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Learning visual attributes from contextual explanations

Nils Ever Murrugarra Llerena, PhD

University of Pittsburgh, 2019

In computer vision, attributes are mid-level concepts shared across categories. They pro-

vide a natural communication between humans and machines for image retrieval. They also

provide detailed information about objects. Finally, attributes can describe properties of un-

familiar objects. These are some appealing properties of attributes, but learning attributes

is a challenging task. Since attributes are less well-defined, capturing them with compu-

tational models poses a different set of challenges than capturing object categories does.

There is a miscommunication of attributes between humans and machines, since machines

may not understand what humans have in mind when referring to a particular attribute.

Humans usually provide labels if an object or attribute is present or not without any ex-

planation. However, attributes are more complex and may require explanations for a better

understanding.

This Ph.D. thesis aims to tackle these challenges in learning automatic attribute predic-

tive models. In particular, it focuses on enhancing attribute predictive power with contextual

explanations. These explanations aim to enhance data quality with human knowledge, which

can be expressed in the form of interactions and may be affected by our personality.

First, we emulate human learning skill to understand unfamiliar situations. Humans

infer properties from what they already know (background knowledge). Hence, we study

attribute learning in data-scarce and non-related domains emulating human understanding

skills. We discover transferable knowledge to learn attributes from different domains.

Our previous project inspires us to request contextual explanations to improve attribute

learning. Thus, we enhance attribute learning with context in the form of gaze, captioning,

and sketches. Human gaze captures subconscious intuition and associates certain compo-

nents to the meaning of an attribute. For example, gaze associates the tiptoe of a shoe to

a pointy attribute. To complement this gaze representation, captioning follows conscious

thinking with prior analysis. An annotator may analyze an image and may provide the
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following description: “This shoe is pointy because its sharp form at the tiptoe”. Finally, in

image search, sketches provide a holistic view of an image query, which complement specific

details encapsulated via attribute comparisons. To conclude, our methods with contextual

explanations outperform many baselines via quantitative and qualitative evaluation.
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1.0 Introduction

In computer vision, attributes are mid-level concepts shared across categories. They

provide a natural communication between humans and machines. For example, we can

provide the query “I want a sky-blue and elegant shirt” to a search system. They also

provide detailed information about objects. For example, let’s compare “cat” versus “a small

domesticated animal with soft fur, and retractable claws”. The second statement provides

much more detail about a cat. Finally, attributes can describe properties of unfamiliar

objects. For example, if we know a horse and a cat, we can infer some properties of a zebra

- even if we’ve never seen one. Zebra has four legs like a horse, and it has stripes as a cat.

These are some very appealing properties of attributes, but learning attributes is a chal-

lenging task. They are not well-defined: they can have different interpretations for different

people, as opposed to an object, where the meaning is more standard. To see why, consider

the following thought experiment. If a person is asked to draw a “boot”, the drawings of

different people will likely not differ very much. But if a person is asked to draw what the

attributes “formal” or “feminine” mean, drawings will vary. Similarly, drawings of a “for-

est” will likely all include a number of trees, but drawings of a “natural”, “open-area”, or

“cluttered” scene will differ greatly among artists.

From the previous experiment, attributes are less well-defined than objects and may have

different interpretations. There is a miscommunication of attributes between humans and

machines, since machines may not understand what humans have in mind when referring to a

particular attribute. Humans usually provide labels if an attribute is present or not without

any explanation. However, attributes are more complex and may require explanations to

understand them better.

This Ph.D. thesis aims to tackle these challenges in learning automatic attribute predic-

tive models. Specifically, we investigate the following hypothesis:
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Hypothesis. Algorithms learning from contextual explanations will learn

to predict and use attributes more accurately, compared to

algorithms that don’t use such explanations.

Contextual explanations are based on the context in which attributes occur and may

clarify their meaning to facilitate accurate learning. For example, to categorize face images

as happy or sad, brain imaging may show brain regions associated with positive and negative

feelings. Similarly, brain waves may show opposite waves. These two forms of contextual

explanations provide subconscious thinking to take a decision. We complement subconscious

analysis with conscious thinking on visual cues via a selection interface. In this scenario,

annotators draw a polygon around the lips region on a face to denote happiness or sadness.

Also, contextual explanations can be complementary. Visual cues may be complemented by

physical interactions. For example, to identify furry animals, we can observe the texture of

their fur and also touch them.

From the vast options to encode contextual explanations through sensors or visual inter-

faces, these contextual cues are also present in computer vision via saliency maps and gaze

trackers. Saliency maps represent visual importance of a corresponding visual scene among

its components (i.e. objects or parts) [62]. From our previous experiment, saliency maps

can identify lips, teeth, and smiles as relevant parts highly correlated to identify happiness.

Saliency maps also can encapsulate subconscious and conscious data. Saliency subconscious

maps are acquired from a gaze tracker, while saliency conscious maps can be acquired from

human interactions with a polygon drawing interface.

We discover and incorporate contextual explanations in recognition tasks. First, we

emulate humans to understand unfamiliar situations. Humans try to infer properties from

what they already know (background knowledge). In this setup, we represent unfamiliar

situations via unrelated domains such as animal, scene, shoe, object, and texture. Also, we

infer properties finding related attributes on unrelated domains. Given an attribute classifier,

we aim to discover relevant components, that can be reused to learn other attributes. This

finding inspires us to request contextual explanations via human rationale data to enhance

attributes predictive power. We explore human rationales in the form of human gaze, text,

2



and sketches. Human gaze captures subconscious intuition of the meaning of an attribute.

For example, it identifies a tiptoe of a shoe as the most important component for pointy

shoes. In contrast, text follows a conscious thinking with prior analysis. Following our

pointy example, an annotator analyze an image and produce the following description: “This

shoe is pointy because of its sharp form at the tiptoe”. Finally, sketches encapsulate human

rationale in a visual representation, which complements attributes representation. Sketches

provide a holistic view of the query, in contrast to specific details encapsulated via attributes.

Among these approaches, we incorporate contextual explanations for attribute learning via

discovering relevant knowledge or requesting human intervention to enrich data, as shown

in Figure 1.

Figure 1: Overview of the work in this thesis: enrich attributes with contextual explanations.

We start from discovering explanations in traditional data (bottom left) to request contextual

explanations by human enriched data (right). In traditional data, we enrich attributes by

discovering contextual information (b). Then, attributes are enriched by requesting human

rationale data in the form of: human gaze (c), gaze and text (d) and sketches (e).
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Following our intuitive approaches for contextual explanations, we describe different

ways to work with attributes. In the first category, we investigate how to improve attribute

learning by discovering relevant components that are shared among different attributes. In

the second category, we aim to enrich attributes by requesting human contextual expla-

nations. First, we improve attribute learning with gaze. Then, we improve the ability to

classify personality-related attributes by contextualizing these through the ways in which

people describe or look images. And finally, we complement attribute descriptive power

with human-generated sketches to improve image retrieval. These sketches encapsulate a

holistic view of the image query and provide contextual explanation in the form of visual

cues. These holistic visual cues complement attribute-based textual representations.

The remainder of this chapter is organized as follows. In sections 1.1 and 1.2, we briefly

introduce our approaches to enrich attributes with contextual explanations and discuss our

solutions. In section 1.3, we show how all the projects in this thesis relate to and complement

each other. In section 1.4, we describe our contributions. Finally, we outline the organization

of this thesis in section 1.5.

1.1 Discovering contextual explanations for attribute learning

Attributes can be learned in isolation or in a multi-task scenario. These approaches

require huge amounts of data to succeed because they require many objects with the attribute

present or not to capture its real meaning [36]. Also, most recent successful approaches are

based on deep learning [39, 128], and they require lots of data [15]. However, what can we

do in the case of data scarcity? A usual solution is to perform transfer learning.

Transfer learning aims to transfer knowledge from a source domain with huge data to a

target domain with scarce data. Source and target domain must be related in some sense.

For example, a computer can adapt a spam detector from one mailbox to another [61]. Also,

a computer can learn a race car detector from a traditional car detector [147].

In attribute learning, traditional transfer approaches perform adaptation between at-

tributes from the same domain [17, 89, 48]. We define a domain as a set of semantically
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related categories. However, what could we do if in addition to the data scarcity, we do not

have any data from semantic related categories? For example, let us imagine we have an

entirely new domain of objects (e.g. deep sea animals) which is visually distinct from other

objects we have previously encountered, and we have very sparse labeled data on that do-

main. Let us assume we have plentiful data from unrelated domains, e.g. materials, clothing,

and natural scenes. Can we still use that unrelated data?

We examine how we can transfer knowledge from attribute classifiers on unrelated do-

mains, as shown in Figure 2. For example, this transfer approach might mean we want to

learn a model for the animal attribute “hooved” from the scene attribute “natural”, the tex-

ture attribute “woolen”, etc. We define semantic transfer as learning a target attribute using

the remaining attributes in that same data set as source models. This is the approach used

in prior work [17, 89, 48]. In contrast, in non-semantic transfer (our proposed approach),

we use source attributes from other datasets. We show that allowing transfer from diverse

datasets allows computers to learn more accurate models, but only when we intelligently se-

lect how to weigh the contribution of the source models. The intuition behind our approach

is that the same visual patterns recur in different realms of the visual world, but language

has evolved in such a way that they receive different names depending on which domain of

objects they occur in.

Figure 2: We study transfer of knowledge among disjointed domains. Can shoe, object,

scene, and texture attributes be beneficial for learning animal attributes, despite the lack of

semantic relation between the categories and attributes?

We propose an attention-guided transfer network. Briefly, our approach works as fol-

lows. First, the network receives training images for attributes in both the source and target

5



domains. Second, it separately learns models for the attributes in each domain and then

measures how related each target domain classifier is to the classifiers in the source domains

via an attention mechanism. Finally, it uses these measures of similarity (relatedness) to

compute a weighted combination of the source classifiers, which then becomes the new clas-

sifier for the target attribute. Importantly, we show that when the source attributes come

from a diverse set of domains, the gain we obtain from this transfer of knowledge is greater

than if only the attributes from the same domain had been used.

Note that our current solution aims to discover and select the most relevant and shareable

knowledge, similar to humans. The discovered rationale aims to define an attribute as

the combination of others. Discovering meaningful transferable knowledge motivates us to

request contextual explanations to improve attribute learning. Hence, in the next section,

we explore attribute learning closely involving humans, to improve our data quality. One

of these approaches also focuses on select relevant knowledge in the form of localization via

human gaze data.

1.2 Requesting contextual explanations for attribute learning via human

interactions

We present approaches that combine human intervention and contextual explanations

to improve attribute learning. The first one focuses on attribute learning as a core task,

and the remaining two on attribute learning as a side task for cross-modality retrieval and

image search. Also, the first project enriches attributes via human gaze, and the last two

enhance attribute representation with (gaze, text) and (sketches, user simulations), respec-

tively. Human gaze captures subconscious intuition of the meaning of an attribute. In

contrast, text follows a conscious thinking with prior analysis. Finally, sketches encapsulate

human rationale in a visual representation, which complements attributes interaction.
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1.2.1 Learning attributes from human gaze

In terms of attribute learning as a core task, which is similar to object recognition, we

can learn attributes with a traditional machine learning pipeline. However, attributes are

less-well defined and there exists a disconnect between humans and machines in how they

perceive attributes, as we described in our previous section. Thus, the best way to narrow

the discrepancy is by learning from humans what attributes really mean.

We propose to learn attribute models using human gaze maps that show which part

of an image contains the attribute, as shown in Figure 3. To obtain gaze maps for each

attribute, we conduct human subject experiments where we ask viewers to examine images

of faces, shoes, and scenes, and determine if a given attribute is present in the image or not.

We use an inexpensive GazePoint eye tracking device which is simply placed in front of a

monitor to track viewers’ gaze and record the locations in the image that had some number

of fixations. We aggregate the gaze collected from multiple people on training images, to

obtain an averaged gaze map per attribute that we use to extract features from both train

and test images. We also experiment with learning a saliency model that predicts which

pixels will be fixated. To capture the potential ambiguity and visual variation within each

attribute, we cluster the positive images per attribute and their corresponding gaze locations

and obtain multiple gaze maps per attribute. We create one classifier per gaze map which

only uses features from the region under nonzero gaze map values, for both training and

testing.

The gaze maps that we learn from humans indicate the spatial support for an attribute

Figure 3: We learn the spatial support of attributes by asking humans to judge if an attribute

is present in training images. We use this support to improve attribute prediction.
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in an image and allow us to better understand what the attribute means. We use gaze maps

to identify regions that should be used to train attribute models. We show this process

achieves competitive attribute prediction accuracy compared to alternative ways to select

relevant features. We also demonstrate additional applications showing how our method can

be used to visualize attribute models, and how it can be employed to discover groups among

users in terms of their understanding of attribute presence.

In this project, we study our sight sense in isolation as a contextual explanation. However,

our perception through our senses is affected by our experience, personality, and bias. For

example, “open-minded” people are more likely to combine visual elements and perceive

them as a unified whole [5], disorganized people or ones with low self-confidence have a

high tolerance of visual blur [164], and people who believe in paranormal events are more

likely to perceive objects in images that only contain noise [109]. Hence, to learn gaze easily

and more accurate, we learn gaze and personality jointly in our next project. Also, we

enrich contextual explanations via text descriptions. Text encapsulates conscious thinking,

complementary to gaze. These descriptions bridge the gap between gaze and personality and

even enrich data by capturing the writing style of annotators.

1.2.2 Cross-modality personalization for retrieval

We extend our human gaze work for cross-modality personalized retrieval using gaze,

captions, and personality questionnaires. Our goal is to find a shared embedding, where

these paired data modalities are closed together. Hence, for example, we can retrieve the

most probable caption given a gaze representation. Our gaze data collection does not use an

eye-tracking device, which is not accessible for everybody and requires a meticulous calibra-

tion. In order to solve these issues, our project employs a revealing mask web interface. This

interface does not require any calibration and is widely accessible from any web browser.

Hence, data can be collected at a higher scale with crowdsourcing. This interface shows a

blurred image, and users click on it to reveal certain parts. Collecting data with this interface

is positively correlated with data from eye-trackers [70]. In addition to gaze human enriched

data, we collect image captions (writing style) and personality questionnaires. This project
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uses attributes to represent personality, and as a side task to improve cross-modality person-

alized retrieval. Also, gaze and writing styles capture indirectly different interpretation of

personality traits (i.e. attributes). We find that personality traits complement and enhance

gaze and image captioning learning, which reaffirms the fact that personality influences our

perception.

This variance in perception due to variance in personality is important to consider when

predicting what meaning viewers will extract from imagery. It is especially important to

model when predicting how humans will describe images that aim to impart opinions on

the viewer in subtle ways. Prior work has examined the meaning that the average human

extracts from images, by learning to predict what descriptive captions are appropriate for a

given image. However, not all humans will describe the image in the same manner. Further,

the way they describe it depends on how they look at it. We illustrate this in Fig. 4. When

shown this car advertisement, an outgoing family man might first observe the children in

front or behind the car, and interpret the message of the ad as emphasizing the safety features

which are important for one’s family. On the other hand, an artistic single woman might

first fixate on the visual elegance of the car. As a result, viewers might describe the image

content in a different order, or even omit elements that are not interesting to them.

We study the relationship between personality, gaze and captioning. For example, we

predicted how users will caption an image, conditioned on how they looked images or con-

ditioned on their personality. Similarly, other queries are performed for the remaining com-

binations of these data modalities. To do this, we learn a joint image-gaze-text-personality

embedding space, in which we separately model content and style. We use these embeddings

to retrieve content across modalities, in a pool of samples associated with different images

and/or annotated by different users. For example, given how a person looked at an image,

we learn to predict how that person might caption the image, in contrast to other users’

captions on the same or different images.

We collect a cross-modality per-annotator dataset capturing gaze, captions, and person-

ality. Using this data, we find that when retrieving samples for each user across modalities, it

is important to model the similarity in the annotations that the user provided. In contrast,

methods that only capture similarities in content but not personal style, produce weaker
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Figure 4: People with different personalities might perceive and describe the same image

differently. A social, family person might observe the children, and an artistic person might

perceive the elegance of the vehicle, in this car advertisement (a). Further, we expect there

is consistency between how the same person observes and describes different images (b). To

link content across modalities, but preserve differences between how different users might

observe and caption the image, we combine both content and style constraints (c). The

former encourages samples provided on the same image to be close in a learned space, while

the latter encourages samples provided by the same user to be close.
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retrieval results. We also compare to a recent personality-aware method which considers

single words in the form of tags, and we achieve a stronger result.

1.2.3 Image retrieval via reinforcement learning

Until now, two projects have focused on attribute learning as a core task, and binary

predictions and one uses attributes as a side task for cross-modality retrieval. This last

project also uses attributes as a side task and combine them with visual data in the form

of sketches. Attributes encapsulate rationales via comparison, and sketches encapsulate a

visual reasoning via drawings. Specifically, relative attributes are helpful for image search

refining [79, 134, 75, 179, 51, 114]. Attributes provide an excellent channel for communication

because humans naturally explain the world to each other with adjective-driven descriptions.

For example, [75] show how a user can perform rich relevance feedback by specifying how

the attributes of a results image should change to better match the user’s target image. For

example, the user might say “Show me people with longer hair than this one.” Another

approach has been to engage the user in question-answering with questions that the system

estimated are most useful [72, 37]. Thus, in prior work, the initiative for what guidance to

give to the system has been taken by either the user [74, 75, 79, 134, 179] or system [37, 146,

72] but not both. Previous interactions use attributes, which are useful when concepts can be

expressed in language, but some visual concepts are not nameable, so we rely on visual cues

in the form of sketches [32, 180, 181, 123] to express them. The system can then retrieve

visually similar results. Thus, the user can use either language or visuals to search, but it is

not clear which modality is more informative.

We propose a framework where either the user or system can drive the interaction, and

the input modality can be either textual or visual, depending on what seems most beneficial

at any point in time. Since it is the system that must rank the results, we propose to leave

the choice of what is most informative to the system. In other words, the system can decide

to let the user lead and explore, if it cannot exploit any relevant information in a certain

iteration. The system can request that the user provides multimodal feedback, i.e. textual

or visual feedback. To make all these decisions, we train a reinforcement learning agent (see
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Figure 5: We learn how to intelligently combine different forms of user feedback for interactive

image search, and find the user’s desired content in fewer iterations. The image search

section depicts our search agent that predicts an appropriate action at a certain iteration.

For example, our agent selects free-form attribute feedback for iteration 1, and sketching

for iteration 2. The actions section presents the three possible interactions (actions) of our

agent.

Fig. 5).

In particular, the options that the reinforcement learning chooses between are (1) sketch

feedback, (2) free-form attribute feedback, or (3) system-chosen attribute questions. At each

iteration, the system adaptively chooses one of these interactions and asks the user to provide

the corresponding type of feedback (e.g. it asks the user to choose an image and attribute

to comment on).

Our agent optimizes both the informativeness and exploration capabilities allowing faster

image retrieval. We find that our agent prefers human-initiated feedback in former iterations,

and complements it with machine-based feedback (i.e. questions) in later iterations. We also

outperform standard image retrieval approaches with simulated and real users.

Note that our solutions in this section employ contextual explanations in the form of

human rationales. Our first solution improves attribute learning via human gaze maps with

an eye-tracking device. Gaze captures subconscious intuition of the meaning of an attribute.

Our second solution allows cross-modality retrieval from gaze, captions, and personality
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questionnaires. Personality is embedded via attributes, and attributes are considered as a

side task to improve gaze and caption retrieval. Gaze data was collected in a large scale setup

via crowdsourcing and a revealing mask web interface, in contrast to restrictive eye-tracker

devices. Contextual explanations are represented via gaze and captions. Captions capture

personality information via writing style. Finally, our third solution considers attribute

learning as a side task to improve image search. In this proposed solution, we request

contextual explanations in the form of sketches and generate human data in the form of

user responses. Sketches encapsulate human rationales via drawings, which complement

attribute comparison rationale. We create simulated users from previous relative attribute

annotations. In addition, our reinforcement agent constantly creates new data as it learns.

1.3 Projects contextualization

All our projects are linked by attribute learning and presented in Table 1. Two of them

are centered on attribute learning as a core task, and they employ supervised learning.

Also, they center on the problem of binary attribute learning. Our remaining projects

complement the current ones using attributes as a side task and employ metric learning and

crowdsourcing. Specifically, our image retrieval project uses relative attribute learning and

reinforcement learning.

In relation to machine learning paradigms, two of our projects incorporate transfer learn-

ing. One is used for attribute transfer learning, and the other to identify different attribute

interpretations using gaze. The latter adapts a generic attribute classifier to group-specific at-

tribute interpretations. Also, our non-semantic attribute transfer learning and cross-modality

personalization for retrieval employ multi-task learning. One learns attributes jointly, and

the other learns different embedding tasks at the same time. Also, our image retrieval and

cross-modality personalization projects benefits from metric learning. The former uses it to

retrieve images from sketches, and the latter to find common embeddings between gaze, cap-

tions, and personality. Finally, in relation to selection methods, our non-semantic attribute

transfer learning aims to select source models using an attention mechanism. Similarly, our
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projects using gaze (P2 and P3) select image subregions.

In relation to data, three of our projects focus on enriched human data (i.e. gaze, writing

style, sketches, and/or user simulations). Two projects focus on human sense data. We learn

attributes from gaze (sight). Also, the last two projects use crowdsourcing, one to evaluate

our system lively with real users, and the other for data collection.

Among these projects, we have explored different challenges such as:

1. How do we integrate human data properly to improve attribute learning?

a. How to properly collect rationale data?

b. How to properly represent rationale data?

2. How do we select relevant information in an effective and efficient way?

3. How do we combine different sources of knowledge effectively?

4. How to retrieve data effectively?

5. How to improve subjectivity-aware methods?

The first challenge was studied in three of our projects, and they were inspired by our

project in non-semantic attribute learning. We ensure data quality via robust data collection

interfaces. These interfaces are robust for device miscalibration and lack of participants

concentration. We tackle these issues with validation images, which measures if our data

is properly collected. Then, we find effective rationale data representations via spatial data

Table 1: Comparison table among all projects in this thesis.

Core

task

Binary

attribute

learning

Super-

vised

learning

Side

task

Relative

attribute

learning

Reinforce-

ment

learning

Transfer

learning

Multi-

task

learning

Selection

methods

Human

enriched

data

Human

sense

data

Metric

learning

Crowd-

sourcing

P1: Non-semantic

attribute learning

X X X X X X

P2: Learning

attributes from gaze

X X X X X X X

P3: Cross-modality

personalization for

retrieval

X X X X X X X

P4: Image retrieval

with mixed initiative

and multimodal

feedback

X X X X X X
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and textual data, which are easy to incorporate in our learning framework. First, spatial

data represent gaze saliency maps, which captures subconscious reasoning and encapsulates

image query understanding via sketches. Second, textual data capture conscious reasoning

in the form of a textual message.

Then, we tackle the second challenge using gaze and an attention mechanism. Gaze

follows a human-engineered approach via eye-tracker outperforming gaze-based and data-

driven selection methods. In contrast, attention follows a data-driven approach to denote a

target attribute as the combination of attributes from unrelated domains.

For our next challenge, we combine effectively different data sources via transfer learning

and reinforcement learning. Transfer learning uses an attention mechanism to combine

unrelated attributes, while a reinforcement agent combines different actions via a reward

function to perform accurate and faster image retrieval. Our transfer learning project encodes

a target attribute as a combination of relevant attributes from unrelated domains. Similarly,

our reinforcement agent predicts an image retrieval action at an iteration. These actions are

combined iteratively among all iterations.

Then, we retrieve data effectively via metric learning and reinforcement learning. Metric

learning directly learns a ranking function combining content and style constraints among

three different data modalities: gaze, text, and personality. While a reinforcement agent

learns a reward function to select an action in a certain iteration and refine an image retrieval

ranking function combining textual and visual feedback.

Finally, we improve subjectivity-aware methods adding explainability in the form of gaze,

and learning personalized perception combining gaze, writing style, and personality traits.

Our former method employs matrix factorization on gaze data in contrast to simple attribute

presence annotations. Our later method finds that personality affects gaze and writing style,

and learning these three modalities jointly is beneficial.

1.4 Our contributions

The main contributions of this thesis are:
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• Discovery of transferable rationale human knowledge components for attribute learning

– We present a novel attention-guided transfer network to improve attribute learning

in scarce and unrelated domains.

– We show a study of transferability of attributes across semantic boundaries.

• Effective human intervention via contextual explanations in attribute learning for recog-

nition and information retrieval

– We present a novel method for learning attribute models, using inexpensive but rich

data in the form of gaze.

– We show two applications of how gaze can be used to visualize attribute models,

and how it is useful to discover groups of users in terms of their interpretations of

attributes.

– We study the relationship between personality, gaze, and captions allowing cross-

modality retrieval.

– We find that learning about gaze, captions, and personality in the same framework

is beneficial than learning them in isolation. Hence, these three modalities provide

complementary sources of knowledge.

– We present a faster mixed-initiative image search retrieval system combining attribute-

based methods with sketch retrieval. Both the user and the system are active par-

ticipants depending on who can provide high-quality search results.

– We show a study of human-initiated and system-initiated actions in image retrieval.

1.5 Organization

This thesis is organized as follows. Chapter 2 reviews existing solutions for attribute

learning, and how our projects solve some of its limitations. It also reviews related work

for each of our projects. Chapter 3 shows our current solution to discover meaningful and

shareable knowledge with traditional data in a scarcity of data of related attributes. We

enrich this representation in chapter 4 using gaze as a meaningful representation. We also

complement gaze representation with captions (writing style) and personality questionnaires
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in chapter 5. Then, chapter 6 investigates how to improve image retrieval using reinforcement

learning. Finally, we conclude and present ideas to extend this thesis in Chapter 7.
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2.0 Related work and background

In this chapter, we review challenges and different approaches to learn attributes. In

section 2.1.7, we also show how we tackle some of these challenges, and how we contribute

to them. We also review the most relevant topics for our projects in this thesis. In Section

2.2, we review related topics for our project in non-semantic attribute transfer that involves

transfer learning, and how to use it for attributes. In section 2.3, our project of learning

attributes from human gaze reviews attribute localization, learning from humans, and human

gaze. In Section 2.4, our project cross-modality personalization for retrieval examines image

captioning, relationship of gaze and captions, privileged information and style vs content

approaches. Finally, in Section 2.5, our project of image retrieval with mixed initiative and

multimodal feedback reviews image retrieval from attribute-based methods to sketch-based

ones, active learning and reinforcement learning.

2.1 Attribute learning

Semantic visual attributes are properties of the visual world, akin to adjectives [81, 36,

10, 110]. Attributes bring recognition closer to human-like intelligence, since they allow

generalization in the form of zero-shot learning, i.e. learning to recognize previously unseen

categories using a textual attribute-based description and prediction models for these at-

tributes learned on other categories [81, 36, 107, 59, 2]. Attributes have also been shown

useful for actively learning object categories [108], scene recognition [110], and action recog-

nition [88]. Attributes are also useful for interactively recognize fine-grained object categories

[10, 158], and learn to retrieve images from precise human feedback [79, 75].

Previous works deal with attributes in different situations. Many of these situations have

associated challenges, such as:

• Is the attribute vocabulary expressive enough? In order to learn attributes, we define

a subset of them in a specific domain. All these attributes are expressive enough to
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describe all objects in our data. This is especially important in interactive systems

[79, 75, 10, 158], where the user provide feedback with attributes. Attributes should

allow an effective communication to the search user. Users should not be frustrated

interacting with the system.

• How to learn attributes efficiently and confidently? Attributes can be grouped into many

categories such as color, shape, texture, parts, and others. Which feature extractor should

we use? Should one extractor be used per category? Should we focus on global or local

descriptors? In relation to efficiency, should we learn all attributes together or should

we learn separately? If we learn them together, some correlations can damage the true

meaning of the attribute. For example, made of metal can be correlated with has a wheel

attribute, and our attribute predictor can fail for a wooden wheel. These are some of the

questions that we need to address depending on our problem setup.

• Attribute accuracy is even more important for attribute applications, where attributes

are used as a supportive tool for a more complex task, such as image retrieval or fine-

grained object recognition. If we can not trust our attribute models, the applications

results are not reliable.

• Do people mostly agree in identifying attributes? Unlike objects, attributes are subjective

and human-dependent. For example, if a group of people draws a boot. Most of the

drawings are very similar. However, if we ask them to draw a formal shoe. These

drawings will have much more variation (subjectivity).

In this chapter, we review attribute learning, and how they deal with these challenges.

We assume a fixed attribute vocabulary A = {am},m ∈ {1, ...,M}, where M is the number of

attributes, and am is a function that determines if attribute m is present or not.

2.1.1 Multi-task learning approaches

Given that we have a set of attributes associated with an image, it is natural to learn them

jointly. [128] employ multi-task learning to learn attributes for crowd scene understanding

in videos. Their approach considers a deep network with an appearance and movement

branches. Similarly, [39] also employs multi-task learning to recognize 3D shape attributes,
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however, the authors consider a ∅ label when they do not have an annotation. Also, they

use an embedding loss to ensure that images of the same object are kept together in the

feature space. Regularized hypergraphs [52] are also useful for joint learning. Hypergraphs

represent instances and can capture correlations of multiple relations (i.e. attributes).

These approaches aim to find correlations among the presence of the attributes. For ex-

ample, “made of metal” and “has wheels” can be highly correlated. However, these methods

can fail to capture the real meaning of “has wheels”, and they do not recognize an object

with a wooden wheel. [59] propose to decorrelate attributes using attribute grouping infor-

mation (e.g. shape, color, texture, parts). They promote feature sharing among attributes

from the same group, and feature competition across different groups.

2.1.2 Localization-based approaches

Other approaches claim that localization is a key step for attribute learning. [90] learn

face attributes on the web employing a neural network for feature extraction, and linear SVMs

for attribute predictions. Their architecture is composed of two localization components and

an identity classifier. This classifier receives two images and determines if they belong to the

same person. The localization components take care of localizing shoulders and face. Also,

[66] learn facial attributes in conjunction with semantic segmentation, because many facial

attributes describe local properties. Similarly, [7] employs poselets to localize body parts,

and learn attributes.

In the relative attributes’ domain, [166] discover visual concepts that characterize an

attribute, in a sequence of relative attribute comparisons. They generate visual chains

among these comparisons, and select the most representative region using a ranking SVM.

The drawbacks of this approach are that it is time-consuming, and that each step is done

in isolation. Hence, optimal solutions are produced for individual steps, but an optimal

solution is not produced for the whole problem. [136] tackle these problems using a siamese

neural network with a localization and ranking network. The authors employ a localization

network to transform the original image into a relevant subregion through translation and

scaling operations. Then, image comparisons are learned through a ranking network.
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These methods have the limitation that works properly for well-localized attributes.

However, they do not provide any benefit for global attributes. For example, they work

very well for parts-based attributes. However, they do not provide much benefit for texture

and shape attributes, where the attribute lives on most of the whole image. Also, these

methods do not consider different attributes interpretation, where attributes can be localized

in different regions for each interpretation. In relation to faces, attractiveness is subjective.

While some people only consider the eyes, others look for symmetries in the face. Also, these

interpretations differ from localized features (i.e. eyes) to holistic ones (i.e. face).

2.1.3 Subjectivity-based approaches

Previous work assumes that there exists only one true annotation per attribute on an

image. However, attributes are subjective and are interpreted differently by each user. [71]

learn personalized attribute models to account for this issue. First, they learn a generic

attribute classifier. Then, they adapt it to specific user annotations. In the same line of

thought, [73] claim that user can be grouped in terms of how they interpret an attribute.

In other words, users can be grouped in terms of how they respond to questions about the

presence or absence of attributes, and how they use the attribute name. Then, a generic

classifier is adapted for each group.

Previous approaches only consider one root model (generic classifier). However, this root

model can not fit properly to all specific user needs. [80] learn an ensemble of multiple models.

These root models are diverse, and are selected to best fit user personalized attributes.

All these approaches show a limited way of communication to learn user knowledge.

They only require “what” attributes are in the image, and do not provide any explanation

of “why” they are present. Thus, we should involve humans more closely in the learning

process.

2.1.4 Category-based approaches

These approaches use information of categories (e.g objects) to improve attribute learn-

ing. Attributes are shared among different categories. [81, 82] combines category-specific
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features to learn attribute presence. For example, zebras, tigers, and bees are useful for the

stripped attribute. [161] go a step further, and identify category-dependent and category-

independent attribute relations. This knowledge is helpful for attribute and object learning.

[52] model category and attribute data using a hyper-regularized graph. Hypergraphs rep-

resent instances and capture multiple relations (i.e. attributes). They aim to find a cut in

the graph that minimizes the attribute prediction loss, and preserves the clustering in the

data (i.e. categories).

Other approaches find an intermediate useful representation. [84] learn attribute models

finding latent spaces. Their optimization objective is composed of an object category loss

and a multi-task attribute loss. Also, [40] use category labels to create category-invariant

features. These invariant features are natural for attributes due to their universality among

different categories.

In a transfer learning setup, [17] create an attribute-category table, and infers attribute

classifiers for unseen (attribute, category) pairs. They employ tensor completion techniques

and category-specific attribute classifiers.

All these works are limited to provided attributes and categories. These data are usually

provided by domain experts. However, are they expressive enough? do they cover most prop-

erties shared across categories? These questions are answered using a data-driven attribute

vocabulary approach. For example, [3] aims to find automatically attribute vocabulary and

their associations to categories from large-scale data. They aim to find numerous distinctive

attributes shared across categories.

2.1.5 Context-based approaches

Previous section approaches are limited to attributes related to categories. We also can

recover valuable knowledge from context [159, 44, 83, 160]. For example, most people wear

formal suits in a funeral.

Contextual knowledge is useful for action recognition and attribute prediction [44]. The

authors extend fast-RCNN [43] to find a secondary region, that encapsulates contextual

data. Having a bigger bounding box as contextual data is restrictive and disorganized.
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Thus, [83] use semantic organized context from human parts and the entire image. They

employ the input image in conjunction with regions containing humans, human-parts regions,

nearest human-parts, and the whole image in a neural network. In the same line of thought,

[160] consider the context for pedestrian attribute recognition. Context is represented as a

sequential set of sub images from top to bottom, and inter-person similarity, that consider

visual similar images. These components are fed in a joint recurrent learning for attribute

prediction. Also, [159] claim that location and weather are contextual information for facial

attributes. They collect egocentric videos with location and weather labels.

Context is not restricted to knowledge in the same image. We can borrow meaningful

knowledge from attributes in the same domain [17, 48, 89]. [17] use tensor factorization

to transfer object-specific attribute classifiers to unseen object-attribute pairs. [48] learn a

common feature space through maximum mean discrepancy and multiple kernels. [89] select

features from the source and target domains, and transfer knowledge using Adaptive SVM

[173] in a lower-dimensional space.

These approaches use complementary and related information in the form of context

background and attributes from the same domain. However, they may not be applicable

when this information is not available (i.e. images do not present a context background or

there are not attributes in the same domain).

2.1.6 Applications

So far, we saw different ways to learn attributes. However, they are also helpful for

more complicated tasks such as clothing style recognition [18], image captioning [162, 85],

object retrieval [87], video annotation [104], and subjective tasks (i.e. aesthetics [27] and

memorability [55, 69]). For example, [18] recognize clothing styles using attributes. They

categorize clothing styles from famous people, and event-based clothing styles (e.g. weddings

and basketball games). Also, [27] find the most aesthetically beautiful pictures from a search

query or a photo album. They employ content, compositional and illumination attributes

to recognize aesthetics in pictures. [55] help designers to create more effective memorable

visual media. The authors identify the most relevant attributes in memorability. [69] extend

23



the previous study for a large scale setting. They study if popularity, saliency, emotional

and aesthetically attributes influences memorability.

Previous applications are appropriate for binary attributes. However, relative attributes

can be used to provide useful feedback for image retrieval. [75, 72] ask feedback to the user

via relative attribute comparisons. [75] receive feedback in the form “I am looking for a

shoe that is more sporty and less pointy than this shoe”. In this setting, the user selects the

reference image and the comparison attribute. On the other hand, [72] suggest these data

and the user only need to answer with more, less or equal. Finally, [96] extend this approach

incorporating confidence and diversity of attribute models to refine the retrieval.

2.1.7 Our work

In this work, we face some of the attribute learning challenges. Our projects focus on

learning attributes more confidently using contextual explanations. Two projects enrich

data explaining “why” an attribute is present, and three projects use contextual data in the

form of non-semantic attributes, gaze, captions, and sketches. Also, one project explores

different interpretations of an attribute using gaze. Finally, we deal with attribute learning

as a side task for data retrieval tasks. One uses attributes as a complementary task for

cross-modal retrieval and the other deals with attribute accuracy for image retrieval. We

show the benefits of these projects as follows.

• First, we cope with the lack of explanation in subjectivity-based approaches via enriched

data. We use gaze as a source of explanation and bring closer human-computer com-

munication. We also incorporate gaze in [73], and show that gaze is more useful than

plain attribute annotations. Also, this approach has time-efficient results comparable

to data-driven approaches [166]. We also indirectly study writing styles in combination

with gaze to capture different interpretation of personality traits via attributes.

• Second, we complement context-based approaches. Our non-semantic project shows that

unrelated domains have valuable knowledge to improve attribute learning when there

is no context background or semantically related attributes. Also, our cross-modality

project learns together gaze, captions and personality attributes; which are contextual
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data sources. Finally, we complement attribute-based image retrieval approaches with

sketch-based ones via reinforcement learning. Sketches provide a visual context for at-

tribute textual feedback.

• Third, in the applications domain, we developed two projects for data retrieval using at-

tributes. The former performs cross-modality data retrieval using personality attributes

as a side task via metric learning. Then, the later combines attribute-based [75, 72]

and sketch-based [180] image retrieval approaches via reinforcement learning. These

approaches complement each other, and they are beneficial in different retrieval stages.

Overall these projects, we focus on enhancing data representation for attribute learn-

ing with human knowledge and contextual explanations in the form of related/selected at-

tributes, gaze, captions, and sketches.

2.2 Domain adaptation and transfer learning

In order to learn knowledge from non context-based domains, we review topics on transfer

learning, and specifically how transfer learning is done for attributes. This related work is

relevant for our project on non-semantic attribute transfer learning.

2.2.1 Transfer learning

Many researchers perform transfer learning via an invariant feature representation [40,

46], e.g. by ensuring a network cannot distinguish between two domains in the learned feature

space [148, 41, 91], training a network that can reconstruct the target domain [42, 67, 9],

through layer alignment [20] or shared layers that bridge different data modalities [14]. Other

methods [173] perform transfer learning via parameter transfer where the source classifiers

regularize the target one. [145] employ an adaptive least-squares SVM to transfer model

parameters from source classifiers to a target domain.
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2.2.2 Transfer learning for attributes.

We review some transfer learning methods for attributes in attribute learning for context-

based approaches. A modern way of transfer learning is zero-shot learning, which aims to

transfer knowledge for unseen categories.

Some recent zero-shot learning work [16, 165, 182] learns an underlying embedding space

from the seen classes and some auxiliary information (e.g. text), and then queries this

embedding with a sample belonging to a new unseen class, in order to make a prediction.

For example, [165] use attributes and text as a class embedding. They also use a non-linear

latent embedding to compute projections of image or text features, which are then merged

through a Mahalanobis distance. A scoring function is learned which determines if the source

domain (class descriptions) and the target domain (test image) belong to the same class.

Similarly, [16] find an intermediate representation for text and images with dictionary

learning. [182] use a topic-modeling-based generative model as an intermediate representa-

tion. Usually, zero-shot learning is performed to make predictions about object categories,

but it can analogously be used to predict a novel target attribute, from a set of known source

attributes.

However, prior work only considers objects and attributes from the same domain. Our

transfer learning project differs in that we study if transferability of unrelated attributes

(from different domains) is more beneficial.

2.3 Localizing attributes, learning from humans and gaze

In order to understand and improve learning, we aim to improve the communication

between humans and machines. Thus, we review topics on how to select relevant regions

with humans, how to localize attributes, and human gaze. These topics are relevant to our

project in learning attributes from human gaze.
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2.3.1 Localizing attribute models

In the domain of relative attributes [107], which we do not study, [122] discover parts

that improve relative attribute prediction accuracy. It is unclear whether the discovered

parts capture the true meaning of attributes as humans perceive them, or simply exploit

image features which are correlated [59] with the attribute of interest, but are not part of

the human perception of the attribute.1 In recent work, [166] propose to discover the spatial

extent of relative attributes, as we discussed previously. While we model attributes as binary

properties (in contrast to [166]), and use human insight to learn where an attribute lives,

[166] is the most related work to ours so we compare to it in Section 4.2.

Other recent work applies deep neural networks to predict attributes [127, 128, 33, 159,

39]. While deep nets can improve the discriminative power of attribute models, they do not

exploit human supervision on the meaning or spatial support of attributes. Thus, progress

in deep nets is orthogonal to the objective of our study. We show that even when deep fea-

tures are employed, using gaze maps to determine the spatial support of attributes improves

performance.

2.3.2 Using humans to select relevant regions

[156] pair two humans in an image-based guessing game, where the goal is for the first

person to reveal such image regions that allow the second person to most quickly guess the

category of the image. The revealed regions are then assumed to be the most relevant for

the category of interest. [25, 26] propose a single-player guessing game called “Bubbles,”

where the player must reveal as few circular regions of an image as possible, in order to

match that image to one of two categories with several examples shown. There are three

important differences between our work and [156, 25, 26]: (1) These approaches are used to

learn objects, not attributes, and attributes have much more ambiguous spatial support; (2)

They require that a human should click on a relevant image region, which means that the

user is consciously aware of what the relevant regions are, whereas in our approach a human

uses her potentially subconscious intuition about what makes an image “natural”, “formal”,

1This is also true for attention networks [132, 58] as they are data-driven, not based on human intuition.
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or “chubby”; and (3) Clicking or drawing requires a bit more effort (looking is easier than

moving one’s hand to use the mouse).

Our method can be seen as a form of annotator rationales [185, 28], which are annotations

that humans provide to teach the classifier why a category is present. For example, the user

can mark which regions of the face make a person “attractive”. However, providing gaze

maps by looking is much faster than drawing rationales (see Section 4.1.2).

2.3.3 Gaze and saliency

[106] use human gaze to reduce the effort required in obtaining data for object detectors.

They build bounding boxes from locations in a photo where a user fixates when judging

which of two categories is portrayed in the image. [184] argue that using gaze can improve

object detection—bounding box predictions that do not align with fixations can be pruned.

They also use a gaze-based feature to classify detections into true and false positives, but

only show small gains in detection accuracy.

In addition to gaze, saliency examines where a viewer will fixate in an image [57, 117,

101, 50, 63, 45, 62, 53]. We use [63]’s method to predict gaze maps for novel images. No

prior work uses gaze to learn attribute models.

2.4 Cross-modality personalization for retrieval

In order to use attributes (personality) for gaze and caption retrieval, we review topics

involving image captioning and gaze. We also focus on style and content approaches, as they

are a key component of our approach. Finally, we review privileged information as we are

learning different data modalities at the same time.

2.4.1 Image captioning

There is a large body of work [4, 118, 153, 178, 155, 68, 29] on automatic image cap-

tioning, or predicting a description for a given visual. Common approaches include learning
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a joint image-text embedding using triplet loss or by maximizing the correlation of the two

modalities [34, 31]; training a recurrent network that predicts a sequence of words condi-

tioned on the image and outputs at previous timesteps [155, 68, 29]; learning a template

description and how to fill each position of the template with a word [93]; generative adver-

sarial approaches [24]; etc.

Most captioning approaches assume all users would caption an image in the same way.

In contrast, [22] learn individual differences in how an annotator describes an image, and

[152] learn the types of hashtags a user might provide. However, none of these consider two

manifestations or channels of personality as we do (i.e. gaze and captions). We show that

having information from multiple modalities at training time allows us to better understand

user differences.

2.4.2 Gaze

Saliency prediction work [57, 63, 62, 100] models what humans find fixate on in an image.

Prior work has examined the relationship between sentiment and gaze [35] and the differences

between viewers in how they look at an image [172], but none has examined the relationship

between personalized perception and personalized meaning.

2.4.3 Relationship of captions and gaze

A few authors have examined the relationship between captions and attention. For

example, [183, 142, 171, 92] predict captions conditioned on an attention map (learned

from human gaze or discovered from a classification loss). However, these do not consider

personalized captioning or gaze as we do.

2.4.4 Style vs content

In our work, we aim to separate similarities arising due to content (i.e. image and corre-

sponding text should be close in our learned space) and similarities due to style (annotations

produced by the same viewer should be close by). Prior work exists that separates con-
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tent and style for different tasks. [186] separate content and style for handwritten Chinese

characters, by training separate networks for each, and [143] use a model linear in both the

content (character ID) and handwriting style. [46, 148, 41, 42, 91, 8] learn domain-invariant

representations for object recognition, where objects are the “content” and modalities (e.g.

paintings, sketches) are the “style”. We have multiple content modalities, and multiple styles

(one per user). Also relevant is [72] which train per-user attribute models, but this work

only considers one modality.

2.4.5 Privileged information

Our approach utilizes a type of “privileged” feature information, which is available at

training time only. Such information is useful to learn the structure of the space, and

then utilize it at test time with only a subset of the input types. Prior work includes

[150, 130, 131, 49, 97, 6]. For example, [130] use privileged information to learn which

samples are easy to learn from, and [6] regularize the parameters of one network with another

learned from privileged data. In contrast, we use privileged information for caption retrieval.

2.5 Image retrieval, active learning, and reinforcement learning

In order to combine different attribute-based image retrieval techniques with visual ap-

proaches, we review topics in image retrieval, active learning and reinforcement learning.

Image retrieval focuses on topics about attribute-based search, sketch-based search, and in-

teractive image retrieval. These topics are relevant to our project in image retrieval with

mixed initiative and multimodal feedback.

2.5.1 Attribute-based search.

Prior work has explored the value of the fine-grained detail that attribute descriptions

provide, by using attributes to initiate a search [134, 151] or provide iterative feedback on the

results of a search system [75, 72, 96]. [74] browses the current search results, and can then
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provide a feedback statement of the form “The image I am looking for is more/less [attribute]

than [this image in the results].” The choice of an attribute on which to comment is left to

the user. This is helpful if the user is perceptive, or there are images which obviously differ

from the user’s desired content for particular attributes. On the other hand, browsing a set

of images and choosing attributes is time-consuming for the user, as we find in experiments.

[72] shows that given a limited budget of interactions that the user is willing to perform,

more accurate search results can be achieved if the system asks the user questions of the

form “Is the image you are looking for more/less/equally [attribute] than [this image]?” The

chosen questions are those with high information gain. The disadvantage of [72] is that it

limits the ability of the user to browse and explore the dataset space.

2.5.2 Sketch-based search.

While attribute-based feedback is appropriate when the user can concisely describe what

content they wish to find using words, some searches involve concepts which are purely visual.

In our setting, we assume the user does not have a photograph of what they wish to find, so

cannot directly do a similarity-based search with a query image. However, the user does have

a clear visual idea of what content they wish to find. Sketch-based search approaches allow

the user to convey this visual idea to the system, via a sketch or drawing, which provides

a complementary way of communication. The system can then extract features from this

sketch and compare to the features of the images in a database [32, 133, 180, 123, 181].

We use a similar approach, but also propose to convert the sketch to an image using

generative models. Other authors use generative learning to find a representation appropriate

for cross-domain (sketch-to-image [105, 138, 137] or text-to-image [138]) search. We use

sketch-based retrieval in a larger reinforcement learning framework that chooses which search

interaction to propose (sketch, attribute-based feedback, or question-answering). Note that

our focus is not in how we perform sketch-based retrieval, but rather how to decide when to

request a sketch.
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2.5.3 Interactive search.

Rather than ask the user to issue a query and return a single set of results, we engage

the user in providing interactive relevance feedback and show results after each round. This

is a popular idea [121, 187, 23, 38, 37] whose key benefit is that incorrect predictions by

the system can be corrected. We also adopt interactive search, but combine the advantages

of free-form feedback and exploration with the information-theoretic benefits of actively

querying for feedback [37], via reinforcement learning.

2.5.4 Active learning.

In order to minimize the cost of data labeling, active learning approaches estimate the

potential benefit of labeling any particular image, using cues such as entropy, uncertainty

reduction, and model disagreement [146, 126, 47, 154, 64]. [163, 12, 139, 30] have explored

mixed initiative between user and system as well as reinforcement learning, for improving

active learning at training time, in contexts other than image search. In contrast, we use

reinforcement learning to select interactions at test time (during an online search).

2.5.5 Reinforcement learning

[65, 95, 149] has recently gained popularity for a variety of computer vision tasks, e.g.

object [11, 94] and action detection [176]. The most related work to ours is [177] which also

uses reinforcement learning to choose the type of feedback method for requesting feedback

from the user. This approach considers query vector modification, feature relevance estima-

tion, and Bayesian inference, as three possible feedback mechanisms. Neither of these allows

the user to comparatively describe how the results should change (via attributes); instead,

each image property is defined as desirable/undesirable. [75] show such binary feedback is

inferior to comparative attribute feedback. Further, unlike [177], we consider both visual

and textual feedback among the mechanisms presented to our users.
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3.0 Asking Friendly Strangers: Non-Semantic Attribute Transfer

Recent advances in computer vision rely on huge amount of data. This happens mainly

of the unpredictable success of deep learning. This is not different for attribute learning

approaches [128, 39, 159], where traditional data is represented as (image, labels) pairs.

Labels represent binary attributes present in their respective image. However, what can we

do if we have a limited amount of data? A common solution is transfer learning.

As we discussed before, transfer learning aims to transfer knowledge from a source task

with many data to a related target task with limited data. This approach is similar to

attributes, traditional attribute transfer learning aims to transfer knowledge between at-

tributes from the same domain (Section 2.2.2). However, what can we do if we have data

scarcity and no semantic related categories? In this work, we propose one solution to perform

non-semantic attribute transfer learning.

This non-semantic approach aims to select valuable knowledge from unrelated data. Data

is represented by a traditional feature matrix. Hence, we go from traditional to more complex

data for learning attributes. We enrich data in each new chapter.

We test our method on 272 attributes from five datasets of objects, animals, scenes,

shoes, and textures, and compare it with several baselines: learning using data from the

target attribute only, transfer only from attributes in the same domain, uniform weighting

of the source classifiers, learning an invariant representation through a confusion loss, and

a fine-tuning approach. We also show qualitative results in the form of attention weights,

which indicate what kind of information different target attributes borrowed.

While our target attributes come from well-defined and properly annotated datasets,

our work demonstrates how non-semantic transfer can be used to learn attributes on novel

domains where data is scarce. Our main contributions are an attention-guided transfer

network, and a study of transferability of attributes across semantic boundaries. This project

was published in [98].

The remainder of this chapter is organized as follows. In section 3.1, we describe our

attention-guided transfer approach for non-semantic attribute transfer, including our network
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formulation, optimization and implementation details. In Section 3.2, we show that our

method improves upon standard transfer learning approaches via quantitative experiments.

We also show a transferability study across semantic categories. Finally, we summarize this

chapter in Section 3.3.

3.1 Approach

We briefly give an overview of our approach, and how we formulate it on a neural network

architecture. We also provide details about its optimization losses, and implementation

details (e.g. model selection, frameworks).

3.1.1 Overview

We first overview our multi-task attention network, illustrated in Fig. 6. Then, we give

more details on its formulation, optimization procedure, and implementation.

An attention architecture allows us to select relevant information and discard irrelevant

information. Attention has been used for tasks such as image segmentation [19], saliency

detection [77], image captioning [178] and image question answering [169, 132, 174]. The

latter use an attention mechanism to decide which regions in an image are relevant to a

question input. In our problem scenario, we are not concerned with image regions, but we

want to select source attribute models useful for predicting some particular target attribute.

We are interested in selecting relevant source models for our target attributes (e.g.

“sporty”). For example, the network might determine attributes X and Z are useful for

predicting target attribute A, but attribute Y is not (Fig. 6 (b)). The learned attention

weights would reflect the predicted usefulness of the source attributes for the target task.

Our network contains source and target input branches, as depicted in Fig. 6. Similarly

to [132, 174], we extract fc7 features from AlexNet for source and target images. These

target (Xt) and source (Xs) visual features are embedded into a common space using a

projection matrix Wshared, resulting in embedded features X ′

t and X ′

s. This common space
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Figure 6: (a) Overview of our transfer attention network, using an example where the target

attributes are from the shoes domain, and the source attributes are from the objects, scenes,

animals and textures domains. Source and target images are projected through a shared

layer. Then, target and source attribute models Wt and Ws are learned. An attention

module selects how to weigh the available source classifiers, in order to produce a correct

target attribute prediction. At test time, we only use the dashed-line modules. denotes

layers, and represents their parameters. (b) Example of how source models Ws are

combined into the final target attribute classifiers Wcomb, using as coefficients the attention

weights Watt.

is required to find helpful features that bridge source and target attributes. Then we learn a

set of weights (classifiers) Wt and Ws which we multiply by X ′

t and X ′

s, to obtain attribute

presence/absence scores Pt and Ps for the target and source attributes, respectively.

In order to transfer knowledge between the target and source attribute classifiers, we

calculate normalized similarities Watt between the classifiers Wt and Ws. We refer to Watt as

the attention weights learned in our network. We then use Watt as coefficients to compute

a linear combination of the source classifiers Ws. By doing so, we select the most relevant

source classifiers related to our target attributes. We call this resulting combined classifier

Wcomb. Finally, we compute the product of Wcomb with the target features X ′

t, to produce
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the final attribute presence/absence scores for the target attributes.

At training time, our network requires source and target images to find helpful knowledge

to our target task. However, once the relationship between source and target attributes is

captured in Watt, we no longer need the source images. In Fig. 6, we denote modules that

are used at test time with dashed boundaries. Layers are denoted with , and represents

their parameters.

3.1.2 Network formulation

Our network receives target (Xt) and source (Xs) visual features. We process all source

and target attributes jointly, i.e. we input training image features for all attributes at the

same time. These are embedded in a new common feature space:

X ′

t =XtWshared + 1b X ′

s =XsWshared + 1b (3.1)

whereXt ∈ RNxD, Xs ∈ RNxD are the features, Wshared ∈ RDxM contains the shared embedding

weights, 1 ∈ RNx1 is a vector of ones, b ∈ R1xM is the bias term, N is the batch size, D is the

number of input features, and M is the number of features of the embedding.

During backprop training, we learn target and source models Wt and Ws. Note that

the target model is only used to compute its similarity to the source models, and will be

replaced by a combination of source models in a later stage. We then compute Pt and

Ps, which denote the probability of attribute presence/absence for the target and source

attributes, respectively. These are only used so we can compute a loss during backprop

(described below).

Pt = f(X
′

tWt) Ps = f(X
′

sWs) (3.2)

where Wt ∈ RMxK , Ws ∈ RMxL are learned model weights, f is a sigmoid function (used since

we want to compute probabilities), L is the number of source attributes, and K the number

of target attributes. We found it is useful to ensure unit-norm per column on Wt and Ws.

Attention weights Watt are calculated measuring the similarity between source classifiers

Ws and target classifiers Wt. Then, a normalization procedure is applied.

Oatti,j =
W T

ti
⋅W T

sj

∣∣W T
ti
∣∣ ∣∣W T

sj
∣∣

Watti =
[g(Oatti,1), ..., g(Oatti,L)]

∑
L
j=1 g(Oatti,j)

(3.3)
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where W T
ti

and W T
sj

are columns from Wt and Ws, Oatt ∈ RKxL, Watt ∈ RKxL, g is a RELU

function, Oatti,j is the similarity between target attribute i and source attribute j, and Watti

are the attention weights for a single target attribute. We use cosine similarity in Eq. 3.3 to

ensure distances are in the range [-1, 1].

When computing attention weights, we want to ensure we do not transfer information

from classifiers that are inversely correlated with our target classifier of interest. Thus,

we employ normalization over a RELU function (g in Eq. 3.3) and transfer information

from classifiers positively correlated with the target classifier, but discard classifiers that are

negatively correlated with it (negative similarities are mapped to a 0 weight).

Finally, a weighted combination of source models is created, and multiplied with the

target image features X ′

t to generate our final predictions for the target attributes:

Wcomb =WattW
T
s P = f(X ′

tW
T
comb) (3.4)

where Wcomb ∈ RKxM is the weighted combination of sources, and f is a sigmoid function.

Note our model is simple to train as it only requires the learning of three sets of param-

eters, Wshared, Ws and Wt.

3.1.3 Optimization

Our network performs three tasks. The main task T1 predicts target attributes using

attention-guided transfer, and side tasks T2 and T3 predict source and target attributes,

respectively. Each task Ti is associated with a loss Li. Our optimization loss is defined as

L = λ1 ∗L1 + λ2 ∗L2 + λ3 ∗L3 (3.5)

where λ1 = 1, λ2 = 0.1, and λ3 = 0.1.1 Since an image can posses more than one attribute,

our predictions are multi-label and we employ binary cross-entropy loss for all Li.

For task T2, our source image branch contains attributes from different domains. Thus

an image has annotations for attributes in its domain, but not for other domains. We solve

this issue with a customized cross-entropy loss [39]. Suppose you have N samples and L

1The loss weights were selected similar to other transfer learning work [148] where the main task has a
weight of 1, and side tasks have a weight of 0.1.
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attributes. Each attribute is annotated with 0, 1 or ∅, where ∅ denotes no annotation. The

customized loss is:

L(Y,P ) =
N

∑
i=1

L

∑
j=1

Yi,j≠∅

Yi,jlog(Pi,j) + (1 − Yi,j)log(1 − Pi,j) (3.6)

where i is an image, j is an attribute label, Yi,j ∈ {0,1,∅}N,L is the ground-truth attribute

label matrix and Pi,j ∈ [0,1]N,L is the prediction probability for image i and attribute j. The

constraint Yi,j ≠ ∅ means attribute annotations ∅ have no effect on the loss.

3.1.4 Implementation

We implemented the described network using the Theano [144] and Keras [21] frame-

works and [136]’s attention network. First, we did parameter exploration using 70 random

configurations of learning rate and L2 regularizer weight. Each configuration ran for five

epochs with the ADAM optimizer. Then the configuration with the highest accuracy on a

validation set was selected and a network with this configuration ran for 150 epochs. In the

end of each epoch, the network was evaluated on a validation set, and training was stopped

when the validation accuracy began to decrease. Finally, note that we have fewer target

images than source images, so the target images were sampled more times.

3.2 Experimental validation

We compare three types of source data for attribute transfer, i.e. three types of data that

can be passed in the source branch of Fig. 6. This data can correspond to attributes from the

same domain, from a disjoint domain, or from any domain. The first option corresponds to

the standard manner of performing semantic (within-domain) attribute transfer [17, 48, 89].

The latter two options represent our non-semantic transfer approach.

To evaluate the benefit of transfer, we also compare to a method that learns target

attributes from scratch with no source data, and two standard transfer learning approaches
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[148, 103]. We do not directly compare to attribute transfer methods [17, 48, 89] as they do

not use neural nets and the comparison would not be fair.

We evaluated our method and the baselines on five domains and 272 attributes. We

observe that by transferring from disjoint domains or from any domain, i.e. by perform-

ing non-semantic transfer without the requirement for a semantic relationship between the

source and target tasks, we achieve the best results. To better understand the transfer pro-

cess, we also show attention weights and determine the most relevant source domains per

target domain/attribute.

3.2.1 Datasets

We use five datasets: Animals with Attributes [81], aPascal/aYahoo Objects [36], SUN

Scenes [111], Shoes [75], and Textures [13]. The number of attributes is 85, 64, 102, 10 and

11, respectively.

For each dataset, we split the data in 40% for training the source models, 10% for training

the target models, 10% for selection of the optimal network parameters, and 40% to test

the final trained network on the target data. The complexity of the experimental setup is

to ensure fair testing. For transfer learning among different domains (Attention-DD and

Attention-AD below), we can increase the size of our source data split to the full dataset,

but for a fair comparison, we use the same split as for the Attention-SD setup.

Our splits mimic the scenario where we have plentiful data from the source attributes,

but limited data for the attribute of interest.

3.2.2 Baselines

Let Di represent a domain and its attributes, and D =
5

⋃
i=1
Di be the union of all domains.

We compare seven methods. The first are two ways of performing non-semantic transfer:

• Attention-DD, which is our multitask attention network with Di as our target domain

and D/Di as our source domains. We train five networks, one for each configuration of

target/source.
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• Attention-AD, which is our multitask attention network with Di as our target domain

and D as our source domains. We again train one network for each target domain. Some

attributes on the source and target branches overlap, so we assign 0 values along the

diagonal of Watt to avoid transfer between an attribute and itself.

We compare our methods against the following baselines:

• Attention-SD, which uses the same multitask attention network but applies it on

attributes from only a single domain Di, for both the source and target branches. We

again train five networks, and assign values of 0 along the diagonal of Watt. Note that

even though some form of transfer is already taking place between all target attributes

due to the multi-task loss, the explicit transfer from the source domains is more effective

because we have more training data for the sources than the targets.

• Target-Only, which uses the predictions Pt as the final predictions of the network,

without any transfer from the source models.

• A replacement of the attention weights Watt with uniform weights, i.e. combining all

source classifiers with the same importance for all targets. This results in baselines

Attention-SDU, Attention-DDU and Attention-ADU.

• [148] which learns feature representations X ′

s, X
′

t invariant across domains, using domain

classifier and confusion losses but no attention. This results in baselines Confusion-DD

and Confusion-AD.

• Approaches Finetune-DD and Finetune-AD that fine-tune an AlexNet network using

source data, then fine-tune those source networks again for the target domain. This

method represents “standard” transfer learning for neural networks [103].

We found that Attention-SD is a weak baseline. Thus, we replace it by an ensemble

of target-only with Attention-SD. This ensemble averages the probability outputs of

these two models. We try a similar procedure for Attention-DD and Attention-AD,

but it weakens their performance, so we use these methods in their original form.
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3.2.3 Quantitative results

Tables 2 and 3 contain show average accuracy and F-measure, respectively. We show

both per-domain and across-domains overall averages. We include F-measure because many

attributes have imbalanced positive/negative data.

In both tables, we see that our methods Attention-DD and Attention-AD out-

perform or perform similarly to the baselines in terms of the overall average. While the

strongest baselines Confusion-DD and Confusion-AD [148] perform similarly to our

methods for accuracy, our methods have much stronger F-measure (Table 3). Accuracies

in Table 2 seem misleadingly high because attribute annotations are imbalanced in terms

of positives/negatives and a baseline that predicts all negatives will do well. Thus, the

differences between the methods are larger than they seem.

Table 2: Method comparison using accuracy. Our Attention-DD and Attention-AD

outperform or perform equal to the other methods on average. Best results are bolded per

row.

target
-only

Attention
-SDU

Attention
-DDU

Attention
-ADU

Attention
-SD

Attention
-DD (ours)

Attention
-AD (ours)

Confusion
-DD

Confusion
-AD

Finetune
-DD

Finetune
-AD

avg animals 0.90 0.63 0.63 0.73 0.90 0.91 0.91 0.91 0.91 0.88 0.92

avg objects 0.92 0.89 0.89 0.89 0.92 0.93 0.93 0.93 0.93 0.91 0.92

avg scenes 0.95 0.93 0.93 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95

avg shoes 0.88 0.70 0.71 0.79 0.89 0.90 0.90 0.90 0.90 0.75 0.92

avg textures 0.91 0.87 0.91 0.91 0.95 0.99 0.99 0.99 0.99 0.91 0.91

avg overall 0.91 0.80 0.81 0.85 0.92 0.94 0.94 0.94 0.94 0.88 0.92

It is important to highlight the success of Attention-DD as it does not use any at-

tributes from the target domain, as opposed to Attention-AD. In other words, transfer

is more successful when we allow information to be transferred even from domains that

are semantically unrelated to the target. In addition, note that the uniform weight base-

lines (Attention-SDU, Attention-DDU and Attention-ADU) are quite weak. This

shows that only by selecting the source classifiers intelligently, we can perform transfer learn-

ing correctly. We see many 0 F-measure scores for Attention-SDU, Attention-DDU

and Attention-ADU because they have a bias to predict negative labels.
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Table 3: Method comparison using F-measure. Our approaches Attention-DD and

Attention-AD outperform the other methods on average. Best results are bolded per

row.

target
-only

Attention
-SDU

Attention
-DDU

Attention
-ADU

Attention
-SD

Attention
-DD (ours)

Attention
-AD (ours)

Confusion
-DD

Confusion
-AD

Finetune
-DD

Finetune
-AD

avg animals 0.81 0.00 0.00 0.27 0.82 0.82 0.83 0.82 0.82 0.69 0.79

avg objects 0.50 0.00 0.00 0.01 0.50 0.47 0.47 0.39 0.41 0.10 0.14

avg scenes 0.28 0.00 0.00 0.00 0.27 0.25 0.26 0.17 0.15 0.04 0.04

avg shoes 0.81 0.27 0.38 0.59 0.83 0.83 0.84 0.83 0.83 0.37 0.87

avg textures 0.68 0.09 0.00 0.00 0.78 0.96 0.96 0.95 0.95 0.06 0.09

avg overall 0.62 0.07 0.08 0.17 0.64 0.67 0.67 0.63 0.63 0.25 0.39

While Finetune-AD outperforms our methods for two domains in Table 2, it is weaker

in terms of the overall average, and weaker in four out of five domains in Table 3.

Finally, the attention transfer methods with learned attention weights usually outperform

Target-Only, which emphasizes the benefit of transfer learning. Our non-semantic transfer

methods bring the largest gains.

We believe the success of our attention network is due to the combination of transfer

learning via a common feature representation, and parameter transfer. The common feature

representation is achieved via our shared layer, and the parameter transfer is performed via

our attention-guided transfer. Finally, we believe that instance weighting also helps: this is

accomplished by our choice to sample more target images than source images.

3.2.4 Qualitative results

In order to analyze the internal behavior of Attention-DD and Attention-AD, we

extract and show the attention weights Watt. Hence, for each target classifier i, we extract

the weights Watti = (w1,w2, ...,wL) for the source classifiers. This procedure also verifies if

Attention-AD is primarily using transfer from attributes in the same domain, or attributes

from disjoint domains with respect to the target. Due to the large number of attributes, we

group attributes by their domain. Rows represent targets, and columns sources.

In Table 4 corresponding to Attention-DD, the attention weights over the source

classifiers are distributed among animals, objects, and scenes. We believe that shoe attributes
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Table 4: Attention weights summed per domain for our Attention-DD approach. Rows

vs columns represent target vs source classifiers. The most relevant domains are bolded per

row. − denotes Attention-DD does not transfer from attributes in the same domain.

tgt/src animals objects scenes shoes textures

animals - 0.29 0.56 0.06 0.09

objects 0.48 - 0.44 0.04 0.04

scenes 0.59 0.28 - 0.07 0.06

shoes 0.19 0.35 0.38 - 0.08

textures 0.33 0.19 0.44 0.04 -

Table 5: Attention weights summed per domain for our Attention-AD approach.

tgt/src animals objects scenes shoes textures

animals 0.43 0.09 0.39 0.02 0.07

objects 0.26 0.21 0.41 0.04 0.08

scenes 0.36 0.19 0.39 0.02 0.04

shoes 0.10 0.30 0.50 0.00 0.10

textures 0.36 0.16 0.39 0.03 0.06

are not very helpful for other domains because shoe images only contain one object. Further,

textures are likely not very helpful because they are a low-level representation mainly defined

by edges. Interestingly, we observe that the most relevant domain for animals, shoes, and

textures is scenes, and scenes is not closely related to any of these domains. Similarly, the

most meaningful domain for objects and scenes is animals, another semantically unrelated

source domain.

In Table 5, showing results when we perform transfer from any domain, we observe

that shoes and textures attributes do not benefit almost at all from other attributes in the

same domain. On the other hand, objects, scenes, animals do benefit from semantically

related attributes, but the overall within-domain model similarity is lower than 50%, again

reaffirming our choice to allow non-semantic transfer.

Finally, we illustrate what visual information is being transferred across domains. In

43



Table 6: Interesting selected source attributes from domains disjoint from the target domain.

domain target attribute some relevant source attributes from [domain]

textures

aluminium muscular [animal], made of glass [object]

linen handlebars [object], railroad [scene]

lettuce leaf lives in forest [animal]

shoes

pointy foliage [scene]

bright-in-color vegetation [scene], shrubbery [scene]

long-on-the-leg has leg [object]

object

has stem dirty soil [scene], feed from fields [animal]

vegetation dirty soil [scene]

animal

tough-skinned stressful [scene]

fast scary [scene]

hunter studying [scene]

scene

railroad solitary [animal]

shrubbery tough-skinned [animal]

Table 6, we show relevant source attributes for several target attributes. The “aluminium”

texture presents a “muscular” structure, and a color similar to “glass”. The “linen” texture

has edges similar to “handlebars” and “railroads”. “Lettuce leaf” shows leaves’ textures,

so “forest” animals (which might co-occur with leaves) are helpful. For shoes attributes,

“foliage” is a set of “pointy” leaves, “vegetation” and “shrubbery” are “bright-in-color”, and

“leg” is related to shoes that are “long-on-the-leg”. For object attributes, “vegetation” and

objects with a “stem” grow on “dirty soil” and animals might “feed” on them. For animal

attributes, “tough skin” gives us the feeling of a “stressful” situation, “fast” animals might

“scare” people, and “hunter” animals “study” the best situation to catch their prey. Finally,

“railroad” scenes might be “solitary” places, and “shrubbery” is rough like “tough-skinned”

animals. In other words, while source attributes are selected from disjoint domains, it is

possible to explain some selections, but note that many do not have an intuitive explanation.

The latter is indeed what we expect when we perform non-semantic transfer.
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3.3 Summary

We have explored the problem of attribute transfer learning using unrelated domains.

We develop an approach that transfers knowledge in a common feature space, by performing

parameter transfer from source models. Our attention mechanism intelligently weights source

attribute models to improve performance on target attributes. We find that attributes

from a different domain than the target attributes are quite beneficial for transfer learning,

and improve accuracy more than transfer from semantically related attributes. We also

outperform standard transfer learning approaches.

In this project, we discover contextual explanations by identifying human transferable

knowledge. Specifically, we select models via an attention mechanism. In our next project, we

extend this idea by requesting contextual explanations. We request gaze to select meaningful

features.

One drawback of this project is that we do not study different attribute interpretations.

Attributes are ambiguous, and they are understood in different ways by different people.

In our next project, we solve this issue by capturing different attribute meanings using an

eye-tracking device. Our main method consists of grouping similar gaze patterns, and learn

specific classifiers. Also, we develop an application to group users in terms of their judgments

for attribute presence.

Similarly to this current project, our application uses transfer learning. It adapts a

generic attribute model to a group of users with the same understanding of attribute mean-

ing. Hence, we complement the work in this chapter using transfer learning for attribute

interpretation.
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4.0 Learning Attributes from Human Gaze

This chapter focuses on attribute learning with contextual explanations. As discussed

before, localization methods are mainly data-driven and applied in relative attributes (Sec-

tion 2.3.1). In contrast, we specifically focus on how to involve humans more closely in the

process of learning binary attributes via gaze. Gaze posses discriminative power to help learn

different attribute interpretations, because it gives an explanation of “why” an attribute is

present.

As we mentioned in the introduction, our gaze approach achieves competitive perfor-

mance compared to other feature selection approaches. We first show success on shoes and

faces datasets. Then, we adapt our method for more complicated datasets (i.e. scenes, that

have more than one object). Finally, we show how gaze can be used to improve attribute

visualization, and grouping users based on their judgments of attribute presence.

The main contribution of our work is a new method for learning attribute models, using

inexpensive but rich data in the form of gaze. We show that our method successfully discovers

the spatial support of attributes. Despite the close connection between attributes and human

communication, gaze has never been used to learn attribute models before. This project was

published in [100].

The remainder of this chapter is organized as follows. In Section 4.1, we describe our

approach for learning attributes from human gaze, including how we collect gaze data, gen-

erate gaze maps, extract features from these maps and train attribute prediction models.

In Section 4.2, we show that our method improves upon the standard method for learning

attributes and alternative methods for selecting relevant regions, using a number of features,

including ones extracted from a convolutional neural network. We also show several other

applications of our method, including how gaze can be used to generate intuitive visualiza-

tions of attribute models, and to discover better groupings between users in terms of their

interpretation of attributes [73]. Finally, we summarize this chapter in Section 4.3.
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4.1 Approach

We first describe our datasets (Section 4.1.1) and how we collect gaze data from human

subjects (Section 4.1.2). In Section 4.1.3, we discuss how we compute one or multiple gaze

templates per attribute, and in Section 4.1.4, we describe how we use the templates to restrict

the range of an image from which an attribute model is learned. Finally, in Section 4.1.5,

we show how we predict an individual gaze template for each test image.

Like [166], our method is designed for images which contain a single object, specifically

faces and shoes. See Section 4.2.2 for a preliminary adaptation of our work for scenes.

4.1.1 Datasets

We use two attribute datasets: the Faces dataset of [78] (also known as PubFig), and the

Shoes dataset of [74]. All images are of the same square size (200x200 pixels for faces and

280x280 for shoes). The attributes we use are: for Shoes, “feminine”, “formal”, “open”,

“pointy”, and “sporty”; and for Faces, “Asian”, “attractive”, “baby-faced”, “big-nosed”,

“chubby”, “Indian”, “masculine”, and “youthful”. Like [166], we consider a subset of all

attributes, in order to focus the analysis towards attributes whose spatial support does not

seem obvious, i.e. it could not be predicted from the attribute name alone. This allows insight

into the meaning of some particularly ambiguous attributes (e.g. “formal”, “feminine” and

“attractive”). We also selected some attributes (“pointy” and “big-nosed”) where we had a

fairly confident estimate of where gaze locations would be. This allows us to qualitatively

evaluate the collected gaze maps via their alignment with the expected gaze locations. The

annotation cost per attribute is small, about 1 minute per image-attribute pair (see below).

We select 60 images total per attribute. In order to get representative examples of

each attribute, we sample: (a) 30 instances where the attribute is definitely present, (b) 18

instances where it is definitely not present, and (c) 12 instances where it may or may not

be present. For Faces, we use the provided SVM decision values to select images in these

three categories. For Shoes, we use the ordering of ten shoe categories from most to least

having each attribute, which we map to individual images using their class labels.
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4.1.2 Gaze data collection

We employ a $495 GazePoint GP3 eye-tracker device1 to collect gaze data from 14 par-

ticipants. The 320x45x40mm eye-tracker is placed in front of a monitor, and the participants

do not have to wear it, in contrast to older devices. Gaze data can also be collected via a

webcam; see [170].

Our experiment begins with a screening phase in which we show ten images to each

participant and ask him/her to look at a fixed region in the image that is marked by a red

square, or to look at e.g. the nose or right eye for faces. If the fixated pixel locations lie

within the marked region, the participant moves on to the data collection session. The latter

consists of 200 images organized in four sub-sessions. In order to increase the participants’

performance, we allow a five-minute break between sub-sessions. We ask the viewer whether

a particular attribute is present in a particular image which we then show him/her. The

participant has two seconds to look at the image and answer. His/her gaze locations and

answers are recorded. We obtain 2.5 gaze maps on average, for each image-attribute question.

Of the 200 images, 20 are used for validation. If the gaze fixations on some validation

image are not where they should be, we discard data from the annotator that follows that

validation image and precedes the next one.

Each experiment took one hour, for a total of 14 hours of human time. Thus, obtaining

the gaze maps for each of our 13 attributes took a short amount of time, about one hour per

attribute or one minute per image-attribute pair. Our collected gaze data is available on our

website2. Note that viewing an image is faster than drawing a rationale (45 seconds), so we

save time and money compared to [28].

In contrast to our approach, some saliency work [62, 53] approximates gaze with mouse

clicks, but as argued in relation to region selection methods (Section 2.3.2), clicks require

conscious awareness of what makes an image “formal” or “baby-faced”, which need not be

true for attributes.

1http://www.gazept.com/product/gazepoint-gp3-eye-tracker/
2http://www.cs.pitt.edu/∼nineil/gaze proj/
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4.1.3 Generating gaze map templates

The gaze data and labels are collected jointly but aggregated separately for each attribute.

The format of a recorded gaze map is an array of coordinates (x, y) of the image being viewed.

We convert this to a map with the same size as the image, with a value of 1 or 0 per pixel

denoting whether the pixel was fixated or not. First, the gaze maps across all images that

correspond to positive attribute labels are OR-ed (the maximum value is taken per pixel)

and divided by the maximum value in the map. Thus we arrive at a gaze map gmm for the

attribute m with values in the range [0,1]. Second, a binary template btm is created using a

threshold of t = 0.1 on gmm. All locations greater than t are marked as 1 in btm and the rest

as 0. Third, we apply a 15x15 grid over the binary template to get a grid template gtm. The

process starts with a grid template filled with all 0 values. Then if a pixel with value 1 of

btm falls inside some grid cell of gtm, this cell is turned on (all pixels in that cell are replaced

with 1). Some examples of the generated templates are shown in Fig. 7. Red regions are

cells with value 1, while blue regions are cells with value 0.

(a)Asian (b)Attractive (c)Baby-faced (d)Big-nosed (e)Chubby (f)Indian (g)Masculine (h)Youthful

(i) Feminine (j) Formal (k) Open (l) Pointy (m) Sporty

Figure 7: Grid templates for the face (top row) and shoe attributes. Best viewed in color.

To get templates that capture the subtle variations of how an attribute might appear

[73] and also separate different types of objects, a clustering is performed over the images

labeled as positive by our human participants. For example, boots can be in one group and

high-heels in another. We use K-means with k = 5.3 After the clustering procedure, we

3We did not tune this parameter but also found the performance of our algorithm not to be sensitive to
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Figure 8: Grid templates for each positive cluster for the attributes “open” (top) and

“chubby” (bottom). At the top, we show multiple templates capturing the nuances of “open-

ness”. At the bottom, we show how multiple templates for “chubby” look on the same image.

Best viewed in color.

repeat the grid template generation, but now separately for each of the five clusters. Thus,

we obtain five grid templates per attribute. Each attribute classifier can then specialize to a

very concrete appearance, which might make learning a reliable model easier than learning

an overall single-template model.

Examples of the five templates for the attribute “open” are shown in Fig. 8. We ob-

serve that each template captures a different meaning of “openness”, e.g. open at the back

(first, second and third image), front (fifth), or throughout (fourth). We also show multiple

templates for the attribute “chubby” on the same image, for easier comparison. We quanti-

tatively compare using one versus five grid templates in Tab. 7 and 9, and show additional

qualitative results on Figures 9 and 10.

4.1.4 Learning attribute models using gaze templates

We consider two approaches: Single Template (ST) and Multiple Templates

(MT). For Single Template, the parts of images involved in training and testing are

multiplied by the grid template values, which results in image pixels under a 0 value being

removed and keeping other pixels the same. We then extract both local and global features

from the remaining part of the image, and train a classifier corresponding to the template

using these features. At test time, we apply the template to each image, extract features

its choice. One can pick K using the silhouette coefficient [120] or a validation set.

50



from the 1-valued part, and apply the classifier. For Multiple Templates, we train five

different classifiers (one per cluster), each corresponding to one grid template. We classify a

new image as positive if at least one of the five classifiers predicts it contains the attribute.

Comparison to rationales. To test the effectiveness of our gaze template construction,

we also tried implementing our gaze templates as rationales [185, 28]. In this work, the

authors seek not only labels from their annotators (e.g. this person is attractive, and that

person is not), but also ask annotators to mark with a polygon the region in the image that

determined their positive/negative response. Our gaze templates resemble attributes since

they indicate which region a human looked at to determine if an attribute is present. We

implement gaze as a form of rationales as follows. If we have a positive image xi and a

template region within it ri, we construct an artificial training example xi − ri that excludes

ri, and then generate an additional constraint in the SVM formulation that enforces that

xi examples should receive a higher score than (xi − ri) examples. This resulted in inferior

results, thus confirming our choice of how to incorporate the gaze templates into attribute

learning.

4.1.5 Learning attribute models with gaze prediction

So far we have used a single gaze template (or five templates) for each attribute, and

applied it to all images. Rather than using a fixed template, one can also learn what a

gaze map would look like for a novel test image. We construct a model following Judd’s

simple method [63], by inputting (1) our training gaze templates, from which 0/1 gaze labels

are extracted per pixel, and (2) per-pixel image features (the same feature set as in [63]

including color, intensity, orientation, etc; but excluding person and car detections). This

saliency model learns an SVM which predicts whether each pixel will be fixated or not, using

the per-pixel features. We learn a separate saliency model for each attribute.

For each attribute, as outlined in Alg. 1, we first learn a saliency model. Then we predict

a real-valued saliency score for each pixel in each test image. Finally, we convert this real-

valued saliency map to a binary template. To generate the latter, we consider thresholds u
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Algorithm 1: Predicting a gaze template using saliency.

Data: Training grid templates templatestrain,m for attribute m; test image i

Result: Template for the test image templatei, to be used for feature extraction

1 Train a saliency model using templatestrain,m;

2 Apply saliency model to i to predict gaze map gmi
m;

3 for u ∈ {0.1,0.2, . . . ,0.9} do

4 r ← Threshold gmi
m at u;

5 scoreu ← similarity of r and templatestrain,m

6 end

7 fu← Set the final threshold to arg maxu(scoreu);

8 templatei ← Apply threshold fu to gaze map gmi
m

between 0.1 and 0.9. To score each u, we apply it to the predicted gaze template for our

test image to obtain a binary test template. We compute the similarity between that test

template and the training binary templates (Section 4.1.3), as the intersection over union of

the 1-valued regions. Finally, we fix our choice of the threshold u to the one with the highest

similarity score.

Once we have the binary grid template for the test image, we can extract features from

it as in Section 4.1.4, only from the area predicted to have fixations on it. However, the size

of the gaze template on test images is no longer guaranteed to be the same as the size of the

template on training images, so we have a feature dimensionality mismatch. Thus, we opt for

a bag-of-visual-words representation over dense SIFT features (from the part of the image

under positive template values in the train/test images) and a vocabulary of 1000 visual

words. Then, we build a new classifier using the templates on the training data as discussed

above, and apply this model to the features extracted from our new predicted grid template.

We call this approach Single Template Predicted (STP) or Multiple Templates

Predicted (MTP), depending on whether a single or multiple templates were used per

attribute at training time. The names denote that at test time, we use a predicted template.

52



4.2 Experimental validation

In this section, we present a comparison (Section 4.2.1) of our approach against six

different baselines on the task of attribute prediction, five of which are alternative methods

to select relevant regions in the image from which to extract features. We also include two

additional applications: using gaze templates to visualize attribute models (Section 4.2.3),

and discovering “schools of thought” among annotators which denote how they perceive

attribute presence (Section 4.2.4). We primarily test our approach on the Faces and Shoes

datasets, but in Section 4.2.2, we show an adaptation of our approach for scene attributes.

4.2.1 Attribute prediction

We build attribute prediction models using both standard vision features and features

extracted from convolutional neural networks (CNNs). We use HOG+GIST concatenated,

the fc6 layer of CaffeNet [60], and dense SIFT bag-of-words extracted in stride of 10 pixels

at a single scale of 8 pixels. Following [129], we use CaffeNet’s fc6 since fc7 and fc8 may be

capturing full objects and not be very useful for learning attributes.

Our training data consists of the images chosen for the gaze data collection experiments

(Section 4.1.1), for a total of 300 for shoes and 480 for faces. The training labels are those

provided by our human subject annotators. We perform a majority vote over the labels

in case the annotators who labeled an image disagree over its label. We might have more

positive images for an attribute than we have negatives, so we set the SVM classifier penalty

on the negative class to the ratio of positive images to negative images. We use a linear

SVM, and employ a validation set to determine the best value of the SVM cost C in the

range [0.1, 1, 10, 100], separately for each attribute.

The test data consists of 341 images from Shoes and 660 from Faces. The test labels

are those that came with the dataset. We pool together positive and negative test data

for different attributes, so we often have significantly more negatives than positives for any

given attribute. Thus, we use the F-measure because it more precisely captures accuracy

when the data distribution is imbalanced.
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Our proposed techniques for computing the spatial support of an attribute and extracting

features accordingly, Multiple Templates and Multiple Templates Predicted, as

well as their simplified versions Single Template and Single Template Predicted,

were compared with the following baselines:

• using the whole image for both training and testing (Whole Image);

• Data-driven, a baseline which selects features using an L1-regularizer over features

extracted on a grid, then sets grid template cells on/off depending on whether at least

one feature in that grid cell received a non-zero weight from the regularizer (note we do

this only for localizable features);

• Unsupervised saliency, a baseline which predicts standard saliency using a state-of-

the-art method [62]4 but without training on our attribute-specific gaze data, and the

resulting saliency map is then used to compute a template mask;

• Random, a baseline which generates a random template over a 15x15 grid, where the

number of 1-valued cells is equal to the number of 1-valued cells in the corresponding

Single Template template; and

• an ensemble of random template classifiers (Random Ensemble), which is the random

counterpart to the ensemble used by Multiple Templates.

Finally, we compare our method to the Spatial Extent (SE) method of Xiao and

Lee [166] which discovers the spatial extent of relative attributes. While we do not study

relative attributes, this is the work that is most relevant to our approach, thus prompting

the comparison. [166] form “visual chains” from which they then build heatmaps showing

which regions in an image are most responsible for attribute strength. We are only able to

perform a comparison for attributes that have relative annotations on our datasets, which

we take from [75, 107]. We use these heatmaps as saliency predictions, which in turn are

used to mask the image and perform feature selection and attribute prediction (with the

SVM cost C chosen on a validation set). We use dense SIFT and bag-of-words as for our

Single Template Predicted.

4We used the authors’ online demo to compute saliency on our images, as code was not available.
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Table 7: F-measure using HOG+GIST features. WI = Whole Image, ST = Single

Template, MT = Multiple Templates, DD = Data-driven, US = Unsupervised

saliency, R = Random, RE = Random Ensemble. Bold indicates best performer

excluding ties.

WI ST MT DD US R RE

(ours)

feminine 0.80 0.78 0.71 0.74 0.79 0.74 0.75

formal 0.78 0.81 0.80 0.79 0.77 0.77 0.77

open 0.52 0.53 0.57 0.45 0.55 0.51 0.51

pointy 0.17 0.17 0.46 0.00 0.10 0.14 0.10

sporty 0.74 0.70 0.76 0.72 0.71 0.72 0.72

avg 0.60 0.60 0.66 0.54 0.58 0.58 0.57

Asian 0.24 0.33 0.30 0.22 0.25 0.21 0.21

attractive 0.71 0.74 0.81 0.71 0.73 0.75 0.75

baby-faced 0.03 0.06 0.04 0.06 0.06 0.06 0.06

big-nosed 0.47 0.35 0.52 0.41 0.39 0.40 0.31

chubby 0.46 0.46 0.43 0.38 0.39 0.43 0.44

Indian 0.24 0.21 0.22 0.18 0.24 0.25 0.27

masculine 0.69 0.71 0.77 0.69 0.71 0.73 0.75

youthful 0.69 0.65 0.7 0.68 0.67 0.68 0.68

avg 0.44 0.44 0.47 0.42 0.43 0.44 0.43

total avg 0.52 0.52 0.57 0.48 0.51 0.51 0.50

In Tables 7 and 8, we show results for Single Template and Multiple Templates,

for HOG+GIST and fc6, respectively. In all tables, “total avg” is the mean over the two per-

attribute “avg” values above (for shoe and face attributes, respectively). Our MT performs

better than the other approaches. In Tab. 7, MT improves the performance on shoes by 6

points or 10% (=0.66/0.60-1) relative to the second-best method, and on faces, it improves

performance by 3 points or 7%. In Tab. 8, our method improves performance by 2% on

shoes and 7% on faces.

Our MT approach captures the different meanings that an attribute can have and its

possible locations. In contrast, ST imposes a fixed template and ignores possible shades of

meaning and distinctions between the images viewed.
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Table 8: F-measure using fc6. See legend in Tab. 7.

WI ST MT US R RE

(ours)

feminine 0.77 0.73 0.66 0.70 0.69 0.74

formal 0.63 0.57 0.61 0.58 0.59 0.58

open 0.51 0.51 0.51 0.49 0.47 0.53

pointy 0.19 0.18 0.38 0.17 0.18 0.13

sporty 0.82 0.78 0.79 0.77 0.67 0.69

avg 0.58 0.55 0.59 0.54 0.52 0.53

Asian 0.25 0.30 0.22 0.26 0.21 0.24

attractive 0.72 0.73 0.81 0.77 0.71 0.73

baby-faced 0.08 0.12 0.09 0.10 0.09 0.09

big-nosed 0.46 0.44 0.67 0.44 0.40 0.31

chubby 0.42 0.37 0.41 0.35 0.34 0.32

Indian 0.28 0.13 0.27 0.22 0.16 0.13

masculine 0.7 0.67 0.71 0.66 0.69 0.73

youthful 0.65 0.60 0.68 0.58 0.61 0.64

avg 0.45 0.42 0.48 0.42 0.40 0.40

total avg 0.51 0.49 0.54 0.48 0.46 0.47

Also, we provide qualitative results comparing our ST and MT approaches in Figures 9

(for shoes) and 10 (for faces). For our MT approach, we select one meaningful template per

image. Each subfigure contains two images: the left one shows the single template, and the

right one shows a selected template from the MT method.

In Figure 9, we see that MT captured high-heel as a cue for the attribute “feminine”,

while ST focus on the entire shoe. For the “formal” attribute, MT concentrates on the shoe

center, while ST focuses on the entire shoe. For “pointy”, MT focuses on the front of the shoe,

and for “open”, it concentrates on the center of the shoe, where the open attribute resides.

Finally, for “sporty”, MT highlights shoelaces, which are a relevant part of any sporty shoe.

In contrast, for these three attributes, ST could not determine a specific relevant part for

the attribute.

On our face data (Figure 10), MT focus on people’s eyes for the “Asian” attribute.

56



Table 9: F-measure using gaze maps predicted using the saliency method of [63]. STP

= Single Template Predicted, MTP = Multiple Templates Predicted, SE =

Spatial Extent. Other abbreviations are as before.

WI ST MT STP MTP DD US SE R RE

(ours) (ours)

feminine 0.83 0.80 0.60 0.78 0.62 0.68 0.63 0.79 0.78 0.82

formal 0.75 0.75 0.81 0.76 0.76 0.55 0.66 0.78 0.75 0.74

open 0.53 0.58 0.57 0.53 0.56 0.30 0.43 0.59 0.50 0.57

pointy 0.16 0.30 0.53 0.10 0.48 0.55 0.00 0.56 0.23 0.20

sporty 0.74 0.81 0.82 0.80 0.77 0.54 0.66 0.72 0.70 0.72

avg 0.60 0.65 0.67 0.59 0.64 0.52 0.48 0.69 0.59 0.61

Asian 0.22 0.28 0.32 0.30 0.26 0.24 0.29 N/A 0.23 0.24

attractive 0.61 0.80 0.84 0.80 0.82 0.69 0.84 N/A 0.76 0.77

baby-faced 0.06 0.11 0.07 0.06 0.10 0.09 0.06 N/A 0.08 0.22

big-nosed 0.64 0.33 0.43 0.27 0.40 0.41 0.32 N/A 0.27 0.15

chubby 0.36 0.34 0.40 0.30 0.36 0.24 0.24 0.32 0.27 0.29

Indian 0.25 0.15 0.24 0.12 0.18 0.12 0.20 N/A 0.16 0.08

masculine 0.68 0.68 0.78 0.71 0.70 0.63 0.80 0.71 0.69 0.72

youthful 0.65 0.62 0.66 0.58 0.63 0.53 0.60 0.69 0.61 0.60

avg 0.43 0.41 0.47 0.39 0.43 0.37 0.42 N/A 0.38 0.38

total avg 0.52 0.53 0.57 0.49 0.53 0.45 0.45 N/A 0.49 0.50

Similarly, for “Indian”, it concentrates on the eyes and nose, while ST covers a wider area

and picks the mouth also. For “chubby” and “big-nosed”, MT find a smaller relevant area

concentrated on the cheeks and nose, respectively. For “baby-faced”, MT determines that

the eyes, cheeks and nose are relevant; the template is better localized than the one found

by ST. Finally, for the “attractive”, “masculine” and “youthful” attributes, MT finds the

same face components as ST, however MT templates are a bit better localized and covers a

smaller area.

In Tab. 9, we examine the performance of Single Template Predicted and Mul-

tiple Templates Predicted. We observe that predicting the gaze map, as opposed to

using a fixed map, only helps to improve the performance of the proposed feature selection
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(a) Feminine (b) Formal (c) Open

(d) Pointy (e) Sporty

Figure 9: A comparison of the single and multiple template methods, for shoe attributes.

Left = ST, right = MT.

(a) Asian (b) Attractive (c) Baby-faced (d) Big-nosed

(e) Chubby (f) Indian (g) Masculine (h) Youthful

Figure 10: A comparison of the single and multiple template methods, for face attributes.

Left = ST, right = MT.

approach on a few attributes (“formal”, “Asian” and “masculine” for STP vs ST, and “fem-

inine” and “baby-faced” for MTP vs MT). This may be because for our face and shoe data,

the object of interest is fairly well-centered (although faces can be rotated to some degree).

We show some unthresholded predicted gaze maps in Fig. 11. Note how our raw gaze maps

correctly detect cheeks as salient for “chubbiness”, and shoe toes and heels as salient for

“pointiness”.

As before, our best results are achieved by using multiple templates. The MT method

outperforms the standard way of learning attributes, namely WI, by 10% on average.
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Figure 11: Representative predicted templates for “chubby” and “pointy”. Red = most,

blue = least salient.

In terms of region selection baselines, the Random and Random Ensemble baselines

perform somewhat worse than Whole Image. The Single Template method performs

similarly to Whole Image (slightly better or worse, depending on the feature type). In

contrast, our Multiple Templates perform much better. This indicates that capturing

the meaning of an attribute does indeed lie in determining where the attribute lives, by also

accounting for different participants’ interpretations. The Data-driven baseline performs

weaker than the random baselines and our method, indicating the need for rich human

supervision. The Unsupervised saliency baseline outperforms our method in a few cases

(e.g. “feminine”), but overall performs similarly to Random Ensemble and weaker than

our multiple template methods. Thus, attribute information is required to learn accurate

gaze templates.

The results of [166] (Spatial Extent) are better than MT for four of the eight at-

tributes available to test for SE, but the average over the eight attributes is almost the

same (ours is slightly higher). However, for each attribute, SE required 38 hours to run on

average, on 2.6GHz Xeon processor with 256GB RAM. In contrast, our method only requires

the time to capture the gaze maps, i.e. about one hour. In Fig. 13 (a), we compare MT

with different configurations of SE that take a different amount of time to compute. (The

results in Tab. 9 used the original most expensive setting.) Overall our method has similar

or better performance than the different runs of SE, but it requires much less time.

4.2.2 Adaptation for scene attributes

Similar to [166], the method most relevant to our work, we have so far only attempted

our method on faces and shoes. Given our encouraging performance, we also tested it on ten
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Figure 12: Time comparison of our MT and MTP with SE. On the y-axis is the average

F-measure over the attributes tested. Run1, run2, and run3 use different parameter config-

urations for SE (each one requiring more processing time). Our MT is more accurate than

the cheaper SE versions and as accurate as the most expensive one.

scene attributes [110] (see Tab. 10 for the list), using 60 images per attribute for training

and 700 for testing.

A direct application of our MT and MTP performed weaker or similar to WI, likely

because scene images contain more than one object. Thus, we adapted our method for

this dataset, using five seconds of gaze data. The intuition for our adapted method is as

follows: For the attributes “natural” and “sailing”, people might look at e.g. trees and

water, respectively. Thus, we can use objects as cues for where people will look. Such an

approach computes location-invariant masks that depend on what is portrayed, not where it

is portrayed.

Our approach consists of three steps: learning an object detector, modeling attributes via

objects, and predicting attributes on test images. We fine-tuned the VGG16 network [135]

with object annotations from SUN [167] on images not contained in our gaze experiments

or test set. We trained three CNNs grouping the objects with similar bounding box size. To

learn attributes, we first ran the object detector on our training images. For a given attribute,

we counted how many objects intersect with its gaze fixations. Next, we normalized these

values and compiled a list of the five most frequently fixated, hence most relevant categories

for each attribute. At test time, if at least one of these is present, we predict the attribute

is present as well.

This simple approach achieves an average F-measure of 0.37, compared to 0.33, 0.34 and

0.45 for WI with HOG+GIST, dense SIFT, and fc6, respectively. It outperforms fc6 on
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the attributes “driving” and “open area”. A more elaborate approach which extracts fc6

features on a grid and masks out cells of the grid based on overlap with relevant objects,

achieves 0.40.

The objects selected per attribute are shown in Tab. 10. We observe that for “natural”,

the fixated objects are trees, grass, sky, and mountains; for “driving”, one of the objects

is road, for “swimming” water, and for “climbing” mountains and buildings. This result

confirms our intuition that scene attributes can be recognized by detecting relevant objects

associated with the attributes through gaze. In our future work, we will formulate this

intuition such that it allows us to outperform whole-image fc6 features on more attributes.

Table 10: The top five objects most frequently fixated per scene attribute.

Attribute Relevant objects Attribute Relevant objects

climbing mountain, sky, tree, trees, building open area sky, trees, grass, road, tree

cold tree, building, mountain, sky, trees soothing trees, sky, wall, floor, tree

competing wall, floor, grass, trees, tree sunny sky, tree, building, grass, trees

driving sky, road, tree, trees, building swimming tree, trees, water, sky, building

natural trees, tree, grass, sky, mountain vegetation tree, trees, sky, grass, road

4.2.3 Visualizing attribute models

We conclude with two applications of our method. First, our gaze templates can be em-

ployed to visualize attribute classifiers. We use Vondrick et al.’s Hoggles [157], a method used

for object model visualization, and apply it to attribute visualization, on (1) models learned

from the whole image, and (2) models learned from the regions chosen by our templates.

We show examples in Fig. 13. Using the templates produces more meaningful visualizations

than using the whole image. For example, for the attribute “baby-faced”, our visualization

shows a smooth face-like image that highlights the form of the nose and the cheeks, and for

“big-nosed”, we see a focus on the nose.
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(a) (b)

Figure 13: Model visualizations for (a) the attribute “baby-faced”, using whole image fea-

tures (left) and our template masks (right), and (b) the attribute “big-nosed”.

4.2.4 Using gaze to find schools of thought

Kovashka and Grauman [73] show there exist “schools of thought” (groupings) of users

in terms of their judgments about attribute presence. They discover these groupings and use

them to build accurate attribute sub-models, each of which captures an attribute variation

(e.g. open at the toe as opposed to at the heel). The goal is to disambiguate attributes and

create clean attribute models. First, they build a “generic” model (by pooling labels from

many annotators). They discover schools using the users’ labels, by clustering in a latent

space representation for each user, computed using matrix factorization on the annotators’

sparse labels. Then they use domain adaptation techniques to adapt this “generic” model

towards sparse labeled data from each school. At test time, they apply the user’s group’s

model to predict the labels on a sample from that user. We follow the same approach, but

employ gaze to discover the schools.

We factorize an (annotator, image) table where the entry for annotator i and image

j is the cluster membership of image j, computed by clustering images using their gaze

maps on positive and negative annotations separately. Thus, for each user, we capture what

type of gaze maps they provide, using the intuition that how a user perceives an attribute

affects where he/she looks. On our data, the original method of [73] achieves 0.37, and our

gaze-based discovery achieves 0.40. Our method is particularly useful for the attributes “big-

nosed” (0.41 vs 0.29 for [73]), “masculine” (0.40 vs 0.35), “feminine” (0.43 vs 0.36), “open”

(0.58 vs 0.52), and “pointy” (0.43 vs 0.36), most of which are fairly subjective.We present

our full results on Table 11. This indicates using gaze is very informative for disambiguating
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attributes, the original goal of [73].

Table 11: Quantitative comparison of the original schools of thought approach and our

gaze-based approach.

original approach gaze-based approach

feminine 0.36 0.43

formal 0.40 0.44

open 0.52 0.58

pointy 0.36 0.43

sporty 0.41 0.43

asian 0.43 0.34

attractive 0.13 0.19

baby 0.49 0.52

big-nosed 0.29 0.41

chubby 0.38 0.35

indian 0.46 0.43

masculine 0.35 0.40

youthful 0.29 0.26

avg 0.37 0.40

4.3 Summary

We showed an approach for learning more accurate attribute prediction models by using

supervision from humans in the form of gaze locations. These locations indicate where in

the image space a given attribute “lives”. We demonstrate that on a set of face and shoe

attributes, our method improves performance compared to six baselines including alterna-

tive methods for selecting relevant image regions. This indicates that human gaze is an

effective cue for learning attribute models. We also show applications of gaze for attribute

visualization and finding users who perceive an attribute in a similar fashion.

From our transfer learning project, we expand our contextual explanations via rela-

ted/selected attributes to contextual explanations in the form of gaze. Gaze provides sup-

portive data to explain “why” an attribute is present.
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Gaze also can be seen as a selection method, specifically a feature selection approach.

This complement our previous project, where selection procedures aim to select relevant

source models via an attention mechanism. Here, gaze works as a feature selection and aims

to select relevant regions for easy attribute learning.

In conjunction with our first project, this project focus on attribute learning. They

consider attribute learning as their core task. However, attributes can be useful for other

tasks. We will complement these two works with cross-modality personalization and image

retrieval, where attribute learning is used as a side task.

Cross-modality personalization uses metric learning and image retrieval employs rein-

forcement learning. Both machine learning paradigms complement our previous projects,

which are only based on supervised learning. Also, image retrieval uses relative attributes,

which complement binary attribute classification.

One drawback of this project is that eye-trackers require calibration and a controlled

environment. Thus, they are not suitable for uncontrolled large scale experiments such as

crowdsourcing. In our next project, we solve this issue via a revealing mask web interface

on a blurred image. This procedure captures data, which is highly correlated with acquired

data via an eye-tracker, however, it does not require any special equipment.

Finally, we continue using contextual explanations. Cross-modality personalization still

uses gaze, and caption annotations, which capture writing style; and image retrieval focuses

on visual sketches and attribute comparisons to feed our reinforcement learning agent.
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5.0 Cross-modality personalization for retrieval

This chapter focuses on attributes as a side task to improve cross-modality personalized

retrieval. Human enriched data is represented in the form of gaze and writing style (captions).

Hence, in addition to modeling gaze and captions, we also explicitly model the personality of

the users providing these samples via attributes. We incorporate constraints that encourage

samples on the same image to be close in a learned space; we refer to this as content modeling.

We also model style: we encourage samples provided by the same user to be close in a

separate embedding space, regardless of the image on which they were provided. To leverage

the complementary information that content and style constraints provide, we combine the

embeddings from both networks.

Our content/style approach achieves better performance than existing approaches for

cross-modal retrieval. We consider two strong baselines: one uses metric learning with hard

negative mining, and the other employs matrix factorization to find latent factors in order

to couple different data modalities.

The main contribution of our work is a novel method that separately considers style

and content, and combines them to achieve effective personality-aware retrieval across three

modalities. We also examine the latent interdependency of these three modalities: learning

all three jointly can be beneficial, even if only two are used at test time. In order to evaluate

our method, we collect two datasets of caption-gaze samples for (139, 79) unique users, and

over (2700, 1350) annotations on (543, 363) unique images, with worker identity preserved.

These dataset can be used by other researchers investigating personalized perception.

The remainder of this chapter is organized as follows. In section 5.1, we describe how

we collect our dataset using Amazon Mechanical Turk, and our approach to combine base,

content, and style networks via metric learning constraints. Then, in Section 5.2, we describe

our setup, evaluation metrics, and comparison with two baselines. We also perform an

experiment of modeling all embedding tasks jointly. Finally, we summarize this chapter in

Section 5.3.
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5.1 Approach

Since no prior dataset exists that considers personalized annotations in multiple modal-

ities, we first collect such a dataset (Sec. 5.1.1). We next describe the retrieval scenar-

ios we consider (Sec. 5.1.2). We then describe the cues we use to learn a space in which

we can perform cross-modal personalized retrieval, using standard content (Sec. 5.1.3) and

personality-aware style (Sec. 5.1.4), in combination with a base network (Sec. 5.1.5, 5.1.6).

We finally describe how we learn a joint space for all modalities (Sec. 5.1.7) and conclude

with implementation details (Sec. 5.1.8).

5.1.1 Dataset

We collected two datasets. First, we collected an ads dataset of 2700 annotations total,

over 543 unique images (of which three were used for annotation quality validation), 3

modalities, and from 139 unique viewers (180 separate tasks, but some users completed

more than one task). We used the dataset of [54] which contains 64,832 advertisements.

In particular, we constructed 60 sets with 15 randomly sampled images each, from topics

alcohol, travel, beauty, and animal rights. We showed each set to three viewers/annotators.

Second, we complement our ads dataset with a subset of images from COCO dataset [86].

We selected cluttered images with many objects. Our COCO data contains 1350 annotations

total, over 363 unique images, 3 modalities, and 79 unique viewers. For each image in the

set, annotators were asked to provide the following annotations.

• We simulated gaze capture, using the BubbleView interface [70] shown to return data

strongly correlated with gaze data. BubbleView shows a blurred version of an image and

asks the viewer to click on parts of the image, revealing clear circle-shaped regions. This

interface allows us to crowdsource the collection. We recorded both the locations and

order of clicks.

• We also asked annotators to describe the meaning of the advertisement in the form “I

should [action that the ad prompts] because [reasoning that the ad provides].” e.g. “I

should buy this perfume because it will make me attractive.” In the case of COCO data,
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we ask annotators to provide a caption to the image.

• Finally, we ask them to complete a ten-question personality questionnaire where they

provide multiple-choice answers. The survey was developed in [116] and it is provided

in Table 12. It measures five dimensions of personality: neuroticism, extraversion, open-

ness, agreeableness, and conscientiousness. Each question queries for a response in the

range from “disagree strongly” to “agree strongly”. Neuroticism is closely related to peo-

ple tendencies for anxiety, hostility, depression and low self-esteem, while extraversion

for positive, energetic and encouraging tendencies. Openness encompasses personality

traits such as curiosity, artistry, flexibility, and wisdom, while agreeableness is related to

kindness, generosity, empathy, altruism and trusting others. Finally, conscientiousness

measures people traits such as efficiency, reliableness, and rationality.

We used Amazon Mechanical Turk to collect our data. To ensure quality, we restricted

access to our task to annotators with 98% approval on completed tasks, over at least 1000

submitted tasks. As a form of quality control, we incorporate validation ad images. These

validation images have objects in a small portion of the image and a plain background.

We check the intersection of the acquired gaze map with the object region. If there is no

intersection, the whole set of annotations are discarded, the work is rejected and resubmitted

for new annotations.

Samples from different users. In Fig. 14, we show text and gaze samples that different

users provided on the same image. We show three columns, and each column shows the

results of the same two users; thus we show results from six users total. The top responses

are from one user, and the bottom responses are from another user.

In the first column, we observe that the first user (in blue) uses more adjective words,

while the second (in red) uses more verbs. For example, in the second row, the first annotator

describes the drink as being “chilled and refreshing” while the second describes the ad in

a more active way, i.e. the bottle “gives you” a certain pour. From their answers to the

personality questions, the second viewer is more extroverted, which aligns with energetic

feelings and using verbs.

In the second column, the first user (in green) says “I deserve”, “I am in the mood
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Table 12: Personality survey [116] as shown to Amazon Mechanical Turkers. Each question

starts with “I see myself as someone who...”

Disagree

strongly

Disagree

a little

Neither agree

nor disagree

Agree

a little

Agree

strongly

... is reserved ○ ○ ○ ○ ○

... is generally trusting ○ ○ ○ ○ ○

... tends to be lazy ○ ○ ○ ○ ○

... is relaxed,

handles stress well
○ ○ ○ ○ ○

... has few

artistic interests
○ ○ ○ ○ ○

... is outgoing,

sociable
○ ○ ○ ○ ○

... tends to find

fault with others
○ ○ ○ ○ ○

... does a thorough job ○ ○ ○ ○ ○

... gets nervous easily ○ ○ ○ ○ ○

... has an active

imagination
○ ○ ○ ○ ○

for”, “I enjoy”, i.e. the responses come from an ego-centric perspective. The second viewer

(in purple) focuses more on the state of the world and properties of products, i.e. a more

analytical perception. We observe a correlation between the personality inferred from text,

and the gaze maps provided. For example, the “self-centered” viewer in green has a lazier

approach to examining the image, while the more analytical one is more thorough. From

their personality responses, the second viewer exhibits more neuroticism (low self-esteem)

than the first. Self-esteem appears related to egocentrism.

In the third column, the first viewer (in black) emphasizes his or her relationship with
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Figure 14: Text and gaze samples for different users on our ads data. Each column repre-

sents a different set of images shown to two users per column. Gaze data is simulated via

BubbleView interface [70], which produces data strongly correlated with gaze patterns.

others (e.g. family, child, companion). The second viewer (in orange) focuses more on

themselves (e.g. “awaken my imagination”, “make me sexier”). Similarly, in the third

image, the first viewer pays close attention to the face of the man. In contrast, the more

self-centered viewer only looks at the woman (the “protagonist” of the ad). From their

personality responses, this first viewer is more agreeable than the second one. Agreeableness

is closely related to generosity, empathy, and sympathy, which relates to making a connection

with others.

Representation We represent the collected data in the following way. For images, we

extract Inception-v4 CNN features [141]. We then mask the image convolution feature with

the BubbleView saliency map, by resizing the saliency map to the convolution feature size

and multiplying them together. Finally, average pooling is performed to obtain a 1536-

dimensional feature vector. We represent textual descriptions as a 200-dimensional Glove

embedding [112]. For personality, we used a 10-dimensional feature vector obtained from
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the personality questionnaire in [116]. Below, we describe how we learn projections of these

representations that place them in the same feature space.

5.1.2 Tasks and embeddings

We consider three modalities: gaze, text, and personality. We consider six retrieval tasks:

gaze to personality (g2p), text captions to personality (t2p), personality to gaze (p2g), text

to gaze (t2g), gaze to text (g2t), and personality to text (p2t). In all of these, we wish

to retrieve an annotation that a given user provided, upon receiving another sample from

that same user on the same image, but in a different modality (e.g. retrieve the text the

annotator wrote to describe the image, conditioned on how the user looked at that image).

We learn a joint embedding of images, gaze, captions, and personality. We separately

account for similarities between data from different modalities on the same image, and data

on different images from the same user. Our key hypothesis is that bridging modalities

through a content loss that ensures samples on the same image, regardless of modality,

project closeby, is insufficient for this task. In addition, we need to model the type of

captions/gaze/personality that a user demonstrates, by also bridging samples from the same

user, regardless of the image on which they were provided.

We ensure these similarities through triplet constraints. First, we project each modality

to a shared 200-dimensional feature vector via a fully connected layer. For text, we use

an embedding layer and calculate the average 200-word embeddings of the words. Then,

for every pair of modalities, x (input) and y (output), we generate the content and style

constraints described below. Our approach’s key intuition is summarized in Fig. 15.

5.1.3 Content Network

We use the following constraints to learn a joint embedding that couples the representa-

tions across modalities, for data samples that correspond to the same image. Let us denote

a textual description of image i provided by user a as tai , and a gaze map for the same image

from the same user by gai . The image that was shown to obtain this text/gaze is denoted
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1 2

Top: Content

Bottom: Style

Figure 15: Standard approaches use a content-type loss for cross-modal retrieval, which

ensures that samples provided for the same image map are placed in a similar position in

the learned space. Here these samples are gaze-masked images and captions. In contrast, we

argue that a style-based loss is also necessary. In particular, we wish to ensure that samples

that a particular user provided, regardless of the image on which they were provided, cluster

together.

by vai . For compactness, we show constraints in a more general form, using x to denote one

modality embedding and y to denote a different modality embedding. The original image is

only used as an anchor modality; it is not part of our {x, y} modality pairs, and is denoted

separately.

The embeddings for the following pairs should be similar (where ∗ denotes any user 1,

and i and j denote distinct images): {x∗i , y
∗

i }; {x∗i , x
∗

i }; {y∗i , y
∗

i }; {v∗i , x
∗

i }; and {v∗i , y
∗

i }.

For example, if x refers to text and y refers to gaze, text and gaze samples provided on the

same image should be similar; text samples from different users provided on the same image

should be similar (and same for gaze samples); and the text and gaze samples’ representations

should be similar to the original image representation. The last two constraints are necessary

because each image is observed by three users, and each provides a potentially different gaze

1Any user is used because samples come from the same or diff. users, and user differences don’t matter
for content.
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map or caption. We primarily model visual content through the gaze-masked image, which

we refer to as the gaze map. However, we would like to ensure the maps for the same image

have similar representation.

The following representations should be dissimilar: {x∗i , y
∗

j }; {x∗i , x
∗

j }; {y∗i , y
∗

j }; {v∗i , x
∗

j };

and {v∗i , y
∗

j }. These are the same as before, but the subscript in the second sample in each

pair is j, referring to a different image than the anchor. We generate triplet constraints from

these, using all data in the current batch.

For content, we consider the following pairs of modalities as {x, y}: {t, g}, and {g, t}.

We train a single network using Eq. 5.1 to bridge the text and gaze modalities. It does not,

however, make sense to consider the following: {g, p}, since the same personality matches

multiple images, yet multiple different users (with different personalities) annotated the same

images; nor {t, p}, {p, g}, {p, t}.

We would like to ensure that the distances between samples across modalities minimize

the following loss:

Lc(x, y, v; θ) =
K

∑
i=1

[∑
j∈N

[∥x∗i − y
∗

i ∥
2
2 − ∥x∗i − y

∗

j ∥
2
2 + α]

+

+∑
j∈N

[∥y∗i − x
∗

i ∥
2
2 − ∥y∗i − x

∗

j ∥
2
2 + α]

+

+∑
j∈N

[∥x∗i − x
∗

i ∥
2
2 − ∥x∗i − x

∗

j ∥
2
2 + α]

+

+∑
j∈N

[∥y∗i − y
∗

i ∥
2
2 − ∥y∗i − y

∗

j ∥
2
2 + α]

+

+∑
j∈N

[∥v∗i − x
∗

i ∥
2
2 − ∥v∗i − x

∗

j ∥
2
2 + α]

+

+∑
j∈N

[∥v∗i − y
∗

i ∥
2
2 − ∥v∗i − y

∗

j ∥
2
2 + α]

+
]

(5.1)

where K is batch size; N is the set of negative samples in the batch; and α is the triplet

margin.

5.1.4 Style Network

The style network captures the similarities between different samples that the same user

provided. Thus, the embeddings for the following should be similar, where ∗ denotes any
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image, and a and b are distinct users: {xa
∗
, xa

∗
}2; {ya

∗
, ya

∗
}; and {xa

∗
, ya

∗
}. Thus, annotations

provided by the same user (in the same or different modalities) should be similar, regardless

of the image. The following should be dissimilar: {xa
∗
, xb

∗
}; {ya

∗
, yb

∗
}; and {xa

∗
, yb

∗
}.

We consider the following three symmetric pairs of input-output modalities {x, y}: {t, g},

{g, p}, {t, p}, We train separate networks, each bridging the corresponding two modalities.

Note that when the input modality is p, there can be fifteen positives (or more if an annotator

completed more than one task) for text/gaze.

Thus, we seek to minimize the following expression:

Ls(x, y; θ) =
K

∑
i=1

[∑
j∈N

[∥xa
∗
− ya

∗
∥22 − ∥xa

∗
− yb

∗
∥22 + α]

+

+∑
j∈N

[∥ya
∗
− xa

∗
∥22 − ∥ya

∗
− xb

∗
∥22 + α]

+

+∑
j∈N

[∥xa
∗
− xa

∗
∥22 − ∥xa

∗
− xb

∗
∥22 + α]

+

+∑
j∈N

[∥ya
∗
− ya

∗
∥22 − ∥ya

∗
− yb

∗
∥22 + α]

+
]

(5.2)

5.1.5 Base network

We ensure these similarities through the triplet constraint losses described above, which

are added on top of a base network. As our base network, we use VSE++ on Ads, which

is an adaptation of VSE++ [34] on the dataset of [54], implemented in [175]. This network

also employs content-type constraints. It employs the following loss:

Lb(x, y; θ) =
K

∑
i=1

[∑
j∈N

[∥xai − y
a
i ∥

2
2 − ∥xai − y

a
j ∥

2
2 + α]

+

+∑
j∈N

[∥yai − x
a
i ∥

2
2 − ∥yai − x

a
j ∥

2
2 + α]

+
]

(5.3)

In other words, two samples (in different modalities) from the same user on the same

image should be close by, while samples from the same user on different images should be

2We do not consider personality because it does not change among different images annotated by the
same user.
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further. However, each user only provided a single sample from each modality on a given

image, so we cannot constrain samples on the same image to be close.

Note that we also experimented with ADVISE from [175] as our base network, but it

performed worse. ADVISE models image features, while we use a gaze-masked image. In

particular, we masked the last convolution layer of Inception-v4 with our BubbleView gaze

map. This procedure may hide some relevant information. Also, ADVISE extracts regions

of interest (ROI) from the image and finds an embedding space for the image and ROIs.

However, in our approach, we do not employ the full image, instead, we use some salient

locations, which could hamper the generated embedding space.

5.1.6 Combining base, content and style

We also compute a combined embedding. We assign weights on each embedding; βb for

base, βc for content, and βs for style. The embedding for each modality becomes:

x = βb ∗ x
b + βc ∗ x

c + βs ∗ x
s (5.4)

where xb denotes the embedding obtained from Eq. 5.3, xc from Eq. 5.1, and xs from Eq. 5.2.

We optimize the weights on a validation set, separately for each task, using values in the

range [0, 1] with step 0.25. In the case of text-to-personality and gaze-to-personality (and vice

versa), we use a subset of content constraints, only to ensure gaze/text samples on the same

image are similar, and those samples are similar to the corresponding image representation.

5.1.7 Joint embedding and privileged information

In the above description, we create separate networks for each pair of modalities. How-

ever, we can also embed all constraints for all pairs into the same space. This means that

even if our goal is to retrieve text given personality, and we do not plan to retrieve e.g. text

with gaze as input, knowing about the relationship between text and gaze provides addi-

tional useful information for the main task. This can be seen as an approach that exploits

privileged information, i.e. information that is only available at training time (since at test

time, we do not receive gaze as input). Thus, we combine all constraints into the same
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network, i.e. we add the terms from Eqs. 5.1, 5.2, 5.3 for any pair of modalities, into the

same loss, and train a single network. We show in Sec. 5.2.4 that a joint embedding and

privileged information improve our system’s accuracy.

5.1.8 Implementation details

We implemented the networks using TensorFlow [1]. We use the Adagrad optimizer, a

learning rate of 2, an L2 regularizer of 1e-6, 10,000 steps and α = 0.2. Every thirty seconds,

the network was evaluated on a validation set, and the network with the highest accuracy was

selected for testing. For the base network, we found semi-hard negative mining [125] worked

best. We selected the smallest negative example that satisfies d(a, p) < d(a,n), where a

denotes an anchor, p its positive annotation, n a negative example and d denotes a distance

measure. If the condition was not satisfied, a hard negative with the largest d(a,n) was

selected.

5.2 Experimental validation

We first verify the contribution of both the content and style components of our method.

We compare the combined network against the base, content and style networks separately,

and to [152]. We next show the relationship between all three modalities, using a single

network for all tasks.

5.2.1 Setup and metrics

We use a test setup where one image is considered a positive; for example, if the input is

a gaze sample, the one desired retrieval result is the caption the same user provided on the

same image. The negatives are samples provided on any image but from different users. In

other words, given a sample xai (caption, gaze, personality) from user a on image i, retrieve

sample yai from the same user on the same image, in the presence of 14 other samples: two

negatives ybi , i.e. on the same image but from other users, and 12 negative ybj , where i and

75



j are distinct images. We split the data over users in 70% for training, 10% for validation

and 20% for testing. We run our experiments in five different shuffle splits.

We show three evaluation metrics: top-1 accuracy (is the top-retrieved result the correct

one), top-3 accuracy (are any of the top-3 results the correct one), and rank (what is the

rank of the correct result among the 15 ranked samples, where lower is better). We use top-1

accuracy to select the best network snapshot per task and per method, because retrieving

the correct result at the very top of the 15 samples is the most challenging task.

5.2.2 Methods compared

Our method is the one described in Sec. 5.1.6. It is composed of three constituents, each

described in Sec. 5.1.5, 5.1.3 and 5.1.4. We compare all three components below, and their

combination, and refer to these as Base, Content, Style, and Combined. The Base

result captures the performance of VSE++ [34], which is a state of the art cross-modality

embedding method but does not consider personality. We also compare to Veit [152], which

is a method that considers personality and predicts hashtags that a particular user would

provide on a given image.

Table 13: Summary table for ads dataset using top-1, top-3 accuracy and rank metrics for

the task-specific setup. We show the average rank (lower is better) for each method across

the three metrics. The best performer per task is in bold.

Veit [152] Base [34] Content Style Ours

g2p 1.33 1.67 5.00 3.33 3.67

t2p 4.00 2.00 5.00 2.67 1.33

p2g 2.67 1.67 5.00 3.67 2.00

t2g 4.00 2.67 2.33 5.00 1.00

g2t 3.33 3.67 2.00 5.00 1.00

p2t 4.00 3.00 5.00 2.00 1.00

avg 3.22 2.44 4.06 3.61 1.67
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Table 14: Summary table for coco dataset using top-1, top-3 accuracy and rank metrics for

the task-specific setup. We show the average rank (lower is better) for each method across

the three metrics. The best performer per task is in bold.

Veit [152] Base [34] Content Style Ours

g2p 2.67 2.00 5.00 3.00 2.00

t2p 3.67 3.00 5.00 2.00 1.33

p2g 2.33 3.67 5.00 1.67 2.33

t2g 4.00 3.00 2.00 5.00 1.00

g2t 4.00 3.00 1.67 5.00 1.33

p2t 3.67 2.33 5.00 3.00 1.00

avg 3.39 2.83 3.94 3.28 1.50

5.2.3 Benefit of combining content and style

We separately evaluate all methods according to each metric described above, and sum-

marize the results. For each task and each metric, we rank each method from best to worst

(with rank 1 being best). We then average the ranks across the three metrics, and show the

result in Tables 13 and 14. We present the top-3 accuracy, rank and top-1 accuracy results

in Tables 15, 16, 17, 18, 19 and 20. As discussed in Sec. 5.1.3, the Content method only

makes sense in the case of retrieving gaze from captions, and vice versa, so it produces no re-

sult for the other tasks. Here we model all tasks separately i.e. the first/third, second/sixth,

and fourth/fifth rows in each table correspond to the same network.

From the comprised Tables 13 and 14, we see our approach outperforms in nine out of

twelve tasks, and ranks second in two of the remaining ones. In contrast, Veit and Style

are the best for two tasks, and Base for other two. We also observe that Veit is not among

the top baselines. A possible reason could be the difficulty to find latent variables due

to matrix factorization. Also, it requires more parameters than the other methods, which

makes the optimization function harder. Veit has a spatial complexity in the number of

parameters: (d1 + d2) ∗m +m2 (due to two FC layers and matrix factorization; d1, d2 are
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Table 15: Top-3 accuracy for task-specific setup (higher is better) in ads dataset.

Veit [152] Base [34] Content Style Ours

g2p 0.2107 0.2111 N/A 0.206 0.2051

t2p 0.2625 0.2894 N/A 0.2806 0.2861

p2g 0.1671 0.1754 N/A 0.1643 0.1704

t2g 0.3783 0.4023 0.4384 0.2704 0.4426

g2t 0.3801 0.3745 0.4366 0.3074 0.4463

p2t 0.2556 0.2718 N/A 0.2741 0.2768

the modality input dims and m is the embedding dim) vs (d1 + d2) ∗m (other approaches).

From the detailed tables, our best result is for the rank measure (Tables 16 and 19),

where our approach outperforms all other baselines in four out of the six tasks for both ads

and coco datasets. In this setup, our weakest result is for g2p/p2g, where Veit outperforms

our approach. We believe Veit find a latent link between these modalities, which allow

easy retrieval in constrast to our methods, which does not use any matrix factorization.

Our best competitors for top-3 and top-1 accuracy are Base and Style (Tables 15, 17,

18 and 20). However, overall from our comprised measures Tables 13 and 14, our method

performs strongest in the context of all metrics and all tasks. In contrast, other methods

have inconsistent performance, i.e. they do well on some metrics but not others.

5.2.4 Joint modeling of all tasks

We next show that all three modalities are inter-dependent. Even if the task is to

retrieve a caption based on gaze, i.e. personality is neither input nor output, it helps to

model personality jointly with text and gaze. For this experiment and the following ones,

we use our ads data, because it is the most challenguing task.

In Table 22, we show the top-3 accuracy result using our joint modeling of all modali-

ties. We exclude content because it doesn’t apply to all modality pairs. We see that our

combined method is the strongest in three out of six tasks. This is consistent with
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Table 16: Rank for task-specific setup (lower is better) in ads dataset.

Veit [152] Base [34] Content Style Ours

g2p 7.9912 8.0199 N/A 8.0361 8.0718

t2p 7.3523 7.1445 N/A 7.0819 7.0495

p2g 7.9241 7.9949 N/A 8.0625 8.0259

t2g 5.6254 5.4213 5.1315 6.5926 5.0393

g2t 5.7305 5.7551 5.2292 6.6616 5.1417

p2t 7.4148 7.2403 N/A 7.1894 7.1653

Table 17: Top-1 accuracy for task-specific setup (higher is better) in ads dataset.

Veit [152] Base [34] Content Style Ours

g2p 0.0838 0.0829 N/A 0.0769 0.0792

t2p 0.1213 0.1463 N/A 0.144 0.15

p2g 0.0398 0.0472 N/A 0.0431 0.0495

t2g 0.1088 0.119 0.1139 0.0764 0.1241

g2t 0.138 0.1514 0.1616 0.1157 0.1648

p2t 0.1121 0.1148 N/A 0.1218 0.1264

the summary result considering top-3 (see Table 22), top-1 accuracy (see Table 24) and rank

(see Table 23) in Table 21. We observe that our joint method outperforms the baselines in

three of the tasks and occupies the second position for the remaining three.

Most related modalities. We observe that in terms of top-3 accuracy for the combined

method, the easiest task (and hence the most related two modalities) are g2t/t2g, followed

by p2t/t2p, then by g2p/p2g, which is the hardest. However, for top-1 accuracy (see Table

24), the easiest and second-easiest tasks are swapped, but the hardest is the same as for top-

3 (see Table 22). Thus, text and gaze, and personality and text, are most tightly coupled,

while the connection between gaze and personality is weaker. This finding is also confirmed
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Table 18: Top-3 accuracy for task-specific setup (higher is better) in coco dataset.

Veit [152] Base [34] Content Style Ours

g2p 0.2121 0.2222 N/A 0.2194 0.2222

t2p 0.2954 0.2926 N/A 0.3102 0.3074

p2g 0.1685 0.1556 N/A 0.1759 0.1639

t2g 0.4852 0.5371 0.6139 0.3269 0.625

g2t 0.4639 0.5204 0.5972 0.3657 0.6065

p2t 0.2722 0.2769 N/A 0.2787 0.2833

Table 19: Rank for task-specific setup (lower is better) in coco dataset.

Veit [152] Base [34] Content Style Ours

g2p 7.8537 8.1509 N/A 8.0333 8.0917

t2p 7.0389 6.9482 N/A 7.0324 6.8713

p2g 7.7972 8.0685 N/A 8.0509 8.0407

t2g 4.7426 4.2713 3.7815 6.112 3.6555

g2t 4.8593 4.4833 3.8861 6.2833 3.7352

p2t 7.1241 6.9482 N/A 7.0306 6.8695

Table 20: Top-1 accuracy for task-specific setup (higher is better) in coco dataset.

Veit [152] Base [34] Content Style Ours

g2p 0.0982 0.1074 N/A 0.0972 0.1037

t2p 0.1361 0.15 N/A 0.1537 0.1639

p2g 0.0389 0.0454 N/A 0.0481 0.0463

t2g 0.1371 0.1593 0.1713 0.0805 0.1945

g2t 0.1954 0.2037 0.2472 0.1195 0.2463

p2t 0.1167 0.1185 N/A 0.1157 0.1259
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by our identity classifier (Sec. 5.2.5).

Joint vs task-specific. For easier comparison of task-specific and joint modeling, in Table

25, we show the benefit of modeling all modalities jointly compared to per-task, for the style

constraints only. The Joint method is trained with all three modalities at training time,

and the Task-specific one is trained just the corresponding two modalities. Both methods

receive the same inputs at test time.

We see that the largest improvement (10%) between joint and task-specific is for the

personality-to-gaze task, which is the most challenging task. We also see a large gain (4-8%)

between joint and per-task when the input/output pair is text-to-personality and vice versa,

which we saw above is the second most challenging set of tasks. This makes sense because

joint modeling is a double-edged sword. On one hand, leaning the structure of the space from

multiple modalities helps; e.g. knowing about the captions a user provides helps us learn

what types of users there are at training time, so even if at test time we do not have their

captions, we can better predict gaze or personality than if we didn’t know about captions

at training time. On the other hand, task-specific networks are more focused, thus easier to

learn the task. Thus, we expect that using a third modality at training time will only help

Table 21: Summary table showing rank of each method for the joint setup in ads data (lower

is better). Content doesn’t apply; see text.

Veit [152] Base [34] Style Ours

g2p 3.33 3.33 1.33 2.00

t2p 4.00 3.00 1.67 1.33

p2g 4.00 3.00 1.00 2.00

t2g 3.00 2.00 4.00 1.00

g2t 2.67 2.33 4.00 1.00

p2t 3.67 3.33 1.33 1.67

avg 3.44 2.83 2.22 1.50
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Table 22: Top-3 accuracy for joint setup in ads data (higher is better). Content doesn’t

apply because it does not consider personality.

Veit [152] Base [34] Style Ours

g2p 0.2056 0.2042 0.2083 0.2051

t2p 0.2611 0.2852 0.3019 0.3134

p2g 0.1532 0.1787 0.1815 0.1792

t2g 0.3625 0.3843 0.2671 0.4079

g2t 0.382 0.3847 0.294 0.412

p2t 0.2528 0.2569 0.2847 0.281

Table 23: Rank for joint setup (lower is better) for ads data.

Veit [152] Base [34] Style Ours

g2p 8.0843 8.0296 8.0236 8.0111

t2p 7.3778 7.2398 6.8875 6.9185

p2g 8.0676 8.012 7.9732 8.0093

t2g 5.6593 5.5903 6.7218 5.3875

g2t 5.6782 5.7245 6.7796 5.4935

p2t 7.394 7.3977 7.0398 7.0935

when that third modality provides a latent link between the input and output modalities.

The weakest performance of joint modeling is on the text-to-gaze task, since gaze and text

are already tightly coupled. They are more closely linked by the meaning of each image.

5.2.5 In-depth look

In this subsection, we provide in-depth intuitions to the task and the performance of our

methods. We first quantitatively show how different the samples provided by different users

are; see Fig. 14 for a qualitative version. We next show the selected combination weights for
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Table 24: Top-1 accuracy for joint setup (higher is better) for ads data.

Veit [152] Base [34] Style Ours

g2p 0.0694 0.0754 0.0778 0.0768

t2p 0.1167 0.1426 0.1523 0.1593

p2g 0.0366 0.0403 0.0472 0.0435

t2g 0.0912 0.1102 0.0699 0.1241

g2t 0.1366 0.1449 0.1009 0.1593

p2t 0.1065 0.1116 0.1264 0.131

our studied tasks.

Identity classifier. If the samples from different users are very unique, it will be easy to

distinguish between users. To examine how unique samples are, we train an identity classifier

where the features are the samples, and the labels are the IDs of the users who provided the

samples. We follow a five-fold stratified cross-validation procedure with a linear and RBF

support vector machine. We select parameters for nine configurations of gamma and cost

for RBF SVM and three configurations of cost for linear SVM.

In the text domain, we employed averaged 200-dimensional Glove embeddings of words

in the caption. In the gaze domain, we calculated the percentage of image explored and

the max/min distance among all revealed “bubbles.” These features produced the best

performance for the identity classifier. In the text space, we achieve 6.77% accuracy (while

chance is about 0.7%). In the gaze space, we achieve a lower performance of 3.89%; and

combining these two spaces, we achieve 9.11%. Thus, users provide reasonably different

samples in all modalities, but there is more overlap in the space of gaze samples.

If we use the same features as for retrieval, for text we achieve comparable performance

of 6.77%, a lower 0.71% for gaze, and 8.99% for their combination. We opt not to use

percentage of exploration and bubbles distances in our retrieval task for gaze, because they

won’t capture any image content, hence it would be harder to find relations with text.
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Table 25: Results of style network only; top-3 accuracy.

ads

per task joint

g2p 0.206 0.2083

t2p 0.2806 0.3019

p2g 0.1643 0.1815

t2g 0.2704 0.2671

g2t 0.3074 0.294

p2t 0.2741 0.2847

Content/style/base weights. Our combined approach works by combining the base,

content, and style embeddings, with appropriate weights. These weights are chosen on the

validation set and applied on the test set. We perform five different shuffle splits, so we

obtain five sets of weights for each task. In Table 26, we show the average weight assigned to

style, base and content. For the most content-dependent task, gaze to text and vice versa,

Content is most important. Then, for text to personality and viceversa, Style is the

most important. Ads have subjectivity, thus it requires to capture more style of the different

annotators. Finally, for gaze to personality and viceversa, which is the hardest task, ads give

the same importance for Style and Base networks.

Table 26: Averaged weights selected for each network on five different shuffled splits.

Tasks
ads

style base cont.

g2t/t2g 0.2 0.25 0.7

t2p/p2t 0.7 0.55 N/A

g2p/p2g 0.55 0.55 N/A
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5.3 Summary

We described an approach for retrieving samples capturing different perceptions of the

same image input, across modalities. To understand how different viewers perceive and de-

scribe images, we use two types of constraints. One bridges samples across modalities, using

images as anchors in the learned space. The other set of constraints employs viewers as an-

chors, i.e. samples that came from the same user should be similar, regardless of the viewed

image. We combine both sets of constraints and show that the combination usually outper-

forms the individual constraints. Further, it usually outperforms two baseline approaches.

Importantly, learning about gaze, captions, and personality in the same framework improves

performance over learning networks for each separate input-output pair of modalities.

In this work, we still use contextual explanations via gaze as in our previous project. We

collect gaze at a large scale with crowdsourcing. We employ a revealing mask web interface,

which can be accessed by any web browser, as opposed to an eye-tracker device, that is

not accessible for everybody. We also complement gaze representation with writing style

via image captions, and personality via attributes. Gaze is a form to analyze an image,

and this analysis is captured in image captions. Both procedures are influenced by our

personality. We also observe that gaze capture can be an unconscious analysis, and image

captioning provides more conscious and thoughtful thinking. Both data representations are

complementary and provide human enriched data, which is associated with personality traits.

This project differs from the two previous in that it uses attributes as a side task. We

use attributes to represent personality and improve cross-modality retrieval for gaze and

captions. This project also complements the use of attributes for applications as in our

image retrieval project. Also, these two projects use metric learning. One to retrieve different

data modalities (gaze, captions and/or personality questionnaires) and the other to retrieve

images given a sketch. Image retrieval is the focus of our last project, and it also complements

traditional retrieval approaches (based on metric learning) with reinforcement learning.
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6.0 Image retrieval with mixed initiative and multimodal feedback

This chapter focuses on attribute learning and its application to image retrieval. We

propose a mixed-initiative framework where both the user and system can be active partici-

pants, depending on whose initiative will be more beneficial for obtaining high-quality search

results. We develop a reinforcement learning approach which dynamically decides which of

three interaction opportunities to give to the user: drawing a sketch, providing free-form

attribute feedback, or answering attribute-based questions. By allowing these three options,

our system optimizes both the informativeness and exploration capabilities allowing faster

image retrieval.

Our reinforcement learning agent achieves competitive performance with standard image

retrieval approaches for simulated and real users. We find that our agent learned to prioritize

human-initiated feedback early on and complement it with machine-initiated feedback in

later iterations. This project was published in [99].

The remainder of this chapter is organized as follows. In Section 6.1, we describe our

approach for image retrieval with reinforcement learning, including our system setup and our

agent state, actions, reward, and learning. In Section 6.2, we show that our method improves

upon standard image retrieval approaches via quantitative experiments for simulated and

real users. We also show a study on human-initiated and machine-initiated actions. Finally,

we summarize this chapter in Section 6.3.

6.1 Approach

We develop an approach for interactive image retrieval, where the user can provide

guidance to the system via two text-based and one sketch-based modalities, described below.

The search scenario we envision is the following: The user has a clear idea of the exact target

image they wish to find, but does not have that image in hand. Our system’s goal is to

determine which type of interaction to suggest to the user at any point in time.
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6.1.1 Search setup and interactions

Interactions. The user can initiate a search with random images from the database, or

ones that match a simple keyword query. Then the user can perform a combination of the

following three types of feedback. First, the user can browse the returned images, and relate

them to her desired target via attribute comparisons, e.g. “The person I am looking for

is younger than this person,” where “this person” is an image chosen from the returned

results. Second, the system can ask the user a question, e.g. “Is the person you are looking

for more or less chubby than this person?” Third, the user can draw a sketch to visually

convey to the system their desired content. These search interactions are based on prior

work [75, 74, 72, 32, 123, 180], and we learn how to combine them.

System interface. Our system is illustrated in Fig. 16, and it has three components: i) a

target image, ii) user feedback using attributes or a sketch, and iii) current top images. User

feedback is received in each iteration, and updates the top images.

Relevance models. After one of the three interactions is used and feedback from the user

is received, the system must rank all database images by estimating their relevance using

the feedback the user provided. For free-form attribute feedback and suggested question

interactions, following [75], the relevance of a database image is proportional to the likelihood

that it satisfies each attribute constraint, e.g. it is more shiny than a reference image.

For sketch interaction, we “convert” the sketch to a photograph (i.e. we add color) using

a conditional GAN [56]. An alternative is to directly learn a space whether sketches and

images are aligned, and perform retrieval in this space; we show an experiment using this

approach as well. Then, CNN features are extracted and we train a one-class SVM [124]

whose output probabilities for each image are used to rank the images. The final relevance

of an image is a product (multiplication) of all attribute-based and sketch-based relevance

estimates.
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6.1.2 Reinforcement learning representation

Figure 16: Image retrieval system setup. The system’s goal is to find the target image. Users

refine the image retrieval using an (attribute, reference image, comparison response) triplet

or a sketch. User interactions are used to update the current top image results.

We formulate the selection over search interactions as a Markov Decision Process com-

posed of actions, states, and rewards, defined below.

Actions. We train a reinforcement learning algorithm to select one of three interactions

for a given iteration. In order to train it, we require user selections of image-attribute pairs

(the free-form feedback proposed in [74]), responses to attribute-based questions proposed

in [72] (the more/less/equally value of a comparison between the target and reference image

along a certain attribute dimension), and sketches (used for search in [180, 32, 123]). User

selections are simulated by selecting an (image, attribute) pair that reduces the part of

the multi-attribute space that needs to be searched in order to find the target image. In

particular, our simulated users are given a subset of the attribute vocabulary1, and a set of

reference images. They are also given information about how many images in the database

satisfy a given image-attribute constraint, e.g. how many images are “less chubby than

[this person],” according to the system’s model of “chubbiness.” The simulated user then

chooses the image-attribute pair that results in the smallest number of images satisfying the

1Since our simulated users receive system-level information as described next, allowing them to use the
full vocabulary results in unrealistic alignment between the user’s mental model and the system’s predictions.
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constraint. This simplifies search as only a few images remain relevant after each feedback

constraint is given.

In terms of question responses, we also simulate users’ feedback, similarly to [72], by

adding Gaussian noise to the attribute model predictions, and choosing the more/less/equally

response based on the difference in the attribute values predicted for the target image and

the reference image which the system chose. The original method of [72] requires entropy

computation, which is computationally expensive if it needs to be repeated many times, as

we require for reinforcement learning. Hence, we use an ablation presented in [72] which

performs similarly but is much faster. It uses the per-attribute binary search trees of [72]

but alternates between attribute pivots in a round-robin fashion.

Sketches are simulated using edge maps [168] generated from the target image, similarly

to [56]. We also show experiments using real human-drawn sketches. We then convert them

to photographs using a GAN [56], and rank database images by their similarity to the photo,

using the probabilities from a one-class SVM [124].

State. Let h+prox and h−prox be positive and negative proxy sets for the target image, defined

as the five neighbors closest to the target (excluding the target itself), and five neighbors

furthest from the target. We represent our state as (htop ims, h+prox, h−prox, hactions), where

htop ims is the history of top images (i.e. those ranked at the top in previous iterations),

and hactions are the actions taken in previous iterations. Images are represented by features

extracted from AlexNet [76], and actions by a 3-dimensional binary vector, where all values

are zero, except the one corresponding to the taken action. We use a history size of 3.

Rewards. We would like that in each iteration, our top images become more and more

similar to the target image (which is unknown to the system). We can measure this using

two cues: distance to positive proxy images, and distance to negative proxy images. We

encourage a decrement of the first distance, and an increment of the later distance. We do

this using a reward function r(s, s′) which is evaluated when an action is performed and

causes a transition from state s to state s′. Each state has associated top images (top ims)

and proxies (+prox and −prox). We calculate the Euclidean distance d between (1) the
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average features of all top images and (2) the average features of the positive/negative proxy

images. Then the function r is defined as:

r(s, s′) = sign[d(top ims,+prox)−d(top ims′,+prox)]+sign[d(top ims′,−prox)−d(top ims,−prox)] (6.1)

In other words, we want the distance of the top images to positive proxies to decrease,

and distance to negative proxies to increase. One might think that using positive proxies

is enough, however we prefer a more fine-grained representation. Both sets of proxies are

helpful, especially at the beginning when the search space is large and could be misleading.

For example, imagine a two-dimensional search space where +prox = (4,1), −prox = (1,4),

top ims = (3,3) and top ims′ = (2,2). Thus, r(s, s′) = sign(2−1.4)+sign(2−2.8) = 1−1 = 0.

We observe that decreasing the distance to +prox does not necessarily enforce an increment

on the distance to −prox, so we need to explicitly encourage this.

We also want to encourage that the sketch action is used only once. Hence, we assign a

penalty of −1 if the sketch interaction is requested more than once.

6.1.3 Learning

The goal of our agent is to update the search results by selecting actions. There are many

possible states, so using a transition matrix with all states and actions is not recommended.

Also, our reward function is data-dependent (i.e. we use image ranking to calculate it).

Q-learning [140], which receives a state and predicts the best action, is a good fit for our

task. Our Q-learning agent aims to maximize the future discounted reward Rt = ∑
T
t′=t γ

t′−trt′

at each timestep t, where rt′ is the reward at time t′, T is the time when the search episode

ends and γ is the discount factor. We maximize Rt learning a policy to select an action by

π(s) = argmaxaQ(s, a) at state s.

We approximate the Q function with a neural network, which is based on [11] and is

depicted in Fig. 17. Our top images and proxies data uses the same convolution architecture

composed of a convolutional layer with 8 filters of size 3x3 and a max-pooling layer. The

outputs of the top images and proxies branches are concatenated with the history of actions,

and projected using 3 fully-connected layers to generate action scores. We employ RELU
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Figure 17: Architecture of our proposed Q-network. It receives histories of top-ranked

images, positive and negative proxy images, and taken actions. It predicts the best action

given a specific state. Inputs are denoted with dotted lines. Please see text for further

explanation.

activation for the convolutional and fully-connected layers. We employ convolutional layers

in the top result image and proxies branches, because they capture information about image

features and ordering. Our Q-network learning requires data in the form of [s, s′, a, r], which

denotes current state, next state, action and reward; and aims to maximize the following

loss, where V represents the true future discounted reward using r and s′.

L =
1

2
∗ [V −Q(s, a)]2 V = r + γ ∗maxa′Q(s′, a′) (6.2)

Our approach also considers replay-memory to collect many data instances as it is run-

ning. Each instance follows our previous format [s, s′, a, r]. This information enriches our

training data, and in each iteration, a random subset of this data is used for training. This

procedure also removes short-term correlation between subsequent states, and makes our

algorithm more robust and stable.

At initial stages of learning, random actions are beneficial so the agent can explore [140]

and get information about the problem. Later this information is exploited to select actions.

We generate random actions with probability decreasing from 1 to 0.1 as training progresses.
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Implementation. We implemented the described network using the Theano [144], Keras

[21] and DEER2 frameworks. We use the RMSProp optimizer, a discount factor of 0.9, a

learning rate of 1e-5, and 30 epochs. At the end of each epoch, the network was evaluated

on a validation set, and the network that successfully completed more searches (i.e. found

the target image in at most 10 iterations) over a validation set was selected for testing.3

6.2 Experimental validation

Datasets. We use three datasets which have frequently been used for image search: Pubfig

[78] with 11 attributes (e.g. smiling, rounded-face, masculine) and 769 images (after de-

duplication); Scenes [102, 107] with 6 attributes (open, in perspective, etc.), and 2668 images;

and Shoes [75] with 10 attributes (formal, high-heeled) and 12,807 images. We extracted fc6

deep features for Pubfig and Shoes; and fc7 features for Scenes as in [96]. To speed up the

interaction of our reinforcement learning agent and the image retrieval system, we reduce

the number of images to 1000 by clustering in the predicted attribute strengths space.

Evaluation protocol. For each dataset, we split the data in 70% for training, 10% for

validation and 20% for testing. Our reinforcement learning approach uses the train and

validation splits to learn to predict actions. To compare the methods more precisely, we

tell the user which image to search for (target image). In each iteration, the user provides

a comparison of the target and pivot/reference image, or a sketch of the target. We report

percentile rank of the target, defined as the fraction of database images ranked lower than

the target (in the range [0, 1], higher is better).

Baselines. We compare our reinforcement learning agent (RL) with three baselines:

• Whittle Search [75] (WS ): In each iteration, users select a (reference image, attribute)

2https://github.com/VinF/deer/
3For our Scenes dataset, the best model is acquired using percentile rank.
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Figure 18: Percentile rank plots for Pubfig, Scenes, and Shoes. Our mixed-initiative RL

agent outperforms the other baselines on Pubfig and Shoes, and performs competitively for

Scenes.

and compare target and reference for the chosen attribute dimension (“more / less /

equally”). The relevance of database images which satisfy this feedback increases.

• Pivot round robin [72] (PRR): In contrast to WS, PRR provides an (image, attribute)

pair, and users only need to provide a more/less/equally response.

• Sketch retrieval [180] + pivot round robin [72] (SK PRR): In the first iteration, we ask

the user for a sketch of the target image, then attribute questions follow.

6.2.1 Simulated experiments

We simulate ten users as described in Sec. 6.1.2. Fig. 18 shows percentile rank curves

for our proposed method and the three baselines. For the Pubfig and Shoes datasets, our

reinforcement agent outperforms the baselines with a large margin. However, for Scenes, the

improvement is reduced. Hence, we also inspect AUC for the percentile rank curves in Table

27. We observe that our approach outperforms all baselines for all datasets.

We observe that WS achieves high accuracy at the very first iterations and outperforms

the PRR method. This follows the intuition that with WS, which allows exploration, the user

can provide more meaningful feedback that reduces the search space, in contrast to earlier

stages of the PRR method. However, in later iterations, PRR improves accuracy because it

follows a binary-search strategy iterating over all attributes. Hence, PRR ensures diversity

of feedback, in contrast to WS which can be repetitive. SK PRR outperforms WS and PRR
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Table 27: AUC for percentile rank curves from Fig. 18. Best scores are highlighted per

dataset.

PRR [72] WS [75] SK PRR [180, 72] RL (ours)

Pubfig 0.729 0.737 0.789 0.810

Scenes 0.741 0.741 0.699 0.754

Shoes 0.745 0.731 0.806 0.810

avg 0.738 0.736 0.764 0.791

in two of the three datasets. Incorporating sketch feedback enhances the informativeness of

attribute-based feedback, except for Scenes. A possible explanation is that scenes are more

complex than faces and shoes, as they contain more than one object. This prevents our

GAN from being able to generate good photo versions of our scene edge maps (see Fig. 21).

6.2.2 Live experiments

In order to run a user study, we develop a web interface that implements our three

baselines, and our approach. Our approach queries the next action using a REST API4, that

connects to our web interface. For this experiment, we replace sketch-to-photo coloring with

sketch retrieval [180] directly comparing features of the sketches to images, as an alternative

to get diverse and realistic images. This helps avoid GPU memory problems due to multiple

queries for the GAN conversion. We only conduct an experiment for the Shoes dataset

because we did not find any appropriate sketch annotations for training, for Faces5 and

Scenes. The result for simulated users (Fig. 19 left) in this setting is similar to our previous

findings: our approach outperforms all baselines.

We recruit workers on Amazon Mechanical Turk and university students to search for 100

images. Each participant searches for one image, which is the same for the four methods. We

request Turkers with location in the US, HIT approval rate greater or equal to 98%, and at

least 1000 approved HITs. We remove blank and careless sketches (i.e. just straight lines),

4https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html
5Fine-grained sketches are available but most real users cannot provide such high-quality sketches.
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Figure 19: Percentile rank plots for Shoes dataset with simulated (left) and live users (right).

Both experiments use sketch retrieval. Live user experiment results are plotted over time.

which results in 88 searches. The results are shown in Fig. 19 (right). Because different

interactions require very different amount of user time (PRR: 9s, SK PRR: 16s, WS:

31s, and RL: 23s), we plot time on the x-axis, multiplying each iteration by the number

of seconds it requires. We show horizontal lines with the final (highest) percentile rank a

method achieves. Our RL method and WS achieve similar peak performance (79.2% for RL

and 79.4% for WS) while PRR only achieves 76.6% at the end of 10 iterations. However,

our method achieves higher performance early on; the curve for RL is higher than that for

WS until about 230s of user time spent, then performance is similar. Thus, our approach

achieves higher performance in a smaller amount of time, compared to the strongest baseline

WS.

We examine provided sketches from our live users in Fig. 20. We observe that many of

them do a good job. For example, in (row 1, column 4), the sketch has finer details such as

the flower ornaments of the flat shoe. Similarly, for (row 3, column 1), the boot was drawn

with laces in its top as in its middle. Finally, a sneaker sketch (row 3, column 2) contains

shoelaces and details at its bottom part.

6.2.3 Qualitative Results

In order to understand the success of our approach, we visualize some of the generated

colored pictures (Fig. 21), and we also show the predicted actions on our test split (Fig. 22).

For our sketch-to-photo generated images, we observe that the most realistic ones cor-
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Figure 20: Sketches provided by annotators from Amazon Mechanical Turk and university

students for our live experiment. Rows 1 and 3 are user sketches, and rows 2 and 4 are their

correspondent target images.

respond to Pubfig, then Shoes, and finally Scenes. This order also corresponds with the

performance of our method in terms of percentile rank, where Pubfig and Shoes achieve the

best performance. Scenes did not benefit from the generated images as much because they

are not realistic and present poor quality. However, our GAN intuitively associates brown

color to coast (panels 1 and 2 in row 6, from Fig. 21). Similarly, it learns green color for

forest (panels 5 and 6 in row 6, from Fig. 21). Even apart from the generations’ quality,

edge maps from Scenes do not provide as much detail as edge maps for Faces and Shoes.

For example, only the exterior surface of buildings was present in the edge map (see last two

panels in row 5). High-level edge maps also can remove crucial objects in the scene, that can

not be colored. For example, some trees were removed in (row 5, column 6), which hampers

coloring.

We also want to understand our mixed-initiative RL agent, so we count its predicted

actions per iteration in Fig. 22. Note that the action at each iteration is chosen by our

agent. Partial not available history information is filled with 0s. For Pubfig and Shoes,

we observe that SK (sketch) and WS actions are mainly performed in iterations 1 and 2,
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Figure 21: Sample sketch-to-photo colored images for Pubfig (rows 1-2), Shoes (rows 3-4),

and Scenes (rows 5-6). Each pair of images denotes the same class category. For each dataset,

the first row shows the edge maps, and the second row shows the colored picture.

Figure 22: Percentage of actions predicted by our approach in the test set.

because these are the exploration-like actions. Then, after iteration 3, the PRR is the most

common one. Once the most beneficial human knowledge is acquired, having a computer
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suggest feedback (in the form of questions) helps reduce the search space the fastest. Hence,

our agent learned to prioritize human-initiated feedback early on, and complement it with

machine-initiated feedback in later iterations. For Scenes, our method prioritizes WS early

on and PRR later, and ignores SK because it does not provide much benefit.

6.3 Summary

We explored the problem of selecting interactions in a mixed-initiative image retrieval

system. Our approach selects the most appropriate interaction per iteration using reinforce-

ment learning. We find that our model prefers human-initiated feedback in former iterations,

and complements it with machine-based feedback requests (e.g. questions) in later iterations.

We outperform standard image retrieval approaches with simulated and real users.

This project complements the previous ones because it uses attributes as a side task for

image retrieval. It is closely related to our transfer learning project because both projects aim

to combine intelligently different source of data. For transfer learning, we are interested in

combining source models. And for this project, we are interested in combining image retrieval

systems. Also, we employ different techniques. The former uses an attention mechanism,

and the latter employs reinforcement learning. It is also closely related to our cross-modality

retrieval project because both methods aim to retrieve data. One retrieves images, and the

other retrieves gaze, captions and/or personality.

Also, both projects use metric learning and crowdsourcing. Metric learning is used for

image retrieval given a sketch, and to find a common embedding for gaze, captions, and

personality. Crowdsourcing is used for evaluation with real users, and for data collection.

Finally, in this project, we use contextual explanations in the form of sketches. Sketches

are a form of human-enriched data because we have to reason the most salient features of

the target image to draw an sketch. They also are a holistic view of an image query that

complement attribute comparisons.
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7.0 Conclusions

In computer vision, attributes are mid-level concepts shared across categories. They are

useful for efficient communication between humans and machines, the description of objects

in fine-grained details, and description of unfamiliar objects.

These are very attractive properties for attributes, however, they present many chal-

lenges. In this thesis, we address many of them and contribute to boosting its performance

and applicability. Specifically, we demonstrate how to use contextual explanations to enhance

attributes predictive power. Our contributions are categorized in learning and applications

categories.

Related to attribute learning, we contribute to improve subjectivity-based and contextual-

based attribute classifiers. For subjective-based classifiers, our cross-modality project learns

personalized perception through gaze, writing style, and personality traits, and our human

gaze project uses gaze to incorporate explanations and capture different attribute interpre-

tations via clustering and matrix factorization. For contextual-based classifiers, our non-

semantic project shows that human-relevant knowledge can be extracted for unrelated do-

mains when there is a lack of contextual information or semantically related attributes. Also,

our cross-modality project learns together gaze, caption and personality; which are contex-

tual data sources. Finally, we complement attribute-based image retrieval approaches with

sketch-based ones via reinforcement learning. Sketches provide a visual context for attribute

textual feedback. Notice that the last two contributions are also attribute applications for

data and image retrieval.

Overall these projects, we focus on enhancing data representation for attribute learning

with human knowledge and contextual explanations. We enrich attribute representation

from discovering human rationale shareable knowledge to providing human contextual ex-

planations. Our contextual explanations are composed of gaze, writing style, and visual data

in the form of sketches. All these representations encapsulate different human rationales.

For example, human gaze captures subconscious intuition of the meaning of an attribute.

In contrast, text follows a conscious thinking with gaze prior rationale. Finally, sketches
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encapsulate human rationale in a visual representation. All these data embed personality

and can capture different interpretations of knowledge.

The remainder of this chapter is organized as follows. In Section 7.1, we describe the

main contributions for data enhancing in this thesis. Then, we summarize some limitations

and promising future ideas in Sections 7.3 and 7.4.

7.1 Main contributions

The main contributions of this thesis are:

• Discovery of transferable rationale knowledge to improve attribute learning

– We develop a novel attention-guided transfer network for attributes for non-semantic

related domains and in a data scarcity scenario.

– We show a study of transferability of attributes from unrelated domains.

• Effective use of human contextual explanations in attribute learning for recognition and

data retrieval

– We develop a new approach for learning attributes using explainable rich data in the

form of gaze.

– We develop two applications: one to visualize attribute models using gaze templates,

and another to discover groups of users according to different attributes interpreta-

tion.

– We find that learning gaze, captions, and personality together is beneficial. Thus,

these three data modalities have complementary transferable knowledge.

– We develop a quick mixed-initiative image retrieval system combining attribute-

based methods with sketch-based retrieval.

– We find that human-initiated and system-initiated actions are complementary and

beneficial for image retrieval.

Finally, we couple our contributions under a general framework. This framework inte-

grates human contextual explanations on machine learning tasks and is depicted in Figure 23.
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It has four components: data acquisition, rationale encoding, attribute learning, and multi-

modal learning. We acquire data in the form of labels, gaze, text, and data simulation for

user attribute comparison responses and sketches. We develop two data collections interfaces,

which are robust to device miscalibration and data quality. Then, our main component is

rationale encoding among four data modalities, depicted in Figure 1. First, our non-semantic

project encodes rationales as background knowledge on unrelated domains. Second, our gaze

project masks images using human gaze saliency maps. Third, our cross-modality project

masks images with human-gaze masks and learns jointly with image captions, which are

complementary reasoning modalities. Finally, our reinforcement learning project encodes

visual reasoning in the form of sketch drawings, and combine with attribute comparisons.

Finally, our first two projects learn attributes using attention or SVM classifiers. In contrast,

our last two projects follow multi-modal learning. Our cross-modality project learns a new

space where paired data (gaze, image captions and personality traits) are close by. Also,

our reinforcement learning project combines attributes and sketch retrieval interactions for

accurate and faster image retrieval.

Figure 23: Human rationale framework. First, we develop interfaces to collect our enriched

data. Second, we find appropriate encodings to represent rationales. And finally, we learn

attributes or multi-modal data representations.

In addition to our contributions, all previous projects generate new knowledge and con-

tribute to the scientific community with the following conference publications:
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• N. Murrugarra-Llerena and A. Kovashka. Learning attributes from human gaze. IEEE

Winter Conference on Applications of Computer Vision (WACV), 2017.

• N. Murrugarra-Llerena and A. Kovashka. Asking friendly strangers: non-semantic at-

tribute transfer. Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), 2018.

• N. Murrugarra-Llerena and A. Kovashka. Image retrieval with mixed initiative and mul-

timodal feedback. British Machine Vision Conference (BMVC), September 2018.

• N. Murrugarra-Llerena and A. Kovashka. Cross-Modality Personalization for Retrieval.

Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Also, our projects were published in workshops in the extended abstract format:

• N. Murrugarra-Llerena and A. Kovashka. Image retrieval with mixed initiative and mul-

timodal feedback. LatinX in AI research workshop. Thirty-second Conference on Neural

Information Processing Systems (NeurIPS), 2018.

• N. Murrugarra-Llerena and A. Kovashka. Asking friendly strangers: non-semantic at-

tribute transfer. LatinX in AI research workshop. Thirty-six International Conference

on Machine Learning (ICML), 2019.

In addition to these publications, we are working on extending our image retrieval project

for submission to the International Journal of Computer Vision (IJCV). Also, our cross-

modality project was accepted to the doctoral consortium at CVPR. Finally, we are grateful

for four travel grants to attend AAAI, NeurIPS, ICML, and CVPR.

7.2 Implications

This thesis contributes to the research community with methodologies and findings,

which may be useful to other researchers and designers of data collection interfaces.

7.2.1 For researchers

Researchers can benefit from methodologies and findings from this thesis. They can

benefit from methods resembling human problem-solving skills, understanding reinforcement
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learning via action occurrences, and a methodology to conduct experiments.

First, our approaches analysis resembles traditional human problem-skills. We identify

the key component of each approach and visualize it. Each visualization provides an expla-

nation as described below.

• In our non-semantic project, the key component is an attention mechanism. We visualize

attention weights across different domains. We observe which domains are more impor-

tant to a studied attribute. For example, a “tough skin” (animal domain) attribute gives

us the feeling of a “stressful” situation (scene domain). The attention mechanism emu-

lates human skills to understand unfamiliar situations. Humans try to infer properties

from what they already know. Similarly, our attention mechanism transfer knowledge

from familiar domains to unfamiliar ones.

• In our gaze project, the key component is our human-generated template. Then, we

visualize template-based attribute models, and we observe that they resemble human

intuitions of attributes. A baby-faced attribute classifier highlights the cheeks and nose

of a person, similarly, as a human does.

• In our cross-modality project, the key components are base, content and style networks.

We compare these networks in isolation and find the best weight configuration to combine

them. This representation resembles a problem-solving skill, where we ask opinions,

suggestions, and solutions from our close friends. Then, we find the best solutions and

combine them. This paradigm is similar to combining base, content and style network

and determine their importance by a validation set.

• In our reinforcement learning project, the key component is action prediction. Thus,

we plot action occurrences among iterations. We observe that our agent prioritizes

human-initiated actions and complement it with machine-based ones for fast and accurate

image retrieval. This observation follows the exploration-exploitation paradigm. When

a problem is not clear, humans first explore the problem and then exploit the acquired

knowledge to propose a solution. In this case, the exploration phase is composed of

human-initiated actions, and exploitation comprises system-initiated actions. Sketches

and user-defined attribute comparisons provide a clear representation of the image query.
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Once, we clearly understand the image query, the system exploits knowledge and provides

relevant questions to eliminate the search space.

We believe that by resembling human problem-solving skills, researchers can develop

novel methods to solve any problem. As a first step, researchers can use our key components

to their research problems and then, they can find other methods to encapsulate different

human problem-solving skills.

Second, our study of action occurrences for reinforcement learning is generalizable and

can be applied to any reinforcement learning agent. Hence, researchers can identify early

and later type of actions. Also, they can draw conclusions, research questions and reveal the

rationale of their agent. In our case, our agent prioritizes human-initiated actions and com-

plement with machine-initiated ones. This behavior resembles the exploration-exploitation

paradigm as we stated before.

Finally, from an experimental setup view, we recommend researchers to document prop-

erly all their experiments. There could exist a huge amount of prototypes. Each prototype

has its parameter configurations, network architectures, etc. Hence, for documentation pur-

poses, we develop a simple tool that for each experiment, it saves an identifier, a description

and all parameters of the current prototype. This tool provides a modular interface, where

each experiment is in its folder, and we can generate comparative plots combining different

baselines and prototypes. Also, this tool promotes experiment reusability without the need

of re-running. It only requires access to a previously generated evaluation metrics.

7.2.2 For designers of data collection interfaces

The findings in this thesis provide implications on how to design data collection interfaces

to acquire valid and high-quality data.

First, to acquire valid data, we find useful to run some preliminary studies. These pre-

liminary studies help us to identify some issues such as device miscalibration, annotators

loss of concentration, and strange software bugs. For device miscalibration, we find that

annotators loss concentration and miscalibrate eye-trackers device after a long period of us-

ability. Hence, we split our experiment session in small ones and add some validation images

104



to motivate annotators to pay more attention during data collection. Also, for strange soft-

ware bugs, our web data collection interface reinitializes components and erase intermediate

information when the website is resized. Due to preliminary user studies, we identify this

issue and fix it. Finally, in our reinforcement learning project, for our sketch action, some

users do not draw any object and provide an empty drawing. Thus, in a second round of

experiments, we add some validation code to tackle this issue.

Second, even if the current thesis does not necessarily focus on acquiring high-quality

data, it suggests some guidelines to be considered. We believe user engagement is a key

component for high-quality data. For example, acquiring high-quality sketches is challenging

because annotators have different artistic skills. Thus, some annotators can provide naturally

high-quality data, while others no. Hence, we envision a tool to provide some guidelines to

improve drawing quality or to generate automatically an enhanced drawing from the user-

provided drawing. In summary, the goal of the tool is to engage users to provide more

accurate and meaningful feedback.

7.3 Limitations

Limitations in this work are organized in general and specific settings. For general setting,

first, most of our methods use spatial information without considering time information. For

example, gaze data can assign more importance to former gaze fixations than later ones.

Similarly, words at the beginning of the sentence are more important than words at ending

positions.

Second, rationale encodings such as visual cues (sketch) and writing style (text) are

related to analytical, creative and artistic personality traits. However, many annotators can

have deficient skills in these scenarios. For example in sketch drawings, some annotators with

minimal artistic skills can provide simple drawings that can not be informative. We should

provide some guidelines to improve these data modalities. We also can provide an interface

to improve data quality, however, we should preserve each annotator unique rationale.

Third, our cues are mainly visual. However, physical interactions with objects can pro-
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vide complementary information and identify easily attribute presence (e.g. heaviness, furri-

ness, softness). For example, a furry couch can be identified by visual and physical features.

Visual features can be acquired from a texture descriptor, and physical features can be

acquired from pressure or muscle sensors.

Fourth, our rationales encode reasoning indirectly via gaze, writing style, or sketches.

However, there are more direct ways to capture reasoning via brain waves or brain imaging,

which can be more related to personality traits.

Also, our current approaches do not consider contextual cues such as browsing history,

object properties, and events. For example, furriness is different from a dog and a couch.

Similarly, a formal shoe has a different meaning for a wedding or at work.

In a more specific setting, first, our gaze rationales capture image subconscious reason-

ing affected by background human knowledge. We can provide more conscious reasoning

by drawing a polygon around a distinctive region associated with the presence or absence

of a category. However, polygon drawing is much slower than gaze capturing. Second, we

represent personality with coarse granularity. However, it could require a fine granularity to

differentiate a bigger quantity of personalities. Fine granularity can be encapsulated using

personality questionnaires with more questions. These fine-grained specialized question-

naires capture additional personality traits in contrast to our current questionnaire. Third,

annotators can lie in our questionnaire showing a person that they are not. We can overcome

this situation with indirect or redundant questions [115]. Indirect questions can ask you for

an action in a certain situation and capture a personality trait.

7.4 Future work

This thesis may lead to new future work, which should be explored and studied. Here,

we comprise a set of promising ideas and organize them in short-term, medium-term and

long-term future work.

For short-term future work, we can tackle some of our limitations. First, we can include

temporal data for gaze, text captioning and sketch drawing. Second, we can provide tutoring
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systems to improve data quality acquisition. For example in sketch drawing, annotators

have different drawing skills depending on their artistic skills. Thus, a tutoring system can

provide more realistic sketches improving deficient drawings. Third, we can experiment with

more direct rationale modalities via brain waves and brain imaging. Similarly, we might

use conscious reasoning representations via polygon drawings. Finally, we can improve our

personality representation, we can provide more fine-grained questionnaires and use indirect

questions to improve data quality.

For medium-term future work, we can provide reasoning modalities (e.g. physical inter-

actions), which are complementary to visual cues. This future work requires data collection,

physical objects, and physical sensors such as touch, weight, muscles, and others. Similar to

[113], we can simulate physical interactions with a robot arm. Also, some projects follow a

general understanding of attributes or sketches, in contrast to individual attribute interpre-

tations. We can tackle this issue with “school of thoughts” to find groups among users in

terms of their understanding of attribute presence. These “school of thoughts” can capture

similar visual perception and sketching style of users. This procedure can also group sim-

ilar user for gaze, writing style, and personality traits. Initial experiments can use matrix

factorization approaches to identify latent features to group similar users.

Finally, for our long-term future work, we can combine different human sense data,

and train data-driven approaches to identify rationales via region selection of our learned

models. For the former case, we only explore visual attribute via our sight sense. However,

there are other attributes that can be perceived by our other senses: taste for sweet, sour,

bitter and salty flavors; smell for floral, lemon, bleach, chocolate, and rotting meat; hearing

for load, quiet and peaceful attributes; and touch for heavy and soft properties. Some of

them can be complementary to our sight sense, and others can be captured by an isolated

sense. For the latter case, our methods incorporate rationales as human enriched data,

however, we can also ask programs to identify region rationales for each query image. We

can follow [119]’s approach, where an explanation of an image classifier is depicted by image

regions, which provide explanations. For example, for a dog classifier, its explanation is

a region that encloses a dog. Similar, we can highlight the most relevant regions of our

enriched data and our input images to add interpretability in our current setup. Thus, region
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rationales on enriched data will complement traditional region rationales on images. In this

way, we combine human-engineered (enriched data) and data-driven approaches ([119]) for

interpretable machine learning.
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