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Abstract 

This paper focuses on the data reconciliation technique (DR) in case of numerous biases. 

DR improves the degree of confidence in available information and generates consistent 

data. The inventory and analysis of the plant data (position and type of sensors …) 

enable an evaluation of the process redundancy. Classical Gross Error 

Detection and Identification (GEDI) techniques delete the biased variables, decreasing 

the redundancy. This leads to information loss and possibly an inability to apply DR. 

The methodology proposed here combines DR, based on a reduced model, and 

rigorous simulations to locate and estimate multiple biases and to make data consistent 

in case of inter-connected flows. This methodology is applied to the nuclear fuel 

recycling process within the scope of a state estimation tool built on a process 

simulation code.  
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1. Introduction

A measurement intrinsically possess uncertainty that prevents straightforward closure of 

mass and energy balances. In the data reconciliation (DR) methodology, accuracy is 

given to the measurements by exploiting redundancies in process data and physical 

constraints, from steady-state mass balances (Simpson et al., 1991) to nonlinear dynamic 

constraints (Liebman et al., 1992).  

There are two main approaches to dealing with gross errors that impact DR. The first 

uses Gross Error Detection and Identification (GEDI) methods (Narasimhan and 

Jordache, 2000) and sequentially deletes the biased variables from the DR. The 

redundancy, which implies the ability of DR to correct the measurements in order to 

satisfy the process constraints, is reduced. However, performances of DR and GEDI 

are still limited in disrupted cases, such as multiple flows between two units, numerous 

gross errors, and the position and magnitude of gross errors (Corderio do Valle et 

al. 2018). The second 



approach, not discussed in this study, modifies the objective function of DR to mitigate 

the effect of gross errors (Fuente, M.J. et al. 2015). 

A new methodology for a nonlinear system is proposed here, combining the DR approach, 

based on a simplified model, and simulations, based on a first-principle model. It prevents 

the removal of the biased variables from the measurement set. The bias estimation is 

performed by the rigorous model, which enables the maximum redundancy to be kept. 

With a set of consistent input data generated by DR, the simulation can precisely estimate 

key indicators. 

2. Methodology

Graph theory can be used to classify data in order to distinguish observable (measured or 

calculable) data from non-observable data. Among observable data, three categories can 

be defined: redundant data (deleting this measurement does not change the system 

observability), non-redundant and measured data, non-measured data. The redundant data 

are reconciled.  

The n measurement vector XB is linked to the true value of the measured variables XT, the 

random error εB (assumed to be independent, with a zero mean and normally distributed), 

and the gross error B, here, the bias, by the following equation: 

B T BX X B   (1) 

Data reconciliation consists of minimizing an objective function constrained by a set of 

constraints f: 
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where XR is the n reconciled values vector, V the (n,n) covariance matrix of the measured 

data, and θ the parameters of the system. XR are the best estimates of process variables, in 

the sense of the maximum likelihood. A study of the redundant variables, depending on 

the process topology and the number of independent equations, enables the determination 

of the ability of the DR to calculate a consistent set of reconciled data.  

A global approach is to solve the DR with the rigorous model as constraints and 

simultaneously estimates the reconciled values XR and the biases B. In most industrial 

applications, the entire first-principle model of the process, named rigorous model 

thereafter, cannot be directly used as the constraints f for the DR. This is generally due to 

implementation difficulties, such as code interfaces, and complex numerical estimation 

of the gradient of the constraints. The methodology proposed performs bias estimation 

outside the DR by an iterative strategy. It divides the problem into two sub problems: the 

rigorous model estimates the biases while the DR solves Eq. (2), in regards of XR only, 

with a reduced model as constraints. This simplified model is made up of a selection of 

linear and nonlinear equations specially chosen in order to exploit all information 

available from the measurements. In particular, it contains the total mass balance and, 

depending on the case study, some partial mass balances and equations for the calculation 

of physical properties and fluid phase equilibria.  

Figure 1 displays the new methodology. First, a map of the process (list of fluxes, units, 

sensors, uncertainties etc.) is built offline to generate the redundancy graph. The second 



step makes use of process expertise to identify bias locations, concerning measurements 

on internal or output fluxes. An initial simulation, based on the rigorous model, with input 

fluxes raw measurements Xin
B as input data, gives a first estimation for the biases BC(0). 

As regards the vector of the calculated bias BC, each element is null except for the 

identified biased output variables. These elements are equal to the difference between the 

biased measurements Xout
B and the rigorous simulation calculated outputs Xout

C. 

The DR is then solved iteratively with respect to XR only, the values of biases BC(i) being 

considered fixed. Therefore, the process redundancy is unreduced by biases. To solve the 

nonlinear steady-state DR problem, this study uses the Fmincon function of Scilab 

software. The uncertainty for reconciled values is estimated at each DR solution by 

uncertainty propagation (Narasimhan and Jordache, 2000).  

Figure 1: Bias identification and estimation methodology 

At iteration i, the reconciled values of the input fluxes Xin
R(i) are transferred to the rigorous 

simulator. The reconciled and calculated output flow information, Xout
R(i) and Xout

C(i) 

respectively, are compared. If the difference |Xout
C-R(i)| between them is smaller than the 

uncertainties of reconciled data, the DR gives consistent values for rigorous model 

equations in the case of Lipschitz continuity around the solution. New bias values BC(i) 

are estimated with the last rigorous calculation. The best estimation of the bias values is 

reached when the biases between two iterations are constant. If these two criteria are not 

respected, bias information given to the DR is not satisfactory. The new bias values BC(i) 

are given to the DR for the next step. The iterations continue until the bias value 

estimation enables consistent data to be reached. The final DR is performed with fully 

known bias information, and has a minimal objective function value. 

3. Case study

The methodology proposed in this paper is applied to the PUREX process and uses the 

PAREX simulation code developed and validated by the CEA (Dinh et al., 2008). This 

process carries out the treatment of spent nuclear fuel. Spent fuel contains the elements 

of interest, uranium and plutonium, and the waste, i.e. fission products. TBP (tributyl-

phosphate) is the extractive molecule used to recover and purify uranium and plutonium 

through interconnected liquid-liquid extraction steps. For the final products, very specific 

features in terms of purity as well as extraction efficiency are required. In order to reach 

the necessary high performances, the metal loading of the solvent (metal mass flowrate 

in the solvent for a specific TBP mass flowrate) must be precisely controlled. This ratio 

is a sensitive parameter which deeply impacts the process state (Bisson et al., 2016). 

Therefore, DR aims to reduce uncertainty on this key process indicator by giving reliable 



input data to the rigorous simulator PAREX. It is based on first-principle models notably 

taking into account the partitioning of the species, the transfer, and chemical kinetics. 

This study deals with an extraction-stripping step of the PUREX process where many 

sensors are implemented, and can be separated into two categories. Major consideration 

is given to a specific set of sensors essential for operation, control, and to respect the 

safety regulations (multiple sensors, regular checking, preventive maintenance, etc.). 

They are listed as reference information for the industrial plant. The secondary sensors 

are not used for process control or for industrial safety. They give additional information, 

increasing redundancy, which can help process state estimation. Some of this additional 

data can have biases non-detectable with previously-acquired data. A scenario is defined 

in order to encounter identified causes of GEDI performance loss (Corderio do Valle et 

al., 2018): the biases concern flows connecting the same two units, and their suppression 

leads to the system being non-redundant. 

The initial graph of the PUREX process (Figure 2a) contains information about flows 

(directed arcs) and units (nodes). The redundancy graph (Figure 2b) is free of internal 

non-measured physical quantities: arcs depict constraints linking measurements of 

interest from one unit to the other. The measured variables used in the DR problem are 

volumetric flowrates, densities for each arc, temperature, and uranium, plutonium, nitric 

acid and TBP composition for specific arcs. The six identified biases are all located on 

internal and output flowrates measured by secondary sensors. 

Figure 2: Graphs of an extraction-stripping step of the PUREX process. 



For the classical GEDI methodology, each time a bias is detected, the redundancy 

decreases (Narasimhan and Jordache, 2000). The bias removal graph (Figure 2c) shows 

this loss of redundancy: DR cannot be applied on the aggregated node 

(IV+V+VIII+X+XI+XII), as only the calculation of the biases on output flowrates is 

possible in this scenario. In addition, classical GEDI techniques cannot locate a bias 

within two-way arcs between two units, such as between IV and VIII. 

4. Results

The first bias estimation BC(0) was obtained by the comparison between measured internal 

and output flow-rates and the initial PAREX calculation. Four iterations were needed to 

obtain consistent bias estimations BC and the minimum of the objective function. As soon 

as all biases can be considered constant, the iterations stop (|BC(4) - BC(3)|< α, with α = 10- 4 

the tolerance of the convergence criterion). Note that the bias values are considerably 

higher than the measurement uncertainty in this scenario; therefore their contribution 

must be isolated.  

All redundant data (80 variables), biased and unbiased, are reconciled. Figure 3 displays 

the differences ΔXout
B-R between some of the measured Xout

B and reconciled Xout
R values 

and their corresponding uncertainties. The differences ΔXout
B-C(0) and ΔXout

B-C between the 

measured Xout
B and, respectively, initial Xout

C(0) and final Xout
C PAREX values, are also 

laid out.  

The differences ΔXout
B-C(0) result from input measurement uncertainty. For flowrate A7, 

flowrate O4, and density A8, the reconciled values are closer to the PAREX calculations 

than the measured values, highlighting the consistency of the final data set. Moreover, the 

uncertainty of the reconciled values is smaller than the measurement uncertainty.  

Figure 3: Comparison between measured, reconciled, and PAREX calculated outputs. 



Concerning density A8 and density O6, the uncertainties of the reconciled values are very 

small and surround the reconciled and calculated values. These densities are linked to 

uranium and plutonium concentrations through a density equation. The analytical 

concentration measurement methods are more precise than the density sensors. Thus, the 

uncertainty propagation through the constraints enables the Xout
R to be more precise.  

Concerning the other unbiased variables, mostly linked by mass balances, the reconciled 

Xout
R values are only slightly different from the measured Xout

B values. The two PAREX 

simulations give very similar results. This reflects the low sensitivity of these physical 

quantities to the change in the inputs from measured to reconciled values.  

As PAREX input data are reconciled, accuracy is given to process indicators estimation. 

For instance, the uncertainty of the TBP mass flowrate is reduced by half (measurement 

uncertainty: 5.26 %, uncertainty of the reconciled value: 2.81 %). The uncertainties of 

uranium and plutonium mass flowrates are also reduced (from 2.8 % to 2.0 %), which 

leads to a better estimation of the metal loading in the solvent.  

5. Conclusions

In classical GEDI methods, each bias decreases the redundancy of the system. The new 

methodology is based on nonlinear DR in which the biases are fixed and estimated by a 

rigorous model, with the reconciled values as input data. Therefore, the redundancy is not 

modified. For the bias estimation to be precise, the rigorous code and the DR iterate until 

the bias values offer a consistent set of reconciled data. This methodology enables explicit 

and inexplicit constraints for a DR problem to be addressed. 

The proposed methodology was applied with success to a spent nuclear fuel treatment 

process. As a tool to reduce uncertainty in nuclear matter management within the plant, 

combining data reconciliation and the PAREX code could help in process monitoring and 

control. 
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