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Abstract 11 

The homeostatic regulation of sleep manifests as a relative constancy of its total daily amount, and the 12 

compensation of sleep loss by an increase in its subsequent duration and intensity. Theoretical 13 

descriptions of this phenomenon define “Process S”, a variable with dynamics dependent only on sleep-14 

wake history and whose levels are reflected in EEG slow wave activity. While numerous hypotheses 15 

have been advanced regarding the substrate and role of Process S, such as synaptic or energy 16 

homeostasis, it remains unclear whether these dynamics are fundamentally driven by a need to 17 

homeostatically regulate specific variables, or by an unknown innate process which enforces that a 18 

certain daily sleep quota is obtained. Sleep is typically defined based on brain-derived criteria, such as 19 

behaviour or EEG power spectra, and variation in brain activity during wakefulness has been linked to 20 

variation in Process S accumulation. We therefore hypothesised that Process S dynamics might be 21 

related to the quantity and characteristics of spiking activity in cortical neurones. Specifically, we 22 

assumed that Process S changes as a function of the deviation of neuronal firing rate from a locally 23 

defined set point. To relate these dynamics explicitly to patterns of spiking activity, we incorporated the 24 

occurrence of network spiking off periods as both the defining measure of Process S and as the 25 

determinant of its rate of decay. This approach was able to describe the time course of Process S, 26 

crucially without explicit knowledge of the animal’s global sleep-wake state. This work provides a 27 

conceptual advance in our understanding of the substrate of sleep homeostasis and provides important 28 

links between local and global aspects of sleep regulation.  29 
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Introduction 30 

According to traditional theory, the need for sleep accumulates during wakefulness and dissipates 31 

during sleep. Despite decades of research, it is still uncertain precisely which biological variables form 32 

the substrate of sleep need, what characteristics of wake challenge their stability and how sleep 33 

mediates the restoration of homeostasis. More fundamentally, it remains unclear whether homeostatic 34 

sleep regulation reflects an active process, dynamically shaping daily sleep architecture in response to 35 

a physiological need for the homeostatic regulation of specific variables, or whether it corresponds 36 

instead to an unknown innate process which ensures only that a certain daily quota of sleep is obtained.  37 

The earliest theories of sleep homeostasis supposed the existence of a single variable, termed Process 38 

S, which describes sleep drive at the global level (Borbély, 1982). This variable is assumed to always 39 

increase during wakefulness, independently of its content, and to decline during sleep. It is widely 40 

acknowledged that homeostatic sleep pressure is reflected in the levels of slow wave activity (SWA, 0.5-41 

4 Hz spectral power) observable during NREM sleep in neurophysiological field potentials, such as 42 

electroencephalogram (EEG) or local field potential (LFP).  43 

Current views on the origin of sleep homeostasis emphasise its local and activity-dependent component 44 

(Krueger & Tononi, 2011; Rattenborg et al., 2012; Tononi & Cirelli, 2014). It was shown that SWA is far 45 

from uniform across the brain, and that the behavioural and cognitive content of waking, beyond merely 46 

its duration, influences subsequent SWA magnitude (Huber et al., 2004; Vyazovskiy & Tobler, 2008; 47 

Rector et al., 2009; Murphy et al. 2011; Fisher et al., 2016). Indeed, many candidate mechanisms for the 48 

substrate of sleep homeostasis implicate processes occurring at a cellular and network level. These 49 

include the maintenance of cellular homeostasis (Reimund 1994; Mackiewicz et al., 2007; Vyazovskiy & 50 

Harris, 2013; Bellesi et al., 2016), the replenishment of energy stores (Scharf et al., 2008), the influence 51 

of sleep-related signalling molecules such as adenosine or cytokines (Krueger et al., 2008), and the 52 

regulation of imbalanced synaptic strength (Tononi & Cirelli 2003; Vyazovskiy et al., 2008; Liu et al., 53 

2010). Although the equivalence of these processes with Process S has not been conclusively 54 

demonstrated (Frank & Heller, 2019), the existing evidence supports the relevance of sleep-wake 55 

dependent differences in neuronal activity for understanding the regulation of sleep.  56 
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Cortical neuronal activity is generally higher during waking compared to sleep (Vyazovskiy et al., 2009; 57 

Hengen et al., 2016; McKillop et al., 2018). Lower spike firing typical of sleep is due, at least in part, to 58 

regular periods of widespread synchronous network silence, termed off periods, intruding on ongoing 59 

activity (Steriade et al., 1993a; Steriade et al., 2001; Sanchez-Vives & Mattia, 2014). Importantly, off 60 

periods in neural populations are thought to underpin slow wave dynamics at the level of the field 61 

potential (Steriade et al., 1993b; Massimini et al., 2004; Buzsáki et al., 2012) and their properties reflect 62 

homeostatic sleep need (Vyazovskiy et al., 2009; McKillop et al., 2018; Saberi-Moghadam et al., 2018).  63 

Neuronal firing rates typically fluctuate around a homeostatic set point, which is characteristic for 64 

individual cells and variable across the population (Turrigiano, 2011; Hengen et al., 2013; O’Leary et al., 65 

2014; Styr et al., 2019). The homeostatic regulation of firing rates may depend on processes occurring 66 

specifically in sleep and wakefulness (Grosmark et al., 2012; Hengen et al, 2016) and evidence suggests 67 

that firing rates change as a function of time spent awake, conditional on wake’s behavioural quality 68 

(Vyazovskiy et al., 2009; Fisher et al., 2016). Additionally, the magnitude and direction of state-69 

dependent changes in firing rate differs between neurons, depending on brain region and their 70 

individual firing rate set point (Miyawaki & Diba 2016; Watson et al., 2016; Miyawaki et al., 2019). Firing 71 

rate homeostasis may occur above the individual cell level (Slomowitz et al., 2015), as network level 72 

mechanisms dependent on the NREM sleep slow oscillation constrain the distribution of population 73 

firing rates within an optimal functional range (Levenstein et al., 2017).   74 

Overall, evidence suggests that the homeostatic regulation of sleep and of neuronal firing rates may be 75 

intrinsically related, however, this functional link remains incompletely defined. Mathematical 76 

modelling approaches present an opportunity to begin addressing this problem. To this end, we develop 77 

quantitative models of Process S, describing its temporal dynamics on a local level in terms of spiking 78 

activity and off periods, instead of global sleep-wake history. We find that the magnitude of the deviation 79 

of multi-unit firing rate from a locally specified set point carries sufficient information to account for 80 

empirically derived patterns of SWA. We then introduce the total time spent in off periods as an 81 

alternative measure for Process S with more local origins than SWA, and account for the time course of 82 

this variable in terms of two opponent processes dependent on spiking rate and off period occurrence.  83 
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Materials & Methods 84 

Animals, surgery & husbandry 85 

Chronic electrophysiological recordings from six male young adult (4.8 – 5.7 months old, mean 5.2 86 

months) C57BL/6J mice were analysed here. This data set is a subset of that used in a previous study 87 

(McKillop et al., 2018). The animals were surgically implanted with electrodes for the continuous 88 

recording of electroencephalography, electromyography and cortical neuronal activity. EEG screw 89 

electrodes (Fine Science Tools) were inserted into the skull unilaterally above the frontal cortex 90 

(primary motor area: anteroposterior 2mm, mediolateral 2mm) and bilaterally above the occipital 91 

(primary visual area: anteroposterior 3.5mm, mediolateral 2.5mm) cortex. One occipital screw 92 

(contralateral to the frontal screw) served as the ground electrode and an additional screw located 93 

above the cerebellum served as the reference. A pair of stainless steel wires were inserted into nuchal 94 

muscle for the recording of electromyogram (EMG). A polyimide-insulated tungsten microwire array 95 

(Tucker-Davis Technologies) was implanted through a craniotomy window into the frontal cortex 96 

(primary motor area: anteroposterior 2mm, mediolateral -2mm), contralateral to the EEG screw. The 97 

array comprised 16 wire channels of 33μm diameter, arranged in 2 rows of 8, with columnar separation 98 

of 250μm, row separation of 375μm and tip angle of 45 degrees. One row of wires was 250μm longer 99 

than the other to account for cortical curvature. A silicone gel (KwikSil, World Precision Instruments) 100 

was used to seal the craniotomy, and dental acrylic cement used to stabilise all the implanted electrodes. 101 

Surgeries were performed under isoflurane anaesthesia (4% induction, 1-2% maintenance). Analgesics 102 

were given immediately before surgery (1-2 mg/kg metacam and 0.08 mg/kg vetergesic, subcutaneous 103 

injection) and for at least 3 days during recovery following surgery (1-2 mg/kg metacam, oral). In 104 

addition, immunosuppressant (0.2 mg/kg dexamethasone) was given the day before surgery (oral), 105 

immediately before surgery (subcutaneous injection) and during recovery for at least 2 days (oral). 106 

Animal wellbeing was closely monitored during recovery until a stable return to baseline was observed 107 

for at least 2 days. All procedures were performed under a UK Home Office Project License and 108 

conformed to the Animal (Scientific Procedures) Act 1986.  109 
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Mice were housed individually following surgery. Two weeks after surgery, mice were transferred, still 110 

individually, to custom made Plexiglas cages (20.3x32x35 cm), containing a running wheel (Campden 111 

Instruments), which were placed within ventilated sound-attenuated Faraday chambers (Campden 112 

Instruments). The animals were exposed to a standard 12hr-12hr light dark cycle, with food and water 113 

available ad libitum. Mice were allowed to habituate to the recording chamber and to attachment of the 114 

recording cables for a minimum of three days before recordings began. 115 

Experimental design 116 

All the data analysed here were collected over two days of experimental recording. The first day served 117 

as a baseline, while the animals were completely undisturbed. A sleep deprivation protocol was 118 

enforced at light onset on the second day, immediately after the baseline day, and lasted 6 hours. Sleep 119 

deprivation was performed using novel object presentation. During this period, experimenters 120 

constantly monitored both the behaviour and ongoing neurophysiological recordings of the mice. As 121 

soon as any animal showed signs of sleepiness (such as stillness with eyes closed, or slow waves in the 122 

EEG), novel objects were introduced to the cage (such as cardboard, colourful plastic and tissue paper) 123 

in order to encourage wakefulness. During the 6-hr sleep deprivation period, these mice slept 6.0 ± 3.1 124 

minutes (mean ± sd) only. 125 

Data collection & pre-processing 126 

Data acquisition was performed using a Multichannel Neurophysiology Recording System (Tucker Davis 127 

Technologies). EEG, EMG and microwire array LFP signals were filtered (0.1-100 Hz), amplified (PZ5 128 

NeuroDigitizer preamplifier, TDT) and stored locally (256.9 Hz sampling rate). Custom written Matlab 129 

scripts were used for signal conversion and data pre-processing. The LFP, EMG and EEG signals were 130 

filtered again offline between 0.5 - 100 Hz (4th order Type II Chebyshev filter) and resampled at 256 Hz.  131 

Extracellular multi-unit spiking was additionally obtained from each microwire array channel, recorded 132 

at 25 kHz and filtered 300 Hz – 5 kHz. An amplitude threshold (at least 2 standard deviations, minimum 133 

-25μV) was used to identify putative spikes. Individual spikes were saved as a voltage waveform 134 

comprising 46 data samples (0.48ms before to 1.36ms after threshold crossing) plus a time stamp of 135 
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occurrence. Spiking activity from each channel was cleaned offline for artefacts using the Matlab spike 136 

sorting software Wave_clus (Quiroga et al., 2004). All putative single unit clusters identified by the 137 

algorithm from the same channel were merged, excluding only noise spikes. MUA firing rate for each 138 

channel was calculated in 4-second epochs as the mean number of spikes per second.  139 

Vigilance states were scored manually by visual inspection with a 4-second epoch resolution (using the 140 

software SleepSign, Kissei Comtec). Vigilance states were classified as waking (low amplitude but high 141 

frequency EEG with high or phasic EMG activity), NREM sleep (presence of EEG slow waves, a signal of 142 

a high amplitude and low frequency, and a low level of EMG activity) or REM sleep (low amplitude, high 143 

frequency EEG, and low EMG). For this analysis, over the six mice, a total of 78 out of 96 channels could 144 

be analysed (minimum of 10 out of 16 from one mouse). The excluded channels were characterised by 145 

an unstable MUA firing rate, including a large drift in firing which was persistent and sleep-wake state 146 

independent. For the off occupancy models described below, 75 out of 96 channels were used; a further 147 

3 channels had to be excluded because multi-unit firing rates, while stable, were too low to yield a 148 

reasonable estimate of the occurrence of off periods. 149 

Slow wave activity 150 

Each EEG and LFP signal was processed to extract a measure of the SWA. Signal segments were extracted 151 

within windows of 4-second duration and 1-second spacing (giving 3-second overlap), and Hann 152 

tapered. A Fourier Transform was applied to each signal segment and the mean power in the slow wave 153 

range (frequencies from 0.5 to 4 Hz) was calculated. This measure was smoothed by finding the median 154 

over five temporally adjacent overlapping segments, yielding a SWA measurement for each sequential 155 

4 second epoch. For normalisation within each channel, SWA values were then expressed as a 156 

percentage of the mean SWA calculated over all artefact-free epochs scored as NREM sleep in the 157 

baseline 24 hours. The median value of the SWA during each continuous NREM sleep episode served as 158 

an estimate of Process S. NREM sleep episodes shorter than 1 minute (15 epochs) were excluded, as in 159 

a previous study modelling Process S in mice (Guillaumin et al., 2018). Brief awakenings (short arousals 160 

accompanied by movement, lasting ≤20 seconds) were excluded from analysis but were not considered 161 

to be the ending of a NREM sleep episode.  162 
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Off periods detection and definition of “off occupancy” 163 

One aim of this study was to develop measures of Process S independent of the EEG, and so we focused 164 

on off periods which are the neuronal counterpart of slow waves. Off periods refer to brief interruptions 165 

of spiking activity which occur synchronously across many recording sites, last approximately 70-166 

100ms (Vyazovskiy et al., 2009), and are coincident with the positive deflection of LFP slow waves 167 

(McKillop et al., 2018). In these studies, off periods were detected by pooling spikes over all channels 168 

and identifying inter-spike intervals (ISIs) that exceed some long duration threshold. However, pooling 169 

spikes removes the ability to compare local differences, and if an off period does not involve all channels 170 

it will go undetected. To overcome this limitation, off periods were defined separately for each channel 171 

by looking at the co-occurrence of local slow waves and spiking silence.  172 

There is no universally accepted method for slow wave detection, and a recent comparison suggests that 173 

a simple amplitude threshold based approach, while in theory adequate, may underperform due to 174 

channel differences in overall LFP amplitude and large amplitude fluctuations of higher frequencies 175 

(Bukhtiyarova et al., 2019). For this reason, the LFP was first filtered from 0.5 to 6 Hz (4th order 176 

Butterworth filter), and a threshold defined individually for each channel, using the median plus one 177 

median absolute deviation of the peak amplitude of all positive half waves (including all vigilances 178 

states, but excluding epochs with artefacts). All positive half waves with peak amplitude above threshold 179 

were then considered to be slow waves.  180 

Next, for each LFP slow wave, the multi-unit spike preceding and following the slow wave peak was 181 

identified and the corresponding ISI determined. The distribution of these ISIs which coincide with slow 182 

waves was often (in 64 out of 75 channels) unambiguously bimodal, allowing the threshold to be 183 

selected at the local minimum between these two modes. When there was no evidence of bimodality a 184 

value of 120ms was chosen, corresponding to the maximum value selected for the other channels. All 185 

inter-spike intervals aligned to slow wave peaks with duration exceeding the threshold were considered 186 

off periods. Finally, the metric termed off occupancy was defined, for each 4-second epoch, as the 187 

percentage of time spent in a detected off period during that epoch. Just as with SWA (see above), the 188 

median value of off occupancy over NREM sleep episodes was used to represent the level of Process S.  189 
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Model fitting and parameter optimisation 190 

Three theoretical models were used to describe the time course of Process S (see Results). The model 191 

equations were solved using a discrete time approximation, iteratively updating the value of modelled 192 

Process S in time steps of 4 seconds (Euler method). The fitting of various models to a particular channel 193 

of data is equivalent to finding the optimal choice of parameters to achieve the closest match between 194 

simulation and empirical SWA/off occupancy. In all models, the initial value of Process S was included 195 

as an additional free parameter. The selection of parameter values for model fitting was achieved using 196 

a semi-automated approach. First, an algorithmic methodology was established, which depends 197 

primarily on the definition of an error metric to assess fit quality between modelled Process S and 198 

empirical data. For each animal, NREM sleep episodes were identified with a duration of at least 1 199 

minute. For each NREM sleep episode (n=1:N), the median empirical SWA/off occupancy (Xn), and 200 

similarly the median modelled value of Process S (Sn), were computed. The error metric (E) is defined 201 

as the sum of absolute differences between model and data, weighted by the relative episode duration 202 

(wn). This weight was defined as the absolute duration (dn) of the NREM sleep episode in seconds, 203 

normalised by the total duration of all episodes.  204 

𝐸 =  ∑ 𝑤𝑛. |𝑋𝑛 − 𝑆𝑛|

𝑛=1:𝑁

 205 

𝑤𝑛 = 𝑑𝑛/ ∑ 𝑑𝑖

𝑖=1:𝑁

 206 

Algorithmic parameter optimisation was performed separately for each channel, aiming to minimise 207 

this error metric. This was achieved using the Matlab function fminsearch, which uses the Nelder-Mead 208 

simplex algorithm (Lagarias et al., 1998). Many parameter combinations produce very similar dynamics. 209 

Therefore, there exist many possible optimal (or near-optimal) parameter regimes and so algorithmic 210 

optimisation is sensitive to initial values. For this reason, initial values for the parameters were first set 211 

manually, aided with the use of a custom-made Matlab graphical user interface. Manually selected values 212 

were then fed into the algorithmic optimisation. Final parameter values were visually inspected to 213 

ensure that this optimisation produced an improvement of fit.   214 
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The final fit quality of a model to the data was expressed as the median percent error (E*). This is 215 

calculated by finding the absolute difference between median empirical (Xn) and simulated (Sn) SWA/off 216 

occupancy for each NREM sleep episode, expressed as a percentage of the empirical SWA/off occupancy 217 

in that episode. E* is then defined as the median over all NREM sleep episodes of these difference values. 218 

This alternative error metric is used for presentation of results because it has more comprehensible 219 

units (percentage of empirical SWA/off occupancy) compared to the error metric, with arbitrary units. 220 

𝐸∗ =  median
𝑛=1:𝑁

[
|𝑋𝑛 − 𝑆𝑛|

𝑋𝑛
. 100%] 221 

Statistical analyses 222 

The correlation between wake duration, wake firing rates and changes in SWA was calculated separately 223 

for each LFP channel. We first identified episodes of NREM sleep of at least 1-minute duration (exactly 224 

as for modelling) and obtained the median SWA in each episode. We then identified which intervening 225 

time periods, between two NREM episodes, comprised at least 80% wake and lasted at least 5 minutes. 226 

We then calculated Pearson correlation coefficients between i) the duration of these wake periods, ii) 227 

the mean multi-unit firing rate during these periods, and iii) the change in median SWA from preceding 228 

to the following NREM sleep episode.  229 

Analysis of variance was performed to explore factors influencing model parameters and fit quality 230 

using the Matlab functions anova1 (one-way) and anovan (two-way with unequal group size). For the 231 

rate parameters, ANOVA was calculated after applying a log transform. The effect size (η2) is calculated 232 

for a factor as its sum of squares divided by the total sum of squares in the ANOVA and reflects the 233 

fraction of the variance accounted for by that factor.  234 

To summarise the results in figures, boxplots were included alongside individual data points. These 235 

indicate the median, 25th and 75th percentile, with whiskers extending to the most extreme value which 236 

falls within 150% of the interquartile range of the box. For these plots, results from individual channels 237 

were typically pooled across animals. In some cases, where indicated, channels from the same animal 238 

were presented as separate populations.   239 
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Results 240 

We selected a dataset of chronic recordings of frontal electroencephalogram (EEG) alongside local field 241 

potential (LFP) and multi-unit activity (MUA) spiking from primary motor cortex from six mice. These 242 

recordings were made continuously over 48 hours, starting at light onset, while the mice were freely 243 

behaving within their cage and exposed to a standard 12hr-12hr light-dark cycle. At light onset of the 244 

second day a sleep deprivation protocol was enforced for 6 hours, involving the presentation of novel 245 

objects. Outside of this sleep deprivation period, mice were undisturbed and able to sleep at will.  246 

Process S dynamics can be described as a function of vigilance state history 247 

NREM sleep can be defined and distinguished from waking by the presence of high amplitude slow (0.5 248 

- 4Hz) waves in the EEG. The average EEG spectral power in the slow wave range (termed slow wave 249 

activity; SWA) in NREM sleep varies as a function of the animal’s recent sleep-wake history, and this 250 

relationship has been captured in a classical quantitative theory using the concept of “Process S” 251 

(Borbély, 1982; Daan et al., 1984). Process S describes a variable whose magnitude can be estimated 252 

using the level of SWA during NREM sleep, reflecting the intensity of sleep, and which is interpreted as 253 

corresponding to the homeostatic component of sleep drive (Franken et al., 1991a; Achermann et al., 254 

1993; Huber et al., 2000a; Vyazovskiy et al., 2007; Guillaumin et al., 2018). Theoretically, this Process S 255 

follows simple dynamics; during wake it increases according to a saturating exponential function 256 

towards an upper asymptote, and similarly during NREM sleep it decays exponentially towards a lower 257 

asymptote. There are many published variants of the precise equations for this model, but crucially, all 258 

these variants use the sleep-wake state history of the animal as the key predictive variable for Process 259 

S. Here, the specific equations used are:  260 

Wake/REM Sleep: 𝑑𝑆
𝑑𝑡⁄ =  𝛼(𝑆𝑚𝑎𝑥 − 𝑆(𝑡)) 

 
NREM Sleep: 𝑑𝑆

𝑑𝑡⁄ =  −𝛽(𝑆(𝑡) − 𝑆𝑚𝑖𝑛) 

 
Where S represents the level of Process S, Smax and Smin are upper and lower asymptotes, and α and β 261 

are rate parameters. The first equation is applied when the animal is scored to be awake or in REM sleep 262 

and the second equation is applied when it is scored to be in NREM sleep. Here, we use the typical 263 
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approach of applying the wake dynamics equation to REM sleep (Franken et al., 1991a; Huber et al., 264 

2000a; Vyazovskiy et al.; 2007), but for simplicity do not set separate parameters for wake vs. REM 265 

sleep. For convenience, S is expressed in units equivalent to those of SWA. This classical formulism is 266 

later abbreviated as model Cl-SWA. Process S as described by these simple dynamics accounts for the 267 

time course of empirical SWA with high accuracy. We applied this model to SWA derived from the frontal 268 

EEG of all animals, and as expected obtained a high quality fit (Figure 1A).  269 

Neuronal firing rates are associated with Process S dynamics and vigilance state distributions 270 

Whichever specific processes within the brain underpin these state-dependent dynamics for Process S, 271 

it is likely associated in some way to neuronal spiking activity. Spiking patterns differ characteristically 272 

between wake and NREM sleep, due to the presence of off periods in NREM sleep which typically 273 

coincide with slow waves in both EEG and LFP (Figure 1B). The occurrence of such spiking off periods 274 

cause firing rates to be typically much lower during NREM sleep compared to wake and REM sleep. In 275 

this dataset, the mean multi-unit firing rate averaged over all periods of wake was larger than the firing 276 

rate averaged over all periods of NREM sleep in every recording channel and every animal (Figure 1C).  277 

Because the slow oscillation is underpinned by local neuronal dynamics, it is expected to be highly 278 

heterogeneous across the neocortex. Regional differences in SWA dynamics have been previously 279 

described, for example between frontal and occipital EEG derivations (Werth et al., 1996; Huber et al., 280 

2000b), and can be accounted for within the classical Process S model through the selection of locally 281 

variable values for model rate parameters (Zavada et al., 2009; Rusterholz & Achermann, 2011; 282 

Guillaumin et al., 2018). To explore whether spike firing rates might account for some of the variation 283 

in the rate of Process S increase, we correlated the change in LFP SWA from one NREM sleep episode to 284 

the next, when separated by wakefulness lasting at least 5 minutes, with the mean spike firing rate 285 

during this intervening wake period, and with the duration of that wake period. Correlation coefficients 286 

were obtained separately for each recording channel, and pooled across animals. As expected, we 287 

obtained large positive correlation coefficients between the duration of a period of wakefulness and the 288 

change in LFP SWA in all channels (mean=0.66, sd=0.13; Figure 1D). Importantly however, the change 289 

in LFP SWA was on average also positively correlated with firing rate (mean=0.27, sd=0.30; Figure 290 
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1D,E), meaning that, generally, a higher firing rate during waking was associated with a larger increase 291 

in SWA in subsequent NREM sleep. Interestingly, these phenomena were not independent, as a positive 292 

correlation was also found between wake episode duration and firing rate (mean=0.35, sd= 0.33; Figure 293 

1D). These results further support the possibility that neuronal activity is associated with Process S 294 

dynamics and vigilance state distributions. To test this hypothesis we next turned to a quantitative 295 

modelling approach. 296 

Process S dynamics can be described as a function of neuronal firing rates 297 

We first sought to determine whether a model expressing Process S dynamics solely as a function of 298 

local multi-unit neuronal firing rates might describe the levels of sleep SWA in the corresponding LFP 299 

with comparable accuracy to the classical model dependent on vigilance states at the global level. The 300 

classical Process S model was used as a starting point for the development of a novel firing rate 301 

dependent alternative. To do this, the equations of the classical model were adapted in two ways. Firstly, 302 

an instantaneous firing rate threshold (Fθ) was introduced as a new model parameter to replace the 303 

wake vs. sleep criterion, assuming an increase in Process S when the threshold is exceeded and decrease 304 

when firing is below. Conceptually, this firing rate threshold resembles a set point; a target firing rate at 305 

which the dynamics are stable. Secondly, we assumed that the rate of change of Process S is proportional 306 

to the difference between firing rate and this threshold. Introducing this change to the equations ensures 307 

that the rate of change of S is equal to zero exactly at the set point, and a continuous function of firing 308 

rate around this value. This version of the model is later abbreviated as Fr-SWA. The equations are: 309 

𝐹(𝑡) > 𝐹𝜃: 𝑑𝑆
𝑑𝑡⁄ =  𝛼(𝑆𝑚𝑎𝑥 − 𝑆(𝑡))(𝐹(𝑡) −  𝐹𝜃) 

 
𝐹(𝑡) < 𝐹𝜃: 𝑑𝑆

𝑑𝑡⁄ =  −𝛽(𝑆(𝑡) − 𝑆𝑚𝑖𝑛)(𝐹𝜃 − 𝐹(𝑡)) 

 
𝐹(𝑡) = 𝐹𝜃: 𝑑𝑆

𝑑𝑡⁄ =  0 

 
We applied this novel model, alongside the classical model, to describe SWA dynamics at the LFP level, 310 

by finding parameter values that would minimise the difference between empirical SWA and modelled 311 

Process S. The two models were fit to the SWA from each LFP channel separately, using the multi-unit 312 

firing rate from the same channel for the firing-rate-dependent model. The models were also fit to the 313 
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SWA obtained by averaging the LFP (and firing rate) over the whole population of channels within the 314 

same mouse.  315 

Figure 2 shows two examples of the fit of both models, first to SWA derived from the average LFP, and 316 

also to SWA derived from a single LFP channel (these examples are from the same animal as in Figure 317 

1A). The overall pattern of Process S dynamics is similar at both recording levels, and to the 318 

corresponding EEG, and is well described by both the classic and novel firing-rate-based model. 319 

Throughout the dataset, this purely firing-rate-dependent model described the overall dynamics of LFP 320 

SWA during NREM sleep to a comparable accuracy as the classical model, as reflected in the median 321 

percent error deviation between modelled and empirical SWA (Figure 3B). Both the model type and 322 

animal have a highly significant effect on the median percent error of the model fit to individual LFP 323 

channels, although there is no significant interaction (Model: F(1, 144) = 25.9, p = 1.1x10-6; Animal: F(5, 144) 324 

= 30.2, p = 6.3x10-21; Model x Animal: F(5, 144) = 1.65, p = 0.15; two-way ANOVA unequal groups). Errors 325 

were higher for the novel model, importantly however, the differences in fit quality due to the model 326 

type are small relative to the effect size of the particular animal and channel, on which fit quality 327 

depends much more strongly (Model: η2 = 0.079; Animal: η2 = 0.459; Model x Animal: η2 = 0.025; Channel 328 

(residuals): η2 = 0.437). The errors of the model fit on the averaged LFP and on the EEG (classical model 329 

only) are also shown in Figure 3B, and are more explicitly compared in Figure 3C. We do not find any 330 

significant effect of the field potential level (EEG, average LFP, single LFP) on the model error (F(2,171) = 331 

0.2, p = 0.82, one-way ANOVA).  332 

The distributions of final optimised parameters are shown in Figure 3D-G for the classic model and 333 

Figure 3H-L for the firing rate based model. Most parameters in both models were significantly different 334 

between animals, with the exception of Smin in the firing rate dependent model (Cl-SWA α: F(5,77) = 4.03, 335 

p = 2.8x10-3; Cl-SWA β: F(5,77) = 8.65, p = 1.9x10-6; Cl-SWA Smax: F(5,77) = 14.35, p = 9.8x10-10; Cl-SWA Smin: 336 

F(5,77) = 12.42, p = 1.1x10-8; Fr-SWA α: F(5,77) = 8.33, p = 3.0x10-6; Fr-SWA β: F(5,77) = 9.27, p = 7.5x10-7; Fr-337 

SWA Fθ: F(5,77) = 14.3, p = 1.0x10-9; Fr-SWA Smax: F(5,77) = 6.64, p = 3.9x10-5; Fr-SWA Smin: F(5,77) = 2.16, p = 338 

0.07; one way ANOVA). The optimised rate parameters for EEG and averaged LFP data consistently fall 339 

within the range of the single channel population (Figure 3D-L). The relationship between the optimal 340 
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firing set point and state specific firing rates is shown in Figure 3M. Firing rate threshold was z-341 

normalised (subtract mean, divide by standard deviation) separately with respect to the distribution of 342 

firing rates in wake, NREM and REM sleep. This shows, as expected, that the set point is typically below 343 

mean firing in wake (-1.0 ± 0.6; mean ± sd), well above mean firing in NREM sleep (1.6 ± 1.1), and slightly 344 

above mean firing of REM sleep (0.7 ± 1.1). These were all significantly different from zero (wake: p = 345 

1.6x10-13, NREM: p = 1.9x10-14 , REM: p = 3.4x10-7, two-sided Wilcoxon signed rank test). Figure 3N 346 

further shows the state dependent distribution of average firing rate, expressed as a percentage of the 347 

chosen firing set point parameter. Mean firing was 182 ± 57.6% of the firing rate set point during wake, 348 

61.8 ± 17.6 % during NREM sleep, and 84.2 ± 31.8 % during REM sleep. Again, these distributions were 349 

all significantly different from 100% (Wake: p = 6.7x10-14, NREM: p = 2.0x10-14, REM: p = 5.4x10-5). Note 350 

that, in a few channels, the optimal firing rate threshold is actually above the mean firing rate during 351 

waking. This occurs when the waking firing rate distribution overlaps substantially with the NREM sleep 352 

firing rate distribution but has a heavier tail. REM sleep, in this dataset, is typically associated with firing 353 

below the set point, and therefore Process S decrease, albeit at a reduced rate compared to NREM sleep 354 

(Figure 3O). Interestingly, there are no significant correlations between the model fit error and the 355 

threshold normalisation relative to any one vigilance state (Wake: p=0.06, r=0.21; NREM: p=0.35, r=-356 

0.11; REM: p=0.94, r=-0.01), suggesting that there is no clear relationship between the firing rate set 357 

point and firing rate distribution of any one particular state. 358 

Process S can be defined in terms of neuronal spiking off periods  359 

When considering the relationship between multi-unit firing rates and LFP slow waves, a conceptual 360 

complication arises due to the different origins of the LFP and MUA from within the same channel. While 361 

the MUA firing rate represents the activity of only a few individual neurones, factors such as volume 362 

conduction result in spatial smoothing of the LFP signal, and as such it represents the combined activity 363 

of neurones covering a cortical area potentially on the order of several millimetres (Kajikawa & 364 

Schroeder, 2011). This means that when a slow wave is detected in the LFP, it is not guaranteed that 365 

local neurones which contribute to the MUA are necessarily in an off period. Similarly, not every long 366 

interspike interval occurs during a slow wave. An estimation of the occurrence of off periods may be 367 
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obtained by combining LFP and spiking data (Figure 4A). Slow wave detection was performed on each 368 

LFP over the whole 48hrs, including all vigilance states (0.5-6 Hz filter followed by an amplitude 369 

threshold, values shown in Figure 4C). All multi-unit inter-spike intervals (ISIs) which coincide with the 370 

peak of detected slow waves were identified. The distribution of the duration of these ISIs was often (64 371 

out of 75 channels) unambiguously bimodal (Figure 4B). This could be interpreted as evidence of the 372 

existence of two spiking states occurring locally during the more widespread network slow oscillation; 373 

high frequency spiking (on period) and extended silence (off period). Note that these two distributions 374 

do not simply correspond exactly to sleep vs. wake conditions, because bimodality is often evident in 375 

the distribution of slow wave coincident ISIs from NREM sleep only, or even from REM sleep only (Figure 376 

4B). The distribution of slow wave coincident ISIs (over all vigilance states) was used to define an ISI 377 

duration threshold for the detection of off periods, separately for each channel. The values used for this 378 

threshold are shown in Figure 4D. The average multi-unit firing rate aligned to the peak of slow waves 379 

in detected off periods reveals a clear suppression of firing, consistent with expectations (Figure 4E). A 380 

rebound increase in average firing is visible in this example channel immediately after the off period, as 381 

has been previously documented in some cortical neuronal populations (Chauvette et al., 2010). The 382 

total fraction of time each channel spends in off periods was calculated over all 4-second epochs, and 383 

termed the “off occupancy”. Off occupancy defined in this way is high in NREM sleep and low in both 384 

wake and REM sleep (Figure 4F). The existence of a non-zero frequency of local cortical off periods has 385 

been previously reported during wakefulness (Vyazovskiy et al., 2011; Vyazovskiy et al., 2014; Fisher et 386 

al., 2016), and REM sleep (Funk et al., 2016). The off occupancy measure displays similar temporal 387 

dynamics to LFP (and EEG) SWA over both sleep deprivation and spontaneous sleep and wake (Figure 388 

4G).  389 

Process S dynamics, defined using off periods, can be described as a function of vigilance states 390 

or neuronal firing rates 391 

In order to investigate whether the off occupancy measure reflects Process S, we applied the classical 392 

state based model to the time course of off occupancy, exactly as was done with single channel SWA. The 393 

classical model was applied with its equations unchanged, and is abbreviated as Cl-Off. Figure 5A shows 394 
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an example of the resulting Process S time course obtained in this way with a high quality of fit. In 395 

contrast, some changes were introduced to the firing-rate-based model in order to describe off 396 

occupancy dynamics. We considered that the different dynamics above vs. below a particular firing rate 397 

set point may be due to two opponent processes simultaneously active in dynamic opposition but with 398 

differential magnitude in wake vs. NREM sleep. Specifically, we consider a Process S increasing term 399 

which is proportional to instantaneous firing rate, and a Process S decreasing term which is proportional 400 

to the time spent in off periods (off occupancy). The equation used is:  401 

𝑑𝑆
𝑑𝑡⁄ =  𝛼𝐹(𝑡)(𝑆𝑚𝑎𝑥 − 𝑆(𝑡)) −  𝛽𝑋(𝑡)(𝑆(𝑡) − 𝑆𝑚𝑖𝑛) 402 

In this model, one term drives S towards an upper asymptote (Smax) in proportion to firing rate (F), while 403 

the other drives S towards a lower asymptote (Smin) in proportion to the off occupancy (X). Again, two 404 

rate parameters α & β are required. This model behaves similarly to previous models because firing is 405 

high in wake and low in NREM sleep, whereas off occupancy is high in NREM sleep and low in wake. This 406 

variant of the model is abbreviated as Fr-Off. Figure 5A includes also the fit from this model, 407 

demonstrating a high level of agreement between the two models and an accurate fit to the data.  408 

The distribution over all animals and channels of the median percent errors for the fits from both models 409 

is shown in Figure 5C. As before, the model type and animal has a significant effect (Model: F(1,138) = 8.06, 410 

p = 5.2x10-3; Animal: F(5,138) = 17.2, p = 3.2x10-13; Model x Animal: F(5,138) = 0.52, p = 0.76; two-way ANOVA 411 

with unequal groups) and the classic model achieved a slightly lower median percent error. However, 412 

this effect was again very weak compared with the variation in fit quality between animals and channels 413 

(Model: η2 = 0.034; Animal: η2 = 0.367; Model x Animal: η2 = 0.011; Channel (residuals): η2 = 0.588). 414 

Figure 5D shows the distribution of values for the change in modelled Process S from one time step to 415 

the next resulting from the firing-rate-based model (Fr-Off), in wake, NREM sleep and REM, pooling all 416 

animals, channels and time. Unlike in the previous firing-rate-based model, REM sleep is now typically 417 

associated with Process S increase. The distributions of final optimised parameters are shown in Figure 418 

5E-H for the classic model and Figure 5I-L for the firing rate and off occupancy model. Most parameters 419 

in both models were different between animals to a high significance level (Cl-Off α: F(5,74) = 2.4, p = 420 

0.047; Cl-Off β: F(5,74) = 2.29, p = 0.055; Cl-Off Smax: F(5,74) = 9.49, p = 6.4x10-7; Cl-Off Smin: F(5,74) = 16.79, p 421 
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= 8.0x10-11; Fr-Off α: F(5,74) = 9.86, p = 3.9x10-7; Fr-Off β: F(5,74) = 5.14, p = 4.6x10-4; Fr-Off Smax: F(5,74) = 422 

10.08, p = 2.8x10-7; Fr-Off Smin: F(5,74) = 10.25, p = 2.3x10-7; one way ANOVA). Notably, the weakest 423 

evidence for inter-animal differences were for α and β in the classic model.  424 

Modelling identifies local variation in Process S dynamics 425 

All four modelling approaches described here suggest the existence of variability in Process S between 426 

recording channels, indicating that a local component determines its dynamics. Figure 6A-D illustrates 427 

this diversity, showing the overlaid time courses of Process S for all channels within a single 428 

representative animal, expressed as a percentage of their individual maximum value for normalisation 429 

purposes. Although the models all fit empirical SWA or off period occupancy with generally high 430 

accuracy, there are nonetheless differences between models in the precise shape of Process S. The 431 

average Process S over all channels was also calculated for each model and compared with the Process 432 

S derived from applying the classical model to EEG SWA (Figure 6E). This reveals that Process S derived 433 

from modelling LFP SWA more closely resembles Process S derived from EEG SWA than Process S 434 

derived from off occupancy. This suggests that global Process S calculated at a higher spatial scale might 435 

reflect an averaging across a manifold of local Processes S that exist on a finer spatial level.   436 
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Discussion 437 

Here, we show that Process S can be quantitatively described entirely in terms of measures based on 438 

neuronal spiking activity, without reference to global vigilance states. A model was outlined whereby 439 

the integrated history of multi-unit firing rates, relative to a firing rate set point, predicted the temporal 440 

dynamics of LFP SWA. The accuracy of this model was demonstrated in a dataset of recordings from 441 

mouse frontal cortex over 48 hours, including both voluntary sleep and wake, and sleep deprivation. A 442 

novel metric for Process S was then presented, termed off occupancy, which measures the fraction of 443 

time a neural population spends in off periods, defined by the coincidence of LFP slow waves and multi-444 

unit spiking silence. The modelling approach was combined with the off occupancy metric and tested on 445 

the same dataset to present a quantitative framework for understanding dynamics of sleep pressure at 446 

a highly local level in terms of neural spiking and off periods.  447 

Central to this modelling perspective is the assumption that the generation of spikes by a neural network 448 

is in some way correlated with an increase in sleep pressure, and that this manifests in the subsequent 449 

expression of slow waves and off periods, reflecting Process S. The energetic cost of spiking is high 450 

(Attwell & Laughlin 2001), the regulation of a neurone’s firing rate set point is linked to cellular 451 

energetics (Styr et al., 2019; Vergara et al., 2019), and neurones are susceptible to cellular stresses that 452 

can result from sustained metabolic load, such as oxidative stress (Wang & Michaelis 2010; Cobley et al., 453 

2018; Kempf et al., 2019). Furthermore, spiking activity may be mechanistically associated with synaptic 454 

plasticity, and it was suggested that firing rates are an important determinant of overall changes in 455 

synaptic strength, with higher spiking leading to greater changes (Graupner et al., 2016; Lappalainen et 456 

al., 2019). Compensatory processes exist within neurones to oppose cellular stress and related 457 

homeostatic challenges (Kültz 2005) and off periods could provide the opportunity for neurones to 458 

prioritise such processes, therefore mediating the restorative benefits of sleep (Vyazovskiy & Harris, 459 

2013). Similarly, off periods are associated with distinct synaptic plasticity rules (Gonzalez-Rueda et al., 460 

2018), and so their prevalence and patterning is likely also related to whatever regulation of synaptic 461 

strength occurs during sleep (Tononi & Cirelli 2014; Timofeev & Chauvette 2017; Seibt & Frank, 2019).  462 
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According to this view of sleep homeostasis, in principle, regulation can occur entirely at the local level, 463 

within cortical networks or perhaps even single neurones. Indeed, this is reflected in our results through 464 

the differences between channels both with respect to the accuracy of the model and in the values of 465 

optimised parameters. Why then is global sleep preferred over a hypothetical state including 466 

asynchronous local off periods, which presumably could be used to sustain longer periods of 467 

behavioural wakefulness? It has been argued previously that it is ecologically optimal to synchronise off 468 

periods and undergo dedicated periods of total behavioural shutdown, because local off periods during 469 

waking impair behaviour (Vyazovskiy et al., 2011; Rattenborg et al., 2012). Mechanistically, the 470 

occurrence of off periods might be obstructed by strong synaptic coupling and shared neuromodulatory 471 

tone. Indeed, it has been observed that the degree of coupling between an individual neurone’s firing 472 

and the population firing rate, is variable between cells but characteristic to an individual neurone and 473 

likely reflects total synaptic strength with its neighbours (Okun et al., 2015). Some neurones may 474 

therefore be less able to express asynchronous off periods than others. 475 

The preference for global sleep, despite its fundamentally local mechanisms, may be evidence that sleep 476 

homeostasis ultimately does not serve a single specific local function. Instead, the recent history of local 477 

activities, by alteration of the local propensity to generate off periods (Process S), may be integrated 478 

over neuronal populations through intrinsic network mechanisms, in order to produce a sleep 479 

propensity signal that estimates the total time spent awake with great accuracy. The brain would 480 

thereby aim to enforce a daily quota of sleep, which could have many physiological and ecological 481 

benefits, rather than initiating sleep in response to the homeostatic need of one specific regulated 482 

variable (Vyazovskiy, 2015). The overall accuracy of both firing-rate-based and vigilance-state-based 483 

models supports this possibility, as does the evidence that homeostatically regulated cellular variables 484 

can actually be stable during extended wakefulness and that maintenance processes in sleep are 485 

ultimately prophylactic (Vyazovskiy & Harris, 2013). In this case, the sleep quota typically required by 486 

the brain would be determined by the neural population(s) that regularly accumulate sleep pressure 487 

the fastest. In order to maximise the efficiency of global sleep, single neuronal activities may be 488 

modulated such that sleep pressure accumulates, on average, as uniformly as possible. This is consistent 489 

with recent reports that sleep regulates the population level firing rate distribution (Watson et al., 2016; 490 
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Levenstein et al., 2017; Miyawaki & Diba, 2019) and could account for sleep’s link with synaptic and 491 

firing rate homeostasis, reconciling the local origins of sleep pressure accumulation with the global level 492 

of its dissipation. 493 

Here, spike firing rate is used to represent the level of neural activity because it is convenient to record, 494 

locally variable, and directly linked to neuronal functionality. However, no strong claim is made that 495 

firing rates are necessarily causally responsible for the accumulation of sleep pressure. Indeed, it would 496 

likely be possible to obtain a reasonable quantitative account of sleep homeostasis using any 497 

physiological variable (or set of variables) that are consistently higher in either the wake or sleep state. 498 

For example, a model assuming that Process S increases in proportion to local cortical temperature, 499 

which drops by ~2oC when falling asleep (Franken et al., 1991b) and which has been mechanistically 500 

implicated in sleep regulation (Hoekstra et al., 2019), might also provide a plausible description of 501 

Process S dynamics. Importantly, these results demonstrate that firing rates are a useful measurable 502 

correlate of the processes that directly underpin Process S, and therefore firing rate variance resulting 503 

from differences in experience and behaviour may well account for the variance in Process S 504 

accumulation in normal individuals, between waking periods and between cortical regions.  505 

It should be addressed explicitly that the novel firing rate based models typically slightly under-perform, 506 

relative to the classic model, in terms of minimising the error between simulation and empirical data. 507 

There are a number of reasons why a limit on the accuracy of the model is to be expected, related to 508 

technical restrictions rather than conceptual ones. In this approach, each MUA channel records only a 509 

few randomly sampled nearby neurones, which may have very different spiking properties, and so 510 

grouping these as a single measure of local network activity is somewhat artificial. It may be valuable to 511 

explore genetic and pharmacological manipulations of firing rate in order to further test this model’s 512 

validity. Unfortunately, the effects of any manipulation on the accumulation, expression and dissipation 513 

of sleep pressure, separately to the effects on firing, is unknown, and so this may be hard to interpret. 514 

For example, a recent study found that systemic atropine administered during behavioural wakefulness 515 

produces slow wave activity, reducing spiking (as measured by c-Fos) yet increasing the duration of 516 

subsequent NREM sleep (Qiu et al., 2015). While this was interpreted as evidence that spiking activity 517 
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is not related to sleep pressure accumulation, the direct effects of atropine on Process S and the 518 

functional significance of the resulting induced slow oscillation are unclear. Similarly, another study 519 

found that optogenetic activation of cortex during sleep, despite raising firing rates to waking levels, 520 

was accompanied with decreased Process S (lower SWA and fewer off periods) during subsequent 521 

NREM sleep (Rodriguez et al., 2016). Again, it is difficult to disentangle the direct effects of this 522 

stimulation, which is not physiologically realistic, on the mechanisms surrounding the accumulation, 523 

expression and dissipation of sleep pressure. On the other hand, these results might be interpreted as 524 

evidence that the expression of the level of Process S involves an integration of homeostatic sleep need 525 

across neural populations and therefore local firing rate manipulations are not able to substantially 526 

influence Process S dynamics at a global level.  527 

It is reasonable to assume that sleep homeostasis unfolds on multiple time scales and Process S as 528 

defined by these models describes a relatively fast one, approaching its upper asymptote after 529 

continuous wakefulness on a time scale of hours. The inclusion of processes acting over longer or 530 

shorter time scales might explain discrepancies in all these models, however, the challenge remains to 531 

identify what these could be. Furthermore, the role of REM sleep in Process S dynamics has not been 532 

explicitly addressed or considered in the construction of these models. Depending on the model variant, 533 

REM sleep is associated either with small increase or small decrease in Process S, because firing rates 534 

are low in REM sleep (closer to NREM sleep than waking) and yet off period occupancy is also low (closer 535 

to wake levels than NREM sleep). It is possible that REM sleep might represent a homeostatically neutral 536 

state, in which the level of Process S changes little, or not at all (Vyazovskiy & Delogu, 2014).  537 

In summary, Process S is reflected in both slow wave activity and the occurrence of local off periods, and 538 

its dynamics can be quantitatively described using information derived from local spike firing rates and 539 

off periods. Such a description has comparable accuracy to the classical model of Process S, dependent 540 

only on global sleep-wake history. This result has important implications for our understanding of the 541 

nature of sleep homeostasis and these novel models provide a methodology to quantify and compare 542 

Process S dynamics, potentially between different cell types and brain regions.   543 
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Figure Legends 712 

Figure 1. Cortical spike firing patterns are associated with the dynamics of Process S. A) An example of 713 

the classical state-based Process S model (blue) describing the dynamics of frontal EEG SWA (median 714 

per NREM sleep episode, black bars) over 48 hours in one representative animal. Sleep deprivation 715 

occurred as indicated at light onset of the second day and lasted 6 hours. Scored vigilance states are also 716 

shown. B) An example of frontal electroencephalogram (EEG), primary motor cortical local field 717 

potentials (LFP), corresponding raw signal with multi-unit activity (MUA), and detected spikes, in 718 

representative segments of waking and NREM sleep. Slow waves and synchronous spiking off periods 719 

are visible in NREM sleep but not wakefulness. C) The distribution of mean firing rate during wake, 720 

NREM and REM sleep over the whole dataset, in addition to the difference in mean firing rate in wake 721 

compared to NREM sleep (all are positive, reflecting higher firing in wake). Points indicate channels 722 

grouped by animal (left to right), but boxplots reflect channels from all animals treated as a single 723 

population. D) Distribution of correlation coefficients, calculated within each single channel, between 724 

wake episode duration (Duration), the change in slow wave activity (dSWA), and mean firing rate (mean 725 

FR). Points indicate channels grouped by animal (left to right), but boxplots reflect channels from all 726 

animals treated as a single population. E) An example scatter plot of the correlation between the change 727 

in median SWA from one NREM episode to the next and the mean firing rate during the intervening 728 

period of wakefulness. This channel is representative because it has the median correlation coefficient 729 

of all channels.  730 

Figure 2. Slow wave activity dynamics at the LFP level can be modelled using multi-unit spiking 731 

information. A) An example from one representative animal modelling the SWA averaged over all LFP 732 

channels, of both the classical model (blue) and novel firing-rate-based model (orange), calculated from 733 

the firing rate also averaged over all LFP channels (brown). B) An example of both models applied to 734 

the SWA of a single LFP channel, which came from the same animal as used in A.  735 

Figure 3. The fit quality and parameters for both classical and firing-rate-based models of LFP SWA. A) 736 

Equations for the classic state-based model (blue) and novel firing-rate-based model (orange). B) For 737 

each animal, the distribution over channels of the median difference between the model and empirical 738 
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SWA, expressed as a percentage of empirical SWA, for both classic and firing-rate-based models. C) The 739 

same median percent error, grouped over animals and models, separately showing errors at the level of 740 

single LFP, averaged LFP and EEG. D-G) The distribution of values used for each parameter in the classic 741 

model and H-L) in the firing-rate-based model, with boxplots plotted separately for each animal. The 742 

black lines indicate the values obtained from modelling the averaged LFP SWA and firing rate over all 743 

channels within an animal. Additionally, the red lines in D-G give the parameter value obtained from the 744 

model of the frontal EEG SWA of that animal. M) The distribution of the final optimised value for the 745 

firing rate set point parameter (Fθ) of the firing-rate-based model, z-normalised to the distribution of 746 

firing rates within wake, NREM and REM sleep. Points indicate channels grouped by animal (left to 747 

right), but boxplots reflect all channels treated as a single population. N) The distribution of mean firing 748 

rate in wake, NREM and REM sleep, expressed as a percentage of the firing rate set point parameter (Fθ). 749 

Points indicate channels grouped and coloured by animal, but boxplots reflect all channels treated as a 750 

single population. O) The distribution of values of the change in Process S (ΔS/Δt) from one 4-second 751 

time step to the next derived from the Fr-SWA model in wake, NREM sleep and REM sleep. All mice, 752 

channels and time are pooled. 753 

Figure 4. The definition of off periods and off occupancy. A) An example section of LFP (raw in grey, 754 

0.5-6Hz filtered in black) and simultaneous MUA spikes. During this time window, the filtered LFP 755 

crosses the amplitude threshold (265 μV for this channel, red line) five times. The multi-unit inter-spike 756 

interval aligned to two of these peaks exceeds the duration threshold (85ms for this channel) and so 757 

two off periods are detected (grey boxes). ISIs aligned to the other three out of five crossings (asterisks) 758 

are too short to be considered off periods. B) Histograms of multi-unit inter-spike intervals aligned with 759 

detected slow waves for this example channel. The four plots show, from left to right, ISIs over the whole 760 

recording and separately ISIs from wake, NREM and REM sleep only. The ISI duration threshold (red 761 

line) is selected using the histogram of all ISIs (leftmost) at the minimum between the two modes. C) 762 

The distribution of LFP amplitude and D) ISI duration threshold values used for definition of off periods 763 

for each channel, with boxplots plotted separately for each animal. E) The mean multi-unit firing rate 764 

over a 1-second period centred on the peak of detected slow waves, calculated over all slow waves 765 

within one example channel with 1-millisecond resolution. F) Distributions of mean off occupancy (%) 766 
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for all channels averaged over wake, NREM and REM sleep. Points indicate channels grouped by animal 767 

(left to right), but boxplots reflect all channels treated as a single population. G) Off occupancy is shown 768 

alongside EEG and LFP SWA for an example channel over 48 hours. Traces represent these values 769 

calculated at 4-second resolution (light grey), in addition to the median value per NREM sleep episode, 770 

as used for model fitting (black bars). Firing rate (brown) and scored vigilance states are also shown.  771 

Figure 5. Process S is reflected in an LFP channel’s off occupancy and its dynamics are described well 772 

by both state-based and firing-rates-based models. A) An example of the novel model based on firing 773 

rates and off occupancy (purple), and the classic state-based model (blue), with optimised parameters 774 

describing the dynamics of off occupancy (median per NREM episode, black bars) over 48 hours. Sleep 775 

deprivation occurred as indicated at light onset of the second day and lasted 6 hours. Firing rate 776 

(brown), off occupancy (value per 4-second epoch, grey) and scored vigilance states are also shown. B) 777 

Equations for the classic state based model (blue) and firing-rate-and-off-occupancy-based model for 778 

off occupancy (purple). C) For each animal, the distribution over channels of the median difference 779 

between the model and empirical off occupancy, expressed as a percentage of the off occupancy, for both 780 

classic and firing-rate-based models. D) The distribution of values of the change in Process S (ΔS/Δt) 781 

from one 4-second time step to the next derived from the Fr-SWA model in wake, NREM sleep and REM 782 

sleep. All mice, channels and time are pooled. E-H) The distribution of optimised values used for each 783 

parameter in the classic model and I-L) the firing rate model, with boxplots plotted separately for each 784 

animal.  785 

Figure 6. The time course of Process S is similar between models and individual channels. Process S 786 

time courses, expressed for each channel as a percentage of the maximum value, overlaid for all channels 787 

within a single representative animal obtained from A) the classic state-based model applied to LFP 788 

SWA, B) the firing-rate-based model applied to LFP SWA, C) the classic state-based model applied to off 789 

occupancy, D) the firing-rate-based model applied to off occupancy. In these panels the black line 790 

indicates the mean Process S over all channels. E) The mean Process S calculated over all channels is 791 

now plotted in colour (Cl-SWA light blue, Fr-SWA orange, Cl-Off dark blue, Fr-Off purple), and the red 792 

line indicates the Process S obtained by applying model Cl-SWA to the EEG derived SWA.    793 
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