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 I 

Summary 
 

Despite being a preventable and treatable disease, Plasmodium falciparum malaria remains a 

major threat, especially in children and pregnant women in sub-Saharan Africa. Considerable 

progress has been achieved during the past decade, however these positive trends have stalled 

in 2017. Efforts towards better disease control and focal elimination are hindered by 

development and spread of insecticide and drug resistance, leaving a malaria vaccine as a 

required tool to complement these approaches. RTS, S a subunit pre-erythrocyte stage vaccine 

is the only advanced malaria vaccine that has received an approval for pilot administration in 

three countries in sub Saharan Africa. This vaccine is however challenged by low efficacy and 

fast waning of protection. There is therefore an urgent need for development of more potent 

malaria vaccines. WHO targets malaria elimination by 2030 and achieving this goal will depend 

on stopping malaria transmission. This goal will largely depend on reducing asexual blood stage 

Plasmodium parasites – which are not only the cause of morbidity and mortality -but also 

responsible for development of gametocytes. Induction of parasite growth inhibitory antibodies 

has been shown to be key for protection following natural exposure and therefore, many vaccine 

development approaches try to follow this guidance from nature. In order to reach this goal of 

a highly protective vaccine targeting asexual blood stages with acceptable longevity of duration, 

more research is needed understand mechanisms of optimal induction of long lived antibody 

responses in a population that is also affected from other co-infections like helminths or HIV.  

Therefore, this thesis aimed to 1) investigate a novel blood stage sub-unit malaria vaccine 

candidate, P27A, for its potential to induce long lasting antibody responses when formulated in 

the novel adjuvant GLA-SE in malaria pre-exposed populations, 2) understanding magnitude 

and cytokine production of the CD4 T cell responses induced by this novel vaccine formulation 

and the interaction with ongoing helminth co-infections, 3) shed more light on the mechanism 

of GLA-SE adjuvant being able to induce high and long-lasting antibody responses by studying 

follicular helper T cells in peripheral blood, 4) implement lymph node excision biopsy in rural 

Tanzania for detailed investigation of germinal center responses which are crucial for 

production of potent antibody response. These aims are detailed in the following manuscripts 

which build up the current thesis. 
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Manuscript 1: The Candidate Blood-stage Malaria Vaccine P27A Induces a Robust 

Humoral Response in a Fast Track to the Field Phase 1 Trial in Exposed and Non-exposed 

Volunteers. 

In this chapter we evaluated safety profile and immunogenicity of the subunit vaccine candidate 

P27A when administered with adjuvant GLA-SE in comparison with the standard adjuvant, 

Alhydrogel. We analysed the magnitude and quality of antibody produced following 

vaccination and found that the antigen induced a robust humoral immunity, with enhanced 

production of cytophilic antibodies, IgG1 and IgG3 which are very important in parasite 

inhibition and protection. 

 

Manuscript 2: GLA-SE improves quality and magnitude of cellular immunity to the blood 

stage malaria vaccine candidate P27A 

 

CD4 T helper cells have been widely reported to enhance antibody response and memory cell 

development through production of cytokines. This is an ultimate goal of vaccination, which is 

to prepare the immune system to fight against a specific pathogen. In this study we sought to 

investigate the role of the adjuvant GLA-SE on the expansion of CD4 Th1 cells producing IL2, 

TNFa and IFNg and subsequent memory development. Volunteers vaccinated with the antigen 

formulated with GLA-SE, but not Alum, had improved Th1 expansion, which was skewed into 

polyfunctional TNFa and IL2, respectively. Volunteers who had concurrent helminth infection 

were seen to have reduced CD4 T cell response, raising an important consideration not only for 

malaria vaccine but also for other vaccination programmes in developing countries where 

cellular immune response is required for an efficacious antibody production. 

 

Manuscript 3: The adjuvant GLA-SE promotes human Tfh cell expansion and emergence 

of public TCR clonotypes  

 

Generation of high affinity-class switched antibodies, long lived plasma cells and memory B 

cells for enhanced antibody production requires formation of germinal centres in lymphoid 

follicles of the secondary lymphoid organs. Germinal centres provide an environment where 

follicular B and T cells interact after antigen priming following natural infection or after 

vaccination. We investigated the role of GLA-SE in activation and differentiation of circulating 

follicular helper T cells (cTfh). A population of cells expressing ICOS+ CD38+ PD1+ 

CXCR5+CD4 expanded on day 7 after the last vaccination and interestingly, this population 
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expressed a public T cell receptor clonotype which shows that GLA-SE promotes recruitment 

of T cells bearing common T cell receptors, a phenomenon which is desired for a vaccine 

intended for the general population. 

 

Manuscript 4: Lymph node excision biopsy to study germinal centre residing T cell 

subsets in rural Tanzania 

 

Peripheral blood has always been the source of immune cells for studying vaccine induced 

immune responses. However, priming, and differentiation of immune response takes place in 

secondary lymphoid organs. Follicular helper T cells, the critical CD4 T cell population 

involved in generation of long-lived antibody response are primarily found in germinal centres 

of the secondary lymphoid organs. The relationship between circulating follicular helper T cells 

and bona fide germinal center T follicular helper cells is not clear in humans. We isolated paired 

mononuclear cells from peripheral blood and lymph node biopsy in order to be able to better 

follow and evaluate immune response mechanisms following vaccination. We report here that 

lymph node excision biopsy is a safe procedure, that could be performed in the context of future 

vaccine trials – particularly in the field of HIV-1 vaccine development – in sub-Saharan Africa. 
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1.1. Malaria disease burden 

Malaria remains the major cause of morbidity and mortality especially in children under five 

years of age and in Primigravidae in sub-Saharan Africa (SSA) – despite being a preventable 

and treatable disease [1]. In 2017, an estimated 219 million (95% confidence interval [CI]: 203–

262 million) cases and 435 000 deaths from malaria occurred worldwide. Most malaria cases 

were in the WHO African Region (200 million or 92%), followed by the WHO South-East Asia 

Region with 5% of the cases and the WHO Eastern Mediterranean Region with 2% (world 

malaria report, 2018). Currently deployed management tools for malaria include vector control 

by use of insecticide treated bed nets, indoor residual spraying, and pesticide spraying of larval 

habitats [2][3]. Recently, the building of mosquito-proofed houses has been proposed as 

additional prevention measure [4] which is however costly to most rural communities in low 

and middle income countries. In combination with improved disease diagnosis and rapid 

treatment using artemisinin combination therapy (ACT), a rapid decline of malaria deaths was 

observed between 2000 and 2015 [5]. Despite all the efforts, there is evidence of growing 

resistance of vector population to insecticides [6] as well as description of ACT resistance in 

south East Asia [7] which could easily spread to SSA [8][9]. In fact, the director general of 

WHO, Tedros Adhanom Ghebreyesus, has called for renewed efforts and focus on malaria 

control efforts if the current trend ought to be reversed and the goal of malaria epidemic control 

to be achieved by 2030 as formulated in the Sustainable Development Goal 3 [10]. A highly 

protective malaria vaccine would be a complementary tool to combat the disease [11]. 

However, efforts to obtain an effective malaria vaccine have not been realized, partly based on 

the complexity of the parasite life cycle in human host and the limited understanding of the 

immune effector mechanisms needed to be induced by vaccination. 

1.2. Human malaria parasites and the Plasmodium falciparum life 
cycle 

Malaria is caused by a protozoan parasite belonging to the genus Plasmodium. Five malaria 

species infect humans with differing prevalence and global distribution [12]. Plasmodium 

falciparum (P. falciparum) is the most pathogenic species and the major cause of clinical 

malaria and malaria morbidity in SSA [1]. P. vivax is found in tropic and temperate areas and 

has been considered less common in SSA because Africans lack of the Duffy blood group 

expression on red blood cells [13][14]. However, recent studies have confirmed that P. vivax is 

also present in SSA countries justifying further epidemiological studies to understand its 

contribution of clinical disease [15]. P. malariae is found mostly in West African countries but 
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also in South America [16][17]. P. ovale with its sympatric members P.ovale curtisi and P.ovale 

wallikeri have also been found in SSA countries [18][19] often as co-infection with P. 

falciparum and P. malariae [20]. P. knowlesi is an emerging zoonotic malaria species being 

transmitted between humans and non-human primates by sharing the mosquito vectors in jungle 

areas into which humans invaded recently [21]. In fact, P. knowlesi has become a dominant 

malaria species of clinical relevance in South East Asia, particularly in Malaysia [22]. If the 

goal of malaria elimination is to be achieved, all human infecting malaria species need to be 

included into control measures and elimination efforts [23]. 

1.2.1. Pre-erythrocytic life cycle stage 

The life cycle of P. falciparum alternates between the vertebrate host, the humans, and the 

definitive host, the mosquito, where the sexual recombination takes place (Figure 1) [24]. The 

pre-erythrocytic liver stage is not associated with disease symptoms. About 41 species of female 

anopheles mosquitoes can transmit P. falciparum parasite [25] in which four species namely 

Anopheles gambiae (An. gambiae) complex An. funestus and An. arabiensis are wide spread in 

Africa [25]. During blood meal, mosquitoes inject sporozoites through human skin where they 

enter the blood and lymphatic vessel system. In the blood vessels, they travel to the liver, cross 

liver sinusoids and invade hepatocyte [26] and initiate multiplication [24]. Each single 

sporozoite reaching the liver multiplies in the liver cell to develop into thousands of merozoites 

[27] in a time span of around 6 days. Merozoites are released into the blood in the merosomes 

to start the next stage by invading red blood cells. 

1.2.2. Asexual blood stage 

Following invasion of red blood cells, repeated rounds of asexual blood stage multiplication 

occurs in cycles of 48 hours producing thousands of merozoites which infect new blood cells 

upon release. Released merozoites invade the fresh red blood cells in a multistage process 

involving specialized interaction of merozoites proteins and erythrocyte surface receptors [24]. 

The internalized parasites reside and develop into different stages (ring, trophozoites and 

schizonts) within the erythrocyte`s parasitophorous vacuole (PV) compartment. The ring stage 

parasites are known to induce active remodeling of the host cells. Also, they feed on host 

derived haemoglobin and plasma nutrients, which facilitate their development into 

trophozoites. The trophozoite stage parasites are marked with active glucose metabolism, 

ingestion of host cytoplasm and proteolysis of haemoglobin into amino acids [24]. However, 

toxic effects of heme on the parasite, forces the parasite to transform it into a byproduct known 

as haemozoin which is then stored in the food vacuole [24]. Several rounds of cell division that 
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occur at the end of trophozoite stage lead to the formation schizonts. Each of these schizonts 

contained in the infected erythrocytes carries approximately 16-32 merozoites that can infect 

other cells upon rupture [24]. This stage of parasite development is the cause of clinical malaria 

including anemia due to massive red blood cells destruction and severe malaria based on 

sequestration of infected red blood cells in microvasculature. During asexual blood cycle, some 

parasites will differentiate into gametocytes [24] making the transitions to the sexual stage of 

the parasite life cycle. 

 

 

 
 

Figure 1: The life cycle of Plasmodium spp. [24]. 
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1.2.3. Sexual stage and mosquito stage 

Asexual parasite stage is critical for the successive transmission of parasite from human to 

mosquito host. During this stage a subpopulation of parasites commits into formation of male 

and female gametocytes [24]. Malaria parasite gametogenesis is known to occur in five 

morphological developmental stages and interestingly only the first and very last stage can be 

found in the peripheral blood. It is has been shown that the stages II, III and IV occur in the 

erythroid precursor cells in the bone marrow potentially to avoid immune recognition by the 

host and clearance through the spleen [24]. During blood meals the mosquito ingests blood 

containing male and female gametocytes; they fuse to form the zygote within the mosquito 

midgut. The environment (pH and temperature) in the mid-gut favors the development and 

differentiation of the parasites into ookinete. Ookinetes traverse to the epithelial layer of the 

midgut and mature further to form oocysts. These oocysts rupture and release sporozoites in the 

haemocoel that then travel to the mosquito salivary glands – ready to be transferred to another 

human host in a blood meal [24]. 

1.3. Vaccine approaches and adjuvants 

Different types of vaccines exist, all having advantages and disadvantages in relation to 

production cost, safety profiles, temperature sensitive handling and storage conditions, and 

suitability for different human subpopulations (Table 1) [28]. First generation vaccines rely on 

attenuated whole organisms like yellow fever vaccine [29] or BCG [30] against Mycobacterium 

tuberculosis, a strategy that is also generally followed in recently conducted malaria vaccine 

studies based on metabolically active, purified P. falciparum sporozoites [31][32]. Live 

attenuated whole organisms as vaccines are however challenged by vaccine safety issues, 

particularly in immunocompromised individuals, cost of production, and applicability in 

resource limited areas based on the need for a cold chain [28]. 

Subunit or conjugate vaccines contain a defined component of the pathogen known to elicit 

protective immune responses [28]. When compared to live attenuated whole organism vaccines, 

subunit vaccines have limitations in relation to induction of long lived immunity providing 

protection [28]. With current development in system vaccinology, different strategies have been 

employed to develop next generation subunit vaccines ranging from conventional to reverse 

vaccinology and structural vaccinology [33]. 

 



 6 

 

Table 1: Overview of different vaccine approaches in current use [28]. 

 

Vaccine candidates based on subunit proteins only are not very immunogenic when 

administered on their own and thus immunogenicity needs to be augmented by the use of 

adjuvants. The word adjuvant is derived from Latin word “adjuvare”, meaning “to help or aid”. 

Different adjuvants have been licensed recently for use in human research expanding the 

possibility of a rational design of subunit vaccines [34]. In general, adjuvants stimulate cells of 

the innate immune system such as dendritic cells and macrophages making them to mature, 

upregulate major histocompatibility complex (MHC) molecules and other co-stimulatory and 

chemokine receptors finally directing them to secondary lymphoid organs to stimulate naïve T 

cells and B cells for production of effector T cells and antibodies [34]. This activation of the 

innate immune system by adjuvants is schematically depicted in Figure 2. 
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Figure 2: Activation of innate immune cells by vaccine adjuvants [35]. 

 

Alum (aluminium hydroxide) is one of the most widely used, safe adjuvants and is used for 

example in hepatitis B (Fendrix®) and human papillomavirus (Cervarix®) vaccines [36]. It is 

commonly accepted that alum functions through the activation of NALP3 inflammasome 

leading to the production of potent T cell stimulatory cytokine IL-1beta [37]. In mice, alum 

biases the cellular immune response towards a Th2 response – probably by suppressing the 

production of IL-12 in macrophages [38]. Overall, aluminium salts are poor inducer of T-cell 

responses when evaluated in humans, probably because of the lack of toll-like receptor (TLR) 

stimulation. The depot effect of alum might or might not contribute to its adjuvant activity and 

the exact mechanism of adjuvant activity remains elusive. 

Since alum is not very efficient in induction of Th1 immune responses, next generation 

adjuvants have been developed including GLA-SE. Glycopyranosyl lipid adjuvant (GLA) 

signals through TLR4 and when formulated with SE, an oil-in-water emulsion, and mixed with 

antigen, the resulting Ag⁄GLA-SE induces potent Th1 immune response in mice  [39]. In 

humans, GLA-SE has been tested first in vitro [40] and then in combination with subunit 

vaccines against influenza [41] tuberculosis [42] malaria [43][44][45], leishmaniosis [46] and 
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schistosomiasis [47]. Results support the idea that GLA-SE is a safe adjuvant that is able to 

skew the immune response towards Th1 and induces also strong antibody responses in humans. 

1.4. Germinal centres and follicular helper T cells 

Most effective vaccines available to date work by stimulating the production of protective 

humoral immunity. Vaccine induced, circulating immunoglobulins prevent disease after 

reinfection by binding to the surface of pathogens to block the intruder´s ability to establish an 

infection, prevent spread from point of entry to other body locations or inhibit the activity of 

toxins produced by bacterial or parasite infections.  

Antibody production after vaccination or pathogen re-infection can occur via two cellular 

pathways. The first wave of antibody production comes from the extra-follicular plasmablast 

response, in which short-lived antibody secreting cells (ASC) produce immunoglobulin for a 

few days, which then die by apoptosis in secondary lymphoid tissues [48]. These antibodies are 

characterized by class switching but show few somatic hyper-mutations (SHM) in the 

hypervariable regions of the immunoglobulin genes [48]. These antibodies provide the first line 

of defense until the more matured second wave appears.  

 

The source of ASC of this second wave are the germinal centre (GC) responses that forms in 

secondary lymphoid tissues like lymph nodes or spleen after immunization [49]. The GC is a 

specialized microenvironment where antigen-activated B cells clonally expand within the B 

cell follicle and undergo SHM of their immunoglobulin loci. The process of SHM, followed by 

affinity based selection of GC B cells by binding to antigen found on the surface of follicular 

dendritic cells and interaction with Tfh, results in the emergence of long-lived, high affinity, 

antibody-secreting plasma cells and memory B cells that provide protection against subsequent 

infection [49]. 

 

The successful GC response is dependent on a specialized subset of CD4+ T cells, the T 

follicular helper (Tfh) cells [50][51]. The development of Tfh is a multistep process, with naïve 

CD4 T cells primed by dendritic cells (DC) during which the T cell receptor binds to peptides 

presented by MHC class II molecules on the surface of DC. The second co-stimulatory signal 

is the interaction of CD28 on the T cell with CD86/CD80 expressed on the surface of DC. The 

third signal is comprised of cytokines leading to upregulation of transcription factor Bcl6 and 

chemokine receptor CXCR5 and concomitant down-regulation of CCR7 [52]. Activated Tfh 
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migrate to the T:B cell boarder area of the GC where they interact with B cells to finalize their 

development [53]. 

Tfh cells together with follicular dendritic cells mediate the positive selection of B cell clones 

in the GC and thereby determine which B cells exit the GC as plasma cells or memory B cells 

[50]. During Tfh and B cell interactions in the GC there is a bidirectional exchange of signals: 

Tfh cells provide help in the form of CD40L, IL-21 and IL-4 to GC B cells, which supports 

proliferation and survival, while B cells provide inducible T cell co-stimulator ligand (ICOSL) 

to Tfh cells expressing ICOS on their surface. Thus, Tfh cells facilitate the preferential 

expansion and mutation of high-affinity GC B cell clones and are key regulators of the size and 

quality of the GC response. Because Tfh cells are key determinants of the long-lived humoral 

immunity that arises from the GC, they represent an exciting therapeutic target through which 

vaccine strategies could be improved [54]. This is particularly important for diseases for which 

so far no efficient vaccination exist, like malaria or HIV, and that depend on the development 

of long-lived highly matured antibody responses [55]. 

Most studies on the function of Tfh have been conducted in mice and hence knowledge gaps 

still exist for the biology of Tfh in humans. As a biomarker of the activity of GC Tfh responses, 

CD4 CXCR5 ICOS expressing Tfh that circulate in peripheral blood (cTfh) have been described 

[56]. The tendency to omit the analysis of Tfh cells in human vaccination studies may be due 

to difficulty in studying these cellular responses since they are located in secondary lymphoid 

tissue, which is not easily sampled during vaccine trials. To circumvent this issue, a population 

of circulating Tfh-like (cTfh) cells that are found in the blood and phenotypically and 

functionally resemble lymphoid tissue Tfh cells, can be used as a biomarker of ongoing Tfh cell 

responses during vaccination studies [57]. 

 

It has become increasingly clear that different subset of cTfh exist that are characterized by the 

surface expression of CD4, ICOS, PD1, CXCR5, CXCR3, CCR6 and CCR7 [58]. CXCR3 and 

CCR6 expression on cTfh enables identification of cTfh cells with Th1-like (cTfh1, 

CXCR3+CCR6−), Th2-like (cTfh2, CXCR3−CCR6−) and Th17-like (cTfh17, 

CXCR3−CCR6+) properties, including the expression of transcription factors and cytokines 

that define these T helper subsets [59]. Different cytokine environments drive the development 

of these subsets as exemplified by the observation that cTfh2 cell frequency increases in people 

with Th2-polarised Schistosoma japonicum infection [60] whereas cTfh1 cells are 

preferentially expanded during Th1-biased acute P. falciparum episodes or after seasonal 

influenza vaccination [57][61]. These different Tfh subsets presumably drive appropriate 
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humoral immune responses like isotype distribution adapted to the needs of fighting 

intracellular or large extracellular pathogens like helminths. 

 

Despite Tfh cells being central for long-term humoral immunity, most human vaccine studies 

have not included these cells in their analysis, rather focusing on cytokine-producing CD4+ T 

cells [62], an approach that does not accurately capture vaccine-reactive Tfh cells [63]. Tfh 

bona fide residing in GC are not easily tractable in humans and therefore the biological 

relationship between lymph node resident Tfh and cTfh found in blood is not completely 

resolved. But there is mounting evidence that studying cTfh will provide a biomarker for GC 

responses and could be of great relevance in shedding light on the diverse mechanisms of 

stimulation of different Tfh subsets by using different antigen delivery systems and adjuvant 

combinations. 

1.5. Malaria vaccine development 

For over 50 years now, researchers have worked on developing different types of malaria 

vaccines, targeting different stages of the parasite life cycle [24]. Research for malaria vaccines 

is rooted from the evidence that malaria diseased children were treated and clinically cured by 

using purified immunoglobulins derived from semi immune individuals who have been exposed 

to malaria [64]. The possibility of a malaria vaccine is also supported by the fact that adults in 

malaria endemic regions develop naturally acquired immunity [65] that is associated with 

asymptomatic malaria infection and control of parasitaemia [66][67]. These examples provide 

proof that under natural conditions, parasite growth inhibitory immune mechanisms develop 

including growth inhibitory antibodies. The complexity of malaria is a major challenge for 

vaccine development with over 5000 genes, there are potentially hundreds of proteins that could 

serve as malaria vaccine candidates [68]. 

 

Vaccine strategies are currently grouped according to the malaria parasite life stage that is 

targeted. Pre-erythrocytic vaccines target sporozoites and prevent infection, clinical disease and 

block transmission. Blood stage vaccines generally target the infected red blood cell or 

merozoites aiming to prevent or reduce parasite multiplication – thereby reducing clinical 

disease and transmission. Targeting the sexual stages of the parasite either in the blood or in the 

mosquito is named transmission blocking vaccines [69]. 

During immune-epidemiological studies of malaria vaccine candidates, antigens are usually 

tested against sera from malaria endemic individuals which has shown existence of antibodies 
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against such candidates [70][71]. This naturally acquired immunity requires usually several 

malaria episodes to develop and is not sterile, thus people remain vulnerable to reinfection.  

Understanding the generation and partial protective mechanisms of these naturally acquired 

antibodies is important in order to develop a vaccine that is superior to naturally acquired 

immunity [72][73]. 

 

Many of the vaccine candidates which are now in different stages of development (preclinical 

or clinical) are targeted by antibodies [74]. Figure 3 provides an overview of vaccine candidates 

that are currently under development - highlighting that only few subunit vaccine candidates 

have progressed to the clinic. 

 

 

Figure 3: Overview of malaria vaccine candidates in preclinical and clinical development [24]. 

1.5.1. Pre-erythrocytic stage subunit malaria vaccine development 

The most advanced malaria vaccine candidate is RTS,S/AS01 [75][76]. It is composed of 18 

copies of the central repeat region and the C-terminal domain of the circumsporozoite protein 

fused to hepatitis B virus surface antigen (HbsAg) with free HbsAg as surplus in a 1:4 ratio. 

This vaccine is designed to induce high levels of antibodies against PfCSP, which is covering 
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the surface of the infective sporozoite. RTS,S, formulated with the potent liposomal adjuvant 

system AS01 from GlaxoSmithKline, is the only vaccine that has demonstrated protective 

efficacy against clinical malaria in a Phase III clinical trial [77]. Protection against clinical 

malaria is partial, wanes over time, and may be age dependent (protection was lower in infants 

6–12 weeks of age than in young children 5–17 months old at time of first vaccination). In the 

latter, receiving three vaccinations in a 0-1-2 month schedule, the incidence of clinical malaria 

was reduced by 51% over the first year of follow-up post-dose three [95% CI 48%–55%]. Over 

48 months of follow-up, efficacy was 26% [95% CI 21%–31%], and among children receiving 

a fourth booster dose at month 20 (18 months post-dose three), efficacy was 39% [95% CI 

34%–43%]. 

1.5.2. Asexual blood stage vaccines 

The main candidates developed against asexual blood stage candidates have been either 

expressed on the surface of infected red blood cells (VAR2CSA), on the surface of merozoites 

(MSP1, MSP2, MSP3) or in the apical complex organelles of the merozoites (AMA1). All of 

these candidates have so far struggled to achieve convincing efficacy levels in clinical studies 

although titers of vaccine induced antibodies have been reported. These candidates are usually 

immune-dominant merozoite proteins and suffer from the problem of lack of strain transcending 

immunity and the biology of the merozoite invasion into red blood cells that takes only seconds, 

requiring high levels of inhibitory antibody titers. Recently, several novel candidates have 

emerged that might circumvent some issues of sequence polymorphisms like the P. falciparum 

reticulocyte-binding protein homolog 5 (PfRH5), that binds to the basigin receptor on the red 

blood cell surface [78]. PfRH5 forms a functional complex with PfRipr and PfCyPRA and 

antibodies targeting these multiple components increases protective potential [79]. Figure 4 

depicts the different vaccine candidates and formulations tested that are currently in clinical 

development, underlying that most vaccine candidates are supposedly to function via induction 

of inhibitory antibodies. 
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Figure 4: Malaria vaccine candidates currently in clinical development including P27A [74]. 

1.6. The P27A asexual blood stage vaccine candidate 

A systematic genome-wide screen of P. falciparum for alpha-helical coiled coil motifs aiming 

at identification of structurally defined asexual blood stage vaccine candidates identified several 

novel candidates including PFF0165c [80]. One of the major goals of this thesis was to 

contribute with immunological studies to the assessment of the potential of this novel protein 

that is also known as MAL6P1.37 or Pf27, as a malaria blood-stage vaccine candidate in malaria 

pre-exposed populations. 

Two Pf27 segments are known: i) the sequence predicted to contain an alpha helical coiled coil 

protein motif (Peptide 27; P27), that is 27 amino acids in length, and ii) the sequence predicted 

to assume a random coiled structure (Peptide 27A; P27A) which is 104 amino acids long [80]. 

Both peptides were synthesized and found to be the targets of human antibodies inhibiting 

parasite growth in an antibody-dependent cellular (ADCI) assay [80]. P27A was selected for 

clinical development because a) it was found to be highly antigenic in individuals living in 

malaria-endemic areas [80]; b) the antibodies developed by protected individuals were 
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predominantly the cytophilic IgG1 and IgG3 isotype [81]; c) human affinity-purified antibodies 

were able to inhibit parasite growth in an antibody-dependent cellular fashion [81]; d) analysis 

of immune response from both malaria protected and unprotected individuals following natural 

exposure showed that P27A elicited antibodies strongly associated with naturally occurring 

protection [82][81][83] and e) sequence analysis show an unusual degree of conservation with 

very minimal genetic variation among over 90 laboratory and field isolates of P. falciparum 

[84]. Pf27 has been found to be exported into the red blood cell cytosol during the trophozoite 

stage and co-localization experiments revealed that it is located to the Maurer’s clefts facing 

the red blood cell cytosol [85]. It is hypothesized that induction of high antibody levels against 

P27A of IgG1 and IgG3 isotype will provide protection against asexual blood stage parasites 

by antibody dependent cellular cytotoxicity [85]. Therefore, a combined phase Ia/Ib clinical 

trial was initiated to evaluate P27A immunogenicity in malaria naïve and pre-exposed 

populations, when formulated with either the novel adjuvant GLA-SE or alum. 

1.7. Aims of this thesis 

The overall aim of this thesis is to monitor comprehensively the cellular and humoral immune 

responses induced by the malaria subunit vaccine P27A formulated with alum and GLA-SE in 

Tanzanian malaria pre-exposed volunteers and to understand underlying reasons of variations 

in immune responses elicited. 

 

Objectives of this thesis are: 

1. To compare P27A antibody dynamics, size, isotype distribution and duration between 

malaria naïve and pre-exposed volunteers inoculated with the identical vaccine formulations 

(Chapter 2). 

2. To evaluate the role of adjuvants and helminth co-infections on the phenotype and 

cytokine production of elicited P27A specific CD4 T cell responses in Tanzanian volunteers 

(Chapter 3). 

3. To describe the difference between alum and GLA-SE in induction of GC responses and 

identification of distinct circulating Tfh subsets as biomarkers of GC responses induced by 

vaccination (Chapter 4). 

4. To implement lymph node excision biopsy in rural Tanzania for detailed investigation 

of GC responses and comparison with circulating Tfh (Chapter 5). 
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the Field Phase 1 Trial in Exposed and Nonexposed 

Volunteers 

 

 

 

2. The Candidate Blood-stage Malaria Vaccine P27A Induces 
a Robust Humoral Response in a Fast Track to the Field 
Phase 1 Trial in Exposed and Nonexposed Volunteers 

 

 

 

 
This chapter contains the following publication: 
 
Steiner-Monard V, Kamaka K, Karoui O, Roethlisberger S, Audran R, Daubenberger C, Fayet-Mello 
A, Erdmann-Voisin A, Felger I, Geiger K, Govender L, Houard S, Huber E, Mayor C, Mkindi 
C, Portevin D, Rusch S, Schmidlin S, Tiendrebeogo RW, Theisen M, Thierry AC  Vallotton 
L, Corradin G, Leroy O, Abdulla S, Shekalaghe S, Genton B, Spertini F, Jongo SA. The Candidate 
Blood Stage Malaria Vaccine P27A Induces a Robust Humoral Response in a Fast Track to the Field 
Phase I Trial in Exposed and Non-Exposed Volunteers. Clin Infect Dis. 2018 Jun 26. doi: 
10.1093/cid/ciy514. 



Clinical Infectious Diseases

466 • CID 2019:68  (1 February) • Steiner-Monard et al

The Candidate Blood-stage Malaria Vaccine P27A Induces 
a Robust Humoral Response in a Fast Track to the Field 
Phase 1 Trial in Exposed and Nonexposed Volunteers
Viviane Steiner-Monard,1 Kassim Kamaka,2 Olfa Karoui,1 Samuel Roethlisberger,1 Régine Audran,1 Claudia Daubenberger,3 Aurélie Fayet-Mello,4 
Aude Erdmann-Voisin,4 Ingrid Felger,3 Kristina Geiger,5 Lerisa Govender,1 Sophie Houard,6 Eric Huber,3 Carole Mayor,1 Catherine Mkindi,3 Damien Portevin,3 
Sebastian Rusch,3 Sandro Schmidlin,3 Regis W. Tiendrebeogo,7,8,9 Michael Theisen,7,8,9 Anne-Christine Thierry,1 Laure Vallotton,4 Giampietro Corradin,5 
Odile Leroy,6 Salim Abdulla,2 Seif Shekalaghe,2 Blaise Genton,3,10,11 François Spertini,1 and Said A. Jongo2

1Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; 2Ifakara Health Institute, Bagamoyo, Tanzania; 3Swiss Tropical and Public Health 
Institute, Basel, 4Clinical Trial Unit, CHUV, Lausanne, and 5Department of Biochemistry, University of Lausanne, Epalinges, Switzerland; 6European Vaccine Initiative, Heidelberg, Germany; 
7Department for Congenital Disorders, Statens Serum Institut, 8Centre for Medical Parasitology, University of Copenhagen, and 9Department of Infectious Diseases, Copenhagen University 
Hospital, Rigshospitalet, Denmark; and 10Policlinique médicale universitaire, and 11Infectious Disease Service, CHUV, Lausanne, Switzerland

Background. P27A is an unstructured 104mer synthetic peptide from Plasmodium falciparum trophozoite exported protein 1 
(TEX1), the target of human antibodies inhibiting parasite growth. The present project aimed at evaluating the safety and immuno-
genicity of P27A peptide vaccine in malaria-nonexposed European and malaria-exposed African adults.

Methods. This study was designed as a staggered, fast-track, randomized, antigen and adjuvant dose-finding, multicenter phase 
1a/1b trial, conducted in Switzerland and Tanzania. P27A antigen (10 or 50 μg), adjuvanted with Alhydrogel or glucopyranosil lipid 
adjuvant stable emulsion (GLA-SE; 2.5 or 5 μg), or control rabies vaccine (Verorab) were administered intramuscularly to 16 malar-
ia-nonexposed and 40 malaria-exposed subjects on days 0, 28, and 56. Local and systemic adverse events (AEs) as well as humoral 
and cellular immune responses were assessed after each injection and during the 34-week follow-up.

Results. Most AEs were mild to moderate and resolved completely within 48 hours. Systemic AEs were more frequent in the 
formulation with alum as compared to GLA-SE, whereas local AEs were more frequent after GLA-SE. No serious AEs occurred. 
Supported by a mixed Th1/Th2 cell-mediated immunity, P27A induced a marked specific antibody response able to recognize TEX1 
in infected erythrocytes and to inhibit parasite growth through an antibody-dependent cellular inhibition mechanism. Incidence of 
AEs and antibody responses were significantly lower in malaria-exposed Tanzanian subjects than in nonexposed European subjects.

Conclusions. The candidate vaccine P27A was safe and induced a particularly robust immunogenic response in combination 
with GLA-SE. This formulation should be considered for future efficacy trials.

Clinical Trials Registration. NCT01949909, PACTR201310000683408.
Keywords. malaria; vaccine; GLA-SE; blood-stage; ADCI.

Due to increasing drug resistance against antimalarial drugs, 
the development of a safe and effective vaccine would be an 
invaluable tool in the fight against malaria, and eventually 
eradication of malaria [1]. Opinions are diverse on how anti-
bodies to blood-stage antigens achieve protection: inhibition of 
merozoite invasion into erythrocytes, triggering of the release 
by monocytes of parasitostatic and parasitocidal substances 
via antibody-dependent cellular inhibition (ADCI), or inhibi-
tion of cytoadherence of infected red blood cells to endothelial 
cells [2–5]. In our search for novel vaccine candidates through 
genome mining, we have addressed the first 2 paradigms in 
a systematic manner and identified trophozoite exported 

protein 1 (TEX1) (also known as PF3D7_0603400, PFF0165c, 
or MAL6P1.37, here referred to as Pf27) [6, 7]. A highly con-
served segment of Pf27 corresponding to a sequence predicted 
to assume a random coiled structure of 104 amino acids (pep-
tide 27A [P27A]) was synthesized and purified. P27A was found 
to be highly antigenic and the target, at high prevalence, of B- 
and T-cell responses in individuals living in malaria-endemic 
areas [7, 8]. The antibodies developed by protected individuals 
were predominantly cytophilic immunoglobulin G1 (IgG1) and 
immunoglobulin G3 (IgG3) able to inhibit parasite growth in 
an antibody-dependent cellular fashion (ADCI). Interestingly, 
in a parallel analysis of the response to a recombinant candi-
date vaccine including P27A, the antibody response of African 
volunteers was strongly associated with clinical protection  
(G. Corradin et  al, submitted manuscript). Although the sol-
uble factors, including tumor necrosis factor alpha (TNF-α), 
involved in ADCI are still largely uncharacterized, ADCI is the 
result of the overall functional effect of antibodies and mono-
cyte collaboration on in vitro parasite growth [9]. Recent data 
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suggest a potential role of the ADCI assay as a correlate of 
protection.

The objective of this trial was to assess the safety and immu-
nogenicity of a synthetic peptide vaccine candidate based on 
the P27A fragment of Pf27, with the aim to induce a protective 
antibody response that may complement immune responses 
induced by antigen(s) from the preerythrocytic stage in a mul-
ticomponent vaccine.

METHODS

Trial Design and Study Participants

The study was designed as a staggered, randomized, antigen 
and adjuvant dose-finding, multicenter phase 1a/1b clinical 
trial using the fast-track strategy set by the European Vaccine 
Initiative and its partners to accelerate malaria vaccine clinical 
development. Study was conducted in Switzerland for phase 1a 
and in Tanzania for phase 1b.

The phase 1a (Lausanne, Switzerland [CH]) was designed 
as a single-center, staggered randomized, volunteer- and lab-
oratory-blinded trial. Healthy adult men and women aged 
18–45  years were eligible to participate when human immu-
nodeficiency virus (HIV) negative, without known exposure 
to malaria, and P27A or parasite antibody negative by enzyme-
linked immunosorbent assay (ELISA). Phase 1b (Bagamoyo, 
Tanzania [TZ]) was designed as a single-center, staggered 
randomized, double-blind, controlled trial. Healthy adult vol-
unteers aged 18–45  years were eligible to participate when 
HIV negative, having lived in areas of Tanzania with minimal 
malaria transmission (urban Dar es Salaam). As contracep-
tion is not always practiced by women of childbearing age 
in the study population, female subjects were not included. 
Participants were enrolled if they met the inclusion criteria (see 
Supplementary Materials for details) and, for the nonexposed 
group, were not pregnant or lactating. The phase 1a volunteers 
were allocated (on a 1:1 basis) into 2 groups of 8 volunteers 
each, who were injected intramuscularly with 50 μg of the P27A 
antigen adjuvanted with Alhydrogel (group CH-Alum/50) or 
2.5 μg glucopyranosil lipid adjuvant stable emulsion (GLA-SE) 
(group CH-GLA2.5/50). The phase 1b volunteers were random-
ized and allocated (on a 4:1 basis) in a dose-escalating man-
ner to 4 cohorts. Each cohort included 10 subjects, 8 of whom 
were injected intramuscularly with 50 μg P27A and Alhydrogel 
(group TZ-Alum/50), with 10  μg P27A and 2.5  μg GLA-SE 
(group TZ-GLA2.5/10), with 50 μg P27A and 2.5 μg GLA-SE 
(group TZ-GLA2.5/50), and with 50 μg P27A and 5 μg GLA-SE 
(group TZ-GLA5/50). Two subjects per cohort were injected 
with the rabies vaccine Verorab as control (group TZ-Ver). 
Injections were performed at days 0, 28, and 56 with a follow-up 
of 6 months (Figure 1).

The transition phase from the European to African trial pop-
ulation started after completion of the first injection series of 

each group sequentially in the European site and after evaluation 
of the safety data by an independent data and safety monitoring 
board (DSMB). A 2-week stagger was left to ensure safety and 
reactogenicity evaluation prior to transition to the next higher 
P27A dosage or change from Alhydrogel to GLA-SE in the same 
site, and a 4-week stagger for transition from European phase 
1a to African phase 1b (Figure 1). Further information on study 
design, including the clinical trial protocol, is provided in the 
Supplementary Materials.

Study Vaccines and Procedures

The investigational vaccine antigen and adjuvants were pro-
duced under Good Manufacturing Practice (GMP) constraints 
according to relevant national regulations. The bulk P27A 
104-residue synthetic peptide was manufactured by Almac 
(Craigavon, United Kingdom) and further diluted, filled in 
monodose vials by Nova Laboratories Ltd (Leicester, United 
Kingdom). The bulk Alhydrogel was manufactured by Brenntag 
(Frederikssund, Denmark) and diluted with water for injection, 
filled into vials by Nova Laboratories Ltd. P27A and Alhydrogel 
vials have been labeled, released, and shipped to the clinical 
sites by Nova Laboratories Ltd. The GLA-SE and the GMP 
EM060-SE used as diluent were manufactured by the Infectious 
Disease Research Institute (Seattle, Washington). The GLA-SE 
and SE diluent were labeled, released, and shipped by Output 
Pharma GmbH (Aachen, Germany). The P27A vaccine antigen 
was formulated with 1 of the 2 adjuvants at each site pharmacy 
prior to the injection.

Primary Outcome

Safety and tolerability of the vaccine were assessed based on the 
number and intensity of solicited and unsolicited adverse events 
(AEs). The safety profile included local and systemic AEs as 
well as the biological safety tests, based on clinically significant 
changes of the baseline value of the main biological criteria.

Further information on secondary and exploratory outcomes 
(immunogenicity) as well as statistical analysis is provided in 
the Supplementary Materials.

RESULTS

Participant clinical characteristics are provided in the 
Supplementary Materials and Supplementary Table 1.

Safety and Reactogenicity
Local Reactogenicity
Local AEs from day 0 to day 7 are summarized in Figure 2A, 
and are presented as the cumulative number of events occurring 
in each vaccination group. Local reactogenicity was reported by 
100% and 82.5% of volunteers in phase 1a and 1b, respectively, 
and was mostly mild to moderate and self-limited. Local AE 
were more frequent after GLA-SE. Detailed description of local 
reactogenicity can be found in the Supplementary Materials.
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Systemic Reactogenicity
Systemic AEs (solicited and unsolicited) from day 0 to day 7 
are summarized in Figure 2B, and are presented as the cumula-
tive number of events in each vaccination group, and described 
below in the text as number of AEs per injections.

In phase 1a, systemic AEs occurred in 39 of 48 injections 
(81.3%), most of them being considered as unrelated to the vac-
cination (76/125 events [60.8%]). The most frequent solicited 
systemic AEs were tiredness (reported after 11/24 injections 
[48.5%] for group CH-Alum/50 and 10/24 injections [41.7%] 
for group CH-GLA2.5/50) and headache (7/24 injections 
[29.2%] for group CH-Alum/50 and 7/24 injections [29.2%] 
for group CH-GLA2.5/50). Fever was not reported during the 
evaluation period. Up to 1  month after the third injection, a 
total of 53 unsolicited systemic AEs following 29 of 48 injec-
tions (60.4%) were reported from 15 subjects (8 subjects for 
group CH-Alum/50 and 7 subjects for group CH-GLA2.5/50) 
and resolved without sequelae. Forty-four were grade 1 AEs (3 
related to vaccination), 5 were grade 2 (1 related), and 3 reached 
grade 3 with no relationship with vaccination. One was left 
ungraded. There were no significant abnormal vital signs and 
no relevant changes in physical examination. No clinically rel-
evant variations in blood cell counts and biochemistry analysis 
were recorded.

In the phase 1b population, systemic AEs occurred after 25 of 
120 injections (19/40 subjects) (47.5%) for a total of 39 events, 
mostly reported as related to vaccination (25/39 [64.1%]). The 
most frequent solicited systemic AEs were headache (reported 
after 3/24 injections [12.5%] for group TZ-Alum/50 and 1/24 
injections [4.2%] for group TZ-GLA2.5/10, 2/24 injections 
[8.3%] for group TZ-GLA2.5/50, 1/24 injections [4.2%] for 
group TZ-GLA5/50, 1/24 injections [4.2%] for group TZ-Ver), 
and fatigue (2/24 injections [8.3%] for group TZ-Alum/50 and 
0/24 injections [0%] for group TZ-GLA2.5/10, 2/24 injections 
[8.3%] for group TZ-GLA2.5/50, 1/24 injections [4.2%] for 
group TZ-GLA5/50, 0/24 injections [0%] for group TZ-Ver). At 
least 1 subject experienced systemic unsolicited AE during each 
vaccination; however, no grade 3 AE was reported. Fever was 
not reported during the evaluation period. There were no sig-
nificant abnormal vital signs and no relevant changes in physi-
cal examination. No significant variations in blood cell counts 
and biochemistry analysis were recorded.

Comparison Between Adjuvants or Populations

Statistical differences in frequency of AEs between CH and 
TZ groups having received the same vaccine formulations are 
shown in Figure 2 and Supplementary Tables 2 and 3 (Fisher 
exact test). With regard to adjuvants, cumulating all local AEs 

Figure 1. Trial profile, injection schedule, and safety follow-up. Abbreviations: CH, Lausanne, Switzerland; DSMB, data and safety monitoring board; GLA, glucopyranosil 
lipid adjuvant; TZ, Bagamoyo, Tanzania; Ver, Verorab.
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from volunteers who received the same adjuvant at the same 
dose of peptide, there was no significant difference between 
alum and GLA-SE (P  =  .066), whatever the severity of the 
reaction. However, limitation in arm motion was more fre-
quently induced after GLA-SE (P <  .0001). Systemic AEs (all) 
were significantly more frequent after Alum (P =  .02), with a 
trend toward more musculoskeletal AEs with alum (P =  .07). 
When AEs (all) were compared according to sites, CH vs TZ, 
we observed significantly more frequent AEs in the Swiss vol-
unteers than in the Tanzanian volunteers both for local (all AEs, 
P < .0001; odds ratio [OR], 3.167, as well as individual AEs) and 
systemic AEs (all, P  <  .0001; OR,  3.429, and tiredness, head-
aches, musculoskeletal, and gastrointestinal AEs). Grade 3 local 
AEs were also more frequent in the Swiss population (P = .011; 
OR, 10.13).

Immunogenicity
IgG Antibody Responses
Nonexposed phase 1a volunteers mounted a specific anti-
P27A IgG antibody response that peaked at day 84 showing 
median titers of 3200 (range, 200–12 800) and 51 200 (range, 
3200–204 800) in groups CH-Alum/50 and CH-GLA2.5/50, 
respectively (Figure 3). A difference in median titers of at least 

10-fold between the 2 groups at day 84 persisted at day 238 
(week 34), that is, 26 weeks after the last immunization. Titers 
were maintained at a high level in group CH-GLA2.5/50, with 
median titer of 9600 (range, 1600–51 200) at day 238 while 
group CH-Alum/50 displayed a median titer of 400 (range, 
50–800).

In the exposed phase 1b volunteers, 9 of 40 volunteers 
already presented a positive humoral response to P27A at day 
0 according to criteria defined for the screening of the phase 
1b volunteers. IgG titers at day 84 in groups TZ-Alum/50, 
TZ-GLA2.5/10, and TZ-GLA2.5/50 reached median titers of 
4800 (range, 100–9051), 2400 (range, 800–12 800) and 6400 
(range, 1600–12 800), respectively (Figure 3). These responses 
were in the same range as those obtained at day 84 in group 
CH-Alum/50. Nevertheless, group TZ-GLA2.5/50 responses 
persisted significantly longer than in group TZ-Alum/50 
(Kruskal-Wallis P value of .0008, with a posttest P value of .0103 
at day 238). Volunteers from group TZ-GLA5/50 showed even 
stronger responses at day 84 with median titers of 13 577 (range, 
9051–25 600), levels comparable to those obtained in group 
CH-GLA2.5/50 of 51 200 (range, 3200–204 800) (P = .1290). No 
variations in anti-P27A IgG titers were observed in the TZ-Ver 
control group.

Figure 2. Local and systemic reactogenicity. Cumulative number of local (A) and systemic (B) adverse events (solicited and unsolicited) observed from day 0 to day 7 after 
each vaccination in each group are indicated. For each parameter, 72 reports were done per group, 8 subjects per group, 3 injections, and 3 time points per injection (60 
minutes postvaccination, day 1 ± 12 hours, and day 7 ± 24 hours). Comparisons of numbers of events between the 4 groups that received Alum/50 or glucopyranosil lipid 
adjuvant (GLA) 2.5/50 were done using Fisher exact contingency tests, each group taken separately; P values are indicated as * or # for comparisons of adjuvants (alum 
vs GLA–stable emulsion) or populations (Lausanne, Switzerland vs Bagamoyo, Tanzania), respectively. Abbreviations: AE, adverse event; CH, Lausanne, Switzerland; GLA, 
glucopyranosil lipid adjuvant; Indurat., induration; Lim. arm mot., limitation in arm motion; Musc.Skel, musculoskeletal AEs; TZ, Bagamoyo, Tanzania; Ver, Verorab. *,#P < .05; 
**,##P < .01; ***,###P < .001; ****,####P < .0001. 

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/article-abstract/68/3/466/5045203 by W

W
Z

 B
ibliothek (O

effentliche B
ibliothek der U

niversitÃ
¤t B

asel) user on 04 F
ebruary 2019

19



470 • CID 2019:68  (1 February) • Steiner-Monard et al

IgG Subclasses and IgM Responses
The levels of P27A specific IgG1, immunoglobulin G2 (IgG2), 
IgG3, immunoglobulin G4 (IgG4), and IgM were assessed by 
ELISA in all phase 1a and 1b volunteers at day 84 (peak response) 
(Figure 4). The vaccine formulation GLA2.5/50 induced higher 
IgG1, IgG2, IgG4, and immunoglobulin M (IgM) responses in 
the nonexposed Swiss group than in the semi-immune group 
TZ-GLA2.5/50, but no significant difference in IgG3 levels 
(Figure  4B–F). P27A in Alhydrogel induced a higher IgG3 
response in group TZ-Alum/50 volunteers with a median titer 
of 800 (range, 100–6400) than in group CH-Alum/50 volun-
teers (median titer of 150 [range, 12.5–400]) (Mann-Whitney 
P value of .0458) with no difference with the other subclasses. 
Clearly Alhydrogel failed to induce IgM in both nonexposed 
and exposed volunteers (group CH-Alum/50 and TZ-Alum/50) 
(Figure 4B).

In Vitro Parasite Growth Inhibition Assay ADCI
Eleven of 16 subjects from group CH-Alum/50 and 
CH-GLA2.5/50 showed an increase in the inhibitory capac-
ity of specific IgG with vaccination, without significant dif-
ference between the 2 groups (Figure  5A). IgM and IgG3 
isotypes appeared to be associated with the strongest parasite 
growth inhibition, although the correlation was nonsignificant 
(Figure 5B and 5C).

Further information on other secondary endpoints (Western 
blot recognition of TEX1, antibody response to parasite by indirect 

fluorescence antibody test [IFAT], peripheral blood mononuclear 
cell [PBMC] cytokine profile) is provided in the Supplementary 
Materials. In brief, Western blotting based on affinity-purified 
IgG revealed 2 bands at 165 kDa and 130 kDa specifically rec-
ognized postvaccination in 5 volunteers from the CH-Alum 
and GLA-SE cohorts, compatible with previous descriptions of 
TEX1 migration [7] (Supplementary Figure 1A). IFAT at day 84 
showed a positive immunofluorescence closely associated with 
intraerythrocytic trophozoites (Supplementary Figure 1B). P27A 
vaccination induced significant responses for interferon gamma 
(IFN-γ), interleukin (IL) 2, IL-5, IL-10, and TNF-α starting at day 
56 and still present at day 238 (Supplementary Figure 2A–J).

DISCUSSION

Blood-stage vaccines are aiming to achieve nonsterile protec-
tive immunity with hopefully a good memory response, an 
aspect which has been so far one of the major weakness of the 
most advanced, partially effective vaccine tested in a phase 3 
trial, the preerythrocytic vaccine RTS,S [10]. In this respect, this 
paper shows that an unstructured segment from the TEX1 of  
P.  falciparum appears an ideal candidate for a synthetic pep-
tide vaccine. Indeed, P27A vaccine was not only safe, but also 
induced a strong specific humoral response in a formulation 
with Alhydrogel, even reinforced (close to 10-fold) in a formu-
lation with GLA-SE. Alhydrogel is a classical, well-tolerated vac-
cine adjuvant with a good capacity to induce a robust humoral, 

Figure 3. Anti-P27A immunoglobulin G responses. Kinetics of responses in 6 groups that received P27A formulated in Alhydrogel (Switzerland [CH]–Alum/50 and Tanzania 
[TZ]–Alum/50) or glucopyranosil lipid adjuvant (GLA) stable emulsion (TZ-GLA2.5/10, CH-GLA2.5/50, TZ-GLA2.5/50, and TZ-GLA5/50) or Verorab as control (TZ-Ver) are shown 
as box plots and whiskers (interquartile range, minimum and maximum). Comparisons intragroup were performed using Friedman test; P values of analysis of variance were 
at least < .001 for vaccinees; P values of Dunn posttest of comparison with day 0 are indicated. Abbreviations: CH, Lausanne, Switzerland; GLA, glucopyranosil lipid adjuvant; 
IgG, immunoglobulin G; TZ, Bagamoyo, Tanzania; Ver, Verorab. *P < .05; **P < .01; ***P < .001; ****P < .0001. 
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Figure 4. Anti-P27A isotypic responses. A, P27A-specific immunoglobulin G (IgG) 1, 2, 3, 4 and immunoglobulin M (IgM) titers at day 0 and day 84 in all volunteers 
who received P27A formulated in Alhydrogel (group Switzerland [CH]–Alum/50, Tanzania [TZ]–Alum/50) or glucopyranosil lipid adjuvant (GLA) stable emulsion (group 
TZ-GLA2.5/10, CH-GLA2.5/50, TZ-GLA2.5/50, and TZ-GLA5/50) as box plots and whiskers (interquartile range and 5th and 95th percentiles). Responses per group are shown 
for IgM (B), IgG1 (C), IgG2 (D), IgG3 (E), and IgG4 (F). Comparisons for day 84–day 0 were performed using Wilcoxon paired tests, comparisons within groups of identical 
formulations using Mann-Whitney tests. Abbreviations: A, alum; CH, Lausanne, Switzerland; G, glucopyranosil lipid adjuvant; IgG, immunoglobulin G; IgM, immunoglobulin 
M; ns, not significant; TZ, Bagamoyo, Tanzania. *P < .05; **P < .01; ***P < .001; ****P < .0001. 
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preferentially but not exclusively Th2 response, whereas GLA, a 
Toll-like receptor 4 (TLR4) agonist, is a strong T-helper 1 (Th1) 
cell inducer recently tested in various early phase vaccine trials in 
humans including tuberculosis, and malaria, among others [11–
13]. In this trial, humoral response was supported by a mixed 
Th1/T-helper 2 (Th2) cell-mediated immunity, leading to prefer-
entially IgG1 and IgG3 antibody subclass response. Importantly, 
P27A antibodies were able to recognize TEX1 in vitro in Western 
blot analysis as well as in vivo on the parasite itself, as shown by 
indirect immunofluorescence assays, and finally led to effective 
antibody-dependent growth inhibition of the parasite.

This study protocol was designed to spare as much time as 
possible in moving from phase 1a to phase 1b in endemic area. 
This design permitted quick achievement of the various study 
steps sequentially and in parallel from the phase 1a study site in 
Lausanne, Switzerland, to the African study site 2–4 weeks later. 
In <6 months, all volunteers from phase 1a and 1b had received 
at least their first injection of the investigational vaccine. This 

fast-track design was closely supervised by a single academic 
sponsor, the Centre Hospitalier Universitaire Vaudois, which 
was in constant contact with investigators from both sites to 
interact efficiently with ethics review boards and regulatory 
authorities both in Switzerland and in Tanzania. Safety was fur-
thermore closely reviewed by a DSMB that had the responsi-
bility to recommend to the sponsor the sequential progression 
from phase 1a to phase 1b. Overall, this type of design was not 
only administratively light and efficient, but also cost saving. It 
appeared ideally suited for a fast track to the field, accelerat-
ing development toward efficacy trials. Last, but not the least, it 
allowed head-to-head comparison of safety and immunogenic-
ity data in 2 different populations.

This phase 1a/1b trial showed the vaccine formulations 
to be safe as no vaccine-related serious AE was observed. 
Reactogenicity was generally good. Local and systemic 
AEs were of low-grade severity, both in nonexposed and in 
exposed populations. Interestingly, nonexposed European 

Figure 5. Antibody-dependent cellular inhibition (ADCI). Purified anti-P27A immunoglobulin from phase 1a volunteers (n = 8 per group) were evaluated in ADCI using 
a model of infection of human red blood cells by Plasmodium falciparum in presence of human monocytes. A, Results expressed as the delta post–pre (day 84–day 0) of 
percentage of inhibition of the infection. Lines represent medians and quartiles. A Mann-Whitney test was performed to compare adjuvant formulations (Alhydrogel or glu-
copyranosil lipid adjuvant stable emulsion) and the P value is indicated. B–F, Correlations between ADCI and anti-P27A immunoglobulin G isotypes at D84 with Pearson r, P 
value, and 95% confidence bands. Abbreviations: ADCI, antibody-dependent cellular inhibition; GLA-SE, glucopyranosil lipid adjuvant stable emulsion; IgG, immunoglobulin 
G; IgM, immunoglobulin M; SGI, sporozoite growth inhibition.
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volunteers reported more frequent local and systemic com-
plaints than malaria antigen–primed Tanzanian participants. 
These differences may be real or, rather, related to cultural per-
ceptions. Interestingly, formulation of P27A with Alhydrogel 
vs GLA-SE, a TLR4 agonist, displayed rather different AEs 
profiles, with significantly more frequent limitation in arm 
motion in GLA-SE groups for local AEs. Despite this differ-
ence, arm motion limitation was mostly self-limited, benign 
to moderate (grade 1 or 2) and reached grade 3 in only 1 occa-
sion. In contrast, comparing cumulative AEs from groups 
receiving the same dose of antigen and adjuvant, Alhydrogel 
appeared more reactogenic than GLA-SE in terms of systemic 
AEs. These comparisons have to be taken nonetheless with 
caution because of the sample size. This is in agreement with 
a previous first-in-human phase 1 study based on a GLA-SE 
formulated leishmaniasis vaccine [14]. The good tolerability 
of GLA-SE at the dosages of 2.5 and 5 μg was confirmed in the 
P27A trial as, irrespective of the P27A dosage (10 or 50 μg), we 
did not notice any evidence of induction of systemic inflam-
matory reaction.

The humoral immune response, the main secondary out-
come, was particularly robust in phase 1a volunteers, especially 
after immunization with 50  μg P27A formulated in GLA-SE 
2.5  µg, leading to specific antibody titers 10-fold higher than 
those obtained with Alhydrogel. Comparing both populations, 
it appears that antibody titers in Tanzanians required a higher 
adjuvant dosage (GLA-SE 5 μg) to reach titers comparable to 
the Europeans. These findings must be confirmed with larger 
number of volunteers, but several factors may explain this dif-
ference. First, the fact that most Tanzanian volunteers were 
naturally primed against P27A as demonstrated by higher day 
0 anti-P27A and anti–P. falciparum IgG background levels, an 
observation also reported by others [15], but so far not fully 
understood. Second, parasite infestation such as helminth 
infections may have contributed to a reduced response [16]. 
Other genetic (human leukocyte antigen) or environmental fac-
tors may have played a role also, including exposure to malaria 
itself [17].

Importantly, as demonstrated with sera from group 
CH-Alum/50 and CH-GLA2.5/50 volunteers, the P27A vaccine 
induced IgG antibodies able to inhibit parasite growth in ADCI 
assay, a test performed in blinded manner. IgG1 and IgG3 sub-
class responses known to exhibit cytophilic activity [6, 8] pre-
dominated. Data from this trial are in line with parallel findings 
that antibody response to a recombinant vaccine candidate 
including P27A was strongly associated with clinical protec-
tion (G. Corradin et al, submitted manuscript). Furthermore, 
they are also in agreement with a recent observation that ADCI 
activity was significantly associated with reduced risk against 
malaria [18]. A key outcome of this trial was the demonstration 
that that anti-P27A antibodies induced by formulation with 
Alhydrogel as well as GLA-SE were able to recognize the natural 

TEX1 protein as expressed by the parasite in vivo as well as in 
vitro in Western blot analyses.

This humoral response was supported by a mixed Th1/Th2 
cell-mediated immunity (see Supplementary Figure 2). Peaking 
between day 56 and day 84, IFN-γ, IL-2, and TNF-α responses 
from PBMCs were robust, both in combination with Alhydrogel 
as well as GLA-SE, a cytokine profile in agreement with previ-
ous vaccine trials with Alhydrogel or GLA-SE [14, 19]. IL-10 
and IL-5 were also induced, at lower levels, underlining the 
mixed Th1/Th2 response to P27A, comparable in African and 
Swiss volunteers.

In summary, the candidate vaccine P27A appears to be safe 
and able to generate a robust antibody-specific response with 
parasite growth inhibitory capacity. This was particularly true 
when the vaccine was formulated with GLA-SE 5 μg and P27A 
50  μg, the preferred formulation for the next developmental 
step of this candidate vaccine. The value of antigen P27A should 
now be challenged in preliminary efficacy trials using a con-
trolled human malaria infection in nonexposed and exposed 
subjects.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.
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Abstract 
T-cell responses are hypothesized to be essential for longevity and affinity 

enhancement of antibodies. Recent malaria blood stage vaccine trail with 

novel antigen, P27A, conjugated to a novel adjuvant, GLA-SE, demonstrated 

high safety, tolerance and enhancement of antibody responses
1
.  

Here, we investigated the magnitude and quality of T-cell responses induced 

by the vaccine P27A candidate. The GLA-SE adjuvant promoted enhanced 

CD4
+
 T-cell responsiveness in malaria pre-exposed Tanzanian volunteers. 

The response correlated with increased IgG1 titers and expansion of 

circulating Tfh cells after vaccination. CD4
+
 T cells with polyfunctional 

characteristics, coexpressing IL-2 and TNFa, as well as long-living central 

memory phenotype dominated the response in participants, who received the 

vaccine containing GLA-SE. In addition, the study also revealed that the 

magnitude of CD4
+
 T-cell responses is strongly impaired in the presence of 

on-going helminth infections during vaccination period.   

In conclusion, this study demonstrated that the choice of vaccine adjuvant can 

largely contribute and enhance malaria vaccine induced Th1 response in 

humans. In addition, the presence of helminth infections can drastically alter 

the vaccine outcome by impairing T-cell expansion and should not be 

neglected in future vaccine studies. 

 

Introduction  
Vaccination is one of the most successful and cost-effective public 

health interventions worldwide 
2
. It is essential for decreasing morbidity and 

mortality caused by infectious diseases especially in young children, who are 

yet to develop natural immunity.  

Despite being a preventable and treatable disease, malaria remains a major 

threat, especially in children and pregnant women in sub-Saharan Africa.  

Many efforts towards vector control and disease treatment are hindered by 

the increase of drug resistance and ineffectiveness, leaving malaria vaccine 

as an ultimate tool to combat the disease 
3
 

4
. For over 50 years now, 

researchers have worked on developing an effective malaria vaccine, but only 
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RTS, S (a subunit pre -erythrocyte stage vaccine) has been advanced to a 

phase lll clinical level. This vaccine is however challenged by low efficacy 
5
, 

which has been reported to depend on specific, not highly prevalent HLA 

genotypes 
6
. Thus, there is an urgent need for more potent malaria vaccine 

candidates. 

One of the most appealing malaria vaccine candidates is one targeting the 

blood stage of the parasite, which is the clinical stage of the disease 
7
.  

Previous blood stage vaccine candidates have been extensively evaluated 
8,
 
9
 

for their ability to induce effective antibody responses against circulating 

asexual parasites, however no one proven a success 
10

. Antibody response 

has long been known to be responsible for protection against blood stage 

infection 
11, 12, 13

, but all vaccine candidates so far were able to induce 

protection only against vaccine but not field parasites. Historically, effective 

vaccines are known to work based on the induction of potent neutralising 

antibodies.  Potent and long-lived antibody responses have been proposed to 

rely on T-cell support; therefor evaluating T-cell responses following blood 

stage vaccination is an essential study component. 

A novel subunit blood stage malaria vaccine, P27A, has been evaluated for its 

immunogenic potential
14

. This protein antigen is derived from exported protein 

in the Trophozoite stage of asexual plasmodium falciparum 
15

 and has shown 

to induce functional antibodies in pre-clinical and in phase one clinical trial 

conducted recently 
1
. Although it is safe and less costly, like other subunit 

vaccines, it is generally less immunogenic when administered alone. Thus, it 

requires administration with an adjuvant to enhance immunogenicity 
16

. Toll-

like receptor agonists are recently proven to be potent and specific stimulants 

of the innate immune system 
17

, enhancing specifically  Th1 responses 
18

. In 

this study a novel TLR4 agonist adjuvant, GLA-SE (Glucopyranosyl Lipid A 

formulated in stable oil emulsion) is formulated with the novel P27A antigen.  

Aluminium hydroxide adjuvant (Alhydrogel or Alum) 
19

, which is a classical 

adjuvant that has been used in the majority of FDA approved vaccines, was 

used for a direct back-to-back comparison with GLA-SE. It has been shown 

that strong adjuvants induce Th1 immune responses, which are required for 

development of high affinity antibodies and long-lived memory cells 
20

. It has 

been shown that Th1 responses following vaccination are down regulated by 
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helminth infection 
21

. Since helminth infection is common in the study area 
22

, 

we evaluated also their associated effects following vaccination. 

Thus, in the current study we focused on Th1 responses induced by the 

vaccine candidate (formulated with GLA-SE or Alhydrogel in direct 

comparison) and evaluated their magnitude, cytokine profiles and memory 

phenotypes. We also assessed the influence of helminth infection on vaccine 

induced CD4
+
 T-cell responses, since trial participants live in malaria endemic 

areas, where co-infection with soil-transmitted helminths is very common. 

 

Results 
 
P27A induces robust CD4+ T-cell responses in combination with GLA-SE 
This study assessed longitudinally the magnitude and kinetics of T-cell 

responses (CD4
+
 and CD8

+
) against P27A peptide by ICS and flow cytometry 

for 3 major Th1/Tc1 cytokines: IFNg, IL-2 and TNFa  (Fig.1 and Supp.Fig.1) in 

40 trial participants classified in 4 groups receiving different dose of P27A 

conjugated to Alum or GLA-SE (described in detail in the original study 
1
. At 

baseline, all participants had negative P27A-specific CD4
+
 T-cell responses 

measured by all 3 cytokines individually. These responses increased 

significantly and peaked at day 28 post-vaccination. The highest magnitude 

was observed in GLA-SE 5/50 and Alum/50 groups for IL-2 (0.575% vs. 

0.52%) followed by TNFa expression (0.485% vs. 0.4%). The magnitude of 

the responses slightly decreased, but persisted and remained robust at 126 

day post-vaccination (IL-2
+ 

0.37% vs. 0.406; TNFa
+
 0.26% vs. 0.3%) for the 

GLA-SE 5/50 and Alum/50 group respectively. The responsiveness 

(proportion of participants, which had a positive response after vaccination 

with 0.05% cut-off) was the highest (100%) in the GLA-SE group (8/8), 

followed by Alum50 (7/8) and decreased in participants receiving vaccines 

with less antigen and less adjuvant (5/8 for GLA-SE 2.5/50; 4/8 for GLA-SE 

2.5/10). Surprisingly IFNg expression was nearly negative in all participants at 

the tested time points after vaccination. To validate that T cells were 

functionally capable of expressing IFNg, PBMC from each participant for 

every tested time point was stimulated with Staphylococcus enterotoxin B 
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(SEB) in parallel to P27A stimulation (Supp.Fig.2). The data showed that 

SEB-specific CD4
+
 T cells can express highly robust levels of all 3 cytokines 

including IFNg, confirming that the lack of IFNg expression in P27A-specific T 

cells is not due to cell viability, but most likely due to the nature of the vaccine 

procedure. 
Since magnitude of the P27A-specific CD4

+
 T-cell responses was rigorously 

higher in the Alum/50 and GLA-SE 5/50 compared to the other two groups 

and included samples form baseline, they were further analysed more in 

depth in this manuscript. In addition, the groups’ participants received exact 

the same amount of P27A antigen allowing a direct comparison of the 

immunogenicity of the GLA-SE and Alum adjuvants. 

This study also evaluated magnitude and kinetics of P27A-specific CD8
+
 T-

cell responses (Supp.Fig.3), which fail to expand and were nearly absent in all 

participants after vaccination, a result, which was not surprising given the type 

of malaria antigen and adjuvants tested in this trial. 

  

Majority of P27A-specific CD4+ T- cells are coexpressing IL-2 and TNFa 
Vaccination with P27A induced robust expression of two cytokines IL-2 and 

TNFa in CD4
+
 T cells. We observed that trail participants, who developed high 

frequency of IL-2 expression also showed high proportion of TNFa and vice 

versa. To evaluated the correlation between the magnitude of IL-2 and TNFa, 

we plotted the proportion of P27A-specific CD4
+
 T cells positive for IL-2 total 

or TNFa total expression (gated within the CD3
+
CD8

-
CD4

+
CD45RA

-
 subset; 

background levels from medium only controls were subtracted) (Fig.2A). T-

cell response was measured from 2 groups: Alum/50 and GLA-SE 5/50, at 28 

days and 126 days post-vaccination. Highly significant correlation was 

observed for both groups and time points (r ≥ 0.9458, p ≤ 0.0001). This 

suggested that P27A-specific CD4
+
 T cells are coexpressing both cytokines, a 

phenotype, which is favourable for a quality immune response. Therefore, we 

evaluated the proportion of the double positive (IL-2
+
TNFa

+
) cells within the 

total cytokine expressing P27A-specific CD4
+
 T cells. Figure 2B shows that 

half of the cytokine positive cells are simultaneously expressing IL-2 and 

TNFa at both time points post-vaccination. The proportion of IL-2
+
TNFa

+
 cells 

was even higher in the GLA-SE group (56% at d28post) and this 
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polyfunctional-like phenotype persisted (59% at d126post) for several months 

post-vaccination. 

 
P27A-specific CD4+ T-cell expansion is significantly impaired in the 
presence of helminth infection. 
In order to examine the impact of helminth infection during vaccination period 

on T-cell development, we compared the magnitude of the P27A-specific T-

cell response between helminth negative and helminth positive trial 

participants. The study considered testing for the most common worms in the 

region: schistosoma, strongyloides and hookworm infection. From 40 

participants, 13 (2 were placebo and not considered for this analyses) were 

diagnosed positive at some point during the vaccination period. Most frequent 

were hookworm infections, followed by strongyloides and schistosoma 

infection. The majority of the cases were diagnosed at baseline, and several 

participants were positive at multiple time points during vaccination period. 

The frequency of P27A-specific CD4
+
 T cells was overall significantly reduced 

in the helminth positive participants (0.11% vs. 0.33%) at 28 days post last 

vaccination (Fig.3A) and this negative effect persisted months later at 

d126_post (0.06% vs. 0.20%) (Fig.3C). Furthermore, we evaluated the impact 

of helminth infection in combination with different dose of antigen and type of 

adjuvant tested in this trial. Surprisingly, the T-cell magnitude was universally 

and severely impaired in all groups in the presence of helminth infection 

(Fig3.B), regardless of adjuvant type, peptide dose and time point, with fold -

decrease ranging from 2.5 to 2.9 at d28_post and 2.7 to 3.4 at d126_post 

(Fig.3.B). 

 
Reduced magnitude of P27A-specific IgG1 titer in the presence of 
helminth infection 
In addition to T-cell frequency, we examined the impact of helminth infection 

on p27-specific antibody response (data provided from original study 
1
). We 

compared the fold-increase of total IgG and subclass IgG 1, 2, 3 and 4 to 

baseline levels prior to vaccination between helminth negative and helminth 

positive trial participants. IgG1 was significantly reduced in helminthes 

positive participants at d28_post, which is partially reflected in slightly reduced 
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total IgG magnitude. This negative effect persisted months later at d182_post. 

Interestingly, other IgG subclasses and IgM were not affected by the presence 

of helminthes during vaccination period and showed similar levels of antibody 

titer increase at d28_post. 

 

P27A CD4+ T-cell magnitude strongly correlates with cTfh cell responses 
after vaccination with GLA-SE but not with Alum 

Current study (Hill at el, unpublished) showed that only volunteers receiving 

the GLA-SE adjuvanted vaccine had an expansion of the circulating T 

follicular helper cells (cTfh) measured 7 days post last vaccination (original 

data was kindly provided for this analysis). Th1 and Tfh cells differentiate of 

naïve CD4
+
 T cells into functionally distinct T helper subsets; however, their 

relationship is incompletely understood. Some data argues that Tfh and Th1 

cells share a common transitional stage through a signal mediated by STAT4, 

which promotes differentiation of both phenotypes 
23

. To explore the 

relationship of these two CD4
+
 T-cell subpopulations we compared the 

frequency of the P27A-specific CD4
+
 T cells (defined as IL2

+
TNFa

+
 within the 

CD3
+
CD8

-
CD4

+
CD45RA

-
 subset; background levels from medium only 

controls were subtracted) at 28 days post-vaccination to the expansion of cTfh 

cells measured 7 days post-vaccination (Fig.5). The comparison revealed that 

P27A-specific Th1 and cTfh-cell expansion strongly correlates only in 

participants receiving the GLA-SE vaccine (r=0.8201, p=0.0127), but not in 

combination with Alum (r=0.4947, p=0.3127). These data indicates that GLA-

SE may promote simultaneous Th1 and cTfh expansion through a common 

signalling pathway leading potentially to a more effective immunity to P27A.  

 

GLA-SE fostered P27A CD4+ T-cell expansion correlates with IgG1 titer. 
Production of high-affinity antibody responses is highly dependent on CD4

+
 T-

cell help, but is unclear to what extend magnitude of T-cell response supports 

or limits the magnitude and type of antibody response. In order to explore this 

relationship, we compared the frequency of the P27A-specific CD4
+
 T cells 

and antibody titers tested at 28 days post-vaccination (Fig.6). The proportion 

of the P27A-specific CD4
+
 T cells (defined as IL2

+
TNFa

+
 within the CD3

+
CD8

-

CD4
+
CD45RA

-
 subset; background levels from medium only controls were 
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subtracted) was determined for each vaccine participant from the Alum50 

(n=8) and GLA-SE 5/50 (n=8) group at 28 days post-vaccination. The T-cell 

responses were plotted against the antibody titers for total IgG and 

subclasses IgG1, 2, 3 and 4 (AB measurement was kindly provided by 

Steiner-Monard et al. 
1
). As demonstrated in Figure 6A, there was a strongly 

significant correlation between CD4
+
 T-cell expansion and total IgG titer 

(r=0.79, p=0.0197) but only after P27A-vaccination with GLA-SE and not with 

Alum adjuvant (r=0.2256, p=0.5912). Further more detailed analyses revealed 

that the magnitude of P27A-specific CD4
+
 T cells induced by GLA-SE 5/50 

correlates even more significantly with the titer of IgG1 (r=0.9102, p=0.0031) 

(Fig.6B), but any other IgG subclass (Fig.6C-D) or IgM responses 

(Supp.Fig.4B) do not correlate significantly with T-cell magnitude. 

 
P27A-specific CD4+ T cells have a predominant central memory 
phenotype after P27A vaccination with GLA-SE but not with Alum 
The CD4

+
 T-cell memory phenotype was determined by measuring surface 

expression of CD45RA and CD27 on P27A-specific cytokine-expressing (IL-2
+
 

and/or TNFa
+
) CD4

+
 T-cell subsets (Fig. 7A). The cells exhibited a 

predominant central memory phenotype (CD45RA
-
CD27

+
) in the GLA-SE 

5/50 group (64%) 28 days post last vaccination and this phenotype persisted 

at a similarly high frequency (67%) even 126 days post, suggesting a long-

living memory potential of the P27A-specific T cells (Fig. 7B). In parallel the 

proportion of the central memory P27A-specific T cells was strongly reduced 

in the Alum/50 group (48%) at d28post and even more (41%) at d126post. To 

insure that the development of CM cells is specific for P27A vaccination, we 

analysed the memory phenotype of the total CD4
+
 T cells for the two vaccine 

groups and placebo as comparison, at 28 days and 126 days post vaccination 

and baseline in addition (Supp.Fig.6). The proportion of total CM CD4
+
 T cells 

was very similar among the 3 groups and the different time points (ranging 

from 31% to 34%), confirming that the development of CM phenotype of T-cell 

subsets specific for P27A antigen is due to vaccination. 
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Discussion  

In this study we evaluated the expansion of CD4
+
 T cells, their cytokine 

expression profile and memory phenotype following vaccination with a novel 

blood stage malaria vaccine candidate. In addition we evaluated the impact of 

soil transmitted helminth infection on P27A-specific T-cell magnitude.  

P27A vaccination demonstrated enhanced CD4
+
 T-cell responses especially 

when administered with high dose GLA-SE.  A pronounced expansion of IL-2 

and TNFa specific CD4
+
 T cells was observed. IFNg has been considered as 

a canonical cytokine defining Th1 CD4
+
 T cells, but other cytokines such as 

IL-2, TNFa and IL-17 have been reported to be produced simultaneously. This 

observation was shown in other blood stage vaccine 
24

 and tuberculosis 
25

 

vaccines, which were also formulated with GLA-SE adjuvant. More ever, the 

time at which IFNg is produced determines its protective or adverse outcome 

during malaria infection 
26

, the earlier production during infection the better 
27

. 

Many studies have reported that early IFNg expression is associated with 

protection 
28

. Secretion of IFNg at later time points during infection has been 

associated with severe malaria outcome, including activation of secretion of 

chemokines and adhesion molecules responsible for sequestration of infected 

red blood cells and infiltration of immune cells into the blood brain barrier 
29

. 

Since IFNg has also been shown to be a key support for production of class 

switched antibodies by the B-cells and activation of macrophages to 

phagocytosis infected red blood cells, then we can hypothesize that modest 

expansion of IFNg producing CD4
+
 T cells should be ideal. Due to existence 

of fine line between IFNg protection and immunopathology during malaria, it is 

important to understand the optimal level required, and be able to modulate it 

with suitable adjuvants. It is possible that vaccine induced CD4
+
 T cells 

express moderate levels of IFNg at an earlier time point post vaccination and 

the current study missed their detection since the earliest T cell evaluation 

was done 28 days post vaccination. Future studies can address this question 

by performing more detail longitudinal kinetics.  
In this study, T cell responses was characterised by Polyfunctional capacity 

shown by concurrent expansion of TNFa and IL2 cytokine producing CD4 T 
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cells.  This was observed in the advanced malaria candidate vaccine RTS S 

30
, which was also formulated with a similar TLR agonist adjuvant AS01. 

There was no production of IFNg observed upon vaccination with Alum or 

GLA-SE, which was also seen in a blood stage antigen AMA1 when 

vaccinated with GLA SE in naïve and malaria exposed participants.  

Presence of helminth infection in some participants showed decreased P27A 

specific CD4
+
 T-cell responses. It is known, to what extend cells of innate 

immune system can phagocytize helminthes for antigen presentation, but they 

can excrete and secrete products, which can be recognised by the pattern-

recognition receptors of the innate immune system 
31

. However to evade the 

immune response, helminthes developed the ability to down regulate 

expression of the PRR Toll-like receptors 
32

 and use this as a survival strategy 

to persist in human hosts. This phenomenon could explain lower magnitude of 

T-cell responses in helminth positive trial participants as a result of hindered 

activity of the Toll-like receptor agonist GLA-SE adjuvant due to decreased 

TLR-surface levels.  

In conclusion all together, the current study has demonstrated that choice of 

adjuvant should be carefully considered just as choice of antigen, since 

adjuvants are powerful modulators and attractive way of enhancing vaccines. 

More importantly this work also showed that presence of helminthes during 

vaccination significantly harms the development of immune responses. 

Therefor, helminth infections in trial participants should not be neglected but 

considered and evaluated in future studies, since treatment prior to 

vaccination with anthelmintics may drastically improve vaccine outcomes.  

 

 

Materials and methods 

Ethics Approval  
Ethical and regulatory review boards in Tanzania, the Ifakara Health Institute 

review board (IHI-IRB, #30-2013), the National Institute for Medical Research 

(NIMR/HQ/R8a/Vol.IX/1742) and the Tanzanian Food and Drug 

Administration (TFDA13/CTR/004/03) approved this study protocol. The study 

was undertaken in accordance with the latest revision of the Declaration of 
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Helsinki (Fortaleza, Brazil, October 2013) and the ICH Good Clinical Practices 

(ICH-GCP Guidelines).  

 
Study population 
Adult male volunteers aged 18-45 years, with general good heath and having 

lived in areas of Tanzania with minimal malaria transmission were eligible to 

participate in the study. Subjects with Symptoms, physical signs or laboratory 

values suggestive of systemic disorders, including � renal, hepatic, 

cardiovascular, pulmonary, skin, immunodeficiency, psychiatric and other 

conditions, which could interfere with the interpretation of the trial results or 

compromise the health of the volunteers were excluded from study� . 

Females were not included due to risk of pregnancy since contraception is not 

a common practice in the region. Written consent was obtained from all 

participants before entering the study. Infection with helminth was not an 

inclusion criterion but participants were tested during trial period, and were not 

terminated from the study if found positive at and time point. 

 

Study design  
The study was designed as a single-center, staggered randomized, double 

blind, and controlled trial. Volunteers were randomized and allocated (on a 4:1 

basis) in a dose-escalating manner to 4 groups. Each group included 10 

subjects, 8 of whom were injected intramuscularly in the non-dominant arm 

with 50μg P27A + Alhydrogel® (group 1B), 10μg P27A + 2.5μg GLA-SE 

(group 2B), 50μg P27A + 2.5μg GLA-SE (group 3B), 50μg P27A+ 5μg GLA-

SE (group 4B) and 2 subjects injected with Verorab® as vaccine control 

respectively. All injections were performed at days 0, 28 and 56 with a follow-

up of 6 months. The study was conducted from August 2014 to April 2016.  

  

Blood Samples collection and processing  
For immunological evaluations, peripheral blood was collected in tubes 

containing EDTA from all eligible and consenting volunteers before first 

vaccination (at baseline) 3 months after first vaccination and at six months 

after first vaccination. Peripheral blood mononuclear cells (PBMCs) were 

isolated by Ficoll-Hypaque density gradient centrifugation according to 

standard protocols and stored in liquid nitrogen in Fetal calf serum with 10%-
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DMSO until analysis. 

  

Measurement of cytokine responses following vaccination 
To evaluate cytokine production following vaccination, PBMCs were thawed in 

complete medium (10% FCS in RPMI with Glutamine and Penicillin/ 

Streptomycin) containing benzonase (25KU, Novagen, 70664-3), washed and 

rested for 2 hours (5% CO2 at 37*C). Trial samples from different time points 

for any given participant were analysed simultaneously in order to avoid 

experimental variability. A total of 1.5 million PBMC (per visit and participant) 

were stimulated with P27A peptide (50ug/ml) or Staphylococcus enterotoxin B 

antigen (SEB, 100ug/ml) as a positive control or incubated in medium only 

(background control) over night (14 hours) at 37*C. Brefeldin-A  (Sigma, 

B7651) was added at 4 hours. Afterwards stimulated cells were washed and 

stained with live/dead fixable aqua fluorescent reactive dye, followed by 

surface staining with anti-CD3_PacBlue (UCHT-1, BD), anti-CD8_AF700 

(HIT8a, Biolegend), anti-CD4_perCPCy5.5 (Oct4, Ebioscience), anti-

CD45RA_PE-Cy7 (L48, BD) and anti-CD27_APC-H7 (Clone M-T271) BD. 

Cells were washed, fixed and permeabilized and intracellular stained with the 

following: anti-TNFα_FITC (MAb11, BD), anti-IL2_PE (MQ1-17H12, BD) and 

anti-IFNg_APC (B27, BD). Stained cells were acquired on a LSR II flow 

cytometer (BD Biosciences; San Jose, CA) and FACS data was analyzed by 

FlowJo software V10.1 (Tree Star). Color compensation was performed using 

beads stained for each fluorochrome. 

 

Diagnosis of Helminth infection 
For helminth evaluation, stool and urine samples were collected and tested at 

baseline and during second and third vaccinations. The study tested for: 

schistosoma, strongyloides and hookworm infection. Kato Katz method was 

used to test for the presence of schistosoma, hookworm and hymenolepis 

eggs, while Baermann method was used to test for strongyloides larva. Kato 

Katz method was used as described, briefly: the Kato template placed on a 

microscopic slide was filled with stool sample, which was sieved through a 

plastic screen paper. On removal of the template, a cellophane tape wetted 

on glycerol malachite green solution was put on sample and the slide was 
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inverted, pressed to evenly distribute the sample. The slide was incubated on 

a rack for 20 minutes and egg count was done on a compound microscope. 

For strongyloides larvae detection, by the Baermann technique, peanut size 

stool sample is placed on a piece of cotton gauze tied and put in the funnel 

connected to a tubing which is then filled with Luke warm water. It is 

incubated for 2 hours, collected through the tubing in a 50ml falcon tube, 

followed centrifugation. The sediment is placed on microscopic slide with 

cover slip and examined under light microscope.  
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Figures with legends 
	

 
Figure 1. P27A-specific CD4+ T-cell responses induced after vaccination 
PBMC from 40 study participants (10 for each of the four trial groups indicated 

on top) collected at 3 different time points (indicated at the bottom; day 0 was 

assessed only for group Alum/50 and GLA-SE 5/50) were stimulated over 

night with P27A. CD4
+
 T cells were identified by surface and intracellular 

cytokine staining as described in Supp. Figure 1. Responses were measured 

by flow cytometry and evaluated for IL-2, TNFa and IFNg cytokine expression, 

represented as a proportion (%) of the memory CD4
+
 T cells (CD45RA

-
). 

Background levels (from PMBC cultured with medium only in parallel) were 

subtracted. Each symbol represents a single participants, blue lines (P27A- 

vaccine participants) and red lines (placebo participants) connect 

measurements at baseline, 28 days post and 126 days post 3
rd

 vaccination.  
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Figure 2. Coexpression of IL-2 and TNFa in P27A-specific CD4+ T cells  
Frequency of CD3

+
CD4

+
 T-cell cytokine responses were measured by flow 

cytometry in 16 participants (groups indicated on the graphs) after stimulation 

with P27A peptide. (A) Linear regression analysis of P27A-specific CD4
+
 T 

cells detected by ICS for IL2 total or TNFa total and represented as a 

proportion of the memory CD4
+
 T cells (CD45RA

-
). Each symbol represents a 

participant either from the Alum/50 group (orange stars) or GLA-SE 5/50 

group (green diamonds) tested at 28 days post  (filled symbols) and 126 days 

(open symbols) post 3
rd

 vaccination. Graphical representation and statistical 

analysis were performed with PRISM6, (p-values indicated on the plot) and 

calculated with nonparametric Spearman correlation. (B) SPICE analysis as 

pie charts representing the median proportions of cells expressing both 

IL2/TNFa or only one of the two cytokines among the memory CD4
+
 T-cell 

subset expressing cytokines total.  
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Figure 3. Comparison of P27A-specific CD4+ T-cell expansion in trial 
participants positive and negative for helminth infection 
Responses were measured by ICS and flow cytometry after PBMC stimulation 

with P27A antigen, and analysed for double IL-2
+
TNFa

+
 cytokine expression 

as a proportion of the memory CD4
+
 T-cell subsets (CD45RA-). (A,C) Direct 

comparison of P27A-specific CD4
+
 T-cell responses between all 32 trial 

participants (8 placebo participants were excluded), grouped depending on 

helminth status: positive (red) and negative (blue), measured 28 days and 126 

days after the 3rd vaccination respectively. (B, D) Comparisons of the P27A-

specific CD4
+
 T-cell responses between helminth positive and negative 

participants within each of the 4 vaccine groups (indicated at the bottom), 

middle lines represent medians. Graphical representation and statistical 

analysis were performed with Prism6, differences (p-values indicated with * on 

the plots) were calculated with Mann Whitney test. 
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Figure 4. Comparison of P27A-specific antibody responses in trial 
participants positive and negative for helminth infection 
Total IgG (A,B) and IgG subclasses 1-4 (C-D) were measured at baseline, 28 

days post and 182 days post 3
rd

 vaccination (data provided by Steiner-

Monard et al. 
1
). Each symbol represents a vaccine participant (32 total) 

positive (red) or negative (blue) for helminthes. Responses are presented as 

fold increase to baseline levels, middle lines represent medians. Graphical 

representation and statistical analysis were performed with Prism6, 

differences (p-values are indicated on the plots) were calculated by unpaired t 

test with Welch’s correction. 
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Figure 5. Correlation analysis between P27A-specific CD4+ T-cell 
frequency and cTfh expansion after vaccination 

Frequency of CD3
+
CD4

+
 T-cell cytokine responses in PBMC were detected by 

ICS and measured by flow cytometry after stimulation with P27A peptide. 

Background cytokine levels (PBMC in medium only) were subtracted. P27A-

specific CD4
+
 T cells were detected by coexpression of IL2

+
 TNFa

+
 and 

represented as a proportion of the total memory CD4
+
 T cells (CD45RA

-
). 

Each symbol represents a participant either from the Alum/50 group (orange 

stars, n=8) or GLA-SE 5/50 group (green diamonds, n=8) tested at 28 days 

post or 7 days post 3
rd

 vaccination for CD4
+
 T-cell or cTfh expansion 

respectively. Data for the cTfh was kindly provided by Hill et al. (unpublished) 

and plotted as fold change to baseline cTfh frequency. Linear regression 

analysis was performed for each group with Prism6 (correlation p-values: 

0.0127 for GLA-SE 5/50; 0.5915  for Alum/50 group). 
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Figure 6. Correlation analysis between P27A-specific CD4+ T-cell 
frequency and antibody titer after vaccination 
Frequency of CD3

+
CD4

+
 T-cell cytokine responses in PBMC were detected by 

ICS and measured by flow cytometry after stimulation with P27A peptide. 

Background cytokine levels (PBMC in medium only) were subtracted. 

Response frequencies were detected by coexpression of IL2
+
 TNFa

+
 and 

represented as a proportion of the total memory CD4
+
 T cells (CD45RA

-
). 

Each symbol represents a participant either from the Alum/50 group (orange 

stars, n=8) or GLA-SE 5/50 group (green diamonds, n=8) tested at 28 days 

post 3
rd

 vaccination. Data on antibody titers for P27A-specific total IgG (A) 

and IgG 1, 2, 3 and 4 (B-E) from the same time point was from the original 

publication 
1
. Graphical and correlation analysis was performed with Prism6 

for each group (GLA-SE 5/50 green diamantes n=8, Alum/50 orange stars 

n=8). Color-coded p-values are shown for each plot, determined by the 

Spearman rank correlation test. 
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Figure 7. Memory phenotype of P27A-specific CD4+ T cells after 
vaccination 
Frequency of CD3

+
CD4

+
 T-cell cytokine responses were measured by flow 

cytometry in 16 participants (n=8 in each group) after stimulation with P27A 

peptide. (A) A representative dotplot, from a single participant at 28 days 

post-vaccination, CD4 memory phenotypes were identified on CD27 and 

CD45RA gating, defining 4 subsets: naïve (CD45RA
+
CD27

+
), central memory 

(CM; CD45RA
-
CD27

+
), effector memory (EM; CD45RA

-
CD27

-
) and effector 

memory CD45RA
+ 

(EMRA; CD45RA
+
CD27

-
), gated on the IL2

+
 and/or TNFa

+
 

P27A-specific subpopulation.  

(B) SPICE analysis as pie charts representing the median proportions of cells 

within each of the four CD4
+
 T-cell subsets (Naive-red, CM-blue, EM-green or 

EMRA-yellow) in two vaccine groups at 28 and 126 days post 3rd vaccination. 
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Supplementary Figures 
 

 
 

Supp. Figure 1. Gating strategy for flow cytometric analysis of human 
PBMC used to identify CD4+ and CD8+ T cells and their subpopulations 
of interest 
Representative dotplots, from a single participant at 28 days post-vaccination. 

PBMC from whole blood were cultured in the presence of antigen (P27A 

peptide or SEB) or in medium only (background control) and stimulated over 

night. Cells were surface stained for CD3 (Pacific Blue), CD4 (PerCP), CD8 

(Alexa Fluor 700), CD27 (APC-Cy7) and CD45RA (PE-Cy7) and intracellular 

stained for IFNg (APC), IL-2 (PE) and TNFa (Alexa Fluor 488). Data was 

collected on BD LSR II flow cytometer and analysed with FlowJo v10 

software. Lymphocytes are identified by their scatter properties (FSC-A x 

SSC-A plot), then doublets were excluded by gating on SSC-A x SSC-H and 

FSC-A x FSC-H sequentially. The viable CD3
+ 

T-cell population was identified 

by gating on CD3 x AmCyan-Aqua. CD4
+
 T cells and CD8

+ 
T cells were 

identified by gating on CD4 and CD8 respectively and further characterized 

for cytokine profiles on IFNg, IL-2 and TNFa by Boolean combination gates. In 

addition, memory phenotypes were assed by gating on CD27 and CD45RA.  

 

S
S

C
-A

 

S
S

C
-H

 

FSC-A SSC-A FSC-A 

FS
C

-H
 

AmCyan-Aqua 

P
ac

ifi
c 

B
lu

e 
 aC

D
3 

A
le

xa
 F

lu
or

 7
00

  a
C

D
8 

PerCP aCD4 

A
P

C
  a

IF
N

g 

P
E

  a
IL

-2
 

A
le

xa
 F

lu
or

 4
88

  a
TN

Fa
 

P
E

-C
y7

  a
C

D
45

R
A 

A
P

C
  a

IF
N

g 

P
E

  a
IL

-2
 

A
le

xa
 F

lu
or

 4
88

  a
TN

Fa
 

P
E

-C
y7

  a
C

D
45

R
A 

Alexa Fluor 700  aCD8 Alexa Fluor 700  aCD8 Alexa Fluor 700  aCD8 APC-Cy7  aCD27 

PerCP  aCD4 PerCP  aCD4 PerCP  aCD4 APC-Cy7  aCD27 



	 47 

	
	
Supp. Figure 2. Longitudinal evaluation of SEB-specific CD4+ T cells 
expressing IL-2, TNFa and IFNg. 
PBMC form 40 study participants collected at 3 different time points (indicated 

below) were stimulated over night with SEB. CD4
+
 T cells were identified by 

surface and intracellular cytokine staining as described in Supp. Figure 1. 

Responses were measured by flow cytometry and examined for IL-2, TNFa 

and IFNg cytokine expression, represented as a proportion of total memory 

CD4
+
 T cells (CD45RA

-
). Each symbol represents a single participants (10 for 

each of the four trial groups indicated on top), blue lines connected 

measurements for 3 different time points during vaccine trial, indicated at the 

bottom (day 0 was assessed only for group Alum/50 and GLA-SE 5/50)  
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Supp. Figure 3. Longitudinal evaluation of P27A-specific CD8+ T cells 
expressing IL-2, TNFa and IFNg.	
PBMC from 40 study participants collected at 3 different time points (indicated 

at the bottom; day 0 was assessed only for group Alum/50 and GLA-SE 5/50) 

were stimulated over night with P27A. CD8
+
 T cells were identified by surface 

and intracellular cytokine staining as described in Supp.Fig.1. Responses 

were measured by flow cytometry and evaluated for IL-2, TNFa and IFNg 

cytokine expression, represented as a proportion (%) of the memory CD4
+
 T-

cell subset  (CD45RA
-
). Each symbol represents a single participant (10 for 

each of the four trial groups indicated on top), blue lines (P27A vaccines) and 

red lines (placebo participants) connect measurements at different time points 

during vaccine trial. 
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Supp. Figure 4. Correlation analysis between P27A-specific CD4+ T-cell 
frequency and IgG and IgM titers after vaccination 
CD4

+
 T-cell frequencies were detected by coexpression of IL2

+
 TNFa

+
 and 

represented as a proportion of the total memory CD4
+
 T cells (CD45RA

-
). 

Cellular and humoral responses were evaluated at 28 days post 3
rd

 

vaccination. Data on antibody titers for total IgG (A) and IgM (B) was kindly 

provided by Steiner-Monard et al.
1
. Correlation analysis was performed with 

Prism6, color-coded p-values are shown for each plot. 
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Supp. Figure 5. Comparison of P27A-specific IgG and IgM responses in 
trial participants positive and negative for helminth infection 
Total IgG (A) and IgM (B) were measured at baseline, 28 days post and 182 

days post 3
rd

 vaccination (data provided by Steiner-Monard et al. 
1
). Each 

symbol represents a vaccine participant (32 total) positive (red) or negative 

(blue) for helminthes. Responses are presented as fold-increase to baseline 

levels, middle lines represent medians. Graphical representation and 

statistical analysis were performed with Prism6; differences (p-values are 

indicated on the plots) were calculated by unpaired t test with Welch’s 

correction. 
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Supp. Figure 6. Comparison of Memory phenotype of total CD4+ T cells 
Frequency of CD3

+
CD4

+
 T-cell cytokine responses were measured by flow 

cytometry in 20 participants (1 placebo and 2 vaccine groups, indicated on the 

graph) after stimulation with P27A peptide. (A) Representative dotplot, from a 

single participant at d28 post-vaccination, CD4
+
 memory phenotypes were 

identified on CD27 and CD45RA gating.	 (B) SPICE analysis as pie charts 

representing the median proportions of memory subsets, after PBMC 

stimulation with P27A; measurement at 3 different time points as indicated on 

top 
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Chapter 4 
 

 
The adjuvant GLA-SE promotes human Tfh cell 

expansion and emergence of public TCR clonotypes 
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Abstract 
Long-lasting humoral immunity is the basis of successful vaccination. This immunity derives 
from the germinal centre response, where T follicular helper (Tfh) cells support the production of 
long-lived plasma cells and memory B cells that provide protection against subsequent infection. 
Despite our understanding of the central role of Tfh cells in vaccine responses, there is currently 
no validated way to enhance the production or function of these cells in humans. Here, we show 
that the adjuvant GLA-SE enhances the extrafollicular plasmablast response and the magnitude 
of the circulating Tfh cell response in healthy Tanzanian volunteers inoculated with an 
experimental malaria vaccine.  This correlates with increased antibody titres after vaccination 
and the emergence of public TCRb clonotypes in cTfh cells in different individuals. This study 
demonstrates that altering vaccine adjuvants is a rational approach for enhancing the Tfh cell 
response in humans, thereby supporting the long-lived humoral immunity that is required for 
effective vaccines. 
  
Introduction 
Vaccination is one of the most powerful interventions for reducing the disability and death 
caused by infectious disease worldwide (1). Despite its success there are still numerous 
pathogens that are not controlled by current vaccination strategies, including HIV and 
Plasmodium spp, the parasites that cause malaria (2, 3). The majority of effective vaccines work 
by stimulating the production of antibodies that bind the surface of the pathogen to either block 
the pathogen’s ability to establish an infection, or recruit and stimulate other immune cells, 
resulting in the pathogen’s destruction. Antibody production after vaccination can occur from 
one of two cellular pathways, which are separated in time and anatomical space. The first wave 
of antibody production comes from the extrafollicular plasmablast response, in which short-lived 
antibody secreting cells (ASC) produce immunoglobulin for a few days, then die in situ in 
secondary lymphoid tissues (4). The second source of ASC is the germinal centre (GC) response. 
The GC is a specialised microenvironment that forms in secondary lymphoid tissues after 
immunisation, where antigen-activated B cells clonally expand within the B cell follicle and 
undergo somatic hypermutation (SHM) of their immunoglobulin loci. The process of SHM, 
followed by selection of GC B cells, results in the emergence of long-lived, high affinity, 
antibody-secreting plasma cells and memory B cells that are able to provide protection against 
subsequent infection (5). The GC response is absolutely dependent on a specialised subset of 
CD4+ T cells, T follicular helper (Tfh) cells, that provide growth and differentiation signals to 
GC B cells. Tfh cells mediate the positive selection of high-affinity B cell clones in the GC and 
thereby determine which B cells exit the GC as plasma cells or memory B cells (5). Because Tfh 
cells are key determinants of the long-lived humoral immunity that arises from the GC, they 
represent an exciting therapeutic target through which vaccine strategies could be improved (6). 
 
Adjuvants are an attractive way to improve vaccine responses in humans.  This is reflected in the 
licencing of four new adjuvants in recent years: MF59, AS01, AS02 and AS04 (7). Nevertheless, 
the number of adjuvants that are in use in current vaccines is still very limited, as is our 
understanding of how adjuvants boost a specific cellular immune response in humans. While 
studies in animals indicate that adjuvants are a logical way to boost the GC and Tfh cell response 
(8-10), translational work is needed to determine if using novel adjuvants is able to boost GC and 
Tfh cell responses in humans. Despite Tfh cells being central for long-term humoral immunity, 
most human vaccine studies have not included these cells in their analysis, rather focusing on 
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cytokine-producing CD4+ T cells (11), an approach that does not accurately capture vaccine-
reactive Tfh cells (12). The tendency to omit the analysis of Tfh cells in human vaccination 
studies may be due to difficulty in studying these cellular responses. Tfh cells are located in 
secondary lymphoid tissue, which is not easily sampled during vaccine trials. To circumvent this 
issue, a population of circulating Tfh-like (cTfh) cells that are found in the blood and 
phenotypically and functionally resemble lymphoid tissue Tfh cells, can be used as a biomarker 
of ongoing Tfh cell responses (13-18). Here, we have developed a method to study the cellular 
and transcriptomic cTfh cell response in humans after vaccination, using influenza as a model 
vaccine. We have then applied this method to determine whether the toll-like receptor (TLR)4-
stimulating adjuvant Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE, developed by 
the Infectious Disease Research Institute, Seattle, USA) can augment cTfh cell responses.  In an 
experimental malaria vaccine phase 1b clinical trial in Tanzania, we show that a GLA-SE-
formulated vaccine is superior to one formulated with Aluminium Hydroxide (Alum) in the 
induction of both the extrafollicular antibody response and the formation of cTfh cells. Whilst 
the different adjuvants did not induce differential gene expression profiles in cTfh cells, multiple 
GLA-SE vaccinated individuals had cTfh cells expressing public TCRb clonotypes, indicating 
that GLA-SE may support the recruitment of T cells bearing specific TCRs to the Tfh cell 
compartment or promote their subsequent expansion. This demonstrates that experimental 
vaccine adjuvants offer a viable strategy to enhance Tfh responses and long-lived humoral 
immunity in humans. 
 
 
Results 
cTfh cells clonally expand after vaccination 
The aim of our study was to determine whether the adjuvant GLA-SE promotes a cTfh cell 
response in humans. The location of the GC response, within secondary lymphoid tissues, is one 
of the major barriers to understanding how different vaccines, or their adjuvants, affect GC 
biology in humans. For this reason, circulating cells that can act as biomarkers of the GC 
response are an area of intense interest. In particular, it is well established that there is a 
population of blood CXCR5+CD4+ cells that expands after vaccination (14, 17, 18), and that 
these cTfh cells phenotypically and functionally resemble lymphoid tissue Tfh cells (6). There is 
considerable heterogeneity in the CXCR5+CD4+ T cell compartment, and multiple subsets have 
been described within this population (19). Because of this heterogeneity, we first sought to 
identify the subpopulation of CXCR5+CD4+ cells that were activated by vaccination to enable us 
to refine our analyses. Inducible COStimulator (ICOS) and CD38 are cell surface receptors 
expressed by tonsillar Tfh cells (Supp. Fig. 1), suggesting that cTfh cells expressing these 
markers may represent a circulating surrogate of activated lymphoid tissue Tfh cells. We first 
tested expression of these cell surface receptors after seasonal subunit influenza vaccination, a 
routine inoculation in which cTfh cell expansion has been well described (17). We observed an 
expansion of ICOS+CD38+CXCR5+PD-1+ cTfh cells in healthy UK volunteers (n=41) seven 
days after vaccination (Fig. 1A, B), the peak of the cTfh cell response (17, 20). This expansion of 
ICOS+CD38+CXCR5+PD-1+ cTfh cells correlated positively with the increase in influenza-
specific antibodies seven days after vaccination (Fig. 1C, D). These data indicate that 
ICOS+CD38+CXCR5+PD-1+ cTfh cells are a good biomarker of tissue Tfh cells. 
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To gain insight into how vaccines qualitatively alter the Tfh cell response, we performed RNA 
sequencing of 200 ICOS+CD38+CXCR5+PD-1+ cTfh cells immediately prior to, and seven days 
after, influenza vaccination in four individuals. Differential gene expression analysis of these 
cTfh cells indicated upregulation of CXCR3, and downregulation of CCR6 transcripts in cTfh 
cells isolated seven days after vaccination (Fig. 1E).  This difference in mRNA was also 
reflected at the protein level, with the proportion of CXCR3+ cTfh cells increasing after 
influenza vaccination, with a reciprocal decrease in CCR6+ cTfh cells (Fig. 1F). This is 
consistent with previous work demonstrating that influenza vaccination results in a Th1-skewing 
of the Tfh cell population (17). Transcriptomic analysis also enabled an assessment of the T cell 
receptor (TCR) usage within cTfh cells. Assessment of the nucleotide sequence encoded by the 
CDR3 region of the TCRb chain revealed ~160 clonotypes per person that were unique at the 
amino acid level prior to vaccination (Fig. 1G), a number that is consistent with the 200 cells 
sequenced. After vaccination, the number of unique clonotypes identified per person was 
reduced, consistent with clonal expansion after vaccination (Fig. 1G). This reduction in diversity 
was driven by the expansion of a handful of clones: prior to vaccination, most clonotypes 
represented less than 2% of the total CDR3 reads, whereas seven days after vaccination, 6-10 
unique CDR3 sequences per individual were present at higher frequencies (Fig. 1H). This 
indicates that the cTfh cell response to influenza vaccination is dominated by the expansion of a 
small number of T cell clones. The flow cytometric profiling and RNA sequencing identifies the 
ICOS+CD38+CXCR5+PD-1+ cTfh cell population as a biomarker of Tfh cell responses, and 
provides a quantitative and qualitative way to assess the biology of these cells during human 
vaccine trials.  
 
GLA-SE promotes long-lasting IgG responses in humans 
The P27A antigen is a 104 amino acid peptide of the PFF065c protein from the malaria-causing 
protozoan Plasmodium falciparum. Because seroreactivity to P27A is high in populations 
naturally exposed to malaria, and anti-P27A IgG can inhibit parasite growth in vitro (21), P27A 
offers a rational vaccine target to prevent malaria disease.  In a phase Ib clinical trial in malaria 
pre-exposed adults from Tanzania, the P27A peptide (50 microgram) was formulated with one of 
two adjuvants: the widely used Alum (Alhydrogel®), or the experimental adjuvant GLA-SE (5 
microgram), a synthetic TLR4 agonist, enabling side-by side comparisons (22). The volunteers 
were given three doses of the vaccine, each one month apart, with blood samples taken for 
serology at multiple time points over a 34-week period (22)  (sampling schedule in Fig. 2A). We 
first determined the antibody response to each vaccine and found that P27A induced a higher 
anti-P27A IgG response when in GLA-SE than when in Alum (Fig. 2B). Moreover, in contrast to 
Alum, a significant increase in serum anti-P27A IgG titres was observed 28 days after the third 
vaccination in the GLA-SE group (Fig. 2C), a time when vaccine specific antibodies are derived 
from both extrafollicular and GC-derived ASC. Despite this increase in antibody titre in the 
GLA-SE adjuvanted group, there was not a significant increase in the frequency of circulating 
CD38++CD20-CD19+ ASC seven days after the third vaccination in either group relative to 
baseline (Fig 2D, E).  
 
GLA-SE stimulates the extrafollicular ASC response 
Antibody is derived from two cellular sources after vaccination. The first is an extrafollicular 
antibody response from ASC that typically have not undergone SHM and die a few days after 
their formation, generating a short burst of antibody. The second source of antibody is ASC that 
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are generated in the GC response. The GC-derived ASC have B cell receptors (BCRs) that have 
undergone somatic mutation and bind antigen with increased affinity. After differentiation in the 
GC, ASC home to the bone marrow where they persist. To investigate the characteristics of 
vaccine-induced ASC, we performed V(D)J RNA sequencing of antibody repertoires in blood 
ASC from all individuals seven days after the third vaccination. The analysis revealed that 
individuals with high titre antibody responses (anti-P27A IgG >500 AU) had greater clonal 
expansion of ASC seven days after the third vaccination (Fig. 3A, B and Supp. Fig. 2). 
Strikingly, these responding individuals had an enrichment for clonotypes with fewer somatic 
mutations in their variable region (including CDR1, FR2 and CDR2) seven days after the third 
vaccination, compared to the blood sample obtained prior to vaccination (Fig. 3C-E). This 
suggests that high titre responders are initiating an extrafollicular antibody response more 
robustly than low responders. This decreased frequency of mutations occurred more frequently 
in GLA-SE vaccinated individuals than in those that received the Alum-formulated peptide (Fig. 
3F), suggesting that GLA-SE stimulates extrafollicular ASC responses more efficiently than 
Alum.   
 
GLA-SE enhances cTfh cell responses  
Early antibody production after vaccination provides short term protection against subsequent 
infection, whereas long-lived GC-derived ASC can produce protective antibodies for years. Tfh 
cells regulate GC size and are essential for the emergence of long-lived plasma cells and memory 
B cells from the GC, therefore boosting Tfh cell number is a rational strategy to enhance vaccine 
responses (6).  In this trial, only volunteers receiving the vaccine containing GLA-SE had an 
expansion of the ICOS+CD38+CXCR5+PD-1+ cTfh cell population seven days after the third 
vaccination (Fig. 4A-C), and the increase in cTfh cell frequency correlated positively with an 
increase in anti-P27A IgG 28 days after the third vaccination (Fig. 4D). This demonstrates that 
altering the vaccine adjuvant is a rational approach to enhance the magnitude of the cTfh cell 
response in humans. These data show that GLA-SE can provoke a robust immune response in the 
context of the very high pre-existing antibody titres induced by the previous two P27A 
vaccinations. This finding is critical in cases where pre-existing serological immunity may 
impact on vaccine responses, such as in malaria endemic regions.   
 
GLA-SE promotes shared TCRb clonotypes in cTfh cells 
As GLA-SE quantitatively altered the cTfh cell response in humans, we wanted to determine if it 
also has a different qualitative effect compared to Alum on this cell population. As established in 
our UK influenza vaccination study (Fig. 1), we performed total RNA-sequencing on 150-200 
ICOS+CD38+ cTfh cells per person prior to vaccination, and seven (d63) and 28 (d84) days after 
the third vaccination. There was no significant alteration in the cTfh cell transcriptome between 
adjuvant groups (Alum n=7, GLA-SE n=8) seven days after the third vaccination (Fig. 4E). This 
suggests that while this adjuvant can impact the magnitude of the Tfh cell response, it is not 
likely to alter Tfh cell function. To determine whether adjuvant had an effect on the clonality of 
the cTfh response, we examined TCRb sequences in our RNA sequencing dataset. Within the 
Alum group, we identified ten TCRb clonotype sequences that were in common between 
samples (five distinct clones, each present in two separate samples), however these were 
typically only shared within individuals at different time points (Fig. 4F). In the GLA-SE-
vaccinated group, of the nine distinct clones that were common between two different samples, 
six were public clonotypes, shared between different individuals (Fig. 4G). Strikingly, these 
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shared clones were not typically present prior to vaccination, or twenty-eight days after the third 
vaccination, but rather were found at the peak of the Tfh response in five out of the eight GLA-
SE-vaccinated individuals (seven days after the third vaccination: Fig. 4H, G, Supplementary 
Table 1). These data indicate that GLA-SE may promote the recruitment of T cells bearing 
common TCR clonotypes into the cTfh cell compartment or promote their subsequent expansion.  
 
Discussion 
Adjuvants are currently the most tractable way of altering how the human immune system 
responds to vaccination. The majority of vaccines on the market provide protection against 
subsequent infection by generating long-lived antibody responses. Therefore, adjuvants that 
enhance the magnitude of the GC response are a rational approach to enhancing humoral 
immunity. The size and the quality of the GC response depends on the number and function of 
Tfh cells that are induced by vaccination. While animal studies clearly show that different 
adjuvants can enhance the Tfh cell response (8, 9), these findings have not yet been translated 
into in vivo human studies.  Here, we show, consistent with work on mice (8), that one of the 
next generation adjuvants can be used to enhance the magnitude of the Tfh cell response in 
humans. The GLA-SE adjuvant not only increases Tfh cell number, which will enhance the GC 
response, but it also enhances the extrafollicular ASC response. The stimulation of both these 
ASC sources in parallel maximises the production of vaccine-specific antibodies. This 
demonstrates that GLA-SE can be used to make vaccines that potentiate Tfh cell and antibody 
responses in humans. 
 
Rapid antibody production after vaccination is typically provided by the extrafollicular 
plasmablast response.  These cells normally do not exhibit SHM in their antibody variable (V) 
genes because they do not derive from GCs. In this study, individuals who had detectable ASC 
expansion seven days after the third vaccination had fewer mutations in the FR1-FR3 regions of 
the antibody V genes, indicating these ASC are probably of extrafollicular origin. This is 
consistent with mouse studies showing that GLA-SE augments the formation of early ASC in the 
draining lymph node (8). Although these ASC (obtained 7 days after the third vaccination) 
contained a lower frequency of mutations than ASC isolated before vaccination, they still had 
some mutations present, indicating that the precursors of these ASC have probably previously 
participated in the GC response. In this study, malaria pre-exposed volunteers received three 
P27A vaccinations at monthly intervals. Thus, it is likely that the extrafollicular ASC sequenced 
at seven days after the final vaccination differentiated from memory B cells with low levels of 
mutation derived either from a GC reaction during previous P27A immunisation, or from natural 
malaria infection. These memory B cell derived ASC would be expected to have fewer somatic 
mutations than GC-derived ASC because memory B cells emerge from the GC before long-lived 
plasma cells (23).  
 
Analysis of the transcriptome of cTfh cells has the potential to yield information about how 
vaccination changes the phenotype of Tfh cells.  We observed changes in the transcriptome of 
these cells after seasonal influenza vaccination in UK adults. These included alterations in 
CXCR3 and CCR6 expression which are chemokine receptors known to be affected by this 
vaccination (17), demonstrating that RNA sequencing is a viable approach to detect phenotypic 
changes in cTfh cells induced by vaccination. However, our study detected few differences in the 
transcriptomes of cTfh cells induced by Alum compared to GLA-SE, suggesting that the main 
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difference in Tfh cells driven by adjuvants is quantitative rather than qualitative. The difference 
may come about from the distinct mechanisms of action of the two adjuvants – while GLA-SE is 
thought to exert its effect on subcapsular sinus macrophages via IL-18 (8), Alum does not act 
through TLRs at all but rather via the inflammasome (24). Our results indicate that despite 
different mechanisms of innate immune cell activation by these two adjuvants, they do not affect 
innate immune cells in a way that results in a qualitatively different Tfh cell response.  
Importantly, transcriptomic analysis revealed that GLA-SE also promotes the emergence of 
common TCRb clonotypes that are shared between different individuals. The emergence of so-
called public clonotypes is informative for vaccine design as it indicates that there may be a 
common epitope that could be used in vaccine formulations to enhance responses in numerous 
individuals. The recent discoveries of public antibody clonotypes has revolutionised whole-
parasite malaria vaccine strategies (25, 26) and here we extend this to the identification of public 
Tfh cell TCRb clonotypes induced after vaccination. The identification of these common 
clonotypes in cTfh cells from participants that received the GLA-SE formulated vaccine could 
simply be a consequence of the greater magnitude of the response, indicating that more T cell 
clones are recruited into the response. Nevertheless, using the knowledge of key antigenic 
peptides to which multiple individuals respond, combined with adjuvants that can better recruit 
these T cells into the response, is a rational way to enhance vaccine responses at the population 
level. Together, this study demonstrates that adjuvant should be a key consideration in vaccine 
design to maximise the generation of protective T-cell dependent humoral immunity in humans.   
 
 
Materials and methods 
 
Study Design 
The main research objective of this study was to characterise the cTfh and ASC cell responses to 
vaccination in humans at the cellular and molecular level. To that end, two related studies were 
performed: 1) Peripheral blood was tested from 41 healthy UK adults (18-98 years of age), who 
were vaccinated with the trivalent influenza vaccine (2016); and 2) 15 healthy HIV-negative 
Tanzanian male adults (18-45 years old) with minimal malaria exposure (urban Dar-es-Salaam), 
who were vaccinated with 50µg of P27A peptide formulated in either Alhydrogel® (n =7) or 5µg 
GLA-SE (n = 8) (22). Circulating Tfh cells and ASC were identified by flow cytometry in 
samples before and after vaccination and were flow-sorted for mRNA or BCR repertoire 
sequencing, respectively. Researchers remained blinded to adjuvant group throughout sample 
processing and data acquisition. All human blood and tissue was collected in accordance with the 
latest revision of the Declaration of Helsinki and the Guidelines for Good Clinical Practice (ICH-
GCP). The seasonal UK influenza vaccination cohort was collected with UK local research 
ethics committee approval (REC reference 14/SC/1077), using the facilities of the Cambridge 
Bioresource (REC reference 04/Q0108/44). The P27A vaccine phase 1b trial (ClinicalTrials.gov 
Identifier: NCT01949909, Pan African Clinical Trial Registry  
identifier:PACTR201310000683408) was conducted with approval from the Tanzanian Food 
and Drug Administration (TFDA, Dar-es-Salaam, TFDA13/CTR/004/03), National Institute for 
Medical Research (NIMR, Dar-es-Salaam, NIMR/HQ/R8a/Vol.IX/1742), Swiss Agency for 
Therapeutic Products (Swissmedic, Bern, Switzerland, ref.#2013DR1165), and ethical review 
boards at Ifakara Health Institute and the University of Lausanne. Use of P27A trial samples in 
the UK was approved by the UK Health Research Authority (REC reference 17/EE/0063) and 
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Babraham Institute Human Ethics Committee. Tonsil tissues were used to compare the 
phenotypes of circulating and germinal centre resident Tfh cells and were collected from UK 
adults undergoing tonsillectomy, under ethical approval from UK Health Research Authority 
(REC reference 16/LO/0453), at Cambridge University Hospitals, and processed at the 
Babraham Institute. Written informed consent was received from all volunteers.  
 
Isolation and sequencing of cTfh cells and ASC 
Cryopreserved peripheral blood mononuclear cells were thawed and rested for 1 hour at 37℃. 
Cell types were pre-enriched using MagniSort® CD19 Positive Selection followed by CD4 
memory T cell enrichment (eBioscience). Fc receptors on all cells were blocked using human 
IgG, followed by staining with panels outlined in Supplementary Table 2 and separation on BD 
Aria Fusion or Influx cell sorters. A dump channel consisting of viability dye and antibodies to 
CD14, CD16, and either CD19 or CD3 was used to exclude unwanted cell types from cTfh cell 
and ASC sorts, respectively. mRNA was isolated from sorted circulating Tfh cells 
(CD4+CD45RA-CXCR5+PD1+ICOS+CD38+ cells) using the Smart-seqV4 Ultra-low input RNA 
kit (Takara-Clontech) and sorting 200 cells directly into lysis buffer. cDNA libraries were 
subsequently generated using the NexteraXT DNA kit (Illumina), followed by sequencing on the 
Illumina Hi-Seq 2000 with approximately 50 million 100bp single-end reads per sample.  ASC 
(CD19+IgD-CD27+CD71+CD20-CD38++) were sorted into RNAlater (500-10,000 cells), and 
RNA isolated using RNeasy Micro kit (Qiagen). In all samples for which sufficient RNA was 
extracted, immunoglobulin heavy (IgG, IgM) chains were amplified using 5’RACE with unique 
molecular identifiers (UMI) as previously reported (27) with some modifications (D. Chudakov, 
personal communication), using Q5® High-Fidelity DNA Polymerase (New England BioLabs) 
and sequencing on the Illumina MiSeq (340x280bp paired-end).  
 
Serology 
IgG to influenza HA proteins was measured before and after vaccination by Luminex using 
magnetic beads coated with full length recombinant haemagglutinin proteins from 
A/California/07/2009 (Cali09) and B/Brisbane/60/2008 (Bris08), as previously reported (28). 
IgG to P27A was measured by ELISA as previously reported (22). Titres are represented as 
arbitrary units per mL and, where indicated, pre-existing IgG titres were subtracted to calculate 
vaccination-induced IgG responses.    
 
Differential gene expression analysis and V(D)J sequencing 
cTfh cell transcriptomic analysis was performed using the Seqmonk software package 
(Babraham Institute, https://github.com/s-andrews/SeqMonk/), after alignment of reads to the 
reference human genome GRCh38 using hisat2 (29). Differentially expressed genes were 
determined by DESeq2 (adjusted p-value cut-off p<0.05) (30). TCRb clonotypes were called 
from adaptor-trimmed RNA sequencing fastq files, using mixcr (version 2.1.9) (31) run in 
‘RNA-Seq mode’ (mixcr align -p rna-seq -c TRB -s hsa -OallowPartialAlignments=true) with 
rescuing of partial alignments, set to collate clonotypes at the amino acid level, rather than the 
nucleotide level and requiring >15 reads to identify a clonotype. Analysis of the V(D)J 
sequencing reads of ASCs was done using Vdjtools (version 1.1.7) (32) was used for 
summarizing and visualizing results. Immunoglobulin heavy chain sequences were analysed 
using ‘mixcr’ and ‘IMGT high V-quest’(33).  
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Figure 1. ICOS and CD38 mark cTfh cells following seasonal influenza vaccination.  
Flow cytometric contour plots (A) and quantification (B) of the frequency of CD38+ICOS+CXCR5+PD-1+ cells 
amongst CD45RA-CD4+CD3+ cells in the peripheral blood of healthy UK donors at days zero and seven 
relative to seasonal influenza vaccination, n = 41; in (B), each symbol represents a volunteer, and an individual 
donor is connected by a line at the two time points. Correlation of the frequency of CD38+ICOS+CXCR5+PD-
1+ cTfh cells seven days after vaccination with the change in antibody titre of anti-Cal09 IgG (C) and anti-
Bris08 IgG (D) seven days after vaccination, statistical analysis by Spearman’s correlation (Rho = coefficient). 
(E) Scatterplot of whole transcriptome RNAseq data comparing expression of all genes expressed in 
CD38+ICOS+CXCR5+PD-1+ cells prior to, and seven days following, seasonal influenza vaccination. 
Differentially expressed genes (DEseq2) are indicated in blue.  (F) Flow cytometric contour plots of CXCR3 
and CCR6 expression on ICOS+CXCR5+PD-1+ Tfh cells at the indicated time points relative to vaccination, a 
representative example of n=36 individuals (G). The number of unique TCRb CDR3 amino acid sequences 
identified in RNA sequencing libraries from CD38+ICOS+CXCR5+PD-1+ cTfh cells from four volunteers were 
analysed at days zero and seven relative to vaccination. (H) Quantification of the percentage of total TCRb 
CDR3 reads per unique clone: each symbol represents a unique CDR3 amino acid sequence. In (B) and (G), p-
values are generated with a paired Student’s t-test. In (H), each letter on the x-axis corresponds to a different 
volunteer.  
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Figure 2. The adjuvant GLA-SE enhances antibody production but not early ASC expansion 
(A) Vaccination and bleed schedule for the clinical trial. (B) Anti-P27A IgG antibody titres in volunteers vaccinated 
with 50µg P27A peptide in either Alum (White) or GLA-SE (Black); error bars represent the 95% confidence 
interval; p-values are calculated using a two-way ANOVA with Sidak's multiple comparisons test. (C) Change in 
anti-P27A IgG antibody titre 28 days after the third vaccination in the trial. Flow cytometric contour plots (D) and 
quantitation (E) of peripheral blood CD38++CD20- cells of total CD19+ cells seven days after the third vaccination. 
In (C) and (E) p-values are calculated using an unpaired t-test. Each symbol represents one individual: those that 
received Alum are in black, those that received GLA-SE are in white.  
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Figure 3. V(D)J sequencing shows low BCR mutation frequency in individuals with high titre antibody responses 
Pie charts of the proportions of the 100 most abundant BCR clonotypes in CD38++CD20-CD19+ ASC from (A) a 
representative individual that does not increase their anti-P27A IgG more than 500 AU after the third vaccination 
and (B) a representative individual that has a high anti-P27A titre after the third vaccination. Each segment of the 
pie chart represents a unique BCR clonotype. (C) and (D) Line graphs of the number of mutations in the V region of 
each clonotype (FR1-FR3, excluding CDR3, binned into 5 mutation bins) for the individuals shown in (A) and (B) 
respectively, at the indicated time points relative to vaccination. The percentage of clonotypes with ≤10 mutations in 
high and low antibody responders (E) and in the different adjuvant groups (F). Each individual is connected with a 
line between their d0 and d63 sample; p-values are from a paired Student’s t-test. Individual participants’ data for all 
other samples that passed quality control are included as Supplementary Figure 2. 
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Figure 4. GLA-SE adjuvanted vaccines promote cTfh expansion and common TCR clonotype usage 
Flow cytometric contour plots of (A) PD-1 and CXCR5 on total CD45RA-CD4+CD3+ cells and (B) ICOS and CD38 
on the population gated in (A) on peripheral blood cells from Tanzanian individuals seven days after the third P27A 
vaccination. (C) Fold change in the frequency of in CD38+ICOS+CXCR5+PD-1+ cTfh cells seven days after the third 
P27A vaccination. (D) Linear regression analysis of anti-P27A IgG antibody titre 28 days after the third vaccination 
and fold change in CD38+ICOS+CXCR5+PD-1+ cTfh cells seven days after the third vaccination. (E) Scatterplot of 
RNAseq data comparing all genes expressed in CD38+ICOS+CXCR5+PD-1+ cTfh cells seven days after the third 
P27A vaccination in either Alum (x-axis) or GLA-SE (y-axis) vaccinated groups. (F) and (G) Circos plots of shared 
TCRb CDR3 amino acid sequences in CD38+ICOS+CXCR5+PD-1+ cTfh cells from donors who received the P27A 
vaccine in (F) Alum or (G) GLA-SE. (H) Quantification of the number of shared CD38+ICOS+CXCR5+PD-1+ cTfh 
TCRb CDR3 amino acid sequences per donor either prior to vaccination (left, sharing between day 0 samples) or 
seven days after the third vaccination (right, sharing between day 63 samples). P-values are calculated using an 
unpaired t-test. Each symbol represents one individual; those that received Alum are in black, those that received 
GLA-SE are in white. 
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Supplementary Figure 1. Tonsil Tfh cells express CD38 and ICOS 
Flow cytometric identification of (A) CXCR5+PD-1+++ Tfh cells and CXCR5-PD-1- non-Tfh cells amongst CD45RA-

CD4+CD3+ tonsil cells, and their expression of BCL6 (B). Contour plots (C) and quantification (D) of ICOS and 
CD38 expression on tonsil non-Tfh (left) and Tfh cells (right). (E) Linear regression analysis of tonsil 
BCL6+CD38+CD19+ germinal centre B cells and BCL6+CD38+ICOS+CXCR5+PD-1+++ Tfh cells: each symbol 
represents one individual. 
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Supplementary Figure 2. V(D)J sequencing of circulating plasmablasts 
Pie charts of the proportion of the 100 most abundant BCR clonotypes in CD38++CD20-CD19+ ASC of individual 
P27A study participants at the indicated study time points. Each segment of the pie chart represents a unique BCR 
clonotype. The “R” number is the unique participant identifier. Line graphs report the number of mutations in the V 
region per clonotype (FR1-FR3, excluding CDR3, binned into 5 mutation bins) in each individual before vaccination 
and seven days after the third vaccination.  
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Supplementary Table 1. TCR gene usage and CDR3 amino acid sequence of the TCRb CDR3 clonotypes shared 
between GLA-SE vaccinated individuals at day 63. 
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Supplementary Table 2. Antibodies used for flow cytometry. 
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Abstract: 

Background: HIV-1 establishes rapidly a persistent infection that can be contained 

under life-long antiretroviral therapy (ART) but not cured. One of the preferred tissues 

for viral persistence are secondary lymphoid tissues including peripheral lymph nodes. 

Studying the impact of novel HIV-1 treatment and vaccination approaches on cells 

residing in germinal centers is essential for rapid progress towards HIV-1 prevention and 

cure. 

Methods: Between June and August 2018 we included consenting adult patients enrolled 

in the Kilombero and Ulanga Antiretroviral Cohort (KIULARCO) with a newly 

diagnosed HIV infection (WHO stage I or II) and CD4 cell counts ³ 350/ul, who were 

ART naïve. Consenting individuals underwent venous blood collection and inguinal 

lymph node excision surgery. Lymph nodes were used to extract mononuclear cells, 

which were stored in liquid nitrogen for further evaluation. Participants were followed 

up regularly for two weeks until complete healing of the surgical wound.  

Results: Nine participants completed the lymph node excision surgery without clinical 

sequelae. Among the volunteers, one long-term elite controller could be identified. The 

number of mononuclear cells recovered ranged from 68 million to 206 million and 

correlated positively with lymph node size extracted.  

Conclusion: Inguinal lymph node excision can be safely performed in a rural sub-

Saharan African setting, if precautions such as infection prevention are taken care of. 

Thus, lymph node extraction is a feasible procedure in the framework of monitoring 

novel intervention studies in HIV-1 clinical research. The use of KIULARCO cohort as 

a platform for clinical research supports the evaluation of novel interventions in a 

population that is particularly affected by HIV-1 but rather neglected in relation of testing 

novel interventions. 

Key words: lymph node biopsy, KIULARCO cohort, Tanzania 

Introduction 
HIV-1 is an infectious disease caused by human immunodeficiency virus and transmitted 

from human to human 1. In 2017, of the estimated 36.9 million people living with HIV-

1 (PLWHIV) worldwide, 19.6 million resided in Eastern and southern Africa (UNAIDS. 
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Global AIDS updated 2018). The UNAIDS goals of 90-90-90 by 2020 (90% of people 

know their HIV-status, 90% are enrolled in care, 90% are virally suppressed), are not yet 

met in Tanzania: 66 % of PLWHIV are on ART and 48 % of these have suppressed viral 

loads, while no numbers are published for the first 90 (UNAIDS 2018). 

 

Strongly neutralizing antibodies develop in up to 25% of HIV-1 infected individuals over 

several years of infection 2. Inducing these highly protective antibodies by active 

immunization has been the focus for many years of HIV-1 vaccine developers albeit with 

limited success so far 3.  

Most current vaccines provide protection by generating antibodies that block pathogen 

establishment or spread 4. Generation of robust, matured and long-lived vaccine induced 

antibody responses takes place in germinal centres (GC) 5. GC develop in secondary 

lymphoid organs and major cell subsets identified are GC B cells, T follicular helper cells 

(Tfh), T follicular regulatory cells (Tfr), macrophages and follicular dendritic cells 6. In 

humans, several markers for Tfh circulating in peripheral blood have been established, 

including ICOS, PD1 and CXCR5 expression 7 enabling the investigation of vaccine 

induced responses against vaccination in peripheral blood 8,9 [Hill et al., unpublished]. 

However, the functional and biological relationship between circulating Tfh and cells 

residing in secondary lymphoid organs is unclear and requires further investigations 10. 

The Kilombero and Ulanga Antiretroviral Cohort (KIULARCO) is a single-site, open 

and ongoing prospective cohort of PLWHIV-1 established in 2005 at the Chronic 

Diseases Clinic of Ifakara (CDCI), located at the premises of the Saint Francis Referral 

Hospital (SFRH) in Ifakara, Tanzania 11. One of the objectives of KIULARCO is to 

provide a platform for clinical studies on improving HIV-1 care and treatment 11. Here, 

we performed as a proof of concept a lymph node excision study from asymptomatic, 

ART naive HIV-1 infected volunteers in this rural setting in Tanzania. 

 

Methods 

Ethical approval  

This study was approved in Tanzania by the Ifakara Health Institute Institutional Review 

Board (IHI-IRB) Reference: IHI/IRB/No: 029-2016� and the National Medical Review 

Board of Tanzania (NIMR) Reference: NIMR /HQ/R.8a /Vol.IX/2374. In Switzerland, 

the protocol was approved by the Commission Cantonale D'éthique De La Recherche 
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Sur L'être Humain (Cer-Vd). 

Study site  

This study was conducted in the rural communities of Morogoro region, Tanzania, 

involving the two districts Kilombero and Ulanga. The Chronic Diseases Clinic of the 

Ifakara Health Institute (CDCI) located at the St Francis Referral Hospital (SFRH) runs 

an Antiretroviral cohort (Kilombero and Ulanga Antiretroviral Cohort, KIULARCO), 

KIULARCO includes all consenting HIV-1-positive patients enrolled in care. SFRH has 

in- and outpatient services and specialized clinics including theatres with facilities 

needed for patients’ recruitment and lymph node extraction. The Ifakara Health Institute 

runs an advanced laboratory infrastructure for immunological and virological sample 

processing and long-term storage.  

 

Volunteer recruitment  

At the SFRH, all patients seen for any health condition are offered an HIV-1 test 

following the national strategic plan 11. In 2014, SFRH adopted the WHO strategy for 

universal HIV-1 testing. Antibody testing for HIV-1 diagnosis since then is done by the 

SD Bioline rapid diagnostic test (RDT), confirmed by the RDT Unigold. For this study 

HIV-1 viral loads in plasma samples were quantified by using GenXpert. A secondary 

RDT testing reconfirmed the HIV-1 positive status of volunteer V3, after HIV-1 viral 

load was found to be undetectable by GenXpert. 

ART-naïve volunteers between 18-55 years of age, HIV-1 positive with CD4 T cell count 

above 350 cells/ml, no active co-morbidities and negative for hepatitis B (HBsAg), 

Syphilis, malaria were eligible for enrolment. Volunteers were explained study 

procedures and asked to sign a study-specific informed consent form describing paired 

blood and lymph node sampling. All volunteers were recruited into the KIULARCO on 

the same day after signing an informed consent form. 

 

Blood sample collection and PBMC isolation 

Whole blood was collected and serum, plasma and peripheral blood mononuclear cells 

(PBMCs) were prepared following established procedures 12. Plasma and serum samples 

were separated and stored at -80°C. PBMCs were isolated from whole blood by Ficoll-

Hypaque gradient density centrifugation and stored in Fetal calf serum (FCS) with 10% 

DMSO in liquid nitrogen until further analysis.  
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Lymph node extraction and LNMC isolation 

A surgical procedure to excise inguinal lymph node was performed aseptically at the 

SFRH theatre following local anaesthesia, 2% lidocaine 5cc. An incision of 1-2 cm was 

made at the right or left inguinal area to take out one lymph node, which was immediately 

preserved in R10 medium (RPMI with 1% Penicillin/Streptomycin and 10% FCS) for 

transport and processing. The incision was sutured and patients prescribed with 

analgesics before being discharged home. Patients were asked to come for three visits 

within 14 days of surgery for postoperative wound care.  

Lymph node mononuclear cells (LNMC) were then extracted in R10 medium by 

mechanical disruption of the tissue, followed by filtering on a 100un filter. Cell counts 

and viability were determined by microscopiy using 0.4% trypan blue solution staining.  

 

Results 

Nine ART naïve HIV-1 positive volunteers were enrolled into the study between June 

and August 2018. At enrolment, all participants were clinically healthy, with no fever, 

chills, headache recorded. Volunteers reported that they have come to SFRH for reasons 

other than acute sickness or suspicion of HIV-1 infection. This confirms their possible 

chronic nature of the HIV-1 infection, but durations of infection are unknown. All 

volunteers tested negatively for hepatitis B, syphilis and malaria. The female to male 

ratio was 3:1 and the average age of the volunteers was 34 years (range 23-55 years). 

CD4 T cell counts were on average 698 cells/mm3 (range 434-1302) and the HIV-1 viral 

load measured on average 35,500 (range <50-133,200) copies /mL (Table 1). 

Interestingly, one of the volunteers (V3) showed undetectable HIV-1 viral load (< 50 

copies/mL) and high CD4 T cell count (1301 cells/mm3), the highest in this cohort 

suggesting a rare long-term non-progressor phenotype.  

Lymph node biopsies were successfully conducted from all 9 volunteers. The size ranged 

from 3 to 15 mm (Figure 1A). After extraction, LMNC were immediately isolated. 

Viability of LMNC after purification was between 97 % to 99 % and the number of 

LMNC recovered ranged from 68 million to 206 million total. The LNMC count 

correlated positively with the lymph node size (Figure 1B). This correlation strongly 

supports that a healthy secondary lymphoid organ was extracted. LNMC were aliquoted 

and frozen down within an hour after surgical excision. Except for two patients who 

developed self-resolving hyperaemia around the incision site, no volunteer experienced 
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any adverse events in connection to the lymph node biopsy. The wounds healed as 

expected and all volunteers were discharged from attending regular hospital visits latest 

by day 14. Volunteers started HIV-1 treatment at the day of enrolment following the 

national guidelines of Tanzania. 

 

Discussion  

Lymph node biopsies of inguinal lymph nodes together with a paired venous blood 

sample were collected from 9 HIV-1 infected patients in rural settings of Tanzania. To 

our knowledge, this is the first study of this kind in Tanzania and we demonstrate that 

this procedure is safe with minimal adverse events that resolved within 14 days after 

surgery. This short recruitment period of volunteers into the study underscores that the 

KIULARCO cohort serves as an elegant platform for clinical research in HIV-1. Cure of 

HIV-1 is not possible using the currently available treatment approaches resulting in a 

growing number of PLWHIV needing to adhere to a life-long ART treatment 13. One of 

the preferred compartments for viral persistence are Tfh cells making them an important 

target for experimental HIV-1 cure approaches 14.  

A recent report by D´Souza provides an excellent overview of the value of lymph node 

biopsies in the context of experimental HIV-1 vaccine trials 15. Lymph node biopsies 

have been shown to be safe in HIV-1 positive volunteers and even up to 4 lymph nodes 

could be consecutively removed from participants of an HIV-1 vaccine study in Thailand 
16 The bulk of information generated about GC development and responses has been 

derived from studying the secondary lymphoid tissues in mice. It is assumed that 

heterogeneity of GC Tfh cells impacts antibody isotypes produced by plasma blasts and 

long-lived memory B cells 17 In humans, GC Tfh are functionally and phenotypically 

heterogeneous population based on expression of PD1, CXCR3, CCR6, CCR7 and ICOS 

markers 18. People living in SSA are exposed to co-infections like malaria and helminths 

- potentially impacting on GC Tfh cell function and cytokine secretion 19. Studying the 

environmental drivers of the functional heterogeneity of GC Tfh in a rural African 

population will provide essential information on HIV-1 pathogenesis, treatment and 

routine and experimental vaccine monitoring in a population highly affected by the HIV-

1 epidemic 20.  

 

Conclusion 
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Lymph node biopsy is a safe procedure and could be undertaken in rural settings. This is 

the first study to show successful lymph node excision biopsy with local experts in rural 

settings and has laid a foundation for detailed immune response investigations during 

clinical trials.  
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Table 1. Demographic and clinical characteristics of study volunteers  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Volunteer ID 
 

V1 V2 V3 V4 V5 V6 V7 V8 V9 

Age 40 55 42 29 23 23 37 26 30 

Gender  F F F F F M F M M 

BMI 18.7 22.2 28.4 24.9 21.3 23 31.6 18.8 29.7 

Marital status divorced divorced divorce
d single single married married single single 

CD4 cells 
(cells/mm3) 538 662 1302 846 679 594 434 665 566 

HIV-1 RNA 
(copies/mL) 1670 68300 < 50 8150 725 113200 72200 53900 1210 

LN size (mm) 4 15 7 6 3 14 n.d. n.d. 10 

Hb (g/L) 13.9 12.0 12.1 12.7 10.2 14.1 13.8 15.0 13.7 

Clinical 
presentation healthy healthy healthy healthy healthy healthy healthy healthy healthy 

Reason for  
HIV-1 testing 

Ear 
injury 

History of 
Herpes 
zoster 
lesions in 
2015 

Chronic 
body 
malaise 

Marital 
require
ment 

Employer 
request 

Wife’s 
antenatal 
clinic visit 

Referred Voluntary 
Testing 

Voluntary 
 Testing 
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Figure 1A: Pictures of lymph node biopsies taken from volunteers 

 

 

 
Figure 1B: Positive correlation between the size of the lymph node and isolated LNMC 
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The overall goal of vaccination is to safely induce protective, long-lived immune responses to 

fight against the pathogen on the subsequent encounter. Vaccine induced humoral immune 

responses against infectious diseases are currently the best approach for prevention. This has 

been shown in all licensed vaccines to date, including the child hood vaccines which offer long 

term protection, except BCG [86]. This PhD thesis aimed at investigating cellular and humoral 

immune responses induced against P27A, a synthetic peptide of 104 amino acids in length and 

to develop novel monitoring approaches to better understand the cellular subsets driving 

successful antibody responses after vaccination. In this general discussion, I will highlight for 

each manuscript the key findings and their implication of malaria vaccine development. 

6.1. The Candidate Blood-stage Malaria Vaccine P27A Induces a 
Robust Humoral Response in a Fast Track to the Field Phase 1 
Trial in Exposed and Non-exposed Volunteers 

The clinical trial described in this chapter was designed as a staggered, randomized, antigen 

and adjuvant dose-finding, multicenter phase 1a/1b clinical trial using the fast-track strategy set 

by the European Vaccine Initiative to accelerate malaria vaccine clinical development. Study 

was conducted in Switzerland for phase 1a and in Tanzania for phase 1b (NCT01949909). 

P27A, an unstructured segment of the trophozoite exported protein 1, was identified in a series 

of immune-epidemiological studies as an interesting vaccine candidate. In order to test P27A 

in malaria naïve and pre-exposed volunteers, it was formulated in alum and GLA-SE to 

compare its safety, tolerability and immunogenicity side by side in two different populations. 

This new trial design was found to be faster than conducting two independent phase Ia and 

phase Ib studies, without compromising on safety monitoring or study oversight. Both vaccine 

formulations were found to be safe and no vaccine-related serious adverse event was observed. 

The P27A antibody titers were around 10-fold higher in the GLA-Se formulated vaccine 

compared to alum confirming its superior adjuvant activity. Importantly, anti-P27A antibodies 

bound to the native protein in asexual blood stage parasites when tested by immunofluorescence 

assays. The main P27A antibody isotypes induced were IgG1 and IgG3, both of which are 

known to mediate opsonisation by interacting with phagocytes. In vitro assays confirmed that 

P27A vaccine induced antibodies derived from the European volunteers showed parasite 

growth-inhibitory activity. Comparing the antibody titers between malaria naïve and pre-

exposed volunteers strongly indicated that in malaria pre-exposed populations a higher dose of 

GLA-SE was needed in order to arrive at comparable titers measured in Europeans. A similar 

study was conducted in France and Burkina Faso evaluating the safety and immunogenicity of 

AMA-1 in combination with alum and GLA-SE [87]. The outcome of this study confirmed the 
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good safety profile of GLA-SE as adjuvant in malaria pre-exposed populations and it higher 

potency in inducing antibodies when compared to alum. GLA-SE as suitable adjuvant has now 

been confirmed with other malaria vaccine candidates including the recombinant fragment of 

VAR2CSA, the P. falciparum protein responsible for binding to the placenta via chondroitin 

sulfate A [88] and the P. vivax encoded Duffy-binding protein [89]. Combined, these and our 

study support the use of GLA-SE as adjuvant in humans that is safe and induces potent, 

functionally active and long-lasting humoral immune responses against malaria.  

6.2. GLA-SE improves quality and magnitude of cellular 
immunity to blood stage malaria vaccine candidate P27A 

Understanding the interplay between humoral and cellular immune responses elicited after 

vaccination is critical for optimizing vaccine approaches. Therefore, we investigated the 

magnitude and quality of T-cell responses induced by P27A candidate. The GLA-SE adjuvant 

promoted enhanced CD4+ T-cell responsiveness in malaria pre-exposed Tanzanian volunteers. 

The response correlated with increased IgG1 titers and expansion of circulating Tfh cells after 

vaccination. CD4+ T-cells with poly-functional characteristics, co-expressing IL-2 and TNFa, 

as well as long-living central memory phenotype dominated the response in participants, who 

received the vaccine containing GLA-SE. Importantly, this study revealed that the magnitude 

of CD4+ T-cell responses was strongly impaired in the presence of active helminth infections 

during first vaccination. Helminth infections are known to evade clearance and become chronic 

by down regulation the host response and this immunomodulation extends also to other 

pathogens co-infecting the same host [90] [91]. It has been shown that one mechanism of 

helminths deployed to evade immune responses is based on specifically targeting and down 

regulating TLR mediated innate immune stimulation [90]. Esen et al., reported in Gabon also 

the reduced antibody responses in volunteers vaccinated against a subunit malaria vaccine 

candidate, in the presence of ongoing Trichuris trichiura infections [91]. Interestingly, 

Trichuris suis suppresses TLR-4 induced inflammatory responses in human macrophages, 

leading to a down-regulation of pro-inflammatory mediators including IL-12B, CCL1 and 

CXCL9 [92] GLA-SE adjuvant activity is based on its TLR4 stimulatory activity [93]. The fact 

that in helminth infected volunteers both, the CD4+ T cells and antibody responses were 

significantly impaired, supports the idea that the helminth mediated immune suppression was 

interceded via changed TLR4 signaling or expression. However, we need to conduct further ex 

vivo studies with antigen presenting cells known to express TLR4, like macrophages, that are 

recovered from helminth infected and non-infected volunteers to analyse the TLR4 expression 
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levels and signaling cascades to substantiate this hypothesis. Highly interesting was the finding 

that the P27A specific CD4+ T cells were dominated by poly-functional TNFa and IL2 

producing T cells with no IFNg detection. This outcome was also observed also in other clinical 

studies testing GLA-SE and was not restricted to Tanzanian volunteers [94]. In summary, this 

study highlighted that the helminth co-infection status of individual volunteers is one important 

driver of inter individual variation in P27A vaccine induced cellular and humoral immune 

responses. 

6.3. The adjuvant GLA-SE promotes human Tfh cell expansion 
and emergence of public TCR clonotypes 

The location of the GC response, within secondary lymphoid tissues, is one of the major barriers 

to understanding how different vaccines, or their adjuvants, affect GC biology in humans. For 

this reason, circulating cells that can act as biomarkers of the GC response are an area of intense 

interest. In particular, it is well established that there exists a population of blood 

CXCR5+CD4+ cells expanding after vaccination, named cTfh [95][96]. These cTfh cells 

phenotypically and functionally resemble secondary lymphoid tissue resident Tfh cells [97]. 

Since GLA-SE was superior to alum in induction of humoral immune responses, we next aimed 

to determine whether the adjuvant GLA-SE promotes a cTfh cell response in humans making 

use of PBMC collected at baseline and 7 days past last vaccination and polychromatic flow 

cytometry and whole cell transcriptomic analysis of ex vivo sorted cTfh. We defined as cTfh 

cells that are co-expressing ICOS+, PD1+ and CXCR5+ and measured their frequencies before 

and after vaccination demonstrating that significantly higher numbers of cTfh could be found 

in GLA-SE immunized volunteers compared to alum. The increase in cTfh correlated with the 

increase in P27A antibody titers confirming that these cells are biomarkers for GC responses. 

Interestingly, in the GLA-SE vaccinated volunteers, higher numbers of antibody secreting cells 

with lower levels of SHM by V(D)J sequencing of the BCR were observed, supportive of a 

recall response from naturally primed P27A memory B cells that takes place in extra-follicular 

structures. Our study showed that the GLA-SE adjuvant increases the 

ICOS+CD38+CXCR5+PD-1+ total cTfh cell population and the GC-Tfh-like CXCR5+PD-

1+++ cell after P27A vaccination, indicative that this adjuvant enhances the GC response. 

Importantly, transcriptomic analysis revealed that GLA-SE also promotes the emergence of 

common TCRb clonotypes in cTfh cells that are shared between different individuals. The 

emergence of so-called public clonotypes is informative for vaccine design as it indicates that 

there may be a common epitope that could be used in vaccine formulations to enhance responses 
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in numerous individuals. The recent discoveries of public antibody clonotypes has 

revolutionized whole-parasite malaria vaccine strategies [98][99] and here we extend this to the 

identification of public Tfh cell TCRb clonotypes induced after vaccination. The identification 

of these common clonotypes in cTfh cells from participants that received the GLA-SE 

formulated vaccine could simply be a consequence of the greater magnitude of the response, 

indicating that more T cell clones are recruited into the response. Using the knowledge of key 

antigenic peptides to which Tfh clonotypes from multiple individuals respond, combined with 

adjuvants that improve T cell recruitment into GC is a rational way to enhance humoral vaccine 

responses and duration at the population level. 

6.4. Lymph node excision biopsy to study germinal centre residing 
T cell subsets in rural Tanzania 

Peripheral blood is conveniently used as a source of cells and serum to study quality and 

quantity of innate and adaptive immune responses following natural infection or vaccination. 

However, the size and quality of ASC is determined by the interactions of cells residing in GC, 

including follicular dendritic cells, B cells, Tfr and Tfh. GC are found in secondary lymphoid 

organs like lymph nodes and the spleen and both organs are not usually accessible in humans 

and the bulk of information available about GC development and responses has been derived 

from studying the secondary lymphoid tissues in mice. The use of cTfh as biomarkers of GC 

responses is commonly accepted but they do not represent GC Tfh bona fide since they for 

example to not express transcription factor Bcl6 [97] Therefore, analyzing GC Tfh from lymph 

node tissue will enable us to study the biology of these important cells that are at the center of 

interest in vaccinology, HIV pathogenesis, and regulation of autoimmune diseases [100]. 

Lymph node biopsies of inguinal lymph nodes together with a paired whole venous blood 

sample were collected from 9 HIV-1 infected patients in rural settings of Tanzania. To our 

knowledge, this is the first study of this kind in Tanzania and we demonstrate that this procedure 

is safe with minimal adverse events that resolved within 14 days after surgery. We have 

conducted this pilot study for purification of LNMC from ART naïve HIV -1 positive volunteers 

as ideal starting material for isolation of bNabs since the density of antigen-specific ASC after 

antigen challenge is far higher than in peripheral blood [101]. Using LMNC will enable to 

understand the impact of HIV-1 and other co-infections on the diversity of GC Tfh subsets 

driving humoral immune responses [102]. GC Tfh are a reservoir for HIV even when the HIV-

1 viraemia is suppressed by successful treatment with ART [103] and understanding the size 

and turnover of this reservoir is essential for testing novel interventions and approaches towards 
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HIV-1 cure. In summary, establishing the human resource for collecting lymph node biopsies 

will enable incorporation of these procedures in future immunological intervention studies in 

Tanzania. 
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In an effort towards reducing malaria cases and progress to malaria elimination, WHO 

published a strategic road map for 2030 to develop and license a malaria vaccine with a 

protective efficacy of more than 75%  that can last for at least two years [104]. Although RTS,S 

/AS01 the advanced malaria vaccine is under pilot administration in three sub-Saharan Africa 

countries, it showed an average efficacy of 35.9%, which fell to 2.5 % after four years of follow 

up period [105], requiring additional vaccine development efforts. Malaria elimination is 

thought to be achieved following interruption of parasite transmission [106] through removal 

of asexual  parasites which develop into gametocytes. This makes pursuing blood stage malaria 

vaccine is necessary. Development of subunit vaccines has been found a rational strategy to 

follow, especially for the countries in SSA where the population is challenged by limited cold 

chain facilities and lack of technical expertise to handle fragile live attenuated vaccines. In this 

population, the number of immunocompromised patients suffering from co-infections like HIV-

1 are also particularly prevalent, raising additional concerns over safety of live vaccines [107]. 

Recently, malaria blood stage sub-unit vaccines including the merozoite surface proteins 1, 2, 

and 3 (MSP1, MSP2, and MSP3), serine-repeat antigen erythrocyte-binding antigen (SERA), 

ring-infected erythrocyte surface antigen (RESA), glutamate-rich protein (GLURP), and apical 

membrane antigen 1 (AMA1) showed reasonable safety and tolerability profiles and induced 

antibody responses in malaria naïve and pre-exposed individuals [45] but protection observed 

was limited [108]. Antigenic variation has been demonstrated to contribute into immune 

evasion of the parasite [109]. Since the peptide P27A has been shown to induce antibody and 

cellular immune responses in malaria pre-exposed volunteers, further development of this 

antigen in follow up studies could provide information on protection induced against field 

malaria strains. Also, combining P27A with other subunit vaccine candidates to be used in a 

multi-stage multi-antigen vaccine approach could mitigate the problem of immune evasion 

based on antigenic polymorphisms [110][111]. 

The role of antibodies in protection against malaria has been emphasized [112] but there are 

remarkable differences in the level of humoral immune responses observed between naturally 

exposed individuals probably contributing to variations of naturally acquired immunity. 

Following the promising results in the HIV [113] and Ebola [114] vaccine development field, 

a next generation vaccine approach in malaria could be based on the use of human monoclonal 

antibodies [115][116][117]. 

These novel tools in malaria research could be used to protect the most vulnerable populations, 

namely travelers, children and pregnant women by passive immunization deployed as long 

acting, injectable small molecules [118][119]. Additionally, detailed understanding of the three-
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dimensional structure recognized by these highly potent antibodies could lead to the 

identification of the third-generation subunit vaccine candidates [120]. 
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