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Abstract

In this thesis, we discuss the importance of causal knowledge in healthcare for tailoring
treatments to a patient’s needs. We propose three different causal models for reason-
ing about the effects of medical interventions on patients with HIV and sepsis, based
on observational data. Both application areas are challenging as a result of patient
heterogeneity and the existence of confounding that influences patient outcomes.

Our first contribution is a treatment policy mixture model that combines nonpara-
metric, kernel-based learning with model-based reinforcement learning to reason about
a series of treatments and their effects. These methods each have their own strengths:
non-parametric methods can accurately predict treatment effects where there are over-
lapping patient instances or where data is abundant; model-based reinforcement learn-
ing generalises better in outlier situations by learning a belief state representation of
confounding. The overall policy mixture model learns a partition of the space of het-
erogeneous patients such that we can personalise treatments accordingly.

Our second contribution incorporates knowledge from kernel-based reasoning di-
rectly into a reinforcement learning model by learning a combined belief state represen-
tation. In doing so, we can use the model to simulate counterfactual scenarios to reason
about what would happen to a patient if we intervened in a particular way and how
would their specific outcomes change. As a result, we may tailor therapies according to
patient-specific scenarios.

Our third contribution is a reformulation of the information bottleneck problem for
learning an interpretable, low-dimensional representation of confounding for medical
decision-making. The approach uses the relevance of information to perform a sufficient
reduction of confounding. Based on this reduction, we learn equivalence classes among
groups of patients, such that we may transfer knowledge to patients with incomplete
covariate information at test time. By conditioning on the sufficient statistic we can
accurately infer treatment effects on both a population and subgroup level.

Our final contribution is the development of a novel regularisation strategy that
can be applied to deep machine learning models to enforce clinical interpretability. We
specifically train deep time-series models such that their predictions have high accuracy
while being closely modelled by small decision trees that can be audited easily by med-
ical experts. Broadly, our tree-based explanations can be used to provide additional
context in scenarios where reasoning about treatment effects may otherwise be diffi-
cult. Importantly, each of the models we present is an attempt to bring about more
understanding in medical applications to inform better decision-making overall.
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Chapter 1

Introduction

1.1 General Motivation

Machine learning has enabled us to answer many questions and vastly revolutionised
several disciplines such as computer vision. The majority of these tasks have been tack-
led using training sets of data and prediction functions to identify a set of associations
in the data. While associations may be useful for making accurate predictions, in fields
such as medicine however, the driving questions are most often not associational, but
rather causal in nature (Pearl et al., 2009). For instance, what is the effect of a drug on
a particular individual or population? What would happen if a patient exhibited differ-
ent symptoms to those observed? Does a particular genetic mutation cause resistance
against a certain drug? Each of these questions is rooted in acquiring a deeper under-
standing of the reasons for a particular event, and may thus be referred to as causal
inference or discovery questions. For such questions, understanding the distinction be-
tween association and causation is crucial. To illustrate the difference here, consider the
following example from Guo et al. (2018). When temperatures are high, an ice-cream
shop owner may observe both high sales and high electricity bills. While there may be
a strong association between the electricity bill and sales, it is unlikely that the elec-
tricity bill is the cause of high sales. This could be demonstrated by observing what
happens if the lights are left on for a prolonged period of time. Evidently, there would
be no impact on sales. Rather, the association between sales and the electricity bill
may be explained by a common cause variable or confounder, namely the temperature:
If temperatures are high, there is a higher demand for ice-cream and more electricity
is required to cool the increased supply. In this example, conducting an experiment
to distinguish between cause and association is straightforward. In practice however,
performing such experiments to reason about potential causes is not always possible.
Causal discovery questions are generally challenging and cannot be answered solely on
the basis of data, since they require some knowledge of the underlying data generating
mechanism (Pearl et al., 2009).

To distinguish between tools for associational modelling and causal modelling, Pearl
(2018) introduces a 3-level hierarchy based on the kind of information required to an-
swer questions at each level. The three levels are: i) Association, ii) Intervention and
iii) Counterfactuals. Table 1.1 illustrates this hierarchy, as well as examples of ques-
tions at each level. For instance, the first level identifies statistical relations solely on
the basis of data, and can thus be used to determine associations. These are quantities
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such as correlations, odds ratios, risk ratios and statistical dependencies (Pearl et al.,
2009). Since questions at the first level are entirely associational, they can typically
be addressed with existing machine learning techniques such as regression. The next
level, Intervention, focuses on understanding the effects of causes. Specifically, it re-
quires not only observing existing data, but actively doing something to reason about
the effects of interventions. The final layer, namely counterfactuals, may be used to
reason about the causes of effects. Questions at this level involve retrospection and typ-
ically cannot be answered using associational or interventional information alone; for
example, given a control experiment where patients are assigned particular treatments,
we usually cannot re-execute the experiment to see what would have happened had
the patient been treated otherwise. Rather, these questions require explicitly modelling
the underlying data generation procedure and using such a model to make inferences.
Overall, the hierarchy may viewed as directional since questions from a particular level
can be addressed if information from that level or subsequent levels is available. That
is, a model for counterfactuals can be used to address questions concerning the effects
of interventions and identify associations, but the opposite does not necessarily hold. A
schematic representation of this relationship is shown in Figure 1.1. Here, accounting
for interventions by reasoning about their effects and learning causal models subsumes
the task of identifying associations and making predictions.

Level Typical Activity Typical Questions Examples

1. Association Seeing What is? What does a symptom tell us
P (y|x) e.g. Regression How does X about the disease?

change my belief in Y ?

2. Intervention Doing, What if? What if I take aspirin, will
P (y|do(x), z) Intervening What if I do X? my headache be cured?

e.g. Reinforcement Learning

3. Counterfactuals Imagining, Was it X that caused Y ? Was it aspirin that
Px(y|x′, y′) Retrospection What if I acted differently? stopped my headache?

e.g. Structural Causal Models

Table 1.1: The 3-level hierarchy of tools for modelling causality (Pearl, 2018). P (y|x)
is the probability of outcome Y = y given an observation X = x. P (y|do(x), z) refers
to the probability of Y = y given that we explicitly intervene and set X to x and
subsequently observe Z = z. Here, Px(y|x′, y′) refers to the probability of Y = y had X
been x given that we observe X as x′ and Y as y′.

One of many principled ways to formulate queries concerning causation is using
Structural Causal Models (SCMs)(Pearl, 1995, 2009). In its general form, an SCM
denoted (U ,V, F ) consists of two sets of variables U and V, and a set of functions fi
that define or simulate how values are assigned to Vi ∈ V. For example, vi = fi(u, v)
describes the process of how vi is assigned a value based on the values u, v and the
function fi. The variables U are known as exogenous noise variables whose values
are determined by external influences beyond the model, while the variables V are
endogenous variables whose values are defined by other variables in the model. SCMs
are frequently illustrated as causal graphs that capture the causal relationships over the
variables. In the past, SCMs have found applications across domains such as economics
(e.g. Imbens (2004)), social sciences (e.g Duncan (1975); Goldberger (1972); L. Morgan
& Winship (2007)) and education (e.g. Dehejia & Wahba (1999); Hill (2011a); LaLonde
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(1986)).

Figure 1.1: Illustration of the relationship between causal and associational modelling
(adapted from Peters et al. (2017)). Causal models can be used to make predictions
about the effects of interventions or (in some cases) counterfactual claims about a sys-
tem. This requires modelling dependence relations as well as performing interventions,
and hence subsumes probabilistic reasoning. Standard probabilistic models can account
for associations but not for interventions. The orange boxes indicate how these models
relate to Pearl’s hierarchy.

1.2 Causal Inference for Personalised Medicine

In this thesis, we focus on the role of causal knowledge in healthcare, particularly for
personalising treatments to a patient’s needs. The fundamental question we address is:
What is the effect of a therapy on a particular patient? We study this question in the
context of two healthcare applications, namely treating patients with sepsis and Human
Immunodeficiency Virus (HIV). We specifically introduce different causal models for
this purpose. These models may be viewed as tools from either the Intervention or
Counterfactual level in Pearl’s hierarchy. In the following sections, we briefly introduce
both healthcare applications and identify the major challenges in these domains. We
subsequently embed these in the context of causal inference and machine learning, and
highlight the key contributions of this thesis.

1.2.1 Human Immunodeficiency Virus

HIV1 is a retrovirus that currently affects more than 36 million people worldwide and
causes Acquired Immune Deficiency Syndrome (AIDS) (UNAIDS, 2015). If untreated,
HIV attacks and destroys the immune system by causing progressive loss of white blood

1In this thesis we restrict our focus to HIV-1.
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cells, such as CD4+ T-lymphocytes. The gradual destruction of the immune system
leaves a patient vulnerable to opportunistic infections that frequently result in death.

Figure 1.2: The viral genome of HIV. The Pol region serves as an active site for PIs,
RTIs and Integrase Inhibitors (Freed, 2004).

To date, the only practical treatment for HIV is through life-long administration of com-
binations of antiretrovirals, known as Highly Active Antiretroviral Therapy (HAART),
that target various phases of the viral life cycle. There are currently more than 20 drugs
in use for HAART (Günthard et al., 2016). These may be classified as: Entry/Fusion
Inhibitors, Reverse Transcriptase Inhibitors (RTIs), Integrase Inhibitors and Protease
Inhibitors (PIs). Entry Inhibitors try to stop viral entry into an immune cell (De Clercq,
2009). RTIs bind to the virus’s reverse transcriptase enzyme, thereby preventing the
virus from converting its genomic material into DNA. Integrase Inhibitors prevent the
viral DNA from integrating with the host’s genome by inhibiting the function of the
integrase enzyme in the virus (Lusic & Siliciano, 2017). Protease inhibitors target the
formation and assembly of viral proteins that are crucial for assembling new viral par-
ticles (Hammer et al., 2006). Figure 1.2 illustrates the target sites of these drugs on the
HIV genome. Overall, advances in drug therapies since the introduction of HAART in
1996, have meant that many individuals are able to suppress viral loads below detection
limits (< 40 copies/ml) and sustain immune functionality for prolonged periods of time.

1.2.2 Challenges with Treating HIV

High Mutagenicity. Despite the introduction of new antiretrovirals, the high evolu-
tionary dynamics of the virus enable it to escape drug pressure by acquiring resistance
mutations (Mansky & Temin, 1995). Resistance to a particular drug may also result
in resistance to other drugs from the same family; this is known as cross-resistance
(Thompson et al., 2010). This, together with the large number of available therapy
combinations makes manually searching for an effective therapy particularly challeng-
ing.

Patient Heterogeneity. HIV may be classified into four groups, M, N, O and P
(Robertson et al., 2000). Of these, group M accounts for the majority of the global
pandemic and consists of ten different subtypes, A-K. However, many new recombinant
strains can be formed from further recombination between subtypes in a host. Overall,
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HIV’s high rate of mutation means that a patient may harbour many genetically hetero-
geneous populations that continue evolving. As a result, causal inference is important
to tailor treatments to a patient’s individual responses.

Influence of Confounding Factors. Existing sources of HIV data are high-dimensional
and frequently biased by several confounding factors such as different treatment back-
grounds, varying levels of therapy experience, demographics, and the occurrence of co-
infections e.g. tuberculosis. These factors necessitate causal inference to reason about
patient outcomes and administer appropriate therapies.

1.2.3 Sepsis

Sepsis is a complex multi-system disease resulting from the body’s inflammatory re-
sponse to infection (Brand et al., 2017). Treating patients suffering from sepsis is par-
ticularly challenging since they tend to exhibit a myriad of symptoms, depending on
the nature of infection. In spite of this heterogeneity, sepsis is typically characterised
by conditions such as a rapid rise or fall in body temperature, an elevated heart rate
(known as tachycardia), vasodilation, hypotension and an elevated white blood cell
count (Polat et al., 2017; Singer et al., 2016). The most severe form of sepsis, known
as septic shock, occurs when patients experience severe hypotension that potentially
results in organ dysfunction or failure. Septic shock is one of the leading contributors to
mortality in the ICU with global estimates of between 20 and 30 million cases annually,
and mortality rates typically exceeding 50% (Napolitano, 2018; Polat et al., 2017). As
a result, sepsis is frequently viewed as a medical emergency that requires immediate
intervention.

Treatments for sepsis vary depending on the underlying nature of infection, and
in practice there is often little consensus about how patients should be treated (Peng
et al., 2019). However, antibiotics, intravenous fluid resuscitators, corticosteroids and
mechanical ventilation are typically necessary for combating hypotension and tachycar-
dia (Hajj et al., 2018). When fluid resuscitation alone fails, vasopressors are frequently
administered to restore adequate blood pressure and correct for excessive vasodilation
(Brand et al., 2017). Depending on the severity of infection and loss of blood pressure,
a number of vasopressors may be administered concurrently. These include dopamine,
epinephrine, phenylephrine and vasopressin however, norepinephrine is frequently used
as a first-line therapy (Brand et al., 2017). Overall, administering vasopressors for treat-
ing sepsis is particularly challenging, since vasopressors are associated with a number
of dangerous outcomes such as fluid overload, kidney failure, high blood pressure and
irregular heartbeat, all of which can have severe implications on a patient’s mortality.

1.2.4 Challenges with Treating Sepsis

Patient Heterogeneity. The primary challenge of treating patients with sepsis is
the lack of consensus as to what symptoms characterise the disease. Overall, sepsis can
occur as a result of bacteria, viruses or parasites, severe trauma, pneumonia or other
infections, and patients with each of these conditions may exhibit a wide variety of
clinical and physiopathological symptoms (Polat et al., 2017). For these reasons, there is
no universal diagnosis of the disease. As a result, the definition of sepsis has progressively
evolved over the past thirty years to include new signs and symptoms (Napolitano, 2018).
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Currently, an ICU patient may be classified as septic if they experience the following
conditions: i) an increase in their sequential organ failure assessment score (known as
SOFA) of more than 2 points; ii) a systolic blood pressure of less than 100 mmHg; iii) a
respiratory rate of more than 22; iv) an altered mental state of less than 15 defined by
the Glasgow Coma Scale (GCS) (Singer et al., 2016). Still, these criteria are difficult
to use in practice and may not necessarily promote an understanding of the underlying
disease process. In such scenarios, causal reasoning is important to understand how
patients should be treated.

Influence of Confounding Factors. While sepsis is associated with a high mortality
rate, it is also common for sepsis survivors to be re-admitted to hospital shortly after
they are discharged. Not only do these patients have a higher chance of infection,
but also have higher levels of inflammation – factors that may ultimately compromise
quality of life and affect long-term life expectancy (Shankar-Hari et al., 2016). That
is, a patient’s outcomes following sepsis typically reflect a complex interplay between
several factors such as their demographics, treatments in ICU, post-ICU care and the
nature of initial infection. In such cases, identifying these factors and correcting for
their influences may provide a better understanding of the disease and inform more
effective interventions. Like with HIV, observational data of patients suffering from
sepsis may be useful to promote such an understanding of the disease however, these
too are biased by confounding. As a result, causal inference is crucial to be able to
reason about patient outcomes and infer appropriate treatment strategies.

1.3 Contributions and Outline of the Thesis

Our overall aim is to understand the effect of a therapeutic intervention on a patient
with HIV or sepsis. Consequently, our work is rooted in three closely related themes
namely, causal inference, explainability and decision-making. In this thesis, we examine
the relationship between these themes. In particular, we view both explainability and
decision-making in light of causal inference as shown in Figure 1.3. While the use of
machine learning in everyday systems is becoming increasingly common, the ability of
a system to explain its reasoning is crucial in high-stake domains such as healthcare.
That is, if we can interpret or explain why a system makes its predictions, we can verify
whether or not this reasoning is correct (Doshi-Velez & Kim, 2017). Unfortunately
however, there is little agreement on what model explainability is and how it should
be evaluated. Similarly, in domains where decision-making is challenging, we usually
require a deeper understanding of the effects of executing a particular decision before
determining a suitable course of action. Causal reasoning may be helpful for tackling
both of these issues simultaneously.

This thesis is divided into roughly three parts. In the first part of the thesis, we
examine the problem of HIV therapy selection. Here, we show how tools from the
Intervention layer of Pearl’s hierarchy such as reinforcement learning (RL), can be com-
bined with existing methods for associational modelling to reason about the effects of
therapies. While in the past, the problem of HIV therapy selection has been stud-
ied extensively using regression methods, coupling this associational knowledge with
RL enables us to personalise HIV therapies on the basis of a patient’s history, while
simultaneously accounting for the effects of confounders. In the second part of this
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Figure 1.3: Illustration of the relationship between causal inference, decision-making
and explainability. Explanations can aid decision-making if they are easy to under-
stand and simple enough to be parsed. Similarly, reinforcement learning may be used
to provide explainable recommendations via policies that are easy to step through,
thus aiding decision-making. Causal inference is important for both explainability and
decision-making since knowledge about interventions and their effects enables us to
obtain meaningful explanations and informs better decisions.

thesis, we additionally study the problem of treating patients with sepsis. Here, we
consider an alternative view to counterfactuals known as decision-theoretic causality
which, like tools from the Intervention layer, enables us to directly examine the effects
of an intervention. Specifically, we learn a low-dimensional compact representation of
confounding that allows us to accurately estimate the effects of a therapy where only
partial information is available. Finally, in the last part of this thesis, we introduce a
new tree-based regularisation strategy for medical decision-making such that humans
may step through and understand the predictions a system makes. Using both HIV and
sepsis as application domains, we show that such explainability is important as it may
shed light on the effects of interventions and allow us to tailor therapies to a patient’s
responses accordingly.

Having presented a brief overview of the thesis, we provide a detailed roadmap of
how this thesis is structured. Chapter 2 serves as a general introduction to causal
inference and provides an overview of two different perspectives of the field, namely
the potential outcomes framework and decision-theoretic causality. We specifically show
how both these views are related to Pearl’s 3-level hierarchy and the theory of SCMs,
as well as how they relate to each other. In the second part of Chapter 2, we introduce
the RL framework which serves as the basis for two of our contributions in this thesis.
In particular, we show that RL may also be expressed in terms of an SCM under certain
conditions, thereby establishing a link between the Interventional and Counterfactual
layers of the hierarchy. We subsequently describe how to perform inference and evaluate
policies with such a model.

In Chapter 3, we present our first contribution where we combine RL with tools for
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associational modelling in a mixture-of-experts model to learn treatment policies for
patients with HIV. In particular, the mixture-of-experts selectively alternates between
a non-parametric expert and a parametric RL expert to personalise therapies according
to a patient’s particular needs. This approach is extended in Chapter 4 where we
present our second major contribution. Here, instead of combining therapy policies as
we do in Chapter 3, we directly incorporate the knowledge from associational modelling
into an RL model to learn a more powerful causal model that we can use to generate
counterfactuals and perform ‘what-if’ reasoning. This model allows us to simultaneously
address patient heterogeneity and account for the effects of confounding. We then show
how such a model can be used to infer state-of-the-art treatment strategies for both
HIV and sepsis.

While the work in Chapter 3 and 4 combines different representations of causal
knowledge with machine learning to learn better treatment policies, in Chapter 5 we
shift our focus to learn better representations of confounders themselves. Specifically, we
introduce our third major contribution, a variant of the Information Bottleneck method
(Tishby et al., 2000) to learn a low-dimensional latent compression of confounding, and
show how such a compression enables us to estimate both the average and specific causal
effects of an intervention, even where covariate information is incomplete at test time.
We subsequently apply this method to several benchmark problems as well as the tasks
of treating sepsis and HIV.

Chapter 6 describes our final contribution where we introduce tree-based regularisa-
tion to optimise models for human simulatability. Importantly, this technique enforces
that the predictions made by a model are explainable in terms of small decision-trees
which can be traced through and audited. We demonstrate the importance of such ex-
plainability for decision-making and understanding treatment effects on both HIV and
sepsis tasks. The thesis is concluded in Chapter 7 with a summary and a discussion on
limitations of our work, as well as future research directions.

1.4 List of Publications

The following papers have resulted from some of the work presented in this thesis.

• Cause-Effect Deep Information Bottleneck For Systematically Missing Covariates
Sonali Parbhoo, Mario Wieser, Aleksander Wieczorek, Volker Roth
Under review, 2019.

• Regional Tree Regularization for Interpretability in Black Box Models
Mike Wu, Sonali Parbhoo, Michael C. Hughes, Ryan Kindle, Leo Celi, Maurizio
Zazzi, Volker Roth, Finale Doshi-Velez
Under review, 2019.

• Intelligent Policy Mixing for Improved HIV-1 Therapy Selection
Sonali Parbhoo, Jasmina Bogojeska, Mario Wieser, Fabricio Arend Torres, Maur-
izio Zazzi, Susana Posada Cespedes, Niko Beerenwinkel, Enos Bernasconi, Manuel
Battegay, Alexander Calmy, Matthias Cavassini, Pietro Vernazza, Andri Rauch,
Karin J. Metzner, Roger Kouyos, Huldrych Günthard, Finale Doshi-Velez, Volker
Roth
Under review, 2019.
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• Generative Subspace Learning Under Irrelevance Constraints in Continuous Do-
mains
Mario Wieser, Sonali Parbhoo, Aleksander Wieczorek, Volker Roth
Under review, 2019.

• Determinants of HIV-1 Reservoir Size and Long-Term Dynamics
Nadine Bachmann, Chantal von Siebenthal, Valentina Vongrad, Teja Turk, Kathrin
Neumann, Niko Beerenwinkel, Jasmina Bogojeska, Jacques Fellay, Volker Roth,
Yik Lim Kok, Christian Thorball, Alessandro Borghesi, Sonali Parbhoo, Mario
Wieser, Jurg Boni, Matthieu Perreau, Thomas Klimkait, Sabine Yerly, Manuel
Battegay, Andri Rauch, Matthias Hoffmann, Enos Bernasconi, Matthias Cavassini,
Roger Kouyos, Karin Metzner, Huldrych Günthard.
To appear in Nature Communications, 2019.

• Greedy Structure Learning of Hierarchical Compositional Models
Adam Kortylewski, Aleksander Wieczorek, Mario Wieser, Clemens Blumer, An-
dreas Morel-Forster, Sonali Parbhoo, Volker Roth and Thomas Vetter.
To appear at CVPR, 2019.

• Improving Counterfactual Reasoning with Kernelised Dynamic Mixing Models
Sonali Parbhoo, Omer Gottesman, Andrew Slavin Ross, Matthieu Komorowski,
Aldo Faisal, Isabella Bon, Volker Roth, Finale Doshi-Velez
PLoS One, Volume 13, Number 11, 2018.

• Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Finale
Doshi-Velez
In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.

• Combining Kernel and Model Based Learning for HIV Therapy Selection
Sonali Parbhoo, Jasmina Bogojeska, Maurizio Zazzi, Volker Roth, Finale Doshi-
Velez
AMIA Summits on Translational Science Proceedings, 2017.

• Bayesian Markov Blanket Estimation
Dinu Kaufmann, Sonali Parbhoo, Aleksander Wieczorek, Sebastian Keller, David
Adametz, Volker Roth
In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, 2016.



Chapter 2

Related Work

2.1 Introduction

In the first chapter, we discussed the notion of causality and its relevance for estimating
treatment effects in the context of both HIV and sepsis. In particular, we emphasised the
difference between seeing and doing using Pearl’s hierarchy: Seeing involves passively
observing a system in its natural condition; conversely, doing concerns the resulting
behaviour of a system when it is disturbed upon active intervention. However, despite
the widespread usage of statistics to address queries about association and seeing, there
is little consensus as to how queries of causation and doing should be formalised. As
a result, over the years several different formalisms for causal inference have been pro-
posed. One such formalism is SCMs that we introduced in Chapter 1. In this chapter
we focus on two different formalisms of causality, namely statistical decision theory and
the potential outcomes framework. We specifically discuss the main theoretical concepts
required for understanding the subsequent work presented in this thesis. We also draw
links between causal inference and other machine learning methods for decision-making
such as reinforcement learning, as well as supervised learning that appear in Chapters
3, 4 and 6.

2.2 Confounding and Simpson’s Paradox

In healthcare, Randomised Control Trials (RCTs) are frequently viewed as the ‘gold
standard’ for addressing causal questions and performing inference. The basic idea is to
divide a set of patients into treatment and control groups. Patients from the treatment
group are treated with a drug of interest, while patients from the control group are not
allocated an intervention (termed a placebo control). The effects of the drug may then be
assessed by comparing the outcomes of patients receiving treatment with the outcomes
of those that do not. However, controlled experiments suffer from several drawbacks:
they are expensive to conduct, may be ethically infeasible, are frequently susceptible to
patient dropouts, and must typically be performed over several years. Alternatively, we
must rely on observational data to draw inferences. However, in observational studies,
the conditions across treatment groups may differ from those conditions we are interested
in, and the characteristics of the individual subjects may not directly be comparable
(Dawid, 2007a). As a result, it may be difficult to assess whether a particular effect is
a direct result of an intervention or a consequence of other uncontrolled causes.

10
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Consider the example of treating kidney stones (Charig et al., 1986). Table 2.1 shows
the success of surgery (treatment A) vs. percutaneous nephrolithotomy (treatment B).
While at first, treatment B seems appears more successful, it tends to be prescribed to
patients with smaller, less severe, kidney stones. Is treatment B more effective, or is
its success rate a consequence of being applied selectively to milder conditions? If we
further divide the data on the basis of stone size, treatment A now achieves a better
success rate for both patients with large and small kidney stones. This is known as
Simpson’s paradox (Simpson, 1951).

Treatment Overall Patients with small stones Patients with large stones

A 78% (273/350) 93% (81/87) 73% (192/ 263)

B 83% (289/350) 87% (234/270) 69% (55/80)

Table 2.1: Illustration of Simpson’s paradox. Treatment B appears better overall despite
performing worse on patients with both large and small kidney stones (Charig et al.,
1986).

Causal inference entails drawing conclusions based on responses to such interventions
(Dawid, 2010). At its core, causal reasoning is centred around the concept of confound-
ing. The example in Table 2.1 demonstrates the occurrence of confounding, where an
observed outcome in the data may be a true effect, but may also be a result of several
other factors that vary with the actual cause. These factors may sometimes be referred
to as confounding variables whose consequences distort the true effect of an intervention.
Together, the overall infeasibility of performing RCTs and the prevalence of confounding
in observational data requires formalising the principles of causal inference.

2.3 Formal Frameworks For Causality

Several formal frameworks for causality have been proposed over the last few decades in
an attempt to improve the rigour in addressing causal questions. These include graphical
representations or causal diagrams, functional causal models, counterfactual models or
models based on potential outcomes, and models based on statistical decision theory.
We briefly describe each of these here before presenting more details in subsequent
sections.

Graphical representations and causal diagrams are directed graphs that are used to
visualise the causal relationships between variables in a model. Various different graphi-
cal representations have been proposed in e.g. Dawid (2002); Hernán & Robins (2006b);
Pearl (2009). Functional causal models represent outcomes or effects of an intervention
as a function of direct causes and some noise (Dawid, 2007a). In general, functional
models assume that causal relationships can be represented entirely using deterministic
functional equations; probabilities are introduced specifically under the assumption that
certain variables are unobserved (Pearl, 2009). That is, the outcome is entirely deter-
ministic given complete knowledge of the direct causes. SCMs are based on the idea of
functional relationships, but coupled with graphical representations. Statistical mod-
els, unlike functional models, assume that there is always a degree of uncertainty that
must be modelled, irrespective of whether a variable is observed or not. In particular,
the decision-theoretic view of causal inference is based on probabilities and statistical
modelling where the effect of a treatment is seen as the difference between two different
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probability distributions (Dawid, 2007a). Finally, counterfactual models measure causal
effects as the difference between outcomes for an individual had they both taken and not
taken the treatment (Sekhon, 2008). By definition, both of these outcomes cannot be
observed simultaneously on a unit level, which necessitates joint probabilistic modelling
of the underlying data distribution in order to make inferences1.

Each of these frameworks has its merits, however we focus particularly on the
decision-theoretic view of causal inference, and the counterfactual or potential out-
comes perspective here. These formalisms differ in that they address different kinds of
questions: the former can be used to address questions about effects of causes and is
the primary focus of this thesis. In particular, when posing an effects-of-causes query,
we ask a hypothetical question such as: What would happen to my condition if I take
a drug? We can also consider alternative scenarios such as: What would happen to my
condition if I do not take the drug? Conversely, the potential outcomes view (Rubin,
1974) can be used to address questions about causes of effects. These are questions
such as: What would have happened to my condition had I not taken a drug? or Was it
because I took a drug that I observed certain outcomes? The scenario is slightly differ-
ent since the action has already been taken and an outcome has been observed (Dawid,
2007a). The query is counterfactual since it contradicts the fact that a certain action
was taken in reality. Both of these frameworks may also be combined with graphical
representations of causal models in order to make inferences. The subsequent sections
describe these formalisms in more detail.

2.4 Graphs and Conditional Independence

We assume the reader is familiar with basic probability theory as described for instance
by Klenke (2013). We also assume some familiarity of basic concepts in probabilistic
graphical models, and graph theory such as d-separation (as in Koller & Friedman
(2009)), but re-iterate some of these definitions where necessary. In particular, the
properties of independence and conditional independence are crucial to understanding
causality. We formalise these concepts here.

Definition 2.4.1 (Conditional Independence). A random variable X is independent of
another random variable Y under the distribution P if P (X ∈ X |Y ) = P (X ∈ X ) for
any set X of X. Two random variables X and Y are conditionally independent given
a third random variable Z if and only if P (X ∈ X |Y, Z) = P (X|Z). We denote this as
X ⊥⊥ Y |Z.

Note that independence occurs as a special case of conditional independence where
the conditioning variable Z is trivial or constant. The key properties of conditional
independence can be found in Dawid (1979a,b). These properties are usually represented
in terms of graphs. In particular, we consider the notion of a Directed Acyclic Graph
(DAG) which allows us explicitly to visualise the specific dependence relations among
a set of variables.

1SCMs may also be used as counterfactual models as presented in Chapter 1. Here, uncertainty
is introduced specifically under the assumption that one outcome is unobserved. This relates back to
Figure 1.1 in Chapter 1.
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Definition 2.4.2 (Directed Acyclic Graph). Let G = (V, E) be a graph of vertices V :=
{1, . . . , p} corresponding to random variables X = (X1, . . . , Xp) with joint distribution
P . G is called a DAG if there is no pair (Xj , Xk), for which directed paths from Xj to
Xk or Xk to Xj exist.

Conditional independence between two random variables in a DAG may be indicated
by the absence of an edge between their corresponding vertices in a DAG. Note that
the DAG representation satisfying a set of conditional independence properties is not
necessarily unique.

Definition 2.4.3 (Markov Equivalence). Two DAGs are termed Markov equivalent if
they represent identical collections of conditional independence relations.

Figure 2.1: Illustration of Markov equivalence. Both DAGs represent the same condi-
tional independences: W ⊥⊥ X|Y, Z and Z ⊥⊥ Y |X.

Examples of two Markov equivalent DAGs are illustrated in Figure 2.1. Importantly,
conditional independence is a symmetric relationship since X ⊥⊥ Y |Z =⇒ Y ⊥⊥ X|Z.
However, a DAG representation by nature consists of directed edges between variables,
thus implying a non-symmetric relationship between the nodes. This is a mere artefact
of the graphical representation and should not be interpreted in terms of causes and
effects (Dawid, 2010). To avoid ambiguity we refer to such DAGs as probabilistic DAGs.

2.4.1 Interventions and Causal Graphs

Thus far, we have informally described the concept of an intervention in terms of ad-
ministering treatments. In order to distinguish between probabilistic DAGs and graphs
representing causes and effects, we formalise this notion here.

Definition 2.4.4 (Intervention). An intervention refers to a forced change in a system
that explicitly assigns a random variable X to a particular value x, written as do(x)2.
The effects of an intervention on a random variable Y can be defined by the interven-
tional distribution P (Y |do(x)). Note that in general, P (Y |do(x)) 6= P (Y |X = x).

2An in-depth discussion of do-calculus is beyond the scope of this thesis. We refer the reader to Pearl
(1995, 2012a) for a detailed treatment.
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At this point, we distinguish between the observational regime in which no interventions
are performed, denoted by the indicator F∅, and the interventional regime, where we
intervene on a random variable X and do(x). We denote the latter as FX hereafter.

In order to distinguish between probabilistic DAGs and DAGs that are capable of
representing interventions and their effects, Definition 2.4.2 is extended in Dawid (2010)
to include vertices that represent non-random regime variables.

Definition 2.4.5 (Influence Diagram). An influence diagram is a probabilistic DAG
that is extended to include non-random regime variables (indicated as squares) in addi-
tion to the nodes representing domain variables (indicated as circles).

Influence diagrams that include interventional regime nodes FX are termed augmented
DAGs (Dawid, 2010). A particular instance of augmented DAGs is a Pearlian DAG
(Pearl, 1995).

Definition 2.4.6 (Pearlian DAG). A Pearlian DAG G is an augmented DAG, where
for every random variable X there exists a corresponding intervention node FX and an
arrow pointing from FX to X. An arrow from random variable X to Y in such a graph
has a causal interpretation i.e X causes Y . Pearlian DAGs may thus also be referred
to as causal graphs.

X

ZY

FX

FY FZ

Figure 2.2: Illustration of a Pearlian DAG. Every random variable has a corresponding
interventional node.

An example of Pearlian DAG is shown in Figure 2.2. It should be noted that while
Pearlian DAGs have become a popular framework for causal reasoning, both Pearlian
DAGs and augmented DAGs are special forms of influence diagrams that are frequently
used in the decision-theoretic perspective of causality3.

2.4.2 Causal Identification and The Backdoor Criterion

Evidently, estimating the causal effects on the basis of observational data requires cor-
recting for confounding bias. This process is known as causal identification. Causal
identification is formalised in Guo et al. (2018) in terms of the interventional distribu-
tion as,

3Note that augmented DAGs are Pearlian DAGs are not the only means of representing causal
relations. Other representations include functional graphs. A detailed discussion of these representations
is beyond the scope of this thesis. We refer the reader to Dawid (2007a) for an in-depth treatment of
these.
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Definition 2.4.7 (Causal Identification). A causal effect is identifiable if and only if
the interventional distribution can be expressed as a function of probability distributions.

The implication of this definition is that in order to identify the true causal effects of an
intervention, we must account for irrelevant effects. In order to correct for confounding,
one may estimate causal effects on subgroups where instances are homogenous with
respect to confounding. Analogously, Pearl (2009) formulates this in terms of the back-
door criterion.

Let G be a Pearlian DAG and V ⊂ G be a set of observed variables from a non-
experimental data set. Assume we would like to estimate the effect of interventions
do(X = x) on a set of outcome variables Y , where X,Y ⊂ V. The back-door criterion
provides a graphical test that can be applied to a Pearlian DAG to assess whether a
subset Z ⊆ V of variables suffices in identifying the true causal effect. A back-door
path in a Pearlian DAG is a directed path or set of edges from Xi to Xj with an arrow
leading into Xi (Pearl, 2009). The back-door criterion may then be formalised as follows
(Pearl, 2009).

Definition 2.4.8 (The Backdoor Criterion). A set of variables Z in G satisfies the
back-door criterion relative to an ordered pair of variables (Xi, Xj) if and only if:

• No node in Z is a descendant of Xi, and

• Z blocks all back-door paths between Xi and Xj.

Equivalently, if X and Y are two disjoint subsets of vertices V in G, then Z satisfies
the back-door criterion relative to (X,Y ) if it satisfies the criterion relative to any pair
(Xi, Xj) where Xi ∈ X and Xj ∈ Y .

The first condition of the backdoor criterion is equivalent to having no back-door paths
from Z to Xi. This generally occurs in randomised studies. The second condition may
hold in observational studies as well. Overall, the backdoor criterion is fairly powerful
as it can be used to identify whether there is confounding in a causal graph, and what
variables must be conditioned on to correct for such confounding. That is, if Z satisfies
the back-door criterion, it can be used to adjust for confounding and computing the
causal effect of X on Y . This result is summarised in Theorem 2.4.1.

Theorem 2.4.1 (Backdoor Adjustment Theorem). If a set of variables Z satisfies the
back-door criterion relative to (X,Y ) then the causal effect of X on Y is identifiable
and is given by

∑
z P (y|x, z)P (z).

2.5 Statistical Decision Theory for Causal Inference

This section discusses the decision-theoretic framework of causal inference. This per-
spective is rooted in basic concepts from probability theory and statistics. We refer to
Dawid (2012) for the material throughout this section.

Consider the following example of a simple decision problem. Suppose I have a
headache and I want to know whether taking an aspirin will help. This could be viewed
as a statistical decision problem that consists of a non-stochastic decision variable T
corresponding to the decision to treat with aspirin (T = t) or not to treat (T = c), and
a stochastic outcome Y representing my outcomes in terms of e.g. the length of time
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Figure 2.3: Tree representation of a decision problem (Dawid, 2012).

that the headache lasts for after I make decision T . For both treatment choices, I am
uncertain about Y . This uncertainty in outcomes may be modelled using probability
distributions. The decision-theoretic view of causal inference considers two separate
distributions of outcomes given the treatment or control, Pt and Pc, and explicitly
computes a loss L(y) I suffer based on the true outcomes Y = y for each action choice.
The choice to treat with t is made using Bayesian decision theory if,

EY∼Pt [L(Y )] ≤ EY∼Pc [L(Y )], (2.5.1)

where E represents the expectation over a particular distribution. That is, I should take
an aspirin if EY∼Pt [L(Y )]−EY∼Pc [L(Y )] < 0. The decision problem may be illustrated
in terms of a decision tree shown in Figure 2.3. The arms in the decision tree correspond
to the treatment decisions and respective outcomes.

This example of choosing whether or not to treat a headache with aspirin is rooted
in causal inference since we would like to know: What is the effect of the causal action
of taking treatment T on outcomes Y ? Our goal in this setting is then to estimate the
Average Causal Effect (ACE) of T on Y . If we assume FT = t or FT = c define the
interventional regimes, and FT = ∅ the observational regime, the ACE is given by,

ACE := E[Y |FT = t]− E[Y |FT = c]. (2.5.2)

Importantly, because of its dependence on the interventional distributions, the ACE is
considered a causal quantity rather than an associational one. Graphically, this may be
illustrated as the difference between the means of two distributions as in Figure 2.4.
Equation 2.5.2 shows that it is possible to assess the ACE in the interventional regime.
However, in reality we are given purely observational data from which we would like
to infer the causal effects. Hence we would like to be able to extend the notion of the
ACE to the observational regime FT = ∅. The subsequent sections discuss when this is
possible, and how the ACE can be computed in these cases.

2.5.1 Estimating Treatment Effects with No Confounding

In some cases, it is possible to ignore the treatments assigned to patients. This occurs
in certain situations such as randomised control studies. Here, we can use the obser-
vational distribution to estimate causal effects without having to correct for the effects
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Figure 2.4: Illustration of the ACE. The ACE is the difference in average outcomes over
interventional distributions FT = t (treated) and FT = c (untreated).

of confounding or biases. This property can be referred to as no confounding (Dawid,
2012), ignorable treatment assignment (Rosenbaum & Rubin, 1983), or no unmeasured
confounding. In this case, the ACE may be computed by simply replacing the interven-
tional distributions in Equation 2.5.2 with their observational counterparts. That is,
the ACE is given by,

ACE := E[Y |T = t, FT = ∅]− E[Y |T = c, FT = ∅]. (2.5.3)

No confounding may be illustrated in terms of the causal graph shown in Figure 2.5.
Evidently, in this case we can ignore the interventional distribution FT as the back-door
criterion in Definition 2.4.8 is satisfied and Y ⊥⊥ FT |T .

FT T Y

Figure 2.5: Causal graph of ignorable treatment assignment.

2.5.2 Estimating Treatment Effects with Confounding

In observational studies, we will almost always have confounding. In such scenarios, the
ignorable treatment assignment assumption may not be directly applicable. However
when we cannot assume ‘no confounding’, we might be able to tell an alternative story in
terms of an additional set of variables U that, once conditioned on, ensure that we have
no residual confounding. For example, consider the scenario where we have data from
an observational study on patients that are treated by a particular doctor allocating
treatments based on his own observations U of the general health of the patient. If we
consider U to be the complete set of observations on a patient the doctor takes into
account, it may be plausible to assume that there is no residual confounding. That is,
Y ⊥⊥ FT |U, T . In this situation, U is measured before the treatment decision is made
and is termed an unconfounder. Because U is a pre-treatment variable, it has the same
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distribution in both interventional regimes FT = c and FT = t. Importantly, if we can
observe U , P (Y |U,FT = i) = P (Y |U, T = i, FT = ∅) for i = t or c. In this case, U is
known as a sufficient covariate. This scenario is illustrated in Figure 2.6.

Two specific instances of unconfounding occur when either arm α or arm β in Figure
2.6 is removed. In the former case, the sufficient covariate has no impact on the choice
of treatment i.e T ⊥⊥ U |FT . This occurs when variables U that may have affected the
decision did not in fact do so. This scenario is equivalent to a randomised study and we
can treat it as such where T ⊥⊥ U |FT = ∅. The latter case arises when Y ⊥⊥ U |T and the
outcome does not in fact depend on U . This scenario is equivalent to no confounding.

Figure 2.6: Causal graph of a sufficient covariate U .

In general however, if U is a sufficient covariate, we can use the back-door criterion
(Pearl, 2009) to replace the interventional distribution with its observational counterpart
and compute the ACE. In this case, the ACE may be computed in terms of the Specific
Causal Effect (SCE). We formalise this concept as follows:

Definition 2.5.1 (Specific Causal Effect). The Specific Causal Effect (SCE) of T on
Y (relative to U) is the random variable

SCE(U) := E[Y |U,FT = t]− E[Y |U,FT = c] (2.5.4)

:= E[Y |U, T = t, FT = ∅]− E[Y |U, T = c, FT = ∅]. (2.5.5)

The SCE is a random variable whose value is the average causal effect in the group of
individuals with covariate U = u and is thus sometimes referred to as the Conditional
Average Causal Effect4. Because the SCE in Equation 2.5.4 is defined in terms of
the interventional regime, it is considered a causal quantity. However, given sufficient
covariate U , Equation 2.5.5 in Definition 2.5.1 shows that the SCE can also be estimated
from observational data alone. Analogously, given the SCE, the ACE can be computed
as,

ACE := E[SCE(U)|FT = ∅] (2.5.6)

Overall, since the decision-theoretic approach to causal inferences tackles the effects-
of-causes question, it may be seen as part of the Intervention layer of Pearl’s 3-level
hierarchy. In the next section, we present an alternative approach to causal inference
namely the potential outcomes framework. Unlike the decision-theoretic approach, the
potential outcomes approach addresses the alternative causes-of-effects question and can
be viewed as part of the Counterfactual layer of Pearl’s hierarchy.

4If the group only consists of one individual, the SCE is analogous to the Individualised Causal Effect
in the Potential Outcomes framework.
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2.6 The Potential Outcomes Framework

The decision-theoretic approach to causal inference assumes we have a single response
variable Y but different probability distributions for different regimes. An alterna-
tive formulation that is frequently used for modelling counterfactuals is the potential
outcomes framework (Rubin, 1978; Splawa-Neyman, 1923, 1990). In contrast to the
decision-theoretic approach, the response variable Y has several copies, each corre-
sponding to the treatment variable T , but having a single joint distribution P . Assume
we have two choices of taking a treatment t, and not taking a treatment (control) c. Let
Yt denote the outcomes under t and Yc denote outcomes under the control c. The coun-
terfactual approach assumes that there is a pre-existing joint distribution of potential
responses P (Yt, Yc). This joint distribution is hidden since t and c cannot be applied
simultaneously. Applying an action t thus only reveals Yt, but not Yc. In this setting,
computing the effect of an intervention involves computing the difference between when
an intervention is made and when no treatment is applied (Morgan & Winship, 2015;
Pearl, 2009). We would subsequently choose to treat with t if,

E[L(Yt)] ≤ E[L(Yc)] (2.6.1)

for loss L over Yt and Yc respectively. In this formulation, if there is no confounding,
we can estimate the treatment effect if there is probabilistic independence between
Y = (Yt, Yc) and T . This corresponds to the decision-theoretic setting where Y ⊥⊥ FT |T .

A key distinction between the potential outcomes framework and the decision-
theoretic approach to causal inference is the concept of the Individualised Causal Effect
(ICE) Dawid (2012). Let I denote the individuals or instances for which we wish to
define the causal effect. The ICE may be formalised as follows.

Definition 2.6.1 (Individualised Causal Effect). Assuming binary treatments, the In-
dividualised Causal Effect (ICE) for i ∈ I is defined as

ICE(I) := Y i
t − Y i

c , (2.6.2)

for potential outcomes Y i
t and Y i

c .

Note that the ICE has no immediate counterpart in the decision-theoretic setting
(Dawid, 2012). Given the definition of the ICE, it is possible to extend this to the
ACE over the treated individuals and those that serve as controls. Here, the ACE may
be calculated as,

ACE := E[ICE(I)] =
1

|I|
∑
i∈I

Y i
t − Y i

c , (2.6.3)

where |I| denotes the size of the population (Guo et al., 2018). This is similar to
Equation 2.5.6 in the decision-theoretic setting. However, unlike the decision theoretic
setting, the key difficulty with the potential outcomes framework is existence of the so-
called ‘fundamental problem of causality’: we can never simultaneously observe Y i

t and
Y i
c for an individual i. As a result, there are parts of the bivariate distribution P (Y ) that

cannot be learned on the basis of data alone. This was discussed in Chapter 1. Thus
in such a setting, we require additional knowledge of the underlying data generating
process. Hence in the potential outcomes setting, additional assumptions often have to
be made in order to infer the effects of an intervention. We briefly describe two such
assumptions (apart from the notion of unconfoundedness or no confounding) in what
follows (Guo et al., 2018).
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The Stable Unit (Instance) Treatment Value Assumption (SUTVA) This
assumption requires that there are a) well-defined levels of treatment, and b) there is
no interference. a) shows that for two different instances i and i′ ∈ I, their treatment
variables are identical if they receive the same treatment. b) indicates that the potential
outcomes for an individual i are independent of the potential outcomes of another
individual i′.

Consistency This assumption means that the value of the potential outcomes does
not vary according to how the treatment is observed or how an intervention is assigned.

Note that the decision-theoretic setting is largely free of such assumptions, and one
may choose to either assume or not assume such conditions according to a particular
scenario (Dawid, 2012).

2.7 The Backdoor Criterion and Supervised Learning

2.7.1 Regression Adjustment

The backdoor criterion from Section 2.4.2 enables us to determine how to learn causal
effects by adjusting or conditioning on a set of variables that block all backdoor paths. In
the case where all confounders are measured, one way to perform such an adjustment is
via regression. If we consider the potential outcomes approach from the previous section,
this entails inferring counterfactual outcomes using supervised learning. Specifically we
can use a set of features or covariates X and treatment T to fit P (Y |X,T ). When all
backdoor paths are blocked, no confounding bias remains. Counterfactual outcomes
may be computed by considering treatments that differ to those taken. For instance, if
we consider the simple case of treatment t and control c, if a patient i receives t, the
outcomes are given by P (Y i

t |X,FT = t), while the counterfactual outcomes are given
by E[P (Y i

c |X,FT = c)]. Alternatively, one may consider fitting two separate functions
for estimating both potential outcomes. The ACE may subsequently be computed as,

ACE := E[Ŷt
i − Ŷc

i|X,FT = ∅], (2.7.1)

where Ŷ i
t and Ŷ i

c are the regression estimates for Yt and Yc respectively. The key
assumption of the potential outcomes framework is that outcomes Y = (Yt, Yc) have a
pre-existing joint distribution. However, fitting two separate functions for estimating
both potential outcomes and computing the ACE using these is analogous to Equation
2.5.3 in the decision-theoretic setting, where T = t or T = c.

2.7.2 Propensity Analysis

The regression approach for identifying causal effects suffers from several problems. In
particular, if we have very different values of covariates for treatment and control groups,
there may be little overlap between the two groups which makes it difficult to compare
them. In such a case, the results will be highly sensitive to the particular regression
model and any other apriori assumptions. Propensity score methods are an alternative
to adjusting for observed confounding using regression (Horvitz & Thompson, 1952).
They are based on the idea of statistical matching. The primary goal of matching is
to reduce bias in observational studies by mimicking randomisation such that we can
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determine for every patient receiving treatment, a similar non-treated patient that is
comparable across all observations. Here, a set of observational data is divided into
strata and each stratum is subsequently viewed as a randomised study (Guo et al.,
2018). In doing so, the ACE is identifiable and can be computed over each stratum.
The key difficulty arises when strata are imbalanced i.e. contain data for only treated
or untreated individuals, since the ACE cannot be computed in this case.

Several weighting methods have been proposed to overcome the problem of imbal-
anced strata. These are primarily rooted in the idea of a propensity score (Horvitz &
Thompson, 1952). Assuming we have binary treatment T , outcomes Y and covariates
X, the propensity score may be defined as the conditional probability of receiving treat-
ment on the basis of the covariates, P (T |X) (Rosenbaum & Rubin, 1983). Propensity
scores may be computed by training a classifier as in standard supervised learning to
predict the likelihood of receiving treatment on the basis of a covariate set. A popu-
lar example of this is using the logistic function as described by Rosenbaum & Rubin
(1983). Given such a propensity score, different methods of propensity score weight-
ing have been proposed to address data set imbalance. These include propensity score
matching (PSM) and inverse probability treatment weighting (IPTW) (Guo et al., 2018).

PSM pairs each treated instance with a group of comparable, non-treated instances
with similar propensity score estimates (Abadie & Imbens, 2011). Upon matching, the
ACE can be estimated as the average over the difference between the outcomes observed
for the treated and control groups. Several different approaches to matching propensity
scores exist, such as nearest-neighbour or kernel matching, stratification matching and
Mahalanobis matching (Becker & Ichino, 2002). The overall idea of these is to express
the outcome for a treated individual as a weighted combination of the outcomes in a
similar group.

Unlike matching, IPTW (Hirano et al., 2003; Horvitz & Thompson, 1952) tries to
use all data but down-weight or up-weight instances such that a randomised control
trial may be synthesised (Austin, 2011). This is accomplished by weighting instances
according to the inverse of the probability of treatment received or the inverse of the
propensity score. The weight wi is frequently given by,

wi =
T i

P (T i|Xi)
+

1− T i
1− P (T i|Xi)

, (2.7.2)

where T i and Xi denote the treatments assigned, and covariates corresponding to in-
stance i (Guo et al., 2018). Given wi for both treatment and control groups, the ACE
may subsequently be estimated as the weighted averages over outcomes in these groups.

Recall that in Section 2.5, we introduced the decision-theoretic perspective of causal-
ity and showed that identifying the sufficient covariate enables us to transfer knowledge
from an interventional regime to an observational setting to estimate treatment effects.
Importantly, the sufficient covariate is not necessarily unique (Dawid, 2012). As a re-
sult, once we identify such a sufficient covariate, it may be possible to further reduce
some information in the covariate. Propensity analysis might be used for this purpose.
In Chapter 5, we present an alternative perspective using the Information Bottleneck
Principle (Tishby et al., 2000) that allows us not only to perform a sufficient reduction of
the covariate to infer treatment effects, but also allows us to further reduce the covariate
if required while maintaining sufficiency. Unlike propensity analysis, the Information
Bottleneck takes into account the relevance of information in order to perform such a
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reduction.

2.8 Reinforcement Learning and Causal Inference

In this section, we shift our focus to RL and decision-making and describe the impor-
tance of causal knowledge for RL systems. RL is a machine learning paradigm in which a
decision-maker or agent interacts with an environment to learn a task (Sutton & Barto,
1998). Typically, this interaction consists of three components: a state summarising
the current situation of the environment, an action (equivalent to an intervention) that
allows an agent to intervene in the environment, and a reward outcome produced by
the environment that provides the agent with feedback on its choice of intervention at a
particular time. The overall aim of RL is to determine a series of interventions or policy
such that the future reward outcomes may be maximised (Sutton & Barto, 1998). As in
the previous sections, this involves reasoning about the effects of interventions. While
the theory of RL is largely based on engineering techniques used in process control
problems and planning, it relies on certain causal assumptions and can be formulated in
terms of SCMs (Bellman, 1958), thereby allowing us to connect both the Interventional
and Counterfactual levels of Pearl’s hierarchy in Chapter 1. Next, we show how RL
may be formalised and draw these connections.

The basic setup of an RL problem consists of an agent interacting with an environ-
ment to learn a task. At a particular time5 t, the agent finds itself in state st from
a set of possible states S describing the condition of the environment; the agent takes
an action or performs an intervention at ∈ A defined by a policy π(at|st), observes a
reward outcome rt ∈ R with expectation R(st, at), and moves to a subsequent state
st+1 based on a transition function T (st+1|st, at). This process is repeated such that
the agent continues to collect rewards. Together, the states, actions, rewards and envi-
ronment dynamics constitute a Markov Decision Process (MDP). That is, an MDP is a
tuple M = (S,A, T ,R).

The agent’s goal in RL is to maximise the cumulative reward over the future (or the
return),

R =

∞∑
t=0

γtrt, (2.8.1)

where γ ∈ [0, 1] is a discount factor that favours immediate rewards.

Evidently, the problem of tailoring treatments to a patient’s needs (e.g. for HIV or
sepsis) may be formulated as an RL problem wherein, a patient finds themselves in a
particular state of health, based on which a doctor can prescribe certain therapies and
observe patient responses. Given such a series of interactions between the patient and
the doctor, the overall aim of the doctor is to deduce a suitable therapy policy for the
patient such that their outcomes (e.g. chances of survival) may be optimised in the
future. This goal may also be formulated in terms of a value function that describes
how good it is to be in a particular state. The value function, V for a particular policy
π, is given by,

V (s) = E [R|s0 = s] . (2.8.2)

5To avoid confusion, we use t to denote time steps, while t denotes treatment assignments as in the
decision-theoretic and potential outcomes frameworks.
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Alternatively, it is often more useful to estimate the value of a state-action pair, Q(s, a),
that determines how good it is to be in a particular state and take a certain action.
This is given by,

Q(s, a) = E [R|s0 = s, a0 = a] . (2.8.3)

The optimal action a∗ from a state s is the one that maximises the value function
Q(s, a),

a∗ = arg max
a

Q(s, a). (2.8.4)

Importantly, the environment satisfies the Markov Property, such that both transitions
from one state to another and rewards are independent of the agent’s history based on
the current state and action. This enables us to re-express Equation 2.8.3 recursively
as a Bellman Equation,

Q(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a)
∑
a′

π(a′|s′)Q(s′, a′), (2.8.5)

where s′ and a′ denote future states and actions respectively. Here, the first term
describes the immediate return while the second corresponds to the discounted expected
future reward under a policy π. Equation 2.8.5 may be optimised thus,

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a) max
a′

Q∗(s′, a′), (2.8.6)

where we replace π∗(a′|s′) with arg max′aQ(s′, a′). This equation forms the foundation
for learning optimal intervention policies and therapy planning.

2.8.1 Formulating Reinforcement Learning as a Causal Model

RL methods may sometimes be divided into model-based and model-free learning (Sut-
ton & Barto, 1998). Model-based methods explicitly construct a model of the agent’s
interaction with the environment to estimate the value function. Model-free methods
try to estimate the value function directly on the basis of experience, However, since
both model-based and model free methods rely on the concept of a state (which may
or may not be hidden), causal knowledge plays an important role in both methods
of learning (Gershman, 2017). Specifically, RL assumes the following causal relations
hold: the state and action cause the reward outcome; the state and action cause the
subsequent state; in partially observable cases, the hidden state causes an observation
outcome. Consequently, it can be shown that MDPs may be formulated as SCMs. In
this case, the following structural equations hold,

at = π(st−1) + εt,

rt = R(st, at) + εt′ ,

st = T (st−1, at) + εt′′ . (2.8.7)

Note that in this form, rewards and transitions are viewed as functions, R : S ×A → R
and T : S × A → S, rather than probabilities (or probability distributions) as in the
classical formulation of RL, where knowledge about noise terms εt, εt′ , εt′′ , allows us to
specify the MDP completely. In general, Equations 2.8.7 may be replicated for all time
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steps.6 Given this formulation, it is possible to restate the goal of RL as learning a policy
π∗ such that a sequence of interventions FT = {a1 = FT1, a2 = FT2, . . .} maximises
E[R|FT ]. Based on this, there are two primary strategies to causal inference using
reinforcement learning, namely online learning and off-policy learning. Both online
learning and off-policy learning play an important role in the models we develop in
Chapters 3 and 4. We briefly provide an overview of both types of learning.

2.8.2 Online Learning

Online learning occurs where an agent actively performs an experiment or intervention
themselves (Bareinboim, 2018). In this case, the agent receives as input a series of
experiments and observes outcomes. For instance, a doctor may actively intervene with
FT and observe patient outcomes now in terms of a R. Given the set of experiments
and corresponding outcomes for subjects i, {FT i, Ri}, the agent learns the probability
of outcomes P (R|FT ). Based on this, it is straightforward to estimate E[R|FT ] through
a series of randomised experiments as in a RCT as in Figure 2.6 where α is removed, or
via MDPs or partially observable MDPs (POMDPs) (Bareinboim, 2018).

In the next two chapters, we explicitly make use of online search algorithms such as
forward search that enable policy execution and action planning in a reinforcement learn-
ing setting. Importantly, at each stage of these algorithms, we may actively intervene
by performing a particular action and simulate experience following such interventions,
analogous to performing interventions via experimentation. In doing so, we may also
generate counterfactuals, since we can adjust our interventions to explore alternative
scenarios via simulation. This procedure is analogous to using SCMs for counterfactual
reasoning.

2.8.3 Off-Policy Learning and Evaluation

Frequently, an agent uses the retrospective observational data based on another agent’s
actions to either learn an optimal policy or evaluate a particular policy of interest. This
is termed off-policy learning/evaluation. Here we are given a set of input samples rather
than experiments, and corresponding outcomes, {FT i, Ri}; the agent again learns the
probability of outcomes P (R|FT ). However, because the estimate E[R|FT ] is based off
the data from other agents operating under unknown policies, this requires additional
assumptions that the same variables were randomised and the situations or contexts were
similar (Bareinboim, 2018). Off-policy learning is important across several domains
such as healthcare, where active experimentation is not possible to collect samples
(Schulam & Saria, 2017). The key challenge is to use the sequence of states, actions and
rewards of an agent operating under some unknown behavioural policy, πb, to estimate
the reward under a target policy of interest, πe (Schulam & Saria, 2017). Evidently,
this requires adjusting for the difference in observational and interventional regimes as
discussed earlier in this chapter. To do so, off-policy algorithms rely on variants of
reweighting or matching strategies similar to IPTW to estimate the expected reward.
Conceptually, all these estimators try to identify a subset of the data where πb coincides
with πe and assign weights to samples such that they appear as if they were drawn

6In this form, MDPs may also be viewed as a sequence of contextual bandits, where the context is
an endogenous variable that depends on previous states and actions (Bottou et al., 2013).



2.9. CONCLUSION 25

from the policy of interest πe. In this thesis, we make use of importance sampling (IS),
weighted importance sampling (WIS) and doubly robust (DR) estimators. The classic
IS estimator (Kahn & Marshall, 1953; Koller & Friedman, 2009; Rubinstein, 1981) over
the value function V of policy πe is given by,

V̂ πe
IS =

1

N

N∑
n=1

whnRhn , (2.8.8)

where hn is the history of a patient n, Rhn is the total reward accumulated over the
patient’s history, and whn is an importance ratio that reflects how relevant the nth

sample is for estimating V πe
IS . Here, histories that are unlikely are given a smaller

weight when evaluating a policy. The importance ratios whn (Precup, 2000) may be
computed according to,

whn =

Thn∏
t=0

πe(a
hn
t |shnt )

πb(a
hn
t |shnt )

, (2.8.9)

where Thn denotes the number of time steps in history n, and πe(a
hn
t |shnt ) and πb(a

hn
t |shnt )

are the probabilities of taking action ahnt from a state shnt at time t under the evaluation
and behavioural policies respectively. Evidently, when a clinician’s policy differs signif-
icantly from the evaluation policy of interest, the corresponding importance weight will
be small. Since the IS estimator is unbiased but prone to high variance, a variant known
as weighted-IS is often used for off-policy evaluation. This estimate can be computed
as a weighted average of the samples,

V̂ πe
WIS =

1
N

∑N
n=1w

hnRhn

1
N

∑N
n=1w

hn
. (2.8.10)

The doubly robust off policy evaluation scheme (DR) (Jiang & Li, 2015; Thomas &
Brunskill, 2016) further attempts to reduce the variance (with potentially additional
bias) by adding control variates. Specifically, it combines IS estimates from Equation
2.8.9 with an approximate (regression) model of the action-value Q̂πe and value V̂ πe

based on a held-out set. The estimated value of πe can then be computed using,

V̂ πe
DR = V̂ πe +

N∑
n=1

whn(Rhn − Q̂πe(shnt , ahnt )) (2.8.11)

This evaluation scheme works well if either the approximate model or the IS weights
are reasonably accurate. Importantly, all the approaches above require some parame-
terisation of the patient’s history hn to compute the weights in Equation 2.8.9. We will
discuss the specific details of how to apply these strategies in our evaluation in Chapters
3 and 4.

Additionally, one may directly compare the differences in expected reward under
the behavioural policy and the evaluation policy. This difference in expected reward is
in some senses, conceptually similar to the ACE of applying the proposed evaluation
policy vs. the observed behavioural policy. Specifically,

∆ := Eπe [Rhn ]− Eπb [R
hn ]. (2.8.12)
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Figure 2.7: Summary of causal inference frameworks and methods for estimating causal
effects under measured confounding.

2.9 Conclusion

This chapter presented an overview of the key concepts that form the basis of our con-
tributions of this thesis. A schematic representation of these is shown in Figure 2.7.
Specifically, in this chapter we presented an overview of various perspectives to causal
inference and highlighted the assumptions and distinctions between each of these frame-
works. We also showed how MDPs can be formulated as SCMs using Equations 2.8.7.
The implication of this are that RL models may also be used to perform counterfactual
reasoning. We will revisit this idea in the next two chapters. In what follows, we present
each of the key contributions of this thesis and discuss the significance of each of these
in light of medical decision-making and personalised medicine.



Chapter 3

Policy Mixture Models for
Therapy Selection

3.1 Introduction and Background

In this chapter, we present a new model for reasoning about the effects of a series of
interventions on a patient’s outcomes. Our approach combines model-based RL and
kernel-based reasoning in a mixture-of-experts model that partitions the space of pa-
tients on the basis of their individual characteristics, to infer suitable treatments. Recall
that in Chapter 2, we discussed how kernel methods could be used in matching to ad-
just for the effects of confounding. The general idea is to compute treatment effects
for an individual based on similar, comparable instances or nearest neighbours, where
similarity is defined by a kernel function. In contrast, techniques such as model-based
RL that allow us to build causal models, rely on the idea of a state space representation
to capture confounding, and condition on this information to reason about treatment
choices. In doing so, these methods allow us to actively simulate experience much
like performing active interventions via experimentation, such that we can reliably in-
fer patient outcomes. By combining the policies obtained using both approaches in a
mixture-of-experts model, we demonstrate how we can exploit the knowledge from both
methods to learn more effective treatment policies. The work in this chapter is based on
a combination of Parbhoo et al. (2017) and Parbhoo et al. (2019). While the approach
is general enough to be applied to a number of medical contexts, we specifically focus
on HIV.

Overall, significant advances in therapeutics since 1996, have transformed HIV in-
fection from a life-threatening illness to a treatable, chronic condition and have vastly
improved a patient’s chances of survival (Deeks et al., 2013). Despite the availability of
comprehensive treatment recommendations, choosing appropriate interventions in prac-
tice remains a challenging task since much of the success in managing HIV with ART
depends on the mutagenicity of the viral variants infecting an individual. Typically, a
rapid turnover and an error-prone replication cycle mean that HIV is frequently capable
of developing drug-resistant variants in response to drug pressure, which presents a ma-
jor obstacle in establishing effective therapies for a patient, as many treatment options
may be rendered ineffective (Bogojeska et al., 2012; Günthard et al., 2016). This makes
manually searching for a feasible therapy particularly challenging, especially for patients
with long treatment histories.

27
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Since the advent of ART, several studies have proposed using computational tech-
niques to address the challenges associated with HIV therapy selection (e.g Bickel et al.
(2008), Altmann et al. (2007), Rosen-Zvi et al. (2008)). Among these, Altmann et al.
(2007) utilise the evolutionary information of a viral population to construct a tree and
predict a patient’s immediate response on the basis of this tree. Similarly, Revell et al.
(2010) predicts the probability of a short-term reduction of the viral load using random
forests, while Prosperi et al. (2010) integrates HIV genotypic information (from the viral
subtype and mutations with respect to a reference wild type) to predict phenotypic sus-
ceptibility to single drugs. Several methods also focus on examining the dependencies
among mutations as a means of understanding treatment efficacy: in particular, Singh
(2017) use linear combinations of mutations to build a resistance profile on the basis of
which treatments may be selected more effectively, while Beerenwinkel et al. (2007) use
graphical models called Conjunctive Bayesian Networks to formulate the accumulation
of genetic mutations. Perhaps most closely related to our work is the method of Bo-
gojeska et al. (2012), where the authors present a kernel-based regression approach for
predicting whether a particular therapy choice will be successful using a patient’s treat-
ment history and variant information. Specifically, treatment success is characterised
by the viral load dropping below 40 copies/mL after at least 21 days under the therapy.
The premise here is that patients with similar treatment histories are likely to respond
to treatment in a similar way. While some of these approaches aim to understand the
relations among viral variants, the majority of these methods use this information to
classify whether a particular choice of therapy results in a short-term reduction in the
viral load overall. As a result, they fail to account for the sequential, causal nature
of the therapy selection process — that a current choice of therapy may cause drug-
resistant viral variants that are more difficult to control later. Model-based RL methods
make this sequential process explicit: by building a causal model, a treatment policy
is learned via a series of repeated exchanges between an agent (clinician) and an en-
vironment (patient); the agent learns how to take decisions that not only optimise a
patient’s immediate virological response, but also their long-term future outcomes. In
the past, general RL methods have been applied for optimising treatments in several
other medical contexts and simulation scenarios e.g Ernst et al. (2006); Parbhoo (2014);
Pineau et al. (2009); Raghu et al. (2017); Zhao et al. (2009), but reasoning about futures
from limited data has curbed the utility of these in practice.

Here, we present a unified approach to HIV therapy selection that simultaneously
accounts for patient heterogeneity and confounding by combining kernel-based reason-
ing from Bogojeska et al. (2012) with model-based RL. Specifically, we demonstrate
that both of these methods are complementary: kernel methods excel where there is
significant overlap among patients, as they can model the idiosyncrasies in viral re-
sponse specific to those patients. However, their prediction quality drops for patients
that are not part of a tight cluster. In contrast, model-based RL first builds a causal
model of a patient’s expected response to reason about how well a series of interven-
tions will perform. Generally, these models tend to find simpler patterns of response – a
better alternative for patients outside clusters. By combining the policies learned using
both approaches in a mixture-of-experts setting, we demonstrate that we can infer more
effective treatment strategies overall.

In what follows, we present the details of the proposed methodology and show that
our method outperforms both kernel methods and model-based RL alone for the task
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of HIV therapy selection. Throughout this chapter, we assume that all confounders are
measured.

3.2 Model and Inference

In Chapter 2, we introduced MDPs as a mathematical framework for decision-making
in RL. In this section, we consider an extended formulation of MDPs for partially
observable settings known as Partially Observable MDPs (POMDPs) (Kaelbling et al.,
1998) for the task of therapy selection. The primary difference here is that states
are hidden. Like MDPs, POMDPs may also be seen as SCMs and can thus be used to
perform counterfactual reasoning. Assume that we are given a collection D = {hnTn}Nn=1

of N patient histories of length Tn, where each history is composed of a sequence of
interventions a, observations o and rewards corresponding to a patient’s outcomes to
treatments r, such that hnTn = {an1, on1, rn1, . . . , anTn , onTn , rnTn}. The overall problem
of HIV therapy selection may be viewed as identifying a treatment policy πe that takes
as input some parameterisation of the patient’s history hnTn and outputs actions that
will maximise that patient’s expected long-term return E[

∑
t γ

trt]. The approach we
propose here identifies such a policy in two different ways using kernel-based learning and
model-based RL. We subsequently integrate the policies obtained from both methods in
a mixture-of-experts network to learn an optimal policy that is tailored to each patient’s
particular scenario. A schematic overview of the approach is shown in Figure 3.1.

Figure 3.1: The mixture-of-experts framework for HIV therapy selection. We combine
policies at test time using a mixture-of-experts gating network that weights POMDP
and kernel policies for each patient on the basis of their history.
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3.2.1 Learning a POMDP model

Formally a discrete state POMDP consists of the n-tuple {S,A,O, T ,Ω,R, γ}. S,A
and O are sets of hidden states, actions and observations respectively, while T defines
the distribution of next states s′ from state s when taking an action a, and Ω is a
distribution over observations o that occur from state s when taking action a. R specifies
the immediate reward r in a state s when taking action a. Like MDPs, POMDPs can
be seen as SCMs. Specifically, the hidden state may be viewed as a latent cause variable
that, together with interventions, jointly causes rewards, outcomes and transitions (see
Gershman (2017) for a detailed discussion about this). In the SCM formulation of
POMDPs, one may view T ,Ω,R as functions rather than probabilities (or probability
distributions) as in the classical RL formulation, where T andR are defined as described
in Section 2.8.1, while Ω : S × A → O. In this case, the following structural equations
hold for each time step t:

at = π(st−1) + εt,

rt = R(st, at) + εt′ ,

st = T (st−1, at) + εt′′ ,

ot = Ω(st, at) + εt′′′ . (3.2.1)

In general, making decisions in a partially observable setting requires the entire history.
Fortunately, there exists a succinct sufficient statistic for the history: the belief b ≡
P (s|h), the distribution over states given the history. Given the belief bt−1, an action
at, and a new observation ot, the subsequent belief bt can be computed via Bayes’ rule:

bt(s) = Ω(ot|s, at)
∑
s′∈S

T (s|s′, at)bt−1(s′)
P (ot|bt−1, at)

, (3.2.2)

where p(ot|bt−1, at) =
∑

s′∈S Ω(ot|s′, at)
∑

s∈S T (s′|s, at)bt−1(s). Assuming we are
given a reward function R in this setting, the problem of solving a POMDP model may
thus be reformulated as determining an optimal POMDP policy πm via online plan-
ning (e.g forward search) using Equation 3.2.2, once the parameters T ,Ω are learned.
Model-based RL methods typically interleave between these two phases. To learn the
POMDP model, we take a Bayesian approach by using available histories to estimate
the parameters T and Ω. The basic procedure may be summarised as follows.

1. Sample a set of states using Forward Filtering Backward Sampling (Carter &
Kohn, 1994)

2. Sample transition parameters T from a Multinomial Dirichlet.

3. For a continuous observation setting, sample the emission parameters Ω from a
Normal Inverse Wishart where for each state i, we have

µi,Σi ∼ N (y|µi,Σi)N (y|0,Σi)IW (Σi)

4. Alternatively for a discrete observation setting, sample the emission parameters
Ω from a Multinomial Dirichlet.

The procedure above gives us a set of parameters T ,Ω, which together with our reward
function R may be used to perform planning and update our beliefs about our states.
Based on this, we may subsequently infer a POMDP policy. We describe this procedure
next.
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3.2.2 Forward Planning with a POMDP

Given a POMDP model m, we make use of stochastic forward search to learn a suitable
πm. The general idea of online POMDP planners (Ross et al., 2011, 2008) is to construct
a forward looking tree rooted at the current belief bt in order to compute a value
function. At each stage, the tree branches on each action a the agent may take and
the observation o the agent may observe. At each action node, the agent computes
its expected immediate reward R(a) = Es|m[R(·|s, a)]. The value of taking action a in
belief state b(s) is

Q(a, b) = R(a, b) + γ
∑
o

Ω(o|b, a) max
a′

Q(a′, bao), (3.2.3)

where bao is the agent’s belief after taking action a and observing o from belief state b,
and R(a, b) =

∑
s b(s)R(s, a), and the action-value Q(a′, bao) is recursively calculated

down the tree to some depth D. Because our observation space is large in this case, we
approximate the sum above using samples from Ω(o|b, a). Based on the Q-values of the
leaves, we can compute a POMDP policy πm for each belief state b. We combine this
information with the kernel policy from the next section to train our mixture-of-experts
network.

3.2.3 Learning a Kernel Policy

Suppose we are given a set of pairs of patient histories and long-term return {hnt, Rn}.
For each history hnt, we can predict its long-term return R̂ via a non-parametric re-
gression where our predictions are expressed by averaging over nearby histories h′nt as
follows,

R̂′ =
∑
h′nt

k(hnt, h
′
nt)Rn, ∀h′nt ∈ H. (3.2.4)

Here, k(hnt, h
′
nt) ≥ 0 is a weighting kernel function in Reproducing Kernel Hilbert

Space (RKHS) satisfying
∑

h′nt
k(hnt, h

′
nt) = 1, ∀hnt ∈ H, and H represents the set

of patient histories. Intuitively, this implies that one can assess the long-term value of
taking an action a by examining the training data of histories where a has been applied
and weighting over their long-term values; the kernel policy πk is subsequently given
by the distribution of actions a taken over those instances that maximise the predicted
long-term return. Overall, πk and πm from the previous section are aggregated together
an additional set of patient statistics in order to train a mixture-of-experts model. We
describe this procedure next.

3.2.4 Combining Kernel and POMDP Policies in a Mixture of Experts
Model

The mixture-of-experts (Jordan & Jacobs, 1994) is an ensemble method where multiple
learners or experts partition the input space into regions. A gating network is then
used to automatically assign these regions to an expert for prediction. In doing so, two
experts with complementary properties may specialise in different regions of the input
space, allowing us to take advantage of both. In general, a mixture-of-experts model
may be viewed as an associational mixture model where each distribution in a mixture
is instead replaced with a conditional distribution associated with a particular region
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of the input space. The nature of the mixture-of-experts model makes it particularly
suited to the task of HIV therapy selection, where patients exhibit a large amount
of heterogeneity and it is typically difficult for a single model to provide reasonable
predictions across all patients. The kernel expert is able to draw inference from similar
patient groups, and performs well when patients are part of a cluster. The POMDP
expert uses experience to build a simplified model of a patient’s responses over a set of
discrete patient states. The mixture-of-experts combines kernel and POMDP policies
to learn a context-specific policy.

We build a mixture-of-experts network that uses a set of patient statistics about their
history, to map the kernel and POMDP policies from the previous sections to an expert
policy πe. This procedure is illustrated in Figure 3.1. Specifically, the network uses
a vector x, consisting of the length of a patient’s treatment history, lower quantiles of
the distance between a patient and their neighbours, a patient’s gender, age, resistance
mutations and viral load, to learn the weights assigned to the POMDP and kernel
policies, πm and πk, respectively. The mixture-of-experts assigns probabilities to each
expert by learning the weights for each of the features in x. These probabilities are
given by,

pk =
exp(ux+ u0)

exp(ux+ u0) + 1
(3.2.5)

pm = 1− pk (3.2.6)

Given the expert probabilities pk and pm respectively, the mixture of experts policy may
then be defined as,

πe = pkπk + pmπm. (3.2.7)

Specifically, the mixture-of-experts network is trained using the Adam optimiser (Kingma
& Ba, 2014) which depends on various hyperparameters such as the learning rate, batch
size, maximum epochs, and early stopping criterion. We preset the learning rate to
0.01, the maximum number of epochs to 70, the early stopping criterion to 20 and the
batch size to 75 for our experiments which we discuss next.

3.3 Experiments

In this section, we show how the mixture-of-experts model can be applied for learning
a suitable treatment policy in the context of HIV. We subsequently apply off-policy
evaluation using the techniques discussed in Section 2.8.3 to provide a quantitative
assessment of the performance of the learned policies. In what follows, we first detail
the cohorts that we use for training and testing the proposed approach, as well as how
the data from these cohorts was pre-processed for experimentation. We subsequently
discuss how to learn POMDP and kernel-based policies in this context by introducing
a new reward criterion specifically for HIV, and specifying the kernel function we make
use of. Finally, we perform an analysis of the scenarios where the mixture-of-experts
has a higher preference for the POMDP model in comparison to the kernel, and discuss
how this performance changes with modifications to the evaluation strategy and reward
criterion.
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3.3.1 Data Cohorts

We assemble a set for building the mixture-of-experts predictor and its kernel and
model-based components using the EuResist Integrated Database (EIDB) (Zazzi et al.,
2012). Our data set consists of data from 1980 to 2016 of 32 960 HIV-infected patients,
independent of their disease stage or degree of immunosuppression. Detailed information
on patient demographics, mode of HIV acquisition, risk information, clinical events and
treatment are collected. Our inclusion criteria for this study are patients whose complete
viral genotype data is available at baseline, together with CD4+ and HIV viral load
measurements collected and recorded at 6-monthly intervals. We performed roughly a
80%-10%-10% train-test-validation split of this data set to evaluate the performance of
the mixture-of-experts approach presented in this chapter.

In addition to the held-out subset of data from the EIDB used for testing, we as-
sembled an additional independent test set of 9 565 patients from the Swiss HIV Cohort
Study (SHCS). The SHCS is a prospective study established in 1988, with ongoing en-
rolment of HIV-positive patients of ages 16 years and older from seven outpatient clinics
and their affiliated hospitals or private practices in Switzerland. Detailed information
about patient demographics, mode of HIV-infection, risk information, clinical events,
treatments, as well as baseline viral genotype data, blood count and HIV viral load mea-
surements are available at 6-monthly intervals. We consider only those patients from
1988 to 2016. Using two independent sets of patients as test sets enables us to draw
comparisons between the learned treatment policies and assess how well the method
generalises to unseen populations. As features, in addition to the viral genotype, treat-
ment and response data, we include information concerning a patient’s age, ethnicity,
gender, risk group, co-infections and any prior treatments. Variables with excessive
missingness from either data set were excluded from both sets for consistency.

3.3.2 Restricting the Space of Treatments

There are over 20 antiretrovirals available for treating HIV, resulting in a large space
of therapy combinations to explore when optimising treatments. In particular, certain
drugs that were previously used in the past have been phased out or reformulated as
part of single-tablet regimes with other drugs. An obvious way to safe-guard against
obsolete treatments would be to consider only those combinations of drugs consistent
with current drug standards and encode these guidelines as hard constraints in our
model. Unfortunately, this requires removing a significant portion of the data across
both cohorts which impacts on learning. Instead, we restrict the space of treatments
here based on calendar time. Specifically, we consider the 75 most frequently occurring
drug combinations in a period of 10 calendar years and learn separate POMDP and
kernel policies over each decade. Since both data cohorts cover patients from roughly
1980 to 2016, this results in four decades. In doing so, we can predict treatments for a
patient with history h on the basis of current drug standards, as well as earlier standards.
Figure 3.2 (a) shows the distribution of drug combinations across the training data when
the set of treatments is not pruned, while Figure 3.2 (b) shows the distribution of the 75
most frequently occurring combinations of drugs between 1999 and 2000 in the EuResist
set. Evidently, the latter appears significantly more balanced. In general, the pruning
procedure produces similar distributions of therapies across the other decades too.
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Figure 3.2: (a) Distribution of drug combinations across training data. The distribution
of treatments is considerably imbalanced. (b) Pruned distribution of most frequently
occurring drug combinations from 1990 and 2000 across training data. Pruning the
treatment space according to the periods in which drugs have been introduced and
actively used produces a more balanced distribution of therapies.

3.3.3 A Long-Term HIV Success Criterion

Existing approaches to HIV therapy selection focus on a short term reduction in the
viral load below detection limits (e.g Bogojeska et al. (2012)). Here, we propose using
a new reward criterion following Ernst et al. (2006); Parbhoo (2014), that accounts for
both a reduction in viral load as well as mutations and as well a patient’s short term
immune response in terms of CD4+ cells. Specifically,

rt =


−0.7 log Vt + 0.6 logCt − 0.2|Mt|, if Vt is above detection limits

5 + 0.6 logCt − 0.2|Mt|, if Vt is below detection limits

−10 if the patient died,

where Vt is the viral load (in copies/mL), Ct is the CD4+ count (in cells/mL), and
|Mt| is the number of mutations at time t respectively. The reward function penalises
instances where a patient’s viral load increases and rewards instances where a patient’s
CD4+ count increases (more weight is placed on the viral load, as it is an earlier indicator
of whether a therapy is working). We also penalise on the basis of the number of
mutations a patient has at a particular time, as these may ultimately contribute to
resistance and therapy failure. There is also a bonus for if the viral load is below
detectable limits as this is something we would like to sustain over time. Finally, a
large penalty is provided if a patient died during the course of treatment. Summing the
immediate rewards over a patient’s history produces a long-term accumulated return.
In our experiments, we demonstrate that optimising over long-term patient outcomes
in terms of the accumulated return, produces different treatment policies to optimising
for short-term gains. A discussion about the sensitivity of the mixture-of-experts model
with respect to this function is provided in Appendix A.
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3.3.4 Specifying a Suitable Kernel for Therapy Selection

A patient’s prior treatment history is frequently considered a key factor in predicting
the efficacy of subsequent HIV therapies (Prosperi et al., 2010; Revell et al., 2010). In
this light, Bogojeska et al. (2012) train a history alignment model that measures the
similarity between two patient histories or sequences and predicts treatment outcomes
on the basis of this similarity. Here, a sequence refers to a sequence of therapies or
drug combinations taken by a patient over time. Specifically, two therapies are deemed
similar if they are comprised of similar drugs, are administered in a similar order, and
result in similar genomic fingerprints in the viral population. The history alignment
model first constructs a resistance mutations kernel to quantify the pairwise similarities
between different therapy combinations. The kernel assumes that similarity between
the different drug groups is additive, and thus can be assumed to act independently as
each drug class has different modes of actions and therapeutic targets. Bogojeska et al.
(2012) subsequently use the resistance mutations kernel to calculate a therapy sequence
alignment kernel k(h, h′) by adapting the Needleman-Wunsch score frequently used for
assessing the quality of an alignment of a protein or nucleic acid sequences (Needleman &
Wunsch, 1970). The therapy histories h and h′ of two patients are aligned and compared
to assess their similarity. This produces a history alignment kernel. In doing so, the
approach accounts not only for similarity across the genetic fingerprints of potential
latent virus populations, but also similarity across therapy histories. Further details of
this kernel function are provided in the Appendix A.

Bogojeska et al. (2012) use k(h, h′) to train a regression model for predicting therapy
outcomes in terms of short-term virological success or failure. We call this the Short-
Term History Alignment (ST Kernel) model. As described in Section 3.2.3, we can
perform a similar procedure using the long-term return in terms of Equation 3.3.3.
Based on this, we may deduce a kernel policy in terms of the distribution of actions
a taken over those instances that maximise the predicted long-term return. We call
this a Long Term History Alignment (LT Kernel) model. We subsequently combine the
kernel policy obtained using the long-term success criterion with a POMDP policy via
a gating function to learn mixture-of-experts policy.

3.3.5 Results and Discussion

In the following section, we make use of all three of the off-policy evaluation methods
described in Section 2.8.3 in order to assess the performance of each of the policies in
terms of patient outcomes. Importantly, we make the significant assumption that the
belief state from the POMDP is a sufficient statistic for a patient’s history and use
these where necessary to perform off-policy evaluation. We compare the performance
of the mixture-of-experts policy against a kernel expert that uses the long-term reward
criterion introduced earlier (LT kernel), as well as a kernel policy that only optimises
immediate outcomes (ST kernel), a POMDP policy and a random policy in which a
completely random therapy choice is made. In each case, we evaluate the policies
produced across two different test sets. The first test set consists of 3 000 held-out
patients from the EIDB. The second test set contains 9 565 patients from the SHCS.
Estimates of the discounted expected return over a period of 5 years (or forward search
depth of D = 10) for each policy are provided for the EIDB in Table 3.1. A higher value
indicates a better performing treatment policy. A similar set of results for the SHCS is
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shown in Table 3.2.

DR IS WIS

Random –2.31 +− 1.42 –3.48 +− 1.36 –2.80 +− 1.27
ST Kernel 2.17 +−1.4 2.18 +−1.20 2.16 +−1.71
LT Kernel 9.47 +− 1.70 5.72 +− 1.81 6.97 +− 1.29
POMDP 6.04 +− 2.18 4.15 +− 2.28 6.67 +− 1.74

Mixture-of-experts 11.83 +− 1.26 12.50 +− 1.19 11.07 +− 1.21

Table 3.1: Off-policy evaluation using importance sampling, weighted importance sam-
pling and doubly robust methods for different therapy selection models across EIDB test
set (γ = 0.98). Overall, the mixture-of-experts produces the largest immune response
while reducing the viral load.

DR IS WIS

Random –6.33 +− 3.47 –5.57 +− 2.17 –6.18 +− 3.24
ST Kernel 1.64 +−1.86 2.03 +−1.81 2.17 +−1.74
LT Kernel 9.67 +− 1.49 7.38 +− 1.72 7.64 +− 1.92
POMDP 5.46 +− 2.05 6.72 +− 2.88 7.76 +− 2.10

Mixture-of-experts 10.73 +− 1.02 13.59 +− 1.57 11.83 +− 1.31

Table 3.2: Off-policy evaluation using importance sampling, weighted importance sam-
pling and doubly robust methods for different therapy selection models across SHCS
test set (γ = 0.98). The mixture-of-experts produces the largest immune response while
reducing the viral load on a different cohort of patients.

The results from Tables 3.1 and 3.2 show that optimising long-term outcomes pro-
duces different policies to optimising immediate outcomes (choosing treatments based
on the short-term kernel policy results in lower long-term rewards than choosing treat-
ments based on any of the methods that consider the long-term rewards). This suggests
that treatments which may initially be feasible, may result in poor patient outcomes
later on—a result consistent with the occurrence of resistance amongst HIV-infected in-
dividuals. Specifically, resistance against a particular drug may lead to cross-resistance
against another, leading to long-term dependencies in therapy response.

We also compared the performance of these approaches when using the unpruned
set of treatments. These results are provided in the Appendix A in Tables A.3 and A.4.
In both cases, the mixture-of-experts approach still outperforms its kernel and model-
based counterparts, but the performance gains are not as pronounced, particularly for
the SHCS data set.

Interpreting the mixture-of-experts. Regardless of the choice of test data set, the
mixture-of-experts policy significantly outperforms the kernel and model-based policies
alone (p < 0.05). In both cases, the POMDP policy performs worse than the long-
term kernel policy. This suggests that the models tend to make prediction mistakes in
different regions of the input space. Combining the two approaches via a mixture-of-
experts overcomes these issues. A post-hoc examination of the mixture-of-experts policy
shows that the model has a preference for the POMDP policy approximately 28% of the
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time, while relying heavily on the kernel policy for the remaining 72%. These results
are very similar across both cohorts.

Feature Wk

History length 0.3721
Quantile distance 0.4619

CD4+ count -0.0579
Viral Load 0.1846

Age 0.0026
Male -0.0718

PR90M 0.0671
RT215YF -0.0830

Table 3.3: Feature weights for mixture-of-experts gating function. The history length
and quantile distance have the largest weights.

(a) (b)

Figure 3.3: Interpreting the features of the mixture-of-experts network that have the
highest weights. The history length and quantile distances between patients have the
highest weight. The mixture-of-experts prefers the kernel policy for patients with short
histories that are closer and more similar to other patients as shown in (a). The mixture-
of-experts prefers the POMDP policy when patients have longer histories that are dis-
tinct from other patients as in (b).

In order to interpret and understand the behaviour of the mixture-of-experts network for
learning πe, we examine the gating function’s weight parameters Wk for those features
with the highest weights. The features with the largest weights are shown in Table 3.3.
In particular, the quantile distance and history length have higher weights than the
other input features. We further analyse this result by examining when the mixture-of-
experts has a strong preference towards the kernel policy in comparison to the POMDP
policy. These results are shown in Figure 3.3. The mixture-of-experts favours the kernel
policy when patients have similar histories across both data sets. The mixture-of-experts
favours the POMDP policy for outlier patients with longer treatment histories across
both cohorts. These differences are likely a result of the way in which each method
uses a patient’s history to represent confounding for inferring treatment effects: the
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POMDP incorporates this knowledge implicitly through its beliefs and actions, each
influenced by past observations, treatments and mutations. The kernel policy, on the
other hand, suffices where history data is similar to what is seen or where there are
significant overlaps, but does not extrapolate well for outlier cases. This result is largely
consistent with our discussion about kernel matching in Section 2.7.2. In general, while
the belief state representation of confounding in the POMDP may be approximate, this
representation is preferable to mapping a patient to another dissimilar patient, and
following their treatment policy as a result.

Assessing the quality of evaluation. The WIS and DR estimates of the value of
a policy are highly dependent on having a significant number of patient histories in the
evaluation set with non-zero importance ratios whn . We verify that this is indeed the
case for the mixture-of-experts policy where 83% and 76% of the weights have non-
zero values with respect to the EIDB and SHCS data sets. This indicates that at test
time, the vast majority of the data may be used to evaluate the policies learned – an
important factor for building trust in our results. While most of these weights are still
small (in the range of [10−3, 10−2]), there are several samples with weights that are in
the order of 10−1 that are likely to have a much larger effect on the overall evaluation
of the policies learned. These results are shown in Figures 3.4a and 3.4b respectively.

(a) (b)

Figure 3.4: Distributions of frequencies of non-zero IS weights for (a) EIDB and (b)
SHCS data sets respectively. Overall, our treatments are fairly consistent with those in
the data sets since the distributions are relatively balanced.

Clinical assessment of the learned policies. We also assess the learned policies
from the kernel, POMDP and mixture-of-experts approaches for clinical validity. Here,
the learned policies of ART regimens were compared against existing WHO and IAS-
USA clinical guidelines (in terms of the types of drugs administered in different scenarios,
as well as the frequency of drug switching (Carpenter et al., 2000, 1996, 1998; Günthard
et al., 2014, 2016; Hammer et al., 2008, 2006; Thompson et al., 2010, 2012; Yeni et al.,
2002, 2004) as well as the recommendations of clinicians. Specifically, we applied the
guidelines available for a particular year and decade to the respective learned policies
and checked their consistency. Overall, the learned polices are consistent with clinical
guidelines 87% of the time. We further classify whether the learned ART regimen
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follows the a) recommended regimen, b) alternative regimen, or c) a drug combination
in violation of the recommendations of clinicians. These results for both the EIDB
and SHCS are shown in Table 3.4. We examine the baseline characteristics of those
patients with policies in violation of recommendations. Specifically, several patients
with lower CD4+ counts (below 220 cells/mL) at the start of ART were more likely to
receive therapy combinations that violated recommendations. These are less frequently
occurring patients with AIDS-defining symptoms early on in their treatment history
that typically require more nuanced treatment strategies. In these cases, the mixture-
of-experts suggests policies based on the kernel, with fewer drugs (typical for entry-level
patients) since there is a limited history available. Policies for patients initiating ART
between the decade 1980 and 1990 were also more likely to violate recommendations.
This is however, a result of having less training data available for this period.

Period Recommended (%) Alternative (%) Violation (%)

1980-1990 56 17 27
1990-2000 73 11 16
2000-2010 80 19 1

2010 – 84 11 5

Average violation (%) – – 12.25

Table 3.4: Percentages of mixture-of-expert policies in violation with clinical recom-
mendations.

In general, we observe that first-line therapies from the mixture-of-experts consist of
mostly NNRTIs and NRTIs. This is consistent with clinical guidelines that typically
recommend combining 1 NNRTI with 2 or more NRTIs for first-line therapy (Günthard
et al., 2014). For second-line therapies, the mixture-of-experts frequently prescribes
PI-boosted NRTI drug combinations which is also consistent with clinical guidelines.

3.4 Conclusion

In this chapter, we developed a new method for reasoning about the effects of a sequence
of interventions to learn a suitable treatment policy. Our contribution highlights that
parametric and non-parametric approaches have complementary strengths for reasoning
about the effects of interventions: the non-parametric kernel approach can accurately
estimate treatment effects where there is considerable overlap between patient instances
or where data are abundant; in contrast, learning a parametric causal model using RL
can generalise better about treatment effects in situations that are not frequently ob-
served. We attribute this difference directly to the way in which model-based RL and
the kernel approach use a patient’s history and represent confounding: the POMDP in-
corporates this knowledge implicitly in its beliefs, each influenced by past observations,
treatments and mutations, which when conditioned on can be used to learn treatment
effects, while the kernel approach tries to match patients according to a similarity mea-
sure for the same purpose. Our mixture-of-experts approach combines parametric and
nonparametric approaches to personalise treatment policies according to a patient’s
particular characteristics and hence outperforms both approaches individually.

Most importantly, while we have combined non-parametric and parametric models
for causal inference and learning treatment policies, the overall mixture-of-experts ap-
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proach could also be more broadly applicable as a procedure for off-policy evaluation in
general. Here, the kernel weights may be viewed as a variant of PSM while the para-
metric model (in this case a POMDP) could serve as an estimate of the value function
much like in doubly robust off-policy evaluation in Equation 2.8.11. This is a partic-
ularly interesting direction of research since it allows us to reformulate the problem
of off-policy evaluation in terms of planning. A direct application of this would be to
use the mixture-of-experts approach as an off-policy evaluation strategy rather than a
treatment planning strategy to rank existing clinical policies in different scenarios.



Chapter 4

Dynamic Mixture Models for
Counterfactual Reasoning

4.1 Introduction

In the previous chapter, we combined the policies obtained from using parametric causal
models and non-parametric kernel-based reasoning in a mixture-of-experts setting to
reason about the effects of a series of interventions on a patient and personalise treatment
policies for individuals with HIV. In this chapter, we instead try to combine both of these
approaches to build a new causal model for simulation. Simulation-based approaches
to disease progression are generally desirable as they allow us to make counterfactual
predictions about the effects of an untried series of treatment choices. However, in
healthcare and medicine, building accurate simulators (e.g using causal models) for
disease progression is challenging, hence limiting the practical utility of these approaches
for real world treatment planning. Here, we show that our approach learns state-of-the-
art treatment policies and can make accurate forward predictions about the effects of
treatments on unseen patients. The majority of the work presented in this chapter is
based on Parbhoo et al. (2018a). As before, we assume all confounders may be measured.
Since much of the material in this chapter builds on work in the previous chapter, there
may be some overlap but the overall model we present in this chapter is different and
uses a different algorithm hence warranting a separate discussion.

Despite progress in machine learning methods for clinical decision support (e.g. Che
et al. (2015); Choi et al. (2016); Miotto et al. (2016)), machine learning algorithms
usually operate as uninterpretable black-boxes which clinicians are often hesitant to
trust and adopt as tools. Given this context, simulation-based approaches to managing
disease progression are appealing because they allow us to make counterfactual predic-
tions about the possible future outcomes associated with different treatment options.
Especially in high-stakes decisions, simulatability can help guide and audit recommen-
dations. For example, a clinician who sees that the current set of HIV treatments will
lead to future drug resistance, may choose a different set of therapies. Alternatively, an
intensivist may see a physiologically implausible blood-pressure trajectory accompany-
ing a treatment recommendation and correctly decide to ignore the recommendation.
In this way, simulations provide a complementary context than a set of guidelines or
recommendations.

At its core, building a simulator requires building a model. In disease progression

41
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modelling, we commonly posit that a patient has some underlying (and unobserved)
disease state s that evolves according to the choice of treatments or actions a they take,
governed by some transition function T (s′|s, a). We assume that we cannot observe the
true state of the patient, and can only measure partial observations o, governed by some
probability function Ω(o|s, a). For example, in an oncology setting, the true disease
state s might be patient’s cancer stage, while the observations o might be measured
biomarkers and symptoms such as fatigue or weight loss. Given the model, we may
subsequently use it to forward simulate potential histories and identify the most optimal
treatments.

Unfortunately, disease progression is complex, and building models accurate enough
for making decisions is challenging. Thus in many treatment recommendation settings,
kernel-based regressors are much more common (e.g. Bogojeska et al. (2012), Rabinowitz
et al. (2005), Seibert et al. (2007)). These approaches work by identifying similar pa-
tients and recommending the (usually one-step ahead) action that worked best for those
similar patients. Kernel-based regressors have also been built into models: Fukumizu
et al. (2013); Nishiyama et al. (2012) and Boots et al. (2013) all build dynamical system
models that predict the patient’s next physiological state based on the next-states of the
patient’s nearest neighbours. Using this kind of non-parametric predictor, rather than
being confined to some parametric model, greatly improves model accuracy, especially
if the underlying dynamics are complex and the data are dense.

However, kernel-based approaches to building models still have an important failure
mode: because they work by matching patients with similar conditions, they perform
poorly for patients with uncommon conditions. This limitation is an important concern
for healthcare applications of kernel methods, as there often exists a large tail of distinct
cases.

To address this challenge, we propose kernelised dynamical mixing (KDM), a hy-
brid approach that combines parametric (standard model-based) and non-parametric
(kernel-based) predictors into one dynamical model of disease progression. Conceptu-
ally, when trying to predict how a specific patient’s disease will evolve given a specific
intervention, we build a gating network that will select whether it is more accurate to
use a kernel-based prediction, which can model more complex functions but extrapolates
poorly, or a model-based prediction, which is simpler but therefore extrapolates more
smoothly. We demonstrate that our approach allows us to make both better forward
predictions of disease progression and better treatment recommendations than either
alone. Specifically,

• We introduce a hybrid strategy called kernelised dynamic mixing (KDM) that
permits dynamically combining parametric (model-based) and non-parametric
(kernel-based) counterfactual predictions of events within a forward planning set-
ting.

• On two real clinical tasks, managing HIV and managing sepsis, our KDM-based
approach produces more accurate predictions of future disease states compared to
either parametric or non-parametric models alone.

• On those tasks, we show our KDM-based approach not only makes better treat-
ment recommendations than either parametric or non-parametric models alone,
but also makes better treatment recommendations than other non-model-based
approaches (Bogojeska et al., 2012; Rabinowitz et al., 2005; Seibert et al., 2007).
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4.2 Related Work

Kernel-based methods have a long history in reinforcement learning. Ormoneit & Sen
(2002) assess the value of a particular state by averaging over histories passing near it.
Other works, notably (Fukumizu et al., 2013; Grünewälder et al., 2011; Nishiyama et al.,
2012; Song et al., 2016), use kernels to explicitly build models. For example, Fukumizu
et al. (2013); Nishiyama et al. (2012) take a non-parametric view of learning policies
by representing distributions over states, actions, and observations as embeddings in
Hilbert spaces, and defining policies and value functions over these embeddings. Song
et al. (2016) establish a principled connection between Bayesian inference and posterior
distribution embeddings via the kernel Bayes’ rule. Specifically, the authors express
kernel Bayesian inference as a vector-valued regression problem and impose additional
regularisation terms to control the resulting posterior embeddings, thus incorporating
side information or domain knowledge into a problem. However, all of these approaches
make predictions only from the data; while the choice of feature space may provide
some regularisation effect, these approaches cannot be expected to generalise far from
the observed histories.

Also related to our work, are methods that combine knowledge from different sources.
Talvitie (2014, 2017); Weber et al. (2017) use rollouts with variants of experience re-
play to prevent sample degradation; they augment the training data used to learn a
model with samples from a hallucinated context, and replay this experience to cor-
rect the model when it produces errors. Marco et al. (2017) trade off knowledge from
simulations and physical experiments by explicitly representing the costs of different
sources of information in a Gaussian process model, and use an entropy-based search
to minimise quality of information costs while optimising performance. Chebotar et al.
(2017) integrate model-based policy optimisation with model-free updates to improve a
policy. While similar in spirit, this method is not designed to produce accurate future
trajectories; it only aims to identify the optimal policy.

Other approaches try to capture model uncertainty more effectively. For example,
Deisenroth & Rasmussen (2011); Gal et al. (2016) use probabilistic transition models
such as Gaussian processes to incorporate uncertainty in the transition distribution
into planning. These approaches are best suited for continuous, low-dimensional action
spaces—not the norm in healthcare applications—and neither combines models with
data in forward planning as we propose here.

Finally, other works combine models and data at the policy level, rather than for
forward simulation. Specifically, in the previous chapter we introduced a mixture-of-
experts model that combined policies from a simple kernel regression with policies de-
rived from a causal model learned on the same data. The major downfall of this ap-
proach is that it cannot be used to simulate what might happen if the combined policy
is followed. In this chapter, we instead propose an approach for combining kernel and
model-based approaches on a model level.

4.3 Preliminaries and notation

As in the previous chapter, we assume that all confounding is measured and that
D = {hnTn}Nn=1 is a collection of N patient histories of length Tn where each his-
tory is comprised of a sequence of treatments (actions) a, observations o, and out-
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comes (rewards) r, hnTn = {an1, on1, rn1, . . . , anTn , onTn , rnTn}. In general, the treat-
ment that optimises a patient’s immediate outcomes do not necessarily guarantee a
patient’s health in the long term. Our goal is to, for any patient history h, identify
a policy a = π(h) or sequence of treatments that optimises a patient’s expected long-
term outcomes R := E[

∑T
t=0 γ

trt], where γ is a discount factor that trades between the
importance of current and future rewards.

In Chapter 3, we discussed two ways of deriving such a policy: in the first, we learn
a parametric dynamical system model of disease progression such as a POMDP, and use
this in with online planning to infer a treatment policy; the second approach uses non-
parametric regression to directly learn a policy without explicitly learning a model first.
A third alternative is to model dynamical systems non-parametrically for instance, in
a kernel-based setting. Notable works that take this approach include Nishiyama et al.
(2012), Song et al. (2016) and Fukumizu et al. (2013). These approaches construct
models specifically by representing distributions T (s′|s, a), Ω(o|s, a) and beliefs b as
embeddings in Reproducing Kernel Hilbert Space (RKHS), and performing belief up-
dates in accordance to Kernel Bayes’ rule (Fukumizu et al., 2011). Approaches based
on Kernel Bayes’ rule can however be difficult to use in practice, as they require explicit
knowledge about the hidden state in order to learn the embeddings of the distributions
from training samples.

As an alternative to the aforementioned approaches, kernel-based learning may be
used to directly sample subsequent observations ot+1. In this case, ot+1 may be drawn
by considering the observations of the nearest neighbours and weighting these according
to kernel function k(ht, ·). In doing so, it is possible to deduce a kernel-based probabil-
ity estimate of Ω(o|h) ∝∑h′t

k(ht, h
′
t)δ(o = ot+1|h′t) from which ot+1 may be sampled.

Since the forward search in Equation. 3.2.3 only requires simulations of the next obser-
vation, these observations may be incorporated directly into model-based planning. We
build on this idea in this paper.

4.4 Model and Inference

Both the parametric POMDP-based modelling approach and the non-parametric kernel-
based modelling approach have their advantages: the simpler discrete POMDP tends
to extrapolate better, whereas the kernel-based approach tends to be more accurate in
regions of dense data. In this section, we present a modelling approach that dynam-
ically mixes between these two approaches to build a simulator that is more accurate
than either alone; given this simulator, we can then identify treatments using the online
planning. Importantly, because predictions are combined in an model-based setting, all
the advantages associated with model-based approaches apply here. Through forward
simulation, we can assess a treatment policy holistically in terms of the particular ob-
servations that may result from a particular choice of drug, and perform counterfactual
reasoning about the subsequent series of events that may follow, or alternative hypo-
thetical scenarios that may arise as a result of changes in the context. An overview of
our model-based approach is shown in Figure. 4.1.

Main Algorithm Both the discrete POMDP and the kernel-based model can be used
to sample future observations given a history. Our approach combines these predictions
to make this simulation more accurate. Specifically, we consider models such that
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Figure 4.1: In our model-mixing approach, we create a simulator that chooses between
parametric (discrete POMDP) and non-parametric (kernel) approaches for performing
the forward simulation and use this simulator for planning. Specifically we now incorpo-
rate knowledge from the kernel directly into estimation of belief states based on which
we can infer suitable treatments. The combined belief state representation here may be
viewed as a means of representing confounding for causal inference.

the probability of an observation given a history Ω(o|h) is a linear combination of the
probabilities under the POMDP model Ωm(o|h) and the kernel-based approach Ωk(o|h):

Ω(o|h) = θ(h)Ωm(o|h) + (1− θ(h))Ωk(o|h) (4.4.1)

where θ(h) ∈ [0, 1] is some mixing parameter that trades between the two estimates.
(We do not consider learning transition and observation models directly because, as
noted in Nishiyama et al. (2012), these would require access to the hidden state s.) We
note that the mixing in Equation 4.4.1 is complementary to kernelised reinforcement
learning approaches such as kernelised POMDPs and PSRs (Nishiyama et al., 2012;
Song et al., 2016). Both of these approaches regularise the kernel-based predictions
through a bottleneck of the belief over states or core test predictions. In contrast, we
include the parametric POMDP model over future observations, Ωm, as an equal player
in the prediction task, as if it were another special kind of patient history with kernel
weight θ(h).

Once we have the function Ω(o|h), we can extend a history h given an action a by
sampling from Ω(o|h). We can continue this forward simulation process for as long as
we want; at each stage, we shall have a new history h′ to compare to the batch of our
histories in the kernel-based model and a new belief b′ to be the sufficient statistic for
our POMDP-based model. The final step to use this new simulator to optimise for new
policies is to define the reward function on the basis of history h′. In our work, we
use the POMDP alone to determine the immediate reward, although in principle the
kernel could also be used. Our approach to using the POMDP to determine rewards
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is analogous to the approach from in (Nishiyama et al., 2012). Given the rewards we
can apply forward search to find an optimal policy via Section 3.2.2 (see description in
Algorithm 1).

Algorithm 1 Kernelised Dynamic Mixing Planner

Require:
Θ(·,W ): MLP prediction function, with parameters W
B = {bt}Nn=1: belief states for each patient at time t

H = {ht}Nn=1: histories of each patient at time t

k(·, ·), Ωk: kernel parameters
Ωm, T ,R: POMDP parameters

1: function KDM(θ)
2: while search depth has not been reached do
3: Branch on an action at
4: Predict θ = Θ(·,W ) based on T , k(·, ·), and history length
5: Set Ω = θ(ht)Ωm + (1− θ(ht))Ωk

6: Sample new observation ot from Ω
7: Use ot, ht and at to predict R
8: Update belief bt according to ot and at using Equation(3.2.2)
9: Add ot, at and rt to existing history ht

10: Backpropagate values up through the search tree to get a∗t
11: return Updated bt and optimal action a∗t

4.4.1 Learning the mixing proportion θ(h)

The key question, of course, is how to define the mixing function θ(h) to make our
probability of observation estimate Ω(o|h) in Equation. 4.4.1 as accurately as possible
for new histories. To do so, we note that while at test time the next observation ot+1

is not observed, our training set will contain many histories that can be cut into some
past history and some next observation. That is, we have access to ot+1. Thus we can
consider

max
θ

1

N

N∑
n

1

Tn

Tn∑
t

log(θnt+1Ωm(ot+1|hnt) + (1− θnt+1)Ωk(ot+1|hnt)) (4.4.2)

In the formulation above where our goal is to predict the true next observation correctly,
we note that either the POMDP or the kernel must necessarily be more accurate; thus,
the optimal choice of θnt at any time will be to select that more accurate model. During
training, rather than fit to a binary target, we consider the softmax version

θ(hnt) :=
exp(Ωm(ot+1|hnt))

exp(Ωm(ot+1|hnt)) + exp(Ωk(ot+1|hnt))
. (4.4.3)

The softmax target is akin to having a classifier predict which method makes most sense
to use at each point in time. Specifically, it provides a probabilistic interpretation of
which method is more likely to produce the observed future values, and hence determines
which method should be given a higher weight for that time step.
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Finally, we note that while one could train the weighting term θ to simply be a
function of the history h, that is, some θ(h), the relationship between the history of
interest h and the other histories in the training set is very important—as we mentioned
before, we expect the kernel-based approach to be more accurate in regions where the
data are dense and the POMDP to be more accurate otherwise. Thus, we include
additional inputs to the predictor θ: patient statistics in terms of the history length of
the current history h, along with the 5-quantiles of the function k(h, ·) with respect to
the training set. We call this collection of statistics ς, so our predictor is now θ(ς).

Given the batch of histories, we can now create a collection {ςnt, θnt}, where ςnt are
the properties of the history and its relationship to the data and θnt is the softmax
target (equation 4.4.3). We train a multilayer perceptron (MLP) Θ as a mixing network
to predict θnt given parameters ς. Let vector W denote the parameters of the MLP.
Then we write the training objective as

min
W

∑
n,t

(θnt −Θ(ςnt,W ))2 + λ||W ||22, (4.4.4)

This loss is differentiable, and thus we can optimise it with gradient descent.

4.5 Experiment Setup: Evaluation Measures and Base-
lines

Our experiments focus on two related goals: (1) to characterise the performance of KDM
in comparison in existing baselines, and (2) to assess the quality (in terms of forward
predictions) and interpretability of approach in comparison to existing methods. Below
we describe our metrics as well as our baselines.

4.5.1 Evaluation: Forward Simulation Quality

The KDM procedure described in the previous section provides a principled means
of dynamically integrating kernel-based predictions into model-based RL to not only
learn suitable treatment policies, but also provide counterfactual predictions. It is
relatively straightforward to evaluate the quality of the predictions on retrospective
data—at any time point, we have our distribution over possible next-observations, and
we can compute the log-loss with respect to that distribution given what observation
actually occurred. Additionally, we provide illustrations of the deviation between our
counterfactual predictions and the ground truth in terms of the observations produced.

4.5.2 Evaluation: Policy Quality

While evaluating the quality of the forward simulation (above) was relatively straight-
forward, evaluating policy quality is much more difficult. We apply a collection of
importance-sampling based estimators from Section 2.8.3 to evaluate our policies. (We
report several, because each have different bias-variance trade-offs.) Conceptually, all of
these methods try to determine a subset of the data over which the behavioural policy,
πb, coincides with the evaluation policy πe.
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4.5.3 Baselines

For each of our experiments, we compare the performance of a policy obtained from
KDM to several baselines. Our first baseline is a policy based on a non-parametric
(kernel-based) model computed by estimating the long-term reward from the samples
falling in an ε radius of a particular patient at a certain time point. The kernel policy suc-
cessively applies the action from the nearby samples associated with the largest expected
long-term reward. Note that despite the similarities KDM shares with the Hilbert Space
Embedding of the POMDP (kPOMDP) (Nishiyama et al., 2012), we cannot directly
compare them since the kPOMDP requires knowledge of the true state representation
during training—a severe limitation of the approach that makes it largely infeasible in
practice. Here, the non-parametric model is used to approximate the kPOMDP. We also
compare the KDM policy against a policy computed using a POMDP model alone. The
third baseline is a mixture-of-experts model from Chapter 3, where we combine both
parametric and non-parametric policy estimates using a gating network and choose ac-
tions accordingly. Across all tasks, we make the simplifying assumption that the belief
state is a sufficient statistic for the history, and thus the policy is a function of the belief
π(b).

4.5.4 Training Parameters

To optimize the loss in Equation 4.4.4 we use L2 regularisation with strength λ > 0
and perform cross-validation against the true values of θ. We use J = 500 labeled pairs
for training the mixing network on a toy example and J = 4000 for real world datasets.
Optimisation of the mixing network’s objective is done via gradient descent. We use
Autograd (Maclaurin et al., 2015) to compute gradients of the loss in Equation 4.4.4
with respect to ξ, then use Adam (Kingma & Ba, 2014) to compute descent directions
with step sizes set to 0.01 for the toy experiment and 0.001 for the medical applications.
Across all three tasks a discount factor of γ = 0.9 is used, which puts weight on not only
immediate rewards, but also long-term future rewards. In doing so, we can optimise not
only a patient’s immediate, but also their long-term health outcomes. (We do not use
a very large γ as the domain does not require a particularly deep look-ahead to solve.)
Further details of the training parameters are discussed in the next section.

4.6 Results

Below we show results on three domains. The first is a synthetic domain that highlights
the how mixing parametric and non-parametric approaches when building a model can
be beneficial. Next, we present two medical applications for administering treatments
for patients with HIV and sepsis. In both cases, we present a quantitative evaluation
of the policy and the forward simulation (note that for the forward simulation, we
can only compare the model-based approaches; the mixture-of-experts cannot produce
counterfactual predictions). Our KDM approach produces better policies and is able to
simulate counterfactual scenarios more accurately than the baselines.
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4.6.1 Demonstration on a Synthetic Domain

Consider a system that evolves deterministically through 4 states: S1, S2 or S3, and
finally absorbs in S4. Each agent has a variant that belongs to one of two types: A
and B. Agents with variants of type A deterministically go through state S2, and agents
with variants of type B deterministically go through S3. At each stage, there are three
actions available: 0, 1 or 2. At each time step, the agent observes its variant (which is
one of the two types), as well as its reward, which is given by:

S1


r(a0) = −10

r(a1) = 5

r(a2) = 5

S2


r(a0) = 0

r(a1) = 5

r(a2) = −10

S3


r(a0) = 0

r(a1) = −10

r(a2) = 5

S4
{
r = 0.

The optimal policy for all agents is to initially take either action 1 or 2. Next, agents
with variants of type A transition to S2 where the optimal action is action 1; agents
with variants of type B transition to S3 where the optimal action is action 2. Action 0 is
safe in states S2 or S3. By construction, a four-state POMDP cannot learn the optimal
policy for this model since the dynamics depend on the hidden type of the agent’s
variant. Without the variant information, from the POMDP’s perspective, it is equally
likely to transition from S1 or S2 starting from S0; not knowing where it will end up,
it will initially suggest the safe policy of selection action 0 at the second time-step. For
the kernelised planning approach, we use a kernel that matches based on the length of
the agent’s history, action choices, and an observation dependent on the hidden variant.
Such a choice will lead to optimal policies for agents with common variants. However,
agents with rare variants will match to some arbitrary other agent, and we can expect
the performance of the kernelised planner for those agents to be poor. In such cases,
falling back on the POMDP will produce the optimal policy. An illustration of the toy
example is shown in Figure 4.2. The numbers in brackets indicate the action taken from
a particular state, followed by the associated reward. We compared the performance of

Figure 4.2: Illustration of dynamics for the toy example. The optimal sequence of
actions for a type A variant is to initially take action 1 or 2, followed by action 1. For
type B variants, the optimal sequence of actions is to first take actions 1 or 2, followed
by action 2.

KDM against the baselines described earlier in this section, using a forward search depth
of 4. Our mixing network for KDM consists of 15 input units and a hidden layer of 25
units. We trained the models using a data set of N = 250 sequences, each with Tn = 4
time steps. A separate test set of the same size was used for evaluating performance.
Table 4.1 compares the performance of KDM against the aforementioned baselines. The
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toy example illustrates that dynamically mixing kernel and model-based methods during
simulation outperforms using either approach on its own. The quantitative differences
between KDM and MoE policies suggest that combining parametric and non-parametric
predictions on a model level results in different policies than combining these approaches
on a policy level. Specifically, on a test set of 250 sequences, KDM learns the optimal
policy 92% of the time, while in comparison the MoE approach learns the optimal policy
87% of the time.

DR WIS IS

Random –5.84 +− 2.61 –7.79 +− 3.71 –8.46 +− 3.24
Kernel 4.39 +− 1.74 4.86 +− 2.85 4.14 +− 2.72

POMDP 3.09 +− 1.16 3.62 +− 1.71 3.84 +− 2.42
Mixture-of-Experts 5.62 +− 1.02 5.81 +− 2.37 5.42 +− 2.74

KDM 6.08 +− 1.14 6.19 +− 1.03 6.32 +−1.46

Table 4.1: Performance comparison of KDM vs. baselines across 250 test sequences
for the toy example. A higher value corresponds to a higher accumulated reward, and
indicates a better performing policy.

4.6.2 HIV Therapy Selection

Cohort: Data for these patients were obtained from the EuResist database (Zazzi
et al., 2012). We extracted the genotype and treatment response data of N = 32 960
patients together with their CD4+ and viral load measurements, gender, age, risk group
and prior recorded treatments. The measurements are collected at approximately 6
month intervals corresponding to hospital visits. Variables with excessive missingness
were removed, and any remaining missing values were imputed. We restrict the space of
therapy combinations to the 312 most frequently occurring combinations in the cohort.
These drug combinations span 20 drugs in total. Table 4.2 provides a summary of the
cohort statistics used.

Number of Patients 32960
Average Sequence Length 14
Feature Dimensionality 134

Number of Actions 312

Table 4.2: Summary of HIV cohort statistics.

Reward function: We use the same reward function as before from Equation 3.3.3.

Experimental setup: We performed a random 80%-10%-10% train-test-validation
split of our cohort of patients and compared the performance of KDM against the
baselines. This split resulted in a held-out test set consisting of 3000 patients with the
same distribution as patients in the training set. The training set was the largest split
as we needed to learn the large number of parameters governing the kernel, POMDP,
and dynamic mixing network. The random policy selects a therapy randomly for each
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forward time step across all patients. For the kernel policy we used a modified version
of the history alignment kernel based on Bogojeska et al. (2012). This kernel compares
therapy histories of patients on the basis of the drugs used, the order in which they
are administered and the subsequent resistance mutations they produce. We modify
this kernel to also match on the basis of other mutations from the Pol region of the
viral genome in Figure 1.2, in addition to the resistance mutations. Importantly, two
therapy histories in this case are considered similar if they contain similar drugs that are
administered in a similar order and produce similar mutations. For the POMDP policy,
we learn a POMDP model with 30 states as specified in Chapter 3. For planning, we
perform a forward search for therapy choices that optimise patient outcomes over a 30-
month horizon (corresponding to 5 forward time steps, which was chosen for tractable
planning). Our mixing network for KDM consists of 100 input units and 2 hidden
layers of 50 units each, where the number of parameters is selected by performing
cross-validation on an independent hold-out set. Since the problem is non-linear by
nature, our mixing network requires enough parameters to adequately approximate a
smooth mapping between inputs and the mixing proportion. At the same time, over-
parameterisation results in overfitting. To prevent the latter, we regularise the network
with an L2 regularisation of strength λ = 15.

Results: Table 4.3 summarises the performance of KDM compared to the aforemen-
tioned baselines. The KDM policy produces the highest accumulated immune response
while reducing the viral load, outperforming the other baselines over a 30-month long-
term horizon. The choice of time horizon is made on the basis of how frequently an
HIV patient visits the hospital for treatment, medical guidelines and drugs available.
Patient visits usually occur on a bi-annual basis, while medical guidelines and available
drugs for treating HIV may change over longer periods of time. In general however,
KDM may also be applied to extended time horizons.

DR WIS IS

Random –7.31 +− 3.72 –11.48 +− 4.36 –10.64 +− 4.81
Kernel 9.35 +− 2.61 6.42 +− 3.93 6.73 +− 3.62

POMDP 3.37 +− 2.15 3.86 +− 2.38 3.74 +− 2.46
Mixture-of-Experts 11.52 +− 1.31 12.25 +− 2.01 11.36 +− 2.97

KDM 12.47 +− 1.38 14.25 +− 1.27 14.48 +− 1.41

Table 4.3: Performance comparison of KDM vs. baselines for HIV therapy selection
across 3000 held-out patients using a POMDP model with 30 states. KDM produces
the largest immune response while reducing the viral load, thus outperforming its com-
petitors.

From observing the quantitative differences between the performance of KDM and the
mixture-of-experts policy, we can conclude that both the policies are different. Im-
portantly, the model-based nature of KDM has several key benefits (particularly in a
high-risk setting such as therapy selection). We highlight these differences with a mo-
tivating example: Consider an HIV-infected patient whose underlying health status is
unknown, but with a baseline viral load of 589 copies/mL . If a patient is treated with a
first-line therapy of EFV/3TC/TDF, we obtain a set of observations and rewards from
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which subsequent treatments may be selected. Based on the treatment of EFV + 3TC
+ TDF and the patient’s particular observations, KDM predicts that the viral load will
drop below detection limits for a period of 6 months (which may or may not change the
patient’s overall health status). At 12 months, KDM predicts that the virus reappears
in the patient’s bloodstream, but falls below detection limits again shortly after this
period. The mixture-of-experts policy suggests a treatment change at 12 months from
first line therapy to a more aggressive second-line therapy of AZT + 3TC + TDF +
LPV/r.

Figure 4.3: Simulating the viral load in an HIV patient when the viral load is below
detection limits (indicated by 0). KDM can detect the occurrence of blips at 12 and 30
months, unlike a MoE. No treatment change should be administered here.

Because however, KDM actively simulates a patient’s future trajectory, it is able to
predict the occurrence of a blip in the viral load at 12 months. As a result, the KDM
policy continues using the same first-line therapy over this period, without suggesting a
change in treatments. The implications of this are important: through actively forward
simulating a patient’s long-term future, we can analyse the impact of making treatment
decisions in terms of the particular outcomes that they may produce. The example
here, highlights the fact that KDM is able to forward simulate such occurrences as
blips in the viral load and use this information to deduce whether or not a therapy
switch is necessary. In this case, switching treatments to a more aggressive treatment is
unnecessary and potentially reduces a patient’s future therapy options. Importantly, the
KDM policy may be easily interpreted through explicitly examining and auditing our
forward simulations. This interpretability is key to building trust in machine learning
methods in high-risk settings. Figure 4.3 illustrates forward simulating the viral load for
the test patient described here. The ground truth, and respective kernel and POMDP-
based predictions are shown. Since the mixture-of-experts approach combines kernel
and model-based learning on a policy level, it is impossible to obtain a set of forward
predictions of a patient’s viral load (hence we cannot illustrate a trajectory for it here).
The corresponding predictive log-likelihood is shown in Figure 4.4. Here, KDM’s forward
predictions are closer to the ground truth and ultimately result in learning a more
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effective treatment policy overall. While obviously a single-patient anecdote, we found
many such situations in which the KDM predicted deviations in trajectories.

Figure 4.4: Comparison of predictive log-likelihood across baselines for HIV for a typical
test patient. KDM’s predictions are more accurate across the forward time steps.

We obtain similar results on the rest of the patients in the test set. Figure 4.5
illustrates the deviations in counterfactual predictions of the viral load over a 30-month
horizon. KDM is able to model and predict counterfactuals more accurately than the
other baselines. This performance is sustained across all time steps.

Figure 4.5: Box plot of viral load predictions across 3000 test patients under base-
lines over a 30-month horizon. KDM’s predictions are closer to the ground truth than
POMDP or kernel predictions.
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Number of Patients 18200
Average Sequence Length 13
Feature Dimensionality 47

Number of Actions 100

Table 4.4: Summary of sepsis cohort statistics

4.6.3 Sepsis Management

Cohort: Data for these patients were obtained from the publicly available Multipa-
rameter Intelligent Monitoring in Intensive Care (MIMC-III v1.4) database (Johnson
et al., 2016b), containing hospital admissions for approximately 38600 adults (at least
15 years old). We extracted a cohort of patients fulfilling Sepsis-3 criteria (Singer et.
al, 2016). A summary of the populations can be found in Table 4.4. We extracted
the appropriate physiological parameters such as demographics, lab values, vital signs
and intake-output events. The data were aggregated into 4 hour windows, where the
mean or sum was recorded (as appropriate) when several data points were present in a
window. Variables with excessive missingness were excluded, and other missing values
were imputed. This produced a feature vector of size 47 × 1 per patient for each time
step. The values of each feature were passed through a sigmoid function to reduce the
effect of outliers and subsequently normalised to zero mean and unit variance.

The action space of medical interventions was defined to cover the space of intra-
venous (IV) fluid, and maximum vasopressor (VP) dosage, as well as whether or not
to sedate and ventilate a patient in a given four hour window. We discretised the ac-
tion space into per-drug quartiles based on all non-zero dosages of the two drugs, and
converted each drug at every time step into integer values representing the respective
quartile bin. We included a special case of no drug given as bin 0. This created an ac-
tion representation of interventions as tuples of (total IV in, maximum VP in, sedation,
mechanical ventilation) at each time step.

Reward function: Our overall goal in this task is to reduce patient mortality. Mor-
tality, however, is a sparse outcome: whether a patient survived can only be known at
the end of the stay. At the recommendation of our clinical colleagues, we use the log
odds of in-hospital mortality as described in Raghu et al. (2017); Ross et al. (2017b)
as an intermediate cost function for treating sepsis at each time step (we note, more
broadly, that there exists relatively little clinical literature on optimisation criteria for
sepsis). This reward function is trained on a held-out subset of the sepsis data cohort.
Summing the log odds of in-hospital mortality over a patient’s future allows us to explic-
itly quantify a patient’s odds of mortality over this period. Since our goal is to reduce
mortality, a lower accumulated cost corresponds to a better performing treatment policy
in this case. (We also emphasise that our dynamic mixing procedure is general in that
it can be applied to any cost or reward function, and retrained as domain experts refine
their cost functions.)

Experimental setup: Once again we performed a random 80%-10%-10% train-test-
validation split of our cohort of patients and compared the performance of KDM against
the baselines on a held-out set of 3000 patients. For the kernel policy, we use a kernel that
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matches based on the length of the agent’s history, action choices, and observations. For
the POMDP policy, we learn a POMDP model with 75 states with Gaussian emissions,
corresponding to the observation space of lab values, vital signs and intake-output events
described above.

For the planning, we perform a forward search for therapy choices that optimise
patient outcomes over a 20-hour horizon, again corresponding to 5 forward time steps
that was both the limit of tractable planning and reasonable given that stays in the
ICU are relatively short. Our mixing network for KDM consists of 40 input units and
2 hidden layers of 25 units each. The number of network parameters is again selected
by performing cross-validation on an independent hold-out set.

Results: Table 4.5 summarises the performance of KDM compared to the aforemen-
tioned baselines for sepsis management. The KDM policy significantly reduces the risk
of mortality for held-out patients over a 20-hour horizon, once again outperforming the
other baselines.

DR WIS IS

Random 4.31 +− 1.72 3.52 +− 1.76 4.26 +− 1.82
Kernel -0.88 +− 0.41 -1.47 +− 0.33 -1.63 +− 0.48

POMDP 1.73 +− 1.69 1.73 +− 1.25 1.86 +− 1.29
Mixture-of-Experts -1.42 +− 0.71 -1.85 +− 0.57 -1.46 +− 0.79

KDM -1.87 +− 0.39 -2.25 +− 0.77 -2.86 +− 0.80

Table 4.5: Performance comparison of KDM vs. baselines for treating sepsis across 3000
held-out patients using a POMDP model with 75 states. The KDM policy significantly
reduces the odds of mortality (indicated by a lower value here), and outperforms existing
baselines.

In the context of sepsis too, the quantitative differences between the performance
of KDM and the mixture-of-experts policy indicates that the policies are different. As
with HIV, we provide an illustrative example. Consider a patient whose blood pressure,
heart rate and respiratory rate are all within normal limits. SpO2 is used to quantify
the saturation of oxygen in the blood. If a patient is initially not ventilated, sedated,
or prescribed any vasopressors, we obtain a set of observations and rewards from which
subsequent treatments may be selected. Based on the lack of sedation or need to me-
chanically ventilate initially, KDM predicts the blood oxygen saturation is within normal
limits ranging between 90%− 100%. Over the course of 30 hours, this prediction varies
marginally when there are minor changes in blood pressure, heart rate and respira-
tory rate. Throughout this period, no vasopressors are required or prescribed. This
is clinically reasonable since vasopressors are typically used to raise the blood pressure
hypotensive patients, and are thus not required in this situation. Figure 4.6 illustrates
forward simulating SpO2 for the patient described here. The corresponding predictive
log-likelihood is shown in Figure 4.7. As before, the ground truth and respective kernel
and POMDP-based predictions are also shown. KDM’s forward predictions are visibly
more accurate with respect to the ground truth and contribute to learning a better
treatment policy.

Again, we obtain similar results on the rest of the patients in the test set. Figure. 4.8
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Figure 4.6: Simulating the SpO2 of a sepsis test patient under baselines over a 20-hour
horizon. Counterfactual predictions of SpO2 levels are more accurate using KDM than
existing baselines.

Figure 4.7: Comparison of predictive log-likelihood across baselines for sepsis for a
typical test patient. KDM’s predictions are more accurate across the forward time
steps.
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Figure 4.8: Box plot of SpO2 predictions across 3000 test patients under baselines over
a 20-hour horizon. KDM’s predictions are closer to the ground truth than POMDP or
kernel predictions.

illustrates the deviations in counterfactual predictions of SpO2 over a 20-hour horizon.
KDM is able to model and predict counterfactuals more accurately than the other
baselines. This performance is sustained across all time steps.

4.7 Discussion

KDM produces accurate forward predictions. The KDM policy results in more
accurate counterfactual predictions over observation across both the HIV and sepsis
tasks. Figure. 4.5 and 4.8 show the differences at each forward time step between coun-
terfactual predictions using the kernel, POMDP and KDM, and the ground truth across
HIV and sepsis patients respectively. Note that these differences cannot be calculated
for the MoE policy as this approach does not permit simulating counterfactuals. We
observe that across all time steps, the KDM policy tends to predict counterfactuals that
are generally closer to the ground truth than those predictions made using the kernel
or POMDP methods.

While the kernel and POMDP policies vary considerably over time in their close-
ness to the true observation, the KDM policy is able to make accurate predictions by
combining these predictions and weighting them appropriately. We can also examine
the predictive log-likelihoods of all three approaches for both tasks across each of the
forward time steps. An example of these is shown in Figure 4.4 where we see consid-
erable differences between these values across the methods in the HIV task. For each
method, the predictive log-likelihood tends to increase with each forward time step.
This is likely a result of more data being available at each successive simulation step
in which the histories are grown. Nonetheless, KDM significantly outperforms both the
POMDP and kernel approaches at most forward steps. These results are summarised
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in Tables 4.6 and 4.7 for both HIV and sepsis tasks, where we perform a Friedman’s
statistical significance test with post-hoc analysis to measure the differences in predic-
tive performance of KDM against the POMDP and the kernel respectively across all
test patients. A p-value < 0.05 here indicates a significant result.

t 1 2 3 4 5

POMDP 0.046 0.041 0.047 0.042 0.073
Kernel 0.057 0.086 0.047 0.058 0.042

Table 4.6: Friedman’s test measuring predictive performance differences of KDM against
POMDP and kernel methods across t in HIV. Bold p-values correspond to steps where
counterfactual predictions from KDM are significantly more accurate than the respective
methods. Comparisons with policy-based approaches like the mixture-of-experts cannot
be drawn here as these methods cannot be used for counterfactual predictions.

t 1 2 3 4 5

POMDP 0.041 0.038 0.049 0.083 0.046
Kernel 0.038 0.036 0.041 0.091 0.083

Table 4.7: Friedman’s test measuring predictive performance differences of KDM against
POMDP and kernel methods across t in sepsis. Bold p-values correspond to steps where
counterfactual predictions from KDM are significantly more accurate than the respective
methods. Comparisons with policy-based approaches like the mixture-of-experts cannot
be drawn here as these methods cannot be used for counterfactual predictions.

Mixing kernel and model-based RL on a model level produces different poli-
cies to mixing on a policy level. Just from the quantitative results, it is clear that
the policies produced by our KDM and the MoE are different. We attribute these differ-
ences directly to the way in which KDM computes its policy: KDM mixes approaches
on the model level, and incorporates these predictions into its belief states for learning
an optimal policy. In this way it is able to account for variations across patients at
different time points and use these variations to draw new examples of observations
from which it can learn. For example in the HIV task, we observe that the KDM policy
tends to contain less switches between drug combinations in comparison to the MoE
policy. This occurs specifically in cases where patients experience temporary blips or
spikes in their viral loads as shown in Figure 4.3 at 12 and 30 months in the future re-
spectively. Because the KDM policy directly mixes kernel and model based approaches
in simulating observations, it can identify these cases more effectively. In these situa-
tions, the typical KDM policy does not call for a change in treatments, whereas a MoE
policy does. While spurious blips are not regular occurrences, in a clinical setting, it is
still important to be able to detect them since it prevents a clinician from potentially
exhausting a patient’s future treatment options and exposing them to more potential
side effects than necessary.

KDM leads to interpretable treatment decisions that are clinically face-valid.
In both the toy and real experiments, we can demonstrate that the policies obtained
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using KDM make sense. For the toy task for variants of Type A, KDM correctly chooses
a1 at the second time step, while for variants of Type B, it chooses a2 here. Since the
POMDP is unable to make any informed choice here, the KDM policy typically assigns
a higher weight to the nearest neighbour predictions at the second time step and uses
these to determine the correct action choice at this step.

For the HIV task, we observe that test patients with higher baseline viral loads tend
to sustain higher viral loads and lower CD4+ counts in our forward simulations. This is
consistent with medical literature that suggests patients with higher baseline viral loads
tend to have faster disease progression (Langford et al., 2007; Socias et al., 2011). In
these cases, the KDM policy typically consists of using a nucleoside reverse transcriptase
inhibitor (NRTI) such as Zidovudine (AZT), in conjunction with a protease inhibitor
(PI) such as Liponavir/ritonavir (LPV/r). Our clinical collaborators confirm that these
choices are valid, since a single boosted PI and an NRTI are typically recommended for
second-line ART when first-line therapy fails (as indicated by sustaining a viral load
above detection limits) (Sungkanuparph et. al., 2007). We also checked our treatment
policies against current ART guidelines (Günthard et al., 2016; Günthard et al., 2016).
Overall, we found that our policies were consistent with the recommended first and
second-line therapy guidelines 81% of the time. In contrast, the policies obtained from
the MoE approach were consistent 76% of the time. KDM policies in violation of IAS-
USA recommendations were slightly more likely for patients who started in ART in
the early 90s, as standards for combination ART differed significantly at that time.
MoE policies in violation of IAS-USA recommendations were more likely for patients
experiencing single episodes of low-level viremia or blips, which typically have no clinical
consequences, as well as cases where patients were infected by multiple HIV strains. In
general, patients infected by multiple HIV strains tend to be more difficult to treat
since chances of drug resistance are higher. This, in general, motivates the need for
more nuanced treatment policies (e.g. via forward simulation) as suggested by KDM.

There exist less consistent guidelines for the management of fluid and vasopressor
administration for patients with sepsis, but we find that the policies recommended by
KDM still have many sensible properties, including being consistent with prior work
by Raghu et al. (2017). KDM frequently (72% of the time) learn policies where no
vasopressors are prescribed. This result is reasonable as vasopressors are used to raise
arterial blood pressure in hypotensive patients, and the majority of the test patients do
not fall into this category. The KDM policy suggests mechanically ventilating patients
with SpO2 predictions below 85%, when corresponding predictions of their respiratory
rates exceed 29 breaths per second. Several other methods have also been suggested for
detecting events such as desaturation and transient hypoxia, but there is frequently a
high false alarm rate as described in Bodilovskyi & Popov (2013). In these instances,
further clinical expertise is required before intervening. KDM gives us thresholds that
we can discuss and debate.

Most importantly, across all three tasks, it is the ability to explicitly step through
our forward predictions via KDM that enables us to interpret the policies easily. Overall,
we hope that the generative approach of the KDM could help better assess a patient’s
overall prognosis and offer more informed therapy choices for intervention.

The policies obtained from KDM are stable over multiple runs. We tested
the performance of KDM over multiple runs on the test data. While the sampled ob-
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Figure 4.9: Distributions of frequencies of non-zero IS weights for (a) HIV and (b) sepsis
respectively. Our treatments are fairly consistent with those in the data sets.

servations and trajectories obtained may differ during forward simulation, the therapy
policies obtained across the real world data sets remained virtually identical. Specif-
ically, we obtained fidelity scores of 95% for the HIV domain and 93% for the sepsis
task. This stability is crucial to building trust in our policies. A related issue that is
frequently encountered when using off-policy evaluation is that only a small fraction
of the data contains the treatments suggested by the policies we learn. Figure 4.9(a)
demonstrates that our treatments for HIV are fairly consistent with those in the data
set, and at least 1/3 of the test values have non-zero weights. Similar results hold for
the sepsis data set in 4.9(b). This spread is also essential for building trust in our re-
sults. That said, these off-policy estimators can be sensitive to the choice of reward and
representation; a limitation of all approaches relying on off-policy evaluation is that the
reward function is often some surrogate for what we actually wish to optimise, and that
we have to assume that the POMDP belief is a sufficient statistic for the history.

4.8 Conclusion

In this chapter, we introduced kernelised dynamic mixing (KDM), as a novel approach
for forward simulating counterfactuals. The approach combines the forward predictions
from non-parametric kernel-based learning with predictions based on a causal model
to produce a more accurate simulator. By simulating outcomes more accurately, we
can subsequently learn more effective treatment policies. In particular, using KDM
significantly improves upon the policy performance in two real medical tasks for HIV
and managing sepsis, while also providing the ability to interpret and interrogate the
policies via simulating counterfactual scenarios. These steps take us toward being able to
provide better decision-support in situations where clinicians must plan over sequences
of decisions.

Like the policy mixing approach we presented in Chapter 3, we have used KDM to
construct a more accurate causal model specifically in order to infer suitable treatment
policies. However, the overall idea of combining forward predictions to produce a more
accurate simulator could be used as a back off strategy when modelling value functions in
off-policy evaluation methods such as doubly robust off-policy evaluation. In this case,
we would once again re-cast the problem of off-policy evaluation in terms of planning
and use this as a basis to rank existing or hypothetical clinical policies in different
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scenarios.



Chapter 5

Cause-Effect Information
Bottleneck For Systematically
Missing Data

5.1 Introduction

Previously, we combined RL and nearest-neighbour approaches to individualise treat-
ment policies to a patient’s needs over time. Both of the methods presented in Chapters
3 and 4 allowed us to simultaneously address patient heterogeneity and account for the
effects of measured confounding. In the RL case, this information was captured through
the notion of a hidden state that we conditioned on to learn a suitable treatment policy,
while the nearest-neighbour approach used a similarity score instead. However, it may
still be difficult to decipher what information is confounding based on a hidden state
representation, as these may be high dimensional in practice; analogously, it may not
always be clear what similarity score to use. This information is especially important if
we would like to transfer this knowledge to different sets of patients in the future. Hence
in this chapter, we focus on explicitly learning better representations of confounding,
such that we can account for these effects even in the absence of complete information
at test time. Overall, this allows us to estimate treatment responses more accurately.
The majority of the material we present is based on Parbhoo et al. (2018b).

As we have seen so far, predicting the causal effects of an intervention from ob-
servational data requires accounting for confounding. In healthcare, the problem is
often complicated by the fact that we may have a complete, high-dimensional set of
observational measurements for a group of patients, but only have an incomplete set
of measurements for a potentially larger group of patients for whom we would like to
infer treatment effects at test time. For instance, a doctor treating patients with HIV
may readily have access to routine measurements such as blood count data for all their
patients, but only have the genotype information for some patients as a result of medical
costs or resource limitations.

In such a situation, conventional approaches to adjust for confounding such as
propensity reweighting or covariate shift (Hernán & Robins, 2006a; Rosenbaum & Ru-
bin, 1984) do not suffice, since they do not explicitly address the issue of missingness in
data. A naive strategy to address this problem would be to remove all those features
that are missing at test time and infer treatment effects on the basis of the reduced space
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of features. Alternatively, one may attempt imputing the incomplete dimensions for the
same purpose. Both of these solutions however, fail in high-dimensional settings, partic-
ularly if the missingness is systematic as in this case, or if many dimensions are missing.
Other approaches account for incomplete data during training, for instance by assuming
hidden confounding. These methods typically try to build a joint model on the basis of
noisy representatives of confounders (see for instance Greenland & Lash (2008); Kuroki
& Pearl (2014); Louizos et al. (2017); Pearl (2012b)). However, in high-dimensional-
settings, it is unclear what these representatives might be, and whether our data meets
such assumptions. Regardless of these assumptions, none of these approaches addresses
systematic missingness at test time.

A more natural approach would be to assume one could measure everything that
is relevant for estimating treatment effects for a subset of the patients, and attempt
to transfer this distribution of information to a potentially larger set of test patients.
However, this is a challenging task given the high dimensionality of the data that we
must condition on. In this case, one might try to first perform dimensionality reduction
via Principal Component Analysis (PCA) to first construct a new representation of the
data with fewer dimensions, and subsequently attempt to transfer this information to
the set of test patients with missing covariates in order to infer treatment effects. In
general however, the performance of PCA is highly dependent on the choice of distortion
function that defines what attributes in the data are important to preserve (Rey, 2015),
and certain distortion functions are not applicable to every type of data (Joe, 1989).
Moreover, in the context of causal inference, it may be unclear as to what distortion
function makes sense and how one would subsequently transfer this knowledge to a set
of test patients whose covariates are partially missing. The key question is thus how can
we perform such a distribution transfer to a set of patients with missing covariates in
practice? Here, we propose tackling this question from the decision-theoretic perspective
of causal inference. The overall idea is to use the Information Bottleneck (IB) criterion
(Alemi et al., 2016; Tishby et al., 2000) to perform a sufficient reduction of the covariate
(see Section 2.5.2) and recover a distribution of the confounding information. Unlike
traditional dimensionality reduction techniques, the IB is expressed entirely in terms of
information-theoretic quantities rather than distortion functions. As a result, the IB
principle is particularly appealing in this context as it allows us to define a good rep-
resentation of confounding, by trading off learning a reduced covariate with predicting
treatment effects. Specifically, by conditioning on this reduced covariate, the IB enables
us to build a discrete reference class over patients with complete data, to which we can
map patients with incomplete data at test time, and subsequently estimate treatment
effects on the basis of these groups.

In what follows, we describe the details of this approach and demonstrate our method
outperforms existing methods across established causal inference benchmarks, as well
as the tasks of treating sepsis and HIV.

5.2 Background and Prior Work

Before we describe the details of the IB method, we briefly introduce the concepts of
Kullback-Leibler (KL) divergence or relative entropy and mutual information that are
relevant for the rest of this chapter. We refer the reader to Cover & Thomas (2012);
MacKay (2003) for a more detailed description of these.
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Definition 5.2.1 (Kullback-Leibler Divergence). Let X ∈ X be a random variable, and
P (X) and Q(X) denote two continuous probability distributions over X. The Kullback-
Leibler divergence of Q(X) from P (X), denoted DKL(P (X)||Q(X)) is a measure of how
different the two probability distributions are. Formally, DKL(P (X)||Q(X)) is defined
as,

DKL(P (X)||Q(X)) :=

∫
X∈X

P (X) log
P (X)

Q(X)
dX. (5.2.1)

Note that DKL(P (X)||Q(X)) ≥ 0 and equals 0 if and only if P = Q.

Based on the definition of the KL-divergence, we can define mutual information as
follows.

Definition 5.2.2 (Mutual Information). Let X ∈ X and Y ∈ Y denote two random
variables, whose joint distribution is defined by P (X,Y ). The mutual information be-
tween X and Y , denoted I(X;Y ), is given by,

I(X;Y ) := DKL(P (X,Y )||P (X)P (Y )) :=

∫
X

∫
Y
P (X,Y ) log

P (X,Y )

P (X)P (Y )
dXdY,

(5.2.2)
where P (X) and P (Y ) are the marginal distributions of X and Y .

Evidently, since the mutual information is expressed as a KL-divergence, it can also be
re-formulated in terms of entropies. Hence mutual information satisfies the following
properties:

1. Non-negativity: I(X;Y ) ≥ 0

2. Symmetry: I(X;Y ) = I(Y ;X)

3. Relation to conditional and joint entropy:

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )

= H(X,Y )−H(X|Y )−H(Y |X),

where H(X) and H(Y ) are the marginal entropies of X and Y , H(X|Y ) and
H(Y |X) are the conditional entropies, and H(X,Y ) is the joint entropy of X and
Y respectively.

5.2.1 The Information Bottleneck

The IB method is a compression technique first introduced by Tishby et al. (2000),
that considers the relevance of information to deduce a meaningful compression. The
classical IB method describes an information-theoretic approach to constructing a com-
pressed representation Z of a random variable X that is most informative about another
random variable Y . Let I denote the mutual information between two random variables.
Achieving such a compression requires solving the problem,

maxP (z|x) − I(Z;X) + λI(Z;Y ), (5.2.3)
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under the assumption that Z ⊥⊥ Y | X, or that the variables satisfy the Markov
relation Z − X − Y . This relation indicates that compression Z cannot contain more
information about Y than the original data X. Specifically, I(X;Z) measures how close
the compression is to the original data: a high value corresponds to a lower compression.
Analogously, I(Z;Y ) measures the information that the compression contains about
Y ; a high value indicates that more relevant information is preserved. The Lagrange
parameter λ controls the degree of compression, by trading off compression of X with
preserving information about Y . A smaller λ will favour compression. Adjusting λ
allows for a task-dependent compression Z.

In its classical form, the IB is defined for discrete random variables such that Z is a
discrete cluster structure over X. However in recent years, multiple IB relaxations and
extensions, such as for Gaussian (Chechik et al., 2005) and meta-Gaussian variables (Rey
& Roth, 2012), have been proposed. Among these extensions, the Gaussian bottleneck
assumes that both X and Y are jointly Gaussian. In this case, Z = AX + ξ where
ξ ∼ N (0,Σξ), may be viewed as a noisy projection of X that is also jointly Gaussian
with (X,Y ) (Rey, 2015). Since the Gaussian IB admits an analytic form, it is widely
applicable to many problems. Specifically, when Y is a one-dimensional random variable,
the solution to the Gaussian IB is equivalent to least squares regression, while if Y is a
noisy version of X, the Gaussian IB is analogous to PCA; for a general Y , the Gaussian
IB may be viewed as an asymmetric version of Canonical Correlation Analysis (Rey,
2015).

More recently, Alemi et al. (2016) proposed a latent variable formulation of the
IB problem, where the linear mean function in the Gaussian IB, µ = AX, is replaced
by a non-linear neural network. In this formulation of the IB, one assumes structural
equations of the form,

z = f(x) + ηz,

y = g(z) + ηy. (5.2.4)

These equations give rise to a different conditional independence assumption, X−Z−Y .
While both independence assumptions from the classical formulation of the IB and its
latent variable counterpart cannot hold in the same graph, in the limiting case where the
noise term ηy → 0, Z ⊥⊥ X | Y . Like the Gaussian IB, the latent variable formulation
of the IB may viewed as an asymmetric version of CCA. The model we develop in
this chapter assumes the latent variable formulation of the IB. Unlike each of these
formulations, we extend the latent variable form of the IB to learn a sufficiently reduced
covariate such that we may infer causal effects.

5.2.2 Deep Latent Variable Models

Deep latent variable models have recently received remarkable attention and have been
applied to a variety of problems. Among these, variational autoencoders (VAEs) employ
the reparameterisation trick introduced in Kingma & Welling (2013); Rezende et al.
(2014) to infer a variational approximation over the posterior distribution of the latent
space P (z|x). Important work in this direction includes Kingma et al. (2014) and Jang
et al. (2017). Most closely related to the work we present here, is the application of
VAEs in a healthcare setting by Louizos et al. (2017). Here, the authors introduce
a Cause-Effect VAE (CEVAE) to estimate the causal effect of an intervention in the
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presence of noisy proxies. In high-dimensional settings, this approach requires many
strict modelling assumptions.

Despite their differences, it has been shown that there are several close connections
between the VAE framework and the previously described latent variable formulation
of the IB principle (Alemi et al., 2016; Wieczorek et al., 2018). This is essentially a
VAE where X is replaced by Y in the decoder. In contrast, our approach considers the
IB principle to perform causal inference in scenarios where only partial covariate data
is available at test time.

5.2.3 Models for Causal Inference with Missing Data

A sizeable amount of work has also been done on both causal inference with missing
data, and transfer learning for estimation of causal effects. Previously, Cham & West
(2016) presented an empirical example of the performance of propensity score estimation
methods when adapted to incompletely observed covariates. More recently, Kallus et al.
(2018) perform a low-rank matrix factorisation on a noisy set of covariate matrices
to deduce a set of confounders based on which one can infer treatment effects. The
approach is general enough to adapt to scenarios where covariates are missing at random
and can be used as a preprocessing step for other bias correction techniques such as
propensity reweighting. Unlike both of these, we make use of the IB criterion to learn
treatment effects and adjust for confounding.

5.3 Model and Inference

In this section, we present an approach based on the IB principle for estimating the
causal effects of an intervention with partial covariates at test time. We refer to this
model as a Cause-Effect Information Bottleneck (CEIB). In recent years, there has
been a growing interest in the connections between the IB principle and deep neural
networks (Alemi et al., 2016; Tishby & Zaslavsky, 2015; Wieczorek et al., 2018). Here,
we use the non-linear expressiveness of neural networks with the IB criterion to learn a
sufficiently reduced representation of confounding, based on which we can approximate
the effects of an intervention more effectively. Specifically, we interpret our model from
the decision-theoretic view (Dawid, 2007b) of causal inference.

X Z

Y

TFT

Figure 5.1: Influence diagram of the CEIB. Red and green circles correspond to observed
and latent random variables respectively, while blue rectangles represent interventions.
We identify a low-dimensional representation Z of covariates X to estimate the effects
of an intervention on outcome Y where partial covariate information is available.
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Problem Formulation Like other approaches in the decision-theoretic setting, our
goal is to estimate the ACE of T on Y . We employ the following assumptions and
notation. Let X = (X1, X2) denote a set of patient covariates based on which we would
like to estimate treatment effects. During training, we assume that all covariates X ∈ Rd
can be observed as in a medical study, where dimension d is large. Outside the study
at test time however, we assume covariates X1 are not usually observed, e.g. due to the
expensive data acquisition process. That is, we assume the same feature dimensions are
missing for all patients at testing. Let Y ∈ R denote the outcomes following treatments
T . For simplicity and ease of comparison with prior methods on existing benchmarks, we
consider treatments T that are binary, but our method is applicable for any general T .
We assume strong ignorability or that all confounders are measured for a set of patients.
The causal model we assume is depicted in Figure 5.1. Importantly, estimating the ACE
in this case, only requires computing the distribution Y |Z, T , provided Z is a sufficient
covariate. In what follows, we use the IB to learn such a sufficient covariate, that allows
us to approximate this distribution.

X1

X2

Z

V1

V2

Y

T

Qφ(v1|x1)

Qη(v2|x2)

Pψ(t|z)

Pθ(y|z, t)

Figure 5.2: Graphical illustration of the CEIB. Orange rectangles represent deep net-
works parameterising the random variables

Performing a Sufficient Reduction of the Covariate We propose modelling this
task with an extended formulation of the IB using the architecture shown in Figure
5.2. Here, our model consists of encoder networks Qφ and Qη, and a decoder network
Pθ. The IB allows us to learn a low-dimensional compression of relevant information
during training, such that we can infer treatment effects where covariate information is
incomplete at test time.

We adapt the IB for learning the outcome of a therapy when incomplete covariate
information is available for X2 at test time. To do so, we consider the following extended
parametric form of the IB,

max
φ,θ,ψ,η

−Iφ(V1;X1)− Iη(V2;X2) + λIφ,θ,ψ,η(Z; (Y, T )), (5.3.1)

where V1 and V2 are low-dimensional discrete representations of the covariate data,
Z = (V1, V2) is a concatenation of V1 and V2 and I represents the mutual information
parameterised by networks φ, ψ, θ and η respectively. Each of the conditionals Qφ(v1|x),
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Qη(v2|x), Pθ(y|t, z), Pψ(t|z) thus has a parametric form. We describe each of the terms
in 5.3.1 in turn. Expanding on the first term, we have

Iφ(V1;X1) = DKL(Qφ(v1|x1)P (x1)||P (v1)P (x1))

= EP (x1) [DKL(Qφ(v1|x1)||P (v1))] ,

where our encoder model Qφ(v1|x1) is a variational approximation to P (v1) with pa-
rameters φ.

Similarly, we have,

Iη(V2;X2) = DKL(Qη(v2|x2)P (x2)||P (v2)P (x2))

= EP (x2) [DKL(Qη(v2|x2)||P (v2))] ,

where Qη(v2|x2) is a variational approximation to P (v2) with parameters η.

Finally for our decoder model, we have

Iφ,θ,ψ,η(Z; (Y, T )) ≥ EP (x,y,t)EPφ,η(z|x)
[

logPθ(y|t, z)
+ logPψ(t|z)

]
+H(y, t), (5.3.2)

where the lower bound follows from the fact that the mutual information of Z and (Y, T )
can be expressed as a sum of the expected value of logPθ(y|t, z) + logPψ(t|z), entropy
H(y, t) and two KL-divergences, which are by definition non-negative. This can be seen
in the following derivation, where we drop the subscripts φ, ψ, η and θ for readability,

EP (y,t|x)

[∫
P (z|x, y, t) logP (y, t|z, x) dz

]
− EP (y,t|x)

[∫
P (z|x) logP (y, t|z, x) dz

]
=

∫ ∫
[P (y, t, z|x)− P (y, t|x)P (z|x)] log

P (y, t, z|x)P (y, t|x)

P (z|x)P (y, t|x)
dy dt dz

=

∫ ∫
P (y, t, z|x) log

P (y, t, z|x)

P (z|x)p(y, t|x)
dy, t dz +

∫ ∫
P (y, t|x)P (z|x) log

P (z|x)P (y, t|x)

P (y, t, z|x)
dy dt dz

+

∫ [∫
[P (y, t, z|x)− P (y, t|x)P (z|x)] dz

]
︸ ︷︷ ︸

0

logP (y, t|x) dy dt

= DKL(P (y, t, z|x)‖P (y, t|x)P (z|x)) +DKL(P (y, t|x)P (z|x)‖P (y, t, z|x)) ≥ 0,

Averaging over x, and plugging in to the definition of mutual information from Equation
5.3.1, we arrive at:

I(Z; (Y, T )) = EP (x,y,t)EP (z|x,y,t) logP (y, t|z) +H(y, t)

= EP (x,y,t)EP (z|x) logP (y|t, z) + logP (t|z)
+ DKL(P (y, t, z|x)‖P (y, t|x)P (z|x)) +DKL(P (y, t|x)p(z|x)‖P (y, t, z|x)) +H(y, t)

≥ EP (x,y,t)EP (z|x) logP (y, t|z) +H(y, t).

In order to implement such a decoder model in practice, we use an architecture similar to
the TARnet (Johansson et al., 2016), where we replace conditioning on high dimensional
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covariates X with conditioning on reduced covariate Z. We can thus formulate the
conditionals as,

Pψ(t|z) = Bern(σ1(z))

Pθ(y|t, z) = N (µ = µ̂, σ2 = ŝ), (5.3.3)

with logistic function σ(·), and outcome Y given by a Gaussian distribution parame-
terised with a TARnet with µ̂ = tf2(z)+(1−t)f3(z). Note that the terms fk correspond
to neural networks. While distribution Pψ(t|z) is included to ensure the joint distribu-
tion over treatments, outcomes and covariates is identifiable, in practice, our goal is to
approximate the effects of a given T on Y . Hence, we train our model in a teacher-
forcing fashion by using the true treatment assignments T from the data, and fixing the
treatments T at test time. Unlike other approaches to inferring treatment effects, the
Lagrange parameter λ in CEIB allows us to adjust the degree of compression, which in
this context, enables us to learn a sufficient statistic Z. In particular, adjusting λ en-
ables us to explore a range of such representations from having a completely insufficient
covariate to a completely sufficient compression of confounding.

Learning Equivalence Classes and Distribution Transfer Using the proposed
architecture allows us to learn a low-dimensional compression Z of the relevant informa-
tion during training. Since V1 and V2 are discrete latent representations of the covariate
information, we make use of the Gumbel softmax reparameterisation trick (Jang et al.,
2017) to draw samples Z from a categorical distribution with probabilities π. Here,

z = one hot(arg max
i

[gi + log πi]), (5.3.4)

where g1, g2, . . . , gk are samples drawn from Gumbel(0,1). The softmax function is
used to approximate the arg max in Equation 5.3.4, and generate k-dimensional sample
vectors w ∈ ∆k−1, where

wi =
exp((log(πi) + gi)/τ)∑k
j=1 exp((log(πj) + gj)/τ)

, i = 1, . . . , k. (5.3.5)

and τ is the softmax temperature parameter. By using the Gumbel softmax reparame-
terisation trick to obtain a discrete representation of relevant information, we can learn
equivalence classes among patients based on which we can compute the SCE for each
group using sufficient covariate Z via Equation 2.5.5. Specifically, during training, X1

and X2 are used to learn cluster assignment probabilities π for each data point. At
test time, we subsequently assign an example (patient) with missing covariates to the
relevant equivalence class. Computing the SCE allows us potentially to tailor or individ-
ualise treatments to specific groups based on Z rather than an entire population. This
is especially important when addressing heterogeneity among patients. Based on the
SCE, we can also compute the population-level effects of an intervention via the ACE
from Equation 2.5.6. In the absence of the latent compression via CEIB and the discrete
representation of relevant information, it would not be possible to transfer knowledge
from examples with complete information to cases with incomplete information, since
estimating treatment effects would require integrating over all covariates – an infeasible
task in high dimensions.
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5.4 Experiments

The goal of our experiments is to demonstrate the ability of CEIB to accurately infer
treatment effects while learning a low-dimensional, interpretable representation of con-
founding in cases where covariate information is systematically missing at test time. We
report the ACE and SCE values in our experiments for this purpose. In general, the
lack of ground truth in real-world data makes evaluating causal inference algorithms a
difficult problem. To overcome this, in our artificial experiments we consider a semi-
synthetic data set where true outcomes and treatment assignments are known.

5.4.1 Infant Health and Development Program

The Infant Health and Development Program (IHDP) (Hill, 2011b; McCormick et al.,
2013) is a randomised control experiment assessing the impact of educational interven-
tion on outcomes of pre-mature, low birth weight infants born in 1984-1985. Measure-
ments from children and their mothers were collected for studying the effects of childcare
and home visits from a trained specialist on test scores. The study contains information
about the children and their mothers/caregivers. Data on children includes, sex, birth
weight, head circumference, health indices. Information about the mothers includes
maternal age, mother’s race as well as educational achievement. We denote this set
of information as X. Treatments in this study T correspond to participation in IHDP
child development centres, while outcomes Y correspond to the IQ-test score measured
at the end of interventions. Like Hill (2011b), features and treatment assignments are
extracted from the real world clinical trial, and selection bias is introduced in the data by
artificially removing a non-random portion of the treatment group, in particular children
with non-white mothers. In total, the resulting data set then consists of 747 subjects
(139 treated, 608 control), each represented by 26 covariates measuring the properties
of the child and their mother. We subsequently divide this data set into 60/10/30%
training/validation/test sets. For our setup, we use encoder and decoder architectures
with 3 hidden layers. Our model is trained with Adam optimiser with a learning rate
of 0.001. We compare the performance of CEIB for predicting the ACE against several
existing baselines: OLS-1 is a least squares regression; OLS-2 uses two separate least
squares regressions to fit the treatment and control groups respectively; TARnet is a
feedforward neural network from Shalit et al. (2017); KNN is a k-nearest neighbours
regression; RF is a random forest; BNN is a balancing neural network (Johansson et al.,
2016); BLR is a balancing linear regression (Johansson et al., 2016), and CFRW is a
counterfactual regression that using the Wasserstein distance (Shalit et al., 2017). We
train our model with four 3-dimensional Gaussian mixture components, although our
method can be applied, without loss of generality, to any number of dimensions.

Experiment 1: In the first experiment, we compared the performance of CEIB for
estimating the ACE against the baselines when using the complete set of measurements
at test time. These results are shown in Table 5.1a. Evidently, CEIB outperforms
existing approaches. To demonstrate that we can transfer the relevant information
to cases where covariates are incomplete at test time, we artificially excluded n = 3
covariates that have a moderate correlation with ethnicity at test time. We compute
the ACE and compare this to the performance of TARnet and CFRW also on the
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Method εwithin−sACE εout−of−sACE

OLS-1 .73± .04 .94± .06
OLS-2 .14± .01 .31± .02
KNN .14± .01 .79± .05
BLR .72± .04 .93± .05
TARnet .26± .01 .28± .01
BNN .37± .03 .42± .03
RF .73± .05 .96± .06
CEVAE .34± .01 .46± .02
CFRW .25± .01 .27± .01

CEIB .11± .01 .21± .01

(a)

Method εwithin−sACE εout−of−sACE

TARnet .30± .01 .34± .01
CFRW .28± .01 .49± .02

CEIB .14± .02 .23± .01

(b)

Table 5.1: (a) Within-sample and out-of-sample mean and standard errors in ACE across
models on the complete IHDP data set. A smaller value indicates better performance.
Bold values indicate the method with the best performance. (b) Within-sample and
out-of-sample mean and standard errors in ACE across models using a reduced set of
22 covariates at test time.

reduced set of covariates (Table5.1b). If we extend this to the extreme case of removing
8 covariates at test time, the out-of-sample error in predicting the ACE increases to
0.29 +/- 0.02. Thus CEIB achieves state-of-the-art predictive performance for both
in-sample and out-of-sample predictions, even with incomplete covariate information.

Experiment 2: Building on Experiment 1, we perform an analysis of the latent space
of our model to assess whether we learn a sufficiently reduced covariate. We use the
IHDP data set as before, but this time consider both the data before introducing se-
lection bias (analogous to a randomised study), as well as after introducing selection
bias by removing a non-random proportion of the treatment group as before (akin to a
de-randomised study). We plot the information curves illustrating the number of latent
dimensions required to reconstruct the output for the terms I(Z; (Y, T )) and I(Z, T )
respectively for varying values of λ. These results are shown in Figure 5.3a and 5.3b.
Theoretically, we should be able to examine the shape of the curves to identify whether
a sufficiently reduced covariate has been obtained. In particular, we know from Section
2.5.2 that in the case where a study is randomised, the sufficient covariate Z should
have no impact on the treatment T (see Figure 2.6 where the α arm is removed). In
this case, the mutual information I(Z, T ) should be approximately zero and the curve
should remain flat for varying values of I(Z,X). This result is confirmed in Figure
5.3a. The information curves in Figure 5.3b additionally demonstrate our model’s abil-
ity to account for confounding when predicting the overall outcomes: when data is
de-randomised, we are able to reconstruct treatment outcomes more accurately. Specif-
ically, the point at which each of the information curves saturates is the point at which
we have learnt a sufficiently reduced covariate based on which we can infer treatment
effects. Overall, the results from Figures 5.3a and 5.3b highlight another benefit of us-
ing CEIB for estimating treatment outcomes: in particular, by adjusting the Lagrange
parameter λ, CEIB allows for a task-dependent adjustment of the latent space. This
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adjustment allows one to explore a range of solutions across the information curve, from
having a completely insufficient covariate to a completely sufficient compression of the
covariates where the information curve saturates. In the absence of the IB objective,
this is not possible. Overall, we are able to learn a low-dimensional representation that
is consistent with the ethnicity confounder and account for its effects when predicting
treatment outcomes.
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Figure 5.3: (a) Information curves for I(Z;T ) and (b) I(Z; (Y, T )) with de-randomised
and randomised data respectively. When the data is randomised, the value of I(Z;T ) is
close to zero. The differences between the curves illustrates confounding. When data is
de-randomised, we are able to estimate treatment effects more accurately by accounting
for this confounding.

We also analysed the discretised latent space by comparing the proportions of ethnic
groups of test subjects in each cluster in the de-randomised setting. These results are
shown in Figure 5.4 where we plot a hard assignment of test subjects to clusters on the
basis of their ethnicity. Evidently, the clusters exhibit a clear structure with respect to
ethnicity. In particular, Cluster 2 in Figure 5.4b has a significantly higher proportion of
non-white members in the de-randomised setting. The discretisation also allows us to
calculate the SCE for each cluster. In general, Cluster 2 tends to have a lower SCE than
the other groups. This is consistent with how the data was de-randomised, since we
removed a proportion of the treated instances with non-white mothers. Conditioning
on this kind of information is thus crucial to be able to accurately assess the impact of
educational intervention on test scores. Finally, we assess the error in estimating the
ACE when varying the number of mixture components in Figure 5.5. When the number
of clusters is larger, the clusters get smaller and it becomes more difficult to reliably
estimate the ACE since we average over the cluster members to account for partial
covariate information at test time. Here, model selection is made by observing where
the error in estimating the ACE stabilises (anywhere between 4-7 mixture components).

5.4.2 Sepsis Management

We illustrate the performance CEIB on the real-world task of managing and treating
sepsis. Sepsis is one of the leading causes of mortality within hospitals and treating sep-
tic patients is highly challenging, since outcomes vary with interventions and there are



5.4. EXPERIMENTS 73

African-American White
Ethnicity

0

10

20

30

40

50

60

Pr
op

or
tio

n 
in

 C
lu

st
er

 (%
)

(a) SCE: 4.9

African-American White
Ethnicity

0

20

40

60

80

Pr
op

or
tio

n 
in

 C
lu

st
er

 (%
)

(b) SCE: 2.7

African-American White
Ethnicity

0

10

20

30

40

50

60

Pr
op

or
tio

n 
in

 C
lu

st
er

 (%
)

(c) SCE: 4.3

African-American White
Ethnicity

0

10

20

30

40

50

Pr
op

or
tio

n 
in

 C
lu

st
er

 (%
)

(d) SCE: 4.1

Figure 5.4: Illustration of the proportion of major ethnic groups within the four clusters.
Grey and orange indicate de-randomised and randomised data respectively. For better
visualisation, we only report the two main clusters which include the majority of all
patients. The first cluster in (a) is a neutral cluster. The second cluster in (b) shows
an enrichment of information in the African-American group. Clusters 3 and 4 in (c)
and (d) respectively, show an enrichment of information in the White group. Overall,
the clusters exhibit a distinct structure with respect to the known ethnicity confounder.
Moreover, each of the clusters is associated with different SCE values. In particular,
the second cluster has a lower SCE which suggests that educational intervention for
these members has less of an impact on outcomes – a result consistent with our de-
randomisation strategy.
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Figure 5.5: Out-of-sample error in ACE with a varying number of clusters.

no universal treatment guidelines. For this experiment, we make use of data from the
Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-III) database (John-
son et al., 2016b). We focus specifically on patients satisfying Sepsis-3 criteria (16 804
patients in total). For each patient, we have a 48-dimensional set of physiological pa-
rameters including demographics, lab values, vital signs and input/output events, where
covariates are partially incomplete. We denote this set as X. Our outcomes Y corre-
spond to the odds of mortality, while we binarise medical interventions T according to
whether or not a vasopressor is administered. The data set is divided into 60/20/20%
into training/validation/testing sets. We train our model with 6, 4-dimensional Gaus-
sian mixture components and analysed the information curves and cluster compositions
respectively.
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Figure 5.6: Subfigures (a) and (b) illustrate the information curve I(Z;T ) and
I(Z; (Y, T )) for the task of managing sepsis. We perform a sufficient reduction of the
covariates to 6-dimensions and are able to approximate the ACE on the basis of this.
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(f) SCE: 1.7

Figure 5.7: Proportion of initial SOFA scores in each cluster. The variation in initial
SOFA scores across clusters suggests that it is a potential confounder of odds of mortality
when managing and treating sepsis.

The information curves for I(Z;T ) and I(Z; (Y, T )) are shown in Figures 5.6a and
5.6b respectively. We observe that we can perform a sufficient reduction of the high-
dimensional covariate information to between 4 and 6 dimensions while achieving high
predictive accuracy of outcomes Y . Since there is no ground truth available for the
sepsis task, we do not have access to the true confounding variables. However, we can
perform an analysis on the basis of the clusters obtained over the latent space. Here,
we see that we can characterise the patients in each cluster according to their initial
SOFA (Sequential Organ Failure Assessment) scores. SOFA scores range between 1-
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4 and are used to track a patient’s stay in hospital. In Figure 5.7, we observe clear
differences in cluster composition relative to the SOFA scores. Clusters 2, 5 and 6 tend
to have higher proportions of patients with lower SOFA scores, while Clusters 3 and
4 have larger proportions of patients with higher SOFA scores. This result suggests
that a patient’s initial SOFA score is potentially a confounder when determining how
to administer subsequent treatments and predicting their odds of in-hospital mortality.
This is consistent with medical studies such as Medam et al. (2017); Studnek et al.
(2012) where authors indicate that high initial SOFA scores were likely to impact on
their overall chances of survival and treatments administered in hospital.

While we cannot quantify an error in estimating the ACE since we do not have
access to the counterfactual outcomes, we can still compute the ACE for the sepsis
management task. Here, we specifically observe a negative ACE value. This means
that in general, treating patients with vasopressors reduces the chances of mortality
in comparison to not treating patients with vasopressors. Overall, performing such
analyses for tasks like Sepsis may shed light on what information is relevant for making
predictions and reasoning about the effects of medical intervention. In turn, this may
assist in establishing potential therapy guidelines for better decision-making.

5.4.3 HIV Therapy Selection

We tested the performance on the real-world application of treating HIV. For this ex-
periment, we use data for 15 000 patients from the EuResist database (Zazzi et al.,
2012). For each patient in training, we have a 94-dimensional set of parameters includ-
ing blood counts, viral load, previous treatments, adherence data, and viral mutations
(genotype). During testing, the genotype is missing for a fixed subset of the patients.
Our outcomes Y correspond to the log viral load, while we simplified medical interven-
tions T to whether or not a PI is administered. The data set is divided into 60/20/20%
training/validation/testing sets. We train our model with six 5-dimensional Gaussian
mixture components and analysed the cluster compositions.

The results of running CEIB for HIV therapy selection are shown in Figure 5.8,
where we plot the proportion of patients in each cluster on the basis of their number of
past treatment lines (corresponding to the number of times a therapy combination was
changed, where 4+ indicates more than 4 switches). Evidently, the clusters differ in
composition and SCE scores (in terms of viral load). In general, it appears as if clusters
with a higher proportion of patients that frequently switched therapy combinations have
lower SCE scores. This suggests that PIs have the largest impact on those patients for
whom therapies have previously failed more frequently. A possible reason is that these
are also patients that frequently get treated using PI-boosted therapies as a result of
previous treatment failures or other reasons for therapy switching such as side-effects.
In contrast, patients that have fewer past treatment lines are less likely to receive PI-
boosted therapies because they are not necessarily required. Hence, the number of past
treatments is likely a confounder of interventions and outcomes. Here, CEIB enables us
to learn a compact, interpretable representation of this, while simultaneously accounting
for its effects when estimating treatment outcomes.
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(a) SCE: 4.9
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(b) SCE: 2.7
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(c) SCE: 4.3
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(d) SCE: 3.1
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(e) SCE: 4.1
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(f) SCE: 3.2

Figure 5.8: Illustration of the proportion of HIV patients in each cluster according to
their number of past treatment lines [1, 2, 3, 4+] where 4+ corresponds to more having
than 4 previous therapy combinations. The clusters differ in composition and in the
SCE scores. In general clusters with a larger proportion of individuals who received
more past therapies tend to have smaller SCEs. This suggests that PIs seem to have
the largest impact on these patients. Patients frequently get treated with PI-boosted
therapies as a result of previous treatment failures or other reasons for therapy switching
such as side-effects. In contrast, patients with fewer past treatment lines are less likely
to receive PI-boosted therapies because they are unnecessary.

5.5 Discussion

CEIB learns a low-dimensional, interpretable representation of confounding
Since CEIB extracts only the information that is relevant for making predictions, it is
able to learn a low-dimensional representation of confounding, and conditions on this
representation this to make predictions. In particular, the introduction of a discrete
cluster structure in the latent space allows an easier interpretation of the confounding
effect. For the IHDP experiment, we are able to learn a low-dimensional representation
that is consistent with the known ethnicity confounder and account for its effects when
making predictions of outcomes to intervention. Similar methods such as Louizos et al.
(2017) typically use a higher dimensional representation (in the order of 20 dimensions)
to account for these effects and make less accurate predictions nonetheless. This is
potentially a consequence of learning a poor representation of confounding. Modelling
the task as an IB alleviates this problem. Analogously, for the sepsis task we identify a
latent space of 6 dimensions when predicting odds of mortality, where clusters exhibit a
distinct structure with respect to a patient’s initial SOFA score. In all three tasks, CEIB
enables us to learn a meaningful, compact representation of confounding, conditioned
on which we can accurately infer treatment effects without sacrificing interpretability.
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CEIB enables estimating the causal effect with incomplete covariates. Unlike
previous approaches, CEIB can deal with incomplete covariate data during test time
by introducing a discrete latent space. Specifically, we learn equivalence classes among
patients such that the approximate the effects of treatments can be computed where
data is incomplete.

CEIB makes state-of-the-art predictions of the ACE that are robust against
confounding Across the IHDP dataset, we see that predictions of the ACE are more
accurate than existing approaches. In the IHDP case, we see reductions in the error in
estimating the ACE up to 0.58 for in-sample predictions. This performance is sustained
when making out-of-sample predictions we see error reductions of between 0.04 and 0.73
in comparison with existing methods. Overall, we attribute this increase in performance
directly to the fact that CEIB extracts only the information that is relevant for making
predictions about interventions. Proxy-based approaches such as Louizos et al. (2017) do
not explicitly trade off learning meaningful representations of confounding and achieving
accurate predictions. In contrast, we can explicitly inspect the information curves in
Figure 5.3b and adjust compression parameter λ to learn a reasonable representation of
confounding. If we set λ in accordance to Figure 5.3b where I(Z; (Y, T )) stabilises, we
require only a 4-dimensional representation to adequately account for the confounding
effect Z (as shown in Figure 5.4b). This produces more accurate predictions about
outcomes to interventions as a result.

5.6 Conclusion

In this chapter, we focused on the problem of learning better representations of con-
founding in order to account for these effects in the absence of complete information at
test time. This is an important problem, particularly in healthcare, since doctors must
frequently reason about the effects of therapeutic interventions in the absence of com-
plete information, primarily because of the difficulty in acquiring certain measurements
such as genotypic information. To address this question, we considered the decision-
theoretic perspective of causal inference. This perspective allowed us to both reason
about the effects of interventions on a population level as well as on a subgroup level,
thus enabling us to account for heterogeneity among patients. Specifically, we analysed
the role of a sufficient covariate in the context of the IB framework to estimate the
causal effect. This included introducing a discrete latent space to facilitate the knowl-
edge transfer to cases where information was systematically missing – a task that is
otherwise infeasible in high dimensions. In doing so, we could estimate the causal effect
if parts of the covariates are missing during test time, while simultaneously accounting
for confounding. In contrast to previous methods, the compression parameter λ in the
IB framework allowed for a task-dependent adjustment of the latent dimensionality. Our
extensive experiments showed that our method outperforms state-of-the-art approaches
on multiple synthetic and real world datasets. Since handling systematic missingness is
a highly relevant problem in healthcare, we view this as step towards improving these
systems on a larger scale.



Chapter 6

Tree Regularisation For
Interpretable Machine Learning

6.1 Introduction

The previous chapters presented how causal inference can be performed to estimate
causal effects and hence individualise therapies as a result. In this chapter, we shift
our focus to learning more interpretable models for estimating patient outcomes. In
general, the lack of interpretability of modern deep learning models is a key problem
to adopting them in safety critical environments such as healthcare. Specifically, we
describe how deep time-series models can be trained such that we not only accurately
estimate patient outcomes, but also retain explainability via decision trees with few
nodes. The majority of the work in this chapter appears in Wu et al. (2018).

Here, we seek a specific form of interpretability known as human-simulatability. A
human-simulatable model is one in which a human user can “take in input data together
with the parameters of the model and in reasonable time step through every calculation
required to produce a prediction” (Lipton, 2016). For example, small decision trees
with only a few nodes are easy for humans to simulate and thus understand and trust.
In contrast, even simple deep models like multi-layer perceptrons with a few dozen
units can have far too many parameters and connections for a human to easily step
through. Deep models for sequences are even more challenging. Of course, decision
trees with too many nodes are also hard to simulate. The key question we address
in this chapter is: can we create deep models that are well-approximated by compact,
human-simulatable models? The question of creating accurate yet human-simulatable
models is an important one in healthcare and medicine, for despite advances in deep
learning for clinical decision support (e.g. Che et al. (2015); Choi et al. (2016); Miotto
et al. (2016)), the clinical community remains skeptical of machine learning systems
(Chen & Asch, 2017). Simulatability allows clinicians to audit predictions easily. They
can manually inspect changes to outputs under slightly-perturbed inputs, check sub-
steps against their expert knowledge, and identify when predictions are made due to
systemic bias in the data rather than real causes.

To address this need for interpretability, a number of works have been developed to
assist in the interpretation of already-trained models. Craven & Shavlik (1996) train
decision trees that mimic the predictions of a fixed, pre-trained neural network, but
do not train the model itself to be simpler. Other post-hoc interpretations typically
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typically evaluate the sensitivity of predictions to local perturbations of inputs or the
input gradient (Adler et al., 2016; Erhan et al., 2009; Lundberg & Lee, 2016; Ribeiro
et al., 2016; Selvaraju et al., 2017). In parallel, research efforts have emphasised that
simple lists of (perhaps locally) important features are not sufficient: Singh et al. (2016)
provide explanations in the form of programs, while Lakkaraju et al. (2016) learn deci-
sion sets and show benefits over other rule-based methods. These techniques focus on
understanding already learned models, rather than finding models that are more inter-
pretable. Frequently however, deep models have multiple optima with similar predictive
accuracy, so one might hope to find more interpretable models of equal predictive accu-
racy. However, the field of optimising deep models for interpretability remains nascent.
Efforts such as Ross et al. (2017a) focus on penalising input sensitivity to less relevant
features. This approach may expose a list of relevant features, is not necessarily suf-
ficient to simulate the prediction. Alternatively, methods for model-compression (e.g.
Balan et al. (2015); Han et al. (2015); Hinton et al. (2015)) try to learn smaller models
that perform similarly to large, black-box models, while edge and node regularisation
techniques are frequently used to improve prediction accuracy (Drucker & Le Cun, 1992;
Ochiai et al., 2017). Sometimes, these regularisations—which all smooth or simplify de-
cision boundaries—can have the effect of also improving interpretability. However, there
is no guarantee that these regularisations improve interpretability.

We instead take steps toward optimising deep models for human-simulatability via
a new model complexity penalty function we call tree regularisation. Tree regulari-
sation favours models whose decision boundaries can be well-approximated by small
decision-trees, thus penalising models that would require many calculations to simu-
late predictions. We first demonstrate how this technique can be used to train simple
multi-layer perceptrons to have tree-like decision boundaries. We then focus on the
time-series tasks of predicting outcomes for patients with HIV and sepsis, and show
that gated recurrent unit (GRU) models trained with strong tree-regularisation reach a
high-accuracy-at-low-complexity sweet spot that is not possible with any strength of L1
or L2 regularisation. Prediction quality can be further boosted by training new hybrid
models – GRU-HMMs – which explain the residuals of interpretable discrete HMMs via
tree-regularised GRUs. We further show that the approximate decision trees for our
tree-regularised deep models are useful for human simulation and interpretability.

6.2 Background and Problem Setup

We consider supervised learning tasks given datasets of N labeled examples, where
each example (indexed by n) has an input feature vector of covariates xn and a target
outcomes vector yn. We shall assume the targets yn are binary, though it is simple to
extend to other types. When modeling time series, each example sequence n contains
Tn time steps indexed by t, which each have a feature vector xnt and an output ynt.
Formally, we write: xn = [xn1 . . . xnTn ] and yn = [yn1 . . . ynTn ]. Here, each vector xnt
could be the set of vital measurements for a patient n at time t, and the value ynt
could be the prediction about the patient’s outcomes for instance, if the patient became
septic at time t. Since the focus of this chapter is on developing interpretable deep
neural network models for drawing inferences in healthcare, we briefly describe neural
networks and time-series modelling via recurrent neural networks in what follows.
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6.2.1 Standard Neural Networks

We have already seen in Chapters 3 and 4 that we can use MLPs to make a set of
predictions in a supervised learning setting. Here, an MLP allows us to predict ŷn of
the target yn via a function ŷn(xn,W ), where the vector W represents all parameters
of the network. Given a data set {(xn, yn)}, the primary goal is to learn the parameters
W that minimise the objective,

min
W

λΨ(W ) +

N∑
n=1

loss(yn, ŷn(xn,W )). (6.2.1)

When target outcomes yn are binary, the binary cross entropy serves as an effective
choice for the loss function. The regularisation term Ψ(W ) can represent L1 or L2
penalties (e.g. Drucker & Le Cun (1992); Ochiai et al. (2017)) or the new regularisation
approach we introduce in this chapter.

6.2.2 Recurrent Neural Networks with Gated Recurrent Units

A recurrent network (RNN) takes as input an arbitrary length sequence xn = [xn1 . . . xnTn ]
and produces a “hidden state” sequence hn = [hn1 . . . hnTn ] of the same length as the
input. Each hidden state vector at time step t represents a location in a (possibly low-
dimensional) “state space” with K dimensions: hnt ∈ RK . RNNs perform sequential
nonlinear embedding of the form hnt = f(xnt, hnt−1) in hope that the state space loca-
tion hnt is a useful summary statistic for making predictions of the target ynt at time
step t. Crucially, this embedding is done by repeatedly applying the same transition
function, thus producing the state at time t from both the input covariates and the pre-
vious hidden state: ht = f(xt, ht−1). Many different variants of the transition function
architecture f have been proposed to solve the challenge of capturing long-term depen-
dencies. Here, we use gated recurrent units (GRUs) (Cho et al., 2014), which are simpler
than other alternatives such as long short-term memory units (LSTMs) (Hochreiter &
Schmidhuber, 1997). While GRUs are convenient, any differentiable RNN architecture
is compatible with the new tree-regularisation approach we introduce in this chapter.

In what follows, we describe the evolution of a single GRU sequence, dropping the
sequence index n for readability. The GRU transition function f produces the state
vector ht = [ht1 . . . htK] from a previous state ht−1 and an input vector xt, via the
following feed-forward architecture:

output state : htk = (1− ztk)ht−1,k + zt,kh̃tk (6.2.2)

candidate state : h̃tk = tanh(V h
k xt + Uhk (rt � ht−1))

update gate : ztk = σ(V z
k xt + U zkht−1)

reset gate : rtk = σ(V r
k xt + U rkht−1)

The internal network nodes include candidate state gates h̃, update gates z and reset
gates r which have the same cardinality as the state vector h. Reset gates allow the
network to forget past state vectors when set near zero via the logistic sigmoid non-
linearity σ(·). Update gates allow the network to either pass along the previous state
vector unchanged or use the new candidate state vector instead. This architecture is
diagrammed in Figure 6.1.
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Figure 6.1: Diagram of gated recurrent unit (GRU) used for each timestep our neural
time-series model. The orange triangle indicates the predicted output ŷt at time t.

The predicted probability of the binary label yt for time t is a sigmoid transformation
of the state at time t:

ŷt = σ(wTht). (6.2.4)

Here, weight vector w ∈ RK represents the parameters of this output layer. We de-
note the parameters for the entire GRU-RNN model as W = (w,U, V ), concatenating
all component parameters. We can subsequently train GRU-RNN time-series models
(hereafter often just called GRUs) via the following loss minimisation objective:

min
W

λΨ(W ) +
N∑
n=1

Tn∑
t=1

loss(ynt, ŷnt(xn,W )), (6.2.5)

where again Ψ(W ) defines a regularisation cost and λ > 0 defines the strength of
regularisation.

6.3 Tree Regularisation of Deep Models

We now propose a novel tree regularisation function Ω(W ) for the parameters of a dif-
ferentiable model which attempts to penalise models whose predictions are not easily
simulatable. Of course, it is difficult to measure “simulatability” directly for an arbi-
trary network, so we take inspiration from decision trees. Our chosen method has two
stages: first, find a single binary decision tree which accurately reproduces the network’s
thresholded binary predictions ŷn given input xn. Second, measure the complexity of
this decision tree as the output of Ω(W ). We measure complexity as the average deci-
sion path length—the average number of decision nodes that must be touched to make
a prediction for an input example xn. We compute the average with respect to some
designated reference dataset of example inputs D = {xn} from the training set. While
many ways to measure complexity exist, we find average path length is most relevant to
our notion of simulatability. Remember that for us, human simulation requires stepping
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Algorithm 2 Average-Path-Length Cost Function

Require:
ŷ(·,W ) : binary prediction function, with parameters W
D = {xn}Nn=1 : reference dataset with N examples

1: function Ω(W )
2: tree← TrainTree({xn, ŷ(xn,W )})
3: return 1

N

∑
nPathLength(tree, xn)

through every calculation required to make a prediction. Average path length exactly
counts the number of true-or-false boolean calculations needed to make an average pre-
diction, assuming the model is a decision tree. Total number of nodes could be used as a
metric, but might penalise more accurate trees that have short paths for most examples
but need more involved logic for few outliers.

Our true-average-path-length cost function Ω(W ) is detailed in Algorithm 2. It
requires two subroutines, TrainTree and PathLength. TrainTree trains a binary
decision tree to accurately reproduce the provided labeled examples {xn, ŷn}. We use
the DecisionTree module distributed in Python’s scikit-learn (Pedregosa et al., 2011)
with post-pruning to simplify the tree. These trees can give probabilistic predictions at
each leaf.1 Next, PathLength counts how many nodes are needed to make a specific
input to an output node in the provided decision tree. In our evaluations, we will apply
our average-decision-tree-path-length regularisation, or simply “tree regularisation,” to
several neural models. Algorithm 2 defines our average-path-length cost function Ω(W ),
which can be plugged into the abstract regularisation term Ψ(W ) in the objectives in
Equations 6.2.1 and 6.2.5.

6.3.1 Making the Decision-Tree Loss Differentiable

Training decision trees is not differentiable, and thus Ω(W ) as defined in Algorithm 2 is
not differentiable with respect to the network parameters W (unlike standard regularis-
ers such as the L1 or L2 norm). While one could resort to derivative-free optimisation
techniques (Audet & Kokkolaras, 2016), gradient descent has been an extremely fast
and robust way of training networks.

A key technical contribution of our work is introducing and training a surrogate
regularisation function Ω̂(W ) : supp(W )→ R+ to map each candidate neural model pa-
rameter vector W to an estimate of the average-path-length. Our approximate function
Ω̂ is implemented as a standalone multi-layer perceptron network and is thus differen-
tiable. Let vector ξ of size k denote the parameters of this chosen MLP approximator.
We can train Ω̂ to be a good estimator by minimising a squared error loss function:

min
ξ

∑J
j=1(Ω(Wj)− Ω̂(Wj , ξ))

2 + ε||ξ||22, (6.3.1)

where Wj are the entire set of parameters for our model, ε > 0 is a regularisation
strength, and we assume we have a dataset of J known parameter vectors and their
associated true path-lengths: {Wj ,Ω(Wj)}Jj=1. This dataset can be assembled using
the candidate W vectors obtained while training our target neural model ŷ(·,W ), as

1Complete decision-tree training details are provided in the appendix.
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Figure 6.2: Overview of tree regularisation procedure.

well as by evaluating Ω(W ) for randomly generated W . Importantly, one can train the
surrogate function Ω̂ in parallel with our network. Experimentally, we show evidence
that our surrogate predictor Ω̂(·) tracks the true average path length as we train the
target predictor ŷ(·,W ) (See appendix for details).

6.3.2 Training the Surrogate Loss

Even moderately-sized GRUs can have parameter vectors W with thousands of dimen-
sions. Our labeled dataset for surrogate training – {Wj ,Ω(Wj)}Jj=1—will only have one
Wj example from each target network training iteration. Thus, in early iterations, we
will have only few examples from which to learn a good surrogate function Ω̂(W ). We
resolve this challenge via augmenting our training set with additional examples: We
randomly sample weight vectors W and calculate the true average path length Ω(W ),
and we also perform several random restarts on the unregularised GRU and use those
weights in our training set.

A second challenge occurs later in training: as the model parameters W shift away
from their initial values, those early parameters may not be as relevant in characterising
the current decision function of the GRU. To address this, for each epoch, we use
examples only from the past E epochs (in addition to augmentation), where in practice,
E is empirically chosen. Using examples from a fixed window of epochs also speeds up
training. The appendix shows a comparison of the importance of these heuristics for
efficient and accurate training—empirically, data augmentation for stabilising surrogate
training allows us to scale to GRUs with 100s of nodes. GRUs of this size are sufficient
for many real problems, such as those we encounter in healthcare domains.

Typically, we use J = 50 labeled pairs for surrogate training for toy datasets and
J = 100 for real world datasets in our experiments. Optimisation of our surrogate
objective is done via gradient descent. We use Autograd to compute gradients of the
loss in Equation. 6.3.1 with respect to ξ, then use Adam to compute descent directions
with step sizes set to 0.01 for toy datasets and 0.001 for healthcare datasets.



84 6. TREE REGULARISATION FOR INTERPRETABLE MACHINE LEARNING

An overview of the overall training procedure is provided in Figure 6.2. Importantly,
the second step of approximating the true average path length is performed via the sur-
rogate network described in this section. The overall procedure may thus be summarised
as follows: first a tree is trained to mimic a deep model’s predictions. Next the cost of
simulating the average example is computed as the average path length. The surrogate
MLP is subsequently used to approximate the tree’s predicted path length. Given a
fixed surrogate MLP, the model parameters W may be optimised via gradient descent.
Subsequently, given a fixed set of model parameters W , we can find the best surrogate
MLP. The overall training procedure alternates between these two stages successively.

6.4 Tree-Regularised MLPs: A Demonstration

While time-series models are the main focus of this work, we first demonstrate tree
regularisation on a simple binary classification task to build intuition. We call this task
the 2D Parabola problem, because as Figure 6.3(a) shows, the training data consists of
2D input points whose two-class decision boundary is roughly shaped like a parabola.
The true decision function is defined by y = 5 ∗ (x− 0.5)2 + 0.4. We sampled 500 input
points xn uniformly within the unit square [0, 1] × [0, 1] and labeled those above the
decision function as positive. To make it easy for models to overfit, we flipped 10% of
the points in a region near the boundary. A random 30% were held out for testing.

For the classifier ŷ, we train a 3-layer MLP with 100 first layer nodes, 100 second
layer nodes, and 10 third layer nodes. This MLP is intentionally overly expressive to
encourage overfitting and expose the impact of different forms of regularisation: our
proposed tree regularisation Ψ(W ) = Ω̂(W ) and two baselines: an L2 penalty on the
weights Ψ(W ) = ||W ||2, and an L1 penalty on the weights Ψ(W ) = ||W ||1. For each
regularisation function, we train models at many different regularisation strengths λ
chosen to explore the full range of decision boundary complexities possible under each
technique. For our tree regularisation, we model our surrogate Ω̂(W ) with a 1-hidden
layer MLP with 25 units. We find this simple architecture works well, but certainly
more complex MLPs could could be used on more complex problems. The objective in
Equation 6.2.1 was optimised via Adam gradient descent (Kingma & Ba, 2014) using a
batch size of 100 and a learning rate of 1e-3 for 250 epochs, and hyperparameters were
set via cross validation using grid search (see appendix for full experimental details).

Figure 6.3 (b) shows the each trained model as a single point in a 2D fitness space:
the x-axis measures model complexity via our average-path-length metric, and the y-
axis measures AUC prediction performance. These results show that simple L1 or L2
regularisation does not produce models with both small node count and good predictions
at any value of the regularisation strength λ. As expected, large λ values for L1 and
L2 only produce far-too-simple linear decision boundaries with poor accuracies. In
contrast, our proposed tree regularisation directly optimizes the MLP to have simple
tree-like boundaries at high λ values which can still yield good predictions.

The lower panes of Figure 6.3 shows these boundaries. Our tree regularisation is
uniquely able to create axis-aligned functions, because decision trees prefer functions
that are axis-aligned splits. These axis-aligned functions require very few nodes but are
more effective than L1 and L2 counterparts. The L1 boundary is more sharp, whereas
the L2 is more round.
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Figure 6.3: 2D Parabola task : (a) Each training data point in 2D space, overlaid with
true parabolic class boundary. (b): Each method’s prediction quality (AUC) and com-
plexity (path length) metrics, across range of regularisation strength λ. In the small
path length regime between 0 and 5, tree regularisation produces models with higher
AUC than L1 or L2. (c-e): Decision boundaries (black lines) have qualitatively different
shapes for different regularisation schemes, as regularisation strength λ increases. We
colour predictions as true positive (red), true negative (yellow), false negative (green),
and false positive (blue).
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6.5 Tree-Regularised Time-Series Models

We now evaluate our tree-regularisation approach on time-series models. We focus on
GRU-RNN models, with some later experiments on new hybrid GRU-HMM models. As
with the MLP, each regularisation technique (tree, L2, L1) can be applied to the output
node of the GRU across a range of strength parameters λ. Importantly, Algorithm 2
can compute the average-decision-tree-path-length for any fixed deep model given its
parameters, and can hence be used to measure decision boundary complexity under
any regularisation, including L1 or L2. This means that when training any model, we
can track both the predictive performance (as measured by area-under-the-ROC-curve
(AUC); higher values mean better predictions), as well as the complexity of the decision
tree required to explain each model (as measured by our average path length metric;
lower values mean more interpretable models). We also show results for a baseline
standalone decision tree classifier without any associated deep model, sweeping a range
of parameters controlling leaf size to explore how this baseline trades off path length
and prediction quality. Further details of our experimental protocol, as well as more
extensive results with additional baselines are provided in the appendix.

6.5.1 Synthetic Task: Signal-and-noise HMM

We generated a toy dataset of N = 100 sequences, each with 50 time steps. Each time
step has a data vector xnt of 14 binary features and a single binary output label ynt.
The data comes from two separate HMM processes. First, a “signal” HMM generates
the first 7 data dimensions from 5 well-separated states. Second, an independent “noise”
HMM generates the remaining 7 data dimensions from a different set of 5 states. Each
timestep’s output label ynt is produced by a rule involving both the signal data and the
signal hidden state: the target is 1 at time step t only if both the first signal state is
active and the first observation is turned on. We deliberately designed the generation
process so that neither logistic regression with x as features nor an RNN model that
makes predictions from hidden states alone can perfectly separate this data. These
results are shown in Figure 6.4.

6.5.2 Real-World Tasks: Predicting Patient Outcomes for HIV and
Sepsis

We tested our approach on several real tasks: predicting medical outcomes of hospi-
talised septic patients, predicting HIV therapy outcomes, as well as the task of identify-
ing stop phonemes in English speech recordings. To normalise scales, we independently
standardised features x via z-scoring.

• Sepsis Critical Care: We study time-series data for 11 786 septic ICU patients
from the public MIMIC III dataset (Johnson et al., 2016a). We observe at each
hour t a data vector xnt of 35 vital signs and lab results as well as a label vector
ynt of 5 binary outcomes. Hourly data xnt measures continuous features such as
respiration rate (RR), blood oxygen levels (paO2), fluid levels, and more. Hourly
binary labels ynt include whether the patient died in hospital and if mechanical
ventilation was applied. Models are trained to predict all 5 output dimensions
concurrently from one shared embedding. The average sequence length is 15 hours.
7 070 patients are used in training, 1 769 for validation, and 294 for test.
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(c) GRU λ = 1 000
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Figure 6.4: Toy Signal-and-Noise HMM Task: (a)-(c) Decision trees trained to mimic
predictions of GRU models with 25 hidden states at different regularisation strengths
λ; as expected, increasing λ decreases the size of the learned trees (see supplement for
more trees). Decision tree (c) suggests the model learns to predict positive output (blue)
if and only if “x[0] == 1 and x[3] == 1 and x[4] == 0”, which is consistent with the
true rule we used to generate labels: assign positive label only if first dimension is on
(x[0] == 1) and first state is active (emission probabilities for this state: [.5 .5 .5 .5
0 . . .]). (d) Tree-regularised GRU models reach a sweet spot of small path lengths yet
high AUC predictions that alternatives cannot reach at any tested value of λ.
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(a) In-Hospital Mortality
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(c) Mechanical Ventilation
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Figure 6.5: Sepsis task: Study of different regularisations for GRU model with 100
states, trained to jointly predict 5 binary outcomes for ICU patients. Panels (a) and
(c) show AUC vs. path length for 2 of the 5 outcomes (remainder in the supplement);
in both cases, tree-regularisation provides higher AUC in the target regime of low-
complexity decision trees. Panels (b) and (d) show proxy trees for the tree-regularised
GRU (λ = 2 000); these were found interpretable by an ICU clinician (see main text).
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(c) HIV Therapy Adherence
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Figure 6.6: TIMIT and HIV tasks: Study of different regularisation techniques for GRU
model with 75 states. Panels (a)-(c) are tradeoff curves showing how AUC predictive
power and decision-tree complexity evolve with increasing regularisation strength under
L1, L2 or tree regularisation on both TIMIT and HIV tasks. The GRU is trained to
jointly predict 15 binary outcomes for HIV, of which 2 are shown here in Panels (b) -
(c). The GRU’s decision tree proxy for HIV Adherence is shown in (d).

• HIV Therapy Outcome (HIV): We use the EuResist Integrated Database (Zazzi
et al., 2012) for 53 236 patients diagnosed with HIV. We consider 4-6 month inter-
vals (corresponding to hospital visits) as time steps. Each data vector xnt has 40
features, including blood counts, viral load measurements and lab results. Each
output vector ynt has 15 binary labels, including whether a therapy was successful
in reducing viral load to below detection limits, if therapy caused CD4 blood cell
counts to drop to dangerous levels (indicating AIDS), or if the patient suffered
adherence issues to medication. The average sequence length is 14 steps. 37 618
patients are used for training; 7 986 for testing, and 7 632 for validation.

• Phonetic Speech (TIMIT): We have recordings of 630 speakers of eight major
dialects of American English reading ten phonetically rich sentences (Garofolo
et al., 1993). Each sentence contains time-aligned transcriptions of 60 phonemes.
We focus on distinguishing stop phonemes (those that stop the flow of air, such
as “b” or “g”) from non-stops. Each time step has one binary label ynt indicating
if a stop phoneme occurs or not. Each input xnt has 26 continuous features:
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Figure 6.7: Prediction quality (AUC) vs. complexity (path length) for the GRU-HMM
over a range of regularisation strengths λ. Subtitles show the number of HMM states
and GRU states. See earlier figures to compare these GRU-HMM numbers to simpler
GRU and decision tree baselines.

the acoustic signal’s Mel-frequency cepstral coefficients and derivatives. There
are 6 303 sequences, split into 3 697 for training, 925 for validation, and 1 681 for
testing. The average length is 614.

6.5.3 Results

The major conclusions of our experiments comparing GRUs with various regularisations
are outlined below.

Tree-regularised models have fewer nodes than other forms of regularisa-
tion. Across tasks, we see that in the target regime of small decision trees (low
average-path lengths), our proposed tree-regularisation achieves higher prediction qual-
ity (higher AUCs). In the signal-and-noise HMM task, tree regularisation (green line
in Figure 6.4(d)) achieves AUC values near 0.9 when its trees have an average path
length of 10. Similar models with L1 or L2 regularisation reach this AUC only with
trees that are nearly double in complexity (path length over 25). On the Sepsis task
(Figure 6.5) we see AUC gains of 0.05-0.1 at path lengths of 2-10. On the TIMIT task
(Figure 6.6a), we see AUC gains of 0.05-0.1 at path lengths of 20-30. Finally, on the HIV
CD4 blood cell count task in Figure 6.6b, we see AUC differences of between 0.03 and
0.15 for path lengths of 10-15. The HIV adherence task in Figure 6.6d has AUC gains
of between 0.03 and 0.05 in the path length range of 19 to 25 while at smaller paths all
methods are quite poor, indicating the problem’s difficulty. Overall, these AUC gains
are particularly useful in determining how to administer subsequent HIV therapies.

We emphasise that our tree-regularisation usually achieves a sweet spot of high
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AUCs at short path lengths not possible with standalone decision trees (orange lines),
L1-regularised deep models (red lines) or L2-regularised deep models (blue lines). In
unshown experiments, we also tested elastic net regularisation (Zou & Hastie, 2005), a
linear combination of L1 and L2 penalties. We found elastic nets to follow the same trend
lines as L1 and L2, with no visible differences. In domains where human-simulatability is
required, increases in prediction accuracy in the small-complexity regime can mean the
difference between models that provide value on a task and models that are unusable,
either because performance is too poor or predictions are uninterpretable.

Our learned decision tree proxies are interpretable. Across all tasks, the deci-
sion trees which mimic the predictions of tree-regularised deep models are small enough
to simulate by hand (path length ≤ 25) and help users grasp the model’s nonlinear
prediction logic. Intuitively, the trees for our synthetic task in Figure 6.4(a)-(c) de-
crease in size as the strength λ increases. The logic of these trees also matches the true
labelling process: even the simplest tree (c) checks a relevant subset of input dimensions
necessary to verify that both the first state and the first output dimension are active.

In Figure 6.5, we show decision tree proxies for our deep models on two sepsis
prediction tasks: mortality and need for ventilation. We consulted a clinical expert
on sepsis treatment, who noted that the trees helped him understand what the models
might be doing and thus determine if he would trust the deep model. For example, he
said that using FiO2, RR, CO2 and paO2 to predict need for mechanical ventilation
(Figure 6.5d) was sensible, as these all measure breathing quality. In contrast, the in-
hospital mortality tree (Figure 6.5b) predicts that some young patients with no organ
failure have high mortality rates while other young patients with organ failure have
low mortality. These counter-intuitive results led to hypotheses about how uncaptured
variables impact the training process. Such reasoning would not be possible from simple
sensitivity analyses of the deep model.

Finally, we have verified that the decision tree proxies of our tree-regularised deep
models of the HIV task in Figure 6.6d are interpretable for understanding why a patient
has trouble adhering to a prescription; that is, taking drugs regularly as directed. Our
clinical collaborators confirm that the baseline viral load and number of prior treat-
ment lines, which are prominent attributes for the decisions in Figure 6.6d, are useful
predictors of a patient with adherence issues. Several medical studies (Langford et al.,
2007; Socias et al., 2011) suggest that patients with higher baseline viral loads tend to
have faster disease progression, and hence have to take several drug cocktails to combat
resistance. Juggling many drugs typically makes it difficult for these patients to adhere
as directed. We hope interpretable predictive models for adherence could help assess a
patient’s overall prognosis (Paterson et al., 2000) and offer opportunities for intervention
(e.g. with alternative single-tablet regimens).

Decision trees trained to mimic deep models make faithful predictions. Across
datasets, we find that each tree-regularised deep time-series model has predictions that
agree with its corresponding decision tree proxy in about 85-90% of test examples. Ta-
ble 1 shows exact fidelity scores for each dataset. Thus, the simulatable paths of the
decision tree will be trustworthy in a majority of cases.
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Dataset Fidelity

signal-and-noise HMM 0.88
SEPSIS (In-Hospital Mortality) 0.81
SEPSIS (90-Day Mortality) 0.88
SEPSIS (Mech. Vent.) 0.90
SEPSIS (Median Vaso.) 0.92
SEPSIS (Max Vaso.) 0.93
HIV (CD4+ below 200) 0.84
HIV (Therapy Success) 0.88
HIV (Mortality) 0.93
HIV (Poor Adherence) 0.90
HIV (AIDS Onset) 0.93
TIMIT 0.85

Table 6.1: Fidelity of predictions from our trained deep GRU-RNN and its correspond-
ing decision tree. Fidelity is defined as the percentage of test examples on which the
prediction made by a tree agrees with the deep model (Craven & Shavlik, 1996). We
used 20 hidden GRU states for signal-and-noise task, 50 states for all others.

Practical runtimes for tree regularisation are less than twice that of simpler
L2. While our tree-regularised GRU with 10 states takes 3977 seconds per epoch on
TIMIT, a similar L2-regularised GRU takes 2116 seconds per epoch. Thus, our new
method has cost less than twice the baseline even when the surrogate is serially com-
puted. Because the surrogate Ω̂(W ) will in general be a much smaller model than the
predictor ŷ(x,W ), we expect one could get faster per-epoch times by parallelising the
creation of (W,Ω(W )) training pairs and the training of the surrogate Ω̂(W ). Addition-
ally, 3977 seconds includes the time needed to train the surrogate. In practice, we do
this sparingly, only once every 25 epochs, yielding an amortised per-epoch cost of 2191
seconds (more runtime results are in the appendix).

Decision trees are stable over multiple optimisation runs. When tree regular-
isation is strong (high λ), the decision trees trained to match the predictions of deep
models are stable. For both signal-and-noise and sepsis tasks, multiple runs from differ-
ent random restarts have nearly identical tree shape and size, perhaps differing by a few
nodes. This stability is crucial to building trust in our method. On the signal-and-noise
task (λ = 7000), 7 of 10 independent runs with random initialisations resulted in trees
of exactly the same structure, and the others closely resembled those sharing the same
subtrees and features (more details in the appendix).

The deep residual GRU-HMM achieves high AUC with less complexity. So
far, we have focused on regularising standard deep models, such as MLPs or GRUs.
Another option is to use a deep model as a residual on another model that is already
interpretable: for example, discrete HMMs partition time steps into clusters, each of
which can be inspected, but its predictions might have limited accuracy. In Figure
6.7, we show the performance of jointly training a GRU-HMM, a new model which
combines an HMM with a tree-regularised GRU to improve its predictions (details and
further results in the appendix). Here, the ideal path length is zero, indicating only
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the HMM makes predictions. For small average-path-lengths, the GRU-HMM improves
the original HMM’s predictions and has simulatability gains over earlier GRUs. On the
mechanical ventilation task, the GRU-HMM requires an average path length of only 28
to reach AUC of 0.88, while the GRU alone with the same number of states requires
a path length of 60 to reach the same AUC. This suggests that jointly-trained deep
residual models may provide even better interpretability.

6.6 Conclusion

We have introduced a novel tree-regularisation technique that encourages the complex
decision boundaries of any differentiable model to be well-approximated by human-
simulatable functions, allowing domain experts to quickly understand and approxi-
mately compute what the more complex model is doing. In general, our training proce-
dure is robust and efficient; across three complex, real-world domains – HIV treatment,
sepsis treatment, and human speech processing – our tree-regularised models provide
gains in prediction accuracy in the regime of simpler, approximately human-simulatable
models. Overall, our tree-regularisation method can be viewed as a step towards build-
ing explainable models in healthcare that we can trust.



Chapter 7

Conclusion

The fundamental question we addressed in this thesis is: What is the effect of a ther-
apeutic intervention on a patient? We studied this question in the context of three
broadly related themes namely causal inference, decision-making and interpretability:
each of the methods we proposed may be viewed as a means of identifying a suitable
representation of confounding in order to infer treatment effects or as a means of gaining
interpretability for decision-making. We summarise our contributions below.

Learning suitable representations of measured confounding. Our work in
Chapter 3 showed how to combine non-parametric methods with parametric methods
that explicitly build a causal model for learning a treatment policy. Both of these meth-
ods used different representations to capture measured confounding, based on which we
could subsequently learn a treatment policy. In the parametric approach, this informa-
tion was summarised in terms of a belief state representation, that we conditioned on to
infer treatment effects to estimate a policy; the non-parametric approach used a kernel-
similarity score to perform matching for this purpose. In Chapter 4, we adapted this
approach to combine both representations into a modified belief state representation
such that we could forward simulate counterfactuals to deduce treatment effects. The
information bottleneck approach in Chapter 5, provided an alternative, information-
theoretic perspective to this problem: we used the idea of the relevance of information
to perform a sufficient reduction of the measured covariates and learn a constrained rep-
resentation of confounding; conditioned on this reduced representation of confounding,
we could subsequently infer treatment effects.

Interpretable medical decision-making. Both mixture model approaches in Chap-
ters 3 and 4 could be used to assess the efficacy of treatment policies. Specifically, our
model presented in Chapter 4 used online planning to reason about what would happen
if we actively intervened at a time point in a particular way. By forward simulating
the potential scenarios of performing certain interventions over a particular horizon
length, we were able to step through predictions about how a patient’s particular state
of health may evolve and what outcomes can be observed at each particular time point.
In high-stake domains such as medicine, this simulatability can guide or be used to audit
treatment recommendations, and provide a complementary context to a simple set of
guidelines or recommendations. In Chapter 5, we explicitly learned an interpretable,
low-dimensional disentangled representation of confounding using the information bot-

94
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tleneck principle. By adjusting the degree of compression in the bottleneck, we could
explore a range of such representations from which could sample and infer treatment
effects. Finally, in Chapter 6, we explicitly developed a regularisation mechanism that
encouraged the decision boundaries of deep models to be approximated by small deci-
sion trees that could be stepped through, allowing domain experts to understand why
a particular model makes its predictions.

7.1 Limitations and Future Work

Figure 7.1: Summary of causal inference frameworks and methods for estimating causal
effects under measured and hidden confounding. The work in our thesis only addressed
measured confounding. Possible extensions to scenarios with hidden confounding in-
clude the use of directed information in our RL models and instrumental variables.

The Limitations of Off-Policy Evaluation. In Chapters 3 and 4 of this thesis,
we presented two mixture-of-expert approaches for both therapy selection and coun-
terfactual reasoning. Both of these approaches were evaluated quantitatively using the
off-policy evaluation strategies described in Chapter 2 as well as qualitatively in terms
of medical guidelines. As we have already discussed previously, the results of off-policy
evaluation are dependent on the degree of overlap between the clinical data policy and
the learnt policy. In both these chapters we demonstrated that there is indeed an ad-
equate overlap in this the case by examining the distribution of non-zero importance
weights when performing off-policy evaluation. However, when applying these methods
of evaluation to other clinical settings, this may not necessarily be the case. These
results can also be sensitive to the way in which the behaviour policy is computed.
As a result, a certain degree of caution needs to be taken when performing off-policy
evaluation. One way of overcoming this issue would be to use the proposed mixture-
of-experts framework not only as a tool for estimating a suitable treatment policy, but
also as a means of evaluating existing policies. That is, one could combine parametric
and non-parametric estimators to estimate the value of a particular policy, such that
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the error of this estimate is minimised.

Exploring Alternative Back-Off Strategies. Both of the models in Chapters 3
and 4 combine parametric and non-parametric approaches to infer treatment effects
and produce better treatment policies. Future work could explore alternative ways to
design the back-off strategy from kernel to model-based methods and the connections
between the regularisation afforded by non-parametric dynamical system models such
as kPOMDPs or PSRs. The goal of such an extension could be to develop a more
accurate method for off-policy evaluation, that is robust to the choice of representation.

Accounting for the Influence of Hidden or Unmeasured Confounding. An
important assumption we made across all our models was the fact that confounding
factors may be measured. In reality of course, there will however, be many confounders
that are unmeasured or that we do not necessarily know about, which together influ-
ence the predictions we can make about a patient’s outcomes to treatment. Accounting
for such confounding however requires additional assumptions and tests. In particular,
Pearl (2009) introduces the front-door criterion as a general test for identifying causal
effects with hidden confounding. Equivalently, in an RL setting it no longer suffices
to use a simple MDP or POMDP structure as a causal model, since in these cases
unobserved confounders will influence the actions, observations and rewards. Many ap-
proaches have been proposed to deal with unobserved confounding in a non-RL setting.
However, these techniques require strict mathematical assumptions, and in practice we
do not always know whether data will meet these assumptions. As an alternative, it
may be helpful to consider the notion of directed information when calculating the value
functions of a particular policy. The overall idea here would be to rewrite the transition,
observation and reward functions of a POMDP in terms of directed information where
we explicitly causally condition on previous states and actions. In a similar vein, it may
be interesting to adapt the information bottleneck method that we developed in Chap-
ter 5 to use the concept of directed information too when learning a low-dimensional
representation of confounding.

Another interesting extension of the model in Chapter 5, considers using instru-
mental variables for which treatment is never applied, to estimate the average causal
effect defined only on the subpopulation of patients that are treated. Theoretically, this
quantity should not depend on learning a sufficiently reduced covariate, and one could
thus use it to verify theoretically whether the model in Chapter 5 learns an adequate
representation of confounding. In general, instrumental variables are typically employed
in scenarios where hidden confounding is prevalent and could thus also provide a suit-
able means of extending the model to such a case. A general summary of methods that
are applicable for estimating causal effects with unmeasured confounding is shown in
Figure 7.1.

Extensions of tree regularisation for local explainability, and to domains that
are not prima facie interpretable. Finally our work in Chapter 6 focused on using
tree-regularisation to learn a model that can be interpreted and explained globally in
terms of a single decision tree (per gradient step). However, in healthcare particularly,
it may be of relevance to apply tree regularisation to local, example-specific approxi-
mations of a loss (Ribeiro et al., 2016) or to representation learning tasks (encouraging
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embeddings with simple boundaries). We could also continue to explore ways in which
to improve the stability of such models and identify ways to apply this approach to
situations where the inputs are not inherently interpretable e.g. for medical image
analysis.



Appendix A

Details for Policy Mixing Models

A.1 The History Alignment Kernel

The history alignment kernel first constructs a resistance mutations kernel to quantify
the pairwise similarities between different therapy combinations. Formally, the kernel
may be defined as follows. Let denote the set of different drug groups, and uaξ and
ua′ξ be the sets of resistance-relevant mutations for the drugs occurring in drug group
ξ ∈ Ξ of the therapies a and a′, respectively. The pairwise similarity between the drug-ξ
mutations of the drug combinations a and a′ is then calculated using the Jaccard index:

simξ(a, a′) =
|uaξ

⋂
ua′ξ|

|uaξ
⋃
ua′ξ|

, (A.1.1)

where | · | denotes set cardinality. We then derive the similarity km(a, a′) between the
therapies a and a′ by averaging the similarities of their corresponding drug groups:

km(a, a′) =
∑
ξ∈Ξ

simξ(a, a′)

|Ξ| . (A.1.2)

The resistance mutations kernel is subsequently used together with the Needleman Wun-
sch algorithm to deduce a history alignment kernel over patient histories. This kernel
can subsequently be used to perform non-parametric policy learning.

A.2 Sensitivity to Choice of Reward Function

We investigated the performance of the mixture-of-experts approach against the bench-
marks described in the experimentation section of Chapter 3 with different reward
criteria for the HIV therapy selection task. We tested three alternative formulations of
reward functions wherein, (a) a higher weight is placed on CD4+ counts than viral load,
(b) a higher weight is placed on the absolute number of mutations than both the CD4+

counts and viral load. These reward functions are given as follows:
(a)

rt =

{
−0.6 log Vt + 0.7 logCt − 0.2|Mt|, if Vt is above detection

5 + 0.7 logCt − 0.2|Mt|, if Vt is below detection,

98
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(b)

rt =

{
−0.7 log Vt + 0.6 logCt − 0.8|Mt|, if Vt is above detection

5 + 0.6 logCt − 0.8|Mt|, if Vt is below detection,

where Vt is the viral load (in copies/mL), Ct is the CD4+ count (in cells/mL) and |Mt|
is the number of mutations at time t.

DR WIS IS

Random –8.42 +− 2.68 –10.43 +− 4.17 –10.74 +− 4.16
LT kernel 9.47 +− 1.62 7.34 +− 3.79 8.71 +− 3.65
POMDP 3.57 +− 1.31 3.82 +− 2.15 3.68 +− 2.12

Mixture-of-Experts 10.51 +− 1.20 11.23 +− 2.10 11.11 +− 1.99

Table A.1: Performance comparison of mixture-of-experts vs. baselines for HIV therapy
selection across 3 000 held-out patients using a POMDP model with 30 states using re-
ward criterion (a) (γ = 0.98). The mixture-of-experts still produces the largest immune
response while reducing the viral load, regardless of whether a larger weight is given to
CD4+ or Vt (γ = 0.98).

Our setup was identical to that described in the experimentation section in Chapter
3, where the reward criterion was replaced by (a) and (b) respectively. We tested the
performance of the mixture-of-experts with the alternative reward criteria on the same
held-out set of 3 000 patients from the EIDB as before. These results are shown in the
following Tables A.1 and A.2 respectively.

DR WIS IS

Random –12.88 +− 6.42 –13.65 +− 7.46 –13.50 +− 7.16
LT kernel 4.71 +− 4.63 5.27 +− 4.74 4.02 +− 6.14
POMDP 1.97 +− 4.51 4.19 +− 4.22 7.18 +− 4.69

Mixture-of-Experts 4.02 +− 3.31 6.29 +− 3.01 6.96 +− 4.81

Table A.2: Performance comparison of mixture-of-experts vs. baselines for HIV therapy
selection across 3 000 held-out patients using a POMDP model with 30 states using
reward criterion (b) (γ = 0.98). Performance of the mixture-of-experts has significantly
higher variance when placing a higher weight on the number of mutations. Evidently
in this case, the mixture-of-experts does not always lead to the best immune response.

The results show the performance of the mixture-of-experts approach varies depending
on the relative weightings of immune response indicators, however placing a heavier
negative weight on the absolute number of mutations results in higher variance in the
results across all policies, including the other baseline policies. In this case, the mixture-
of-experts does not always lead to the best immune response. Since the number of
mutations at each point is highly dependent on the number of strains infecting a patient
at a time and past exposure to drugs, they can fluctuate considerably across patients.
Normalising these counts or incorporating the mutations into a risk score (indicating the
likelihood of resistance), rather than including an absolute count in the reward function
may overcome this issue. Importantly however, all the methods appear to be sensitive
to this choice.
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A.2.1 Policy performance across unpruned treatment space

In addition to the policy evaluation results presented in Chapter 3, we performed similar
evaluation experiments using the unpruned distribution treatments as actions to learn
a POMDP model. The performance results from the EuResist and SHCS test data
sets are presented in Tables A.3 and A.4 respectively. A higher value indicates a better
performing treatment policy.

DR IS WIS

Random –7.27 +− 2.19 –8.39 +− 2.64 –8.19 +− 2.71
ST kernel 1.74 +−1.15 1.39 +−1.78 1.27 +−1.62
LT kernel 9.11 +− 1.57 8.18 +− 1.29 6.64 +− 1.72
POMDP 5.31 +− 2.30 4.79 +− 2.51 6.84 +− 2.10

Mixture-of-experts 8.3 +− 1.12 12.86 +− 1.49 11.80 +− 1.10

Table A.3: Off-policy evaluation using importance sampling, weighted importance sam-
pling and doubly robust methods for different therapy selection models across EuResist
test set using an unpruned treatment distribution of treatments (γ = 0.98).

DR IS WIS

Random –7.64 +− 2.19 –7.57 +− 3.67 –7.21 +− 2.11
ST kernel 1.26 +−1.19 2.35 +−1.17 2.19 +−1.30
LT kernel 6.72 +− 1.69 7.16 +− 1.63 6.89 +− 1.87
POMDP 4.86 +− 1.71 5.81 +− 2.96 5.21 +− 2.10

Mixture-of-experts 6.79 +− 2.72 7.59 +− 2.94 7.26 +− 2.63

Table A.4: Off-policy evaluation using importance sampling, weighted importance sam-
pling and doubly robust methods for different therapy selection models across SHCS
test set using an unpruned treatment distribution of treatments (γ = 0.98).

Evidently in both cases, the mixture-of-experts approach still outperforms its ker-
nel and model-based counterparts, but the performance gains are not as pronounced,
particularly for the SHCS data set. In the unpruned setting, there may be very few
samples containing rare therapy combinations in the data set which pushes these im-
portance weights to 0 when performing off-policy evaluation. A consequence of this is
that a larger portion of the data set remains unused for off-policy evaluation. It also
means that the policies learned using the unpruned space of actions are more difficult
to trust.



Appendix B

Extended Results on Tree
Regularisation

B.1 Details for Decision-Tree Training

Training decision trees with post-pruning. Our average path length function
Ω(W ) for determining the complexity of a deep model with parameters W – defined
in Chapter 6 in Algorithm 2 – assumes that we have a robust, black-box way to train
binary decision-trees called TrainTree given a labeled dataset {xn, ŷn}. For this we
use the DecisionTree module distributed in Python’s sci-kit learn, which optimises
information gain with Gini impurity. The specific syntax we use (for reproducibility) is:

tree = DecisionTree(min_sample_count=5)

tree.fit(x_train, y_train)

tree = prune_tree(tree, x_valid, y_valid)

The provided keyword options force the tree to have at least 5 examples from the
training set in every leaf. We found that tuning hyperparameters of the TrainTree
subprocedure, such as the minimum size of a leaf node, to be important for making
useful trees.

Generally, the runtime cost of sklearn’s fitting procedure scales superlinearly with the
number of examples N and linearly with the number of features F – a total complexity
of O(FN log(N)). In practice, we found that with N = 1000 examples, F = 10 features,
tree construction takes 15.3 microseconds.

The pruning procedure is a heuristic to create simpler trees, summarised in algorithm
3. After TrainTree delivers a working decision tree, we propose iteratively removing
each remaining leaf node, accepting the proposal if the squared prediction error on a
validation set improves. This pruning removes sub-trees that don’t generalise to unseen
data.

Sanity check: Surrogate path length closely follow true path length. Fig. B.1
shows that our surrogate predictor Ω̂(·) tracks the true average path length as we train
the target predictor ŷ(·,W ) on several different datasets.

Sensitivity to different choices for surrogate training. In Fig. B.2, we show
sample learning curves for variations of methods for approximating the average path

101
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Algorithm 3 Post-pruning for training decision trees.

Require:
T : initial decision tree
ErrOnVal(·) : squared error on validation data

ErrOnVal(T ) ,
∑N

n=1(T (xn)− yn)2

1: procedure PruneTree( T , err )
2: e← ErrOnVal(T ).
3: for node n ∈ SortLeafToRoot(T.nodes) do
4: T ′ ← RemoveNode(T, n)
5: enew ← ErrOnVal(T ′)
6: if enew < e then T ← T ′

7: Return T

(a) Path length estimates Ω̂ for 2D Parabola task

(b) Path length estimates Ω̂ for Signal-and-noise HMM task

Figure B.1: True average path lengths (yellow) and surrogate estimates Ω̂ (green) across
many iterations of network parameter training iterations.

length (also called “node count”) in a decision tree. In blue is the true value. Each of the
other 3 lines use the same surrogate model: an MLP with 25 hidden nodes. Increasing its
capacity too much, i.e. 100 hidden nodes, leads to overfitting where the surrogate is able
to predict the average path length extremely well for a small number of iterations, while
the performance quickly decays. With an MLP of the right capacity, four additional
tricks: (1) weight augmentation, (2) random restarts with an unregularised model, (3)
fixed window of data, and (4) surrogate retraining greatly improve the accuracy of the
average path length predictions.

Normally, if our differentiable model is a GRU, we compile examples using the GRU
weights at every batch and calculate the true average path length. This dataset is used
to train the surrogate model. If examples are very sparse, surrogate predictions may
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Figure B.2: This figure shows the effects of weight augmentation and retraining. The
blue line is the true average path length of the decision tree at each epoch. All other lines
show predicted path lengths using the surrogate MLP. By randomly sampling weights
and intermittently retraining the surrogate, we significantly improve the ability of the
surrogate model to track the changes in the ground truth.

be unstable. Augmentation addresses this by randomly sampling weight vectors and
computing the average path length to artificially create a larger dataset. Early epochs
are especially problematic when it comes to lacking data. In addition to augmentation,
we use random restarts to separately train unregularised GRUs (each with different
weight initialisations) to grow a dataset of weight vectors prior to training the regularised
model.

As the GRU parameters take steps away from their initial values, our examples
from those early epochs no longer describe the current state of the model. Retraining
and a fixed window of data address this by re-learning the surrogate function at a
fixed frequency using examples only from the last J epochs. In practice, both the
augmentation size, the retraining frequency, and J are functions of the learning rate
and the dataset size. See table B.1 for exact numbers.

B.2 Experimental Protocol

See table B.1 for model hyperparameters for each dataset. For standard recurrent
models such as HMM or GRU, the decision trees were trained on the input data and the
predictions of the model’s output node. For our deep residual GRU-HMM, the decision
trees were trained on the predictions on the GRU’s output node only. For both synthetic
and real-world datasets, our surrogate to the tree loss is a multilayer perceptron with 1
hidden layer of 25 nodes. For each dataset, when we investigated several regularisation
strengths (λ), we initialise the model weights using the same random seed. We use the
Adam algorithm (Kingma & Ba, 2014) for all optimisation.

Dataset Total Num. Sequences Avg. seq. length Learning Rate Batch size Minimum Leaf Sample Post-pruned Epochs (Model) Epochs (Surrogate) Retraining Freq. J

parabola n/a n/a 1e-2 32 0 N 250 500 100 n/a
signal-and-noise HMM 100 50 1e-2 10 25 Y 300 1000 50 50

HIV 53 236 14 1e-3 256 1 000 Y 300 5000 25 100
SEPSIS 11 786 15 1e-3 256 1 000 Y 300 5000 25 100
TIMIT 6 303 614 1e-3 256 5 000 Y 200 5000 25 100

Table B.1: Dataset summaries and training parameters used in our experiments.
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B.2.1 2D Parabola

Dataset generation. The training data consists of 2D input points whose two-class
decision boundary is roughly shaped like a parabola. The true decision function is
defined by y = 5∗ (x−0.5)2 +0.4. We sampled all 200 input points xn uniformly within
the unit square [0, 1]×[0, 1] and labeled those above the decision function as positive. To
add randomness, we flipped 10% of the points in the region near the boundary between
y = 5 ∗ (x− 0.5)2 + 0.2 and y = 5 ∗ (x− 0.5)2 + 0.6.

Regularisation strengths. Tested values of regularisation strength parameter λ:
0.1, 0.5, 1, 5, 10, 25, 50, 75, 100, 250, 500, 750, 1 000, 2 500, 5 000, 7 500, 10 000, 25 000,
50 000, 75 000, 100 000

B.2.2 Signal-and-noise HMM

Dataset generation The transition and emission matrices describing the generative
process used to create the signal-and-noise HMM are shown in Fig. B.3. The output yn
at every timestep is created by concatenating a one-hot vector of an emitted state and
the 7-dimensional binary input vector. We emphasize that to output 1, the HMM must
be in state 1 and the first input feature must be 1.(
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Figure B.3: Emission (5 states vs 7 features) and transition probabilities for the signal
HMM (a, b) and noise HMM (c, d).

Training Details for Synthetic Data With synthetic datasets, we explore (1, 5, 6,
10, 15, 20) GRU nodes, (5, 6, 20) HMM states, and GRU-HMMs with 5 HMM states
and (1, 5, 10, 15) GRU nodes.

B.2.3 Sepsis Training Details

We explore (1, 5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60, 75, 100) GRU nodes, (5,
6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60, 75, 100) HMM states, and GRU-HMMs
with (5, 10, 25, 50) HMM states and (1, 5, 10, 25, 50) GRU nodes. The input features
are z-scored prior to training.

B.2.4 HIV Training Details

We explore (1, 5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60, 75) GRU nodes, (5, 6,
10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60, 75) HMM states, and GRU-HMMs with (5,
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10, 25) HMM states and (1, 5, 10, 25, 50) GRU nodes.

B.2.5 TIMIT Training Details

We explore (1, 5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60, 75) GRU nodes, (5, 6,
10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60, 75) HMM states, and GRU-HMMs with (5,
10, 25) HMM states and (1, 5, 10, 25, 50) GRU nodes. Like Sepsis, the input features
are z-scored prior to training.

(a) GRU: Signal-and-noise HMM
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(b) GRUHMM: Signal-and-noise HMM
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Figure B.4: Performance and complexity trade-offs using L1, L2, and Tree regularisation
on (a) GRU and (b) GRU-HMM performance on the Signal-and-noise HMM dataset.
Note the differences in scale.

B.3 Extended Results

For signal-to-noise HMM, Sepsis, and TIMIT, we first show expanded versions of the fit-
ness trace plots and the tree visualisations. For Sepsis and HIV, we show the additional
output dimensions not in the paper.

We also include tables of the test AUC performance for our synthetic and real data
sets over a vast array of parameter settings (GRU node counts, HMM state counts,
regularisation strengths). Consistent with the common wisdom of training deep models,
we found that larger models, with regularisation, tended to perform the best.

B.4 GRU-HMM: Deep Residual Timeseries Model

Hidden Markov Model For our purposes, Hidden Markov Models (HMMs) can
be viewed as stochastic RNNs which can be interpreted as probabilistic generative
models. In this work, we consider an HMM to generate a latent variable sequence
z = [z1, . . . zT ] via a Markov chain, where each latent indicates one of K possible dis-
crete states: zt ∈ {1, ...,K}. This state sequence is then used to jointly produce the
“data” xt and “outcomes” yt observed at each timestep. The joint distribution over
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(a) GRU:0.1
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(b) GRU:0.1
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(i) GRU:1 000

value = [5000, 0]
class = off

(j) GRU:10 000

Figure B.5: Decision trees trained under varying tree regularisation strengths for GRU
models on the signal-and-noise HMM dataset dataset. As the tree regularisation in-
creases, the number of nodes collapses to a single one. If we focus on (h), we see that
the tree resembles the ground truth data-generating function quite closely.
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Figure B.6: Performance and complexity trade-offs using L1, L2, and Tree regularization
on GRU performance on the Sepsis dataset.
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Model AUC (Test) Average Path Length Parameter Count

logreg 0.91832 17.302 6

decision tree 0.92050 29.4424 -

hmm (5) 0.93591 25.5736 71
hmm (20) 0.94177 27.2784 581

gru (1) 0.65049 1.8876 29
gru (5) 0.94812 26.304 205
gru (6) 0.94883 27.2118 264

gru (10) 0.94962 28.563 560
gru (15) 0.93982 30.7172 1 065
gru (20) 0.93368 37.0844 1 720

grutree (20/10.0) 0.94226 28.1850 1 720
grutree (20/200.0) 0.94806 26.8140 1 720

grutree (20/7 000.0) 0.94431 22.4646 1 720
grutree (20/9 000.0) 0.90555 9.1127 1 720

grutree (20/10 000.0) 0.82770 3.4400 1 720

gruhmm (5/1) 0.95146 18.2202 100
gruhmm (5/5) 0.95584 27.258 276

gruhmm (5/10) 0.95773 30.9624 631
gruhmm (5/15) 0.94857 36.7188 1 136

gruhmmtree (5/15/1.0) 0.95382 24.115 1 136
gruhmmtree (5/15/10.0) 0.95180 16.883 1 136
gruhmmtree (5/15/50.0) 0.95258 12.573 1 136

gruhmmtree (5/15/200.0) 0.95145 8.926 1 136
gruhmmtree (5/15/500.0) 0.95769 5.231 1 136
gruhmmtree (5/15/900.0) 0.95708 3.942 1 136

gruhmmtree (5/15/2 000.0) 0.95648 2.694 1 136
gruhmmtree (5/15/5 000.0) 0.95399 1.896 1 136
gruhmmtree (5/15/7 000.0) 0.93591 0.000 1 136

Table B.2: Performance metrics across models on the signal-and-noise HMM dataset.
The parameter count is included as a measure of the model capacity.
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Figure B.7: Decision trees trained using λ = 800.0 for a GRU model using Sepsis. The
5 output dimensions are jointly trained.

z, x, y factorizes as:

p(z, y) = π0(z0)
T∏

t=1

p(zt|zt−1, A) · p(xt|zt, φ)Bern(yt|σ(
∑
k

wkδk(zt))), (B.4.1)

where A is a transition matrix such that Ai,j = Pr(zt = i|zt−1 = j), π0 = p(z0) is the

initial state distribution, {φk}Kk=1 are the emission parameters that generate data. We
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Model
In-Hospital
Mortality

90-Day
Mortality

Mechanical
Ventilation

Median
Vasopressor

Max
Vasopressor

Total Average
Path Length

Parameter
Count

logreg 0.6980 0.6986 0.8242 0.7392 0.7392 32.489 180

decision tree 0.7017 0.7016 0.8509 0.7439 0.7427 76.242 -

hmm (5) 0.7128 0.7095 0.6979 0.7295 0.7290 35.125 405
hmm (10) 0.7227 0.7297 0.8237 0.7409 0.7405 57.629 860
hmm (15) 0.7216 0.7282 0.8188 0.7346 0.7341 61.832 1 365
hmm (20) 0.7233 0.7350 0.8218 0.7371 0.7364 62.353 1 920
hmm (25) 0.7147 0.7321 0.8089 0.7313 0.7310 63.415 2 525
hmm (30) 0.7164 0.7297 0.8099 0.7316 0.7311 65.164 3 180
hmm (35) 0.7177 0.7237 0.8095 0.7201 0.7195 65.474 3 885
hmm (50) 0.7267 0.7357 0.8373 0.7335 0.7328 66.317 6 300
hmm (75) 0.7254 0.7361 0.8059 0.7434 0.7430 72.553 11 325

hmm (100) 0.7294 0.7354 0.8129 0.7408 0.7403 80.415 17 600

gru (1) 0.3897 0.6400 0.4761 0.7414 0.7411 31.816 117
gru (5) 0.7357 0.7296 0.8795 0.7866 0.7862 45.395 645

gru (10) 0.7488 0.7445 0.8892 0.7983 0.7979 58.102 1 440
gru (15) 0.7529 0.7450 0.8912 0.8020 0.8021 61.025 2 385
gru (20) 0.7535 0.7497 0.8887 0.8018 0.8017 61.214 3 480
gru (25) 0.7578 0.7486 0.8902 0.8113 0.8114 62.029 4 725
gru (30) 0.7602 0.7508 0.8927 0.8063 0.8061 72.854 6 120
gru (35) 0.7522 0.7483 0.8900 0.8095 0.8091 74.091 7 665
gru (50) 0.7431 0.7390 0.8895 0.8054 0.8051 76.543 13 200
gru (75) 0.7408 0.7239 0.8837 0.8006 0.8000 87.422 25 425

gru (100) 0.7325 0.7273 0.8781 0.7977 0.7975 94.161 41 400

grutree (100/0.01) 0.7276 0.7314 0.8776 0.7873 0.7867 91.797 41 400
grutree (100/1.0) 0.7147 0.7040 0.8741 0.7812 0.7810 82.019 41 400
grutree (100/8.0) 0.7232 0.7203 0.8763 0.7845 0.7840 73.767 41 400

grutree (100/20.0) 0.7123 0.7085 0.8733 0.7813 0.7813 65.035 41 400
grutree (100/70.0) 0.7360 0.7376 0.8813 0.7988 0.7986 61.012 41 400

grutree (100/300.0) 0.7210 0.7197 0.8681 0.7676 0.7678 54.177 41 400
grutree (100/2 000.0) 0.7230 0.7167 0.8335 0.7616 0.7619 48.206 41 400
grutree (100/5 000.0) 0.6546 0.6552 0.6752 0.6668 0.6530 26.085 41 400
grutree (100/7 000.0) 0.6063 0.6554 0.6565 0.6230 0.6138 20.214 41 400
grutree (100/8 000.0) 0.5298 0.5242 0.5025 0.5026 0.5057 13.383 41 400

gruhmm (1/5) 0.4222 0.6472 0.4678 0.7478 0.7477 41.583 722
gruhmm (1/10) 0.4007 0.6295 0.4730 0.7418 0.7419 61.041 1 517
gruhmm (1/25) 0.4019 0.6207 0.4773 0.7353 0.7352 65.955 4 802
gruhmm (1/50) 0.3999 0.6162 0.4772 0.7120 0.7121 70.534 13 277
gruhmm (5/5) 0.7430 0.7372 0.8798 0.8009 0.8006 47.639 1 050

gruhmm (5/10) 0.7408 0.7320 0.8819 0.7991 0.7988 63.627 1 845
gruhmm (5/25) 0.7365 0.7279 0.8776 0.7955 0.7952 68.215 5 130
gruhmm (5/50) 0.7222 0.7107 0.8660 0.7814 0.7811 71.572 13 605
gruhmm (10/5) 0.7468 0.7467 0.8949 0.8098 0.8097 50.902 1 505

gruhmm (10/10) 0.7490 0.7478 0.8958 0.8098 0.8096 63.522 2 300
gruhmm (10/25) 0.7422 0.7407 0.8916 0.8055 0.8054 70.919 5 585
gruhmm (10/50) 0.7254 0.7221 0.8824 0.7903 0.7903 71.297 14 060
gruhmm (25/5) 0.7580 0.7568 0.8941 0.8236 0.8235 51.794 3 170

gruhmm (25/10) 0.7592 0.7563 0.8945 0.8225 0.8225 64.223 3 965
gruhmm (25/25) 0.7525 0.7508 0.8912 0.8186 0.8184 72.480 7 250
gruhmm (25/50) 0.7604 0.7583 0.8954 0.8106 0.8103 79.127 11 025
gruhmm (50/5) 0.7655 0.7592 0.9006 0.8228 0.8226 64.229 6 945

gruhmm (50/10) 0.7648 0.7568 0.9003 0.8220 0.8219 69.281 7 740
gruhmm (50/25) 0.7600 0.7555 0.8981 0.8205 0.8203 85.503 11 025
gruhmm (50/50) 0.7412 0.7373 0.8910 0.8056 0.8055 101.637 19 500

gruhmmtree (50/50/0.5) 0.7432 0.7492 0.879 0.7854 0.7849 84.188 19 500
gruhmmtree (50/50/20.0) 0.7435 0.747 0.8826 0.7914 0.7906 77.815 19 500
gruhmmtree (50/50/50.0) 0.7384 0.7548 0.8914 0.7922 0.7918 71.719 19 500
gruhmmtree (50/50/200.0 0.747 0.7502 0.8767 0.7832 0.7824 69.715 19 500

gruhmmtree (50/50/300.0) 0.7539 0.7623 0.8942 0.8092 0.8091 66.9 19 500
gruhmmtree (50/50/600.0 0.7435 0.7453 0.8821 0.7909 0.7905 63.703 19 500

gruhmmtree (50/50/1 000.0) 0.7575 0.7502 0.8739 0.7882 0.7873 60.949 19 500
gruhmmtree (50/50/3 000.0) 0.7396 0.7484 0.8926 0.8013 0.8011 54.751 19 500
gruhmmtree (50/50/4 000.0) 0.7432 0.7511 0.8915 0.802 0.8024 44.868 19 500
gruhmmtree (50/50/7 000.0) 0.7308 0.7477 0.8813 0.7881 0.7882 27.836 19 500
gruhmmtree (50/50/9 000.0) 0.7132 0.7319 0.8261 0.7301 0.7299 0.0 19 500

Table B.3: Performance metrics for multi-dimensional classification on a held-out por-
tion of the Sepsis dataset. Total Average Path Length refers to the summed average
path lengths across the 5 output dimensions. Refer to Fig. B.6 for average-path-lengths
split across dimensions.

can then apply the same objective as above for training.

GRU-HMM: Modeling the residuals of an HMM. We now consider an addi-
tional model, the GRU-HMM, designed for interpretability. The idea is to use a GRU
to to model the residual errors when predicting the binary target via the HMM belief
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Figure B.8: Performance and complexity trade-offs using L1, L2, and Tree regularisation
on GRU for the HIV dataset. The 5 outputs shown here were trained jointly.

states. We can further penalise the complexity of the GRU predictions via our tree
regularisation, so that higher-quality predictions do not come at the price of a much
less interpretable model.

We train the deep residual model on the same suite of synthetic and real world
datasets. See Tables B.2, B.3, B.5 for a comparison of GRU-HMM with vanilla GRU
and HMM models under different regularisation and expressiveness parameters. We can
see that across the datasets, deep residual models perform around 1% better than their
vanilla equivalents with roughly the same number of model parameters.

By nature of being a residual model, decision trees were trained only on the GRU
output node, leaving the HMM unconstrained. See Figure B.10 for a pictoral represen-
tation. Similar to what we did for GRU models, Figures B.4b, B.11 compare model
performance as the λ parameter for L1, L2, and Tree regularisation increase. We can
see a similar albeit less pronounced effect where Tree regularization dominates other
methods in low node count regions. It is important to notice the range of the AUC axis
in these figures, where the worst the residual model can performance is the HMM-only
AUC. Figure B.12 show the regularised trees produced by the GRU-HMM. Although
they share some structure with Figure B.7, there are important distinctions that en-
courage us to conclude that the GRU in a residual models performs a different role than
when trained alone.
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Model
Poor

Adherence Mortality
CD4+

Count ≤ 200
Therapy
Success

Total Average
Path Length

Parameter
Count

logreg 0.6884 0.7031 0.5741 0.6092 38.942 1155

decision tree 0.7100 0.7601 0.5937 0.6286 62.150 -

hmm (5) 0.7106 0.7611 0.6012 0.6265 41.864 865
hmm (10) 0.7287 0.7627 0.6237 0.6409 46.309 1780
hmm (25) 0.7243 0.7627 0.6327 0.6384 56.159 4825
hmm (50) 0.7181 0.7639 0.6412 0.6370 69.014 10900
hmm (75) 0.7244 0.7661 0.6294 0.6518 70.476 18225

hmm (100) 0.7261 0.7657 0.6287 0.6524 71.159 26800

gru (5) 0.6457 0.6814 0.6695 0.6834 58.347 1310
gru (25) 0.7516 0.7986 0.7073 0.6991 60.072 8050
gru (50) 0.7011 0.8290 0.6995 0.7054 67.513 19850
gru (75) 0.7623 0.8514 0.7117 0.7490 64.870 35400

gru (100) 0.7340 0.8216 0.6981 0.7235 67.183 54700

grutree (100/0.01) 0.7176 0.7948 0.7046 0.6803 91.020 54700
grutree (100/1.0) 0.7134 0.7997 0.7138 0.6892 86.774 54700

grutree (100/20.0) 0.7157 0.8066 0.7216 0.7114 76.025 54700
grutree (100/70.0) 0.7485 0.8210 0.7413 0.7060 68.952 54700

grutree (100/300.0) 0.7251 0.8178 0.7264 0.6746 54.058 54700
grutree (100/2 000.0) 0.7030 0.8169 0.6342 0.6627 49.839 54700
grutree (100/5 000.0) 0.6549 0.7582 0.6142 0.6352 23.895 54700
grutree (100/7 000.0) 0.6167 0.7524 0.5740 0.5634 15.283 54700
grutree (100/8 000.0) 0.5874 0.7412 0.5003 0.5027 7.391 54700

gruhmm (5/5) 0.6430 0.6647 0.5418 0.6479 67.619 2175
gruhmm (5/10) 0.6708 0.6720 0.5879 0.6517 72.137 3090
gruhmm (5/25) 0.6951 0.6981 0.6476 0.6955 68.200 6135
gruhmm (5/50) 0.6810 0.7002 0.6760 0.7114 71.518 12210
gruhmm (10/5) 0.7018 0.7147 0.7049 0.7208 64.852 3635

gruhmm (10/10) 0.7190 0.7378 0.7136 0.7578 73.252 4550
gruhmm (10/25) 0.7264 0.7457 0.7217 0.7951 70.884 7595
gruhmm (10/50) 0.7570 0.7522 0.7224 0.8234 69.726 13670
gruhmm (25/10) 0.7462 0.7861 0.7152 0.8217 68.241 9830
gruhmm (25/25) 0.7435 0.8102 0.7425 0.8186 79.261 12875
gruhmm (25/50) 0.7484 0.7714 0.7501 0.8006 76.174 18950
gruhmm (50/10) 0.7437 0.7668 0.7813 0.8260 70.081 21630
gruhmm (50/25) 0.7380 0.7557 0.7824 0.8215 88.617 24675
gruhmm (50/50) 0.7317 0.7684 0.7920 0.8007 97.864 30750

gruhmmtree (50/50/0.5) 0.7432 0.7692 0.8790 0.7804 73.168 30750
gruhmmtree (50/50/50.0) 0.7426 0.8152 0.8914 0.7979 67.729 30750
gruhmmtree (50/50/200.0 0.7461 0.8308 0.8767 0.8032 59.025 30750
gruhmmtree (50/50/600.0 0.7467 0.8820 0.8821 0.8293 52.128 30750

gruhmmtree (50/50/1 000.0) 0.7375 0.8951 0.8739 0.7882 48.247 30750
gruhmmtree (50/50/4 000.0) 0.7242 0.8461 0.8515 0.8030 14.868 30750
gruhmmtree (50/50/7 000.0) 0.7280 0.8462 0.8313 0.7484 1.836 30750

Table B.4: Performance metrics for multi-dimensional classification on a held-out por-
tion of the HIV dataset. Total Average Path Length refers to the summed average path
lengths across the output dimensions.

B.5 Runtime comparisons

Table B.6 shows the wall time for training one epoch of each of the models presented
in this paper using each of the datasets. Please note that the wall times for GRU-
TREE and GRU-HMM-TREE include the cost of surrogate training. If the retraining
frequency is small, then the amortised cost should be small.

B.6 Extended Stability Tests

In the paper, we noted that decision trees are stable over multiple run. Here, we show
that using the signal-and-noise HMM dataset, 10 independent runs with random initial-
isations and λ = 1000.0 produce either the same or comparable trees. Additionally, we
show that with weak regularisation (λ = 0.01), the variability of the learned decision
trees is high. Figures B.16, B.15 include examples of such trees on the signal-and-noise
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Figure B.9: (a) Performance and complexity trade-offs using L1, L2, and Tree regu-
larisation for GRU models on TIMIT. (b) Decision tree trained using λ = 500.0 tree
regularization on GRU.
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Figure B.10: Deep residual model: GRU-HMM. The orange triangle indicates the output
used in surrogate training for tree regularization.

dataset. Similar results are found for real-world datasets.
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Model AUC Average Path Length Parameter Count

logreg 0.7747 23.460 27

decision tree 0.8668 59.2061 -

hmm (5) 0.8900 51.911 295
hmm (10) 0.8981 56.273 640
hmm (25) 0.9129 57.602 1 975
hmm (50) 0.9189 63.752 5 200
hmm (75) 0.9251 71.473 9 675

gru (1) 0.9169 42.602 86
gru (5) 0.9451 49.275 490

gru (10) 0.9509 60.079 1 130
gru (25) 0.9547 62.051 3 950
gru (50) 0.9578 64.957 11 650
gru (75) 0.9620 68.998 23 100

gruhmm (1/5) 0.9419 54.9723 381
gruhmm (1/10) 0.9535 53.5642 726
gruhmm (1/25) 0.9636 57.3290 2601
gruhmm (5/5) 0.9569 55.9531 785

gruhmm (5/10) 0.9575 57.6199 1 130
gruhmm (5/25) 0.9603 59.9925 2 465
gruhmm (10/5) 0.9626 57.0652 1 425

gruhmm (10/10) 0.9641 60.7877 1 770
gruhmm (10/25) 0.9651 61.0018 3 105
gruhmm (25/5) 0.9635 57.5288 4 245

gruhmm (25/10) 0.9657 60.5212 4 590
gruhmm (25/25) 0.9663 65.0161 5 925
gruhmm (50/5) 0.9676 62.2378 11 945

gruhmm (50/10) 0.9679 65.1191 12 290
gruhmm (50/25) 0.9685 67.4301 13 625

grutree (75/0.01) 0.9517 66.2801 23 100
grutree (75/0.1) 0.9466 62.4316 23 100
grutree (75/0.5) 0.9367 60.8764 23 100
grutree (75/2.0) 0.9311 58.3659 23 100
grutree (75/5.0) 0.9302 55.7588 23 100

grutree (75/10.0) 0.9288 46.6616 23 100
grutree (75/100.0) 0.8911 40.1123 23 100
grutree (75/500.0) 0.8998 28.4240 23 100
grutree (75/700.0) 0.8628 25.136 23 100
grutree (75/800.0) 0.7471 22.6671 23 100

grutree (75/1 000.0) 0.7082 17.1523 23 100
grutree (75/6 000.0) 0.5441 11.1108 23 100
grutree (75/7 000.0) 0.5088 8.9910 23 100

gruhmmtree (50/25/0.1) 0.9507 69.1110 13 625
gruhmmtree (50/25/1.0) 0.9465 67.5773 13 625
gruhmmtree (50/25/6.0) 0.9515 65.1494 13 625

gruhmmtree (50/25/20.0) 0.9449 64.0072 13 625
gruhmmtree (50/25/30.0) 0.9482 62.5406 13 625
gruhmmtree (50/25/70.0) 0.9460 58.0111 13 625

gruhmmtree (50/25/100.0) 0.9470 51.2417 13 625
gruhmmtree (50/25/500.0) 0.9401 42.1882 13 625
gruhmmtree (50/25/700.0) 0.9352 40.1281 13 625

gruhmmtree (50/25/1 000.0) 0.9390 38.0072 13 625
gruhmmtree (50/25/3 000.0) 0.9280 25.9120 13 625
gruhmmtree (50/25/4 000.0) 0.9311 21.7170 13 625
gruhmmtree (50/25/7 000.0) 0.9290 10.1122 13 625
gruhmmtree (50/25/9 000.0) 0.9134 1.0563 13 625

gruhmmtree (50/25/10 000.0) 0.9125 0.0000 13 625

Table B.5: Performance metrics across models on a held-out portion of the TIMIT
dataset.
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Figure B.11: Performance and complexity trade-offs using L1, L2, and Tree regulariza-
tion on GRU-HMM performance on the Sepsis dataset.
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Figure B.12: Decision trees trained using Tree regularization (λ = 2000.0) from GRU-
HMM predictions on the Sepsis dataset.
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(b) GRU-HMM: CD4+ ≤ 200 cells/ml

Figure B.13: HIV task: Study of different regularisation techniques for GRU-HMM
model with 75 GRU nodes and 25 HMM states, trained to predict whether CD4+ ≤
200 cells/ml. (a) Example decision tree for λ = 1000.0. (b) Example decision tree for
λ = 3000.0. The tree in (b) is slightly smaller than the tree in (a) as a result of the
regularisation.
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Figure B.14: TIMIT task: Study of different regularisation techniques for GRU-HMM
model with 75 GRU nodes and 25 HMM states, trained to predict STOP phonemes.
(a) Tradeoff curves showing how AUC predictive power and decision-tree complexity
evolve with increasing regularisation strength under L1, L2, or Tree regularisation. (b)
Example decision tree for λ = 3000.0. (c) Example decision tree for λ = 7000.0. When
comparing with figure B.9b, this tree is significantly smaller, suggesting that the GRU
performs a different role in the residual model.

Dataset Model Epoch Time (Sec.)

Signal-and-noise HMM HMM 16.66± 2.53
Signal-and-noise HMM GRU 30.48± 1.92
Signal-and-noise HMM GRU-HMM 50.40± 5.56
Signal-and-noise HMM GRU-TREE 43.83± 3.84
Signal-and-noise HMM GRU-HMM-TREE 73.24± 7.86

SEPSIS HMM 589.80± 24.11
SEPSIS GRU 822.27± 11.17
SEPSIS GRU-HMM 1 666.98± 147.00
SEPSIS GRU-TREE 2 015.15± 388.12
SEPSIS GRU-HMM-TREE 2 443.66± 351.22

TIMIT HMM 1 668.96± 126.96
TIMIT GRU 2 116.83± 438.83
TIMIT GRU-HMM 3207.16± 651.85
TIMIT GRU-TREE 3 977.01± 812.11
TIMIT GRU-HMM-TREE 4 601.44± 805.88

Table B.6: Training time for recurrent models measured against all datasets used in
this paper. Epoch time denotes the number of seconds it took for a single pass through
all the training data. The epoch times for GRU-TREE and GRU-HMM-TREE include
surrogate training expenses. If we retrain sparsely, then the cost of surrogate training is
amortized and the epoch time for GRU and GRU-TREE, GRU-HMM and GRU-HMM-
TREE are approximately the same. To measure epoch time, we used 10 HMM states,
10 GRU states, and 5 of each for GRU-HMM models. We trained the surrogate model
for 5000 epochs. These tests were run on a single Intel Core i5 CPU.
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Figure B.15: Decision trees from 10 independent runs on the signal-and-noise HMM
dataset with λ = 0.01. With low regularisation, the variance in tree size and shape is
high.
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Figure B.16: Decision trees from 10 independent runs on the signal-and-noise HMM
dataset with λ = 1000.0. Seven of the ten runs resulted in a tree of the same structure.
The other three trees are similar, often having additional subtrees but sharing the same
splits and features.
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Kaiser, Soo-Yon Rhee, W Jeffrey Fessel, Robert W Shafer & Thomas Lengauer. Im-
proved prediction of response to antiretroviral combination therapy using the genetic
barrier to drug resistance. Antiviral therapy, 12(2):169, 2007.

Charles Audet & Michael Kokkolaras. Blackbox and derivative-free optimization: theory,
algorithms and applications. Springer, 2016.

Peter C Austin. An introduction to propensity score methods for reducing the effects of
confounding in observational studies. Multivariate behavioral research, 46(3):399–424,
2011.

Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy & Max Welling. Bayesian
dark knowledge. In NIPS, 2015.

Elias Bareinboim. Causal reinforcement learning. NeurIPS 2018 Workshop on
Causal Learning, December 2018. URL: https://sites.google.com/view/

nips2018causallearning/home.

Sascha O Becker & Andrea Ichino. Estimation of average treatment effects based on
propensity scores. The stata journal, 2(4):358–377, 2002.

Niko Beerenwinkel, Nicholas Eriksson & Bernd Sturmfels. Conjunctive bayesian net-
works. Bernoulli, pages 893–909, 2007.

Richard Bellman. Dynamic programming and stochastic control processes. Information
and control, 1(3):228–239, 1958.

Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer & Tobias Scheffer. Multi-task
learning for hiv therapy screening. In Proceedings of the 25th international conference
on Machine learning, pages 56–63. ACM, 2008.

Oleh Bodilovskyi & Anton Popov. Blood oxygen saturation alarm level analysis during
mechanical lung ventilation. In Signal Processing Symposium (SPS), 2013, pages 1–4.

116

https://sites.google.com/view/nips2018causallearning/home
https://sites.google.com/view/nips2018causallearning/home


REFERENCES 117

IEEE, 2013.
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