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Preface

The development of a functioning quantum computer operating on many quantum bits

(qubits) is an ongoing global challenge. One proposed way of realising quantum compu-

tation is to use the polarisation of single photons as photonic qubits [1, 2]. This offers the

advantage of scalability – the number of qubits can easily be scaled up by the generation

of many single-photon pulses [3].

The fundamental problem is that photons do not interact with each other. This can

be solved by means of a strongly-coupled atom-cavity system, where a photon emitted

by a single trapped three-level atom (or “artificial atom”) can be reabsorbed due to

the strong light-matter interaction before it leaks out of the cavity or via other loss

channels. This system can act as mediator between two photonic qubits by providing

controlled (photon-photon) gate operations between them [3]. A measure for how well

these gate operations can be performed is the (gate) fidelity. The fidelity itself depends

on the cooperativity C of the strongly-coupled atom-cavity system [4], the figure-of-merit

which relates the coherent light-matter coupling to all incoherent losses in the system:

the higher the cooperativity, the higher the gate fidelity.

Achieving a high cooperativity in a strongly coupled atom-cavity system with optical

photons – which can be transported over large distances and allow for fast gate operations

– has been a major challenge in atomic [5–8] and solid-state physics [9–16]. Until 2018,

the (time-averaged) cooperativities reported in literature were (at most) in the order of

ten [7–10, 14, 17–20].

This thesis describes the experimental realisation of high-cooperativity strong coupling

(C = 150) between an “artificial” atom (a semiconductor quantum dot) and a fully

tunable optical microcavity. Embedding the quantum dots within an n-i-p diode allows

for deterministic charging with single electrons or holes – i.e. with a single spin [21] –

via the Coulomb blockade effect [22], which delivers the requested three-level “atom”

for realising a photon-photon gate. The potential photon-photon gate fidelity for the

present sample is already 77%. With an advanced semiconductor design that would

reduce the intrinsic cavity loss by a factor of ten, the fidelity could be increased to 92%,

proof of the high potential of the investigated system for quantum technology.
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Chapter 1 gives a short introduction to the relevant physics in the context of cavity

quantum electrodynamics (cavity-QED) and discusses the experimental requirements for

entering the strong-coupling regime. Alternative solid-state implementations of strong

coupling with monolithic microcavities are briefly discussed and a motivation for using

a tunable microcavity together with InAs quantum dots embedded in an n-i-p diode is

given.

In Chapter 2, the experimental realization of strong coupling is presented and com-

pared to the standard model of cavity-QED, the Jaynes-Cummings model. Besides a

very clear avoided crossing at resonance without the solid-state “noise” (cavity-feeding)

which has complicated previous solid-state implementations, intensity correlation mea-

surements reveal the vacuum Rabi-oscillations as a manifestation of the coherent atom-

photon exchange: the quantum dot and the empty microcavity coherently exchange a

single quantum of energy several times before the system decoheres. Moreover, photon-

statistics spectroscopy as an alternative spectroscopy method is used to probe the second

rung of the Jaynes-Cummings ladder.

Chapter 3 provides more experimental background on Chapter 2. The design and

characterisation of the n-i-p diode and microcavity is presented together with additional

measurements in the strong-coupling regime using resonant excitation. This chapter

demonstrates for the reproducibility of the measurements presented in Chapter 2.

Chapter 4 discusses the experimental challenges to achieve Q-factors up to one mil-

lion in a semiconductor microcavity involving gates and includes a recipe to passivate

the semiconductor DBR surface that enhances the Q-factor by almost two orders of

magnitude.

Chapter 5 presents two alternative methods to produce micron-sized mirror curvatures

in order to reduce the cavity’s mode volume and thus increase the coupling strength in

a tunable microcavity.

In Chapter 6, a summary is given for all presented experiments together with some

perspectives for future direction.
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Chapter 1

Introduction

1.1 Cavity quantum electrodynamics

Cavity quantum electrodynamics (cavity-QED) is the study of the fully quantum in-

teraction between one or several atoms and a light field confined by an optical res-

onator [23, 24]. “Atom” here means a conventional atom, a molecule [25] or an “arti-

ficial” atom such as a semiconductor quantum dot, a nitrogen-vacancy (NV) centre in

diamond [26], etc.

1.1.1 Relevant parameters

Once a two-level atom consisting of a ground state |g〉 and an excited state |e〉 is excited

optically, it can decay radiatively by emitting a photon of frequency ω0 with rate γrad

or non-radiatively (rate γnonrad) by creating a phonon, for instance. The sum of both

yields the atom decay rate γ = γrad + γnonrad. Ignoring non-radiative decay processes

and assuming the atom is in a homogeneous medium with refractive index n, the total

decay rate [27] can be written as

γ =
1

τrad
=

nω3

3πε0~c3
· µ2, (1.1)

where τrad is the radiative lifetime and c the speed of light. The cavity-photon loss rate

κ includes all losses due to transmission, scattering and absorption of the cavity mirrors.

It is inversely proportional to the cavity’s Q-factor,

κ =
1

τcav
=
ω

Q , (1.2)

where τcav is the lifetime of a photon inside the cavity. In case of perfect overlap of the

atomic transition dipole moment µ with the polarization of the vacuum electric field of
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Chapter 1. Introduction

κ

g γ

cavity decay rate

atom decay rate
∝ μ2

 

coupling rate

∝ μ
√V

e

g

∝ 1
Q

Fig. 1.1. The three relevant parameters of cavity-QED. Schematic of a two-level system with

excited (ground) state |e〉 (|g〉) coupled to a single quantized mode of the electromagnetic field. The

system dynamics are described by three parameters: the cavity photon loss rate κ, the atom decay rate γ

into all other modes except the cavity mode as well as the coupling rate g between the atom’s transition

dipole moment µ and the cavity-confined vacuum state of the electromagnetic field. Dependence on the

cavity and emitter properties (cavity Q-factor, effective mode volume V , dipole moment µ) are given in

the figure.

amplitude Evac, the interaction between both is described by the coupling rate (Fig. 1.1)

g =
µEvac

~
. (1.3)

Taking equal contribution [28] of magnetic and electric fields to the total vacuum energy,

the coupling strength reads

g =

√
ω

2~ε0n2
· µ√

V
, (1.4)

where V is the cavity’s effective mode volume.

1.1.2 Cooperativity and quantum efficiency

The figure-of-merit of a cavity-QED system is its cooperativity defined as

C =
2g2

κγ
∝ Q
V
, (1.5)

relating the coherent coupling rate (g) to all incoherent losses in the system (κ, γ). Note

that C is only proportional to Q/V – the dipole moment µ cancels out. With this

definition, C is connected to the Purcell factor Fp [29] via Fp = 2C. Equivalently, the

β-factor [30], the fraction of emitted photons entering the cavity mode, is defined as

β =
Fp

Fp + 1
=

2C

2C + 1
=

g2

g2 + κγ/4
. (1.6)
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Chapter 1. Introduction

For C � 1, the β-factor is close to 100%. Neglecting all absorption and scattering

losses and assuming a so-called “single-sided” cavity with a perfectly reflecting mirror

on one side and a partly reflecting mirror on the other one, the cavity’s photon extraction

efficiency [31] is given by

ηout =
κ

κ+ γ
. (1.7)

This yields a quantum efficiency [31] of the cavity-QED system of

η = β · ηout =
g2

g2 + κγ/4
· κ

κ+ γ
, (1.8)

the probability of an exciton producing a photon into the first lens of the optical

setup [32]. For a fixed g and γ, the quantum efficiency is maximised for the condi-

tion κ = 2g.

Note that the quantum efficiency is only one side of the coin: once a photon efficiently

exits the cavity-QED system, it also has to be collected efficiently into an optical fibre

and detected efficiently by a single-photon detector. This makes plano-concave cavities

that support a Gaussian cavity mode [33] (which can be coupled efficiently to an optical

fibre) and optical photons (that can be detected very efficiently [34]) highly attractive

for the realisation of an efficient single-photon source.

1.1.3 Strong coupling: Jaynes-Cummings model

In the case of g � κ, γ (which implies large C � 1) the system enters the strong-

coupling regime where the coupling strength is so large compared to all decoherence

mechanisms that an initially excited atom inside an “empty” cavity (field in vacuum

state) is able to reabsorb a spontaneously emitted photon: there is a coherent exchange

of a single energy quantum between the atom and the cavity, referred to as “vacuum

Rabi-oscillation” [7, 35, 36].

A single quantized (two-level) atom coupled to a single quantized mode of the elec-

tromagnetic field can be described via the “standard model” of cavity-QED, the Jaynes-

Cummings model [37]. For simplicity, all decoherence mechanisms (see Appendix D

where the effects of γ and κ are included) are neglected. At the heart of this model is

the Jaynes-Cummings Hamiltonian, which in case of atom-cavity resonance and in the

rotating wave approximation (RWA) reads

H = ~ω0b
†b︸ ︷︷ ︸

Hatom

+ ~ω0a
†a︸ ︷︷ ︸

Hcavity

+ ~g(ab† + a†b)︸ ︷︷ ︸
Hinteraction

, (1.9)
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...

E/ħ

2ω0

ω0

 0

 2+

 2–

 1–  

 1+

±

±

2g√2

2g

“zeroth rung”

“first rung”

“second rung”

Fig. 1.2. The Jaynes-Cummings ladder. Ground state and the first two “rungs” of the Jaynes-

Cummings ladder with energy splittings 2g
√
n (n being the number of excitations in the system).

where ω0 is the frequency separation of the ground state |g〉 and excited state |e〉 of

the atom [38]. Hatom and Hcavity are the Hamiltonians of the uncoupled two-level atom

and cavity mode, respectively, and Hinteraction is the interaction Hamiltonian. a† (a)

and b† (b) are the creation (annihilation) operators of a cavity photon and an emitter

excitation, respectively (Appendix D).

In the strong-coupling regime, the eigenstates of this Hamiltonian are mixed light-

matter states also referred to as dressed states or polaritons,

|n±〉 =
|g, n〉 ± |e, n− 1〉√

2
, (1.10)

where n = 1, 2, 3, ... is the number of excitations in the system in form of an atomic

excitation and/or photons in the light field. The infinite set of eigenstates makes up the

Jaynes-Cummings ladder with the nth “rung” (or manifold) consisting of a doublet of

eigenstates split by 2~g
√
n. Each state is a symmetric or antisymmetric superposition

(normalized) of the state |g, n〉 (where the atom is in the ground state |g〉 and n photons

are in the cavity) and the state |e, n− 1〉 (where the atom is excited |e〉 and n−1 photons

are in the cavity), see Fig. 1.2.

The anharmonic nature of the Jaynes-Cummings ladder is equivalent to the fact that

adding a single photon to the system changes its resonance frequencies. This is a pro-

found nonlinearity and leads to effects such as “photon blockade” [6] where adding a

second photon to the system where one photon is already present is forbidden. In other

words, the presence of a single photon in the cavity leads to a reflection of an incoming

4
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Fig. 1.3. Self-assembled InAs quantum dots. a, Dark-field transmission electron microscopy

(TEM) image of a self-assembled quantum dot revealing its diameter of ∼ 28 nm and height of 7.8 ±
0.5 nm. Courtesy of Jean-Michel Chauveau and Arne Ludwig. b, Schematic of the energy level structure

of an InAs QD embedded in a GaAs matrix. The small volume of InAs material acts as potential well

for electrons and holes, making their allowed energy levels discrete. c, Heterostructure presented in

Ref. [22] in order to tune the quantum dot energy levels with respect to the Fermi sea of the backgate.

d, Conduction band edge for two different voltages applied to the top gate. c and d reproduced and

modified from Ref. [22].

second photon of same frequency – photons apparently interact with each other. This is

the basis of a “single-photon transistor” [39].

From Eqs. 1.1–1.4, the requirements to enter the strong-coupling regime (g � κ, γ)

experimentally can be stated: a large dipole moment of the atom as well as a high

Q-factor and small mode volume V of the cavity.

1.2 Self-assembled quantum dots

A self-assembled quantum dot is an excellent solid-state emitter of bright and indis-

tiguishable single photons [32, 40–42] and exhibits a large optical dipole moment [21].

An InAs quantum dot is a few nanometers wide “island” of InAs molecules (few tens

of thousands) which is formed due to strain during growth of an initial layer of InAs

(the wetting layer) via molecular beam epitaxy (MBE) on top of a GaAs host substrate.

Due to the three-dimensional confinement of electrons and holes in a small volume with

an extension in the order of 10 nm (Fig. 3.4a), the energy levels are quantized so that

a single electron-level in the s-shell together with a single hole-level in the s-shell form

an effective two-level system. An optical transition between the ground state |g〉 and

5
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excited state |e〉 of this two-level system forms a bound electron-hole pair, an exciton

(Fig. 3.4b). An exciton created in an initially empty quantum dot is referred to as neu-

tral exciton, X0, while one created in a quantum dot already hosting a single electron

(hole) is called negatively (positively) charged trion, X− (X+).

Embedding the quantum dots in a semiconductor heterostructure with doped layers

or a Schottky contact acting as gates (Fig. 3.4c) allows the quantum dot energy levels

to be shifted with respect to the Fermi sea of the back-gate (Fig. 3.4d). This enables

a single quantum dot to be charged deterministically by adding electrons one-by-one

via the Coulomb blockade effect [22]. Also, it allows for fine-tuning of the quantum

dot transition frequency via the dc Stark effect. Moreover, embedding the quantum

dots within a gated heterostructure has been shown to reduce noise in the quantum dot

significantly leading to emission close to the so-called transform limit [40], the minimum

emitter linewidth limited by the emitter’s radiative decay rate only, γR = 1/τR (where

τR is the radiative lifetime).

1.3 Solid-state strong coupling with monolithic microcavities

Strong coupling of a single semiconductor quantum dot to a monolithic microcavity was

first observed in 2004 with a micropillar [9] with (g, κ, γ)/2π ≈ (19, 44, 18) GHz (C ≈
0.91) and with a photonic crystal cavity [10] with (g, κ, γ)/2π ≈ (21, 42, 22) GHz (C ≈
0.95). In 2005, strong coupling with a microdisk microcavity [17] with (g, κ, γ)/2π ≈
(48, 34, 68) GHz (C ≈ 2.0) was reported.

A micropillar is created from a semiconductor planar cavity with an embedded λ-layer

of GaAs forming the cavity layer. The self-assembled QDs are embedded in the center

of this λ-layer ensuring maximum coupling strength. A pillar with diameter up to a few

microns is formed by etching and leads to a lateral confinement of the photonic mode

due to total internal reflection at the pillar walls.

A photonic crystal cavity (PCC) is a lateral waveguide with periodically etched holes

and a defect (i.e. one or few missing holes) forming the cavity region with a self-

assembled QD in the center. Similar to the existence of an electronic bandgap forming

in a semiconductor crystal, a photonic bandgap can thus be formed in a photonic crystal.

A microdisk microcavity [17] is based on whispering gallery modes [43] inside a ring

resonator.

Micropillars offer mode volumes in the order of a few (λ/n)3 [18–20] and Q-factors

typically in the order of a few tens of thousands [18–20], while a high Q = 250, 000

was reported in Ref. [44]. The photon extraction efficiency of micropillars is potentially

6
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high [32, 41].

PCCs feature smaller mode volumes below (λ/n)3 (which is why they’re often called

“nanocavities”) while exhibiting similarQ-factors to micropillars with a maximum achieved

Q = 81, 000 in Ref. [36], but require sophisticated photon out-couplers [45] (with limited

photon extraction efficiency) in order to allow for vertical out-coupling of photons.

While ultrahigh Q-factors up to 6 · 106 have been reported [43] with microdisk mi-

crocavities, high-efficiency out-coupling of single photons is hard to achieve [46] and the

mode volume is typically higher than the one of micropillars and PCCs [46].

The entire geometry of a monolithic microcavity is fixed in space, which makes in-situ

frequency tuning difficult. Temperature tuning is one of the established techniques, or,

alternatively, gas tuning in PCCs that can be used to change the refractive index of

holes and thus the cavity’s resonance frequency [36]. However, there is a restriction

on the temperature tuning range as exciton lines become significantly broadened above

temperatures of T = 30 K [47]. Also, positioning a single QD in the center of the

cavity mode is tough to achieve. Although deterministic methods to position a single

quantum dot in the center of the monolithic cavity exist (via advanced in-situ lithography

techniques in the case of micropillars for instance [32]), the accuracy is limited to about

50 nm [32] and in situ tuning is impossible once the micropillar has been etched.

Also, incorporation of gates in monolithic cavities is tough: in the case of a micropil-

lars for instance, the entire top and bottom mirrors must be heavily doped as electrical

contacts are possible only via the outermost layers [32], leading inevitably to free-carrier

absorption, thus decreasing the cooperativity and collection efficiency. Gated PCCs ex-

ist, however they suffer from considerable leakage currents [48] due to the small thickness

(∼ 200 nm) of the membranes.

Until 2018, cooperativities from monolithic microcavities improved only modestly, see

for instance C ≈ 3.3 [18], C ≈ 4.8 [19], C ≈ 2.0 [20] and C ≈ 12 [14]. In 2018,

strong coupling with C > 100 [16] was reported with a PCC by exploiting the extremely

small mode volume and thus achieving a high coupling strength of g/2π = 40 GHz,

however only with one QD (which is non-deterministically positioned), moderate Q ∼
8 · 104 (still: record-high for QD cavity-QED studies with PCCs according to Ref. [16])

and spectra suffering from “cavity-feeding” due to charge noise. Cavity-feeding is the

observation of scattering from the bare cavity mode even at the QD-cavity resonance that

has complicated quantum-dot cavity-QED at optical frequencies in the past [11, 12, 14–

16, 36, 49].
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1.4 Tunable microcavity with gated InAs quantum dots

A plano-concave Fabry-Pérot cavity consisting of two individual mirrors – one planar,

one curved with radius R – separated by a distance Lvac (the vacuum-gap) has several

advantages. First, both mirrors (often distributed Bragg reflectors, DBRs) can be placed

with respect to each other in all three dimensions. This enables any quantum emitter

embedded in the planar mirror to be brought into resonance with the microcavity by

frequency tuning (via the cavity length) and spatial tuning (via lateral positioning of

the planar mirror). Secondly, a stable cavity mode is rather simple to achieve once the

stability criterion Lvac < R for a stable cavity mode is fulfilled [33]. Thirdly, the photonic

mode confined by a plano-concave cavity is close to a simple Gaussian [33] making this

system extremely attractive for efficient single-photon extraction into an optical fibre.

Fourthly, the device doesn’t require any temperature tuning – it can be operated at

a constant temperature of 4.2 K where exciton-linewidths are small [47]. Last but not

least, tunable microcavities do not require etching close to the quantum dot itself, which

minimizes scattering losses.

Reported realisations so far involved a planar semiconductor DBR with embedded

QDs [49, 50] or a planar dielectric DBR with a GaAs or diamond membrane on top

containing QDs [51] or NV centers [26]. In all these experiments, a choice for the curved

mirror has been a fused silica substrate [52, 53] or the end facet of an optical fibre [50],

CO2-laser ablated [54] to produce atomically smooth indentations (or “craters”) with

curvature radii R down to 13µm [49].

An issue with fibre microcavities is the limited mode-matching between the cavity

mode and guided mode of the fibre. Open microcavities however allow for an excellent

mode-matching [53] due to the fact that the numerical aperture (NA) of the objective

lens can be chosen independently of the top mirror curvature.

Compared to monolithic microcavities, tunable microcavities offer similar (Appendix C)

or slightly higher [53] mode volumes than micropillars, while the Q-factors can poten-

tially be much higher due to the fact that etching is not required: the lateral extent

of the cavity mode, the beam waist w0, is simply given by the curvature R of the top

mirror and the geometrical cavity length Lgeom
* [33, 53],

w0 =

√
λ0

π

(
RLgeom − L2

geom

)1/4
. (1.11)

*Note that the geometrical cavity length Lgeom depends on the vacuum-gap as well as the energy
penetration depth into the top and bottom DBR.
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Embedding gates in a tunable microcavity has already been proposed in Ref. [49] in

order to reduce spectral wandering in self-assembled QDs and thus eliminate cavity-

feeding. Due to the large lateral extent of the gated layers (compared to a micropillar

for instance) in a semiconductor heterostructure, even very thin doped layers on the

order of 10 nm can be contacted – no gradual doping across the entire microcavity as in

the case of micropillars is needed.

To summarise, the usage of a tunable microcavity together with gated InAs quan-

tum dots is a highly promising cavity-QED system to achieve a coherent atom-photon

interface in the solid-state at optical frequencies with an excellent photon extraction

efficiency.
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2.1 Summary

The strong-coupling regime of cavity-quantum-electrodynamics (cQED) represents the

light-matter interaction at the fully quantum level. Adding a single photon shifts the

resonance frequencies, a profound nonlinearity. cQED is a test-bed of quantum op-

tics [5–7] and the basis of photon-photon and atom-atom entangling gates [3, 55]. At

microwave frequencies, success in cQED has had a transformative effect [56]. At optical

frequencies, the gates are potentially much faster; the photons can propagate over long

distances and can be detected easily. Following pioneering work on single atoms [5–8],
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solid-state implementations using semiconductor quantum dots are emerging [9–16]. We

present here a gated, ultralow-loss microcavity-device. The gates allow both the quan-

tum dot charge and resonance frequency to be controlled electrically; crucially, they

allow cavity-feeding [11, 12, 14–16, 36, 49] to be eliminated. Even in the microcavity,

the quantum dot has a linewidth close to the radiative limit. In addition to a very

pronounced avoided-crossing in the spectral domain, we observe a clear coherent ex-

change of a single energy-quantum between the “atom” and cavity in the time domain

(vacuum Rabi-oscillations). Decoherence arises predominantly via the atom and photon

loss-channels. The coherence is exploited to probe the transitions between the singly-

and doubly-excited photon-atom system via photon-statistics spectroscopy [57]. We pro-

pose this system as a platform for quantum technology.

2.2 Introduction

A resonant, low-loss, low-volume cavity boosts massively the light-matter interaction

such that cavity-QED can potentially provide a highly coherent interface between single

photons and single atoms. The metric for the coherence is the cooperativity, the ratio of

the coherent coupling squared to the loss rates, C = 2g2/(κγ) (g is the coherent photon-

atom coupling, κ the cavity loss rate, γ the decay rate of the atom into non-cavity

modes). The potential for achieving a high cooperativity gives cavity-QED a central

role in the development of high-fidelity quantum gates.

In the microwave domain, a transmon “atom” exhibits strong coupling to a cavity

photon [56] and this facilitates remote transmon-transmon coupling via a virtual photon.

Recently, the transmon was replaced with a semiconductor quantum dot (QD), and a

coupling between a microwave photon and both charge- [58] and spin-qubits [59–61]

was observed. In contrast to microwave photons, optical frequency photons can carry

quantum information over very large distances and therefore play an indispensable role

in quantum communication. Creating an optical photon-photon gate depends critically

on a high-C photon-atom interface along with efficient photonic engineering [3]. Cavity-

QED can potentially achieve both simultaneously. Translating these concepts to the

solid-state is important for developing on-chip quantum technology. The most promising

solid-state “atom” is a self-assembled semiconductor QD: an InGaAs QD in a GaAs host

is a bright and fast emitter of highly indistinguishable photons [32, 41], and a QD spin

provides the resource required for atom-photon and photon-photon gates. However, a

low-noise, high-C, high-efficiency single photon-single QD interface does not yet exist.
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2.3 Challenges

In QD cavity-QED, one key problem is the almost ubiquitous observation of scattering

from the bare cavity even at the QD-cavity resonance [11, 12, 14–16, 36, 49]. This

“cavity-feeding” is the manifestation of complex noise processes in the semiconductor

host [12]. Another key problem is the trade-off between coupling g and the loss rates κ

and γ: as the devices, for instance micropillar [9, 32] or photonic-crystal cavities [10–

12, 14–16], are made smaller in an attempt to boost g, both κ and γ tend to increase. The

increase in κ, reflecting a deterioration in the quality-factor (Q-factor) of the microcavity,

arises on account of increased scattering and absorption; the increase in γ reflects an

inhomogeneous broadening in the emitter frequency. The increase in the loss rates is

only partly a consequence of fabrication imperfections. An additional factor is the GaAs

surface which pins the Fermi energy mid-gap resulting in surface-related absorption [43]

and charge-noise.

2.4 Our solution

We present here a resolution to these conundrums. The QD exhibits close-to-transform

limited linewidths even in the microcavity; the microcavity has an ultrahigh Q-factor yet

small mode volume. The QD exciton is far in the strong-coupling regime of cavity-QED

(g � κ, g � γ). Strong coupling is achieved on both neutral and charged excitons in

the same QD by tuning both the QD-charge and the microcavity frequency in situ. The

output is close to a simple Gaussian beam. We achieve a cooperativity of C = 150,

higher than that achieved with cold-atom experiments [7] and comparable to state-of-

the-art QD photonic-crystal cavities [16] but crucially here, cavity-feeding is eliminated

and other sources of noise are very weak. Equivalently, the β-factor, the probability of

the excited atom emitting into the cavity mode, is as high as 99.7%. The coherence of

the coupled QD-cavity system is demonstrated most forcefully by the observation of a

very clear atom-photon exchange in the time domain (a vacuum Rabi-oscillation).

Design of the QD-microcavity was guided by three principles. First and foremost, a

self-assembled QD benefits enormously from electrical control via the conducting gates of

a diode structure. A gated QD in high quality material gives close-to-transform-limited

linewidths [40], control over both the optical frequency via the Stark effect and the QD

charge state via Coulomb blockade [63]. We therefore include electrical gates in the

cavity device. This is non-trivial. The gates themselves, n-doped and p-doped regions

in the semiconductor, absorb light via free-carrier absorption – they are not obviously
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Fig. 2.1. Gated quantum dot in a tunable microcavity: design and realisation. a, Simulation

of the vacuum electric field |Evac| in the microcavity (image to scale). The bottom mirror is a distributed

Bragg reflector (DBR) consisting of 46 AlAs(λ/4)/GaAs(λ/4) pairs. (λ refers to the wavelength in each

material.) The top mirror is fabricated in a silica substrate [52, 54]. It has radius of curvature R = 10µm

and consists of 22 silica(λ/4)/tantala(λ/4) pairs. The layer of quantum dots (QDs) is located at the

vacuum field anti-node one wavelength beneath the surface. The vacuum-gap has the dimension of 3λ/2.

Vxy (Vz) controls the lateral (vertical) position of the QD with respect to the fixed top mirror. b, The top

part of the semiconductor heterostructure. A voltage Vg is applied across the n-i-p diode. Vg controls the

QD-charge via Coulomb blockade and within a Coulomb blockade plateau the exact QD optical frequency

via the dc Stark effect. Free-carrier absorption in the p-layer [62] is minimised by positioning it at a node

of the vacuum field. A passivation layer suppresses surface-related absorption [43]. c, Laser detuning

(∆L) versus cavity detuning (∆C) of a neutral QD exciton (X0) and a positively-charged exciton (X+)

in one and the same QD. Cavity detuning is achieved by tuning the QD at fixed microcavity frequency

(X0); and by tuning the microcavity frequency at fixed QD frequency (X+). For X0, the weak signal

close to the bare microcavity frequency arises from weak coupling to the other orthogonally-polarised

X0 transition – it does not arise from cavity-feeding (see Supplementary III.E). Data in c from QD1 at

B = 0.00 T.

compatible with a high-Q-factor cavity. Also, the gates inevitably create electric fields

in the device resulting in absorption via the Franz-Keldysh mechanism. Secondly, in

order to achieve narrow QD linewidths in the cavity, we minimise the area of the free

GaAs surface in order to reduce surface-related noise. Finally, we include a mechanism

13



Chapter 2. Strong coupling of a charge-tunable quantum dot to an optical microcavity

for in situ tuning the cavity, both in frequency and in lateral position, to allow a full

exploration of the parameter space.

We employ a miniaturised Fabry-Pérot cavity consisting of a semiconductor het-

erostructure and external top mirror (Fig. 2.1a, Section 3.2–3.3). The heterostructure

has an n-i-p design with the QDs in the intrinsic (i) region (Fig. 2.1b, Section 3.1).

The QDs are located at an antinode of the vacuum field (see Appendix C for details

on the microcavity simulation); the p-layer is located at the node of the photon field in

the microcavity in order to minimise free-carrier absorption from the mobile holes [62]

(Fig. 2.1a). Mobile electrons absorb considerably less than mobile holes [62] such that

it is not imperative to place the n-doping at a node of the vacuum field. The n-layer

begins 25 nm “below” the QDs such that the QDs are in tunnel-contact with the Fermi

sea in the n-layer: the QDs are in the Coulomb blockade regime. The n- and p-layers

are separately contacted. The bottom mirror is a highly reflective semiconductor mirror

(a distributed Bragg reflector, DBR); the top mirror consists of a 10µm-radius crater

micro-machined into a fused silica substrate [54], subsequently coated with a highly re-

flective dielectric DBR. The position of the contacted sample is controlled in situ with

respect to the top mirror. We find that surface-related absorption limits the Q-factor

to 2.0 · 104 – this represented a major problem in the development of this device. We

found a way to solve it: the GaAs surface is passivated with a process that replaces the

native oxide with a few-nm thick alumina layer [43]. With surface passivation, the fully-

contacted device has a Q-factor close to 106. The mode volume is 1.4λ3
0 (Appendix C.3),

where λ0 is the free-space wavelength.

2.5 Cooperativity via resonant spectroscopy

We excite the QD–microcavity system with a resonant laser (continuous-wave), initially

with an average photon-occupation much less than one (〈n〉 ' 0.05), and detect the

scattered photons, rejecting directly reflected laser-light with a polarisation-based dark-

field technique [40, 64]. The fundamental microcavity mode splits into two, separated

by 32 GHz, predominantly on account of a weak birefringence in the semiconductor

DBR; each mode is linearly polarised. The neutral exciton also splits into a linearly-

polarised doublet, X0
a and X0

b, via the fine-structure splitting (FSS). QDs are chosen for

which the microcavity and X0 axes are closely aligned. The FSS varies from QD to QD

and can be small enough that both X0
a and X0

b couple to the same microcavity mode,

one strongly, one weakly. In such cases, e.g. QD1 (Fig. 2.2h), this complication can be

avoided by applying a magnetic field which pushes X0
a and X0

b apart via the Zeeman
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Fig. 2.2. Strong coupling of a QD exciton in the microcavity. The spectra were recorded by

measuring the photons scattered by the microcavity–QD system at a temperature of 4.2 K, rejecting

reflected laser light with a polarisation-based dark-field technique [40, 64]. Data shown here were taken

on the X0 transition. a, e, Signal with QD far-detuned from microcavity in order to determine the

photon loss-rate κ, equivalently the quality factor Q. b, f, X0 at magnetic field B = 0.00 T showing

strong coupling to one fine-structure-split (FSS) transition, weak coupling to the other (there is an almost

perfect alignment of the X0 and microcavity axes). From the spectra, we determine g, κ, γ and C (as

defined in the main text). c, d, g, X0 at B = 0.50 T: the magnetic field increases the FSS. C is smaller

than at B = 0.00 T because the X0 transitions become circularly polarised and couple less strongly

to the linear-polarised microcavity mode. The simple avoided-crossing in c enables a determination of

κ and γ by using data at all values of ∆C. The dotted lines in c and solid lines in d–g are fits to a

solution of the Jaynes-Cummings Hamiltonian in the limit of very small average photon occupation [49].

h, Summary of strong-coupling parameters recorded on X0 at B = 0.00 T on three separate QDs using

the same microcavity mode. C > 100 in all three cases. Data in a–g from X0 in QD2.

effect. Alternatively, the charged exciton X+ can be probed which has just one optical

resonance at zero magnetic field.

When the microcavity and QD optical frequency come into resonance, we observe a

clear avoided crossing in the spectral response (Fig. 2.1c) signifying strong coupling.

We achieve strong coupling on different charge states in the same QD (Fig. 2.1c), also

on many different QDs (Fig. 2.2h and Section 3.5–3.6). The cavity-emitter detuning is

controlled in situ either by tuning the QD (voltage Vg) or by tuning the microcavity

(voltage Vz) (Fig. 2.1c).
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At the QD-cavity resonance, mixed states form, the polaritons. In between the lower-

and upper-polaritons (LP1 and UP1, respectively), there is no trace of the bare mi-

crocavity mode (Fig. 2.2f,g). These results demonstrate that cavity-feeding has been

eliminated. This is a consequence of the electrical control via the gates. The high dop-

ing in the back contact creates a Fermi sea and determines the Fermi energy. Each QD

is in tunnel-contact with the Fermi sea and operates in the Coulomb blockade regime

such that the QD is always in the charge state which couples to the microcavity mode.

(A change of charge state detunes the QD from the microcavity mode leading to scat-

tering from the bare microcavity mode.) Additionally, states higher in energy than the

QD states are not occupied. Population of the wetting-layer states for instance leads to

charge noise but this is highly suppressed with the gated device under resonant excita-

tion. Furthermore, phonon-assisted excitation of off-resonant QDs is clearly negligible.

A full spectral analysis determines the parameters g, κ and γ (Fig. 2.2). γ/2π = 0.28

GHz (Fig. 2.2). The transform-limit for these QDs is 0.30 ± 0.05 GHz, the uncertainty

accounting for QD-to-QD fluctuations [65]. The measured γ, 0.28 GHz, corresponds to

the ideal limit to within the uncertainties of 10−20%. The linewidths in the microcavity

match the best QD linewidths ever reported [40]. The coupling g lies in the GHz regime

pointing to potentially very fast quantum-operations. g corresponds closely to that

expected based on the geometry of the device (Fig. 2.1b and Appendix C.2) and the QD

optical dipole. For QD2 at zero magnetic field, g/γ = 14, g/κ = 5.3 corresponding to a

cooperativity C = 2g2/(κγ) = 150. Equivalently, the β-factor [66] is β = 2C/(2C+ 1) =

99.7%. A high cooperativity is achieved on all QDs within the spectral window of the

microcavity (Fig. 2.2h).

2.6 Time-resolved vacuum Rabi-oscillations via g(2)(τ )

To probe the coherence of the coupled photon-exciton system, we look for a photon-atom

exchange, i.e. a “vacuum Rabi-oscillation” [7, 35, 36]. We drive the system at a frequency

positively detuned from the lower-frequency polariton (LP1) and record the two-photon

autocorrelation g(2)(τ) without spectral filtering (Fig. 2.3). All photons in the detection

channel contribute: g(2)(τ) is recorded without spectral filtering. Coherent oscillations

are observed as a function of delay whose period, 220 ps, corresponds exactly to 2π

divided by the measured frequency splitting of the polaritons at this cavity detuning

(Section 3.6.2). These oscillations can be understood in terms of the Jaynes-Cummings

ladder (Fig. 2.3 inset). The laser drives weakly the two-photon transition |0〉 ↔ |2−〉.
|2−〉 decays by emitting two photons. Detection of the first photon leaves the system in
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Fig. 2.3. Time-resolved vacuum Rabi-oscillations. Intensity autocorrelation function g(2)(τ) as a

function of delay τ for ∆C = 0.73g (detuned via cavity length) and ∆L = −0.13g. The inset shows the

first few rungs of the Jaynes-Cummings ladder. The laser drives a two-photon transition |0〉 ↔ |2−〉.
The solid red line is the result of calculating g(2)(τ) from the Jaynes-Cummings Hamiltonian using g, κ

and γ from the spectroscopy experiments (Fig. 2.2) and Rabi coupling Ω/2π = 0.16 GHz. Data from X0

in QD1 at B = 0.40 T.

a superposition of the eigenstates |1−〉 and |1+〉 such that a quantum beat takes place.

Detection of the second photon projects the system into the ground state |0〉, stopping

the quantum beat (Supplementary section V in Ref. [67]). The large g(2)(0) (80 in this

particular experiment) is confirmation that the photon states with quanta n ≥ 2 are

preferentially scattered [11, 14].

The measured g(2)(τ) is fully described with a numerical solution of the Jaynes-

Cummings model: the standard Hamiltonian along with the parameters determined

by the spectroscopy experiments (Appendix D) gives excellent agreement with the ex-

perimental result (Fig. 2.3). The vacuum Rabi-oscillations are sensitive to decoherence,

not just the loss processes but also pure dephasing of the emitter. Including pure de-

phasing into the theory improves slightly the quantitative description of g(2)(τ): the

pure dephasing rate is (10± 2)% of the measured linewidth (see Appendix D.4.2).

The photon statistics change a lot as a function of both laser detuning ∆L and cavity

detuning ∆C (both defined with respect to the bare exciton) [68]. For ∆C = 0, g(2)(0)

is highly bunched at the two-photon resonance, ∆L = −g/
√

2 (Fig. 2.4b), yet highly

anti-bunched at the single-photon resonance, ∆L = −g (Fig. 2.4c). The anti-bunching
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is a demonstration of photon blockade in this system. On driving |0〉 ↔ |1−〉, g(2)(0)

is limited by the weak two-photon resonance to the |2−〉 state. The weak population

of |2−〉 (which decays by a two-photon cascade) increases g(2)(0). This interpretation

is confirmed by the weak oscillations in g(2)(τ) (Fig. 2.4c) which arise from a quantum

beat between |1−〉 and |1+〉, an oscillation which is established on decay of the |2−〉.
Further confirmation of this interpretation is provided by QD3 for which g is larger. This

increases the detuning of the two-photon transition and thereby weakens it. For QD3,

we find a lower value of g(2)(0), g(2)(0) = 0.09 (Appendix A). The Jaynes-Cummings

model reproduces the g(2)(τ) at photon blockade, both g(2)(0) and the fast oscillations.

The full dependence of g(2)(0) on ∆L is plotted in Fig. 2.4e. In principle, g(2)(0)

rises to extremely high values [6] as ∆L → 0. In practice, the scattered signal becomes

weaker and weaker as ∆L → 0 such that g(2)(0) reaches a peak and is then pulled

down by the poissonian statistics of the small leakage of laser light into the detector

channel (Fig. 2.4e). g(2)(τ) is a rich function: its Fourier transform shows in general

three peaks (Fig. 2.4d). The dependence on ∆L shows that these frequencies correspond

to 2g (see Supplementary section V.D.3 in Ref. [67]), |g −∆L| and |g + ∆L| (Fig. 2.4g).

All this complexity is described by the Jaynes-Cummings model which, taking only the

parameters determined by the spectroscopy experiments as input (Appendix D), gives

excellent agreement with the experimental g(2)(τ) in all respects (Fig. 2.3, Fig. 2.4 and

Section 3.5–3.6).

2.7 Up the Jaynes-Cummings ladder

As the laser power increases, there is a spectral resonance at the first- to second-rung

transitions, LP2 and UP2; and, at the highest powers, a strong resonance at ∆L = 0

(Fig. 2.4a): this too is in precise agreement with the predictions of the Jaynes-Cummings

model (Fig. 2.4a), and reflects the bosonic enhancement of the transitions between the

higher lying rungs of the Jaynes-Cummings ladder. At the highest powers, 〈n〉 ' 1.7 on

driving LP1 or UP1, increasing to 〈n〉 ' 16 on driving at the bare cavity frequency. This

experiment provides an opportunity to measure the quantum efficiency of the system.

Given the success of the Jaynes-Cummings model, we can calculate at each laser power

the decay rate through the top mirror and hence the expected signal (Section 3.6.4). The

quantum efficiency of the entire system, i.e. from an exciton in the QD to a “click” on

the detector, is 8.6%. Significantly, of those photons exiting the top mirror and passing

through the dark-field optics, almost all (∼ 94%) make their way into the collection

fibre (Section 3.7). This represents an experimental demonstration that the microcavity
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Fig. 2.4. Strong coupling versus driving frequency and power. a, Signal versus ∆L for ∆C = 0.

At low power, LP1 and UP1 are clearly observed. As the power increases, the higher rungs of the

Jaynes-Cummings ladder are populated. b, g(2)(τ) for ∆C = 0 and ∆L = −g/
√

2. c, g(2)(τ) for ∆C = 0

and ∆L = −g. d, Fast Fourier transform (FFT) of g(2)(τ) in b and c. e, f, g, g(2)(0), signal and

FFT peak frequency of g(2)(τ) versus ∆L for ∆C = 0. The solid red lines in b–g (“model” in a) result

from a calculation of g(2)(τ) (signal) from the Jaynes-Cummings Hamiltonian using g, κ and γ from the

spectroscopy experiments, Fig. 2.2. The Rabi coupling is Ω/2π = 0.07–0.11 GHz (0.14–1.90 GHz). A

signal-to-background ratio SBR = 85 (20) was included. In e, the dashed red line shows the theoretical

limit without the laser background. Data in a from X+ in QD1 at B = 0.00 T; data in b–g from X0 in

QD2 at B = 0.50 T.

output is close to a simple Gaussian beam.

2.8 Photon-statistics spectroscopy

In the experiments with a single laser, the second rung of the Jaynes-Cummings ladder

is accessed by tuning the laser to a two-photon resonance (Fig. 2.4b). An alternative

is to drive the system with two lasers in a pump-probe scheme. The strong transitions

arise from the symmetric-to-symmetric and antisymmetric-to-antisymmetric couplings,
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Fig. 2.5. Photon-statistics spectroscopy. a, Laser 1 is on resonance with the |0〉 ↔ |1+〉 transition

(black arrow, detuning ∆1 = 0); laser 2 is scanned across the |1+〉 ↔ |2−〉 transition (blue arrow,

detuning ∆2). b, g(2)(0) versus ∆2 showing a pronounced resonance at ∆2 = 3∆C/2−∆1. The red solid

line is the result of an analytical calculation based on the Jaynes-Cummings Hamiltonian (Appendix D)

with Rabi couplings Ω1/2π = 0.05 GHz and Ω2/2π = 0.45 GHz. The offset in the experimental data with

respect to the theory reflects additional coincidences arising from off-resonant, two-photon absorptions

not included in the model. c, Signal versus ∆2. The signal increases with increasing ∆2 due to off-

resonant driving of the |0〉 ↔ |1−〉 transition by laser 2. All data for X0 in QD2 at B = 0.50 T;

∆C/2π = 0.31 GHz, ∆1/2π = 0.17 GHz.

e.g. |1−〉 ↔ |2−〉 and |1+〉 ↔ |2+〉, which lead to measurable changes in the populations

of the states [56]. We employ an alternative here, photon-statistics spectroscopy, imple-

menting a theoretical proposal for the first time [57]. We present this experiment on the

symmetric-to-asymmetric |1+〉 ↔ |2−〉 transition. The square of the matrix element is

just 3% of that associated with the |1+〉 ↔ |2+〉 transition. A pump laser drives the

|0〉 ↔ |1+〉 transition on resonance, and a probe laser, highly red-detuned with respect

to the pump, is scanned in frequency in an attempt to locate the |1+〉 ↔ |2−〉 transition

(Fig. 2.5a). There is no resonance in the scattered intensity (Fig. 2.5c): any resonance

lies in the noise (a few per cent). However, there is a clear resonance in g(2)(0) at exactly

the expected frequency ∆2 = 3∆C/2−∆1 (Fig. 2.5b): at the weak |1+〉 ↔ |2−〉 transi-

tion the number of scattered photons hardly changes but there are profound changes in

their statistical correlations. Again, the Jaynes-Cummings model describes the experi-

ment (Fig. 2.5b,c). Here, a short-time expansion in a truncated Hilbert space (first two

rungs of the Jaynes-Cummings ladder) is used to calculate g(2)(0) (Appendix D).
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System design and further characterisation

Adapted from:

Daniel Najer1, Immo Söllner1, Pavel Sekatski1, Vincent Dolique3, Matthias C. Löbl1,

Daniel Riedel1, Rüdiger Schott2, Sebastian Starosielec1, Sascha R. Valentin2, Andreas

D. Wieck2, Nicolas Sangouard1, Arne Ludwig2, and Richard J. Warburton1,

“A gated quantum dot far in the strong-coupling regime of cavity-QED at optical

frequencies” (Supplementary Information),

arXiv:1812.08662 (2018).

1Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel,

Switzerland
2Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum,

Germany
3Laboratoire des Matériaux Avancés (LMA), IN2P3/CNRS, Université de Lyon, F-69622

Villeurbanne, Lyon, France

3.1 Semiconductor heterostructure

3.1.1 Design and growth

The heterostructure is grown by molecular beam epitaxy (MBE). It consists of an n-i-p

diode with embedded self-assembled InAs quantum dots grown on top of an AlAs/GaAs

distributed Bragg reflector (DBR) with nominal (measured) centre wavelength of 940 nm

(920 nm).

The growth on a (100)-oriented GaAs wafer is initiated by a quarter-wave layer (QWL)

of an AlAs/GaAs short-period superlattice (SPS, 18 periods of 2.0 nm GaAs and 2.0 nm

AlAs) for stress-relief and surface-smoothing. The growth continues with 46 pairs of
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GaAs (67.9 nm) and AlAs (80.6 nm) QWLs forming the “bottom” DBR. The active part

of the device consists of a QWL of GaAs (69.8 nm) followed by a 41.0 nm thick layer

of Si-doped GaAs (n+, 2 · 1018 cm−3), the back-gate. 25.0 nm of undoped GaAs, the

tunnel barrier, is subsequently grown, after which InAs quantum dots are self-assembled

using the Stranski-Krastanow process and a flushing-step [69] to blue-shift the quantum

dot emission. The layer thicknesses are such that the quantum dots are located at an

antinode of the vacuum electric field. The quantum dots are capped with an 8.0 nm layer

of GaAs. The growth proceeds with an Al.33Ga.66As layer (190.4 nm), a blocking barrier

to reduce the current flow through the diode structure. The heterostructure is completed

by 25.0 nm C-doped GaAs (5.0 nm p+, 2 · 1018 cm−3 and 20.0 nm p++, 1 · 1019 cm−3),

the top-gate, and, finally, a 54.6 nm GaAs capping layer. The heterostructure is shown

in Fig. 3.1.

The top-gate is centred around a node of the standing wave of the vacuum electric

field in order to minimise free-carrier absorption from the p-doped GaAs. A condition

on the tunnel barrier thickness (it is typically . 40 nm thick to achieve a non-negligible

tunnel coupling with the Fermi sea) prevents the back-gate being positioned likewise at

a vacuum field node. However, the free-carrier absorption of n+-GaAs is much smaller

than that of p++-GaAs at a photon energy of 1.3 eV (α ≈ 10 cm−1 for n+-GaAs compared

to α ≈ 70 cm−1 for p++-GaAs [62]). We exploit the weak free-carrier absorption of n+-

GaAs and use a standard 25 nm thick tunnel barrier. The back-gate is thus positioned

close to the node of the vacuum electric field but is not centred around the node itself.

3.1.2 Electrical contacts and surface passivation

After growth, individual 2.5×3.0 mm2 pieces are cleaved from the wafer. The quantum-

dot density decreases from ∼ 1010 cm−2 to zero in an approximately centimetre-wide

stripe across the wafer. The sample used in these experiments was taken from this

stripe and has a density of 7 × 106 cm−2. (The quantum-dot density was measured by

photoluminescence imaging.)

Separate ohmic contacts are made to the n+ and p++ layers; a passivation layer is

added to the surface. To contact the n+-layer, the back-gate, a local etch in citric acid is

used to remove the capping layer, the p++-layer as well as parts of the blocking barrier.

NiAuGe is deposited on the new surface by electron-beam physical vapour deposition

(EBPVD). Low-resistance contacts to the n+-layer are formed on thermal annealing.

To contact the p++-layer, the top-gate, another local etch removes the capping layer.

A 100 nm thick Ti/Au contact pad is deposited on the new surface by EBPVD. This

contact is not thermally annealed but nevertheless provides a reasonably low-resistance
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Fig. 3.1. Tunable microcavity setup. a, The top-mirror is fixed to the upper inner-surface of a

titanium “cage”. The sample is mounted on a piezo-driven XYZ nano-positioner; the nano-positioner

is fixed to the bottom inner-surface of the cage. The nano-positioner allows for full in situ spatial and

spectral tuning of the microcavity at cryogenic temperatures. The titanium cage resides on another

XYZ nano-positioner allowing for close-to-perfect mode matching of the cavity mode to the external

laser beam [53]. b, An outer Ti cage containing the inner Ti cage and second nano-positioner is fixed

to an optical rod-system which is inserted into a vacuum tube filled with He exchange gas. The opti-

cal elements depicted in the image (objective lens, a quarter-wave plate, two polarising beam-splitters

(PBSs), a polariser, a CMOS camera, two fibre couplers) make up the dark-field microscope for close-

to-background-free detection of resonance fluorescence [64]. The back-reflected laser is suppressed by

a factor up to 108 by choosing orthogonal polarisation states for the excitation and detection channels

[64]. The optical fibre attached to the microscope’s excitation (detection) arm includes a 50:50 (99:1)

fibre beam-splitter in order to monitor the laser power sent into the microscope (reflected from the sam-

ple). The cryostat sits on both active- and passive-isolation platforms and is surrounded by an acoustic

enclosure to minimise acoustic noise. Both images are schematic representations and are not to scale.

The exact layer thicknesses and doping concentrations are found in the text.

contact to the top-gate (Fig. 3.1a).

Following the fabrication of the contacts to the back- and top-gates, the contacts

themselves are covered with photoresist and the surface of the sample is passivated by

chemical treatment. HCl removes a thin oxide layer and a few nm of GaAs on the sample

surface. After rinsing the sample with deionised water, it is immediately put into an

ammonium sulphide ((NH4)2S) bath and subsequently into an atomic layer deposition
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(ALD) chamber. With ALD, 8 nm of Al2O3 is deposited at a temperature of 150 ◦C.

This process is essential with the present device to reduce surface-related absorption: a

high Q-factor is only achieved with a surface passivation layer. We can only speculate

on the microscopic explanation at this point. The passivation procedure reduces the

surface density-of-states, leading to an unpinning of the Fermi energy at the surface. On

the one hand, this reduces the Franz-Keldysh absorption in the capping layer. On the

other hand, it reduces the absorption from mid-gap surface states. A clear advantage of

the surface passivation is that native oxides of GaAs are removed and prevented from

re-forming: this not only reduces the probability for surface absorption but also provides

a robust and stable termination to the GaAs sample [43].

A sample holder contains large Au pads. The Ti/Au and NiAuGe films are con-

nected to the Au pads by wire bonding. Silver paint is used to connect the Au pads to

macroscopic wires (twisted pairs).

3.2 Dielectric top mirror

3.2.1 Curvature via CO2-laser ablation

The template for the curved top-mirror is produced by in-house CO2-laser ablation [53,

54] on a 0.5 mm thick fused-silica substrate. The radius of curvature of the indentation

is 10.5 µm as measured by confocal scanning microscopy [53]; the depth relative to the

unprocessed surface is 1.2 µm. After laser ablation, the template is coated with 22 pairs

of Ta2O5 (refractive index n = 2.09) and SiO2 (n = 1.46) layers (terminating with a

layer of SiO2) by ion-beam sputtering [70].

3.3 Microcavity characterisation

3.3.1 Mirror reflectance measurements and modelling

Each mirror is characterised by measuring the reflection at wavelengths outside the stop-

band. The reflection oscillates as a function of wavelength. We find that these oscillations

are a sensitive function of the exact layer thicknesses of the DBR. The transmission is

simulated with a one-dimensional transfer matrix calculation, for instance the Essential

Macleod package. A fit is generated, taking the nominal growth parameters as starting

point and making the simplest possible assumption to describe systematic differences

between the experiment and the calculation. In this way we find that the GaAs (AlAs)

layers in the semiconductor DBR start with a physical thickness of 64.6 nm (80.2 nm)
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for n = 3.49 (n = 2.92), reducing linearly to 63.9 (79.8 nm). The change arises simply

because the growth rate changes slightly during the long process of growing the DBR.

Accordingly, we anticipate that the layers in the active layer have actual thicknesses:

n+-layer 38.9 nm; tunnel barrier 29.4 nm; blocking barrier 183.3 nm; p++-layer 19.0 nm;

p+-layer 4.8 nm; cap 55.8 nm. The main consequence of the slight change in growth rate

during growth is that the stopband centre is shifted from 940 nm (design wavelength) to

920 nm. The maximum reflectivity at the stopband centre is not changed significantly

by these slight deviations in layer thicknesses.

For technical reasons, the dielectric DBR has a nominal (measured) stopband centre

of 1017 nm (973 nm), i.e. red-detuned from the quantum dot emission. Since the trans-

mission could not be measured during deposition at a wavelength of 940 nm, a modified

quarterwave stack was chosen which is expected to have similar transmission (87 ppm)

at 1064 nm and 940 nm. A laser at 1064 nm was used for in situ characterisation. The

displacement in stopband centres between top and bottom DBRs is an issue only at

wavelengths below 915 nm where the cavity Q-factor decreases rapidly with decreasing

wavelength. Matching of the two stopband centres would give a high Q-factor over a

larger spectral range.

Further details on reflectance measurements are presented in Chapter 4.

3.3.2 Microcavity Q-factors

A microcavity was constructed using a planar dielectric mirror and the same curved di-

electric mirror used for the main quantum dot experiment. Both planar and curved silica

templates were coated in the same run. With the smallest possible mirror separation

of 3λ/2 (limited by the indentation depth of the curved mirror) we determine Q-factors

of 1.7 · 105 (1.5 · 106) at 920 nm (980 nm) at room temperature. The fundamental mi-

crocavity mode splits into a doublet with orthogonal polarisations. At a wavelength of

920 nm, this splitting is typically 13 GHz. These measurements demonstrate the very

high quality of the dielectric mirror, in particular the curved dielectric mirror.

The microcavity consisting of the semiconductor mirror and the same curved dielectric

mirror has a Q-factor of typically 5 · 105 at 920 nm at 4.2 K (Fig. 2, main text), a

factor of ∼ 3 larger than the dielectric DBR-dielectric DBR microcavity described above.

This increase can be explained by a factor of two larger effective cavity length of the

semiconductor-dielectric cavity – the group delay of the semiconductor mirror is larger

than that of a dielectric mirror due to the 3λ/2-thick active layer – and a factor of 1.5

larger finesse. This increase in finesse suggests that at 920 nm the reflectance of the

semiconductor mirror is higher than that of the dielectric mirror.
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The fundamental mode at wavelength 920 nm has a polarisation splitting of typically

32 GHz. This is larger than the polarisation splitting of the dielectric DBR-dielectric

DBR microcavity (13 GHz at 920 nm). This suggests that the main origin of the po-

larisation splitting is birefringence in the semiconductor induced by strain (AlAs is not

exactly lattice-matched to GaAs).

Further details on measured Q-factors with passivated and unpassivated semiconduc-

tor DBRs are presented in Chapter 4.

3.3.3 Low-temperature setup and stability

Both the top-mirror and the GaAs sample are firmly glued to individual titanium sample

holders and mounted inside a titanium “cage” (Fig. 3.1a). The holder for the GaAs sam-

ple is fixed to a stack of piezo-driven XYZ nano-positioners while the top-mirror holder

is fixed to the titanium cage via soft (indium) washers which act as a flexible material for

tilt alignment at room temperature. Observing the cavity with a conventional optical

microscope and tightening each screw of the mirror holder individually, Newton rings

appearing between the two mirrors can be centred in order to guarantee mirror paral-

lelism at room temperature. The entire microcavity setup is then inserted in another

titanium cage. This outer cage is connected to an optical cage system inside a vacuum

tube. The tube is evacuated, flushed with He exchange gas (25 mbar), pre-cooled in

liquid nitrogen and finally transferred into the helium bath cryostat.

In order to minimise the exposure of the microcavity to acoustic noise, the cryo-

stat is decoupled from floor vibrations via both active and passive isolation platforms

(Fig. 3.1b). An acoustic enclosure surrounds both the entire cryostat and microscope,

providing a shield against airborne acoustic noise (Fig. 3.1b). There is no active feedback

mechanism acting on the microcavity’s z-piezo. Nevertheless, a root-mean-square cavity

length fluctuation [53] of ∼ 0.5 pm was measured in the best case, limiting our Q-factors

to Q ≈ 2.0 · 106. This corresponds to our highest measured Q-factor of Q = 1.5 · 106 in

the case of a microcavity consisting of the curved top mirror paired with a dielectric bot-

tom mirror of identical coating. This suggests that in the case of a GaAs sample–curved

dielectric mirror combination the Q-factor is only slightly reduced by environmental

noise.
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3.4 Quantum dot characterisation without top mirror

3.4.1 Single-electron or -hole charging via gate control

To characterise quantum dot charging, photoluminescence (PL) measurements were per-

formed using non-resonant excitation at a wavelength of 830 nm as a function of the

voltage applied between top- and bottom-gates. Fig. 3.2a shows such a PL charge map

taken on the sample without the top mirror. Both positive (X+) and negative (X−) tri-

ons as well as the neutral exciton (X0) were identified. The charge states of a quantum

dot within the cavity can be recorded in a similar way. In order to detect all the PL

before filtering by the cavity, a sine wave voltage is applied to the cavity’s z-piezo so

that the cavity is continuously scanned through one free spectral range per integration

time window of the spectrometer.

3.4.2 Resonance fluorescence via cross-polarised detection

Each quantum dot’s behaviour under resonant excitation can be investigated by sup-

pressing back-reflected laser light in the detection arm, detecting the resonance fluores-

cence (RF). We achieve this with a dark-field technique [64]. The optical components

are shown in Fig. 3.1b. The excitation laser passes through a linear polariser with po-

larisation matched to the reflection of the lower polarising beam splitting (PBS). The

two PBSs transmit the orthogonal polarisation in the vertical direction, the detection

channel. The final polarising element of the excitation channel and the first polaris-

ing element of the detection channel is a a quarter-wave plate. It has a dual function.

First, by setting the angle of the quarter-wave plate to 45°, the microscope can also be

operated in bright-field mode. This is very useful for alignment purposes and for opti-

misation of the out-coupling efficiency. Secondly, in dark-field mode, the quarter-wave

plate allows very small retardations to be introduced, correcting for the slight elliptic-

ity in the excitation polarisation state [64]. The quarter-wave plate allows extremely

high bright-field-to-dark-field extinction ratios to be achieved. The microscope can be

operated in a set-and-forget mode – once the polariser and wave-plate are aligned, the

laser suppression is maintained over days in the original setup [64] and even weeks in

this case. This very robust operation (despite the fact that control of the wave-plate

rotation at the milli-degree level is necessary [64]) is likely to be a consequence of the

effective damping of acoustic and vibrational noise acting on the microscope head in the

cavity experiment.

An RF scan of QD5 without top mirror is shown in Fig. 3.2b. The detuning between

quantum dot and laser is controlled in this case by fixing the laser frequency and scanning
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Fig. 3.2. Quantum dot charging and neutral exciton linewidth. a, Measured photoluminescence

signal of non-resonantly excited QD4 (λ = 830 nm, P = 200 nW, B = 0.00 T) as a function of gate

voltage. The three main charge states of the quantum dot are the positive trion (X+), neutral exciton

(X0) and negative trion (X−). Dark blue: maximum counts, white: minimum counts. b, Resonance

fluorescence on QD5 (X0, λ = 939 nm, B = 0.00 T) excited well below saturation (red solid line:

Lorentzian fit). With a measured Stark shift of 240 GHz/V, a linewidth of 0.32 GHz is obtained, a value

close to the typical transform limit of 0.20 GHz for these InGAs quantum dots. The splitting arises from

the X0 fine structure which for QD5 is 11.05 GHz.

the gate voltage which detunes the quantum dot resonance frequency via the dc Stark

shift. Two peaks are observed from the neutral exciton, X0. The splitting corresponds to

the fine-structure splitting (FSS). Taking several scans for different laser frequencies, a dc

Stark shift of 240 GHz/V is determined on this particular quantum dot. The measured

full-width-at-half-maximum of each neutral exciton peak corresponds to 0.32 GHz, a

value close to the transform limit of 0.20 GHz for these InAs quantum dots [71].
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Fig. 3.3. Spectroscopy on cavity-coupled QD1. a, X0 at B = 0.00 T: RF scan revealing two

TEM00 cavity modes with polarisation splitting of 25 GHz (inclined lines) coupled to two fine-structure-

split levels of X0 with FSS of 1 GHz (horizontal lines). b, Line cut at resonance to “left” cavity mode

(as indicated by red arrow). The main peaks arise from coupling of the “high” frequency X0 transition

to one cavity mode; the peak at ∆L = 0 arises from coupling of the “low” frequency X0 transition to

the same cavity mode. c, g(2)(0) versus laser detuning for a cavity detuning close to zero. d, Power

dependence at resonance. Excitation of the second rung of the Jaynes-Cummings ladder (LP2, UP2)

is evident at high powers as indicated by the dashed vertical lines. e, X0 at B = 0.40 T: RF scan

reveals that the same TEM00 cavity modes couple to the two X0 transitions. The X0 transitions are

now separated by the Zeeman splitting. f, Line cut at resonance to “left” cavity mode. (Continued on

the following page.)
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Fig. 3.3. (continued). g,h, g(2)(0) versus laser detuning for two different cavity detunings, one close to

zero, the other one close to g. i, X+ at B = 0.00 T: RF scan of the X+ transition. j, Line cut at resonance

to “right” cavity mode. k,l, Experimental and theoretical power dependence at resonance, respectively.

Excitation of higher rungs of the Jaynes-Cummings ladder is evident by the convergence from the two

first-rung polaritons towards the bare cavity mode with increasing power leading to a calculated mean

photon number in the cavity of maximum 〈n〉 = 16. The Hilbert space in the model is truncated to 35

rungs of the Jaynes-Cummings ladder. The slight frequency shift of the signal peak in k at maximum

laser power is due to an unintended drift of the cavity length during this experiment. In all figures, the

vertical lines depict the resonance frequencies for the first three rungs of the Jaynes-Cummings ladder

(LP1/UP1: continuous, LP2/UP2: dashed, LP3/UP3: dotted) at a particular cavity detuning.

3.5 Resonance fluorescence from a cavity-coupled quantum dot

3.5.1 Polarisation axes

The X0 polarisation axis (or, in shortened form, “axis”) varies from quantum dot to

quantum dot. The cavity also has an axis. A complication is that the cavity mode

splitting (32 GHz), the X0 fine-structure (1–10 GHz), and the frequency separating the

two polaritons in the strong-coupling regime (6–9 GHz) are all similar. Fig. 3.3a shows an

example: full RF scans of cavity-coupled QD1 are shown, together with their respective

line-cuts at zero cavity detuning (Fig. 3.3b, f, j). The fundamental cavity mode splits into

two modes with linear and orthogonal polarisations. At zero magnetic field (B = 0.00 T)

the neutral exciton X0 also splits into two lines with linear and orthogonal polarisations.

In the case of QD1 at B = 0.00 T, the X0 and cavity axes are close-to-parallel such

that one X0 line couples strongly to one cavity mode, weakly to the other cavity mode,

and vice versa for the other X0 line (Fig. 3.3a). The line-cut at one particular cavity

frequency shows the polaritons and a weak feature in between (Fig. 3.3b). The analysis

including both cavity modes and two X0 transitions makes it clear that in Fig. 3.3b,

the two polaritons arise from strong coupling between one X0 transition and one cavity

mode. The central feature arises from an out-of-resonance response of the strong coupling

between the other X0 transition and the other cavity mode. The bare cavity mode is

not observed at all in the spectral range of Fig. 3.3a.

The quantum dot-cavity couplings can be selected in a few ways in this experiment.

First, the X0 axis varies from quantum dot to quantum dot. It is not difficult to

find a quantum dot whose axis matches closely that of the cavity such that one X0 line

interacts primarily with one cavity mode, the other X0 line interacts primarily with the

other cavity mode. Fig. 3.3a depicts an example of this behaviour.

Secondly, application of a small magnetic field pushes the two X0 lines apart in fre-
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50:50
beam-splitter

single-photon detector 2

single-photon detector 1

intensity correlation

g(2)(τ)

Fig. 3.4. Schematic of the Hanbury Brown-Twiss (HBT) setup. The microcavity signal is split

via a 50:50 fibre beam-splitter and detected via two superconducting nanowire single-photon detectors

(SNSPDs, Single Quantum Eos) connected to a time-tagging hardware (PicoHarp 300). By recording

the absolute arrival time and detector channel of each detected photon, a correlation algorithm is used

to calculate the second-order correlation function, g(2)(τ), with a binning time of 4 or 16 ps.

quency. At a magnetic field of B = 0.40 T, the X0 lines (QD1) are separated by 12 GHz

such that if one X0 line is resonant with the microcavity, the other X0 line is far detuned.

Fig. 3.3b,f show an example. At these magnetic fields, the X0 lines become circularly

polarised such that the X0 axis plays no further role. The price to pay is a reduction

by a factor of
√

2 in the coupling parameter g with respect to the optimal value at zero

magnetic field (Fig. 3.3f).

Thirdly, the fine-structure splitting disappears on switching to a charged exciton,

either X− or X+: there is just one peak at zero magnetic field (Fig. 3.3i,j), a Zeeman-

split doublet at finite magnetic field.

To exploit all three options, we stress the power of the in situ cavity detuning. On

applying a magnetic field or changing the voltage applied to the device, the quantum

dot optical frequency changes by many cavity linewidths but in each case the cavity can

be brought into resonance.

3.6 Second-order correlation measurements

3.6.1 Hanbury Brown-Twiss (HBT) setup

Second-order correlation measurements are performed with a Hanbury Brown-Twiss

(HBT) setup. The resonance fluorescence signal from the detection fibre (Fig. 3.1b) is

sent to a 50:50 fibre beam-splitter and then to two superconducting nanowire single-

photon detectors (SNSPDs, Single Quantum Eos). In these experiments, all the photons
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Fig. 3.5. Spectroscopy on cavity-coupled QD2. a, Experimental and theoretical dispersion of

the lower (LP1) and the upper polariton (UP1). b, Corresponding experimental and theoretical g(2)(0)

values. c, Intensity of scattered light from LP1 and UP1 at zero cavity detuning as a function of resonant

excitation power. The absence of saturation is due to population of higher rungs of the Jaynes-Cummings

ladder with increasing power. The behaviour at low powers allows the dependence of the Rabi frequency

Ω on laser power P to be determined. This behaviour is parameterised with power P0 (see text for

definition of P0): P0 = 214 nW for LP1 and P0 = 529 nW for UP1 (black and red dashed vertical lines,

respectively). The mean photon number 〈n〉 is shown. d,e, corresponding experimental and theoretical

g(2)(0) values for LP1 and UP1. All data from X0 in QD2 at B = 0.50 T.
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from the experiment were sent to the HBT setup: spectral selection was not employed.

Each SNSPD has a detector efficiency of ηdetector ≈ 85% and a negligible dark count

rate (10–40 cts/s). The total timing resolution in the g(2)-mode includes the timing

resolution of both SNSPDs and the resolution of the time-tagging hardware. In total,

it is ≈ 35 ps (FWHM) which is well below the measured vacuum Rabi-periods in this

work.

The dead time of the time-tagging hardware is ' 95 ns which sets a limit for the

maximally detectable count rate. In order to measure higher count rates than ∼ 5

Mcts/s per detector, the 1%-arm of the detection fibre is used instead of the 99%-arm

and the counts are calibrated accordingly.

For the evaluation of g(2)(τ) we use a time window of 100 ns. For all presented g(2)(τ)

data, we use a bin size of 4 ps. For all presented g(2)(0) values, we perform a fast Fourier

transform (FFT) of g(2)(τ) (bin size: 16 ps), we then cut all frequency components above

14 GHz and calculate the inverse FFT. In this way, we make sure that the g(2)(0) values

are averaged over a time of 35 ps, a time large with respect to the original binning 16

ps, but small with respect to the period of the vacuum Rabi-oscillations.

3.6.2 Vacuum Rabi-frequency versus cavity detuning

Fig. 2.3 shows g(2)(τ) as a function of delay τ for a cavity which is detuned by ∆C = 0.73g

with respect to the emitter. Here we show that vacuum Rabi-oscillations in g(2)(τ) are

observed for different values of ∆C and that the frequency of these oscillations changes

according to the change in polariton splitting in the |1±〉 manifold for different values

of ∆C (see Fig. 3.6 and section V for analytical calculations for the case of ∆C = 0).

The dashed vertical line in Fig. 3.6 depicts the cavity detuning for the data shown

in Fig. 2.3. Consistent with the excellent agreement of the numerical model for g(2)(τ)

with the experiment, an analytical approach to determine the vacuum Rabi-period yields

T = 220 ps in exact agreement with the experimental observations.

3.6.3 g(2)(0) versus laser- and cavity detuning

In the experiment, three frequencies can be tuned in situ: the laser frequency ωL, the

emitter frequency ωC (via the gate voltage) as well as the cavity frequency ω0 (via tuning

of the cavity length).

Fig. 2.4e shows g(2)(0) as a function of laser detuning ∆L for a cavity detuning ∆C = 0

on QD2 at B = 0.50 T. g(2)(0) can be described well with the model and a small laser

background. This point is investigated also in other cases. In Fig. 3.3c,g and h, more
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Fig. 3.6. Vacuum Rabi-frequency versus ∆C. The data points correspond to measured vacuum

Rabi-frequencies (determined via FFT of g(2)(τ)) for different cavity detunings ∆C. The red solid-line

is an analytical calculation of the polariton splitting in the |1±〉 manifold for different values of ∆C (see

Supplementary section IV in Ref. [67]) using a coupling strength measured via spectroscopy (Fig. 3.3f).

Data from X0 in QD1 at B = 0.40 T.

g(2)(0) measurements of the neutral excition of QD1 at B = 0.00 T and 0.40 T are

shown: c and g are recorded with close-to-zero cavity detuning, h with a cavity detuning

of ∆C ≈ g.

The in situ tunability of the microcavity can be exploited by an alternative experiment

in which the cavity is detuned and the polaritons are driven resonantly at each cavity

detuning. Fig. 3.5a,b show exactly this, specifically the behaviour of the first-rung

polaritons (LP1 in black, UP1 in red) as a function of ∆C. Also in this case, the model

reproduces the experimental results well. The reason for the slight discrepancy in g(2)(0)

of the lower polariton at large and negative ∆C is the fact that the laser starts driving

the second fine-structure level which is weakly coupled to the same cavity mode. This

increases slightly the number of single photons in the detection signal as evidenced by

the slight anti-bunching in the experimental data.

3.6.4 Power dependence of g(2)(0) and signal

The experiments in Fig. 2.1–2.4(b–g), Fig. 3.3a–c,e–j and Fig. 3.5a,b are all recorded

with a weak driving laser, i.e. with a mean photon number in the cavity well below one.

We present here the behaviour as the power of the driving laser increases.

In Fig. 3.5c we plot the measured and calculated scattering signal on driving LP1

(black) and UP1 (red) with increasing excitation power. A striking feature is that the
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system does not saturate (Fig. 3.5c). This is evidence that the full ladder of Jaynes-

Cummings levels exists. To model the power dependence, it is necessary to determine

the connection between the Rabi frequency Ω, the input parameter to the model, and

the laser power P , the control parameter in the experiment. Clearly, Ω ∝
√
P . At

the lowest powers, only the zeroth and first rungs of the Jaynes-Cummings ladder are

populated such that the |0〉 ↔ |1−〉 and |0〉 ↔ |1+〉 transitions behave like two-level

systems: the scattered signal increases linearly with laser power, as expected (Fig. 3.5c).

We parameterise the link between Ω and P by adopting the link for a two-level system,

namely Ω =
√

P
P0

κ+γ
2

1√
2
, where P is the laser power (monitored at the 50:50 fibre

beam-splitter) and P0 is a reference power. The signal S is equal to the steady-state

photon occupation in the cavity multiplied by the cavity loss-rate (κ) and the cavity-

to-detector system efficiency (ηsystem), S = ηsystem · κ · 〈n〉. We calculate 〈n〉 from the

Jaynes-Cummings model with (g, κ, γ)-parameters determined from the spectroscopy

experiment and (∆C,∆L) = (0,±g).

The nonlinear power-dependence (Fig. 3.5c) enables both P0 and ηsystem to be deter-

mined. A fit to the experimental data leads to P0 = 214 nW (P0 = 529 nW) for LP1

(UP1) and ηsystem = 12%. The difference in powers P0 for LP1 and UP1 results in an

unequal population of the polaritons at constant input powers, as seen in Fig. 2.2f,g.

The difference in P0-values probably arises from a polarisation-dependent chromaticity

in the throughput of the microscope’s excitation channel. The same model gives excellent

agreement with the experimental g(2)(0) both for the LP1 and UP1 (Fig. 3.5d,e).

The behaviour as a function of driving power can also be explored by measuring the

∆L-dependence of the scattered intensity for ∆C = 0. Fig. 3.3d,k show power-dependent

RF scans when the bare exciton and cavity are resonant. At low power, LP1 and UP1

are clearly resolved. At higher power, bumps appear at the two-photon LP2 and UP2

resonances. In Fig. 3.3k, there is no resonance close to the bare cavity mode at low

power, enabling us to explore the full behaviour even at very large driving powers. At

the highest powers, the response is dominated by a feature at ∆L ≈ 0 (Fig. 3.3k).

This too is evidence that the full Jaynes-Cummings ladder can be accessed. At the

highest powers, the system “climbs” the Jaynes-Cummings ladder on account of the

bosonic enhancement of photons such that the average photon occupation is large and

the polariton resonances become closer in frequency to the bare cavity mode. This power

dependence can also be described with the model and very good agreement between our

numerical model and the data in Fig. 3.3k is found. (Due to the presence of the second

fine-structure level in Fig. 3.3d, our numerical model is incomplete in this case.)
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3.7 Cavity-to-detector efficiency and overall quantum efficiency

The power dependence, Section 3.6.4, enables us to determine ηsystem = 12%. ηsystem is

the quantum efficiency of the entire detection system, the probability that a photon in

the cavity is detected by the detector (cavity-to-detector efficiency).

One contribution to ηsystem is the outcoupling efficiency [32], which is defined as the

fraction of photons in the κ-channel leaving through the top mirror (rate κtop):

ηout =
κtop

κ
=

Ttop

Ttop + Tbottom +A
. (3.1)

Using the modelling of the mirrors (Section 4.2), we determine (Ttop, Tbottom, A) =

(116, 1, 373) ppm at wavelength λ = 923 nm. Here, Ttop (Tbottom) and A are the frac-

tional intensity losses per round trip via transmission through the top (bottom) mirror

and absorption/scattering losses, respectively. This gives ηout = 24%.

The system efficiency can be described with a number of additional factors. If the

cavity and microscope axes lie at φ = 45◦ to each other, ηdark−field = 50%. This is

not exactly the case in practice. For X0 in QD2 (B = 0.50 T), φ = 37◦ ± 6◦ resulting

in ηdark−field = (63 ± 10)%. Once a photon has entered the detection channel after the

dark-field polarisation-optics, it is coupled into the collection fibre with probability ηfibre.

Overall,

ηsystem = ηout · ηdark−field · ηfibre · ηdetector. (3.2)

The detector has a quantum efficiency of ηdetector = 85% (Section 3.6.1). From these

results, we find that ηfibre = (94± 6
15)%.

The collection fibre is a single-mode optical fibre and supports a propagating Gaussian-

mode. The high value of ηfibre is only possible with excellent mode-matching between

the cavity-output and the optical fibre: it constitutes experimental proof that the cavity

output is described extremely well by a Gaussian-mode.

Note that the exciton-to-photon quantum efficiency (the probability of an exciton

producing a photon which exits via the κ-channel) of the microcavity [31] is

ηcavity = β · κ

κ+ γ
, (3.3)

which is 72% for QD2 (B = 0.50 T). The overall exciton-to-detector quantum efficiency

reads

ηexciton = ηcavity · ηsystem, (3.4)

which is 8.6% in this case.
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Chapter 4

Surface passivation as key to Q-factors up

to one million

4.1 Summary

We present a surface passivation method that reduces surface-related losses in a highly

miniaturised Fabry-Pérot cavity by almost two orders of magnitude. The fully tunable

microcavity consists of a curved (radius ∼ 10µm) dielectric distributed Bragg reflector

(DBR) paired with an n-i-p diode containing self-assembled quantum dots on top of a

semiconductor DBR. Positioning the highly p- and n-doped layers close to a node of

the vacuum electric field is essential to minimize free-carrier absorption in the gates.

By passivating the semiconductor DBR, we find experimentally that the remaining ab-

sorption losses originate from the semiconductor surface itself or the GaAs “capping”

layer below the surface. We interpret surface passivation to reduce the surface density of

states and thus the surface-related absorption. Leading to an unpinning of the surface

Fermi-level, the electric field in the capping layer and thus below-band-gap absorption

via the Franz-Keldysh effect are reduced. Our findings are not only of importance for

the realization of efficient single-photon sources in the solid state [32, 41] but paved the

way for achieving high splitting-to-linewidth ratios in a strongly coupled cavity-QED

system (Chapter 3).

4.2 Introduction

Minimizing the absorption and scattering losses in a microcavity is an ultimate goal of

cavity quantum electrodynamics (cavity-QED). First, for single-photon sources in the

weak-coupling regime, an efficient photon extraction is needed [32, 41]. Secondly, a

coherent exchange between an (“artificial”) atom and a cavity-confined vacuum electric
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field in the strong-coupling regime is only useful if the coherent coupling rate g dominates

over all loss mechanisms via the cavity (photon loss rate κ) or the atom’s spontaneous

decay rate (γ) by a large margin. This requires a small mode volume together with either

moderate Q-factors limited by transmission losses only (weak coupling) or ultrahigh

Q-factors combined with ultralow emitter linewidths (strong coupling). Reaching the

strong-coupling regime of cavity-QED at optical frequencies with a high splitting-to-

linewidth ratio has been a major challenge in atomic [5–8] and solid-state physics [9, 10,

16, 49]. It has been shown with GaAs microdisk resonators [43] that surface passivation

is crucial for achieving Q-factors in the order of a few million. The combination of an

ultrahigh-Q-factor microcavity with an emitter featuring ultralow linewidths close to

the radiative limit has however been missing so far. Radiatively limited emission from

a semiconductor quantum dot can be obtained by embedding the quantum dots within

an n-i-p diode [40].

In this work, we embed an n-i-p diode containing InAs quantum dots in a fully tunable

microcavity which exhibits a Q-factor close to 106 despite the absorbing gates suffer-

ing from free-carrier absorption [62]. Obtaining an ultrahigh Q-factor close to the one

expected from the DBR layer design is based on two crucial steps. First, the n-i-p het-

erostructure is designed in a way that the highly absorbing gates lie in (or close to*)

a node of the vacuum electric field to reduce free-carrier absorption (which is around

α ∼ 69 cm−1 for p++-GaAs and α ∼ 69 cm−1 for n+-GaAs, 0.17 eV below the bandgap

of GaAs [62]). Secondly, the semiconductor surface has to be passivated in order to

reduce surface-related absorption losses [43]. We present below-bandgap absorption via

the Franz-Keldysh (F-K) effect [72–76] in the capping layer as one possible explanation

for the highly reduced Q-factors in the unpassivated case.

The microcavity [52, 53] consists of a curved dielectric DBR (produced by CO2-laser

ablation [54]) paired with an n-i-p heterostructure embedding InAs quantum dots (QDs)

on top of a semiconductor DBR (“nip-DBR”, Fig. 4.1a). Terminating with SiO2, the

dielectric DBR is composed of 22 layer pairs of SiO2(λ/4) and Ta2O5(λ/4), where λ

depicts the wavelength in each material. The stopband (SB) centre� is 973 nm. The

semiconductor DBR consists of 46 layer pairs of AlAs(λ/4) and GaAs(λ/4). The het-

erostructure is a 1.5λ-layer of GaAs including doped layers acting as top-gate (p++, 109

cm−3) and back-gate (n+, 2 ·108 cm−3). The quantum dot layer is placed at an antinode

*Due to a restriction to the tunnel barrier thickness between back-gate and quantum dot layer, the
backgate is positioned slightly off-center with respect to the vacuum electric field node.

�Note that in this work, we define the SB centre in the 1D transfer matrix model (Appendix B)
as the mean value of the two wavelengths that correspond to the local minima (with R < 90%) of the
calculated reflectance spectrum that are closest to the maximum mirror reflectance (Fig. 4.1b).
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Fig. 4.1. Ultrahigh-Q optical microcavity as sensitive probe for surface-related absorption.

a, Schematic of the microcavity involving a curved dielectrid DBR and an n-i-p heterostructure with self-

assembled InAs quantum dots on top of a semiconductor DBR (“nip-DBR”). b, Simulated reflectance of

the nip-DBR with stopband (SB) centre λC = 920 nm. c, Calculated vacuum-field amplitude across the

heterostructure for three different wavelengths (−30, 0,+30) nm from the SB centre. As the antinodes of

the vacuum-field amplitude shift with wavelength changing the modal confinement factor (MCF) in the

GaAs capping layer, surface-related absorption in the capping layer (10−10–10−8 cm−1) can be probed

via the microcavity by measuring its Q-factor across the SB. At λC, where the coupling to the QDs is

maximised, free-carrier absorption in the highly doped p- and n-gates is minimised by placing them close

to a vacuum-field node. Note that the highly reduced vacuum-field at λ − λC = −30 nm arises from a

shift of the vacuum energy into the vacuum-gap.

of the vacuum electric field (at a distance λ below the surface). The intrinsic region be-

tween quantum dots and back-gate acts as tunnel barrier for electrons based on Coulomb

blockade [22]. Using a piezo-based XYZ nano-positioner, the microcavity features full in

situ tunability at room and cryogenic temperatures. Measuring the Q-factor across the

nip-DBR’s SB (Fig. 4.1b) reveals possible sources of loss in the heterostructure due to the

fact that the standing wave inside the cavity shifts with wavelength (Fig. 4.1c). Losses in

the capping layer for instance depend on the exact wavelength: close to (−30, 0, 30) nm

from the nip-DBR’s SB centre the calculated modal confinement factor (MCF *) of the

*The MCF is defined as the electromagnetic energy confined in the layer-of-interest divided by the
energy of ~ω/2 confined by the entire vacuum-field mode [43].
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capping layer is (0.9%, 6.2%, 0.9%), respectively.

4.3 GaAs surface passivation

The surface passivation recipe to unpin the Fermi level at the semiconductor surface is

partly oriented towards one of the procedures in Ref. [77], for instance. As a first cleaning

step, the post-processed semiconductor sample (already containing Au contact pads) is

successively immersed in acetone, isopropanol and ethanol inside an ultrasonic bath at

T = 40◦C. To prevent surface passivation on the contact pads, they are covered by a

manually applied drop of photoresist (AZ1512HS, Microchemicals GmbH) and baked for

10 min at T = 100◦C. At room temperature, the sample is dipped into an HCl solution

(25%) for 1 min in order to remove the native oxide [77]. The sample is then rinsed

with deionized water for ∼ 1s and immediately soaked in an (NH4)2S solution (20%)

for 10 min. Without rinsing the sample, it is blown dry by nitrogen and immediately

transferred into an ALD chamber (Savannah 100, Cambridge NanoTech Inc.).

The following ALD recipe is chosen to deposit ∼ 8 nm of Al2O3 onto the sample

surface: T = 150◦C, first pulse 50 ms (water), wait 12 s, second pulse 40 ms (TMA),

wait for 10 s, cycle 80 times. The Al2O3 layer acts as diffusion barrier for oxygen [78],

thus preventing reoxidation of the etched GaAs surface.

After surface passivation, the remaining challenge is to remove the photoresist that

has been crosslinked at T = 150◦C inside the ALD chamber. The use of N -Methyl-

2-pyrrolidone (NMP) at elevated temperatures has shown to successfully remove the

crosslinked photoresist. The sample is immersed in NMP for 9–20h (while 20h yielded

a better result) at T = 40◦C and then successively cleaned for 5 min in NMP, acetone,

isopropanol and methanol inside an ultrasonic bath at T ∼ 56◦C. As a final step, a poly-

meric strip coating (First Contact, Photonic Cleaning Technologies) is used to remove

final residues from the sample surface.

4.4 Individual mirror characterisation: stopband oscillations

As depicted in Fig. 4.2, the cavity’s top and bottom mirror are characterised at T = 4.2 K

by a broadband light source (white LED or halogen lamp) and a dark-field confocal mi-

croscope [40]. The light from the source is coupled into a single-mode optical fibre

leading to a collimator, an objective lens (NA=0.55) and finally the sample surface.

Cross-polarising elements are used in the beam path to distinguish the normally re-

flected light from the normally incident light. The detection fibre is connected to a
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Fig. 4.2. Mirror characterisation via reflection measurements. Each mirror is investigated at

T = 4.2 K by recording white light (fibre-coupled white LED or halogen lamp) reflected off the sample

on the spectrometer using a dark-field confocal microscope [40]. Via 1D transfer matrix methods (The

Essential Macleod), the designed layer thicknesses can be refined to fit the experimentally observed

oscillations outside the stopband. a, Curved dielectric DBR with 22 pairs of SiO2/Ta2O5, terminated

with SiO2. The reflected signal is recorded on a flat surface away from the curved microstructure and

normalized by the white light spectrum (an exponentially decaying function based on the measured

signal reflected off the metallic mirror in b). b, Unpassivated nip-DBR. Here, the reflectance is obtained

normalizing the DBR’s reflected signal by the signal reflected from an Au contact pad on the same DBR

(by moving piezo-nanopositioner laterally by a few microns).

spectrometer [40]. In order to determine the reflectance of each mirror across a wave-

length range that includes several oscillations outside the SB (“SB oscillations”), we

use the reflected light from a metallic mirror (which in our case is the Au contact pad

on the nip-DBR) to record a reference spectrum. The nip-DBR’s reflectance spectrum

is obtained by normalizing its reflected signal by the reference spectrum. Due to the

absence of a metallic reference surface on top of the dielectric DBR in Fig. 4.2a, an ex-

ponential fit of the reference spectrum from Fig. 4.2b is used instead and the maximum

reflectance is normalized to 1. Due to the fact that all reflectance spectra obtained on
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any surface depends on the settings of the microscope and exact Z-position of the beam

focus, the exponential reference spectrum for Fig. 4.2a inevitably leads to a larger dis-

crepancy between the modelled and measured reflectance curves in Fig. 4.2a compared

to Fig. 4.2b.

Via 1D transfer matrix methods (The Essential Macleod) the designed layer thick-

nesses can be refined in order to fit the experimentally observed SB oscillations. The

obtained model for each DBR (red solid lines in Fig. 4.2) can be used to simulate the

cavity performance, in particular to calculate Q-factors and transmittance values at

resonance for different wavelengths by adjusting the vacuum-gap between the mirrors

(Appendix B). The slight discrepancy in the obtained reflectance in Fig. 4.2b with re-

spect to the model comes from the fact that the collection efficiency of the confocal

microscope is highly dependent on the Z-position of the focus – which is different for

the nip-DBR and Au contact pad not only due to different focus penetration depths but

different Z-positions of the Au and GaAs surface itself.

4.5 Microcavity characterisation: Q-factors

A microcavity is built using passivated and unpassivated nip-DBRs and curved dielectric

DBRs (R ∼ 7–16µm) similar to the ones characterized in Fig. 4.2. Via laser transmission

measurements at the Si photodetector below the nip-DBR, each microcavity is charac-

terised by determining its Q-factor across the nip-DBR’s SB. The transmission signal is

measured as a function of laser wavelength keeping the cavity length fixed (Fig. 4.3a).

To change the cavity’s resonance frequency, the mirror separation is changed by means

of the Z nano-positioner.

A Q-factor is obtained for every pair of longitudinal (TEM00) modes at minimum mir-

ror separation of ∼ 2–4µm (depending on wavelength and mirror depression depth [53])

by fitting a double-Lorentzian. Fig. 4.3a,b show the results for an electrically contacted

passivated sample* (black circles), a unpassivated bare wafer sample without contacts

(blue triangles) as well as an unpassivated sample with contacts (red squares). Around

the SB centre, where the coupling to the QD layer is maximised (λC = 915–925 nm), the

Q-factor experiences an increase of almost two orders of magnitude after surface passi-

vation. In Fig. 4.3c, extracted absorption coefficients α from the model (Appendix B)

are plotted for single datasets of Fig. 4.3b.

The drastic increase of that the Q-factors after surface passivation inevitably leads

*Note that the measured Q-factors obtained with a passivated contacted sample or a passivated bare
wafer piece were similar, which is why the latter are not shown in Fig. 4.3b.
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Fig. 4.3. Microcavity characterisation via Q-factor measurements. Microcavities with three

different nip-DBRs are tested at T = 4.2 K: a passivated DBR with contacts (black circles), an unpas-

sivated DBR “A” without contacts (blue triangles) and an unpassivated DBR “B” with contacts (red

squares). a, Measured transmission signal from a laser at λ−λC ∼ 10 nm as a function of laser detuning

at a fixed (minimum) mirror separation. In each case a mean Q-factor for the two longitudinal modes

is determined by a double-Lorentzian fit (solid lines). b, Evaluated Q-factors for several wavelengths.

In both unpassivated cases, two (A) and six (B) datasets from similar microcavities (λC = 915–925 nm)

are overlapped. The solid (dashed) lines are calculated Q-factors taking into account free-carrier ab-

sorption coefficients based on literature [62] and calculated Franz-Keldysh absorption coefficients [75, 76]

for electric fields Fcap = (200, 320, 470) kV/cm (Fcap = 0) in the capping layer. A maximum Q-factor

increase of almost two orders of magnitude is found comparing the model curves for passivated and un-

passivated samples with contacts. In order to rule out surface scattering [79] as the dominant absorption

mechanism, the blue dotted line indicates the calculated Q-factors taking into account a GaAs surface

roughness of σ = 0.5 nm (Fig. 4.5b) instead of F-K absorption. c, Determined absorption coefficients of

the capping layer (single datasets only). By comparing the measured and simulated Q-factors, an extinc-

tion coefficient k for the capping layer material (GaAs) can be fitted yielding an absorption coefficient

α via α = 4πk/λ. The solid lines are fitted absorption values based on the Franz-Keldysh effect [75, 76]

(Eqs. 4.1–4.5).

to the conclusion that the losses limiting the Q-factors of unpassivated microcavities

are related to the semiconductor surface: they either originate from the semiconductor

surface itself or the GaAs layer below the surface, the capping layer.
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Fig. 4.4. Simulated nip-DBR band structure and Franz-Keldysh effect. a, Simulation of the

conduction and valence band in the n-i-p diode (nextnano) at T = 4.2 K. The surface is modelled via a

Schottky barrier of Eg/2 = 0.76 eV reflecting the mid-gap Fermi-level pinning at the GaAs surface [77].

The effect of surface passivation is modelled via a reduced Schottky barrier of 0.32 eV taking into account

the experimentally observed factor of 2.4 reduction of the electric field in the capping layer after surface

passivation. b, Schematic of the Franz-Keldysh effect [72, 73]. An electric field inside a semiconductor,

i.e. a tilted conduction-(valence-)band edge, allows for electrons (holes) to tunnel into the forbidden en-

ergy gap Eg, leading to below-gap absorption processes. c, Room-temperature Franz-Keldysh absorption

coefficients reported in literature [76] for different electric fields inside a p-i-n double heterostructure.

The solid lines correspond to calculated absorption coefficients according to Ref. [74, 75] (Eqs. 4.1–4.5).

4.6 Microscopical explanation for the nip-DBR losses

As a last step, we give a possible microscopical explanation for the losses in the inves-

tigated nip-DBRs and why surface passivation significantly reduces them. In Fig. 4.4a,

the calculated valence- and conduction-band edges in the heterostructure are shown, a

solution to the 1D poisson equation (obtained via the nextnano software). In the un-

passivated case, we simulate the mid-gap Fermi-level pinning via a Schottky barrier of

0.76 eV on the sample surface. This yields an electric field in the capping layer (“capping

field”) of Fcap = 140 kV/cm. The effect of surface passivation is modelled via a reduced

Schottky barrier of 0.32 eV taking into account the experimentally observed factor of 2.4

reduction of the electric field in the capping layer after surface passivation.

An electric field inside a semiconductor leads to F-K absorption below the bandgap of

the material [72, 73]: due to a tilt in valence- and conduction-band edges, the electron

and hole wavefunctions can be described by Airy functions (similar to a particle in a

triangular well [80]) with an exponential tail in the forbidden bandgap. This increases

the overlap of the electron and hole wavefunctions within the bandgap, which leads to
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absorption processes at photon energies Ephoton < Eg. The situation is schematically

depicted in Fig. 4.4b.

According to Ref. [74], F-K absorption at energy E due to the presence of an electric

field F can be described via the absorption coefficient

α(E,F ) =
2πe3

ncm2
0~
· F
E

∑
i=lh,hh

µi|Mi|2
~θi

(
|Ai′(xi)|2 − xi|Ai(xi)|2

)
, (4.1)

where

~θi =
((eF~)2

2µi

)1/3
, (4.2)

xi =
Eg − E
~θi

, (4.3)

e being the elementary charge, n the refactive index, c the speed of light in vacuum,

m0 the free electron rest mass, µlh = 0.037m0 (µhh = 0.058m0) the reduced mass of an

electron–light-hole pair (electron–heavy-hole pair) and |Mlh|2 (|Mhh|2) the momentum

matrix elements for the light (heavy) holes. Ai(z) is an Airy function* (with derivative

Ai′(z)).

We make use of the momentum matrix elements derived in Ref. [75] for different

polarisations of the radiation field. For light polarised in the XY plane, the momentum

matrix elements for the light and heavy holes read

|Mlh|2 = P 2/3, (4.4)

|Mhh|2 = P 2, (4.5)

where P = 0.692 is a typical value for GaAs [75].

The model for F-K absorption is fitted to room-temperature experiments on a p-i-n

double heterostructure [76] (Fig. 4.4c). There is a compelling overlap between theory

and experiment. Small discrepancies are discussed below.

In order to estimate F-K absorption coefficients in our nip-DBR at 4.2 K (Fig. 4.3b,c),

we make use of Eqs. 4.1–4.5 and an adjusted GaAs bandgap of 1.519 eV. Comparing the

obtained model for low-temperature F-K absorption to the experimental data presented

in Fig. 4.3b,c, we fit capping fields a factor of 3.4 above the one expected from the 1D

poisson equation (Fig. 4.4a) in the unpassivated case. The origin of this discrepancy is

not fully understood at this point, however we note several points here.

*The Airy function Ai(z) is defined as Ai(z) = 1
2π

∫∞
−∞ e

i(zt+t3/3)dt.
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Fig. 4.5. Atomic force microscropy (AFM) images of different semiconductor samples.

Each image depicts the same scan area of 0.8× 0.8µm2 (obtained in tapping mode) and scale bar from

a height of -4 to 4 nm. a, Passivated bare wafer piece. b, Unpassivated bare wafer piece (no contacts).

c, Unpassivated sample with contacts. d, Undoped semiconductor DBR (unpassivated). The samples

in a, b and d reveal similar rms surface roughnesses around σ = 0.5 nm, while the sample shown in c

exhibits a larger roughness around σ = 2 nm.

First, there are no F-K absorption experiments reported in literature at low temper-

ature (4.2 K) far below the bandgap Eg of GaAs (at E − Eg ∼ −0.17 eV corresponding

to λ ∼ 920 nm). Our approach here is to fit the theory presented in Ref. [74, 75] to the

room-temperature experiments of Ref. [76] (Fig. 4.4c) and extrapolate the absorption

coefficients to 4.2 K and ∼ 0.17 eV below the corresponding GaAs bandgap of 1.519 eV.

We already see from this fit that the overlap of the experimentally found below-gap ab-

sorption coefficients in Ref. [76] with the F-K theory decreases as the energy E decreases;

the exponential reduction of the absorption coefficient below the bandgap flattens out

with decreasing energy [76].

Secondly, there are room-temperature experiments on F-K oscillations (FKOs) in sim-

ilar GaAs heterostructures than reported in this work (a 25–80 nm thick, undoped GaAs

capping layer on top of an n+-doped Al.32Ga.68As layer [81]) that report surface electric

field values a factor 1.8–3.8 above the expected ones, too*.

A remaining question is why the bare wafer sample without passivation shows higher

Q-factors than the electrically contacted sample without passivation. We speculate

that the F-K effect (i.e. the capping field) is reduced due to the higher surface quality

(similar surface-density of states but spread differently in energy, thus a reduced Fermi-

level pinning [77]) of the bare wafer sample compared to the unpassivated, contacted

nip-DBR.

This statement is based on atomic force microscopy (AFM) measurements performed

in tapping mode (Bruker Dimension 3100) on the different samples presented in this

*In order to estimate the capping fields in Ref. [81], we simply divide the capping layer thicknesses
reported in [81] by half the bandgap Eg/2 = 0.71 eV of GaAs at 300 K.
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chapter: the bare wafer sample exhibits a similar surface texture and roughness of

σ ∼ 0.5 nm (Fig. 4.5b) than the investigated undoped semiconductor DBR (Fig. 4.5d),

but much less surface texture and lower roughness than the unpassivated, contacted

nip-DBR (Fig. 4.5c). Still, this surface roughness of σ ∼ 0.5 nm introduced in the model

does not account for the measured low Q-factors of the bare wafer sample at the SB

centre (Fig. 4.3b, blue dotted line).

Note that a surface roughness σ translates into a total integrated scatter (TIS) of TIS

≈ (4πσ/λ)2 [82] and can be modelled by an extinction coefficient k (for the 1D transfer

matrix methods) according to Ref. [79],

k =
π(n1 − n2)2(n1 + n2)d

λ
√

8(n2
1 + n2

2)
, (4.6)

where d = 2σ is the thickness of the scatter layer corresponding to twice the rms surface

roughness σ, n1 and n2 are the refractive indices of the two layers surrounding the scatter

layer and λ is the free-space wavelength.

4.7 Comparison to an undoped semiconductor DBR

In order to confirm that the losses obtained with a doped semiconductor DBR are indeed

a consequence of the gates, we compare our results to a microcavity consisting of an

undoped semiconductor DBR. The heterostructure in this case is a λ-layer of GaAs

(with embedded InAs QDs in the centre) on top of a 33-pair AlAs/GaAs DBR [49, 52].

First, we repeat the mirror characterisation procedure described above and find a suitable

model for the semiconductor layer thicknesses (Fig. 4.6a). Then, we pair this mirror with

the same dielectric top mirror used for the experiments with the doped semiconductor

DBR. Fig. 4.6b depicts the measured Q-factors as a function of wavelength.

We find that in this case, surface scattering due to a measured GaAs surface roughness

of σ ∼ 0.5 nm (Fig. 4.5d) via AFM can explain the observed reduction of Q-factors

around the semiconductor’s SB centre (solid line in Fig. 4.6b). The measurements with

the nip-DBR however show that surface scattering is irrelevant. To explain this, we

speculate that either the surfaces of both doped and undoped wafers are not identical

or that the losses in the undoped semiconductor DBR arise from AlAs/GaAs interface

roughness [83]. The first statement is based on the fact that the undoped semiconductor

wafer was not grown with the same MBE than the nip-DBR. The second statement is

based on simulations that take into account an interface roughness of σ = 1.0 nm on

top of each AlAs layer (dotted line in Fig. 4.6b) instead of a rough surface – yielding a
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Fig. 4.6. Undoped semiconductor DBR: reflectance and Q-factor measurements. a,

Reflectance measurement of an undoped semiconductor DBR (λC = 956 nm) at T = 4.2 K. The

DBR contains a λ-layer of GaAs and QDs embedded λ/2 below the surface on top of 33 pairs of

AlAs(λ/4)/GaAs(λ/4). In order to record a reference spectrum from a metallic mirror here, parts

of the sample were covered by an Au film using electron-beam evaporation. b, Measured Q-factors of

a microcavity at T = 4.2 K consiting of an undoped semiconductor DBR paired with a dielectric top

mirror (λC = 973 nm). In b, the reduction of Q-factors around the SB centre can be explained by a

semiconductor surface roughness of σ = 0.5 nm (solid line) or an interface roughness of σ = 1.0 nm on

top of every AlAs layer (dotted line). The dashed line corresponds to the case without any losses in the

semiconductor DBR.

similar result.

We note that although the measured Q-factors with the undoped semiconductor DBR

can be modelled by surface scattering alone, we have no experimental data to proof that

the losses there originate indeed from the surface – we speculate that the surfaces of

both wafers are not exactly identical.

Finally, we stress that the model for surface scattering can in no way reproduce the

extreme (exponential) wavelenegth dependence of the measured Q-factors in the doped

nip-DBR (Fig. 4.3b, blue dotted line) – due to the weak wavelength dependence of the
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Fig. 4.7. Measured Q-factors and cavity transmittance of a purely dielectric microcavity.

Dielectric top mirror (λC = 973 nm) paired with a dielectric bottom mirror (shifted to λC = 976 nm) of

same coating at T = 300 K. The black (red) solid line is a calculation of the Q-factor (cavity transmit-

tance) taking into account a material extinction coefficient of kSiO2 = 4 ·10−7 and kTa2O5 = 4.5 ·10−7 for

SiO2 and Ta2O5, respectively [70]. Additionally, an interface roughness of σ = 0.25 nm above each of the

five last grown Ta2O5 layers and k = 4kTa2O5 in the last grown Ta2O5 layer are heuristically introduced

in order to fit the experimental data. A cavity transmittance is measured relating the transmitted power

at resonance to the laser power before the objective lens times a fitted in-coupling efficiency of 59%.

TIS (∼ 1/λ2). Not even a different model based on Rayleigh scattering (wavelength

dependence ∼ 1/λ4) would account for the steep decrease of the measured Q-factors

towards the SB centre. An exponential wavelength dependence of the absorption losses

is the most plausible one.

4.8 Model for the curved dielectric mirror

Fig. 4.7 shows the measured Q-factors of a purely dielectric microcavity (identical coat-

ings on top and bottom DBR, but bottom shifted by 3 nm*) with a maximum Q-factor

of up to 2.0 · 106 at the SB centre (973 nm) measured at room temperature. A rough

interface below each of the five lowest Ta2O5 layers shown in Fig. 4.1 (extinction coeffi-

cients corresponding to an interface roughness [79] of 0.25 nm) and k = 4kTa2O5 inside

the lowest Ta2O5 layer are heuristically introduced in the model to fit the measured

Q-factors and later get a reasonable model for describing the measured microcavities

involving semiconductor DBRs (Fig. 4.3b,c and Fig. 4.7b).

*A relative shift of 3 nm between top and bottom mirror was introduced in order to account for the
high cavity transmittance measured at low wavelengths. This is done with reason as recorded reflectance
spectra (Fig. 4.2a) on different wafer samples with the same dielectric coating exhibited up to 6 nm shifts
in wavelength, most probably due to thickness variations across the wafer.
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Chapter 5

Fabrication methods to reduce the

microcavity mode volume

Adapted from:

Daniel Najer1,∗, Martina Renggli1,∗, Daniel Riedel1, Sebastian Starosielec1, and Richard

J. Warburton1,

“Fabrication of mirror templates in silica with micron-sized radii of curvature”,

Appl. Phys. Lett. 110, 011101 (2017).

1Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel,

Switzerland

∗contributed equally to this work

5.1 Summary

We present the fabrication of exceptionally small-radius concave microoptics on fused

silica substrates using CO2 laser ablation and subsequent reactive ion etching. The

protocol yields on-axis near-Gaussian depressions with radius of curvature . 5 µm at

shallow depth and low surface roughness of 2�A. This geometry is appealing for cavity

quantum electrodynamics where small mode volumes and low scattering losses are de-

sired. We study the optical performance of the structures within a tunable Fabry-Pérot

type microcavity, demonstrate near-coating-limited loss rates (F = 25 000) and small

focal lengths consistent with their geometrical dimensions.
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5.2 Introduction

The physics of single emitters strongly coupled to optical resonators offers a rich variety of

quantum applications, including high-brightness indistinguishable single photon sources,

single-photon transistors, and photon-mediated emitter-emitter coupling. A significant

but challenging area is the application of these concepts, initially developed in the context

of atomic physics, to solid-state systems such as quantum dots, nitrogen-vacancy centers

in diamond or localization centers in 2D materials. The key requirements to achieve

a high Purcell enhancement or a coherent exchange of energy quanta—the so-called

weak and strong coupling regimes of cavity quantum electrodynamics, respectively—

are a small mode volume (V , the effective extension of the confined electromagnetic

field), a high resonator quality factor (Q, the average number of coherent oscillations)

as well as a precise in-situ tuning between emitter and resonator [84]. Various high-Q
microresonator concepts exists, e.g. micropillars [9] or photonic crystal cavities [10]. The

tunable Fabry-Pérot type microcavity uniquely offers full spectral and spatial tuning to

the emitter [85, 86] as well as highly efficient external mode-matching in the free-beam

version [52]. Already, significant emitter-cavity cooperativity has been achieved with

scaled down dimensions [49]. For these tunable plano-concave microcavities, the route

to high coupling rates lies within the strong confinement of the resonant mode which is

achieved by reducing the curved mirror’s radius of curvature (R).

5.3 Previous methods

Only a few fabrication methods are known to produce concave microoptics with radii of

curvature R ≤ 5 µm, e.g. focussed ion beam (FIB) milling [87, 88], femtosecond laser wet

etching [89] and proximity-effect-assisted reflow techniques [90]. For an optical cavity

with total round-trip losses Ltot and ultra-high finesse F ≈ π/Ltot ≈ 105, acceptable

round-trip scattering losses are below S ≈ (4πσ/λ)2 = 30 ppm, setting the upper limit for

the surface roughness to a demanding σ = 2 . . . 6�A in the VIS–NIR spectral range [91].

The two latter approaches suffer from a too high surface roughness on the scale of a few

nanometers. For FIB milling, microoptics fabrication benefits from full shape control

and low surface roughness, and indeed depressions with curvatures as low as R = 1.5 µm

have been reported recently [87]. Yet FIB represents a production method at significant

investment costs.

CO2-laser ablation on silica has turned out to be a low-cost alternative providing near-

Gaussian shaped concave depressions at ultra-low surface roughness. In the conventional
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Fig. 5.1. Geometry parameters of craters produced by different fabrication methods. Con-

ventional CO2-laser ablation on polished fused silica substrates (black dots) shows a strong correlation

between geometrical radius of curvature R and depth D. Reproduced from Ref. [53], with the permission

of AIP Publishing. In this work, the favourable regime of low R at shallow D becomes accessible by

both post-processing (“top-down”, blue dots) and pre-processing (“bottom-up”, red dots) methods with

a minimum radius of curvature R = 1.2± 0.1 µm.

fabrication protocol, short pulses of CO2 laser light are focussed onto either a polished

fused silica substrate or the end facet of an optical fibre [54]. At these wavelengths

(λ ≈ 10 µm), the light is efficiently absorbed by the material. While the dynamics of the

process are complex, the following phenomenological description is well accepted: above

a certain local temperature threshold, local evaporation results in a concave landscape

roughly following the spatial irradiance distribution. The strong surface tension of the

molten material then leads to a very smooth solidification process, with excellent surface

roughness routinely at 1 . . . 2�A [53, 54].

The established CO2-laser ablation process can produce a large range of depression

geometries (black dots in Fig. 5.1), yet with a strong but unfortunate correlation between

radius R and depression depth D (from Ref. [53]) irrespective of varying fabrication

parameters (intensity, pulse duration and pulse train length). While the radius seems

to stagnate at R ≈ 5 µm or slightly below, a formed microcavity resonance becomes

intrinsically unstable for cavity lengths L > R (or 2R) in a plano-concave (or biconcave)

geometry from Gaussian optics theory. In practice, the finite lateral extent of the mirrors

makes this transition between stable and unstable cavity modes less abrupt. In addition,
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deviations of the concave mirror surface geometry from the isophase plane of the cavity

field can induce a mode-mixing between transversal modes [92], acting as additional

loss channels and further restricting the stability region to L . R/2. Those constraints

further limit the established ablation protocol to geometries of R� 5 µm.

5.4 Two new methods

In this work we present a post-processing (“top-down”) protocol which lifts this rigid

link between radius and depth in the conventional ablation method. The key concept

is to introduce an etch step post-ablation to reduce the crater depth, while preserving

the high-grade geometry of the conventional ablation. In addition, we demonstrate first

steps towards greater shape control at very small radii by pre-processing the substrates

(a “bottom-up” approach) with standard photolithography and subsequent CO2-laser

polishing. While optical polishing has been demonstrated [93, 94] with convex features

down to 9.4 µm in radius [95], our bottom-up approach achieves much smaller radii, down

to 1.2 µm. We characterize the structures formed by both protocols by confocal scanning

microscopy and atomic force microscopy, and find radii of curvature R ≈ 5 µm at shallow

depths D ≈ 1 µm, as shown in Fig. 5.1 (blue and red dots). We apply a reflective coating

to our structures and record optical transmission spectra of the formed microcavities.

We verify the geometrical radii and show high-Q performance of a microcavity fabricated

by the top-down protocol.

5.5 Protocol 1: top-down approach

The top-down approach is based on the conventional ablation method in the regime of

large depth and small radius (R ≈ 5 µm) followed by a post-processing etching step to

reduce the large depth by means of reactive ion etching (RIE), see Fig. 5.2(a–e). After

initial ablation with an FWHM beam diameter of 20 µm (a), the depression is spin-coated

with AZ1512HS photoresist (Microchemicals, Germany), which partially reflows into the

depression (b). The first RIE etching step (Ar/O2) has a preferred selectivity towards

the photoresist, and after calibrated removal leaves a self-centered mask at the crater

center (c). The second RIE step (CHF3/Ar/O2) preferentially etches the exposed silica

substrate and thus reduces the effective depth of the ablation crater, while the crater

center’s ultralow-roughness surface and geometry are protected (d). A standard solvent

stripping of the residual photoresist then reveals the original ablation crater bottom with

radius R ≈ 5 µm at a reduced depth of D ≈ 1 µm with unaffected surface quality (e).
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Fig. 5.2. Protocol for both processing schemes. a, The top-down approach starts from a small-

radius crater at large depth produced by conventional high-power CO2-laser ablation with an FWHM

beam diameter of 20µm. b, With spin-coating of photoresist, the crater becomes partially filled. c,

Reactive ion etching (RIE) with high selectivity for the resist consumes the resist homogeneously, im-

plementing a self-centered mask for the crater. d, A second RIE step of low resist-selectivity attacks the

exposed silica substrate, reducing the crater’s depth. e, Stripping of the residual resist produces a crater

at reduced depth, maintaining the original surface quality. f, g and h, The bottom-up approach starts

from a flat silica substrate, where a step-like crater template is formed by conventional photolithography.

i, j, A coarsely scanned low-power CO2 laser locally melts the silica surface smoothing out the template

shape into the desired form.

Both RIE step durations are calibrated to the spin coating thickness, crater depth, and

their corresponding etching rates.
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5.6 Protocol 2: bottom-up approach

The bottom-up approach, a first step towards shape control at R � 5 µm using CO2-

laser ablation, relies on the optical polishing effect [96] on a pre-structured fused silica

substrate. With low irradiation, ablation becomes negligible whereas surface-tension-

induced smoothing remains effective [97]. The protocol is sketched in Fig. 5.2. Photore-

sist (AZ1512HS) is spun onto a flat silica substrate (f) and locally removed by means

of standard photolithography in order to expose the underlying silica for a substrate-

selective RIE step (CHF3/Ar/O2) (g). After dissolving the residual resist, a binary

structure with well-controlled width d and height h results (h). The pre-structured

substrate is then optically polished by coarsely scanning the low intensity CO2-laser ir-

radiation (i) over the fabricated areas. Phenomenologically, the polished surface profile

can be well described by a convolution of the template pattern with a Gaussian kernel

of a remarkably small RMS width parameter (s = 0.4 . . . 1 µm). For given s and tar-

get radius R we analytically estimate optimal template parameters (d,h) for a target

paraboloid-like shape, i.e. we aim at creating a target depression shape with vanishing

fourth order derivative at the crater center. For production values s = 1 µm and target

R = 3 µm the best estimates of the feature dimensions are d = 3.5 µm and h = 1.0 µm,

a binary pattern easily accessible by standard photolithography.

Both protocols yield depressions with a small geometrical R at shallow depth suited for

a stable microcavity. For the main top-down protocol, the near-Gaussian shape, the low

surface roughness as well as the high axial symmetry originating from the initial ablation

process is well conserved. The prototype bottom-up protocol results in features with

remarkably small radii R = 1 . . . 5 µm while exhibiting a reduced axial symmetry and a

slightly increased surface roughness. We argue that these problems can be eliminated

with a better smoothing procedure, as pointed out below.

5.7 Geometrical analysis

We investigate the geometrical shape of the fabricated craters with confocal scanning

microscopy and the surface roughness by atomic force microscopy. We describe the

surface profile z(r) as a function of radial displacement r by means of a modified ellipsoid,

z(r) =
r2/R

1 +
√

1− ε r2/R2 + δ r4/R4
, (5.1)

where R represents the geometrical radius of curvature, and the dimensionless parameter

ε is related to the conicity of the ellipsoid (e.g. ε = 1 for a sphere, and ε = 0 for a
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Fig. 5.3. Geometrical characterisation. Line scans (points) through top-down (a) and bottom-

up (b) craters measured by confocal microscopy (blue and green curves shown with an offset). Axial

asymmetry is compensated by introducing a small tilt to the data before fitting (see curved arrows). The

solid lines depict cuts through the fits in which the surface is modelled by a modified ellipsoid z(r). The

uncercainty in the fitting parameters accounts for the variation on the fitting range around the center

of the craters (3 . . . 6µm). The insets show contour plots (non-tilted data) and AFM surface roughness

measurements of selected craters revealing atomically smooth surfaces.

paraboloid). An ellipsoid is often used in the quantitative description of spherical and

aspherical surfaces (e.g. ref. 91 and 98), however this description becomes inappropriate

at large r when the optical surface converges into the unmachined flat substrate. We

thus heuristically modify the ellipsoid description by another dimensionless parameter

δ > 0 to respect the surface asymptotics at r � R. For r � R the ellipsoid is recovered.

Line scans through the center of craters #A (fabricated by the top-down protocol),

#B, #C and #D (fabricated by the bottom-up protocol) are shown in Fig. 5.3. As
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seen from the area scan (insets), top-down crater #A exhibits a high axial symmetry,

while the axial symmetry of bottom-up crater #B is slightly reduced. In order to fit the

axially symmetric model to the bottom-up craters and extract the relevant geometric

parameters, we apply a small tilt (up to 2.3◦) to the profile data. As a result we retrieve

R#A = 4.4± 0.3 µm for a top-down crater and R#B = 3.7± 0.2 µm for a bottom-up

crater. The surface roughness measured by atomic force microscopy is 1.8�A (top-down

crater #E*) and 2.9�A (bottom-up crater #F).

5.8 Optical analysis

For optical characterization of the radius, the fabricated craters are coated with Ti(5 nm)/Au(80 nm)

by electron beam evaporation and paired with a polished silica substrate (with same

coating) to form a tunable Fabry-Pérot type microcavity. The cavity transmission, with

respect to length detuning induced by a piezo nanopositioner, is then measured (see

Fig. 5.4) at wavelength λ = 940 nm. From Gaussian optics, TEMqnm resonator modes

appear at cavity lengths

Lqnm =

(
q +

n+m+ 1

π
cos−1√g

)
λ

2
, (5.2)

where q is the longitudinal mode index and n,m are the transversal mode indexes. In

the plano-concave cavity geometry, the confocal parameter is g = 1− Lqnm/Reff, which

itself depends on the cavity length and allows for the extraction of an effective radius of

curvature Reff.

As the mode overlap of the probing Gaussian laser beam to TEMq00 is largest, an

identification of the fundamental cavity modes (n + m = 0) is straightforward. An

intentionally poor mode-matching reveals the higher-order transversal cavity modes (n+

m ≥ 1) whose degeneracy is slightly lifted, indicating a small axial asymmetry of the

crater. The (integer) longitudinal mode index q is extracted from a wavelength detuning

∆λ (λ = 918 . . . 974 nm) and corresponding resonance shift ∆L via q = b2∆L/∆λc,
where the non-integer residual of the right hand side originates from the n + m + 1

contribution. The cavity length L is calibrated from the experimental control parameter

(the nanopositioner’s piezo voltage) by extrapolation of the resonance modes to the

(unphysical) limit n + m + 1 → 0 where Lqnm ≡ qλ/2. For each individual mode Lqnm

an effective radius Reff of curvature can be determined, with an uncertainty induced by

*The tested top-down crater #E belongs to an earlier fabrication batch than #A, where the pho-
toresist was manually applied as a droplet. The resulting geometry, i.e. radius and depth, remains the
same
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Fig. 5.4. Optical characterisation. Optical transmission spectra of tunable microcavities formed by

fabricated top-down (a,c) and bottom-up (b) craters coated with Ti/Au by electron beam evaporation

(a,b), or a Ta2O5/SiO2 quarter-wave stack by ion beam sputtering (c). The curved mirrors are paired

with a polished silica substrate with the same coating. The mode-matching in a and b is intentionally

poor in order to couple the Gaussian input laser mode (λ = 940 nm) to a large number of transversal

cavity modes thus enabling the transversal mode splitting to reveal an effective radius of curvature Reff.

The high-Q configuration in c (λ = 637 nm) shows a double-Lorentzian fine structure with a large quality

factor Q = 105 and high finesse F = 2.5× 104.

the cavity length calibration procedure.

From cavity #A (formed by the main top-down protocol), a mean effective radius of

R̄#A
eff = 4.5± 0.3 µm is found consistently across all probed cavity resonances (Fig. 5.4a),

which closely matches the crater geometry R#A = 4.4± 0.3 µm. The measured quality

factor Q = 1400 for the TEM600 mode translates to a mirror reflectance of 98.6 %

and a finesse of F = λQ/2Lqnm = 200, typical values expected for an evaporated Au

coating [99].

In contrast to these results, cavity #B (formed by the prototype bottom-up protocol)
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shows a much broader range of effective radii with a mean of R̄#B
eff = 2.9± 0.7 µm and

significantly lower quality factors (Q = 200 for the TEM600 mode resulting in F = 30).

While the mean effective radius lies significantly below the top-down threshold (5 µm),

which is also apparent from the geometrical analysis R#B = 3.7± 0.2 µm, the strong

fluctuation with cavity length indicates a deviation from a spherical geometry from the

paraxial Gaussian beam theory. The reduction in the Q of the bottom-up cavity likely

arises from an axial asymmetry and waviness which coincides with the coarse-scanned

pitch (4 µm) of the optical polish matrix. We expect this defect to be considerably lifted

by a finer pitch in a refined fabrication run, the focus of further study.

We test the high-Q performance of top-down crater #G* with a commercial high-

reflectivity quarter-wave stack Ta2O5/SiO2 coating, produced by ion beam sputtering,

at a wavelength of λ = 637 nm. In Fig. 5.4(c), two adjacent longitudinal modes (q, 0)

are recorded, each split into a linear-polarised fine structure likely originating from the

slightly elliptical mirror surface [100]. For the TEM400 mode, we demonstrate a large

quality factor of Q = 105 and high finesse F = 2.5× 104, very well suitable for the

target applications in cavity quantum electrodynamics. The measured finesse is close to

the one expected from the bare mirror reflectivity (99.9925 %, measured on a fused silica

witness sample by the manufacturer).

*The tested top-down crater #G belongs to an earlier fabrication batch than #A, where the pho-
toresist was manually applied as a droplet. The resulting geometry, i.e. radius and depth, remains the
same
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Chapter 6

Summary and Future Prospects

Chapter 2 and 3 of this thesis presented the realisation of a highly coherent atom-

photon interface despite the complexity of the solid-state environment. From a physics

point-of-view, we observe a striking vacuum Rabi-oscillation, a coherent exchange of a

single quantum between the cavity and the quantum dot. Such clear oscillations have

not been observed before in any system. (In the microwave domain, the absence of

single-photon detectors has precluded this experiment; in the optical domain, the noise

was too severe: wiggling of the atom in the trap potential in the case of cold atoms

smearing out the oscillations; charge noise in the semiconductor host in the case of

semiconductor quantum dots) In addition, we observe pristine anti-crossings without

cavity-feeding. This allows us to probe our microcavity at high excitation powers, where

the higher rungs of the Jaynes-Cummings ladder become populated. The compelling

agreement with the “standard model” of cavity-QED, the Jaynes-Cummings model, is

further evidence for the coherence of the presented exciton-photon interface.

From a quantum technology point-of-view, we present an extremely low-noise single

photon-single “atom” interface with cooperativity C = 150 in a semiconductor. A high

cooperativity without cavity-feeding is unprecedented for optical quantum dot devices.

The cooperativity is much larger than that achieved with electrically-defined quantum

dots in the microwave domain. The cooperativity is also much larger than that achieved

in state-of-the-art optical experiments on single atoms.

To make this step-change in cooperativity and noise, we present several innovations.

The most important is that the quantum dots are embedded in a gated structure. The

gates have two consequences. First, cavity-feeding, the source of noise which has plagued

almost all previous implementations of strong-coupling cavity-QED with semiconductor

quantum dots, is completely eliminated. Secondly, the quantum dot linewidths are ex-

tremely close to the transform-limit: even in the microcavity structure, the linewidths

match the very best quantum dot linewidths ever reported. Gates result in free-carrier

absorption and below-gap absorption via the Franz-Keldysh effect – they are not obvi-
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ously compatible with a high Q-factor microcavity. We have found a way, passivation

of the GaAs surface, to solve this problem: the microcavity has gates and an ultra-

high Q-factor, Q ' 106. Details on the surface passivation procedure were presented in

Chapter 4. With this, we have found evidence for the origin of the losses in the doped

semiconductor DBR: the losses arise either from the semiconductor surface itself or the

GaAs layer below the surface.

In Chapter 5, two fabrication methods to further decrease the microcavity mode vol-

ume were presented. Both protocols yield low-roughness, shallow, micrometer-sized con-

cave mirror templates, thereby overcoming the present geometrical limits of conventional

CO2-laser ablation on polished fused silica substrates and on cleaved optical fibres. For

the main method (top-down), we demonstrate high-finesse, stable microcavity operation

at shallow depth and extract effective radii of curvature . 5 µm consistent with their

geometrical shape. The top-down protocol relies on the conventional ablation process

and thus conserves its excellent geometrical properties such as a high axial symmetry

and ultra-low surface roughness. The prototype bottom-up protocol demonstrates the

early steps towards shape control at the few-micrometer level, presently unachieved by

conventional CO2-laser ablation alone.

A reduction of the top mirror’s curvature radius to 5µm (at low crater depth and thus

minimum vacuum-gap between the mirrors) will lead to a 2.3-fold reduction in mode-

volume (Appendix C.4) which comes with a 1.5-fold increase of the coherent coupling

strength. With this improvement, and taking into account the optimum parameters

(g, κ, γ)/2π ≈ (4.4, 0.61, 0.28) GHz achieved in this work (Fig. 2.2h), cooperativities of

C ' 500 are within reach.

The system opens the possibility of creating a photon-photon gate. A key advance here

is the coherent exciton-photon interaction. This can be potentially exploited in the Duan-

Kimble scheme [3]: reducing the intrinsic cavity loss by a factor of ten (which is feasible

with a more advanced semiconductor design with narrower gates, for instance), the

fidelity could be increased to Fpp = 92% by choosing κ/(2π) = 3.8 GHz (Appendix E.4).

In this scheme, one arm of a Λ-transition is coupled to the cavity. This concept can

be implemented with a QD spin. With respect to the present experiment, the missing

ingredient is the capability of initialising the spin and performing spin rotations in the

microcavity. We propose that this can be achieved by embedding the QD in a relatively

large lateral waveguide, launching light into the waveguide either via edge-excitation

or via etched gratings. With lateral excitation, the dark-field technique is no longer

necessary. Also, the cavity can be designed with imbalanced reflectivities such that

many more photons exit the top mirror than the bottom mirror. These two steps will
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allow the system efficiency to be much increased over the present experiment.

The device is a potentially excellent single-photon source. On the one hand, the

experiment establishes the value of electrical gates in the strong-coupling regime of

cavity-QED. These advantages, in particular control of charge and close-to-transform-

limited linewidths, are also important for a single-photon source operating in the weak-

coupling regime of cavity-QED. Incorporating gates is relatively straightforward here

but much more involved for micropillar and photonic-crystal cavity devices. On the

other hand, the efficiency is potentially very high. For a fixed g and γ, the photon

extraction efficiency via the cavity [31] can be maximised by designing the mirrors such

that the condition κ = 2g is satisfied. Taking the g from this experiment, this maximum

efficiency corresponds to Q = 3.7 · 104. In practice, this can achieved with the present

semiconductor mirror and a top mirror with reduced reflectivity. At this relatively

low Q, the residual absorption losses in the semiconductor are negligible and following

exciton creation, the photon extraction efficiency via the top mirror should be as high as

94%*. This concept can also be profitably combined with lateral excitation, an “atom

drive” [7, 101]. For instance, exploitation of the spin enables the efficient creation of

shaped-waveform single photons.

The microcavity can be simplified: a monolithic design could exploit strain tuning

of the QD rather than position-based tuning of the cavity. Also, the splitting of the

cavity mode (into two modes with linear, orthogonal polarisations) can be eliminated

by applying a bias across the semiconductor DBR [102]. Based on these considerations,

a compact, on-chip, high-C single photon-single atom interface is within reach.

*For a maximum g/2π = 4.4 GHz and minimum γ/2π = 0.28 GHz in this work and choosing the top
mirror reflectivity so that κ = 2g is fulfilled (which corresponds to C = 16), we find η = 94% according
to Eq. 1.8.
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Appendix A

Measurements on cavity-coupled QD3

In this chapter, the main measurements on cavity-coupled QD3 are presented. A

resonance-fluorescence scan is shown in Fig. A.1a. A line-cut reveals the maximum

measured coupling rate of g/2π = 4.4 GHz in this work. The FSS is only 5.75 GHz, such

that the X0
a-related polaritons overlap with a weakly coupled exciton transition (X0

b).

This prevents the application of the numerical model developed in Appendix D.

A strong beating with a period of T = 654 ps (frequency 1.53 GHz) is clearly visible at

photon blockade (Fig. A.1f), besides a minimum anti-bunching of g(2)(0) = 0.090±0.005

measured in this work. We attribute this beat frequency to ∆L + 1.31g = 1.53 GHz

(∆L = −4.21 GHz), the beating of the coherently scattered laser light at the X0
a-related

lower polariton with the emission from the weakly coupled transition X0
b at −1.31g

(black arrow in Fig. A.1d). We speculate that, for ∆C = 0, the additional resonance at

∆L = −1.31g due to X0
b weak coupling leads to additional beatings around 1.31g ± g,

∆L ± 1.31g and −∆L − 1.31g (Fig. A.1d).

As in Chapter 3, the measured oscillation period in Fig. A.1e corresponds exactly

to the vacuum Rabi frequency of 2g/2π = 8.8 GHz. Fig. A.1e,f confirm once more

the capability of this system: simply by sweeping the laser frequency by ∼ 1 GHz, the

g(2)(0)-value changes by more than three orders of magnitude.

Note that in Fig. A.1a, the “right” cavity mode reveals the polaritons with much less

clarity. A reason might be that a transverse mode is overlapping with this longitudinal

mode. Around these wavelengths (λ ∼ 920 nm) and this particular cavity length, overlap

of a higher order transverse mode with one of the longitudinal cavity modes has been

seen with different QDs.
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Appendix A. Measurements on cavity-coupled QD3
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Fig. A.1. Spectroscopy on cavity-coupled QD3. a, X0 at B = 0.00 T: RF scan revealing two

TEM00 cavity modes c1 and c2 (inclined lines) coupled to two X0 transitions with FSS of 5.75 GHz

(horizontal lines). Logarithmic color scale (0.01–7 Mcts/s). b, Line cut at resonance to “left” cavity

mode (as indicated by red arrow). The main peaks arise from strong coupling of X0
a to one cavity mode

revealing the maximum measured coupling rate of g/2π = 4.4 GHz in this work; the peak at ∆L = −1.31g

arises from weak coupling of X0
b to the same cavity mode. Red solid line: triple-Lorentzian fit. c, g(2)(0)

versus laser detuning for ∆C ≈ 0. d, FFT peak frequency of g(2)(τ) versus ∆L for ∆C ≈ 0. Additionally

to the beat frequencies (red solid lines, ∆C = 0) between the two polaritons and the Rayleigh-scattered

laser light, we speculate to observe other beat frequencies (blue solid lines, ∆C = 0) due to the overlap

with the weakly coupled transition. This statement is supported by the observed beating in f with a

period of T = 654 ps (frequency 1.53 GHz, black arrow in d), which corresponds exactly to ∆L + 1.31g

(∆L = −4.21 GHz). e (f), g(2)(τ) for ∆C ≈ 0 and ∆L ≈ −g/
√

2 (∆L ≈ −g) revealing the maximum

(minimum) photon (anti-)bunching of g(2)(0) = 225± 8 (g(2)(0) = 0.090± 0.005) measured in this work.

In c, e and f, the model developed in Appendix D is not applicable in this case due to the small FSS

< 2g and thus high overlap between the strongly (X0
a) and weakly (X0

b) coupled transitions.
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Appendix B

1D transfer matrix calculation of the

microcavity Q-factors

In this chapter, the relevant parameters used for most of theQ-factor calculations (via 1D

transfer matrix methods, for instance the “Essential Macleod” package) presented in this

work are listed. The following tables present the used materials, refractive indices n at

λ = 920 nm and physical layer thicknesses d for three different microcavities investigated

in this work: a dielectric top mirror (λC = 973.0 nm, same as described in Section 3.3 and

Fig. 4.7) paired with an nip-DBR (λC = 919.0 nm, Tab. B.1), an undoped semiconductor

DBR (λC = 956.4 nm, Tab. B.2) and a dielectric DBR with an SB centre shifted by 3 nm

(λC = 976.1 nm, Tab. B.3).

Extinction coefficients in different materials are introduced as follows: kSiO2 = 4 ·10−7

for SiO2 [70], kTa2O5 = 4.5 · 10−7 for Ta2O5 [70], kp++ = 5.2 · 10−4 for p++-GaAs,

kp+ = 1.9·10−4 for p+-GaAs and kn+ = 0.7·10−4 for n+-GaAs [62]. k = 4kTa2O5 is used in

the last grown Ta2O5 layer (close to vacuum-gap) of each dielectric DBR. An extinction

coefficient of k = αFKλ/(4π) due to a Franz-Keldysh absorption coefficient αFK can be

introduced in the capping layer. Surface roughness is introduced via “Scatter(l)”-layers

of thickness d = 2σ, where σ is the rms surface/interface roughness [79].

In analogy to the experiment, a Q-factor can be determined for a fixed “vacuum-gap”

layer thickness* by calculating a cavity transmittance spectrum. A Lorentzian fit is

used to determine the resonance frequency as well as the Q-factor of the transmitted

mode. The procedure is repeated for different vacuum-gaps, yielding aQ-factor spectrum

around the wavelengths of interest.

The resulting Q-factors are presented in Chapter 4 (Fig. 4.3, Fig. 4.6 and Fig. 4.7).

*The minimum vacuum-gap is 1.2µm due to the finite depth of the microcavity craters (Fig. C.1a).
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Appendix B. 1D transfer matrix calculation of the microcavity Q-factors

Layer Material n d  (nm) Layer Material n d  (nm) Layer Material n d  (nm)
Medium SiO2 1.45 61 GaAs 3.49 66.26 122 AlAs 2.92 79.65

1 Ta2O5 2.09 124.13 62 AlAs 2.92 80.76 123 GaAs 3.49 63.67
2 SiO2 1.46 175.47 63 GaAs 3.49 63.22 124 AlAs 2.92 79.17
3 Ta2O5 2.09 132.59 64 AlAs 2.92 79.16 125 GaAs 3.49 63.69
4 SiO2 1.46 178.68 65 GaAs 3.49 63.23 126 AlAs 2.92 79.21
5 Ta2O5 2.09 133.64 66 AlAs 2.92 79.17 127 GaAs 3.49 63.98
6 SiO2 1.46 184.76 67 GaAs 3.49 63.25 128 AlAs 2.92 80.76
7 Ta2O5 2.09 115.59 68 AlAs 2.92 79.17 129 GaAs 3.49 65.01
8 SiO2 1.46 172.34 69 GaAs 3.49 63.26 130 AlAs 2.92 80.76
9 Ta2O5 2.09 129.59 70 AlAs 2.92 80.06 131 GaAs 3.49 65.02

10 SiO2 1.46 164.08 71 GaAs 3.49 64.56 132 AlAs 2.92 80.76
11 Ta2O5 2.09 111.21 72 AlAs 2.92 80.76 133 GaAs 3.49 65.04
12 SiO2 1.46 154.75 73 GaAs 3.49 64.57 134 AlAs 2.92 80.76
13 Ta2O5 2.09 117.84 74 AlAs 2.92 80.76 135 GaAs 3.49 64.98
14 SiO2 1.46 168.51 75 GaAs 3.49 64.59 136 AlAs 2.92 79.82
15 Ta2O5 2.09 115.19 76 AlAs 2.92 79.84 137 GaAs 3.49 63.78
16 SiO2 1.46 174.29 77 GaAs 3.49 63.48 138 AlAs 2.92 79.17
17 Ta2O5 2.09 115.36 78 AlAs 2.92 79.17 139 GaAs 3.49 63.8
18 SiO2 1.46 170.25 79 GaAs 3.49 63.34 140 AlAs 2.92 79.17
19 Ta2O5 2.09 105.27 80 AlAs 2.92 79.17 141 GaAs 3.49 63.81
20 SiO2 1.46 170.29 81 GaAs 3.49 63.35 142 AlAs 2.92 79.17
21 Ta2O5 2.09 105.01 82 AlAs 2.92 79.18 143 GaAs 3.49 64.91
22 SiO2 1.46 166.26 83 GaAs 3.49 63.39 144 AlAs 2.92 80.76
23 Ta2O5 2.09 109.31 84 AlAs 2.92 79.2 145 GaAs 3.49 65.13
24 SiO2 1.46 169.05 85 GaAs 3.49 63.46 146 AlAs 2.92 80.76
25 Ta2O5 2.09 115.8 86 AlAs 2.92 79.79 147 GaAs 3.49 65.15
26 SiO2 1.46 162.8 87 GaAs 3.49 64.13 148 AlAs 2.92 80.76
27 Ta2O5 2.09 118.37 88 AlAs 2.92 80.16 149 GaAs 3.49 65.16
28 SiO2 1.46 177.77 89 GaAs 3.49 64.7 150 AlAs 2.92 80.25
29 Ta2O5 2.09 119.62 90 AlAs 2.92 80.18 151 GaAs 3.49 63.89
30 SiO2 1.46 159.75 91 GaAs 3.49 64.2 152 AlAs 2.92 79.17
31 Ta2O5 2.09 116.42 92 AlAs 2.92 79.98 153 GaAs 3.49 63.9
32 SiO2 1.46 175.72 93 GaAs 3.49 63.95 Substrate GaAs 3.51
33 Ta2O5 2.09 125.73 94 AlAs 2.92 79.77
34 SiO2 1.46 182.1 95 GaAs 3.49 63.74
35 Ta2O5 2.09 122.59 96 AlAs 2.92 79.43
36 Scatter(l) 0.5 97 GaAs 3.49 63.97
37 SiO2 1.46 168.45 98 AlAs 2.92 79.76
38 Ta2O5 2.09 128.11 99 GaAs 3.49 64.18
39 Scatter(l) 0.5 100 AlAs 2.92 79.99
40 SiO2 1.46 184.38 101 GaAs 3.49 64.47
41 Ta2O5 2.09 113.42 102 AlAs 2.92 80.52
42 Scatter(l) 0.5 103 GaAs 3.49 64.81
43 SiO2 1.46 175.89 104 AlAs 2.92 80.58
44 Ta2O5 2.09 132.57 105 GaAs 3.49 64.82
45 Scatter(l) 0.5 106 AlAs 2.92 80.75
46 SiO2 1.46 171.29 107 GaAs 3.49 64.84
47 Ta2O5 2.09 167.07 108 AlAs 2.92 80.76
48 Scatter(l) 0.5 109 GaAs 3.49 64.15
49 SiO2 1.46 170.41 110 AlAs 2.92 79.88
50 Vacuum-gap 1.00 x 111 GaAs 3.49 63.75
51 Al2O3 1.65 10 112 AlAs 2.92 79.54
52 GaAs 3.49 55.82 113 GaAs 3.49 63.97
53 GaAs (p++) 3.49 18.98 114 AlAs 2.92 80.05
54 GaAs (p+) 3.49 4.75 115 GaAs 3.49 64.9
55 GaAs 3.49 4.75 116 AlAs 2.92 80.76
56 AlGaAs 3.32 183.32 117 GaAs 3.49 64.91
57 GaAs 3.49 7.07 118 AlAs 2.92 80.76
58 GaAs (QDs) 3.49 1.07 119 GaAs 3.49 64.93
59 GaAs 3.49 28.91 120 AlAs 2.92 80.76
60 GaAs (n+) 3.49 38.94 121 GaAs 3.49 64.95

Total: 15,500.50     

Table B.1. Parameters used to simulate an nip-DBR microcavity. The tables show the used

materials, refractive indices n = n(920 nm) and physical layer thicknesses d for a dielectric top mirror

(λC = 973.0 nm) paired with an nip-DBR (λC = 919.0 nm).
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Appendix B. 1D transfer matrix calculation of the microcavity Q-factors

Layer Material n d  (nm) Layer Material n d  (nm)
Medium SiO2 1.45 61 GaAs 3.53 68.33

1 Ta2O5 2.09 124.13 62 AlAs 3.01 80.8
2 SiO2 1.46 175.47 63 GaAs 3.53 68.33
3 Ta2O5 2.09 132.59 64 AlAs 3.01 80.8
4 SiO2 1.46 178.68 65 GaAs 3.53 68.31
5 Ta2O5 2.09 133.64 66 AlAs 3.01 80.74
6 SiO2 1.46 184.76 67 GaAs 3.53 68.23
7 Ta2O5 2.09 115.59 68 AlAs 3.01 80.79
8 SiO2 1.46 172.34 69 GaAs 3.53 68.33
9 Ta2O5 2.09 129.59 70 AlAs 3.01 80.8

10 SiO2 1.46 164.08 71 GaAs 3.53 68.33
11 Ta2O5 2.09 111.21 72 AlAs 3.01 80.8
12 SiO2 1.46 154.75 73 GaAs 3.53 68.33
13 Ta2O5 2.09 117.84 74 AlAs 3.01 80.8
14 SiO2 1.46 168.51 75 GaAs 3.53 68.33
15 Ta2O5 2.09 115.19 76 AlAs 3.01 80.8
16 SiO2 1.46 174.29 77 GaAs 3.53 68.33
17 Ta2O5 2.09 115.36 78 AlAs 3.01 80.8
18 SiO2 1.46 170.25 79 GaAs 3.53 68.33
19 Ta2O5 2.09 105.27 80 AlAs 3.01 80.8
20 SiO2 1.46 170.29 81 GaAs 3.53 68.33
21 Ta2O5 2.09 105.01 82 AlAs 3.01 80.8
22 SiO2 1.46 166.26 83 GaAs 3.53 68.33
23 Ta2O5 2.09 109.31 84 AlAs 3.01 80.8
24 SiO2 1.46 169.05 85 GaAs 3.53 68.26
25 Ta2O5 2.09 115.8 86 AlAs 3.01 80.5
26 SiO2 1.46 162.8 87 GaAs 3.53 66.97
27 Ta2O5 2.09 118.37 88 AlAs 3.01 79.2
28 SiO2 1.46 177.77 89 GaAs 3.53 66.97
29 Ta2O5 2.09 119.62 90 AlAs 3.01 79.2
30 SiO2 1.46 159.75 91 GaAs 3.53 66.97
31 Ta2O5 2.09 116.42 92 AlAs 3.01 79.2
32 SiO2 1.46 175.72 93 GaAs 3.53 68.25
33 Ta2O5 2.09 125.73 94 AlAs 3.01 79.78
34 SiO2 1.46 182.1 95 GaAs 3.53 68.32
35 Ta2O5 2.09 122.59 96 AlAs 3.01 79.22
36 Scatter(l) 0.5 97 GaAs 3.53 67
37 SiO2 1.46 168.45 98 AlAs 3.01 79.22
38 Ta2O5 2.09 128.11 99 GaAs 3.53 66.98
39 Scatter(l) 0.5 100 AlAs 3.01 79.21
40 SiO2 1.46 184.38 101 GaAs 3.53 66.98
41 Ta2O5 2.09 113.42 102 AlAs 3.01 80.8
42 Scatter(l) 0.5 103 GaAs 3.53 66.98
43 SiO2 1.46 175.89 104 AlAs 3.01 79.2
44 Ta2O5 2.09 132.57 105 GaAs 3.53 66.97
45 Scatter(l) 0.5 106 AlAs 3.01 79.2
46 SiO2 1.46 171.29 107 GaAs 3.53 66.97
47 Ta2O5 2.09 167.07 108 AlAs 3.01 79.2
48 Scatter(l) 0.5 109 GaAs 3.53 66.97
49 SiO2 1.46 170.41 110 AlAs 3.01 79.2
50 Vacuum-gap 1.00 x 111 GaAs 3.53 66.97
51 Scatter(l) 0 112 AlAs 3.01 79.2
52 GaAs 3.51 10 113 GaAs 3.53 66.97
53 GaAs 3.53 123.42 114 AlAs 3.01 79.2
54 GaAs (QDs) 3.53 1.07 115 GaAs 3.53 67.28
55 GaAs 3.53 133.42 116 AlAs 3.01 80.8
56 AlAs 3.01 79.2 117 GaAs 3.53 68.33
57 GaAs 3.53 66.98 118 AlAs 3.01 80.8
58 AlAs 3.01 80.8 119 GaAs 3.53 68.33
59 GaAs 3.53 68.33 120 AlAs 3.01 80.8
60 AlAs 3.01 80.8 Substrate GaAs 3.51

Total: 13,631.54     

Table B.2. Parameters used to simulate an undoped semiconductor microcavity. The tables

show the used materials, refractive indices n = n(920 nm) and physical layer thicknesses d for a dielectric

top mirror (λC = 973.0 nm) paired with an undoped semiconductor DBR (λC = 956.4 nm).
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Appendix B. 1D transfer matrix calculation of the microcavity Q-factors

Layer Material n d  (nm) Layer Material n d  (nm)
Medium SiO2 1.45 61 Scatter(l) 0.5

1 Ta2O5 2.09 124.13 62 Ta2O5 2.09 128.51
2 SiO2 1.46 175.47 63 SiO2 1.46 168.98
3 Ta2O5 2.09 132.59 64 Scatter(l) 0.5
4 SiO2 1.46 178.68 65 Ta2O5 2.09 122.99
5 Ta2O5 2.09 133.64 66 SiO2 1.46 182.69
6 SiO2 1.46 184.76 67 Ta2O5 2.09 126.13
7 Ta2O5 2.09 115.59 68 SiO2 1.46 176.29
8 SiO2 1.46 172.34 69 Ta2O5 2.09 116.8
9 Ta2O5 2.09 129.59 70 SiO2 1.46 160.26

10 SiO2 1.46 164.08 71 Ta2O5 2.09 120
11 Ta2O5 2.09 111.21 72 SiO2 1.46 178.34
12 SiO2 1.46 154.75 73 Ta2O5 2.09 118.74
13 Ta2O5 2.09 117.84 74 SiO2 1.46 163.32
14 SiO2 1.46 168.51 75 Ta2O5 2.09 116.16
15 Ta2O5 2.09 115.19 76 SiO2 1.46 169.58
16 SiO2 1.46 174.29 77 Ta2O5 2.09 109.66
17 Ta2O5 2.09 115.36 78 SiO2 1.46 166.79
18 SiO2 1.46 170.25 79 Ta2O5 2.09 105.34
19 Ta2O5 2.09 105.27 80 SiO2 1.46 170.83
20 SiO2 1.46 170.29 81 Ta2O5 2.09 105.6
21 Ta2O5 2.09 105.01 82 SiO2 1.46 170.79
22 SiO2 1.46 166.26 83 Ta2O5 2.09 115.73
23 Ta2O5 2.09 109.31 84 SiO2 1.46 174.84
24 SiO2 1.46 169.05 85 Ta2O5 2.09 115.55
25 Ta2O5 2.09 115.8 86 SiO2 1.46 169.05
26 SiO2 1.46 162.8 87 Ta2O5 2.09 118.22
27 Ta2O5 2.09 118.37 88 SiO2 1.46 155.24
28 SiO2 1.46 177.77 89 Ta2O5 2.09 111.57
29 Ta2O5 2.09 119.62 90 SiO2 1.46 164.6
30 SiO2 1.46 159.75 91 Ta2O5 2.09 130
31 Ta2O5 2.09 116.42 92 SiO2 1.46 172.89
32 SiO2 1.46 175.72 93 Ta2O5 2.09 115.96
33 Ta2O5 2.09 125.73 94 SiO2 1.46 185.35
34 SiO2 1.46 182.1 95 Ta2O5 2.09 134.07
35 Ta2O5 2.09 122.59 96 SiO2 1.46 179.25
36 Scatter(l) 0.5 97 Ta2O5 2.09 133.02
37 SiO2 1.46 168.45 98 SiO2 1.46 176.02
38 Ta2O5 2.09 128.11 99 Ta2O5 2.09 124.53
39 Scatter(l) 0.5 Substrate SiO2 1.45
40 SiO2 1.46 184.38
41 Ta2O5 2.09 113.42
42 Scatter(l) 0.5
43 SiO2 1.46 175.89
44 Ta2O5 2.09 132.57
45 Scatter(l) 0.5
46 SiO2 1.46 171.29
47 Ta2O5 2.09 167.07
48 Scatter(l) 0.5
49 SiO2 1.46 170.41
50 Vacuum-gap 1.00 x
51 SiO2 1.46 170.95
52 Scatter(l) 0.5
53 Ta2O5 2.09 167.6
54 SiO2 1.46 171.83
55 Scatter(l) 0.5
56 Ta2O5 2.09 132.98
57 SiO2 1.46 176.45
58 Scatter(l) 0.5
59 Ta2O5 2.09 113.78
60 SiO2 1.46 184.97

Total: 14,615.60     

Table B.3. Parameters used to simulate a purely dielectric microcavity. The tables show

the used materials, refractive indices n = n(920 nm) and physical layer thicknesses d for a dielectric top

mirror (λC = 973.0 nm) paired with a dielectric DBR with a SB centre shifted by 3 nm (λC = 976.1 nm).
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Appendix C

FEM simulation of the microcavity

(2D-axisymmetric)

Using a finite element method (FEM*), the complex eigenfrequency ω of an electromag-

netic wave confined by the microcavity is calculated. The motivation is to compute

cavity properties that depend most obviously on its geometry: the vacuum-electric field

amplitude at the location of the quantum dots as well as the cavity’s effective mode

volume. Note that the calculated Q-factors presented in this thesis are not computed

via the FEM method, since 1D transfer matrix methods (Appendix B) have shown to

be much less time-consuming and agree well with the measured Q-factors.

C.1 Geometry and meshing

The geometry shown in Fig. 2.1a is based on the mirror profile (measured via scanning

confocal microscopy) of the crater which was most often used for the strong-coupling

experiments – the crater which revealed a Q-factor up to 2.0 · 106 in the dielectric-

dielectric case (Fig. 4.6a). A “modified ellipsoid” is fitted to the measured profile, simi-

larly to Fig. 5.3, yielding a radius of curvature of R = (10.46±0.14)µm, ε = −4.841 and

δ = −2.587. Together with the designed cavity layers refined according to Section 4.4,

a geometry as depicted in Fig. C.1 is obtained. The symmetry axis corresponds to the

optical axis of the cavity.

A perfectly matched layer (PML) around the simulation area accounts for an open

boundary – it prevents electromagnetic waves reaching the end of the simulation area

to be reflected [103]. A PML has typically a thickness d on the order of the wavelength

of the computed electromagnetic wave. Here, d = λC is chosen (λC being the stopband

centre of the semiconductor DBR). The PML is truncated with an outer boundary,

*COMSOL Multiphysics, “Wave Optics Module”, “Electromagnetic Waves, Frequency Domain in-
terface”
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Appendix C. FEM simulation of the microcavity (2D-axisymmetric)
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Fig. C.1. Geometrical model of the microcavity. a, Measured height profile of the coated mirror

template used for the strong-coupling experiments revealing a radius of curvature R = (10.46±0.14)µm

and crater depth D = 1.24µm. b, Geometry used for the 2D-axisymmetric FEM method (COMSOL

Multiphysics). The simulation width is chosen to be in the order of a few beam waists of the near-

Gaussian cavity mode. A perfectly matched layer (PML) is used to prevent back-reflections from the

simulation boundaries (perfect electric conductor).

typically a conducting surface [104]. A 1µm thick layer is used to simulate the bottom

mirror and top mirror substrates.

The PML is meshed as a “mapped mesh” in order to prevent reflections in the PML

due to numerical discretization and the rest of the geometry as a “free triangular mesh”.

The maximum (minimum) element size is defined as λC
m1n

( λC
m2n

), where n is the refractive

index of each layer and m1, m2 are integers to be chosen.

The Q-factor of a computed cavity mode is derived as Q = Re(ω)
2 Im(ω) . It is found that the

calculated Q-factors of the cavity’s longitudinal modes converge for a mesh parameter

of m > 12. For the results presented in this work, a mesh parameter varying between

m1 = 28 and m2 = 35 is used due to the fact that there are nanometer-sized layer

thicknesses involved in the geometry.
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Appendix C. FEM simulation of the microcavity (2D-axisymmetric)

C.2 Vacuum electric field amplitude

The vacuum electric field amplitude at the location of the quantum dot is derived by

normalizing the total electromagnetic energy of the simulated mode by the vacuum

energy of the electromagnetic field, ~ω/2. The result is shown in Fig. 2.1a,b for an

experimental vacuum-gap of 1885 nm. A value of Evac = 3.0 · 104 V/m at the quantum-

dot location is calculated. Together with Eq. 1.3 and a typical dipole moment of an

InAs quantum dot of 0.6 nm×e [21] (e being the elementary charge), this yields g/2π =

4.4 GHz, exactly as measured with QD3 (Fig. 2.2h and Appendix A).

C.3 Effective mode volume

The microcavity’s effective mode volume V is derived by dividing the total electromag-

netic energy stored in the simulated mode by the electromagnetic energy density at the

location of the quantum dot. With this method and cavity length according to the ex-

periment (Fig. 2.1a), a mode volume of V = 1.1µm3 = 1.4λ3
0 ≈ 59(λ/n)3 (λ0 being the

free-space wavelength) is obtained, a number which is consistent with Eq. 1.4 using the

value for g/2π = 4.4 GHz from above.

C.4 The case of reduced mode volume

With the results presented in Chapter 5, a simultaneous reduction of radius and depth

of the curved mirror templates is realistic. Using the parameters R = 5.22µm, ε =

−1.989, δ = −2.587 and a vacuum-gap of 733 nm, a mode volume of V = 0.49µm3 =

0.63λ3
0 ≈ 26(λ/n)3 and a coupling rate of g/2π = 6.6 GHz is computed. Together with

optimum parameters (κ, γ)/2π ≈ (0.61, 0.28) GHz achieved in this work (Fig. 2.2h), this

corresponds to a calculated cooperativity of C = 510.
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Appendix D

Theory: laser driven atom-cavity system

Partially adapted from:

Daniel Najer, Immo Söllner, Pavel Sekatski, Vincent Dolique, Matthias C. Löbl, Daniel

Riedel, Rüdiger Schott, Sebastian Starosielec, Sascha R. Valentin, Andreas D. Wieck,

Nicolas Sangouard, Arne Ludwig, and Richard J. Warburton,

“A gated quantum dot far in the strong-coupling regime of cavity-QED at optical

frequencies” (Supplementary Information),

arXiv:1812.08662 (2018).

D.1 Hamiltonians

Firstly, the free Hamiltonian of the atom-cavity system is stated. The quantum dot

(QD) is modelled as a two-level system with energy levels |g〉 and |e〉 separated by an

energy ω0 (here and in the rest of the section, ~ = 1 is used), i.e.

H0 = ωe |e〉〈e|+ ωg |g〉〈g| . (D.1)

ωe = ω0 and ωg = 0 is used to simplify the notations. For the cavity, a single mode with

associated creation and annihilation operators a† and a is considered. If the frequency

of the cavity field is resonant with the frequency separation of the two-level atom, the

corresponding Hamiltonian reads

HC = ω0a
†a. (D.2)

When the cavity frequency is detuned with respect to the atomic energy, ω0 has to be

replaced by ωC. The interaction between the QD and the cavity mode is described by

g(|e〉 〈g|+ |g〉 〈e|)(a†+a), where g is the coupling constant between the QD and the bare

cavity mode. In the limit g � ω0, this coupling Hamiltonian is well approximated by

72



Appendix D. Theory: laser driven atom-cavity system

the Jaynes-Cummings Hamiltonian

Hint = g
(
|g〉 〈e| a† + |e〉 〈g| a

)
. (D.3)

The free Hamiltonian of the atom-cavity system is thus given by

Hfree = H0 +HC +Hint. (D.4)

D.2 Eigenstates and eigenvectors

To simplify the problem, it is convenient to choose a basis where the free Hamiltonian

is diagonal. This basis can be easily found by noticing that Hfree is block diagonal

with blocks of size two spanned by |g, n〉 and |e, n− 1〉, and a single block of size one

spanned by |g, 0〉 with eigenvalue zero. |n〉 here denotes the Fock state for the light field

with n excitations. Hence, using the basis {|g, n〉 , |e, n− 1〉} for each block, the free

Hamiltonian can be written as

Hfree =

 0 ⊕∞
n=1

[
nω0

√
ng

√
ng nω0

]  , (D.5)

which can be easily diagonalised. The eigenstates of Hfree are given by

|n±〉 =
|g, n〉 ± |e, n− 1〉√

2
, (D.6)

with energies

E±n = nω0 ±
√
ng, (D.7)

for n ≥ 1 and |0〉 = |g, 0〉 with E0 = 0. As a result,

Hfree =
∑
n,±

E±n |n±〉〈n±| . (D.8)

One notes that in the case where the cavity mode frequency ωC is not exactly equal to

the atomic frequency ω0 the free Hamiltonian reads

Hfree =

 0 ⊕∞
n=1

[
nωC

√
ng

√
ng nωC + (ω0 − ωC)

]  , (D.9)
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which affects both the spectrum and the eigenbasis, as is seen later.

D.3 Master equation

Consider the case where the atom-cavity system is driven by a laser through

HL(t) = Ω(t)a+ Ω?(t)a†, (D.10)

where Ω(t) is proportional to the complex light field amplitude incident on one of the

cavity mirrors at time t. The cavity photons can leak out of the cavity via a beam-

splitter type interaction. This leads to a decay channel entering in the master equation

via a Lindblad operator Lκ =
√
κa. Similarly, the spontaneous decay of the level |e〉

to |g〉 appears in the master equation via Lγ =
√
γ |g〉 〈e|. The evolution of this driven

system is thus given by the following master equation

ρ̇ = −i[Htot, ρ] +
∑

L=Lκ,Lγ

(
LρL† − 1

2
L†Lρ− 1

2
ρL†L

)
(D.11)

with Htot = Hfree +HL(t).

D.4 Numerical solutions

Analytical solutions of the master equation can be found by focusing on the relevant

atom-cavity energy states and discarding the remaining states. The truncation of the

Hilbert space in the analytical models is less severe in a fully numerical model. The

Quantum Toolbox in Python (QuTiP)[105] is used and the Hilbert space is truncated in

order to model the experimental results. Consider the case where the QD-cavity system

is driven by a single monochromatic laser with frequency ωL. Eq. (D.10) becomes

HL(t) = ΩeiωLta+ Ωe−iωLta†. (D.12)

As Ω is time independent, the explicit time dependence of the total Hamiltonian can be

eliminated by considering the frame rotating at ωL:

Hrf =Ω
(
a+ a†

)
+ (∆C −∆L)a†a−∆L |e〉 〈e| (D.13)

+ g
(
|g〉 〈e| a† + |e〉 〈g| a

)
.
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The laser detuning relative to the emitter is denoted by ∆L = ωL − ω0, while the cavity

detuning is denoted by ∆C = ωC−ω0. To simulate the experimental results the procedure

outlined in Refs. [7, 106] is followed. First, the two collapse operators which determine

the decay to the environment, i.e. out of the Jaynes-Cummings system, are defined.

These are the two Lindblad operators Lκ and Lγ for the decay process out of the cavity

mode and the decay of the QD into leaky modes, respectively. Next, exploiting the

quantum regression theorem, one can solve for the normalized second order correlation

function,

g(2)(τ) =
〈a†a†(τ)a(τ)a〉
〈a†a〉2 =

Tr(a†aeLτ [aρ∗a
†])

(Tr(a†aρ∗))
2 , (D.14)

where L is the Lindblad superoperator and ρ∗ is the steady-state solution of the master

equation.

For the experiments at low power (Figs. 2.1–2.3, 2.4b-g, 3.3a–c, 3.3e–j, 3.5a–b, 3.6)

the Hilbert space is truncated at n = 15. However, the zeroth, first and second rungs

(i.e. number of excitations n = 0, 1, 2) are sufficient to explain the results of Fig. 2.3 and

Fig. 2.4b-g. The higher rungs result in changes to g(2)(τ) which are smaller than the error

bars of the experiment. However, on going to higher power, more rungs are necessary. In

the power dependence (Fig. 2.4a and Fig. 3.3l), the simulations converge only for n ≥ 30.

D.4.1 The role of laser background

In the experiments, even a small amount of mixing of the signal from the QD-cavity

system with a laser background can play an important role. This can be included in

the model via a simple beam-splitter. The creation and annihilation operators for the

input and output modes are denoted a/b and c/d, respectively. The transmission and

reflection coefficients are given by t = t′ =
√
η and r = r′ = i

√
1− η.(

ĉ†

d̂†

)
= Ûbs

(
â†

b̂†

)
, (D.15)

where

Ûbs =

(
t′ r

r′ t

)
=

( √
η i

√
1− η

i
√

1− η √
η

)
. (D.16)

The creation and annihilation operators of output mode c are given by
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Fig. D.1. Effects of laser background, pure dephasing and inhomogeneous broadening of

the exciton on g(2)(τ) and its FFT. All dark red solid lines correspond to the model in Fig. 4b

(∆L = −g/
√

2,∆C = 0) of the main paper which ignores pure dephasing and inhomogeneous broadening

of the exciton. a,b, Same model but with different signal-to-background ratios (SBRs). The laser

background mainly reduces the amplitude of the vacuum Rabi-oscillations but, in addition, increases

the visibility of the beatings with the coherent laser field in g(2)(τ) (black arrows). c,d, Same model

including different pure dephasing rates γpd while fixing the spectroscopy-linewidth, γ = γR + 2γpd and

laser background (γR is the radiative decay rate). Pure dephasing washes out all the oscillations in

g(2)(τ) in a similar way. e,f, Same model with γpd = 0 including different values of inhomogeneous

broadening, γI: γ = γR + γI. Inhomogeneous broadening generally affects the g(2)(τ) less than laser

background and pure dephasing.

ĉ† =
√
η â† + i

√
1− η b̂†, (D.17)

ĉ =
√
η â− i

√
1− η b̂, (D.18)

and similarly for the output mode d. Input mode b, which is introduced to model the

laser background, is in a coherent state with an average photon number, |α|2.

Experimentally, it is straightforward to determine what percentage of the observed

count rate is due to the laser background. By choosing |α|2 to be the photon number

expectation value when the system is driven on resonance (∆L = g), the mixing parame-
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ter 1− η determines what percentage of counts comes from the laser background and its

inverse value corresponds to the signal-to-background ratio (SBR). It should be noted

that this is a good way of including the background in the low excitation regime where

the relationship between incident power and count rate is constant such that η remains

constant.

In order to model background counts (which are proportional to the incoming laser

power) for the entire power range (e.g. for calculations in Figs. 2.4a, 3.3l and 3.5c–e),

a fixed η = 0.999 and a second beam-splitter before input mode b with transmission

t2 = t′2 =
√
η2 is used. α2 =

√
1000Pη2 is chosen, where P is the monitored laser power

in the excitation arm of the microscope.

Laser background affects g(2)(τ) (and its FFT) mainly in two ways. First, it reduces

the photon bunching around g(2)(0) (Fig. 2.4e and Fig. D.1a). Secondly, it washes out

all vacuum Rabi-oscillations (6.5 GHz in Fig. D.1b) but, relative to that, increases the

“laser” beatings arising from the mixing of polariton photons with Rayleigh-scattered

laser photons (5.6 GHz and 0.8 GHz in Fig. D.1b).

D.4.2 The role of pure dephasing

The excited atom may undergo a dephasing process in addition to its decay. We consider

this possibility. We introduce pure dephasing of the exciton [30, 107] at rate γpd via an

additional Lindblad operator Lγpd
=
√
γpd |e〉 〈e| in the master equation (D.11). We

find that the oscillations in g(2)(τ) are sensitive to this process. Pure dephasing of the

exciton washes out all vacuum Rabi-oscillations in g(2)(τ) (the peak at 6.5 GHz in the

Fourier transform of Fig. D.1d). Likewise, pure dephasing of the exciton decreases the

amplitude of the beatings with the coherent laser field (features at 5.6 GHz and 0.8 GHz

in Fig. D.1d).

The laser background also washes out the vacuum Rabi-oscillations (Fig. D.1a). How-

ever, the laser background increases the visibility of the beatings with the coherent laser

field. This difference between pure dephasing of the exciton and the laser background

allows the two mechanisms to be distinguished from each other. Including γpd as another

fitting parameter to the experimental data in Fig. 2.3 and Fig. 2.4b of the main paper

yields γpd = (0.034 ± 0.002) GHz and γpd = (0.022 ± 0.003) GHz, respectively, where

the errors refer to the random errors generated by the fit. Including pure dephasing of

the exciton to the model improves slightly the fidelity of the fit. The fitted γpd-values

are less than the radiative decay rate and much less than the cavity decay rate. The

conclusion is that pure dephasing of the exciton makes at most a small contribution to
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the overall dephasing rate of the system.

D.4.3 The role of inhomogeneous broadening and the transform limit

According to previous experiments [65], the radiative decay time of X0 in the wavelength

range of the QDs presented in the paper (919–933 nm) is on average 530 ps with QD-to-

QD fluctuations [65] of±80 ps. This corresponds to a transform-limited optical-linewidth

of (300± 50) MHz. The measured X0 linewidths of 280–290 MHz lie exactly within this

range. This demonstrates that the linewidths are close to the transform-limit.

Exciton linewidths are determined by rather slow spectroscopy experiments: they are

susceptible to an inhomogeneous broadening, here a spectral fluctuation of the emitter

frequency on timescales large with respect to radiative decay but small with respect

to experimental integration times. The oscillations in g(2)(τ) (Fig. 2.3) are sensitive to

exciton dephasing (“pure dephasing” of the emitter, Fig. D.1c,d). We find that these

oscillations are very weakly influenced by an inhomogeneous broadening (Fig. D.1e,f).

(To account for an inhomogeneous broadening, the calculated g(2)(τ, δQD) is convoluted

with a (Lorentzian) probability distribution P (δQD, γI). δQD is the QD detuning with

respect to its time-averaged value.) On the one hand, this result strengthens the result on

γpd from Appendix D.4.2. On the other hand, this result makes it difficult to determine

γI, the contribution to γ from an inhomogeneous broadening. Likewise, the photon

blockade experiment (Fig. 2.4c) is also insensitive to an inhomogeneous broadening.
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Appendix E

Theory: photon-photon gate fidelity

A photon-photon gate as proposed by Duan and Kimble [3] is considered here. The basic

idea is to use single-photon polarisations as photonic qubits for quantum computation [1,

2]. Using photonic qubits offers the advantage of scalability – the number of qubits can

easily be scaled up by the generation of many single-photon pulses [3].

Photons do not interact with each other. This is where the strongly coupled atom-

cavity system* comes into play: it acts as mediator between two photonic qubits by

providing controlled gate operations between them [3]. A measure for how well these

gate operations can be performed is the (gate) fidelity.

One crucial component for these operations is an atom-photon gate that performs a

quantum controlled phase-flip (CPF) on a combined atom-photon state [109]: depending

on the state of the atom and input photon, the phase of the combined atom-photon state

is flipped or not. This depends on the cooperativity as the reflection off a strongly coupled

atom-cavity system depends on the cooperativity [4], as is seen in the following. The

aim of this chapter is to clarify the dependence of the gate fidelity on the cooperativity

for an atom-photon gate and ultimately, a photon-photon gate.

E.1 Duan-Kimble scheme for an atom-photon gate

The scheme of Duan and Kimble [3] for an atom-photon gate (and ultimately, a photon-

photon gate) is depicted in Fig. E.1 for the case of pure input states (for clarity). A

single photon represents the input. A beam-splitter transmits a horizontally-polarised

photon in (pure) state |H〉 while a photon with a vertical polarisation |V 〉 is reflected

undergoing a phase-shift of π. The transmitted part interacts with a resonant cavity.

*Note that strong coupling is a sufficient but not necessary condition to realise an atom-photon or
photon-photon gate. A high cooperativity is the important ingredient – no matter if the atom-cavity
system is strongly or weakly coupled [39, 108]. However, with the current microcavity parameters (g, κ, γ)
presented in this work, a high cooperativity is only possible with strong coupling.
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The two mirrors in the cavity have imbalanced reflectivities R, so that the decay rate

through the left mirror (corresponding to the“top” mirror in our experiment) is given

by κ. A three-level atom is placed inside the cavity, the cavity field being resonant with

the |1〉 ↔ |e〉 transition. The line of the excited state is considered to have a Lorentzian

lineshape γ
2π

1
ω2+(γ/2)2 given by a full-width-at-half-maximum of γ.

First, consider the case where the atom is initially in the (pure) state |0〉 (Fig. E.1a).

The cavity field does not see the atom and since a photon in state |H〉 is resonant with

the bare cavity, it will have a longer path than a photon |V 〉 (while undergoing a phase-

shift of 2π). Due to the difference of π in acquired phase by the two photons |H〉 and

|V 〉 upon reflection, this translates into the following phase term

|0〉|V 〉 → |0〉|V 〉,
|0〉|H〉 → eiπ|0〉|H〉.

(E.1a)

(E.1b)

Now consider the case where the atom is initially in (pure) state |1〉 (Fig. E.1b). Since the

atom-field are potentially strongly coupled, the relevant energies are the atomic energies

dressed by the cavity field. The first two energies are given by the cavity frequency

shifted by the atom–single-photon coupling rate ±g. Hence, a photon in (pure) state

|H〉 at the cavity frequency is prevented from entering the cavity by strong coupling –

it is directly reflected with probability amplitude (see for example Ref. [4])

2C − 1

2C + 1
, (E.2)

where C is the cooperativity. For large enough cooperativity, the light is completely

reflected such that

|1〉|V 〉 → |1〉|V 〉,
|1〉|H〉 → |1〉|H〉.

(E.3a)

(E.3b)

Taking the two polarization modes and the two atomic ground states as qubit states, it

is clear that this protocol operates as a CPF atom-photon gate between the atom and

the single-photon pulse: the phase of the mutual atom-photon state is flipped depending

on the mutual atom-photon state. Note that in the case where the horizontal light is

not reflected, which-path information is made available e.g. by absorption followed by

spontaneous emission.
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Fig. E.1. Setup for implementing an atom-photon gate (controlled phase-flip) from a

strongly coupled atom-cavity system [3]. A single photon is sent into a polarising beam-splitter

(PBS). The PBS reflects vertically polarised photons |V 〉 while transmitting horizontally polarised ones,

|H〉. a, For an atom in pure state |0〉, a photon in pure state |H〉 resonant with the cavity will undergo

several round-trips in the cavity picking up a phase of 2π. b, For an atom in pure state |1〉, the same

photon is directly reflected from the atom-cavity system (with a probability related to the cooperativity

C only) ungergoing a phase-shift of π, similarly to a V -polarised reflected from the single mirror (inde-

pendent on the state of the atom). The composition of those sub-processes a and b results in a quantum

controlled phase-flip (CPF) gate between the atom an the photon: the phase of the mutual atom-photon

state is flipped if and only if the atom-photon is in the state |0〉 |H〉.

E.2 Atom-photon gate fidelity

To quantify the imperfection on the fidelity (the Uhlmann-Jozsa fidelity*) as a func-

tion of C, the two Kraus operators in the basis {|0, H〉, |0, V 〉, |1, H〉, |1, V 〉, |1, x〉} are

considered, where x stands for a spontaneously emitted photon:

K0 =


eiπ 0 0 0 0

0 1 0 0 0

0 0 2C−1
2C+1 0 0

0 0 0 1 0

0 0 0 0 1

 (E.4)

*The Uhlmann-Jozsa fidelity between two generic quantum states ρ and σ is defined as F (ρ, σ) =(
Tr
√√

ρσ
√
ρ
)2

[110].
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and

K1 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0
√

1− (2C−1)2

(2C+1)2 0 0


. (E.5)

For any input state ρ, the previously described operation gives

ρ̄ = K0ρK
†
0 +K1ρK

†
1. (E.6)

The fidelity for the Bell states {ψ−, ψ+, φ−, φ+} acting as input states is

Fψ− = Fψ+ =
1

4

(
1 +

2C − 1

2C + 1

)2

=

(
2C

1 + 2C

)2

, (E.7)

Fφ− = Fφ+ = 1, (E.8)

which yields a mean fidelity

F ap(C) =
1

4
(Fψ− + Fψ+ + Fφ− + Fφ+) (E.9)

=
1

2

[
1 +

(
2C

1 + 2C

)2
]

(E.10)

≈ 1− 1

2C
. (E.11)

Note that the mean fidelity gives the same result to first order in 1/C as the Choi

fidelity [111]. For C = 5, Fap ≈ 90% while for C = 150, Fap ≈ 99.7%. Note that these

results come from the first-order expansion in 1/C which is not very accurate for small

C.

E.3 Extension to photon-photon gate

A photon-photon (CPF) gate between two single-photon pulses j and k can described

by the unitary operator UCPF
jk = eiπ|H〉j〈H|⊗|H〉k〈H| that flips the phase of the input state

(a mutual state of j and k) if and only if both photonic qubits are H-polarised. Duan

and Kimble showed that this can be realised by applying an atom-photon gate on both

of photonic qubits while performing some single-bit rotations (Ra(θ)
*) on the atom [3]:

*Ra(θ) corresponds to a single-bit rotation on the atom transforming as Ra(θ) |0〉 = cos θ/2 |0〉 +
sin θ/2 |1〉 and Ra(θ) |1〉 = − sin θ/2 |0〉+ cos θ/2 |1〉.
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First, a pulse j is reflected from the cavity (atom-photon gate UCPF
aj = eiπ|0〉a〈0|⊗|H〉j〈H|).

Secondly, a π/2 laser pulse is applied on the atom, Ra(π/2). Thirdly, a pulse k is reflected

from the cavity (atom-photon gate UCPF
ak ). Fourthly, a −π/2 laser pulse is applied on

the atom, Ra(−π/2). And finally, the pulse j is again reflected from the cavity (atom-

photon gate UCPF
aj ) in order to restore the initial state of the atom, i.e. to disentangle

the state of the atom from the state of the two photons [108]. All in all, this corresponds

to the operator identity [3]

UCPF
jk |ψjk〉 ⊗ |Φai〉 = UCPF

aj Ra
(
−π

2

)
UCPF
ak Ra

(
π
2

)
UCPF
aj |ψjk〉 ⊗ |Φai〉 , (E.12)

where ψjk corresponds to the state of the photonic qubits (j and k) and |Φai〉 = |0〉+|1〉√
2

is

the initial state of the atom, i.e. an equal superposition of the atom’s two ground states.

Assuming that the atomic rotations are carried out perfectly but the cooperativity

is the limiting factor for the CPF gate, the Choi fidelity [111] of such a photon-photon

process is

Fpp(C) =

[
4C2 + 1

][
4C
(

2C + 1
)(

8C(C + 1) + 1
)

+ 1
]

4 (2C + 1)6

≈ 1− 3

2C
.

(E.13)

(E.14)

For C = 5, Fpp ≈ 70% while for C = 150, Fpp ≈ 99%.

E.4 Intrinsic cavity loss

So far we assumed that whenever a photon leaks from the cavity, it is emitted in the

right mode through the left mirror, i.e. κ = κtop. In practice, the cavity also has some

intrinsic loss characterized by the decay rate κi. Hence, the total cavity decay rate has

two contributions

κ = κtop + κi. (E.15)

In our setup, κtop is related to the reflectivity of the top mirror, and the intrinsic loss

rate κi is dominated by the loss through the bottom mirror. We introduce

ηout =
κtop

κtop + κi
(E.16)

which characterises the probability of photon collection from the cavity. Note that ηout

can be adjusted in our setup by varying the reflectivity of the top mirror.

A non-unity ηout < 1 does not affect the action of the atom-photon gate on a vertically
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polarised photon since the latter does not interact with the cavity. However, it does play

an important role for a horizontally polarised photon. As shown in Ref. [112], the

reflection coefficients become

|0〉|H〉 → (2ηout − 1)eiπ|0〉|H〉, (E.17)

|1〉|H〉 →
(

1− 2ηout

1 + 2C

)
|1〉|H〉 (E.18)

when taking ηout into account. This translates into Kraus operators of the form

K0 =



(2ηout − 1)eiπ 0 0 0 0

0 1 0 0 0

0 0
(

1− 2ηout

1+2C

)
0 0

0 0 0 1 0

0 0 0 0 1


(E.19)

and

K1 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0√
1− (2ηout − 1)2 0

√
1−

(
1− 2ηout

1+2C

)2
0 0


. (E.20)

The resulting Choi fidelity of the atom-photon gate becomes

Fap(ηout, C) =
1

4

(
1 + ηout −

ηout

1 + 2C

)2

, (E.21)

while for the photon-photon gate (Eq. E.12), the Choi fidelity reads

Fpp(ηout, C) =

(
4η3

out

(
1− 2C2

)
+ 4η2

out(C
2 − 1)(2C + 1) + (2C + 1)3

)2

8(2C + 1)6

+
1

8

4η2
out

(
ηout + 2ηoutC(C + 1)− (C + 1)2

)
(2C + 1)2

+ 1

2

.

(E.22)

Fap(ηout, C) and Fpp(ηout, C) are the same as Fap(C) and Fpp(C) in the limit ηout → 1.

The dependence of Fap(ηout, C) and Fpp(ηout, C) on ηout and C establishes two criteria

84



Appendix E. Theory: photon-photon gate fidelity

to be fulfilled experimentally: C � 1 and ηout ' 1.

With the parameters achieved on QD3, reducing the top-mirror reflectivity so that

κ/(2π) = 12.3 GHz, and inputting the losses in the present hetereostructure, κi/(2π) =

0.55 GHz, the atom-photon and photon-photon fidelities are Fap(ηout, C) = 92% and

Fpp(ηout, C) = 77%, respectively (ηout = 96%, C = 11).

Reducing the intrinsic cavity loss by a factor of ten (which is feasible with a more

advanced semiconductor design with narrower gates, for instance), the fidelities could be

increased. By choosing κ/(2π) = 3.8 GHz, Fap(ηout, C) = 97% and Fpp(ηout, C) = 92%

(ηout = 99%, C = 35).
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V. Vuletić, Geometrically asymmetric optical cavity for strong atom-photon cou-

pling, Phys. Rev. A 99, 013437 (2019).
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A. Forchel, S. Reitzenstein, E. A. Muljarov, and W. Langbein, Coherence dynam-

ics and quantum-to-classical crossover in an exciton–cavity system in the quantum

strong coupling regime, New Journal of Physics 15, 045013 (2013).

[21] R. J. Warburton, Single spins in self-assembled quantum dots, Nature Materials

12, 483 (2013).

[22] R. J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M.

Garcia, W. Schoenfeld, and P. M. Petroff, Optical emission from a charge-tunable

quantum ring, Nature 405, 926 (2000).

[23] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J.

Kimble, Trapped atoms in cavity QED: coupling quantized light and matter, Journal

of Physics B: Atomic, Molecular and Optical Physics 38, S551 (2005).

[24] H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, Cavity quantum elec-

trodynamics, Reports On Progress In Physics 69, 1325 (2006).

[25] D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar,

Coherent coupling of a single molecule to a scanning Fabry–Pérot microcavity,

Phys. Rev. X 7, 021014 (2017).
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V. Mendez-Garcia, and M. López-López, Photoreflectance and raman study of

surface electric states on AlGaAs/GaAs heterostructures, Journal of Spectroscopy

2016, 1 (2016).

[82] J. M. Bennett, Recent developments in surface roughness characterization, Mea-

surement Science and Technology 3, 1119 (1992).

[83] D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, Improve-

ment of AlAs–GaAs interface roughness grown with high As overpressures, Journal

93

https://www.degruyter.com/view/j/zna.1958.13.issue-6/zna-1958-0609/zna-1958-0609.xml
http://www.jetp.ac.ru/cgi-bin/e/index/e/6/4/p763?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/6/4/p763?a=list
http://dx.doi.org/10.1103/PhysRev.147.554
http://dx.doi.org/10.1103/PhysRevB.55.6960
http://dx.doi.org/10.1109/68.262549
http://dx.doi.org/10.1109/TED.2007.900678
http://dx.doi.org/10.1109/TED.2007.900678
http://dx.doi.org/10.1063/1.4913832
http://dx.doi.org/10.1063/1.4913832
http://dx.doi.org/10.1364/AO.41.003167
http://dx.doi.org/10.1364/AO.41.003167
https://www.cambridge.org/core/books/physics-of-lowdimensional-semiconductors/D1B7DE285E09FCA518C4C6C1C385E466
https://www.cambridge.org/core/books/physics-of-lowdimensional-semiconductors/D1B7DE285E09FCA518C4C6C1C385E466
http://dx.doi.org/10.1155/2016/4601249
http://dx.doi.org/10.1155/2016/4601249
http://dx.doi.org/10.1088/0957-0233/3/12/001
http://dx.doi.org/10.1088/0957-0233/3/12/001
http://dx.doi.org/10.1116/1.591433
http://dx.doi.org/10.1116/1.591433
http://dx.doi.org/10.1116/1.591433


References

of Vacuum Science & Technology B: Microelectronics and Nanometer Structures

Processing, Measurement, and Phenomena 18, 1590 (2000).

[84] K. Vahala, Optical microcavities, Nature 424, 839 (2003).

[85] M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka,

and M. Kraft, Microfabricated high-finesse optical cavity with open access and small

volume, Applied Physics Letters 87, 211106 (2005).

[86] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel,
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