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Abstract

Background/Objectives: The aim of this study was to examine the effect of physical activity (PA) and sedentary
behaviour (SB) on body mass index (BMI) and fat mass index (FMI) in children over the course of five years and
identify potential bi-directional associations.

Subjects/Methods: Data were drawn from the EU Childhood Obesity Project (CHOP). PA and SB were measured
with the SenseWear Armband 2 at the ages of 6 (T1), 8 (T2) and 11 (T3) years. Height and weight were measured
and BMI was calculated at each time point, resulting in 1254 complete observations from 600 children. Bio
impedance analysis was used to measure body fat mass and eventually calculate FMI. To examine the longitudinal
association between PA/SB and BMI/FMI as well as to account for repeated measure on these children, mixed
model analysis was employed.

Results: Higher levels of total PA and moderate-to-vigorous PA (MVPA) were associated with lower BMI and FMI
and higher SB with higher BMI and FMI over the five year period. When looking at the age dependent effects,
negative associations of MVPA (βMVPA x age: − 0.05, 95% confidence interval (CI): − 0.09 – -0.01, p = 0.007) and
positive associations of SB (βSB x age: 0.04, 95% CI: 0.02–0.06, p < 0.001) increased with each year of age. In a model
combining these two effects, only SB x age interaction remained significant (βSB x age: 0.04, 95% CI: 0.03–0.06,
p = 0.01). No significant interaction between MVPA and SB could be discerned. Light Physical activity showed no
significant associations with BMI or FMI. When reversing outcome and predictor; higher BMI or FMI showed a
negative association with MVPA and a positive association with SB, but no age dependency.

Conclusions: More time per day in SB was associated with a higher BMI over the course of five years, whereas
higher MVPA had an inverse effect. In a combined model, only effects of higher SB remained significant,
emphasizing the importance of SB in obesity prevention. Present bidirectional associations, where lower body size
was associated with higher PA and lower SB, indicated the need for an integrated approach of activity and weight
control for obesity prevention.

Trial registration: ClinicalTrials.gov Identifier: NCT00338689. Registered: June 19, 2006 (retrospectively registered).
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Introduction
The increase of childhood obesity is a major public
health problem in Europe and other affluent countries
[1–3]. Changes in childhood movement behaviour might
play an important role in childhood obesity risk. High
levels of physical activity (PA) are thought to be protect-
ive against excess body weight [4]. A recent systematic
review showed that sedentary behaviour (SB) is related
to many adverse health indicators, including unfavour-
able body composition [5]. Many of the studies included
in the systematic review used subjective methods for
measuring SB. Subjective methods can be a good esti-
mate for context-specific SB like screen time, however,
device-based methods can provide a more reliable and
valid assessment of overall SB [6].
Overall the associations of PA and SB with obesity are

inconsistent [7–10] and there is a lack of high quality
studies examining the combined effect of device-based
measurements of SB and PA on anthropometric mea-
sures. It remains unclear if positive health effects of
moderate-to-vigorous PA (MVPA) outweigh negative
health effects of high SB. Additionally, the direction of
the effects need further clarification, as reversed causal-
ity could not be ruled out [11]. Evidence for reverse
causality was found in a longitudinal observational ana-
lysis of 785 children, with a follow-up of 200 days and
device-based measurement of PA [12]. In that study, a
higher fat mass index (FMI) at baseline was associated
with lower PA and more SB, whereas baseline movement
behaviour did not predict any subsequent change of
FMI. The results of other prospective observational
studies employing device-based PA measurement found
a bi-directional association [13] or no association in ei-
ther direction [14]. Therefore, there is a need for more
analyses of bi-directional associations.
This study is a secondary analysis of data from the EU

Childhood Obesity Project (CHOP) a multicentre, ran-
domized intervention trial taking place in five European
countries. The current study may help to better under-
stand the interplay of PA and SB in development of ex-
cess weight, by employing device-based measurement of
PA and SB in a long-term cohort study. The primary
aim is to examine associations between PA, light PA
(LPA), MVPA, SB and the development of body mass
index (BMI) and fat mass index (FMI) from 6 to 11 years
of age. The secondary aim is to test for potential
bi-directional effects of associations.

Methods
Study subjects and design
The CHOP study was initially started in 2002 and re-
cruited 1678 infants in Europe during the first 8 weeks
of life. This randomized control trial (clinical trial regis-
try: NCT00338689) investigated the influence of higher

and lower protein content infant formula during the first
year of life on length and weight gain during infancy and
childhood. Besides those two intervention groups the
study also included an observational group of breastfed
children. Its design and outcomes are reported elsewhere
[15, 16]. Data for this analysis were collected during the 6-
(T1), 8- (T2) and 11-year (T3) follow-up examinations.
Sample collection was coordinated by 5 study teams in 8
municipalities in Germany (Nuremberg, Munich), Italy
(Milano), Belgium (Brussels, Liege), Poland (Warsaw) and
Spain (Reus, Tarragona). The trial was approved by ethics
committees in each study centre and informed consent
was obtained by parents. All research was performed in
accordance with the Declaration of Helsinki.

Activity assessment
At each of the three study visits, parents and chil-
dren participated in accelerometer measurements. SB
and PA levels were measured using the SenseWear
Armband 2 (Body Media Inc., Pittsburgh, PA, USA). This
device is worn over the right triceps muscle and incorpo-
rates five sensors: two-axis accelerometer (for movement
patterns and step-count), galvanic skin response, skin
temperature, near body temperature sensor and heat flux
[17]. Recording epoch length were 1min intervals.
Children wore the armband day and night on 3 consecu-
tive days, including one weekday and one weekend day.
Valid days were defined as at least 20 h·day− 1 of recording.
This time frame was proposed by Trost et al. [18] for ac-
celerometer based studies. Observations are defined as
one accelerometer measurement of each child at one of
the three time points. Observations with only one day of
recording were excluded. Two-day observations showed
no differences to 3-day observations and were included in
the analysis. Additionally, only observations with at least
one weekday and one weekend day were included.
Data from armbands were processed with the

Professional InnerView Software 6.1 (Body Media Inc.,
Pittsburgh, PA) already described elsewhere [19]. In-
tensity levels of PA were classified by Metabolic
Equivalents of Task (METs): LPA 1.5–3.9 METs and
MVPA ≥4 METs [20], were total PA included both
LPA and MVPA minutes (i.e. > 1.5 METs). Awake mi-
nutes below 1.5 METs were seen as SB, in accordance
to the cut-off set by the Sedentary Behavior Research
Network [21, 22]. This definition additional includes
the posture component of SB, i.e. sitting and reclined
positions. The SenseWear Armband 2 cannot differ
between standing and sitting and no direct observa-
tions or questionnaire data about activities were avail-
able. However, the armband was validated against a
posture measuring device in children (11–13 year old)
and were found to be accurate in measuring resting
activities [23]. Other validation studies in children
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showed that the SenseWear InnerView algorithms
(version 6.1) used in our study produce valid esti-
mates of energy expenditure for assessing PA and SB
in children [24, 25].

Anthropometry
During each follow up visit weight and height measure-
ments were taken. The same scale (SECA 702, seca
gmbh & co. kg., Hamburg, Germany) for weight and the
same stadiometer (SECA 242, seca gmbh & co. kg.,
Hamburg, Germany) for height were used in each site.
Standard operating procedures relied on the World
Health Organisation’s Growth Reference Study [26].
BMI (weight [kg]/height [m]2) was calculated. Body fat
mass was calculated from bioelectrical impedance
assessed in duplicate with the octopolar Tanita BC-418
(Tanita Corporation, Tokyo, Japan). FMI was calculated
(total body fat mass [kg]/height [m]2). Measurement
with the Tanita BC-418 was validated for use in 7 year
old children from our sample [27]. It was seen that the
device can give precise measurements to estimate chil-
dren’s body composition in an epidemiological setting,
but should be treated with caution at an individual level.

Covariates
Gender, intervention group (higher and lower protein in-
fant formula) or breasted group, wear time of device per
day and study country data were available for all chil-
dren. Additional known risk factors for childhood obes-
ity with potential effect on PA and SB were available.
This includes birth weight of the child, which was mea-
sured by study nurses right after birth or retrieved from
medical records. Caloric intake (kcal) was assessed at
each time point. While 3-day food protocols were used
at T1 and T2, a food frequency questionnaire was used
at T3. To facilitate the analysis of this data, tertiles were
formed, which represent low, mid and high caloric in-
take at each time point. At 11 years puberty status was
assessed with the ‘Pubertal Development Scale’ and cate-
gorised as ‘pre-pubertal’ and ‘pubertal’ [28].

Data analyses
Data are reported as mean with standard deviation (SD)
for continuous variables and as number (n) and percent-
age (%) for categorical variables. Mixed models with a
random individual intercept and random slope over age
were used with either BMI or FMI at T1, T2 and T3 as
time variant outcomes. Primarily, the effects of SB, total
PA, MVPA and LPA on respective outcomes were mod-
elled separately. We scaled all activities to 60min/day to
ensure meaningful effect sizes and make results of each
model comparable. Gender, intervention group and
study country were included in all models and additional
covariates (birthweight and caloric intake) were added

separately and kept for all following models upon im-
proving overall model fit. In a second step, age interac-
tions for each significant main predictors (PA x age,
MVPA x age, LPA x age and SB x age) were added, to
test for potential age dependent effects. As a last step,
MVPA and SB (and their respective interaction with
age) were jointly included in one model to test mutual
adjusted main effects (Model 1) and age dependent asso-
ciations (Model 2). To avoid collinearity, we looked at
correlations between total PA, SB and MVPA at each
time point. Additionally, interaction between SB and
MVPA was tested (Model 3). Age was centred to the
lowest age of participants, 5.89 years. To test if associa-
tions in a mutual adjusted model are moderated by ei-
ther SB or MVPA, models were replicated only in
children with high MVPA or high SB. High MVPA and
SB was defined by the highest tertile of the average time
in MVPA and SB over the 5 year period (all 3 measure-
ment points). To examine possible bi-directional effects,
mixed effects model outcomes (FMI and BMI) and main
predictors (SB and MVPA) were reversed and adjusted
for age, age2 (as both SB and MVPA showed a quadratic
development with age), gender and country. Interaction
of FMI and BMI with age (BMI x age and FMI x age)
and other covariates were tested in both models. In FMI
and MVPA models, outcomes were log transformed for
analysis, due to skewness of residuals. For interpretation,
log transformed values were later back transformed. All
models were optimized by maximum likelihood estima-
tion and likelihood-ratio tests were used to test for the
best model fit.
To assess the influence of missing data, we ran two

sensitivity analyses, one with the sample restricted to
those with 3 days of accelerometer recording per obser-
vation and one with the sample of children with two or
more time points. Models were calculated in R using the
‘lme4’ package. Significance was assumed at an error
probability < 0.05.

Results
Due to loss to follow-up, the number of children attend-
ing follow up visits decreased from 661 children at T1 to
589 children at T2 and 583 children at T3. Participation
rate of accelerometer measurement increased from
63.1% at T1 (417 of 661 children) to 70.5% at T2 (415 of
589 children) and 72.4% at T3 (422 of 583 children). In
total, 600 children with complete data on BMI and ac-
celerometer data were included in the analysis, resulting
in 1254 observations (Table 1); 430 children had at least
two measurements. FMI was missing in 47 observations,
resulting in 1207 valid observations of 586 children.
There were no differences in anthropometric data be-
tween children, who participated in accelerometer meas-
urement (n = 600) and those who did not (n = 126).
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Table 2 shows the effects of SB, total PA, MVPA and
LPA in a mixed model analysis with either BMI or FMI
as outcome. In summary, more time spent per day in SB
was associated with a 0.13 kg/m2 higher BMI (p < 0.001)
and 0.05 kg/m2 higher FMI (p < 0.001), whereas PA
levels showed inverse associations. Each additional
hour in total PA was associated with a − 0.11 kg/m2

reduced BMI (p < 0.001) and a − 0.03 kg/m2 reduced
FMI (p = 0.001). Similar results were seen for MVPA
with BMI and FMI with slightly lager effect sizes. Time in
LPA showed no significant results. Adding caloric intake
and puberty status showed no improvement of model fit.
Birthweight improved model fit of BMI models and thus
was included in all BMI outcome models.
Table 3 shows the age dependent associations between

time in PA levels, SB and anthropometric measures. An
additional 60 min/day of MVPA were associated with an
0.05 kg/m2 lower BMI per year (p = 0.006) and 60 min
more SB per day were associated with a 0.04 kg/m2

higher BMI per year (p < 0.001). Interaction between

total PA and age was not significant (p = 0.080). Associ-
ation of total PA, MVPA and FMI did not significantly
differ with age.
Total PA and SB were highly correlated at all time

points (r > 0.75) and were not included in a combined
model. As correlation between MVPA and SB was low
to medium at each time point (T1: r = − 0.45, p < 0.001;
T2: r = − 0.45, p < 0.001; T3: r = − 0.55, p < 0.001) we in-
cluded both in a combined model. Table 4 shows the re-
sults of this joint analysis. Model 1 shows the main
effects. Both MVPA and SB remained significant with
similar effects sizes in opposite directions (βMVPA:
-0.10, 95% CI: -0.17 – -0.02, p = 0.014; βSB: 0.09, 95%
CI: 0.03–0.16, p = 0.013). When including age interac-
tions in model 2, only SB x age remained significant
(βSB: 0.01, 95% CI: -0.08 – 0.10, p = 0.824; βSB x age:
0.03, 95% CI: 0.01–0.05, p = 0.012). Testing for an inter-
action between SB and MVPA showed a negative associ-
ation with BMI, but was not significant (βSB x MVPA: -0.02,
95% CI: -0.06 – 0.02, p = 0.275; Table 4, Model 3). Analysis
of effects of SB and SB age interaction in a sample of chil-
dren with high MVPA can be found in Additional file 1:
Table S1. In summary moderating effects of MVPA can be
ruled out, even though significance for the SB x age inter-
actions were lost (βSB x age (high MVPA): 0.03, 95% CI: -0.00
– 0.06, p = 0.074). This was probably caused by loss of
power (n = 200) due to splitting the sample in tertiles.
When reversing outcome and predictor, higher FMI and

BMI were associated with higher levels of SB (βBMI: 6.26,
95% CI: 4.27–8.25, p < 0.001; βFMI: 12.05, 95% CI: 8.64–
15.47, p < 0.001), but no significant age interactions (BMI x
age, FMI x age) were found. Similar results were seen for
MVPA outcome models (βBMI: -7.61, 95% CI: -8.07 – -3.04,
p < 0.001; βFMI: -9.09, 95% CI: -11.95 – -7.14, p < 0.001),
with no significant age interactions.
Sensitivity analysis on the per-protocol subsample with

3 days of recording (1090 observations, 566 children)
was performed with all models. Significance did not
change in all BMI and FMI models and only slight
changes in estimates were seen. Further analyses were
repeated with children who participated at least 2 time
points (1084 observations, 430 children) and similar re-
sults were achieved with only slight changes of estimates
and associations remaining significant.

Discussion
Main study findings and implications
In this study, more time spent in SB was consistently as-
sociated with higher BMI. In a mutually-adjusted model,
effects sizes of SB and MVPA were of equal magnitude
but in opposite directions. When testing age interac-
tions, only associations between SB and BMI remained
significant. Further analysis showed that the positive as-
sociation between SB and BMI increased with age,

Table 1 Characteristics and activity levels of participants for
each time point

6 years 8 years 11 years

n 417 415 422

Male n (%) 184 (44.1%) 199 (48.0%) 191 (45.3%)

Age, years mean (SD) 6.1 (0.1) 8.1 (0.1) 11.2 (0.2)

Anthropometry

BMI mean (SD) 15.9 (2.0) 16.8 (2.6) 18.7 (3.3)

FMI mean (SD) 3.4 (1.1) 3.9 (1.6) 4.5 (2.0)

Activity levels in minutes per day

Sedentary mean (SD) 299.0 (79.6) 332.0 (79.9) 406.0 (96.7)

PA mean (SD) 532.9 (82.3) 519.8 (80.4) 457.6 (100.6)

Light PA mean (SD) 418.3 (69.7) 397.8 (71.8) 373.7 (81.1)

MVPA mean (SD) 114.6 (59.5) 122.1 (72.3) 83.9 (53.6)

Abbreviations: BMI Body mass index, FMI Fat mass index, SB Sedentary
behaviour, PA Physical activity, MVPA Moderate-to-vigorous physical activity

Table 2 Mixed model estimates of the association between SB
and PA levels and anthropometric measures

BMI FMI

β 95% CI β 95% CI

SB 0.13 0.07–0.19 *** 0.05 0.03–0.06 ***

Total PA −0.11 − 0.17 – − 0.05 *** − 0.03 − 0.06 – − 0.01 **

MVPA − 0.14 −0.21 – − 0.08 *** − 0.05 −0.08 – − 0.03 ***

LPA 0.00 −0.07 – 0.06 0.00 0.03 – −0.03

Abbreviations: SB Sedentary behaviour per 60 min/day, Total PA Total physical
activity per 60 min/day, MVPA Moderate-to-vigorous PA per 60 min/day, LPA
Light PA in 60min/day, BMI Body mass index (kg/m2), FMI Fat mass index(kg/m2),
CI Confidence interval
Data were analysed with the use of 8 separate mixed models, adjusted for
covariates intervention group, gender, wear time and country
*P < 0.05, **P < 0.01, ***P < 0.001
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whereas BMI showed a stable association with SB over
time, regardless of age. Overall, our results suggest that
SB may play an important role in childhood overweight
and obesity development.
The study confirms emerging evidence of a negative

association between SB in childhood (device-based mea-
surements) with BMI, even when concurrent levels of
MVPA are considered. A study by Mitchell et al. [29]
also used device-based measurement methods in 789
children between 9 and 15 years of age. Over the ob-
served age period, SB was associated with an increasing
BMI in children on the 50th, 75th and 90th BMI

percentiles, when applying quantile regression. Another
recent study by Mann et al. [30] employed bivariate lin-
ear spline models to test the independent effect of SB on
adiposity markers in children 7 to 15 years of age, after
adjustment for MVPA. Increasing SB was associated
with an annual increased BMI (0.07 kg/m2, 95% CI:
0.06–0.09) and annual increased FMI (0.14 kg/m2, 95%
CI: 0.10–0.18). However, the reported associations be-
tween SB and obesity indices are not uniform. Another
international cross-sectional study in a sample of 6539
children examined the relationship between MVPA, SB
and obesity. It found that only MVPA, but not SB, was

Table 3 Age dependent associations of time spent in sedentary behaviour, total and moderate-to-vigorous physical activity and
anthropometric measures

SB model PA model MVPA model

Outcome: Body mass index

β 95% CI β 95% CI β 95% CI

Age 0.26 0.13–0.39 *** 0.66 0.48–0.84 *** 0.60 0.53–0.67 ***

SB 0.04 −0.04 – 0.11

SB x Age 0.04 0.02–0.06 ***

Total PA −0.06 −0.14 – 0.01

Total PA x Age −0.02 −0.04 – 0.00

MVPA −0.04 −0.14 – 0.05

MVPA x Age −0.05 −0.09 – − 0.01 **

Outcome: Fat mass index

Age 0.10 0.03–0.23 *** 0.08 0.02–0.21 ** 0.11 0.06–0.21 ***

SB 0.05 0.02–0.09 **

SB x Age 0.00 0.00–0.00

Total PA −0.05 −0.05 – 0.00 **

Total PA x Age 0.00 0.00–0.00

MVPA −0.03 − 0.05 – 0.00

MVPA x Age 0.00 −0.03 – 0.00

Abbreviations: SB sedentary behaviour per 60min/day, Total PA total physical activity per 60 min/day, MVPA moderate to vigorous PA per 60 min/day,
CI confidence interval *P < 0.05, **P < 0.01, ***P < 0.001
Data were analysed with the use of 3 separate mixed models, adjusted for covariates gender, intervention group, wear time and study country; Age was centred
to the lowest age of any participant (5.89 years).

Table 4 Combined main effects (Model 1) and age dependent effects (Model 2) and interaction (Model 3) of time spent in
sedentary behaviour and moderate-to-vigorous physical activity on body mass index

Model 1 Model 2 Model 3

β 95% CI β 95% CI β 95% CI

Age 0.49 0.45–0.54 *** 0.33 0.13–0.52 ** 0.49 0.45–0.54 ***

SB 0.09 0.03–0.16 ** 0.01 −0.08 – 0.10 0.12 0.03–0.21 *

MVPA −0.10 −0.17 – − 0.02 * −0.06 − 0.17 – 0.05 0.01 − 0.20 – 0.22

SB x Age 0.03 0.01–0.06 *

MVPA x Age −0.02 −0.06 – 0.03

SB x MVPA −0.02 −0.06 – 0.02

Abbreviations: SB sedentary behaviour per 60min/day, MVPA moderate to vigorous PA per 60 min/day, CI confidence interval
Data were analysed with the use of 3 separate mixed models, adjusted for covariates gender, intervention group, wear time and study country; age was centred
to the lowest age of any participant (5.89 years)
*P < 0.05, **P < 0.01, ***P < 0.001
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significantly associated with BMI in a mutually adjusted
model [31]. Thus, the interplay of higher SB, low PA and
obesity needs further clarification. Long-term cohort
studies in childhood (with multiple measurement points)
would help to better understand the impact of levels and
changes of PA and SB on later obesity risk.
In the present study, cross-sectional associations be-

tween movement behaviour and BMI as well as FMI
were found, but no age interactions between movement
behaviour and FMI were found. Basterfield et al. [32] re-
ported that proxies for body weight (like BMI) are infer-
ior to direct measures of body composition, when
looking at adiposity outcomes. However, body fat mass
from impedance measurements give fairly good body
composition measures but lack precision [33], which
might explain the lack of significant longitudinal effects
of PA on FMI in our study. Additionally, effects sizes of
associations with BMI in our study and other studies
were rather small [12, 30, 34]. This brings to question,
whether PA promotion is an adequate or effective tool
for obesity prevention. Intervention studies are needed
to clarify whether a substantial increase in habitual PA
and a reduction of SB can result in a meaningful change
of obesity markers in children.
In our study, results of an inverse analysis showed that

higher BMI or FMI are associated with lower levels of
MVPA and higher levels of SB, supporting the hypoth-
esis of a bi-directional association. We also showed an
age-dependent association between higher SB and higher
BMI; higher BMI showed a stable association with
higher SB over time. These results are similar to findings
of a study from Marques et al. [9] where in a sample of
10- to 11-year old children a bi-directional association
was only seen on cross-sectional, but not prospective
analysis. These ambiguous results, taken together with
inconsistent results from other studies [12–14], do not
yet allow a firm conclusion about the direction of effects.
Our study indicates that a consistently increased SB re-
sults in a higher BMI at later ages, whereas a consist-
ently high BMI seems not to increase SB levels.
Our results stress the importance of reducing excess

time in SB for the prevention of childhood obesity.
Nevertheless, the practical application of our findings is
difficult. In order to reduce SB, time spent in SB needs
to be replaced by a form of PA, either LPA or MVPA.
LPA comprises the majority of PA, about 80% of total
PA measured in our cohort. Due to its light intensity,
LPA is an “easy” substitute to SB. Effects of LPA on an-
thropometric measures range from showing a negative
association with fat mass [35, 36], to no relationship, a
finding reported in our study as well as other studies
[37]. Thus, increasing LPA as a preventative measure for
obesity is still unclear. Furthermore, interventions trying
to increase children’s PA and MVPA lack convincing

results [38] and show variable success rates for
childhood obesity prevention [39, 40]. Additionally,
when looking at effect sizes from our results and others
[30, 37], even with substantial increases in MVPA, only
small reductions of BMI could be achieved.

Strengths and limitations
A strength of our study includes the longitudinal multi-
centre design of children born after the year 2000. Other
strengths include device-based measurement of activity
at each time point with high quality measurements of
outcomes using standardised methods, with adjustment
for various potential confounders.
In terms of generalizability of the findings, study par-

ticipants were from Western European countries and
mainly from metropolitan areas, making the results of
this study generalizable to children with similar demo-
graphics. This was a secondary analysis of a randomized
intervention trial whose a-priori hypothesis was the ef-
fect of varying protein content in infant formula on
obesity risk. The intervention (high and low protein in-
fant formula) showed an effect on BMI until 6 years of
age [16], which might have influence the results. How-
ever, in this secondary analysis of childhood movement
behaviour, the high and low protein intervention did not
directly affect SB or PA levels. Adjustment for the inter-
vention groups improved the overall fit of our statistical
models. No confounding effects or interactions of early
life intervention groups were observed.
PA and SB were measured at each of the three time

points, which allowed for change in activity levels to be
accounted for, over the observed time period, and allowed
for modelling potential effects on anthropometric out-
comes. Final models included age interactions for PA as
well as SB, an aspect which other published studies are
lacking [14, 34]. Accounting for possible age effects is of
unique importance, since the period between childhood
and adolescence is characterized by various changes in PA
and SB [41]. The generation of children born after the year
2000 generally have a different lifestyle, compared to older
generations, which is largely influenced by digitization of
extracurricular activities. For example, universal access to
telecommunication via mobile phones, use of smart
phones, video games, time spent watching television or
other ‘screen time’ activities, which influences PA and SB
is significantly higher compared to older generations.
The results of our study are based on a European

birth cohort and employed high quality measurement
methods, which makes results generalizable to
European children. However, some methodological fac-
tors, together with the relatively small sample size due
to attrition, limit the external validity of our study to
some extent.
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Although device-based measurement of PA and SB
can be a more reliable and more valid type of assessment
of overall daily SB compared to self-report [6], it is diffi-
cult to compare results of accelerometer-based studies
to other studies due to various differences. These differ-
ences include: cut-off values for intensities, epoch’s
lengths, number of days measured and the various de-
vices used for PA and SB measurement. The SenseWear
armband provides many advantages over other instru-
ments, since it is a combination of a conventional accel-
erometer but with additional body sensors. Nevertheless,
it is rarely used in PA-related science. This makes our
study difficult to directly compare to other studies which
did not sure the SenseWear armband.
Another limitation of our measurement is the relatively

short measurement period (3 days). Additionally, there
was a lack of a wear-time protocol, which might have
biased the activity measurement results. However, the
identification of wear-time and non-wear-time was not an
issue, as the SenseWear armband automatically detects
when the device is taken off, due to its detection of body
heat. Due to the detection of body heat, the advantage of
measuring SB with the SenseWear device is that the num-
ber for minutes in SB is more reliably measures than with
other devices. Most other accelerometer-based studies ap-
proximate non-wear-time by consecutive zeros in device
outputs (non-wear criteria ranging from 20min of con-
secutive zeros to 60min with and without allowance of in-
terruptions). Problems arose when identifying time spent
sleeping. With an average of 7 h of sleep per day, daily
sleeping time classified by the Sensewear, was relatively
short. After adding lying time to time spent sleeping, a
more realistic daily average was calculated, at about 9.2 h
per day. Potential lying time or time spent in reclined
positions during the day (which is normally defined as
SB [22]) was excluded, resulting in a slight underesti-
mation of SB. Additionally, validation studies in chil-
dren found inaccurate measures of energy expenditure
in children when using armbands, which subsequently
lead to a misclassification of activities [42–44]. While
the algorithm of the armband and its software has im-
proved over the years, the latest versions were not
available for our data [45].

Conclusion
In summary, children that spent a longer time in SB had
a higher BMI, even when adjusting for time spent in
MVPA. This observation supports inactivity as an inde-
pendent risk factor for childhood obesity. On the other
hand, a shorter time spent in MVPA predicted a reduced
BMI over a 5-year period. Effect sizes were rather small,
however, and were no longer significant after adjustment
for SB. In future interventions for obesity prevention,
the focus shouldn’t solely be on increasing high intensity

PA, but should also emphasise reducing time spent in
SB. Although LPA showed no associations with BMI,
promotion of LPA to reduce SB might be a more
realistic target than promotion of MVPA alone. Lack of
results regarding adiposity measures, like FMI, demon-
strates the need for more studies examining the com-
bined effects of SB and PA on obesity and adiposity.

Additional file

Additional file 1: Table S1. Age dependent associations of time spent
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