𝑉 = (
2

3
𝑚1𝑙1

2 + 2𝑚3𝑙1
2 + 2𝑚2𝑙1

2) �̇�1
2

 

                                                                     +
2

3
𝑚2𝑙2

2�̇�2
2
+ 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̇�1�̇�2 − 𝑚1𝑔𝑙1cos𝜃1 

                                                          −2𝑚3𝑔𝑙1cos𝜃1 − 𝑚2𝑔(2𝑙1cos𝜃1 + 𝑙2cos𝜃2). (3.12) 

The derivative for Lagrangian H of generalized coordinate 𝜃1 is shown as 

𝜕𝐻

𝜕𝜃1
= −2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�1�̇�2 + 𝑚1𝑔𝑙1sin𝜃1 

+2𝑚3𝑔𝑙1sin𝜃1 + 2𝑚2𝑔𝑙1sin𝜃1.      (3.13) 

The derivative for Lagrangian H of generalized coordinate 𝜃2 is shown as 

𝜕𝐻

𝜕𝜃2
= 2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�1�̇�2 + 𝑚2𝑔𝑙2sin𝜃2. (3.14) 

The derivative for Lagrangian H of generalized coordinate �̇�1 is shown as 

𝜕𝐻

𝜕�̇�1

= 2(
2

3
𝑚1𝑙1

2 + 2𝑚3𝑙1
2 + 2𝑚2𝑙1

2) �̇�1 + 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̇�2. (3.15) 
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The derivative for Lagrangian H of generalized coordinate �̇�2 is shown as  

𝜕𝐻

𝜕�̇�2

=
4

3
𝑚2𝑙2

2�̇�2 + 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̇�1. (3.16) 

Then, it can be obtained that 

𝑑

𝑑𝑡

𝜕𝐻

𝜕�̇�1

= (
4

3
𝑚1𝑙1

2 + 4𝑚3𝑙1
2 + 4𝑚2𝑙1

2) �̈�1 + 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̈�2 

                                          −2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�2(�̇�1 − �̇�2)                                                         (3.17) 

𝑑

𝑑𝑡

𝜕𝐻

𝜕�̇�2

= 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̈�1 +
4

3
𝑚2𝑙2

2�̈�2 − 2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�1(�̇�1 − �̇�2). (3.18) 

Substituting Lagrangian H in Equation 3.1 and replacing the generalized coordinate with 

𝜃1 and 𝜃2. 

The Lagrange equation can be expressed as 

𝑑

𝑑𝑡

𝜕𝐻

𝜕�̇�1

−
𝜕𝐻

𝜕𝜃1
= 𝑀1 (3.19) 

𝑑

𝑑𝑡

𝜕𝐻

𝜕�̇�2

−
𝜕𝐻

𝜕𝜃2
= 𝑀2. (3.20) 
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More specifically 

(
4

3
𝑚1𝑙1

2 + 4𝑚3𝑙1
2 + 4𝑚2𝑙1

2) �̈�1 + 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̈�2 

                         −2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�2(�̇�1 − �̇�2) + 2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�1�̇�2 

−𝑚1𝑔𝑙1sin𝜃1 − 2𝑚3𝑔𝑙1sin𝜃1 − 2𝑚2𝑔𝑙1sin𝜃1 = 𝑀1               (3.21) 

2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̈�1 +
4

3
𝑚2𝑙2

2�̈�2 − 2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�1(�̇�1 − �̇�2) 

−2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�1�̇�2 − 𝑚2𝑔𝑙2sin𝜃2 = 𝑀2 (3.22) 

After simplification, it can be obtained that  

(
4

3
𝑚1𝑙1

2 + 4𝑚3𝑙1
2 + 4𝑚2𝑙1

2) �̈�1 + 2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̈�2 

+2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�2
2
− 𝑚1𝑔𝑙1sin𝜃1 − 2𝑚3𝑔𝑙1sin𝜃1 − 2𝑚2𝑔𝑙1sin𝜃1 = 𝑀1 (3.23) 

2𝑚2𝑙1𝑙2cos(𝜃1 − 𝜃2)�̈�1 +
4

3
𝑚2𝑙2

2�̈�2 − 2𝑚2𝑙1𝑙2sin(𝜃1 − 𝜃2)�̇�1
2
− 𝑚2𝑔𝑙2sin𝜃2 = 𝑀2. (3.24) 

The operating point of the system is at angles (𝜃1  , 𝜃2 ) = (0, 0) i.e. when both the 

pendulum angles are zero. A small perturbation is introduced around operating point and 

expanded using Taylor series.  

 

 

 



 15 

The Taylor series with a small angle can be shown as 

                                    cos(𝜃1 − 𝜃2) ≅ 1           sin(𝜃1 − 𝜃2) ≅ 𝜃1 − 𝜃2 ≅ 0 

cos𝜃1 ≅ cos𝜃2 ≅ 1               sin𝜃1 ≅ 𝜃1 sin𝜃2 ≅ 𝜃2. (3.25) 

Linearization can be finished at unstable operating point. Then the Lagrange equation can 

be simplified as 

(
4

3
𝑚1𝑙1

2 + 4𝑚3𝑙1
2 + 4𝑚2𝑙1

2) �̈�1 + 2𝑚2𝑙1𝑙2�̈�2 

−𝑚1𝑔𝑙1𝜃1 − 2𝑚3𝑔𝑙1𝜃1 − 2𝑚2𝑔𝑙1𝜃1 = 𝑀1 (3.26) 

2𝑚2𝑙1𝑙2�̈�1 +
4

3
𝑚2𝑙2

2�̈�2 − 2𝑚2𝑙1𝑙2(𝜃1 − 𝜃2)�̇�1
2
− 𝑚2𝑔𝑙2𝜃2 = 𝑀2. (3.27) 

The Lagrange equation can be expressed in matrix form 

[

1 0
0 1

0 0
0 0

0 0
0 0

𝑎1 𝑎2

𝑎3 𝑎4

]

[
 
 
 
 
�̇�1

�̇�2

�̈�1

�̈�2]
 
 
 
 

= [

0 0
0 0

1 0
0 1

𝑓1 0

0 𝑓2

0 0
0 0

]

[
 
 
 
𝜃1

𝜃2

�̇�1

�̇�2]
 
 
 

+ [

0 0
0 0
1
0

0
1

] [
𝑀1

𝑀2
] (3.28) 

where 

𝑎1 =
4

3
𝑚1𝑙1

2 + 4𝑚3𝑙1
2 + 4𝑚2𝑙1

2
 

𝑎2 = 2𝑚2𝑙1𝑙2 

𝑎3 = 2𝑚2𝑙1𝑙2 
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𝑎4 =
4

3
𝑚2𝑙2

2
 

𝑓1 = 𝑚1𝑔𝑙1 + 2𝑚3𝑔𝑙1 + 2𝑚2𝑔𝑙1 

𝑓2 = 𝑚2𝑔𝑙2. 

Let  

𝑎 = [

1 0
0 1

0 0
0 0

0 0
0 0

𝑎1 𝑎2

𝑎3 𝑎4

] 

𝑏 = [

0 0
0 0

1 0
0 1

𝑓1 0
0 𝑓2

0 0
0 0

] 

𝑐 = [

0 0
0
1
0

0
0
1

]. 

Multiply both sides of the equation by 𝑎−1 

𝐴 = 𝑎−1𝑏   

𝐵 = 𝑎−1𝑐. 
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It can be obtained that 

𝐴 = [

0          0
0          0

     
1         0
0         1

14.25 −2.67
−14.25 12.47

    0         0
    0         0

] 

𝐵 = [

0 0
0

0.73
−0.73

0
−0.73
3.39

] 

𝐶 = [
1 0 0 0
0 1 0 0

] 

𝐷 = [
0 0
0 0

]. 

Let  

𝑥 =

[
 
 
 
𝜃1

𝜃2

�̇�1

�̇�2]
 
 
 

 

�̇� =

[
 
 
 
 
�̇�1

�̇�2

�̈�1

�̈�2]
 
 
 
 

. 
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The state-space representation is shown as  

�̇� = 𝐴𝑥 + 𝐵𝑢 (3.29) 

𝑦 = 𝐶𝑥. (3.30) 

Or explicitly:  

[
 
 
 
 
�̇�1

�̇�2

�̈�1

�̈�2]
 
 
 
 

= [

0          0
0          0

     
1         0
0         1

14.25 −2.67
−14.25 12.47

    0         0
    0         0

]

[
 
 
 
𝜃1

𝜃2

�̇�1

�̇�2]
 
 
 

+ [

0 0
0

0.73
−0.73

0
−0.73
3.39

] [
𝑀1

𝑀2
] (3.31) 

 

𝑦 = [
1 0 0 0
0 1 0 0

]

[
 
 
 
𝜃1

𝜃2

�̇�1

�̇�2]
 
 
 

. (3.32) 
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3.2 Human-Machine Co-Learning Based Controller Design 

The main purpose of the controller is to make the two pendulums reach equilibrium 

positions without large oscillations and excessive angles and speeds under the effect of random 

disturbances. It can be achieved by applying suitable torque generated by the motor at the joint. 

The controllers designed for the double inverted pendulum system are shown below.  

Linear quadratic regulator (LQR) is a kind of optimal control techniques. The LQR 

optimal design refers to the designed state feedback controller K to make the quadratic 

performance index function J take the minimum value and the optimal control input can be 

obtained by solving the algebraic Riccatti equation[30]. In this paper, the state feedback 

controller is designed using the linear quadratic regulator. 

The nonlinear system equations are linearized at the unstable equilibrium point which 

have the initial conditions  

𝑥0 = [0 0 0 0]𝑇 

the linearized state-space equation is shown in equation 3.28.  

The feedback control can be expressed as 

𝑢(𝑡) = −𝐾𝑥(𝑡). (3.33) 

 The performance index function is shown as 

𝐽 =
1

2
∫[𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]𝑑𝑡

∞

0

(3.34) 

where Q is positive-semi definite matrix, R is positive definite matrix.  

The performance index function should be minimized to obtain the optimal control 

strategy. 
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The input u is determined by solving the Riccati equation which can be shown as  

𝑃(𝑡)𝐴 + 𝐴𝑇𝑃(𝑡) − 𝑃(𝑡)𝐵𝑅−1(𝑡)𝐵𝑇𝑃(𝑡) + 𝑄(𝑡) = 0 (3.35) 

where P(t) is the Riccati matrix. The optimal control input 𝑢∗for any initial state x(0) is 

given as  

𝑢∗ = −𝐾∗𝑥(𝑡) = −𝑅−1𝐵𝑇𝑃(𝑡)𝑥(𝑡). (3.36) 

K is the linear optimal feedback gain matrix which can be shown as 𝐾 = −𝑅−1𝐵𝑇𝑃(𝑡). 

The state weighting matrix Q and input weighting matrix R can significantly influences 

the performance of the system. There is no straightforward way to obtain the weight matrixes. 

Usually, the weight matrix Q and R that meets the design requirements is found by repeated 

simulations and experiments. The first term of the performance index function 
1

2
𝑥𝑇(𝑡)𝑄𝑥(𝑡) can 

be used to measure the error between the given state and the actual state of the system during the 

entire control period. The integral of 
1

2
𝑢𝑇(𝑡)𝑅𝑢(𝑡) represents the energy consumed during the 

control process and can be used to measure the amount of energy consumed. When the value of 

an element in the Q matrix increases, the dynamic performance of the corresponding x increases. 

At the same time, oscillations are created. When the elements in the R matrix increase, the 

magnitude of the controlled states decreases which means that the energy consumption of the 

system decreases as R increases[31].  

For the DIP system, the quadratic performance index of LQR controller should keep the 

inverted pendulum within the linear range. Meanwhile, control of the upper inverted pendulum 

takes precedence over the control of the lower inverted pendulum.  
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As mentioned above, assume that the people involved in the experiment are well trained. 

So the human control strategy can be abstracted into a LQR controller. Without loss of 

generality, Q and R are chosen as 𝑄 = 𝑑𝑖𝑎𝑔[10,10,0,0], 𝑅 = [1].  

Assume that the machine has learning ability. As the human control strategy changes, the 

model of the lower inverted pendulum will change accordingly. The machine takes the changed 

model as a new system, and updates the optimal feedback gain k according to the LQR 

controller. Q and R are chosen as 𝑄 = 𝑑𝑖𝑎𝑔[10,10,0,0], 𝑅 = [1]. 

                                                                   �̇� = 𝐴𝑥 + 𝐵𝑢 

= 𝐴𝑥 + [𝐵1 𝐵2] [
𝑢1

𝑢2
] 

= 𝐴𝑥 + 𝐵1𝑢1 + 𝐵2𝑢2. (3.37) 

Assume that human have the control strategy 𝐾1 

𝑢1 = −𝐾1𝑥. (3.38) 

Substitute 𝑢1into the state-space equation 

�̇� = (𝐴 − 𝐵1𝐾1)𝑥 + 𝐵2𝑢2 

= 𝐴2𝑥 + 𝐵2𝑢2             (3.39) 

where  

𝐴2 = 𝐴 − 𝐵1𝐾1. 

By applying the LQR controller, the optimal feedback gain of the machine is obtained 

which can be shown as 𝐾2. 

Similarly, the update of the machine control strategy will result in changes in the 

parameters of the upper inverted pendulum. Experimental participant also make this change and 
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the original model as a whole and updates the optimal feedback gain 𝐾1 according to the LQR 

controller. Q and R matrix remain unchanged.  

The control input  

𝑢2 = −𝐾2𝑥. (3.40) 

Substitute 𝑢2into the state-space equation 

�̇� = (𝐴 − 𝐵2𝐾2)𝑥 + 𝐵1𝑢1 

= 𝐴1𝑥 + 𝐵1𝑢1.            (3.41) 

where  

𝐴1 = 𝐴 − 𝐵2𝐾2. 

The A matrix of the state space is updated, and the human optimal feedback gain 𝐾1 is 

updated correspondingly. 

Repeat this process, using 𝐾1𝑥  and 𝐾2𝑥  as part of the state space and get the 

corresponding optimal solution 𝐾1
∗ and 𝐾2

∗ at this time interval. The optimal feedback gain 

vector of human and machine are obtained through iterative calculation. 

The process of learning between human and machine is transformed into the process of 

iteratively calculating the optimal feedback gain vector. In this process, it is assumed that the 

learning speed of the human is slower than that of the machine . For example, the human control 

strategy 𝐾1 is updated in two time intervals and the machine’s control strategy 𝐾2 is updated in 

one time interval. 

Meanwhile, Supposed there is a delay for the experimenter in applying the learned 

control strategy to the actual operation while the machine can apply the updated strategy to the 

input in real time. The time delay is three time intervals. In the first three time intervals, the 

control strategy applied by human is the initial value. Starting from the fourth time interval, 
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assuming that the calculated control strategy is 𝐾1(𝑛), the actual applied control strategy is 

𝐾1(𝑛 − 3). 

To prevent instability due to excessive changes of feedback gain K, a updating rate 𝛼 is 

proposed. Rather than applying the optimal feedback gain 𝐾∗ calculated by LQR to the system 

directly, the new updating law is shown as 

𝐾𝑛𝑒𝑤 = 𝐾𝑜𝑙𝑑 + 𝛼(𝐾∗ − 𝐾𝑜𝑙𝑑) (3.42) 

where 𝐾∗ is the optimal feedback gain calculated by LQR, K is the feedback gain applying on 

the system.  
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4.0 Simulations 

In order to test the performance of the LQR controller designed in chapter 3, simulations 

were conducted to compare the performance of the controller under different control parameters. 

In the following section, the procedure and the results of the simulations are presented.  

In the MATLAB simulation, a state space model was built for testing the performance of 

the controller. The time interval was chosen as 5ms. The MATLAB code for the controller is 

shown in Appendix A.  

The simulation results including the angles of two inverted pendulums, and control input.  

4.1 Changing the Initial Feedback Gain K 

Assuming the state weighting matrix Q, input weighting matrix R and the update rate 𝛼 

are constants. Comparing the simulation results by using MATLAB when the initial feedback 

gain K changed.  

In this section, the Co-learning model and the model in which machine does not have the 

ability to learn were simulated. The initial condition is that the lower inverted pendulum is 

vertical, and the upper inverted pendulum has an initial angle of 5 degrees. When the system 

reaches the steady state under the control of the controller described above, the number of time 

intervals required for the upper and lower inverted pendulum to converge below 5 ∙ 10−5 
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radians, the maximum deviation angle of the lower inverted pendulum, the maximum output 

torque of the two motors and the minimum output torque of the two motors are compared.  

In the simulation below, let  Q=diag[10 , 10 , 0 , 0], R=1, updating rate 𝛼 = 0.1; 

4.1.1  Feedback Gain K1 = [45 2 15 2.2] 

1 Co-learning model 

 

 

 

Figure 2. Angle between inverted pendulums and vertical direction. 
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The lower inverted pendulum reaches the maximum angle 0.0036 Rad at time n = 108 

time intervals. 

It takes 492 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 458 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians. 

Where ∠1 denote the angle between lower inverted pendulum and vertical direction and 

∠2 denote the angle between upper inverted pendulum and vertical direction.  

 

 

 

Figure 3. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1773 N∙m. 

The maximum torque of the upper motor is 0.7603 N∙. 
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2 No learning ability model 

The initial control strategy of human 𝐾1=[45  2  15  2.2]. The corresponding machine 

control strategy can be calculated by Equation 4.6 - 4.7. 

Which is 𝐾2=[2.38  8.72  2.08  2.59].  

 

 

 

Figure 4. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0036 Rad at time n = 108 

time intervals. 

It takes 496 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 483 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians.  
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Figure 5. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1773 N∙m. 

The maximum torque of the upper motor is 0.7603 N∙m and the minimum torque of the 

upper motor is -0.0043 N∙m. 
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4.1.2  Feedback Gain K1 = [64 1.5 23 3.2] 

1 Co-learning model 

 

 

 

Figure 6. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0038 Rad at time n = 107 

time intervals. 

It takes 495 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 461 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians.  
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Figure 7. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1642N∙m. 

The maximum torque of the upper motor is 0.7520 N∙m and the minimum torque of the 

upper motor is -0.0051 N∙m. 
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2. No learning ability model 

The initial control strategy of human 𝐾1=[64 1.5 23 3.2]. The corresponding machine 

control strategy can be obtained as 𝐾2=[2.87  8.62  2.27  2.60].  

 

 

 

Figure 8. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0037 Rad at time n = 107 

time intervals. 

It takes 501 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 504 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians.  
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Figure 9. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1640N∙m. 

The maximum torque of the upper motor is 0.7520 N∙m and the minimum torque of the 

upper motor is -0.0034 N∙m. 
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4.1.3  Feedback Gain K1 = [126 0.5 64 8.2] 

1 Co-learning model 

 

 

 

Figure 10. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0040 Rad at time n = 108 

time intervals. 

It takes 499 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 465 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians. 
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Figure 11. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1675N∙m. 

The maximum torque of the upper motor is 0.7446 N∙m and the minimum torque of the 

upper motor is -0.0050 N∙m. 
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2. No learning ability model 

The initial control strategy of human 𝐾1=[126 0.5 64 8.2]. The corresponding machine 

control strategy can be obtained as 𝐾2=[2.84  8.54  2.49  2.62].  

 

 

 

Figure 12. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0039 Rad at n = 107 time 

intervals. 

It takes 515 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 569 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians. 
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Figure 13. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1673N∙m. 

The maximum torque of the upper motor is 0.7446 N∙m and the minimum torque of the 

upper motor is -9.4787∙ 10−4 N∙m. 
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4.2 Changing the Weighting Matrix Q and R 

Assuming the initial feedback gain K and the update rate 𝛼 are constants. Comparing the 

simulation results using Co-learning model when the weighting matrix Q and R changed. 

In the simulation below, let 𝐾1=[45 2 15 2.2], updating rate 𝛼 = 0.1.  

4.2.1  Weighting Matrix Q = diag [1 , 1 , 0 ,  0],  R = 1 

 

 

 

Figure 14. Angle between inverted pendulums and vertical direction. 
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The lower inverted pendulum reaches the maximum angle 0.0026 Rad at time n = 116 

time intervals. 

It takes 532 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 607 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians.  

 

 

 

Figure 15. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1744N∙m. 

The maximum torque of the upper motor is 0.6685 N∙m and the minimum torque of the 

upper motor is -1.2090∙ 10−5 N∙m. 
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4.2.2  Weighting Matrix Q = diag [10 , 10 , 0 ,  0],  R = 0.1 

 

 

 

Figure 16. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0069 Rad at time n = 84 time 

intervals. 

It takes 404 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 257 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians.  
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Figure 17. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.2461 N∙m. 

The maximum torque of the upper motor is 1.2692 N∙m and the minimum torque of the 

upper motor is -0.0885 N∙m. 
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4.3 Changing the Updating Rate   

Assuming the state weighting matrix Q, input weighting matrix R and the initial feedback 

gain K are constants. Comparing the simulation results when the updating rate 𝛼 changed.  

In the simulation below, let  𝐾1=[126 0.5 64 8.2], Q=diag[10 , 10 , 0 ,  0], R=1.  

4.3.1  Updating Rate  = 0.5 

1 Co-learning model 

 

 

 

Figure 18. Angle between inverted pendulums and vertical direction. 
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The lower inverted pendulum reaches the maximum angle 0.0036 Rad at time n = 108 

time intervals. 

It takes 492 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 458 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians.  

 

 

 

Figure 19. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1929 N∙m. 

The maximum torque of the upper motor is 0.7446 N∙m and the minimum torque of the 

upper motor is -0.0052 N∙m. 
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2 No learning ability model 

The initial control strategy of human 𝐾1=[126 0.5 64 8.2]. The corresponding machine 

control strategy can be obtained as 𝐾2=[2.84  8.54  2.49  2.62].  

 

 

 

Figure 20. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0035 Rad at n = 109 time 

intervals. 

It takes 511 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 565 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians. 
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Figure 21. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1894 N∙m. 

The maximum torque of the upper motor is 0.7446 N∙m and the minimum torque of the 

upper motor is -0.0010 N∙m. 
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4.4 Time Delay 

It is assumed that the machine can apply the updated control strategies to the system in 

real time. For humans, there will be a delay from obtaining the new control strategies to applying 

the strategies to the system.  

Assuming the state weighting matrix Q, input weighting matrix R, the initial feedback 

gain K and updating rate 𝛼 are constants. Comparing the simulation results using Co-learning 

model when the time delay 𝜏 changed.  

In the simulation below, let  𝐾1=[126 0.5 64 8.2], Q=diag[10 , 10 , 0 ,  0],  R=1,  𝛼 = 0.1.  
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4.4.1  Time Delay  = 10 Time Intervals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0041 Rad at time n = 108 

time intervals. 

It takes 500 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 467 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians.  
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Figure 23. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1647 N∙m. 

The maximum torque of the upper motor is 0.7446 N∙m and the minimum torque of the 

upper motor is -0.0050 N∙m. 
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4.4.2  Time Delay  = 100 Time Intervals 

 

 

 

Figure 24. Angle between inverted pendulums and vertical direction. 

 

 

The lower inverted pendulum reaches the maximum angle 0.0051 Rad at time n = 124 

time intervals. 

It takes 525 time intervals for ∠1 to converge below 5 ∙ 10−5 radians and it takes 491 

time intervals for ∠2 to converge below 5 ∙ 10−5 radians.  
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Figure 25. Torque applied on the pendulums. 

 

 

The maximum torque of the lower motor is 0.1598 N∙m. 

The maximum torque of the upper motor is 0.7446 N∙m and the minimum torque of the 

upper motor is -0.0051 N∙m. 
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4.5 Simulation Results 

The above simulation results can be summarized into the following tables. 

 

 

Table 2. System performance when changing the initial feedback gain K 

 𝐾1 𝐾2 𝐾3 

Co-learning No learning 

ability 

Co-learning No learning 

ability 

Co-learning No learning 

ability 

𝑁1 492 496 495 501 499 515 

𝑁2 458 483 461 504 465 569 

∠1 Max 0.0036 0.0036 0.0038 0.0037 0.0040 0.0039 

u1Max 0.1773 0.1773 0.1642 0.1640 0.1675 0.1673 

u2Max 0.7603 0.7603 0.7520 0.7520 0.7446 0.7446 

u2Min -0.0052 -0.0043 -0.0051 -0.0034 -0.0050 -0.0009 

 

 

From results above, it can be observed that  

1. For the same model, the greater the difference between the initial feedback gain and the 

calculated optimal solution, the longer the time to converge to a fixed angle range. 

2. Different models have significant differences in convergence time even if they have the 

same initial feedback gain. Since both human and machine have the ability to learn, there 

is no significant difference in convergence time of the co-learning model. In the second 
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model, the machine does not have the learning ability, and the control strategy cannot be 

optimized, so the time to converge to a fixed angle range is significantly increased. 

3. The difference between the inverted pendulum and the vertical direction represents the 

state error, while the torque represents the energy entering the system. Since the weight 

matrices Q and R are fixed, the state error and the energy entering the system do not 

change significantly, and the maximum and minimum values remain unchanged. 

 

 

Table 3. System performance when changing the weighting matrix Q and R 

 𝑄1 𝑅1 𝑄2  𝑅1 𝑄1  𝑅2 

𝑁1 492 532 404 

𝑁2 458 607 257 

∠1 Max 0.0036 0.0026 0.0069 

u1Max 0.1773 0.1744 0.2461 

u2Max 0.7603 0.6685 1.2692 

u2Min -0.0052 -1.2090e-05 -0.0885 

 

 

From results above, it can be observed that  

1. Under the condition that the initial feedback coefficient K, the update rate and the R 

matrix remain unchanged, when the Q matrix is reduced, the maximum angle of the 

lower inverted pendulum is reduced, which means that the state error of the system is 
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reduced and the system is more stable. But the time for the system to reach steady state 

has increased. 

2. Under the condition that the feedback parameter K, the update rate and the Q matrix are 

unchanged, as the R matrix decreases, the maximum torque generated by the motor 

increases, meaning that the energy input into the system increases. At the same time, the 

maximum angle of the inverted pendulum increases and the system becomes more 

difficult to stabilize. However,  the convergence time becomes faster. 

The simulation results are completely consistent with the properties of the LQR  

controller introduced earlier. 

 

 

Table 4. System performance when changing the updating rate α 

 𝛼1 𝛼2 

Co-learning No learning 

ability 

Co-learning No learning 

ability 

𝑁1 499 515 492 511 

𝑁2 465 569 458 565 

∠1 Max 0.0040 0.0039 0.0036 0.0035 

u1Max 0.1675 0.1673 0.1929 0.1894 

u2Max 0.7446 0.7446 0.7446 0.7446 

u2Min -0.0050 -0.0009 -0.0052 -0.0010 
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From results above, it can be observed that when the update rate increases, the 

convergence time of both models decreases, but the convergence rate of the co-learning model is 

faster than the convergence rate of the non-learning model. Since the machine does not have the 

learning ability and the control strategy cannot be updated in the second model, the control 

strategy applied to the upper inverted pendulum is not the optimal control strategy. Even if the 

update speed is increased, it is updated to the non-optimal control strategy as soon as possible. 

Therefore, the convergence rate is slower than the co-learning model. 

 

 

Table 5. System performance with time delay 

Time delay 0 10 100 

𝑁1 499 500 525 

𝑁2 465 467 491 

∠1 Max 0.0040 0.0041 0.0051 

u1Max 0.1675 0.1647 0.1598 

u2Max 0.7446 0.7446 0.7446 

u2Min -0.0050 -0.0050 -0.0051 

 

 

From results above, it can be observed that as the delay time for humans to apply the new 

control strategy to the system increases, the time for the upper and lower inverted pendulum to 

converge to a certain fixed range increases, and the stability of the system deteriorates. Similarly, 
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since the Q matrix and the R matrix are unchanged, the maximum angle of the inverted 

pendulum and the maximum torque of the motor do not change significantly. 
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5.0 Conclusion and Future Work 

5.1 Conclusion  

In this thesis, a second-order inverted pendulum system is designed which is controlled 

by human and machine corporately. A co-learning controller using LQR technique is introduced.  

The simulation results indicate that the co-learning controller converge faster than controller that 

do not have the learning ability. At the same time, the initial control feedback gain, iterative 

updating rate and the weighting matrix Q and R are adjusted in the simulation to get the 

performances of the co-learning controller. 

5.2 Future Work  

In this thesis, only simulations have been performed for the co-learning controllers. 

Future studies will focus on the experiment results.  

Besides, in this paper, it is assumed that the people involved in the experiment are trained 

and humans are abstracted into a LQR controller, so the human control strategies are optimal. A 

more specific optimal model of human response was introduced in[5], [6]. The model of human 

response can be split into time delay 𝜏, equalization network and neuromotor dynamics with 

observation noise 𝑉𝑦(t) and motor noise 𝑉𝑢 (t). Therefore, the model of manual control needs to 

be further improved. 
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Another direction for future work is to improve the controller. In this paper, the different 

parameters of the LQR controller are adjusted, which qualitatively proves the feasibility of co-

learning controller and the influence of different parameters on control performance. Machine 

learning, neural network and other technologies which will make the controller more close to 

human response will be added to the controller. 
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Appendix A Matlab Code 

This Matlab code is applicable to the case of 𝐾1=[126 0.5 64 8.2], human-machine co-learning 

controller 
 

m1=1.5; 
m2=0.5; 
m3=0.75; 
L1=1; 
L2=1.5; 
l1=0.5; 
l2=0.75; 
g=9.8 
a1=4/3*m1*l1^2+4*m2*l1^2+4*m3*l1^2; 
a2=2*m2*l1*l2; 
a3=2*m2*l1*l2; 
a4=4/3*m2*l2^2; 
f1=m1*g*l1+2*m3*g*l1+2*m2*g*l1; 
f2=m2*g*l2; 
a=[1 0 0 0; 0 1 0 0; 0 0 a1 a2; 0 0 a3 a4]; 
b=[0 0 1 0; 0 0 0 1; f1 0 0 0; 0 f2 0 0]; 
c=[0 0; 0 0; 1 0; 0 1]; 
A=inv(a)*b; 
B=inv(a)*c; 
C=[1 0 0 0; 0 1 0 0]; 
D=[0 0; 0 0]; 
B1=B(:,1); 
B2=B(:,2); 
K1=[126 0.5 64 8.2]; 
A2=[(A-B1*K1)]; 
B2=B2; 
Q=[10 0 0 0; 0 10 0 0; 0 0 0 0; 0 0 0 0]; 
R=1; 
[K2,P2]=lqr(A2,B2,Q,R); 
N = 2000 
x = zeros(4,N) 
u=zeros(2,N) 
T=0.005 
x(2, 1)=5/180*3.14 
for i=1:N 
K=[K1;K2]; 
u(1,i)=K1*x(:,i); 
u(2,i)=K2*x(:,i); 
Ac=[(A-B*K)]; 
Bc=[B]; 
Cc=[C]; 
Dc=[D]; 
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[Ad, Bd] = c2d(Ac, Bc, T) 
x(:,i+1)=Ad*x(:,i); 
if mod(i,2)==0; 
A1=[(A-B2*K2)]; 
B1=B1; 
Q1=[10 0 0 0; 0 10 0 0; 0 0 0 0; 0 0 0 0]; 
R1=1; 
[K1s,P1]=lqr(A1,B1,Q1,R1); 
alpha1=0.5; 
K1=K1+alpha1*(K1s-K1); 
end 
A2=[(A-B1*K1)]; 
B2=B2; 
Q2=[10 0 0 0; 0 10 0 0; 0 0 0 0; 0 0 0 0]; 
R2=1; 
[K2s,P2]=lqr(A2,B2,Q2,R2); 
alpha2=0.5; 
K2=K2+alpha2*(K2s-K2); 
end 
figure(1) 
subplot(2,1,1); 
plot(x(1,:), 'b'); 
title('Angle between lower inverted pendulum and vertical direction'); 
axis([0 800 -0.1*max(x(1,:)) 1.1*max(x(1,:))]) 
ylabel('Angle (rad)') 
xlabel('Time interval (n)') 
grid; 
[ymax1,tmax1]=max(x(1,:)) 
[ymin1,tmin1]=min(x(1,:)) 
legend('Angle 1') 
subplot(2,1,2); 
plot(x(2,:), 'b'); 
title('Angle between upper inverted pendulum and vertical direction'); 
axis([0 800 -0.1*max(x(2,:)) 1.1*max(x(2,:))]) 
ylabel('Angle (rad)') 
xlabel('Time interval (n)') 
grid; 
[ymax2,tmax2]=max(x(2,:)) 
[ymin2,tmin2]=min(x(2,:)) 
legend('Angle 2') 
figure(2) 
subplot(2,1,1); 
plot(u(1,:),'b-') 
title('Torque applied on the lower inverted pendulum'); 
axis([0 800 -0.1*max(u(1,:)) 1.1*max(u(1,:))]) 

ylabel('Torque (N∑m)') 
xlabel('Time interval (n)') 
grid; 
[umax1,tmax1]=max(u(1,:)) 
[umin1,tmin1]=min(u(1,:)) 
legend('Torque'); 
subplot(2,1,2); 
plot(u(2,:),'b-') 
title('Torque applied on the upper inverted pendulum'); 
axis([0 800 -0.1*max(u(2,:)) 1.1*max(u(2,:))]) 

ylabel('Torque (N∑m)') 
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xlabel('Time interval (n)') 
grid; 
[umax2,tmax2]=max(u(2,:)) 
[umin2,tmin2]=min(u(2,:)) 
legend('Torque'); 
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