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PURPOSE. The purpose of this study is to assess with spectral-domain optical coherence
tomography (OCT) the interspecies variation of outer retina morphology and identification of
choriocapillaris in four research animal species.

METHODS. Spectralis HRAþOCT images acquired from locations dorsal, central, and ventral to
the optic disc in healthy, anesthetized animals were evaluated by two independent readers.
First, the number of OCT B-scans on which a choriocapillaris layer could clearly be identified
was determined and quantified, and B-scans were correlated with histology. Second, B-scans
demonstrating the highest number of discernable individual outer retinal bands (ORBs) were
defined as ideal presentation and quantified. Interrater agreement was evaluated.

RESULTS. Five-hundred seventy-four B-scans from 96 subjects were evaluated. The choriocap-
illaris layer was identified in 100.0% of minipig, 70.8% of rabbit, 75.4% of pigmented rat,
77.7% of albino rat, 56.5% of pigmented mouse, and 50.8% of albino mouse OCT scans. The
percentage of optimal ORB presentation in B-scans was 11.7% in minipigs, 73.8% in rabbits,
and 80.0%, 91.0%, 28.5%, and 62.5% in pigmented rats and mice and albino rats and mice,
respectively. The interrater evaluation for both attributes showed substantial to perfect
agreement in all species.

CONCLUSIONS. The choriocapillaris is an easy and valid marker for identification of the outer
retinal margin. ORB presentation likely varies due to differences in retinal anatomy and
pigmentation between animal species and strains and between anatomic locations. Proper
and consistent outer retinal margin and ORB identification are essential for research result
reproducibility and translation.

Keywords: outer retina, outer retinal bands, choriocapillaris, optical coherence tomography,
SD-OCT, rabbit, mouse, rat, minipig

Optical coherence tomography (OCT) is a noninvasive in

vivo imaging technique used extensively to visualize the
posterior segment of the eye1 and has become the standard of

retinal imaging in preclinical ophthalmic research involving
research animals.2–4

The outer retina is the area occupied by the photoreceptor
inner and outer segments (OS) and RPE and is defined by the

external limiting membrane (ELM) internally and by the RPE/
Bruch’s membrane complex (RPE/BM) externally. Four distinct

hyperreflective outer retinal bands (ORBs) can be distinguished
in humans using spectral domain OCT (SD-OCT).5 These

hyperreflective bands have been under vigorous investigation
to determine their correct origin and correlation to histologic

layers.6–8 Although scientific unity has not been reached
yet,9–11 a consensus statement regarding the nomenclature of

the hyperreflective bands that can be distinguished on OCT in
the outer retina in humans was developed.12 The nomenclature

described in this consensus statement is listed in Table 1 and
used throughout this paper.

Outer retinal band integrity and outer retinal thickness as
they appear on OCT have been studied extensively due to their
prognostic value, being predictive of visual outcome in many
retinal diseases like AMD, diabetic retinopathy, retinal detach-
ment, or retinal degeneration.13–16

Mice17–20 and rats21–24 are commonly used in preclinical
ophthalmic research. Less frequently used species include
nonhuman primates,25–27 rabbits,28–31 pigs,32,33 minipigs,34

guinea pigs,35 dogs, cats,36–38 tree shrews,39 gerbils,40 and
ground squirrels.41 Frogs42–44 and zebrafish45,46 are the more
commonly used nonmammalian species. Despite the common
use of various animal species in preclinical ophthalmic research
involving OCT, no consensus exists regarding the nomenclature
of the outer retinal bands (ORBs) distinguishable on OCT in
different species. On the contrary, the identification/nomen-
clature of ORB and the definition of the retinal/choroidal
junction on OCT in various species in the scientific literature is
contradictory as illustrated by the following examples. The
publications from Gloesmann et al.32 and Slijkerman et al.47

show figures with contradicting information regarding the
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localization of the OS and RPE/BM zones in pigs. The
publications from Muraoka et al.30 and Bartuma et al.48

disagree regarding labeling of the interdigitation zone (IZ),
RPE zone, and BM zone in rabbits. In rats, the publications
from Yamauchi et al.21 and Lozano and Twa22 show the RPE/
BM zone in different localizations, whereas the publications
from Hein et al.24 and Hariri et al.23 identify the same structure
once as inner segment (IS) (combined myoid and ellipsoid
zones [EZs]) and once as OS zone. In mice, the publication
from Ferguson et al.17 identifies a hyporeflective structure as
RPE/BM, whereas Zam et al.18 identify a hyperreflective
structure as RPE/BM. Similar concerns regarding the complete-
ness and consistency across research groups of layer and band
designation and labeling nomenclature of mouse retinal OCTs
were raised by DeRamus et al.49

We assume that these discrepancies are partially caused by
the use of different OCT technologies, the rapid development
of new OCT technologies with increased image resolution, and
the changes in nomenclature during the years when the studies
referenced earlier were published. Moreover, we believe that a
direct, and possibly erroneous, translation of knowledge
regarding ORB anatomy in humans to various animal species
might have also facilitated such discrepancies. A direct
application of human OCT layer definitions to animal OCTs
might not be possible due to the fact that retinal anatomy
varies across species as a result of differences in photoreceptor
length and morphology, rod and cone ratios, or organelle
distribution in the RPE.50 Correct identification of the outer
retinal margin is vital for repeatable retinal thickness measure-
ments and proper identification of ORB on OCT images across
species. In humans, the outermost hyperreflective layer, later
confirmed to be the RPE/BM,7 has been a reliable identifier of
the outer retinal margin since the early days of OCT
examinations.51 However, choroidal structures can have similar
or higher reflectivity than the RPE/BM in nonhuman spe-
cies.48,49,52 A direct translation to nonhuman species of the
interpretation of the outermost hyperreflective layer as a
reliable identifier of the outer retinal margin on OCT images of
human subjects can therefore be unreliable. We believe that
this has also been a major problem for autosegmentation
algorithms in nonhuman species, making total retinal thickness
measurements inaccurate.52 In short, correct ORB and outer
retinal margin identification is essential for reproducibility of
research results, translation of animal data to humans and
correlation of OCT and histology data.

Therefore, in this study, two questions were addressed.
First, we hypothesized that the choriocapillaris and its
connecting vasculature can be reliably identified across species
as a hyporeflective band external to the RPE/BM complex and
can thus be used as a reliable marker to define the outer retinal
margin. We therefore quantified the percentage of OCT B-scans

with an identifiable choriocapillaris band in the superior,
central, and inferior retina in four common experimental
animal species (minipig, rabbit, rat, mouse). OCT findings were
correlated with histology. Second, we hypothesized that the
presentation of ORB on OCT might vary across species on
account of interspecies differences in retinal anatomy. We
therefore defined the ideal presentation of ORB on best quality
OCT images in the same anatomic locations across the same
four animal species. The percentage of OCT B-scans with ideal
ORB presentation was quantified.

METHODS

The experimental preclinical testing protocols were approved
by the Institutional Animal Care and Use Committee of the
Cantonal Veterinary Office Basel, Basel, Switzerland. The
animal facility is accredited by the Association for Assessment
and Accreditation of Laboratory Animal Care International. All
animals were treated in accordance with the guidelines of the
ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research and the applicable Swiss regulations.

Animals

OCT B-scans of untreated control animals enrolled in various
preclinical drug trials were retrieved from the OCT database at
the Roche Innovation Center Basel. All animals underwent
complete ophthalmic examinations including slit-lamp biomi-
croscopy, indirect ophthalmoscopy, and IOP measurement at
baseline and before imaging. Animals were excluded from the
trials if optical axis opacities were present at these time points.

Image Acquisition

All images were acquired with a Spectralis HRAþOCT
combined confocal scanning laser ophthalmoscopy (cSLO)
and SD-OCT system (Heidelberg Engineering, Heidelberg,
Germany) equipped with a widefield 558 noncontact lens
(Heidelberg Engineering). All imaging was performed between
8 AM and 1 PM with the animals under general anesthesia,
induced and maintained using routine and approved protocols
(Supplementary Table S1). The eyes were not dark adapted and
were dilated with 0.5% tropicamide eye drops (Mydriaticum
Stulln; Pharma Stulln GmbH, Stulln, Germany) on induction of
anesthesia. The eyes were aligned with the Spectralis
HRAþOCT instrument by positioning the optic nerve head
(ONH) in the center of the cSLO image. All eyes were kept
lubricated (Dynawell 3; Schalcon SpA, Rome, Italy), and hard
contact lenses (CantorþNissel, Brackley, United Kingdom)
were applied to the cornea in rodents to protect the cornea
from desiccation and to reduce noise in the OCT images.

Horizontal B-scans were acquired from three anatomic
locations as depicted in Figure 1: central scans through the
optic disc and dorsal and ventral scans located one optic disc
diameter distance dorsal and ventral from the optic disc border,
respectively. The B-scans were oriented perpendicular to the
long axis of the optic disc in rabbits and minipigs. Retinal
layers are not visible on horizontal central position B-scans in
rabbits because the rabbit has very thick and reflective
medullary rays. Instead, a paracentral B-scan was acquired
immediately ventral to the extension of the medullary rays as
observed on cSLO images. All B-scans were acquired and
evaluated in Spectralis software V6.9a (Heidelberg Engineer-
ing) and fulfilled the following criteria: 558 length, averaged
over 40 B-scans or more, HR mode (high resolution), no
enhanced depth imaging. The Spectralis system uses a signal-
to-noise ratio (SNR) in decibels as internal instrument B-scan

TABLE 1. Nomenclature of Outer Retinal Bands Visible on SD-OCT B-
Scan Images in Humans (Adapted From Staurenghi et al.12)

Reflectivity

on SD-OCT

Name of Zone According to

OCT Consensus12

Hyperreflective External limiting membrane (ELM)

Hyporeflective Myoid zone of the photoreceptors (MZ)

Hyperreflective Ellipsoid zone of the photoreceptors (EZ)

Hyporeflective Outer segments of the photoreceptors (OS)

Hyperreflective Photoreceptor interdigitation with RPE (IZ)

Hyperreflective RPE/BM complex (RPE/BM)

Thin layer of moderate

reflectivity in inner

choroid

Choriocapillaris (CC)
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quality value. B-scans with an SNR ratio lower than 24 dB were
excluded from the analyses to insure the use of best-quality
images, as specified by the cSLO and SD-OCT system and
Heyex software manufacturer and in previous publica-
tions.53–56 A maximum number of 128 B-scans was evaluated
per species/strain (minipigs, rabbits, pigmented and albino rats
and pigmented and albino mice; details in Supplementary
Table S2). Animals were included if both eyes could be
examined, and at least four scans fulfilled the criteria specified
above. Twelve additional B-scans from four cynomolgus
monkeys were included to illustrate the nonhuman primate
choriocapillaris for histology comparison purposes.

Image Evaluation and Statistics

B-scans were independently evaluated by two experienced
OCT readers (PS, PMM). First, the number of OCT B-scans on
which a choriocapillaris layer could clearly be identified was
determined per anatomic location and quantified as number of
OCT B-scans with identifiable choriocapillaris layer per total
number of OCT B-scans. The choriocapillaris was identified on
OCT scans as the innermost narrow horizontal hyporeflective
linear structure of the choroid with hyporeflective canals
indicating vascular connections to the more externally located
major choroidal vessels. Second, B-scans demonstrating the
highest discernible number of individual ORB for a specific
species were defined as ideal scan presentation for that
particular species. The number of ideal presentation B-scans
per total number of B-scans was determined, and different
anatomic locations were compared per species. Differences in
SNR quality of OCT B-scans between species were evaluated
with a two-tailed Mann-Whitney U-test. Influence of the
pigmentation status of rats and mice on choriocapillaris layer
identifiability and ORB discernibility was evaluated with a
Pearson’s v2 test. P < 0.05 was considered to represent a
statistically significant difference between compared samples.
The interrater agreement and discrepancies between OCT
readers regarding choriocapillaris layer identifiability and ORB
discernibility were statistically evaluated through Cohen’s j
coefficient calculation with agreement indication according to
Landis and Koch.57,58

Comparison of OCT B-Scan Findings to Histology

All the animals presented in this study were euthanized for
reasons related to the original preclinical drug trials and were
enrolled as healthy untreated or vehicle-treated controls.
Clinical or imaging abnormalities were not observed in any
of these animals. The enucleated eyes were immersed intact in
Davidson solution (A3200; PanReac AppliChem, Darmstadt,
Germany) for 48 hours and postfixed in 70% ethanol for 24

hours before dissection and standard automated dehydration
and paraffin-embedding processing (Tissue-Tek VIP 5; Sakura,
Alphen aan den Rijn, The Netherlands). The eyes were
retrieved from the tissue archive at the Roche Innovation
Center Basel. Four-micrometer-thick sections were cut at the
locations of the OCT scan examinations and stained with
hematoxylin-eosin. The slides were evaluated via bright-field
microscopy and documented by CCD camera (Zeiss Axioscope
A1 with C-Apochromat 633/NA 1.20 W objective and Axiocam
305; Carl Zeiss, Feldbach, Switzerland). Histology served to
verify the position of the choriocapillaris layer and the
presence of vascular connections to the more externally
located major choroidal vessel layer as identified on the OCT
B-scans.

RESULTS

Overall, 574 B-scans from 96 subjects were evaluated. The SNR
quality of the images from the minipigs (28.7), rabbits (29.6),
and pigmented (29.3) and albino rats (29.4) was comparable (P
> 0.19, Mann-Whitney U-test). Compared with the other
species examined, the SNR quality of the images from
pigmented and albino mice was significantly higher (32.8, P

< 1E�5) and lower (26.1, P < 1E�5), respectively. A narrow
linear hyporeflective structure directly adjacent and external to
and parallel with the hyperreflective RPE/BM complex was
presumed to represent the choriocapillaris on OCT scans (Figs.
2A, 2B). Histology on the same minipig eye confirmed the
presence of a choriocapillaris of similar thickness and identical
anatomic localization (Figs. 2C, 2D). Vascular connections
between the choriocapillaris and the more externally located
major choroidal vessels could be localized on both OCT B-
scans and histology sections in all species evaluated (Fig. 3).
The choriocapillaris visibility and ideal ORB presentation
results across species and strains are summarized in Figures 4
and 5, respectively. The ideal ORB presentation on SD-OCT B-
scans is illustrated with longitudinal reflectivity profile for each
species in Figure 6. A selection of SD-OCT B-scans including
longitudinal reflectivity profiles with nonideal ORB presenta-
tion for each species is illustrated in Supplementary Figure S1.
Interrater reliability j statistics for the evaluation of chorio-
capillaris visibility and ORB presentation are summarized in
Table 2.

Minipigs

One hundred twenty-eight B-scans from 20 animals (Göttingen
Minipigs, Ellegaard, Denmark) were evaluated. The choriocap-
illaris was identifiable with perfect interrater reliability (j¼ 1)
on all B-scans. The ideal ORB presentation consisted of three
hyperreflective bands (Fig. 6) and was identified on 11.7 % of

FIGURE 1. Methodology of SD-OCT B-scan acquisition in dorsal (D) central (C) and ventral (V) fundus locations across species. OCT B-scan
localization illustrated on overview images of the normal fundus of a minipig, rabbit, rat, and mouse acquired via cSLO. All OCT B-scans were
acquired in a horizontal plane. Central (C) scans were centered through the optic disc. Dorsal (D) and ventral (V) scans were located one optic disc
diameter distance dorsal and ventral from the optic disc border, respectively. In rabbits, the thick and optically reflective medullary rays preclude
the visualization of any retinal details in central section scans; therefore, paracentral B-scans located directly ventral to the extension of the
medullary rays were acquired instead (arrow).
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the B-scans (all absolute values included in Supplementary
Table S2). There was a large location difference with most of
the ideal scans identified at the dorsal location (27.9 %)
compared with the central (2.3%) and ventral (4.9%) locations.
Two hyperreflective bands could be identified on most B-scans.
The interrater reliability demonstrated an almost perfect
agreement (j ¼ 0.85). Interestingly, a faint separation line
was identified within the second hyperreflective band on five
B-scans with ideal ORB presentation (Fig. 6).

Rabbits

Sixty-five B-scans from 12 rabbits (Dutch-belted Pigmented
Rabbits; Covance, Denver, CO, USA) were evaluated. The

choriocapillaris layer was identifiable on 70.8% of B-scans. A
large difference between dorsal, paracentral, and ventral
locations was observed with the choriocapillaris layer identi-
fiable on 17.4%, 100%, and 100% of the B-scans, respectively.
The ideal ORB presentation consisted of three hyperreflective
bands (Fig. 6) and was identified on 73.8% of the scans. Most of
the ideal ORB presentation scans were in the paracentral
(100%) and ventral locations (92.1%) compared with the dorsal
location (32.6%). The hyporeflective band between the second
and third hyperreflective bands appeared thickened in the
paracentral and ventral locations compared with the dorsal
location. The interrater reliability for both visibility of
choriocapillaris (j ¼ 0.93) and ideal ORB presentation (j ¼
0.92) indicated almost perfect agreement.

FIGURE 2. Correlation of SD-OCT and histology of minipig eye. (A) SD-OCT B-scan of the minipig retina passing through the optic nerve head (†)
with details in a cut out (B) depicting two large choroidal vessels (*, �). A narrow linear hyporeflective structure directly adjacent and external to
and parallel with the hyperreflective RPE/BM complex was presumed to be the choriocapillaris on this OCT scan (arrow in B). (C) Hematoxylin-
eosin microphotograph of the corresponding area in the same eye. The cut out (D) depicts a single layer of erythrocytes representing the
choriocapillaris (arrow) directly external to the RPE and Bruch’s membrane. The same two large choroidal vessels are marked (*, �) in the SD-OCT
scan (B) and histology image (C). Axial scale bars: 100 lm.

FIGURE 3. Localization of the choriocapillaris and connecting vasculature across common laboratory animal species. The choriocapillaris is marked
in all SD-OCT B-scans and histology images with asterisks and the connecting vasculature, precapillary arterioles and postcapillary venules, with
arrows. On histology specimens, these vascular structures were more readily visible in eyes that were not completely bled out (NHP, nonhuman
primate; minipig). No difference was observed between pigmented and albino rodent strains regarding the shape of the connecting vasculature.
Pigmented strain/species marked with brown circles; albino strain/species with gray circles. Axial scale bars: 100 lm. Microscopy scale bar applies
to all histology images.
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Rats

One hundred ninety-three rat retina B-scans were evaluated,
of which 65 were from pigmented rats (n ¼ 9) (Brown-
Norway; Charles River, CITY, Germany)?2 and 128 from albino
rats (n ¼ 24) (Wistar [Han9]; Charles River). The choriocap-
illaris was identifiable on 75.4% of pigmented rat and 77.7% of
albino rat B-scans with no significant difference between
strains (PObserver1 ¼ 0.94, PObserver2 ¼ 0.52, Pearson’s v2).
There were some differences across the B-scan locations. The
choriocapillaris was visible on 85.7% of dorsal, 74.1% of
central, and 64.7% of ventral location B-scans from pigmented
rats, whereas albino rats had a visible choriocapillaris on
73.5% of dorsal, 88.5% of central, and 58.6% of ventral B-
scans. The ideal ORB presentation consisted of four hyper-
reflective bands (Fig. 6) and was observed on 80.0% of
pigmented rat B-scans compared with 28.5% of albino rat B-
scans, which was a highly significant difference for both
observers (PObserver1 < 1E�5, PObserver2 < 1E�5; Pearson’s v2).
Differences in ideal ORB presentation across locations were
observed in pigmented (85.7% dorsal, 74.1% central, and
82.4% ventral) and in albino rats (32.4% dorsal, 32.3% central,
and 15.5% ventral). The interrater reliability for choriocapil-
laris visibility (jpigmented ¼ 0.75, jalbino ¼ 0.71) indicated
substantial agreement between OCT scan readers, whereas
the interrater reliability for ideal ORB presentation (jpigmented

¼ 0.90, jalbino ¼ 0.87) indicated almost perfect agreement.

Mice

One hundred eighty-eight mouse retina B-scans were evaluat-
ed, of which 128 were from pigmented mice (n¼ 21) (C57BL/
6; Charles River) and 60 from albino mice (n ¼ 10) (NMRI
[Han]; Charles River). The choriocapillaris was identifiable on

56.5% of pigmented mouse and 50.8% of albino mouse B-scans
with no significant difference between the strains (PObserver1¼
0.37, PObserver2 ¼ 0.56, Pearson’s v2). Large differences in
choriocapillaris visibility were observed across B-scan loca-
tions. The choriocapillaris was visible on 68.3% of dorsal,
57.0% of central, and 45.5% of ventral location B-scans from
pigmented mice, whereas albino mice had a visible choriocap-
illaris on 11.4% of dorsal, 75.0% of central, and 72.2% of ventral
location B-scans. The ideal ORB presentation consisted of four
hyperreflective bands (Fig. 6) and was observed on 91.0% of
pigmented mouse B-scans compared with 62.5% of albino
mouse B-scans, which was a highly significant difference for
both observers (PObserver1 < 1 E�5, PObserver2 < 1 E�5, Pearson’s
v2). Differences in ideal ORB presentation were observed
across locations in pigmented (79.3% dorsal, 97.7% central,
and 95.5% ventral) and albino mice (50.0% dorsal, 85.0%
central, and 52.8% ventral). The interrater reliability for
choriocapillaris visibility indicated substantial agreement
(jpigmented ¼ 0.77) and almost perfect agreement (jalbino ¼
0.86) between OCT scan readers for pigmented and albino
animals, respectively. The interrater reliability for ideal ORB
presentation (jpigmented ¼ 0.95, jalbino ¼ 0.82) indicated an
almost perfect agreement between OCT scan readers for both
strains.

DISCUSSION

Although OCT has become the standard in retinal imaging, the
controversy regarding qualification of the ORB that can be
distinguished on OCT scans in humans is ongoing.6–8 Likewise,
many published OCT studies conducted with animals demon-
strate that uniformity in ORB identification is not self-
evident.17,18,21–24,30,32,47–49 In this context, our study shows

FIGURE 4. Visibility of the choriocapillaris across common laboratory animal species. Percentage of B-scans across species and strains in which the
choriocapillaris and connecting vasculature were visible. The bar chart on the left depicts the averages across the three scan locations per species
and strain for both observers. The bar charts on the right show the distribution across the three scan locations. All values included in
Supplementary Table S2.
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that the choriocapillaris layer was a reliable marker of the outer
retinal margin on most OCT scans across species. This study
also documented the ideal presentation of ORB for the animal
species evaluated. Also, the percentage of OCT B-scans with
ideal ORB presentation was highest in areas of retinal
specialization in minipigs (area centralis) and rabbits (visual
streak), whereas no distinct pattern in ideal ORB presentation
distribution was recognized in animals without areas of retinal
specialization (rats and mice).

Our OCT–histology comparisons demonstrate that the
choriocapillaris is likely best defined on OCT as a linear
hyporeflective space directly external to the RPE/BM complex
and not as a diffusely defined, hyperreflective band interior to
the large choroidal vessel layer, as previously suggested.48

Bartuma et al. stated that the choriocapillaris is often
difficult to separate from the RPE/BM complex on OCT B-scans
in rabbits.48 In our study, this was true only for the OCT B-
scans acquired from the scan location dorsal to the ONH. The
choriocapillaris and connecting arterioles could be identified
on every OCT B-scan acquired from the paracentral and ventral
locations. The obvious difference in choriocapillaris and
connecting vasculature visibility between dorsal and paracen-
tral/ventral OCT B-scans in rabbits is probably the result of
better detail resolution on the ventral OCT B-scans. These OCT
B-scans originate from the rabbit visual streak, which is located
ventral to the ONH.59

Despite the absence of a statistical difference in choriocap-
illaris visibility between pigmented and albino rodents, both
OCT observers had the distinct impression that the identifica-
tion of the connecting vasculature was more difficult in albino
than in pigmented strains, which is most likely caused by lack
of pigment in choroidal structures. A similar conclusion was

reached by Berger et al., who reported better visibility of the
choriocapillaris in pigmented mice and less defined choroidal
structures in albino mice.60 The evaluation of serial B-scans or
true volume scans instead of single line scans might increase
the likelihood of identifying the connecting vasculature and
choriocapillaris, thus improving the value of the choriocapil-
laris as marker for identification of the outer retinal margin in
mice.

The ideal ORB presentation on OCT B-scans in minipigs and
rabbits consisted of three hyperreflective bands, considered to
be the ELM, EZ, and combined IZ with RPE/BM complex. In
minipigs, the visibility of all three ORBs was best in the dorsal
scan location. We hypothesize that this is most likely due to the
fact that the porcine area centralis, where the photoreceptor
cells are most tightly packed and the cone density is highest, is
located dorsal to the ONH.61–63 The visibility of all three ORBs
was best in the visual streak at the ventral scan location in
rabbits.59,64 The rabbit visual streak has cone and total
photoreceptor density features comparable with the minipig
area centralis.64,65 The visual streak origin of the paracentral
and ventral OCT B-scans in rabbits is further supported by the
observed thickening of the photoreceptor OS layer (the
hyporeflective band between the second and third hyper-
reflective bands) on these scans as confirmed via histology.66

Although many papers have been published on rabbit retinal
topography, most of the publications are focused on ganglion
cell or cone flat-mount densities.59,64,65,67 In the figures
included in some publications, one can recognize that the
photoreceptor outer segments are longest in the visual streak
in wild-type rabbits68 (Fig. 4C). A difference in photoreceptor
anatomy between long and thin central foveal cones and
shorter, thicker perifoveal cones in humans was described by

FIGURE 5. Optimal outer retinal band presentation across common laboratory animal species. Percentage of B-scans across species and strains in
which the ideal outer retinal band presentation for that particular species could be identified. The bar chart on the left depicts the averages across
the three scan locations per species and strain for both observers. The bar charts on the right show the distribution across the three scan locations.
Statistically significant differences between pigmented and nonpigmented strains are marked with asterisks. All values included in Supplementary
Table S2.
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Spaide and Curcio in 2011 and thought to explain differences
in ORB presentation and thickness on OCT between the fovea
and perifovea.7 We hypothesize that differences in ORB
presentation and photoreceptor OS layer thickness on OCT
between regions within and outside of the visual streak in
rabbits and minipigs might be explained by similar differences
in photoreceptor anatomy. However, to the best of our
knowledge, this cannot be confirmed because no publications
comparing photoreceptor anatomy on cross section in various
regions of the retina exist for rabbits or minipigs.

Based on Figure 5, there does not seem to be a consistent
pattern to the observed differences in ORB presentation that
might be explained by general differences in photoreceptor
density, type, and morphology between retinal regions in
rodents. Moreover, mice and rats do not have macula or area
centralis-like regions of retinal specialization with correspond-
ing specialized photoreceptor anatomy as present in primates
and certain other animals.69 Significant differences in photo-
receptor density and anatomy between the central and
peripheral retina do exist in mice70 but cannot explain the
differences in ORB presentation in our study, which were
observed between various central retinal regions.

The ELM was the ORB with the worst visibility of the three
ORB identified in minipigs, which supports the observation by
Gloesmann et al. that the ELM was poorly visible and thought
to coalesce with the myoid zone on OCT B-scans.32 Interest-
ingly, a faint splitting of the second hyperreflective ORB (EZ)
by a very fine band of moderate reflectivity was observed on
five minipig B-scans in the present study, but not in any of the
other species. The authors believe that this was not an artifact,
but also do not believe that this should be considered as the
expected fourth ORB, as recognized on OCT scans of humans.
If considered to be an actual fourth ORB, it would likely be
considered the band corresponding to the IZ band, which
would leave almost no space for the photoreceptor outer
segments between EZ and IZ and a very large space that cannot
be anatomically explained between IZ and RPE/BM. The
authors rather hypothesize that the ultrastructural anatomy of
the porcine rod and cone IS might be the source of the
observed EZ splitting. The EZ band was hypothesized to arise
from the ellipsoid zone of the photoreceptor IS in humans.7,71

The ellipsoid portions of the rod and cone IS are located at the
same level or largely overlap in humans, nonhuman primates,72

sheep,50 and mice.73 However, ultrastructural studies in swine
retinas have demonstrated that the ellipsoid portion of the
cone IS lies at the level of the rod myoid, whereas the ellipsoid
portion of the rod IS is located more externally,74 which could
lead to the observed ORB splitting on OCT. Because all tissues
of the animals included in this study were Davidson fixed and
paraffin embedded, no ultrastructural investigations could be
performed to test this hypothesis.

For all rodent strains, the ideal ORB presentation consisted
of four hyperreflective bands, presumably of the same origin as
the four hyperreflective bands of the outer retina in
humans,60,75 and is consistent with a proposed nomenclature

FIGURE 6. Ideal outer retinal band presentation on SD-OCT B-scans.
The ideal outer retinal band presentation in minipigs and rabbits was
with three hyperreflective outer retinal bands, presumably represent-
ing the ELM (1), EZ (2), and combined IZ and RPE/BM (3). The ideal
outer retinal band presentation in all rodents was with four hyper-
reflective outer retinal bands, presumably representing the ELM (1), EZ
(2), IZ (3), and RPE/BM (4). Black arrows indicate the choriocapillaris
in both OCT and reflectivity profile images. A dip in reflectivity
representing the choriocapillaris between the hyperreflectivity peaks
in the proximal choroid (Ch) and RPE/BM is a noteworthy observation
on the reflectivity profiles in all species. Also, the proximal choroid
displays similar or increased reflectivity compared with the RPE/BM.
The black arrowhead indicates a faint separation line within the
second hyperreflective band as observed on a number of minipig
OCTs. OCT location and SNR: minipig: dorsal, 30; rabbit: ventral, 29;
rat pigmented: dorsal, 33; mouse pigmented: ventral, 29. Axial scale

bars: 50 lm.

TABLE 2. Interrater Agreement j Statistics

Species

Choriocapillaris Visibility Outer Retinal Bands Presentation

j Agreement Indication j Agreement Indication

Minipigs 1.00 Perfect 0.85 Almost perfect

Rabbits 0.93 Almost perfect 0.92 Almost perfect

Rats pigmented 0.75 Substantial 0.90 Almost perfect

Rats albino 0.71 Substantial 0.87 Almost perfect

Mice pigmented 0.77 Substantial 0.95 Almost perfect

Mice albino 0.86 Almost perfect 0.82 Almost perfect
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for murine OCTs.49 ORB presentation was significantly
improved by the presence of melanin pigment in rodents in
our study. Melanin granules (melanosomes) were found to be a
primary source of reflectivity on OCT76 and presence of
melanin affects ORB appearance and reflectivity.77

All OCT B-scans evaluated in this study were acquired with
a Spectralis HRAþOCT system, which is important to note
because the design and processing algorithms of the OCT
system have a large impact on final OCT B-scan quality.78 The
current study’s results and conclusions are thus valid only for
data generated with a Spectralis HRAþOCT system, which is
still useful on a broad scale because the Spectralis HRAþOCT
system is one of the most widely used OCT units on the
market. However, choriocapillaris and connecting vasculature
visibility and ORB discernibility might be different on OCT B-
scans generated with OCT systems from different manufactur-
ers. For example, Tian et al. were able to separately identify the
IZ and RPE/BM bands on OCT B-scans generated by a custom-
built OCT system in rabbits.79 Moreover, the use of swept-
source OCT technology offers reduced sensitivity roll-off with
increased imaging depth. This results in a higher imaging range
and better visualization of choroidal structures, which could
improve choriocapillaris and connecting vasculature visibili-
ty.80 Recent advances and increased clinical use of OCT
angiography (OCTA)81,82 brings the prospect of better
choriocapillaris and connecting vasculature delineation. Al-
though several papers on retinal OCTA exist,83–85 to the best of
our knowledge, no detailed literature focusing on OCTA of the
choriocapillaris is available for the species covered in this
paper.

Agreement for choriocapillaris visibility and ORB presenta-
tion between the two observers was substantial to high in all
species, underlining the reproducibility and reliability of OCT
B-scan scoring and serving as internal quality control.
Longitudinal reflectivity profiles were not used as an objective
end point evaluation tool for the whole dataset to reflect
clinical reality of image display, grading, and interpretation
under daily routine conditions. Furthermore, longitudinal
reflectivity profiles also depend on image quality and threshold
and can only be generated from single or several A-scans at a
time, which introduces selection bias. Also, for some species,
the thickness of different bands varies considerably within a
single B-scan, and the tuning and averaging of the longitudinal
reflectivity profiles over the whole scan range would
theoretically be possible, but only with excessive effort.

All of the OCTs B-scans evaluated in this study were
acquired from animal species that lack a tapetum lucidum, a
specialized inner choroidal structure that reflects light back
toward and through the retina.50,86 The reflective nature of the
tapetum lucidum might interfere with choriocapillaris and
connecting vasculature visibility and ORB discernibility. Similar
future studies in tapetal species including cats and dogs86 are
needed to determine whether the results and conclusions of
the current study also apply to tapetal species of interest to
comparative vision scientists and veterinary ophthalmologists.

In conclusion, the choriocapillaris and its connecting
vasculature are easy and valid markers for identification of
the outer retinal border in minipigs, rabbits, rats, and mice.
The value of these markers is proportionate to their visibility in
individual B-scans (Fig. 4) and could potentially be increased
via acquisition and evaluation of more consecutive serial or
volume B-scans, especially in mice. Ideal ORB presentation in
minipigs was low, with inconsistent visualization of the ELM,
which makes identification of ORB from the choriocapillaris
side inward a more valid approach than searching for the ELM
in swine. Ideal ORB presentation was best in the area centralis
and the visual streak area of minipigs and rabbits, respectively.
Ideal ORB presentation was higher in pigmented mice and rats

compared with albino mice and rats. Proper and consistent
outer retinal margin and ORB identification are essential for
reproducibility and translation of research results. As such, the
observed differences in choriocapillaris visibility and ORB
presentation between species, strains, and anatomic locations
need to be taken into account when performing qualitative and
quantitative OCT evaluations in comparative ophthalmic
research.
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