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Amr Mahmoud Hassan Mahmoud, PhD

University of Pittsburgh, 2019

Deep Neural Networks (DNNs) have demonstrated fascinating performance in many real-

world applications and achieved near human-level accuracy in computer vision, natural video

prediction, and many different applications. However, DNNs consume a lot of processing

power, especially if realized on General Purpose GPUs or CPUs, which make them unsuitable

for low-power applications.

On the other hand, neuromorphic computing systems are heavily investigated as a poten-

tial substitute for traditional von Neumann systems in high-speed low-power applications.

One way to implement neuromorphic systems is to use memristor crossbar arrays because

of their small size, low power consumption, synaptic like behavior, and scalability. However,

these systems are in their early developing stages and still have many challenges to be solved

before commercialization.

In this dissertation, we will investigate designing of neuromorphic computing systems,

targeting classification and generation applications. Specifically, we introduce three novel

neuromorphic computing systems. The first system implements a multi-layer feed-forward

neural network, where memristor crossbar arrays are utilized in realizing a novel hybrid

spiking-based multi-layered self-learning system. This system is capable of on-chip training,

whereas for most previously published systems training is done off-chip. The system perfor-

mance is evaluated using three different datasets showing improved average failure error by

42% than previously published systems and great immunity against process variations.
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The second system implements an Echo State Network (ESN), as a special type of re-

current neural networks, by utilizing a novel memristor double crossbar architecture. The

system has been trained for sample generation, using the Mackey-Glass dataset, and simu-

lations show accurate sample generation within a 75% window size of the training dataset.

Finally, we introduce a novel neuromorphic computing for real-time cardiac arrhythmia clas-

sification. Raw ECG data is directly fed to the system, without any feature extraction, and

hence reducing classification time and power consumption. The proposed system achieves an

overall accuracy of 96.17% and requires only 34 ms to test one ECG beat, which outperforms

most of its counterparts.

For future work, we introduce a preliminary neuromorphic system implementing a deep

Generative Adversarial Network (GAN), based on ESNs. The system is called ESN-GAN

and it targets natural video generation applications.
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1.0 Introduction

Nowadays, nonvolatile memory represents a large variety of memory technologies which

can store the information, even if not powered. Flash memory, which was firstly invented by

Fujio Masuoka [7], is considered as one of the most versatile non volatile memory technologies

used nowadays. They were commercialized by Intel in 1988 [8] and since then, Flash memory

has been heavily utilized in numerous applications, ranging from massive data storage like

Solid State Drives (SSDs), to consumer electronics such as digital cameras, mobile phones.

However, as semiconductors technologies nodes continue shrinking down, the development of

Flash memory becomes very challenging due to quantum physical limits and device reliability

[9].

Researchers are now heavily working seeking alternatives for nonvolatile memories. New

emerging memory devices, such as Resistive memory (ReRAM) [9,10], Phase Change Mem-

ory (PCM) [11, 12], Ferroelectric RAM (FeRAM) [13, 14], and Spin-Transfer Torque RAM

(STT-RAM) [15, 16] are considered potential candidates for next generation of nonvolatile

memories. Among these technologies, ReRAM is considered a potential candidate for massive

data storage because of its extremely high density, great scalability, low power consumption,

and good compatibility with traditional CMOS technology [9,10,17]. Many of the well-known

companies in the memory industry, such as Samsung and IBM, have adopted ReRAM tech-

nology. Fig. 1 released by [18] compared ReRAM technology to the present NAND flash

memory, indicating that ReRAM technology advance in all the important aspects.
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ReRAM devices are usually made of a metal-oxide layer sandwiched between two metal

layers. Numerous oxide materials with fast resistive switching characteristics were studied,

including SiOx, Ta2O5, NiO, and Al2O3 [9]. However, no prototype was reported until 2002

when a 64-bit ReRAM array based on perovskite oxide devices was fabricated at 0.5μm

CMOS process [19]. Following, Baek et al. [20] integrated a Transition Metal Oxide (TMO)

ReRAM in 0.18μm CMOS technology. Shortly after in 2008, HP Labs [21] described the

ReRAM devices with analogue resistive states as memristors, proving the existence of the

fourth basic circuit element, predicted by professor Leon Chua in 1971 [22]. Since then,

extensive efforts have been given to ReRAM development and applications. For instance,

not only ReRAM technology can be used as high density memory, but also can be used to

implement re-configurable systems [23] and matrix-based computation [24].

Figure 1: NAND flash memory vs. Cross-point ReRAM. Source: Crossbar Inc 1.
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On the other hand, memristor technology is also used to develop neuromorphic computing

systems, enabling a new computing solution with extremely high efficiency. Researchers have

been heavily investigating neuromorphic systems as a potential substitute for the traditional

von Neumann systems, as the latter cannot cope with the rapid growth of data amounts,

processing power, and power efficiency. This problem is due to the well known “Memory

Wall” phenomenon [25], which is shown in Fig. 2. The gap between the performance of

processors and DRAM is increasing over the years, creating an urgent need for systems that

don’t separate data processing and storage in different locations. Neuromorphic computing

systems can do this job as they mimic the working mechanism of human brains, where data

are stored and processed at the same location [26], thus, offer great potentials.

In the 1980s, neuromorphic computing was firstly proposed, and that time it referred

to implementing the computation in neural systems by utilizing a specific VLSI hardware

Figure 2: Memory Wall phenomenon shows the performance gap between processors and

DRAM over years.
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system [27]. Many mixed-signal CMOS systems have been developed aiming to achieve high

computation speed with low cost [28, 29]. A group of MIT researchers [30] have proposed

such a system, called the “brain chip”. It’s a 400-transistor chip that mimics the analog

signal transmission in human brains [30]. In addition, neuromorphic computation can also

be realized on Field-Programmable Gate Array (FPGA) or Field-Programmable Analog

Array (FPAA) for low power signal processing and reconfigurability [31, 32]. Alternatively,

IBM reported TrueNorth – a spike-timing based bio-synaptical chip, in which synapses were

built with SRAM cells in a crossbar structure providing extremely low power and energy

consumption in data transferring [2]. In addition, Fig. 3, taken from [2], depicts the power

consumption versus the clock frequency of the human brain and current CPUs. As can be

told, the human brain is at least 2.5 folds less than modern CPUs, yet, still very powerful

in tasks like recognition and classification, and certainly outperforms any current neural

network model. Such an extreme low power consumption is truly appealing, especially in

embedded applications which have severe restrictions on power consumption. This is another

reason why scientists move toward brain inspired computing, like the ones discussed in this

dissertation.

As an application of embedded systems powered by neuromorphic chips, HRL’s Center

for Neural and Emergent Systems developed a quad-copter prototype, powered by a neuro-

morphic chip [3], as sown in Fig. 4. The chip was powered by 576 silicon neurons, took in

data from the aircraft’s optical, ultrasound, and infrared sensors as it learned to differentiate

between three different rooms. The chip only weighed 18 grams and consumed 50 mWatt.

It’s worth mentioning that this project was funded by DARPA’s neuromorphic SyNAPSE

project, which tells how much the biggest funding entities are moving in this direction [3].
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All the previous implementation of neuromorphic systems were based on conventional

CMOS technologies. However, with the rising of the new emerging devices, such as spin-

tronic devices and memristors, new neuromorphic architectures are widely investigated. For

instance, a neuromorphic hardware using spin-tronic devices in crossbar structure was pro-

posed by [33]. The design achieved more than 15× lower energy consumption, comparing to

the state of art CMOS designs. Memristor cells emerge as one of the most attractive can-

didates because of their unique features, such as natural synaptic-like behavior, low energy,

excellent scalability, and CMOS compatibility [34]. Many research entities have adopted

memristors as an indispensable building block in their neuromorphic systems. For instance,

Figure 3: Power consumption vs clock frequency of recent devices. From [2]. Reprinted with

permission from AAAS.
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Hu et al. [24] proposed a neuromorphic engine with memristor crossbar in an analog com-

puting approach, where the input and output signals are represented by analog signals with

high parallel computation.

1.1 Dissertation Goal and Organization

Implementing neuromorphic computing systems using memristors is still in the early

developing stages. Many obstacles and challenges need to be overcome before this technology

becomes mature enough for mass production and commercialization. Our main goal in this

dissertation is to investigate and tackle some of the resilient challenges that hinder the

development of neuromorphic computing systems. Our main focus will be on neuromorphic

computing systems for classification and generation purposes. Specifically, the rest of this

dissertation is organized as follows:

Figure 4: Quad-copter powered by a brain-like neuromorphic chip. From [3].
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• Chapter 2 will discuss, in details, the historical background of memristors, how they are

configured in crossbar arrays, and which of these configurations will be adopted in the

rest of this dissertation.

• Chapter 3 discusses our neuromorphic system implementation of multi-layer feed-forward

neural networks. We propose a novel hybrid spiking-based multi-layered self-learning neu-

romorphic system and provide a detailed discussion on how this system helps alleviating

most of the problems in current systems. The system performance is evaluated using

three different datasets showing improved average failure error by 42% than previously

published systems.

• Chapter 4 will illustrate our neuromorphic system implementation of Echo State Net-

works (ESNs), as a special type of Recurrent Neural Networks (RNNs). We provide a

novel double memristor crossbar arrays architecture, as the main building block of our

proposed system. In addition, we will shed some light on the current neuromorphic

systems implementing ESNs, their issues, and how our system helps eliminating them.

• In Chapter 5, we exploit the small footprint of memristor crossbar arrays, along with low

power consumption and fast response, to propose a neuromorphic system for embedded

biomedical devices. The system implements real-time cardiac arrhythmia classification

of five different beat types, using raw ECG data, with overall accuracy of 96.17% and 34

ms only to test one ECG beat, outperforming most of its counterparts.

• Finally, in Chapter 6, we discuss our projection of the future in developing neuromor-

phic systems, by introducing deep Generative Adversarial Network (GAN), their current

progress, and our preliminary proposed ESN-based GAN. We will also present some of

our preliminary results and some ideas to improve the whole system.
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2.0 Memristor Devices in Crossbar Arrays Configuration

2.1 What is a Memristor?

Memristor, the fourth circuit element along with resistor, capacitor, and inductor, was

theorized by Leon Chua in 1971 [35], and later generalized in 1976 [36]. According to

the relations governing the three passive circuit elements at this time, Chua predicted, by

analogy, that there has to be another passive circuit element. He named it memristor.

To elaborate, the four fundamental circuit quantities, namely the current I, electric charge

Q, the voltage V, and the magnetic flux Φ. These relationships are connected together, by

the means of the derivative operator, as depicted in Fig. 5. The voltage V is the time

derivative of the magnetic flux Φ, while The current I is the time derivative of the charge Q.

The three two-port passive circuit elements back then relate the four quantities as follows:

resistors relate current to voltage via Ohm’s Law (dV = R.dI), inductors relate magnetic

flux to current (dΦ = L.dI), and finally capacitors relate voltage to charge (dQ = C.dV ).

Chua noticed that, from symmetry and for the sake of completeness, there has to be a

fourth two-port passive element which relates the magnetic flux and charge (dΦ = M.dQ).

And from the expected behavior of such an element, Chua named it memristor. Moreover,

Chua proved that the behavior of the memristors could not be mimicked by any combination

of the three other passive circuit elements alone, and that it would require an active circuit

of about 25 transistors to mimic its behavior [35].
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It can be shown that [35]:

V (t) = M(Q(t)).I(t) (2.1)

M(Q(t)) ≡ dΦ(Q)/dQ (2.2)

where M(Q(t)) is called the memristance and it has the same unit as the resistance. To

get the sense of the memristance represents, eq. 2.2 says that memristance, M(Q(t)), is

function of the charge Q, or, in other words, the integration of the current I flowing through

the device with respect to time. Accordingly, memristor can be thought of as a two port

passive device whose resistance is variable, depending on the current I passing through.

= d/dtV

I

� 

Q

Figure 5: The four fundamental circuit quantities, namely current I, charge Q, voltage V,

and magnetic flux Φ, along with the six relationships that connect them. The blue relation

shows the missing circuit element, the memristor.

9



It can also be deduced from the above relation that the memristance is constant when no

current is applied (the time integral of zero current would result in a constant charge, thus

constant memristance). Hence, the memristor keeps the last memristance value it reached,

which can be thought of as a memory effect. And since it relates the voltage V and the

current I, as in eq. 2.1, the name memristor (short for memory resistor) seemed to be

suitable.

It wasn’t until 1976 when Chua et al. generalized the memristor behavior into memristive

devices [36]. Memristive devices are two-port devices with varying memristance as well,

however, they differ from memristors in the way their memristance changes. Chua et al.

defined the memristance of memristive devices as a function of some internal state, w ∈ Rn,

which, in turn, a function of the current passing through the device (eq. 2.3 and eq. 2.4).

On the other hand, the memristance of memristor devices is a direct function of the charge

Q. The equations representing these nonlinear dynamics of memristive devices are [36]:

V (t) = R(w, I).I(t) (2.3)

dw

dt
= f(w, I) (2.4)

where R(w, I) is the generalized resistance (without loss of generality, memristance and

resistance can be interchangeable for memristive devices) of the device, and w, as mentioned

above, is an internal state. f(w,I) is a function of w and the current I.

Since 1976, memristive devices were just theory without any physcial evidence of their

existence. However, this changed in 2008 when HP Labs made the first connection between

the hypothesized memristor and a TiO2-based device [21]. Fig. 6 depicts the anatomy of the

device fabricated by HP, which is made of a doped TiO2-x layer and an undoped TiO2 layer
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sandwiched between two platinum electrodes. The doping here refers to the oxygen vacancies

and x represents their quantity. The width of the doped TiO2-x layer is considered as the

internal state variable, w. Upon applying a voltage signal across the device, the oxygen

vacancies drifts along with the electric field, causing a change in the doped TiO2-x width and

changing the overall resistance of the device. On the opposite, removing the applied voltage

signal won’t revert back the oxygen vacancies to their original position as they have very low

mobility [21].

The representation of eq. (2.3) and (2.4) are [21]:

V (t) =

(
Ron

w(t)

D
−Roff

(
1− w(t)

D

))
.I(t) (2.5)

dw

dt
= µv

Ron

D
.I(t) (2.6)

where Roff is the resistance when w(t) = 0, and Ron is the resistance when w(t) = D.

The internal state variable w(t) has the limits of 0 < w(t) < D. µv is the average mobility

of the dopants.

        TiO2

        undoped

TiO2-x

doped
PtPt

w

D

Figure 6: Memristor structure suggested by HP.
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In 2009, Di Ventra and Chua expanded the definition of memristive systems to accom-

modate meminductors and memcapacitors. Like memristor, the inductance and capacitance

of meminductors and memcapacitors depend on the history of the applied signal and the

state of these devices [37, 38]. Since then, memristive devices acquired the attention of

different scholars worldwide. In fact, many research entities and companies have adopted

the memristor as a new emerging device and conducted countless experiments. It can be

used in many applications, ranging from memory chips, analog circuits, and neuromorphic

computing, which is the main focus of this dissertation.

2.2 Memristors in Crossbar Arrays

For the scope of this thesis, we are interested in studying memristor as the building block

in neuromorphic computing systems. Those systems usually are built using crossbar arrays

where memristors exist on each intersection, as shown in Fig. 7. An element is accessed by

applying a read signal to the row and column that contains it. However, other paths may

contribute in this reading phase, thus giving a false data or even ruining it. This problem

is called Sneak Paths problem. Fig. 7(a) shows the desired path, and Fig. 7(b) shows the

desired path along with the undesired sneak paths. This problem was addressed by many

researchers [4, 5, 39,40] and many solutions were developed in the last two years.

2.2.1 Different Cell Structure to Overcome Sneak Paths

Two of the solution proposed seemed to be very promising, in terms of scalability and

speed. The first solution was proposed by many researchers [5, 41, 42], where they used
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Vo

RL

(a)

VR

Vo

RL

(b)

Figure 7: Crossbar memristors array. The gray path ((a) and (b)) shows the desired signal

track in order to read the value stored in the gray memristor. The red paths (b) show the

undesired tracks that the signal might flow in.
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1-Transistor-1-Memristor (1T1M) cell in a crossbar array configuration. In this structure,

transistors act a selector device to help alleviate the impact of sneak paths. The design of

the 1T1M cell is shown in Fig. 8, where cell ij only contributes a current to VLj when the

HLi is selected. The effective conductance of the cell ij in this case becomes Ĝ ij = G ij // Gon

where Gon is the conductance of the access transistor at ON state. When HLi is grounded,

the transistor is off and its extremely small conductance Goff causes Ĝ ij ≈ 0.

Liu et al. [5] adopted the 1T1M cell and used it to build two neuromorphic systems: 1)

a 32 × 32 crossbar implementing a feed-forward neural network and 2) 32 × 64 crossbar

implementing a Hopfield network. Both systems were used for digital image recognition.

Simulations for both systems showed excellent tolerance on the noisy images and process

variations. Moreover, The feed-forward system (Hopfield) system achieved 50% reduction in

power consumption and with only 1.45% (5.99%) increase in the average recognition failure

rate, compared to previously published systems [5].

The second solution is to use a highly nonlinear selective resistor device instead of a

transistor. Such a cell is called 1-Selector-1-Memristor (1S1M) and it was originally proposed

in [43], and further investigated in [4]. Fig. 9 shows a crossbar array with 1S1M cells.

The selector device conducts current only when the voltage applied on it exceeds a certain

threshold (ON state); otherwise, the current going through is almost zero (OFF state).

A typical selector should have the following features: high selectivity (i.e., high OFF/ON

resistance ratio), fast set (OFF−→ON) and relax (ON−→OFF), and high endurance.

Among different selector devices investigated, the Field Assisted Superlinear Threshold

(FAST) selector seems to be the device with the most excellent performance, compared to

others [43]. This device is composed of a Superlinear Threshold Layer (STL) sandwiched
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between two electrodes, where a conducting channel is formed upon applying the threshold

electric field [43]. As shown in Fig. 10, the threshold electric field (hence, the threshold volt-

age) can be controlled by adjusting the thickness of the STL layer. It worth mentioning that

the OFF and ON current in the figure is limited by the tester noise and current compliance,

respectively. The device exhibits promising characteristics such as a current density larger

HL1

HL2

HLi

HLM

VLj

VL2 VLj VLN

HLi

VL1

�ij

Figure 8: Memristor crossbar array with 1T1M cells.

HL1

HL2

HLi

HLM

VL2 VLj VLNVL1

Ĝij

Selector
Memristor

Figure 9: Memristor crossbar array with 1S1M cells [4].
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than 5×106 A/cm2 for device area as low as 15 nm×100 nm, high endurance over 1×108

cycles with set and relax time ∼ 50 ns [4].

Yan et al. [4] also implemented the same Hopfield-based neuromorphic computing system

presented in [5], but using the 1S1M cells instead of 1T1M. For the comparison to be fair,

they also used the same digital images, representing number from “0” to “5” in 8×4 binary

images as shown in Fig. 11.

The recognition error rate of this system is shown in Fig.12. where the x -axis represents

the probability of introducing error in a single bit and the y-axis is the recognition failure

rate. According to this result, the use of 1S1M lowers the system’s accuracy significantly,
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Figure 10: I-V characteristics of the FAST selector device with different thresholds [4]. ©
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(a)

(b)

Figure 11: The digital images dataset used in evaluating the system proposed in [4]. (a)

shows the standard dataset representing the digits from “0” to “5”, while (b) shows the images

after introducing some noise.
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Figure 12: The pattern recognition failure rate of the neuromorphic system using 1S1M

structure [4]. © 2016 IEEE.
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compared to the same system using the 1T1M cell [5]. However, the 1S1M design offers

almost 50% reduction in the area used, compared to the design in [5], offering a much better

scalability.

This result was further analyzed by [4] and summarized in Fig. 13. Fig. 13(a) shows the

I-V and G-V characteristics of the ideal and desired cell. While the applied voltage, say

V i , is larger than a threshold voltage V th , the cell starts passing current with a constant

conductance, regardless of the value of V i . This behavior guarantees a stable vector-matrix

multiplication. Fig. 13(b) shows the same characteristics for the 1T1M cell. V th here is the

threshold voltage of the transistor, which is around 0.64V. As can be told, the behavior of

the 1T1M is very similar to the behavior of the ideal cell in the region of V i > 1.1 V (with

only 8% variation in cell conductance) and V i < 0.3 V. However, there is a big difference in

both behaviors in the remaining region.

On the other hand, Fig. 13(b) depicts the same characteristics for the 1S1M cell. While

this cell shows a great similarity to the ideal behavior in the OFF region and the switching

region, a great discrepancy can be found in the ON region, with the conductance being

almost linear and not constant. This discrepancy is the main reason why this 1S1M cell has

poor performance compared to the 1T1M cell.

2.2.2 Cell Structure Adopted in This Dissertation

Since the main goal of this dissertation is to explore the potential and functionality of

neuromorphic computing systems in implementing various neural networks, and as per our

previous comparison, we will be adopting the 1T1M proposed in [5, 41].
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3.0 Hybrid Spiking-based Multi-Layered Self-Learning Neuromorphic System

Based on Memristor Crossbar Arrays

3.1 Introduction

With rapidly growing of online data, there is an need for new systems that can provide

real-time data processing with high power efficiency. Traditional von Neumann systems are

not able to cope up with such demands due to the well known “memory wall” phenomenon

[25]. Neuromorphic computing systems, instead, offer great potentials by mimicking the

working mechanism of human brains, where data are stored and processed at the same

location [26]. Many research entities around the globe adopted those systems. For example,

the IBM TrueNorth system [44] implements artificial synapses by using conventional CMOS

circuitry [28, 29]. However, the high implementation cost could be a great challenge for

further performance improvement and system scaling up.

Emerging memory devices [45], such as Resistive Random Access Memories (ReRAM),

or Memristors, can offer a solution to this problem. Given their low feature size and synap-

tic like behavior [46, 47], memristors have been heavily investigated for possible usage in

implementing large-scale neuromorphic systems. The two-terminal device is used to con-

struct crossbar arrays, where memristor cells are located at each intersection of vertical and

horizontal metal wires. Such a layout is of close resemblance to neural network models, in

which the conductances of memristor cells correspond to the synaptic weights. In addition,

the conductance value can be programmed to different discrete levels (or even continuous

levels) by adjusting the amplitude (or pulse width) of the programming signal [48,49].
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Memristor crossbar arrays were used to implement matrix-vector multiplication in the

neuromorphic computation process [50–52], in which voltage and currents values are used to

represent the actual input and output data. These systems rely on Digital-to-Analog Con-

verters (DACs) and Analog-to-Digital Converters (ADCs) as communication blocks. Conse-

quently, further up scaling of these systems is hindered as the design complexity, cost, and

area will rapidly increase. Alternatively, spiking-based neuromorphic systems were devel-

oped, where the inputs (outputs) take the form of voltage (current) spikes [5, 53, 54]. Such

systems utilize simple CMOS circuitry to digitize the inputs and outputs to spikes, thus,

offering adequate performance without the need for complex and expensive communication

blocks.

The system in [5] is a single layer pattern recognition system based on what is so called

off-chip (sometimes called offline or ex-situ) training. In this method, computer-based simu-

lations are used to train the neural network and obtain the corresponding memristive weights.

After that, those weights are programmed to the memristor cells in the crossbar array. De-

spite showing good compromise between performance and low hardware utilization, single-

layered, off-chip trained systems cannot cope up with the overwhelming increase in the

amount of data to be processed nowadays [51]. Moreover, the memristors resistance val-

ues drift from the programmed value during normal read operation, which requires regular

weights updating for proper operation; a thing that off-chip training techniques cannot pro-

vide. That is why on-chip (sometimes called online or in-situ) training is widely adopted

recently [51, 52], where extra hardware is added to the chip to allow online training (us-

ing training techniques which will be discussed later in Section 3.3.1) and constantly allow

memristive weights updating.
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To overcome the previous problems, we propose a hybrid spiking-based multi-layered

self-learning neuromorphic system. The proposed system performance was evaluated from

different aspects and following are the main contributions:

• Introducing a simple and effective method of implementing backpropagation in hard-

ware, which reduces the time needed for circuit training to half compared to previously

published work

• Offering design methodology and in-depth study for multi-layer spiking-based neuromor-

phic pattern recognition systems.

• Improving average failure error by 42% compared to previously published work for three

different datasets.

To our best knowledge, such a hybrid system has never been proposed before.

The rest of the work will be organized as follows: Section 3.2 introduces the basic building

blocks of the system and the implementation fundamentals. Section 3.3 explains the proposed

multi-layer system, the design considerations, and the simple way of implementing back-

propagation. Section 3.4 evaluates and discusses the use of our design in three different test

cases. Finally, conclusion will be provided in Section 3.5.

3.2 Preliminary

3.2.1 Memristor Devices and Model Used

Memristors are nonlinear devices whose resistance values change when the voltage across

the device exceeds a certain threshold [49]. Usually they are made of an oxide layer sand-
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wiched between two conductive layers, where TiO2-x [55] and a layer composed of HfOx

and AlOx [49] being the most promising oxides used. Since high energy efficient crossbar

is needed, devices with higher resistances range become a must. The latter oxide shows a

resistance ratio of (ROFF/RON≈1000) and on-resistance (RON≈10KΩ), which is adequate to

be utilized in our system. For crossbar arrays, each cell is composed of a memristor and

another device to enhance selectivity and eliminate sneak path problem [40,56]. Among the

different devices used as selectors [4, 5], the 1-Transistor 1-Resistor (1T1R) structure has

been proven to be more reliable and has negligible effect on the overall conductance of the

cell [5].

For this work, we are going to adopt the 1T1R structure. The memristor resistance

ranges from [50KΩ, 1MΩ], which is divided into 8 discrete levels [5]. Those are the only

allowable levels during training.

3.2.2 Neural Network Crossbar Arrays

Fig. 14 illustrates the resemblance between neural networks and crossbar arrays, where

a typical one layer neural network can be implemented using memristor crossbar arrays and

CMOS circuity. The synaptic weights, w ij, which connect the inputs (blue circles) and output

(gray circles) neurons in Fig. 14(a), are represented by the conductance, G, of the memristor

cells at each cross point of the array in Fig. 14(b). The output neurons (and hidden neurons,

if any) perform two functions (i) they evaluate the weighted sum of the inputs, zj =
N∑
i=1

xiwij,

and (ii) they generate the output according to a nonlinear activation function, yj = f(zj).

The weighted summation function can be implemented directly using the crossbar array as

follows: assuming that each vertical (bit) line is virtually connected to ground (which can
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be done using the Integrate-and-Fire Circuit (IFC) [5]), the inputs, x, are encoded into a

series of voltage pulses, V, and applied to the horizontal (word) lines. Those pulses will be

multiplied by the conductance, G, resulting in current I = GV injected in each bit line. The

second function can be done using the IFC, which will be explained in Section 3.2.3.

Since the synaptic weights can be either positive or negative, two memristors will be

used to represent one synapse, where G ij ≡ G ij
+- G ij

-. In such a scheme, each output

neuron is represented by two columns, representing G+ and G-, and currents from those

columns are directed to IFC, where the corresponding pulses are generated. Those pulses

are then used to increment (in case of G+) or decrement (in case of G-) the value of a counter

which represent the final output of the neuron. In addition, this exponentially expands the

number of allowable resistance levels to 57 levels instead of 8 only, which are all the possible

combinations 82 minus the number of repeated combinations of G ij = 0 (7 combinations).

The major advantage of the spiking based systems is that it does not need expensive

hardware, such as ADCs or summer amplifiers, unlike the other level based systems [51,52].

3.2.3 Integrate-and-Fire Circuit (IFC)

Fig. 15(a) shows the schematic of the IFC as proposed in [5]. This circuit generates a

number of voltage spikes at the output, V out, which is proportional to the magnitude of the

input current, I in, that comes from the crossbar column j.

We characterize the IFC in the curves shown in Fig. 15(b). The curves show nonlinear

dependency on the input current, I in, with the ability of controlling the maximum number

of spikes, IFCmax, by adjusting the reference voltage, V ref [5]. We will make use of these

two properties to represent the activation function of hidden neurons and in designing the

intermediate stages IFC, as will be further discussed in Section 3.3.2 and 3.4.1.
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3.3 Design Methodology and Hardware Implementation

3.3.1 Proposed Training Scheme

Neural networks in general need to be trained to provide proper functionality. The most

used training scheme for multi-layer neural networks is the back-propagation algorithm [57].

In the recent period, many variants of that algorithm have been proposed and used in

training memristor crossbar arrays [52,58]. In this work, we will introduce, for the first time,

a modified training algorithm for hybrid spiking-based multi-layered systems. This algorithm

has reduced the time needed for training by half compared to previously published work,

which shall be explained in Section 3.3.2.

(a)
(b)

Figure 14: Neural network implementation using memristor crossbar arrays. (a) shows a

conventional diagram for 4×2 neural network while (b) shows the crossbar implementation

of that network.
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In order to apply the back-propagation algorithm, input has to be fed forward through

the whole network to calculate the weighted sums and activations for all the hidden and

output neurons. Once that is done, weight update is calculated according to the following

formula [57]:

∇wij = η × δj × xi, (3.1)

where η is the learning rate, xi is the i th output of the previous layer neuron (input or

hidden), and δj is the j th error propagated form the next layer (hidden or output) and is

expressed as [57]:
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Figure 15: Integrate-and-Fire Circuit. (a) shows the circuit diagram of the IFC as proposed

in [5], while (b) shows our simulation for that circuit for the number of spikes (y-axis) against

current values (x-axis) for different V ref.
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δj =


(tj − yj) for the output layer

f ′ (zj)
N∑
k=1

wnkjδ
n
k for any hidden layer,

(3.2)

where tj (yj) is the j th desired (actual) output at the output layer, f ′ is the derivative of

the activation function of the hidden layer, zj is the j th weighted sum, and the superscript

n refers to the next layer. So, it can be seen that weights updates are obtained backwards

starting from the output layer. Applying the exact version of back-propagation algorithm

requires very expensive hardware, such as ADCs, DACs, lookup tables (to calculate the

activation function derivative) , buffers, and multipliers.

In this work, we propose a simpler, yet accurate enough, version of back-propagation

algorithm. For spiking systems, the inputs to any layer are always positive and in form of

spikes. By using this property, we can, approximately, separate Eq. (3.1) to magnitude and

sign, where the sign is determined by sgn (δj) and the magnitude by η × xi. In that way,

detecting the sign information of δj doesn’t require complex hardware, which significantly

simplifies the design of the training circuits, as will be seen later. Algorithm 3.1 depicts the

exact steps of the proposed training scheme.

3.3.2 Hardware Implementation of Two Layers Crossbar Array

In this part, we will discuss the actual implementation of the proposed algorithm in

hardware. Shown in Fig. 16 is an example of 4×3×2 neural network (lower left corner) and

its memristor crossbar array implementation. All the corresponding elements between the

neural network diagram and the hardware implementation are color matched.
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Algorithm 3.1 Proposed Training Algorithm
1: Randomly initialize memristor weights

2: while (E > Edesired) do

3: for (each x in the training set) do

4: Feed the input x forward through the whole network

5: Calculate zj and yj for all hidden and output neurons

6:
Calculate the error for each output layer neuron j using:

δj = sgn (tj − yj)
7: Back propagate the above error for hidden layers neurons

8:
Calculate the error for each hidden layer neuron j by using:

δj = sgn

(
f ′ (zj)

N∑
k=1

wnkjδ
n
k

)
9: Apply programming pulses to memristors, where the number of pulses for the

ith and jth memristor in each crossbar are determined by η× xi, and the polarity

by δj
10: end for

11: end while
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1) The feed forward step for error vector calculation.

During the feed forward step of the proposed algorithm, all the switches with ctrl 1 (ctrl 2)

are closed (opened). A randomly chosen input x from the training dataset is then converted

into pulses and applied to the word lines of the first crossbar layer. Positive and negative

currents are then converted by IFC into spikes and then applied to the up and down control

signals of the counter, respectively. We are making use of the nonlinearity in the IFC char-

acteristics and counter, whose lower limit value is zero, to represent the nonlinear activation

function of the hidden neuron. The value stored in the counters are then converted into

Figure 16: Hardware implementation of a two layer memristor crossbar array. A 4×3×2

neural network diagram is shown in the lower left corner, and its circuit implementation is

shown in the rest of the figure.
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pulses and applied to the word lines of the second crossbar layer as well. After evaluating

the output vector y, the desired output vector t is compared with the y and the sign of the

error vector δL2 is obtained. The superscript in the error vector refers to the crossbar layer

number.

2) The backpropagation step for crossbar weight updating.

According to (3.2), for any hidden layer, the summation part can be thought of as the error

vector δL2 multiplied by the transpose of the conductance matrix of the second crossbar

layer G′
2. So δL2 will be applied vertically, from the top, on the bit lines and currents will

be collected horizontally, on the left, from word lines. Since the crossbar array is originally

designed with two memristors per synaptic weight and for feed forward propagation, δL2 has

to be modified before applying to the crossbar. The error mapping block generate two error

vectors, which will be applied sequentially to second crossbar. Each one of those vectors is

double the size of the original error vector and mapping is done according to Table 1. Each δj

can take only three values: +1, 0, -1. Two vectors, and two corresponding values per vector

δj+ and δj−, are generated for each value δj. During the application of the two generated error

vectors, the switches with ctrl 2 (ctrl 1 ) are closed (opened). The top row corresponding to

each of the three values in Table 1 is applied first and the switched marked as U (D) are

closed (opened), while the bottom row is applied second and the switches marked as D (U )

are closed (opened). After that, the sign of the error vector δL1 is obtained, which is merely

the MSB of the counter (for polarity) and a zero detector.

Each crossbar has its own weight updating block (training circuits in Fig. 16). Each

training block takes the corresponding input vector x and the error vector δ, then, weight

updating is done on two steps, as shown in Fig. 17. Assuming the error vector, δ, and
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the amount by which each weight is updated, η × x, as shown in the Fig. 17(b), the

effective conductance G i1 (G i2) needs to be increased (decreased). Since G ij = G ij
+- G ij

-, the

(a) (b)

(c) Step 1: Weight Increase (d) Step 2: Weight Decrease

Figure 17: Training the second crossbar in Fig. 16. (a) shows the legend for different colors,

while (b) depicts the assumed value for the error vector δ and the input vector η × x. (c)

and (d) show the only two required steps to program the whole crossbar.
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Table 1: Error vector mapping for different values of δL2j

δL2j δL2j+ δL2j− δL2j δL2j+ δL2j− δL2j δL2j+ δL2j−

+1
1 0

0
0 0

-1
0 1

0 1 0 0 1 0

weight update is done deferentially with more priority for the conductance to be increased.

For example, η × x1 = 3 which means both G11
+ and G12

- (G11
- and G12

+) will increase

(decrease) by 2 (1) levels. If any value in the error vector (input vector) is zero, then

the memristors in the corresponding columns (row) are not updated. Fig. 17(b) shows

the required memristors to be increased or decreased. Training is done in two steps: (i)

weights to be increased, in which positive programming pulses are applied to the crossbar

and the corresponding columns are connected to ground (Fig. 17(c)), and (ii) weights to

be decreased, in which negative programming pulses are applied to the crossbar and the

corresponding columns are connected to ground (Fig. 17(d)).

To the authors best knowledge, no one has proposed a fast training scheme like this

before. The only ones which are near to the proposed training scheme requires 4 steps to

complete training [52, 58]. Since the activation function used in [52, 58] is a tanh function,

the input x of the hidden neurons could be negative or positive; thus, increasing the different

combination required for training into 4 instead of 2 as proposed here.
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Table 2: Properties of the used datasets and their corresponding crossbar systems.

Dataset Network Size Training Set Size Testing Set Size

Digits [5] 32×10×6 600 200

Cancer1 [6] 9×10×2 594 105

Thyroid1 [6] 21×15×3 6120 1080

3.4 System Evaluation

Three different datasets were used to evaluate the proposed training scheme. The first

Digits dataset is simple binary figures corresponding to digits 0-5 from [5]. Training and

testing ensembles were generated from the basic figures by randomly injecting errors in them

[5]. The other two datasets are Cancer1 and Thyroid1 from the Proben1 database [6]. All the

datasets were implemented using a two-layer spiking-based system and weights were updated

according to the proposed algorithm in Section 3.3. Table 2 summarizes the properties of

the three datasets and the corresponding crossbar network configurations. For the Digits

and Cancer1 datasets, inputs are binary and 10 discrete levels, respectively, while inputs are

analog for the Thyroid1 dataset. In order to represent the inputs by spikes, each input of

the Thyroid1 dataset is mapped between 0 ~ 1, then discretized into 10 levels, where each

level corresponds to one spike.

In the following subsections, we will evaluate how much improvement each of the three

parts of the proposed systems achieved, namely, extending the system to two-layers, control-

ling IFCmax, and finally training the system online.

33



3.4.1 Ideal System Performance

Fig. 18(a) shows the performance of the three networks with respect to average failure

error. For each system, a comparison is made among that proposed system, a one-layer

spiking-based system, and a conventional two-layer neural network system. All simulations

were done using MATLAB with the overall failure error averaged over 100 runs. As you

can see, the two-layer system has adequately improved the overall failure error by 42%

(on average) over the one-layer system and still not far away from the conventional neural

network system.

The average number of epochs, averaged over 100 runs, to achieve this accuracy is shown

inside the bar for each system. Each epoch represents one iteration of the while loop in

3.1. As shown, the epochs needed by the two-layers system to converge are more than those

needed by the one-layer system. This is something expected since we are updating two

crossbars instead of one.

As aforementioned in Section 3.2.3 that controlling IFCmax is very crucial for intermediate

stages IFC, we further investigate the effect of IFCmax on the system performance. The two-

layers spiking-based systems were evaluated for different value of IFCmax, as shown in Fig.

18(b). All simulations follow the same rules depicted before. It can be easily deduced

that the performance of Digits system doesn’t really change for different IFCmax. On the

other hand, the performance of Cancer1 and Thyroid1 systems dramatically depend on the

IFCmax value. Such a behavior can be explained as follows: for the Digits system, the input

resolution is binary, so it does not need intermediate stages IFC with high resolution. On the

other hand, both Cancer1 and Thyroid1 have higher input resolution (10 levels per input)

which definitely needs high resolution for the intermediate stages IFC.
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Figure 18: Ideal system evaluation for the architecture shown in Fig. 16. (a) shows a

comparison between average failure error for conventional two-layers neural network (blue),

two-layers spiking-based system (green), and one-layer spiking-based system (yellow). Re-

sults are shown for three datasets, namely Digits [5], Cancer1, and Thyroid1 [6], and (b)

shows the average failure error for Digits (red), Cancer1 (blue), and Thyroid1 (black) versus

IFCmax of the intermediate stages IFC.
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We couldn’t increase IFCmax beyond 70 as the simulation time increases dramatically.

It is worth mentioning that increasing IFCmax for intermediate stages IFC requires bigger

counters, so the overall system area and power increase, especially for bigger crossbar arrays.

Moreover, the hardware implementation of the system gets slower, as more spikes per input

have to be applied sequentially for the second crossbar.

3.4.2 Memristor Process Variations

For better and more realistic system evaluation, we are going to take into consideration

memristor process variations. It is widely known that there is a deviation between the

programmed and the desired memristor resistance due to process variations, in which most

of those variations follow Gaussian distribution [59]. Those variations can dramatically

degrade the system performance, especially for offline trained systems. Online training helps

to significantly decrease the effect of process variations by constantly updating memristor

weights on the fly. For our evaluation, we will assume that the memristor resistance is:

Rp = Rdesired +∇R, (3.3)

where Rp is the final programmed resistance, Rd is the desired resistance value, and ∇R ∼

N (0, σ) is a random variable that follows a Gaussian distribution of mean value 0 and

standard deviation σ. The simulation results for the two-layered spike-based systems using

online (solid lines) and offline (dashed lines), are shown in Fig. 19(a). The average failure

error, averaged over 100 runs, is plotted against the standard deviation σ, whose maximum

value is restricted to 5% which is widely accepted [59]. For offline training, MATLAB was

used to train each memristor resistance value only from the pool of allowable resistance states.
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Process variation modeling is applied when the trained resistance values are programmed to

the memristor. On the other hand, online training takes into consideration process variation

during each epoch of training. As shown in Fig. 19(a), online training has significantly

improved the average failure error, where improvements at the worst process variation (σ = 5)

are 21.97%, 17.95%, 16.18% for Thyroid1, Cancer1, and Binary Digits datasets, respectively.

As the figure depicts, the rate of improvements increases as the process variations gets worse

and is not the same for the three datasets. The latter can be explained as the sensitivity for

process variations increase as the network size and input feature details increase.

The number of epochs, averaged over 100 runs, needed for training the online system

versus σ is shown in Fig. 19. It can be concluded from this figure that the rate of increase of

the number of epochs is not constant, and changes, approximately, exponentially according

to the complexity of the used dataset. This explains why the number of epochs needed for

Cancer1 for σ = 1 and 2 is lower than the rest of the values.

3.5 Conclusions

In this chapter, we demonstrated a hybrid spiking-based multi-layered self-learning neu-

romorphic computing system. We also proposed a simple and effective online training algo-

rithm for spiking systems, which reduces the required steps for weights updating into half

of the previously published training algorithms. System evaluation was carried out, using

three different datasets, namely, Binary Digits [5], Cancer1 [6], Thyroid1 [6], which showed

overall performance improvement of 42%. Moreover, the online training algorithm shows

adequate immunity against memristor process variations. Since the results shown here are
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Figure 19: System evaluation, after taking into account process variations, for the archi-

tecture shown in Fig. 16. (a) shows a comparison between average failure error for the

two-layers spiking-based system, using online (solid) and offline (dashed) training, versus

standard deviation σ for Thyroid1 (blue), Cancer1 (red), and Binary Digits (black). (b)

shows the average number of epochs for online trained systems versus standard deviation σ

for the same datasets.
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promising, potential future work will be investigating the effect of increasing the crossbar

size and the number of layers on the overall system performance, as well as extending the

concept of neuromorphic computing to different types of neural networks.
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4.0 Hardware Implementation of Echo State Networks using Memristor

Double Crossbar Arrays

4.1 Introduction

Recently, the amount of data need to be processed in real time is growing massively. Spa-

tiotemporal data, such as weather forecasting and speech recognition data, require a huge

amount of real-time processing to extract the essential information out of it. A common

trait among spatiotemporal data is the need to extract the behavior of the data over differ-

ent time windows to be able to classify or predict their behavior in the future. For example,

meteorologists can predict the atmospheric behavior for an upcoming period of time depend-

ing on its past behavior. Utilizing general-purpose computing systems to process this huge

amount of data in real-time is inefficient in terms of cost and power consumption, especially

for application specific devices. In addition, conventional von Neumann systems cannot keep

up with such huge amount of data due to the well known “memory wall” phenomenon [25].

Neuromorphic computing systems can provide an excellent trade-off between real-time

processing, power consumption, and overall accuracy. Inspired by human brains, neuromor-

phic computing systems store and process the data at the same location, which overcome

the “memory wall” phenomenon in von Neumann systems. Most of these systems rely on

new emerging devices, such as Resistive Random Access Memories (ReRAM), or Memris-

tors, as an important building block, because of their synaptic like behavior and low feature

size [46,47]. Fig. 20 depicts a simple example on how to implement a typical fully connected

4x2 feed-forward neural network (shown in Fig. 20(a)) using crossbar arrays of memristors
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(shown in Fig. 20(b)). The inputs to the neurons (blue circles) are represented by voltage

signals at the horizontal (blue) wires, while the outputs of the neurons (gray circles) are

represented by currents signals at the vertical (gray) wires. The conductance values of the

memristors at each intersection in the crossbar array correspond to the weights connecting

neurons of different layers. Since the weights can take any values, neuromorphic systems

make use of the ability to program the memristors resistance to represent any weight value.

Significant work have been done investigating the potentials of using neuromorphic sys-

tems to represent different topologies of neural networks, especially feed-forward neural net-

(a)

(b)

Figure 20: Neural network implementation using memristor crossbar arrays. (a) shows a

conventional diagram for 4×2 neural network while (b) shows the crossbar implementation

of that network.
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works [5,46,52,58,60]. For instance, Liu et al. [5] investigated the use of memristor crossbar

arrays in implementing a digital image recognition system using feed-forward neural net-

works. The system shows energy savings more than 50% with only 1.46% increase in the

average failure error [5]. Hassan et al. [61] also implemented a multi-layered self-learning

neuromorphic system, which implement a multi-layer feed-forward neural network using

memristor crossbar arrays which are capable of online weight updating. The system has

been evaluated on three different datasets showing promising results compared to single

layered systems and good immunity against memristor process variations [61].

Although most of the investigated systems implement feed-forward neural networks, those

types of networks are not suitable for spatiotemporal datasets. Echo State Networks (ESNs),

which are a special type of partially-trained Recurrent Neural Network (RNNs), can repre-

sent spatiotemporal datasets very well [62]. ESNs have many attractive features (as will be

discussed later on Section 4.2.2), but the feedback connections within its hidden layer neurons

enable it to extract the spatial and temporal behavior, and correctly represent spatiotem-

poral datasets. Software implementations of ESNs showed promising results in numerous

applications such as: forecasting of water inflow for a hydro-power plant [63], speech recog-

nition [64], and many more [65]. On the other hand, hardware implementations of ESNs

are scarce in literature. For example, Donahue et al. [66] (Zhang et al. [67]) implemented

a hardware realization for RNN using a bi-stable memristor based synapses (spiking-based

neurons), along with other CMOS circuitry. Both systems were evaluated for spoken digits

recognition showing an average accuracy of 67% for [66] and 97% for [67]. Moreover, Kulkarni

et al. [68] used memristors and genetic algorithms, in a graph-based approach, to implement

a hardware-based ESN that distinguishes between triangular and square waveforms.
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In this chapter, we propose a new hardware implementation design of ESN based on

memristor double crossbar arrays. To the authors best knowledge, such a hardware realiza-

tion of ESN has never been proposed before. Our main contributions are:

• Introducing a memristor double crossbar array to implement the recurrent connection

within the ESN reservoir, as will be discussed later on Section 4.3.1.

• Offering a detailed procedure for designing and simulating the proposed architecture.

The rest of the work is organized as follows: Section 4.2 introduces the theory of ESN and the

fundamental building block of the system. Section 4.3 explains the details of the proposed

hardware implementation of ESN and its design considerations. Section 4.4 evaluates and

discusses the proposed system from different aspects. Finally, conclusion will be provided in

Section 4.5.

4.2 Preliminary

4.2.1 Memristor Devices and Model Used

Memristors are usually made of two conductive layers with an oxide layered in between.

There has been many researches trying to investigate the best oxide to be used, but the

most promising ones are TiO2-x [55] and a layer composed of HfOx and AlOx [49]. For

energy efficiency reasons, devices with higher resistances ranges are a must. Devices made

of HfOx and AlOx [49] have a high resistance ratio of (ROFF/RON≈1000) and (RON≈10KΩ),

which is good enough to be utilized in our system. In addition, another device is added on top

of memristor to improve selectivity and suppress the sneak paths [40,56]. The most common
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devices used as selectors are transistors [5] and devices made of Superlinear Threshold Layer

(STL) [4]. Using transistors as selectors, or 1-Transistor-1-Resistor (1T1R) configuration, is

more reliable and has negligible effect of on the overall conductance of the composed cell [5].

In this work, each cell of the crossbar array will be composed of 1T1R, where the resis-

tance range of that structure is [50KΩ, 1MΩ] [5]. The whole range is divided into 8 discrete

levels, which are the only allowable levels during training.

4.2.2 Echo State Networks and Reservoir Computing

In 2001, Jaeger [62] introduced a new network model based on recurrent neural networks,

which is called Echo State Networks (ESNs). Nowadays, ESN model, and others that share

the same basic structure, have been categorized under a unified model called Reservoir Com-

Figure 21: Generic Echo State Network (ESN) with an input layer, reservoir layer, and

output layer.
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puting (RC) model [65]. RC model has two major significant changes than the traditional

fully-connected feed-forward neural networks, 1) network layers don’t have to be fully con-

nected anymore, and 2) recurrent connections are included among units of the same layer,

as well as different layers. Fig. 21 depicts a generic ESN model with an input, a hidden

(reservoir), and an output layer. Each unit in the input (hidden) layer is now connected to

a random set of units in the hidden (output) layer. In addition, every unit in the hidden

layer has random connections to different units in the same layer. These recurrent connec-

tions change the dynamics of the hidden layer. Now, at any given moment, the state of the

hidden layer depends on the input applied at this moment and the previous state of the

hidden layer, hence the name reservoir layer. Moreover, units of the reservoir layer can have

different activation functions depending on the target application. Consequently, RC model

is the best when it comes to representing spatiotemporal datasets, where datasets are timely

or spatially linked over a certain window.

As depicted in Fig. 21, a generic ESN model has three layers, namely input, reservoir,

and output layer. Due to the complicated dynamics in the system, the weights connecting the

input and reservoir layer, w i-r, and the weights within the reservoir layer, w r-r, are randomly

initialized at first and kept fixed during the training process. On the other hand, the weights

connecting the reservoir and the output layer, w r-o, are the only allowable weights to be

trained using any of the known training techniques. The equation governing the reservoir

dynamics is as follows: given an input dataset of U = u1, u2, ... , uN defined over discrete

time t ∈ Z , where u(t) is the input vector given at time t, x(t), which is the reservoir state

at time t, is defined as:
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x (t) = f [wi−r × u (t) + wr−r × x (t− 1)] (4.1)

where f() is a nonlinear activation function for the reservoir units. The output y(t), at time

t, is defined as:

y (t) = g [wr−o × x (t)] (4.2)

where g() is the activation function for the output layer units.

The ESN model can be thought of as if it projects the input space into a random higher-

dimensional feature space, and then maps it down to a lower-dimensional output space.

Some sophisticated feed-forward network has a similar approach [69], however, the recurrent

connections make it easier for ESN model to capture spatiotemporal signals efficiently, in

terms of accuracy and network size.

4.3 Proposed Architecture and Design Procedure

This section is composed of two parts: first, we will discuss the hardware implementation

of a generic ESN using memristor double crossbar arrays. Second, the design procedure used

to train and test the system will be explained. It’s worth mentioning that the proposed

system provides the basic foundation for the evaluation carried out in Section 4.4.
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4.3.1 Generic ESN Hardware Implementation

It is better to illustrate how to implement ESN using memristor crossbar arrays by a

generic example. Fig. 22(a) shows a simple 2×4×1 ESN, which has 2 input neurons (blue

circles), 4 reservoir neurons (gray circles), and 1 output neuron (green circle). As can be seen

in Fig. 22(a), the input layer is fully connected (yellow arrows) to the reservoir, the reservoir

units are randomly connected (red arrows), and the output layer is fully connected to the

reservoir (purple arrows). The hardware implementation of this network is depicted in Fig.

22(b), which is color matched to the network in Fig. 22(a). The weight matrices w i-r, w r-r,

and w r-o, in eq (4.1) and (4.2), are represented by the conductances of the yellow, red, purple

memristors (cubes in Fig. (22(b))), respectively. Since each weight can be either negative

or positive, two memristors are used to represent one weight, as shown in Fig. 20(b). For

instance, G11, which represent W 11 in Fig. 20(a), is G11≡ G11
+ - G11

-.

Input signals, u(t), are represented by voltage signals applied to horizontal blue lines.

This voltage signal is multiplied by the memristor conductances (yellow memristors) and

corresponding currents are collected at the bottom of the vertical gray lines. Currents are

then converted by means of the summation amplifier (orange blocks) to voltage signal x(t),

the operation of the summation amplifier will be discussed later on this section. The signal

x(t) is then fed back to the crossbar array by means of the top horizontal gray lines and

the red memristors, which represent the recurrent connections of the reservoir. In addition,

the signal x(t) is fed to the second crossbar, and the currents are collected at the bottom of

the green vertical lines, then converted to a voltage representing y(t). It can be said that,

the double crossbar array implements eq. (4.1), while the single crossbar array represent eq.

(4.2). It’s worth mentioning here that sneak paths [40] cannot be formed between the lower
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and upper parts of the double crossbar arrays because of the following: 1) the applied voltage

signal range is always kept below the programming threshold voltage of the memristors used

and 2) the transistor used with each memristor enhance selectivity and prevent sneak paths.

(a)

(b)

Figure 22: Hardware implementation of ESN. (a) shows a 2x4x1 ESN with random con-

nections inside the reservoir and (b) depicts the hardware implementation of this network

model. both figures are color matched.
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The circuit diagram of the summation amplifier (the orange block in Fig. 22(b)) is shown

in Fig. 23(a). This block is composed of two operational amplifiers, in which each one is

connected in a negative feedback configuration. The summation amplifier represents the

equation:

Vo (t) = R
[
I+(t)− I−(t)

]
(4.3)

where V o(t) is the output voltage signal, I+(t) and I -(t) are the +ve and -ve current signal

from the crossbar array, and R is the resistance value. R is adjusted according to the

application to use the full range of the amplifier. The summation amplifier IV characteristics

(blue curve) is shown in Fig. 23(b). It is merely a linear relation between the +ve and -

(a)

-4 -2 0 2 4

x

-1

-0.5

0

0.5

1 tanh(x)

Summation Amplifier

(b)

Figure 23: Summation amplifier (orange block) in Fig. 22(b) (a) shows the circuit imple-

mentation of the amplifier and (b) depicts the amplifier IV characteristics (blue curve) versus

tanh(x) characteristics (red curve).
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ve supplies of the operation amplifier. It can be seen that the summation amplifier IV

characteristics is of a very close resemblance to the IO relation of tanh(x) function, under

the normal range of operation.

Two things worth mentioning here, first, the summation amplifier virtually connect the

horizontal lines to ground, which ensures the correct operation of the crossbar array. Sec-

ond, the non-linear IV characteristics of the summation amplifier is used to implement the

activation functions f() and g() in eq. (4.1) and (4.2).

4.3.2 Design Procedure

Designing memristor crossbar arrays for ESNs requires composite design procedure that

incorporates utilizing a software tool, such as MATLAB. Fig. 24 shows the required steps to

design memristor crossbar arrays for ESN. First of all, the input-reservoir weights, w i-r, and

the reservoir recurrent weights, w r-r, are randomly initialized (step 1), then, those weights are

mapped to the allowable conductance levels and programmed to their corresponding mem-

ristors in the double crossbar array (step 2). After that, input signal u(t) is pre-processed,

using scaling and normalization, to span the valid input range of the crossbar array (step

3). The double crossbar array is now ready for operation. The first few samples of the input

signal are applied to the reservoir in a process called “reservoir warm-up”, which initialize

the dynamics of the reservoir. The number of the samples used depends on the nature of

the dataset. Next, the training signal is applied to the double crossbar array (step 4), and

the reservoir states, x(t), are collected (step 5). Those reservoir states, collected at step 5,

are used to train the reservoir-output weights, w r-o (step 6). The algorithm used to train

w r-o depends directly on the dataset under investigation, however for the dataset used in this
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work, linear regression [62] will be used. The trained weights are mapped to the allowable

conductance levels and programmed to their corresponding memristors in the single crossbar

array (step 7). Now, the crossbar array system is ready for testing, where the testing signal

is applied to the double crossbar, then the reservoir states are applied to the single crossbar

array (step 8). Last but not least, the output signal, y(t), is collected by the software (step

9), and finally system evaluation and validation are carried out (step 10).

The previously illustrated design procedure will be exactly used in the evaluation part

in Section 4.4.

Figure 24: Design procedure steps to implement memristor crossbar arrays for ESNs.
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4.4 System Evaluation

The dataset used to evaluate the performance of the proposed system is generated from

the famous Mackey-Glass equation [70]. It is a nonlinear time-delayed differential equation,

defined as:

dx

dt
= β

x (t− τ)
1 + (x (t− τ))n

− γx (t) (4.4)

where τ is a non-negative time delay used in evaluating a signal. n is a non-negative shape

parameter that helps to describe the time-delayed feedback/response. β and γ are non-

negative parameters.

The importance of this equation arises from the fact that it can display a wide variety

of extremely chaotic behavior, depending on the adjustable delay term τ , because its value

at any time may depend on its entire previous history. Mackey et al. [70] originally pre-

sented eq. (4.4) to explain the complex dynamics in physiological control systems by way of

bifurcations in the dynamics. He suggested that many dynamical diseases, which are physi-

ological disorders, can be characterized by changes in qualitative features of dynamics, that

corresponds mathematically to bifurcations in the dynamics of the system. Those bifurca-

tions could be induced by changes in the parameters of the system, which can be caused by

disease or environmental factors, such as drugs. Consequently, many researchers extensively

studied bifurcations in mathematical models of physiological systems and related these with

the abnormal (pathological) dynamics of disease [71].
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Table 3: Different parameters for the dataset and system under evaluation.

β γ τ n ESN size Training Set Size Testing Set Size

0.25 0.1 17 10 1×M×1 2000 1500

Table 3 summarizes different parameters of the dataset used for evaluation. We have only

one input unit, reservoir of size M, and one output unit. The reservoir is fully connected

and its size is kept variable because it will be one of the parameters used in evaluating the

system. The input is pre-processed and the input signal range is [-0.6, 0.6]. The proposed

system is trained to do autonomous signal generation of the input, which is done by making

the target signal one-sample-ahead of the input training signal. After training, the system is

fed its own prediction, which autonomously generates a signal, for a certain period of time,

that closely matches the testing signal. Our metric here in evaluating the system is the Mean

Square Error (MSE) between the generated signal and the testing signal. All simulations

were done using MATLAB on a machine having Intel Core i7 Processor running at 2.9 GHz

and 8 GB of RAM.

In the following subsections, we will evaluate the system performance for different param-

eters, such as: reservoir size, M, and the memristor resistance shift due to process variations.

4.4.1 Ideal System Performance

Fig. 25 depicts the MSE of the proposed hardware implementation (red) and the soft-

ware implementation (blue) of ESN for Mackey-Glass dataset. As expected, the proposed
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hardware implementation dropped the accuracy by 1%, on average, over the software imple-

mentation. This is due mapping the real valued weights to the discretized memristor weights

and approximation of the activation function to the IV characteristics of the summation am-

plifier. The worst case accuracy drop was 1.8% at M=200, and the least accuracy drop was

0.53% at M = 800. It can be told from the curve that as M increases, the proposed hard-

ware accuracy improves and the accuracy drop, compared to the software implementation,

improves also. This can be explained as follows: increasing the reservoir size increases the

reservoir dynamics non-linearity. As the non-linearity increases, the overall system becomes

less susceptible to weights discretization error.

In order to have a better understanding of the impact of using the proposed system

on the overall accuracy, a comparison between the actual testing dataset (green) versus

the software (blue) and hardware implementation (red) outputs, are shown in Fig. 26,

where the x-axis represent the time samples of the testing dataset and the reservoir size is

1000. As can be seen, there is a negligible slight difference between how the output of each

system follows the testing dataset. It is worth mentioning that, since the system is trained

for autonomous signal generation and given the size of the training and testing dataset, the

proposed hardware implementation can accurately predict the samples following the training

dataset with a window size of 75% of the training dataset size.

4.4.2 Memristor Process Variations

For a more realistic system evaluation, memristor process variations will be taken into

consideration. It is widely known that there is a deviation between the programmed and
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the desired memristor conductance due to process variations, in which most of those vari-

ations follow a Gaussian distribution [59]. These variations could drastically degrade the

system performance. For our evaluation, we will assume that the programmed memristor

conductance is:

Gp = Gd +∇G, (4.5)

where Gp is the final programmed conductance, Gd is the desired resistance value, and

∇G ∼ N (0, σ) is a random variable that follows a Gaussian distribution of mean value 0
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Figure 25: Performance comparison between the proposed hardware implementation (red)

and the software implementation (blue) of ESN for Mackey-Glass dataset.
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Figure 26: Comparison between the actual testing dataset (green) versus the ESN output,

y(t), for (a) software implementation (blue) and (b) hardware implementation (red). The

results shown are for M=1000.
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and standard deviation σ. Fig. 27 shows the MSE versus the reservoir size M for different

values of σ. The maximum value of σ is restricted to 5% which is widely accepted [59].

All the MSE values were calculated and averaged over a 100 runs for each (M,σ) pair. As

can be told from the curves, for lower reservoir sizes (M = 200), the system accuracy is the

worst. However, increasing the reservoir size improves the system accuracy dramatically. It

is also noticeable that for larger reservoir size (M = 800, 1000), There is almost no difference

in the system accuracy as σ changes. Such a result implies that hardware implementation

Figure 27: System evaluation, after taking into account process variations, for the proposed

hardware implementation. It depicts the MSE versus the reservoir size M, for different values

of σ.
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of ESN is immune to memristor process variation, for larger reservoir sizes. A qualitative

explanation of this phenomenon might be as follows: increasing the reservoir size increase

the system dynamics non-linearity to the level where it can accommodate small changes in

the memristor variations without affecting the overall performance of the system. In other

words, the more non-linearly dynamical the system is, the less susceptible it is to process

variations.

4.5 Conclusions

ESN model represents a special type of RNNs, which has the ability to regenerate spa-

tiotemporal signals. For that reason, having a compact, fast and accurate hardware im-

plementation of ESN would be a great achievement for application-specific devices. In this

work, we proposed a hardware implementation for ESN model using memristor double cross-

bar array structure. In addition, a design framework for implementing the proposed system

has been depicted. System evaluation, using the Mackey-Glass nonlinear time-delayed dif-

ferential equation, showed very promising results compared to the conventional software

implementation of the ESN. In addition, the hardware implementation demonstrated excel-

lent immunity against process variations, for larger reservoir sizes.

Future work will be to investigate the performance of the proposed system for different

reservoir topologies, such as Ring topology. In addition, different types of memristor crossbar

arrays, such as spiking-based arrays [61] , will be investigated as a potential candidate for

implementing ESNs.
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5.0 Real-time Cardiac Arrhythmia Classification using Memristor

Neuromorphic Computing System

5.1 Introduction

Electrocardiogram (ECG) is a diagnostic tool used to monitor electrical activity of the

heart. Therefore, it can be used to detect irregularities in the heart rhythm due to the

presence of certain arrhythmias [72]. Inspired by the fact that early detection of specific car-

diac arrhythmias is essential to reduce mortality rate worldwide, Computer Aided Diagnosis

(CAD) systems [73–75] were introduced as a promising approach that can aid the physicians

to provide early arrhythmia detection and assessment.

Recently, several methodologies were proposed to improve the performance of arrhyth-

mia CAD systems. Sayed et al. [73] proposed a distance series transform for phase space

trajectories of 5 different beat types. In another study, features derived from spectral corre-

lation analysis were classified using Support Vector Machines (SVM) [74, 76]. Additionally,

methods including time-domain features which characterize the ECG signal morphology

along with Linear Discriminant Analysis (LDA) and Fuzzy Logic based classifiers have been

introduced in [77, 78] to provide robust arrhythmia classification systems. Furthermore,

transform-domain features including discrete wavelets and higher-order spectra were pro-

posed to train Probabilistic Neural Network (PNN) and SVM classifiers to obtain higher

classification accuracy [74,79].

In order to build fast and compact arrhythmia classification systems, researchers have

utilized hardware platforms such as Digital Signal Processors (DSP) to implement their
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classification and detection algorithms [75,76]. In [75], discrete wavelet transform, as well as

PNN classifier, were used to classify 8 beat types on a DSP platform. On the other hand,

Jeon et. al. [80] proposed an implantable System-On-Chip (SoC) that exploits both time

and frequency domain techniques to detect cardiac arrhythmias. Due to space limitations,

please refer to the references for further information [75,76,80].

Most of the previously introduced systems either require a lot of pre-processing, hard

to be implemented on hardware platforms, or take a long time to detect an arrhythmia in

ECG signals. Recently, neuromorphic computing systems have been proposed, implementing

different types of Neural Networks (NNs), such as feed-forward NNs [61] and Recurrent NNs

[81]. These systems are inspired by the working mechanism of the human brain and utilize

new emerging devices, such as memristors, as an essential building block. Memristors have a

few nanometers feature size and synaptic like behavior, therefore, neuromorphic computing

systems provide excellent trade-off between real-time processing, power consumption, and

overall accuracy.

In this chapter, we propose a real-time cardiac arrhythmia classification using memristor

neuromorphic computing system for classifying five different beat types including: normal

(N), Premature Atrial Contraction (APC), Premature Ventricular Contraction (PVC), Right

Bundle Branch Block (RBBB), and Left Bundle Branch Block (LBBB). Raw ECG data is

directly used as inputs to the proposed system which minimizes the amount of computations

needed for feature extraction and hence reducing classification time and power consumption.

The proposed system achieves an overall accuracy of 96.17% and requires 34 ms to test

one ECG beat, which outperforms most of its counterparts. To our best knowledge, such a

system has never been proposed before for cardiac arrhythmia classification.
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The rest of the chapter is organized as follows: Section 5.2 introduces the theory behind

neuromorphic computing systems. Section 5.3 explains the details of the proposed system

and the training procedure. Section 5.4 evaluates and discusses the proposed system from

different aspects. finally, conclusion will be provided in Section 5.5.

5.2 Preliminary

5.2.1 Memristor Devices and Model Used

Memristors are considered as the fourth circuit element along with resistors, capacitors,

and inductors. They were first postulated by Leon Chua in 1971 [35]. In 2008, a team

in HP labs fabricated a two-terminal devices with the same behavior that Chua predicted

before [21]. Nowadays, memristors are fabricated as an oxide layer sandwiched between

two conductive terminals. Among all the oxide materials used to fabricate the memristors,

the ones made using TiO2-x [55] or a layer composed of HfOx and AlOx [49] appear to be

the most promising. In this work, we will adopt the device model made with HfOx and

AlOx [49], as they have a high resistance ratio of (ROFF/RON≈1000) and (RON≈10KΩ),

which is crucial for an energy efficient system, as the one proposed here. Moreover, each

memristor cell is combined with another device, called selector, to enhance selectivity. From

the different devices used as selectors [4, 5], we will be using the 1-Transistor 1-Memristor

(1T1M) structure, as it is reliable, easy to fabricate, and has a negligible effect on the overall

conductance of the cell [5]. Each cell of the crossbar array is composed of 1T1M structure,

where the conductance range of that structure is [1μS, 20μS] [5]. Only 8 pre-chosen discrete

conductance levels in this range are permissible during training.
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5.2.2 Feed-Forward Neural Network Crossbar Arrays

Fig. 28 depicts the resemblance between feed-forward neural networks and crossbar

arrays. A simple feed-forward neural network is mapped to a memristor crossbar array as

follows: The synaptic weights, w ij, connecting the input (purple circles) and output (red

circles) neurons in Fig. 28(a), are mapped to the conductance, G, of the 1T1M cells at each

cross point of the array in Fig. 28(b). The output neurons (and hidden neurons, if any)

perform two important functions (i) evaluating the weighted sum of the inputs, zj =
N∑
i=1

xiwij,

and (ii) generating the output according to a nonlinear activation function, yj = f(zj). The

weighted summation function is implemented directly using the crossbar array as follows:

assuming that each vertical red (bit) line is connected virtually to ground (which is done using

the summation amplifier circuit , yellow block in Fig. 28(b)), the inputs, x, are encoded into

voltage signals, V, and applied to the horizontal purple (word) lines. These voltage signals

are multiplied by the conductance, G, resulting in current I = GV injected in each bit line.

The second function is implemented using the summation amplifier I-V characteristics, as

will be shown in Section 5.3.1.

Synaptic weights can be any positive or negative value, therefore, one synapse is rep-

resented by two 1T1M cells, where G ij ≡ G ij
+- G ij

-, as shown in Fig. 28(b). In such a

scheme, each output neuron is composed of two columns, one for G+ and one for G -, and

currents from these columns, I+ and I - are directed to the positive and negative ports of the

summation amplifier, respectively. Moreover, the number of permissible conductance levels

now are exponentially expanded to 57 levels (all the 82 possible combinations of two 1T1M

cells, dropping out the 7 repeated combinations of G ij = 0).
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5.3 Proposed Architecture and Design Procedure

In this section, we will illustrate the proposed system architecture and the training and

programming procedure utilized to prepare the system. The information in this section

provide the basic foundation for the evaluation carried out in Section 5.4.

5.3.1 Two-Layers Memristor Crossbar Arrays

Shown in Fig. 29 is the proposed system and its memristor crossbar array implementa-

tion. All the corresponding elements between the feed-forward neural network diagram and
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Figure 28: Neural network implementation using memristor crossbar arrays. (a) shows a

conventional diagram for 4×2 feed-forward neural network while (b) shows the memristor

crossbar array implementation of that network.
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the hardware implementation are color matched. Crossbar layer 1 (2) corresponds to the

synaptic weights connecting the input and hidden neurons (hidden and output neurons). The

black and gray dots at each intersections are the 1T1M cells holding the synaptic weights,

as their conductance values, of the neural network.

After the system is trained and the cells are programmed with the desired conductances

(as will be described in Section 5.3.2), it is ready for testing. ECG test signals, correspond-

ing to raw data, are normalized and mapped to the allowable crossbar voltage range [-1V,

1V]. Signals are applied horizontally, via the purple lines, multiplied by the corresponding

conductances, and then currents are collected vertically, at the inputs of the summation

amplifiers through the green lines.

y1

y2x2

x1

x300

x299

x2

x1

x300

x299

Crossbar 
Layer 1

+ - + - + - + - + - + -+ - + -

y3

y4

y5

y1 y2 y3 y4 y5

Crossbar Layer 2

Decision-Making Block

Result

Figure 29: Hardware implementation of the proposed two-layers memristor crossbar array.

A 300×210×5 feed-forward neural network diagram is shown in the lower left corner, and

its circuit implementation is shown in the rest of the figure.
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The circuit diagram of the summation amplifier is shown in Fig. 30(a). Two opera-

tional amplifiers, connected in a negative feedback configuration, are used. The summation

amplifier implements the following equation:

Vo (t) = R
[
I+(t)− I−(t)

]
(5.1)

where I+(t) and I -(t) are the +ve and -ve current signal from the crossbar array, R is the

resistance value, and V o(t) is the output voltage signal.

As mentioned before, the summation amplifier I-V characteristics is used to implement

the neuron activation function. Fig. 30(b) depicts the amplifier I-V characteristics (blue

circled curve) versus the I-O relation of tanh(x) function (red dotted curve). As can be told,
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Figure 30: Summation amplifier (yellow block) in Fig. 29 (a) shows the circuit implemen-

tation of the amplifier and (b) depicts the amplifier IV characteristics (blue curve) versus

tanh(x) characteristics (red curve).
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the summation amplifier I-V characteristics closely resembles the I-O relation of tanh(x)

function, under the normal range of operation, hence it is safe to use the amplifier character-

sitics as an activation function. It should be mentioned here that the summation amplifier

virtually connect the horizontal lines to ground, which ensures the correct operation of the

crossbar array.

After the signals have been collected from crossbar layer 1, they are applied to crossbar

layer 2 (in the same way as illustrated in crossbar layer 1). Afterwards, the 5 output signals

representing the 5 possible beat types are applied to the decision-making block to give system

prediction of the corresponding class.

5.3.2 Training Procedure

To be able to utilize the previously discussed system, training on the desired dataset and

programming of the 1T1M cells have to be done first. The system training part can be carried

out on any machine learning software tool. In our case, a custom version of the MATLAB

Neural Network toolbox, specifically modified to train the system using the permissible

conductance levels only, is used. Training is done using gradient descent momentum with

adaptive learning rate.

After training, the obtained synaptic weights values are programmed to their correspond-

ing 1T1M cells. Now the system is ready for testing, which will be discussed in Section 5.4.
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Table 4: Records used to test the proposed system.

Type Count Records

N 1500 100, 101, 105, 106, 114, 116, 200, 209, 233, 234

APC 1317 100, 118, 202, 209, 220, 222, 232

PVC 1274 106, 116, 119, 200, 203, 208, 213, 221, 223, 233

LBBB 1131 109, 111, 207, 214

RBBB 1037 118, 124, 212, 231, 232

5.4 System Evaluation

The dataset used is composed of 6258 samples, collected form MIT-BIH arrhythmia

database [82] and shown in Table 4. It is randomly divided into 4380 (70%) training sam-

ples, 939 (15%) validation samples, and 939 (15%) testing samples. The input signals are

normalized and mapped to the voltage range [-1V, 1V]. The metric used in evaluating the

system is the misclassification error of the 5 beat types. All simulations were done using

MATLAB on a machine having Intel Core i7 Processor running at 2.9 GHz and 8 GB of

RAM.

The proposed system achieved average PVC, LBBB, APC, RBBB sensitivities of 98.98%,

98.68%, 97.09%, 91.62% respectively, as well as 97.70% specificity. Compared to most of the

methods listed in Table 5, the proposed system obtained higher accuracy of 96.17%, although

the raw data is used directly in the classification process without the computation of any

features. In terms of testing time, our proposed system requires 34 ms to process one ECG
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beat, based on memristor access time data in [83], compared to 0.32, 0.37, and 0.43 s required

by Gutiérrez-Gnecchi et al. [75], Khalaf et al. [74], and Sayed et al. [73] respectively. Note

that higher accuracy can be obtained by applying any of the feature extraction methods,

in Table 5. However, such pre-processing will increase testing time and hardware overhead.

Inspired by these results, we introduce our system as an efficient hardware solution for

designing a real-time arrhythmia classification module that can be implemented in patient

monitors and wearable ECG devices.

Table 5: Proposed method in comparison with other studies in literature.

Method Features Classification Classes Accuracy

2009 [78] Qualitative Features Fuzzy Logic 5* 93.78%

2012 [84] Qualitative Features Cluster Analysis 5* 94.30%

2013 [79] Higher Order Spectra SVM 5* 93.48%

2013 [85] Qualitative Features Hidden Markov Model 5* 89.25%

2013 [86] Higher Order Cumulants Neural Networks 5* 94.52%

2013 [87] Linear Predictive Coefficients Probabilistic Neural Networks 4 92.90%

2015 [73] Nonlinear Modeling Features KNN 5* 98.70%

2015 [74] Spectral Correlaion SVM 5* 98.60%

2017 [75] Wavelet Transform Probabilistic Neural Networks 8 92.75%

Proposed Raw Data Neuromorphic Computing 5* 96.17%

* The 5-class studies [73,74,78,79,84–86] include the same beat types used in this paper.
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5.4.1 Memristor Process Variations

During the programming process, the programmed conductance values differ a little bit

from the desired conductance values. This problem happens due to process variations during

the fabrication of memristors [59]. It is widely accepted to assume that these variations

follow a Gaussian distribution [59]. In order to evaluate the proposed system against these

variations, the programmed conductance value will be assumed as:

Gp = Gd +∇G, (5.2)
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Figure 31: Misclassification error, after taking into account memristor process variations, for

the proposed system architecture.
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where Gp is the final programmed conductance, Gd is the desired conductance value, and

∇G ∼ N (0, σ) is a random variable that follows a Gaussian distribution of mean value 0

and standard deviation σ. Fig. 31 shows the misclassification error versus different value of

σ. The maximum value of σ is restricted to 5% which is widely accepted [59]. For each σ,

the misclassification error is calculated and averaged over 100 runs. As can be told from the

curves, the worst case scenario, σ = 5, only worsen the misclassification error by 3.5%. Such

results are promising since they show that the proposed arrhythmia classification system is

robust and can perform efficiently in non-ideal conditions.

5.5 Conclusions

Early and accurate detection of cardiac arrhythmias could help reduce mortality rate

worldwide. Therefore, having a real-time, low power, accurate, and compact devices is a

must. In this work, we proposed real-time cardiac arrhythmia classification using memristor

neuromorphic computing system for classifying five different beat types. The system shows

excellent performance, where it achieved overall accuracy of 96.17%, although raw ECG data

were used directly without any feature calculation. Moreover, the system only needs 34 ms

to test of ECG signal, which is about 10 times less compared to the fastest DSP classification

systems. such a result makes it perfect for patient monitors and wearable ECG devices. In

addition, the system showed good immunity against memristor process variations.

Future work will be to investigate spiking-based self-trained neuromorphic computing

systems [61] as a more generic real-time cardiac arrhythmia classification systems.
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6.0 Conclusion and Future Work

As can be concluded from the results discussed in the previous chapters, neuromor-

phic systems have proven a great potential for implementing low power, small size, and

high accuracy systems, representing different types of neural networks. The main focus of

this dissertation is to enhance neuromorphic computing systems implementation, targeting

classification and generation applications. Hence, perhaps the next step is to investigate

the candidacy of neuromorphic systems in implementing Deep Neural Networks (DNNs)

architectures [88]. Compared to early attempts on neural networks [89, 90], modern deep

learning architectures introduce more hidden layers with complex structures and nonlinear

transformations to model a high-level of data abstraction [91]. In fact, many researchers

have already attempted to implement DNNs using neuromorphic systems for various appli-

cations [92,93]. Moreover, deep learning systems have demonstrated fascinating performance

in some real-world applications and achieved near, or even beyond, human-level accuracy

in speech recognition [94], computer vision [95, 96], and a variety of other applications. Re-

cently, natural video prediction has become one of the hottest topics in deep learning, for

its wide applicability in the area of autonomous driving. However, the generation of a real-

world temporal consistent video frame is still a big challenge due to the higher dimensions

involved.

In the following sections, we will give an overview of a recent trend in deep learning,

called Generative Adversarial Networks (GANs) [97, 98], and how it is applied to the prob-

lem of video prediction [1]. In addition, we propose a new GAN based on the previously

demonstrated ESN, we call it ESN-GAN, which we believe can be easily and effectively im-
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plemented using neuromorphic systems. It’s worth mentioning here, that this system is more

of a promising idea and the results presented here are inconclusive, yet.

6.1 Video Prediction using GAN

In 2014, Ian Goodfellow [98] proposed a new method of training and generating examples

called Generative Adversarial Networks. GANs tasks are framed in some sort of a compe-

tition between two network models, where the first network, the Generator, tries to create

synthetic samples of a certain dataset, while the second network, the Discriminator, tries to

classify if the given sample is real (i.e. from the real dataset), or synthetic. As can be told

from this sort of rivalry, the discriminator is always looking for differences that allow it to pin

down a sample as synthetic. Consequently, the generator modifies its parameters in order to

minimize those differences as much as possible for the upcoming generated samples. That

cycle keeps going between the generator and the discriminator, in the training phase, so that

both of them get better in their task. Theoretically, after enough reciprocating between the

two networks, the generator will be able to make synthetic samples good enough to fool the

discriminator into classifying them as real samples. This mechanism is illustrated in Fig. 32.

Recently, Mathieu et al. [1] proposed a novel GAN, based on Convolutional Neural Net-

works (CNNs), combined with a novel loss function that dramatically improves the sharpness

of the predicted frames. They also combined multiple scales of each frame linearly as in the

Laplacian pyramid reconstruction process [99, 100]. In addition, the use of multiple scales

help in keeping long-range dependencies and avoid loss of resolution, which is a common

problem of having pooling/sampling layer in CNNs [1].
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Consider a sequence of consecutive video frames X 1, X 2, ..., X n , now we want to accu-

rately predict the subsequent video frames Y 1, Y 2, ..., Y m . As proposed in [1], the GAN

would consist of a generator, Gen, and a discriminator, Disc, where both are based on a

CNN. Both Gen and Disc are trained alternately in parallel, where Gen is trained to pre-

dict one or multiple concatenated frames Y, while Disc is trained to tell the source of those

frames. Such a training method assures that Gen can eventually generate temporally coher-

ent sequence. Training is done using Stochastic Gradient Descent (SGD) on one network,

while keeping the weights of the other network fixed.

Further more, the multiple scales architecture based on the Laplacian pyramid mentioned

before is shown in Fig. 33. Let s1, ..., sN scales define the sizes of the frame inputs to the

network. The studied network is composed of four scales defined as follow: s1 = 4×4, s2 =

8×8, s3 = 16×16, and s4 = 32×32. uk+1 is an upscaling operator to size sk+1. Finally, X i
k+1

and Y i
k+1 are the downscaled version of X i and Y i to size sk+1 , and Gen′k+1 is a network

Generator

Discriminator

Training 
Dataset

Synthetic 
Sample

Cost fucntion

Backpropagation

Real or Synthetic?

Figure 32: Illustration of the working mechanism of GAN.
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that learns to predict Yk+1 − uk+1 (Yk) from Xk+1 and a rough guess of Yk+1. The network

Genk+1, which makes a prediction Ŷk+1 is defined as:

Ŷk+1 ≡ Genk+1 (X) = uk+1

(
Ŷk

)
+Gen′k+1

(
Xk+1, uk+1

(
Ŷk

))
(6.1)

So the generator network starts to make a series of frame predictions, starting with the

lowest resolution, s1, all the way to up to highest resolution, s4, which is now ready to be

tested by the discriminator network.

The discriminator, Disc, is also a multiple scales network (same as above) with one scalar

output [1]. Disc takes a sequence of consecutive frames and is trained to tell if the last frames

are real or synthetic. It’s worth mentioning here that only the last frames can either be real

or synthetic, the first frames are always real.
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Figure 33: Multiple scales architecture proposed in [1].
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6.1.1 Training Disc

For a sample (X k , Y k) from the dataset, Disc is trained to classify (X k , Y k) into class

1 and (X k , Genk(X)) into class 0, at each scale, sk . This is done by performing one SGD

step while keeping all the weights of Gen fixed. The loss function for training Disc is:

LDiscadv (X, Y ) =

Nscales∑
k=1

Lbce (Disck (Xk, Yk) , 1) + Lbce

(
Disck

(
Xk, Ŷk

)
, 0
)

(6.2)

where Lbce is the binary cross entropy loss, such that:

Lbce

(
Ŷ , Y

)
= −

∑
i

Yilog
(
Ŷi

)
+ (1− Yi) log

(
1− Ŷi

)
(6.3)

where Ŷi ∈ [0, 1] and Yi ∈ {0, 1}.

6.1.2 Training Gen

For a different sample (X k , Y k) from the dataset, Gen is trained to predict the a set of

frames Ŷk as close as possible to Y k . This is done by performing one SGD step while keeping

all the weights of Disc fixed. The loss function for training Gen is a little bit complicated

than the one used in Disc and is combined of three different loss functions, as follows:

1. Adversarial Loss: which means that Gen is trying to confuse Disc as much as possible

by minimizing the following function:

LGenadv (X, Y ) =

Nscales∑
k=1

Lbce

(
Disck

(
Xk, Ŷk

)
, 1
)

(6.4)
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The reason for not using this loss function only is that it might lead to system instability

[1]. Hence, Mathieu et al. introduced the following loss functions.

2. Image Gradient Difference Loss: (GDL): is another way to increase the sharpness of the

predicted image by penalizing the difference of the gradient predictions between the real

image, Y, and the synthetic prediction, Ŷ . This loss function is defined as:

Lgdl (X, Y ) = Lgdl

(
Y, Ŷ

)
=

∑
i,j

∣∣∣|Yi,j − Yi,j−1| − ∣∣∣Ŷi,j − Ŷi,j−1∣∣∣∣∣∣β +∣∣∣|Yi−1,j − Yi−1,j| − ∣∣∣Ŷi−1,j − Ŷi−1,j∣∣∣∣∣∣β (6.5)

where β ≥ 1. It can be though of as the difference between the change in intensity from

pixel to pixel in the real and predicted frames.

3. Normal Loss: which is the first or second norm between X and Ŷ , as follows:

Lp (X, Y ) = Lp

(
Y, Ŷ

)
=

∥∥∥Y − Ŷ ∥∥∥p (6.6)

where p ∈ {1, 2}. This is like minimizing the distance between the predicted and the real

frames.

Now, the combined Gen loss is:

LGen (X, Y ) = λadvLGenadv (X, Y ) + λpLp (X, Y ) + λgdlLgdl (X, Y ) (6.7)

where λadv, λp, and λgdl are fine tuning parameters.
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6.2 Video Prediction using ESN-GAN

ESN-GAN is based on the GAN system we discussed above, however, instead of using

a CNN generator, we use an ESN generator. The motivation behind this was the excel-

lent results mentioned in Chapter 4, where the ESN implemented successfully captured the

temporal information in the dataset used. In addition, we only need to train the memris-

tor crossbar layer connecting the reservoir and the output nodes, which, when compared

to complex and time consuming training process of CNN, makes it much feasible to realize

ESN-GAN using neuromorphic computing system.

Fig. 34 depicts the proposed ESN-GAN. The Disc is the same as the one proposed in [1],

while Gen is replaced by a multiple scale ESNs. All the previously discussed details about

training both the Disc and Gen are applied for the proposed system too.

Generator

X

Ŷ  

Discriminator

Y  

Real or Synthetic?

Figure 34: ESN-GAN architecture.
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6.3 Experiments and Results

We provide here a comparison quantitative and qualitative comparison between results

obtained from the CNN-GAN proposed in [1] and ESN-GAN.

6.3.1 Training Details

Both systems were trained used a four concatenated sequential frames and predict the

next frame (as depicted in Fig. 34). Table 6 shows the values of the parameters used in

training the systems.

Fig. 35 depicts a comparison between the training loss for both the generator and the

discriminator of ESN-GAN and CNN-GAN. For Disc loss, the higher the value the better

result, because it means the discriminator is confused and cannot differentiate between real

and synthetic frames. On the contrary, the lesser the value of Gen loss the better the result,

because it means that the synthetic frames are very close to the real ones. As can be told

from Fig. 35, CNN-GAN has an advantage over ESN-GAN, however, ESN-GAN converges

faster than CNN-GAN, as can be deduced from Fig. 35(a).

Table 6: Different parameters used in training both systems.

β p λadv λp λgdl Gen Learning Rate Disc Learning Rate Epochs Batch Size

2 2 1 1 1 0.00004 0.02 ∼ 450K 8
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6.3.2 Quantitative Metrics

We use two metrics, as defined in [1], to evaluate the similarity between the synthetic

frames, Ŷ , and real ones, Y. The first metric is the Peak Signal to Noise Ratio (PSNR)

defined as:

PSNR
(
Y, Ŷ

)
= 10log10

max2
Ŷ

1
N

∑N
i=0(Y − Ŷ )2

(6.8)

where maxŶ is the maximum possible value of Ŷ intensities.

The second metric is the Sharpness Difference (SD), which measure the loss of sharpness

between Y and Ŷ . This metric is defined as:

Table 7: Comparison between GAN [1] and ESN-GAN architecture.

s1 s2 s3 s4

G
A
N

G
en

Feat. maps 128, 256, 128 128, 256, 128 128, 256, 512, 256, 128 128, 256, 512, 256, 128

Kernel sizes 3, 3, 3, 3 5, 3, ,3 ,5 5, 3, 3, 3, 3, 5 7, 5, 5, 5, 5, 7

E
SN

-G
A
N

Res. sizes 256 512 1024 2048

B
ot
h

D
is
c

Feat. maps 64 64, 128, 128 128, 256, 256 128, 256, 512, 256

Kernel sizes 3 3, 3, 3 5, 5, 5 7, 7, 5, 5

FC sizes 512, 256 1024, 512 1024, 512 1024, 512
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Figure 35: Comparison between the training loss functions of (a) Disc and (b) Gen networks

for both ESN-GAN (blue) and CNN-GAN (red).
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SD
(
Y, Ŷ

)
= 10log10

max2
Ŷ

1
N

[∑
i

∑
j

∣∣∣(∇iY +∇jY )− (∇iŶ +∇jŶ )
∣∣∣] (6.9)

where ∇jY = |Yi,j − Yi,j−1| and ∇iY = |Yi,j − Yi−1,j|.

For both these metric the higher value the better. Fig. 36 depicts a comparison between

PSNR and SD for both ESN-GAN and CNN-GAN. Although at first glance, these results

are not in our favor, our ESN-GAN converges faster than CNN-GAN.

6.3.3 Qualitative Evaluation

Fig. 37 depicts a sample batch of 8 different (X,Y) pairs used in training ESN-GAN. As

can be seen, the predicted frame, Ŷ , is not visually completely far away from the real frame,

Y, but it can certainly be improved.

6.4 Future Work

In this chapter, we have proposed an ESN-GAN system for the purpose of natural video

prediction. As we mentioned at the beginning of this chapter, the results here are inconclu-

sive, as it can’t be compared to the state-of-the-art results [1], yet.

However, the system can certainly be dramatically improved by exploring different loss

functions, fine tuning the loss parameters, and trying different ESN reservoir sizes. The

ultimate goal here is to finalize the design of ESN-GAN to achieve results as close as possible

to the state-of-the-art, then start migrating this system into a neuromorphic computing one.
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