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Anisotropic heterogeneous n-D heat
equation with boundary control and
observation: II. Structure-preserving

discretization ?
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Abstract The heat equation with boundary control and observation can be described by
means of three different Hamiltonians, the internal energy, the entropy, or a classical Lyapunov
functional, as shown in the companion paper (Serhani et al. (2019a)). The aim of this work is to
apply the partitioned finite element method (PFEM) proposed in Cardoso-Ribeiro et al. (2018)
to the three associated port-Hamiltonian systems. Differential Algebraic Equations are obtained.
The strategy proves very efficient to mimic the continuous Stokes-Dirac structure at the discrete
level, and especially preserving the associated power balance. Anisotropic and heterogeneous 2D
simulations are finally performed on the Lyapunov formulation to provide numerical evidence
that this strategy proves very efficient for the accurate simulation of a boundary controlled and
observed infinite-dimensional system.

Keywords: Port-Hamiltonian Differential Algebraic System, Heat Equation, Structure
Preserving Discretization, Partitionned Finite Element Method (PFEM), Boundary Control

1. INTRODUCTION

The port-Hamiltonian formalism provides a powerful way
to model complex systems, including laws coming from
different realms. It is based on the use of physically
meaningful quantities, linked through two kind of equa-
tions, namely physical laws and constitutive relations.
The system it then obtained by interconnecting each
domain (mechanics, thermodynamics, electromagnetism,
etc.) through their ports, describing the exchange of energy
between them. Furthermore, the physical parameters are
intrinsically taken into account in the model, allowing for
anisotropy and heterogeneity. This formalism highlights an
underlying mathematical structure, namely (Stokes-)Dirac
structure, that guarantees a balance equation for the
Hamiltonian functional: the power balance. The Hamil-
tonian often describes the physical energy, but other type
of functionals can be used.

A recent topic of research is to provide accurate dis-
cretization methods (both in time and space) to preserve
this powerful formalism, and especially the power balance.
Several strategies have been proposed to this aim, as mixed
finite element/Galerkin in Golo et al. (2004); Kotyczka
(2018); Kotyczka et al. (2018), finite difference in Tren-
chant et al. (2018), finite volume in Kotyczka (2016); Ser-
hani et al. (2018). For time-domain discretization, Celle-
doni and Høiseth (2017) closely examine the question.

? This work has been performed in the frame of the Collaborative
Research DFG and ANR project INFIDHEM n◦ ANR-16-CE92-0028
(http://websites.isae.fr/infidhem).

In view of these works, it seems that the partitionned finite
element method (PFEM), first introduced in Cardoso-
Ribeiro et al. (2018), is the most accurate way to proceed
in space, as this work will try to prove.

PFEM relies on the fact that Hamiltonian systems in infi-
nite dimension are used to formalize distributed parame-
ters systems, hence including partial differential equations
(PDE) given by physical laws. The idea is to write a varia-
tional formulation of the pHs, and integrate by parts only
one of the equations of the weak form, accordingly with the
desired control (it has to “appear” in the boundary term
of the integration by parts). Then we use finite element to
obtain a finite dimensional pHs, with accurate properties
with respect to the infinite-dimensional one. PFEM has
been succesfully used on various type of physical systems,
such as acoustic pressure waves or plates in Brugnoli et al.
(2019b,c); Serhani et al. (2019d).

In the following, the heat equation is considered in a
bounded open connected set Ω ⊂ Rn, n ≥ 1, with mass
density ρ(x), for all x ∈ Ω; −→n denotes the outward unit
normal. We suppose that this domain does not change
over time, i.e. we work at constant volume. No chemical
reactions are to be found in the domain. The quantities
of interest are denoted as: u the internal energy density,−→
J Q the heat flux, T the local temperature, β := T−1

the reciprocal temperature, s the entropy density,
−→
J S :=

β
−→
J Q the entropy flux, and CV :=

(
du
dT

)
V

the isochoric
heat capacity.



In the companion paper Serhani et al. (2019a), the authors
proposed to model the heat equation, controlled and ob-
served at the boundary of the physical domain, by means
of three different Hamiltonians. The first two are thermo-
dynamically founded: the entropy and the internal energy,
while the third one is less meaningful physically speaking,
but enjoys an interesting behavior on a mathematical level.
Reference to an equation (X) in this companion paper will
be denoted by (I.X) in the present one.

We aim to apply the structure-preserving scheme PFEM
to spatially discretize the three systems proposed in Ser-
hani et al. (2019a) modeling the boundary controlled (and
observed) heat equation. In the three cases, thermodynam-
ical laws (i.e. constitutive relations) are needed to close the
system. However, with the port-Hamiltonian formalism,
the discretization of these relations can be postponed after
the discretization of the physical laws. They need however
to be carefully handled, suitably with the discretization of
the port-Hamiltonian system.

The paper is organized as follows. In Section 2, PFEM
is applied as a structure-preserving scheme on the three
systems of Serhani et al. (2019a), and proves to be accurate
for the corresponding Hamiltonians and its power balance.
The Lyapunov case is then numerically experimented in
Section 3 with 2D simulations to show the efficiency of
the method, both on an isotropic and homogeneous case
with analytically known solution and on an anisotropic and
heterogeneous case. We end the paper with highlights and
discussion about the pros and cons of PFEM compared to
usual space discretizations.

2. A STRUCTURE-PRESERVING NUMERICAL
METHOD: PFEM

This method is a recent structure-preserving method for
pHs, first published in Cardoso-Ribeiro et al. (2018), and
more recently developped in Cardoso-Ribeiro et al. (2019).
The principle of the method lies on an integration by
parts on a partition of the set of equations of the weak
formulation of the continuous model, in order to make
appear the control in the boundary integral.

Let us begin by a presentation of PFEM on the Lyapunov
formulation. The method on the two other formulations
will only be sketched, as most of the involved matrices
will already be defined.

2.1 PFEM for the Lyapunov formulation

To begin with, let us write the weak formulation of (I.14).
Denoting ϕ, −→ϕ and ψ∂ the test fonctions associated to fu
and eu,

−→
f Q and −→e Q, and v∂ and y∂ respectively, it reads
∫

Ω

ρfuϕ dx = −
∫

Ω

div
(−→e Q)ϕ dx,∫

Ω

−→
f Q · −→ϕ dx = −

∫
Ω

−−−→
grad (eu) · −→ϕ dx.

Integrating by parts the first line, one gets:
∫

Ω

ρfuϕ dx =

∫
Ω

−→e Q ·
−−−→
grad (ϕ) dx−

∫
∂Ω

−→e Q · −→nϕ dγ,∫
Ω

−→
f Q · −→ϕ dx = −

∫
Ω

−−−→
grad (eu) · −→ϕ dx,

(1)

leading to the choice of heat flux contol v∂ := −−→e Q · −→n |∂Ω
.

Alternatively integrating by parts the second line
∫

Ω

ρfuϕ dx = −
∫

Ω

div
(−→e Q)ϕ dx,∫

Ω

−→
f Q · −→ϕ dx =

∫
Ω

eu div
(−→ϕ) dx−

∫
∂Ω

eu
−→ϕ · −→n dγ,

(2)

leads to the choice of temperature control v∂ := eu|∂Ω
.

Assuming three finite-dimensional spaces
X := span{Φ} := span{(ϕi)1≤i≤N},
X := span{

−→
Φ} := span{(−→ϕk)

1≤k≤
−→
N
},

X∂ := span{Ψ} := span{(ψm∂ )1≤m≤N∂
},

one can define

fu,d(t,x) := Φ>(x) · fu(t) :=

N∑
i=1

f iu(t)ϕi(x) ' fu(t,x),

−→
f Q,d(t,x) :=

−→
Φ>(x) · fQ(t) :=

−→
N∑
k=1

fkQ(t)−→ϕk(x) '
−→
f Q(t,x),

and v∂,d(t, γ) := Ψ>(γ) · v∂(t) :=
∑N∂

m=1
vm∂ (t)ψm(γ) ' v∂(t, γ).

Similarly, we define eu,d(t,x), −→e Q,d(t,x) and y∂,d(t, γ) in
X , X , and X∂ respectively.

The discrete weak formulation of (1) on X ×X ×X∂ reads
Mρfu(t) = DeQ(t) +Bv∂(t),
−→
MfQ(t) = −D>eu(t),

M∂y∂(t) = Ceu(t),

(3)

with the following definitions

Mρ :=

∫
Ω

Φ · Φ>ρ dx ∈ RN×N ,
−→
M :=

∫
Ω

−→
Φ ·
−→
Φ> dx ∈ R

−→
N×
−→
N ,

M∂ :=

∫
∂Ω

Ψ ·Ψ> dγ ∈ RN∂×N∂ ,

D :=

∫
Ω

−−−→
grad (Φ) ·

−→
Φ> dx ∈ RN×

−→
N ,

B :=

∫
∂Ω

Φ ·Ψ> dγ ∈ RN×N∂ , C :=

∫
∂Ω

Ψ · Φ> dγ ∈ RN∂×N ,

where −−−→grad (Φ) means the rectangular matrix of size N×n,
constituted of the gradient of each functions of Φ, i.e.

−−−→
grad (Φ) :=

((−−−→
grad

(
ϕ1
))>

, · · · ,
(−−−→
grad

(
ϕN
))>)>

.

Note that the mass matricesMρ,
−→
M andM∂ are obviously

symmetric. Furthermore,Mρ discretizes the inner product
of L2

ρ(Ω). Finally, C = B>, hence (3) can be rewritten
under the classical finite-dimensional pHs form, including
the interconnection ports into the structure

Md
−→
f d = Jd−→e d, (4)

with Md a symmetric matrix and Jd a skew-symmetric
matrix, both of size N +

−→
N +N∂ . More precisely

−→
f d :=

(
fu, fQ, −y∂

)>
, −→e d :=

(
eu, eQ, v∂

)>
,

Md :=

(
Mρ 0 0

0
−→
M 0

0 0 M∂

)
, Jd :=

(
0 D B

−D> 0 0

−B> 0 0

)
.

Note that the skew-symmetry of Jd and (4) imply
−→e >dMd

−→
f d = 0. (5)

Now we want to define the discrete Hamiltonian and
provide a discrete version of the balance equation (I.15).



Since fu(t,x) := ∂tu(t,x) in L2
ρ(Ω), this leads to∫

Ω
ρ(x)fu(t,x)ϕ(x) dx =

∫
Ω
ρ(x)∂tu(t,x)ϕ(x) dx. With the dis-

crete family Φ, this becomes
Mρfu(t) = Mρdtu(t). (6)

In the same way, eu := u(t,x)
CV (t,x) in L2

ρ(Ω) leads to

Mρeu(t) = M
ρC−1

V

(t)u(t), (7)

where M
ρC−1

V

(t) :=
∫

Ω
Φ · Φ> ρ

CV (t,·) dx.

Denoting ud(t,x) the discrete counterpart of the internal
energy density in X , one can define the discrete Hamil-
tonian by Hd(t) := 1

2

∫
Ω
ρ(x)

(ud(t,x))2

CV (t,x)
dx, leading to Hd(t) =

1
2
u>(t)M

ρC−1
V

(t)u(t). Hence

dtHd(t) = dtu
>(t)M

ρC−1
V

(t)u(t) +
1

2
u>(t)dtMρC−1

V

(t)u(t).

From (6) and (7), one immediatly gets

dtHd(t) = fu
>(t)Mρeu(t) +

1

2
u>(t)dtMρC−1

V

(t)u(t).

Since dtMρC−1
V

(t) = −M
ρC−1

V

(t)dtM
−1

ρC−1
V

(t)M
ρC−1

V

(t), and (7)

gives u>(t)dtMρC−1
V

(t)u(t) = −eu>(t)MρdtM
−1

ρC−1
V

(t)Mρeu(t).

The two above equalities and (5) lead to the discrete
counterpart of (I.15):

dtHd(t) = −eQ>(t)
−→
MfQ(t) + v∂

>(t)M∂y∂(t)

−
1

2
eu
>(t)MρdtM

−1

ρC−1
V

(t)Mρeu(t). (8)

At this stage, constitutive relations have not been used.
Assuming CV to be time-invariant and u = CV T , as
in the Dulong-Petit model, leads in a weak sense to∫

Ω
ρ(x)u(t,x)ϕ(x) dx =

∫
Ω
ρ(x)CV (x)T (t,x)ϕ(x) dx, giving

Mρfu(t) = MρCV
dtT (t), (9)

where MρCV
:=
∫

Ω
Φ ·Φ>ρCV dx. Of course, the definition of

eu given by (7) then simply becomes
Mρeu(t) = MρT (t). (10)

Fourier’s law (I.5) writes∫
Ω

−→
JQ(t,x) · −→ϕ (x) dx = −

∫
Ω

λ(x) ·
−−−→
grad (T (t,x)) · −→ϕ (x) dx,

leading to
−→
MeQ(t) =

−→
ΛfQ(t), (11)

where −→Λ :=
∫

Ω

−→
Φ ·λ ·

−→
Φ> dx ∈ R

−→
N×
−→
N , which is symmetric by

assumption on λ. Hence (8) becomes

dtHd(t) = −fQ>(t)
−→
ΛfQ(t) + v∂

>(t)M∂y∂(t), (12)

the discrete counterpart of (I.16).

Following the same strategy, we obtain the discrete formu-
lation of (2) in X ×X ×X∂

Mρfu(t) = D̃eQ(t),
−→
MfQ(t) = −D̃>eu(t) + B̃v∂(t),

M∂y∂(t) = C̃eQ(t),

(13)

with the following additional definitions

D̃ := −
∫

Ω

Φ ·
(
div
(−→
Φ
))>

dx ∈ R
−→
N×N ,

C̃> := B̃ := −
∫
∂Ω

(−→
Φ · −→n

)
·Ψ> dγ ∈ R

−→
N×N∂ ,

where div
(−→

Φ
)
(resp.

−→
Φ ·−→n ) is the (column) vector of size

−→
N , constituted of the divergence (resp. the normal trace)
of each functions of the family

−→
Φ .

Note that it is again possible to write this system under

the form (4), with J̃d :=

 0 D̃ 0

−D̃> 0 B̃

0 −B̃> 0

 .

2.2 PFEM for the energy formulation

Now the aim is to discretize the system related to the
internal energy U as Hamiltonian, i.e. system (I.11). Its
variational formulation reads

∫
Ω

ρfsϕ dx = −
∫

Ω

div
(−→e S)ϕ dx−

∫
Ω

eσϕ dx,∫
Ω

−→
f S · −→ϕ dx = −

∫
Ω

−−−→
grad (es) · −→ϕ dx,∫

Ω

fσϕ dx =

∫
Ω

esϕ dx.

Practically, it seems legitimate here to control the temper-
ature, and thus integrate by parts the second line

∫
Ω

ρfsϕ dx = −
∫

Ω

div
(−→e S)ϕ dx−

∫
Ω

eσϕ dx,∫
Ω

−→
f S · −→ϕ dx =

∫
Ω

es · div
(−→ϕ) dx−

∫
∂Ω

es
−→ϕ · −→n dγ,∫

Ω

fσϕ dx =

∫
Ω

esϕ dx.

Following the same strategy as for the Lyapunov formula-
tion, the following matrix form is computed

Mρfs(t) = D̃eS(t)−Meσ(t),
−→
MfS(t) = −D̃>es(t) + B̃v∂(t),

Mfσ(t) = Mes(t),

M∂y∂(t) = C̃eS(t),

where
M :=

∫
Ω

Φ · Φ> dx ∈ RN×N . (14)

The pHs form (4) then readsMρ 0 0 0

0
−→
M 0 0

0 0 M 0
0 0 0 M∂


 fs

fS
fσ
−y∂

 =

 0 D̃ −M 0

−D̃> 0 0 B̃
M 0 0 0

0 −B̃> 0 0


es
eS
eσ
v∂

 .

The discrete Hamiltonian is Ud(t) :=
∫

Ω
ρ(x)ud(t,x) dx =

u>(t)Mρ1, where 1 ∈ RN is a vector full of ones.

The aim is to show that Ud enjoys a similar balance
equation as U , i.e. similar to (I.13).

Gibbs formula (I.3) in a weak form reads∫
Ω

ρ(x)∂tu(t,x) dx =

∫
Ω

ρ(x)T (t,x)∂ts(t,x) dx,

which gives at a discrete level with the pHs variables
dtu
>(t)Mρ1 = fs

>(t)Mρes(t). (15)

From the definition σ :=
−−−→
grad (β) ·

−→
JQ, one easily gets that

Tσ = −
−−−→
grad (T ) ·

−→
J S. This leads to∫

Ω

T (t,x)σ(t,x) dx = −
∫

Ω

−−−→
grad (T (t,x)) ·

−→
J S(t,x) dx,



which then reads once discretized, in the pHs variables
−eσ>(t)Mfσ(t) = eS

>(t)
−→
MfS(t). This implies that (5) re-

duces to es>(t)Mρfs(t) = v∂
>(t)M∂y∂(t). From (15), one gets

the discrete counterpart of (I.13), namely:

dtHd(t) = v∂
>(t)M∂y∂(t).

To close the system, and be able to solve it, we need
accurate constitutive relations, according to the physical
system under study, as done in the Lyapunov case.

2.3 PFEM for the entropy formulation

Now, we discretize the system related to the entropy S
as Hamiltonian, i.e. system (I.8). Practically, it seems
legitimate here to control the boundary heat flux. In pHs
variables, this is exactly the same system to discretize as
for the Lyapunov formulation with boundary heat flux
control. The difference lies in the definition of eu and

−→
f Q.

Thus we have again system (13).

The discrete Hamiltonian is Sd(t) :=
∫

Ω
ρ(x)sd(t,x) dx =

s>(t)Mρ1. From Gibbs formula (I.3), as for (15), we
get dts>(t)Mρ1 = fu

>(t)Mρeu(t). From (5): eu>(t)Mρfu(t) +

eQ
>(t)
−→
MfQ(t) = v∂

>(t)M∂y∂(t). Finally, the definition σ :=
−−−→
grad (β) ·

−→
JQ can be directly discretized by σ>(t)M1

= −fQ>(t)
−→
MeQ(t).Hence the discretized counterpart of (I.9)

dtSd(t) = v∂
>(t)M∂y∂(t)− fQ>(t)

−→
MeQ(t).

3. SIMULATION RESULTS

We now test PFEM on 2D examples. Simulations are
performed on four cases: with heat flux boundary control
or temperature boundary control, both for an isotropic
homogeneous case where an analytical solution is known,
and an anistropic heterogeneous case. We work with the
Lyapunov Hamiltonian H under the hypotheses leading
to (12). This choice was made as this is the usual “energy
functional” in the applied mathematics literature.

The chosen geometry is the rectangle Ω := (0, 2) × (0, 1).
We propose to use P2 Lagrange finite element for Φ, RT 1

Raviart-Thomas finite element for
−→
Φ and P2 Lagrange

finite element for Ψ. The corresponding degrees of freedom
(Dof) are represented on Figure 1. This leads to N = 204

Dof for Φ,
−→
N = 470 Dof for Φ and N∂ = 50 Dof for

Ψ. The temperature T is approximated in the basis Φ.
The discretization process will lead, either to an ordinary
differential equation (ODE), or to a differential algebraic
equation (DAE). To perform the simulations, we also
need solvers to integrate in time these finite-dimensional
differential equations. We use existing libraries to do
it, without looking for time schemes which do not add
numerical dissipation (as symplectic schemes for ODEs).

The simulations are carried out in Python 3, using FEniCS
(Alnæs et al. (2015)) for the finite element libraries. The
time integration for the ODEs is performed with the
Runge-Kutta RK45 scheme, and with IDA (SUNDIALS)
for DAEs. Note that the resolution of the DAE needs
compatible initial data, which can be a drawback.

Figure 1. The used mesh, and the relative Dof.

3.1 Analytical solution

In this case, all the parameters are taken constant equal
to one, i.e. ρ = CV ≡ 1, λ ≡

(
1 0
0 1

)
. Let x :=

(
x1, x2

)> and

T (t,x) := 4t + ‖x‖2 + 3x1 − 5x2. Moreover, define −→JQ(t,x) :=

−
−−−→
grad (T (t,x)) = −

(
2x1 + 3, 2x2 − 5

)>. It is clear that
∂tT (t,x) = − div

(−→
JQ(t,x)

)
= ∆T (t,x), ∀t ≥ 0,x ∈ R2.

Let us define the following function as boundary control:

v∂(t, γ) :=


5, x2 = 0,
7, x1 = 2,
−3, x2 = 1,
−3, x1 = 0,

∀t ≥ 0, γ ∈ ∂Ω. (16)

Then T defined above is the solution of the following heat
equation with boundary heat flux control{

∂tT (t,x) = ∆T (t,x), ∀t ≥ 0,x ∈ Ω,

T (0,x) = ‖x‖2 + 3x1 − 5x2, ∀x ∈ Ω,
−−−→
grad (T (t, γ)) · −→n (γ) = v∂(t, γ), ∀t ≥ 0, γ ∈ ∂Ω.

(17)

The associated observation is then given by

y∂(t, γ) =


4t+ x2

1 + 3x1, x2 = 0,

4t+ x2
2 − 5x2 + 10, x1 = 2,

4t+ x2
1 + 3x1 − 4, x2 = 1,

4t+ x2
2 − 5x2, x1 = 0,

∀t ≥ 0, γ ∈ ∂Ω. (18)

A straightforward computation gives H(t) = 16t2 + 52
3
t +

1301
90

. Hence dtH(t) = 32t + 52
3
. Also

∫
Ω

∥∥−−−→grad (T (t,x))
∥∥2

dx =
256
3
, and

∫
∂Ω

v∂(t, γ)y∂(t, γ) dγ = 32t + 320
3
, from which one

verifies (I.16).

Boundary heat flux control Equation (17) is the pro-
totype of linear parabolic PDE with Neumann boundary
condition. Discretizing it by the finite element method is a
classical exercise which can be found in any lecture notes
on FEM. It only makes use of the family Φ. It gives rise
to the following ordinary differential equation (ODE)

MdtT (t) = −AT (t) + L(t), ∀t ≥ 0,

where M is defined in (14),

A :=

∫
Ω

−−−→
grad (Φ) ·

−−−→
grad (Φ)> dx ∈ RN×N ,

and L(t) :=
∫
∂Ω

v∂(t, γ)Φ>(γ) dγ ∈ RN . This gives a first way
to simulate T , called ODE-FEM in the sequel.

The second way is to solve the DAE constituted of (3)–(9)–
(10)–(11). This method will be refer to as DAE-PFEM.

Finally, after substitutions, the above DAE leads also to
the following ODE for the temperature



MρCV
dtT (t) = −D

−→
M−1−→Λ

−→
M−1D>T (t) +Bv∂(t),

i.e. using isotropy, homogeneity and the values given to
the parameters: MdtT (t) = −D

−→
M−1D>T (t) +Bv∂(t). We will

refer to this method as ODE-PFEM.

Remark that in ODE-PFEM, the matrix D
−→
M−1D> is not

sparse, contrarily to matrix A in ODE-FEM.

Figure 2. Relative errors between the discrete Hamiltoni-
ans and the analytical one (heat flux control).

One can appreciate on Figure 2 the efficiency of the two
PFEM approaches, leading to a relative error of 10−4, and
still decreasing in time, whereas ODE-FEM seems to grow
asymptotically to a relative error close to 10−1.

Furthermore, it has to be noted that ODE-FEM and ODE-
PFEM have the same size and are integrated in time with
the same scheme. Thus, despite the non-sparsity of the
finite element matrix D

−→
M−1D> leading to an overhead in

CPU time and memory storage, there is still some interest
in following this approach.

Boundary temperature control Now, the control v∂ and
the observation y∂ respectively defined in (16) and (18)
are switched, i.e. the heat equation is controlled by a
prescribed temperature at the boundary of the domain
(y∂) and the heat flux is observed (u∂).

The ODE-FEM approach has now a drawback, since the
boundary temperature does not show up when integrat-
ing by part the weak formulation of (I.6). Thus, one
needs a suitable scheme to impose the boundary control,
such as lifting (time consuming since the control is time-
dependent), or Lagrange multiplier. We use the latter in
our simulations.

The DAE-PFEM approach only consists of solving the
DAE constituted of (13)–(9)–(10)–(11), while substitu-
tions allows again an ODE-PFEM approach

MdtT (t) = −D̃
−→
M−1D̃>T (t) + D̃

−→
M−1B̃v∂(t).

Figure 3 shows again the efficiency of PFEM, but only
for the DAE resolution which gives a relative error at
the computer precision. Remark that the error for ODE-
PFEM, despite is value (10−13) is not better than ODE-
FEM. However, in long time, ODE-PFEM also reaches the
computer precision while ODE-FEM stands still.

Figure 3. Relative errors between the discrete Hamiltoni-
ans and the analytical one (temperature control).

3.2 Anisotropic heterogeneous case

For this case, the parameters are taken to be

ρ(x) := x(2− x) + 1, CV := 3, λ(x) :=

(
5 + x1x2 (x1 − x2)2

(x1 − x2)2 3 +
x2

x1 + 1

)
.

The initial temperature is taken as a centered Gaussian,
such that both temperature and heat flux are null at the
boundary. Then a control is imposed either for the heat
flux, or the temperature. It is taken to be under the form
v∂(t, γ) = f(t)g(γ), with f(t) ∼ t

t+1 and g(x1, x2) = x1 +
x2 at the boundary.

As an analytical solution would be difficult, not to say
impossible, to compute, we compare the L2(∂Ω) relative
error between the target control, and the effective value at
the boundary of the approximation.

Figure 4. Relative errors in L2(∂Ω) between the target and
effective boundary heat flux control.

Boundary heat flux control It can be seen on Figure 4,
that DAE-PFEM has the best behavior. This can easily
be explained. Since ODE-FEM and ODE-PFEM only
approximates the temperature T , a post-processing is
needed to compute the boundary heat flux, while it is
directly accessible with DAE-PFEM.



Figure 5. Relative errors in L2(∂Ω) between the target and
effective boundary temperature control.

Boundary temperature control Figure 5 shows that the
control is far better imposed with the classical Lagrange
multiplier method. This can be explained by the fact
that the Lagrange multiplier method strongly imposes the
condition, while PFEM approaches weakly impose it.

4. CONCLUSION AND PERSPECTIVES

To conclude this paper, we summarize what has been
done. The heat equation has been written in the pHs
formalism, with three different Hamiltonian (Serhani et al.
(2019a)). Two of them are thermodynamically founded,
namely the entropy and the internal energy, and the third
is a weighted L2 norm, usually used in applied mathematic.
PFEM has been applied on the obtained systems and
it proves to be an accurate way to spatially discretize
them, leading to finite-dimensional pHs. In particular,
this leads to an accurate discretization of the chosen
Hamiltonian. The main difficulty lies in the discretization
of the constitutive relations, which has to be suitably
adapted to the discretization of the flows and efforts. We
finally perform simulations in 2D, under usual hypothesis
(Fourier’s law and time-invariant isochoric heat capacity)
for the Lyapunov formulation. We show on the one hand,
the efficiency of PFEM to simulate the system, first
compared to an analytical solution in a simple case, and
for an anisotropic heterogeneous case. On the other hand,
we observed that solving directly the DAE system seems
to be more relevant, although it involves a bigger system,
and suitable time schemes.

Some numerical analysis should be made, as this is done
in Serhani et al. (2019b) for the wave equation, leading to
an optimal choice for the finite element families.

Furthermore, a deeper investigation of the theoretical rela-
tions between the finite-dimensional pHs and the continu-
ous one would be of great benefit, in particular concerning
the family of Dirac structures (as function of the mesh size
parameter), for a better understanding of the underlying
geometrical structures; see e.g. Serhani et al. (2019c).
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