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Abstract—Acceptance of the Systems Modeling Language
(SysML) among system engineers heavily depends on the method
and tool associated with the language. This particularly applies
to a family of systems where increasing data exchanges between
equipments create high requirements for the networks. The paper
therefore revisits the method associated with the free SysML tool
TTool in order to take network dimensioning into account in
the early steps of the life cycle of distributed systems. TTool
is interfaced with WoPANets, a tool based on network calculus
theory. An AFDX network serves as case study.

Index Terms—System Modeling, SysML, Dimensioning.

I. INTRODUCTION

The Object Management Group (OMG [1] and the Interna-
tional Council for Systems Engineering (INCOSE [2]) have
jointly defined the Systems Modeling Language (SysML [1])
in the form of a notation, the syntax of which is standardized
when the way of using it is not. Being a profile of the Unified
Modeling Language (UML [3]), SysML accepts extension
mechanisms such as stereotypes, and therefore customization
for one specific application domain. This leaves some flexibil-
ity for developing a system modeling tool with an enhanced
SysML syntax and a method accepted by practitioners of the
application domain.

Over the past few years, proprietary and open-source
SysML tools have been developed to edit diagrams and an-
alyze these diagrams using simulation and formal verification
techniques. This paper adds network dimensioning capabilities
to TTool [4], a free SysML tool that enhances the expression
power of SysML, gives the latter a formal semantics, and
supports a method covering the requirement capture, analysis,
and design steps in the life cycle of real-time systems. The
design step is assisted by a simulator, a model checker and
other formal verification tools that enable checking of SysML
models against design errors.

In [5] de Saqui-Sannes et al. discussed the use of TTool
and formal verification for checking a networked system
against design errors. To demonstrate a protocol renders its
expected service, the authors of [5] put the focus on the
temporal ordering of messages in the network. Quantitative
characteristics, such as throughput, were left for further study.

The current paper proposes to make these quantitative
characteristics an important concern as early as possible in the
design trajectory of networked systems. The paper therefore
proposes to complement the requirement capture step of

TTool’s method with a dimensioning step that is focused on the
network’s links. The paper’s contributions therefore address
SysML, TTool and the method. First, SysML context diagrams
are extended to depict a network architecture with parameters
such as period and jitter. Second, TTool is interfaced with
WoPANets [6], a tool for network dimensioning. The method
associated with TTool is revisited accordingly.

The paper is organized as follows. Section II presents
SysML and TTool. Section III presents WoPANets. Section
IV-A integrates the use of a network dimensioning tool into
the method associated with SysML and TTool. It extends
SysML with context diagrams and explains how TTool and
WoPANets are interfaced. Section V discusses a case study:
an AFDX network. Section VI surveys related work. Section
VII concludes the paper.

II. SYSML AND TTOOL

A. Method and Diagrams

The SysML standard [1] defines a diagrammatic notation
that may be tuned to target an application domain and to cover
one or several steps in a method accepted by practitioners of
the domain. The SysML TTool named ”TTool” thus targets
real-time systems.

The method associated with SysML and TTool covers
the requirements capture, analysis and design steps of the
traditional V life cycle.

• Requirement capture uses requirement diagrams to define
stakeholder, user, and system requirements. Modeling
Assumptions Diagrams list simplifications and other as-
sumptions made at the time of creating the model.

• Analysis is use-case driven. Use-cases identify the main
functions and services to be offered by the system.
Sequence and activity diagrams document the uses cases
in the form of scenarios and flow-charts, respectively.
A preliminary architecture can be depicted by a context
diagram.

• The design step architects the system in the form of a
block diagram, and defines the inner workings of the
blocks using state machine diagrams.

B. Context diagrams

Previous section sketched a method and identified the
SysML diagrams supported by TTool. To extend the method
with a dimensioning step (cf. Figure 1 and Section IV-A), this
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paper essentially addresses the context diagrams elaborated
during the analysis phase.

A context diagram uses the syntax of SysML block di-
agrams to depict a preliminary architecture of the system.
The architecture is preliminary because the blocks are not
detailed in terms of attributes and methods. A context diagram
thus depicts a tree structure linking blocks by containment
relations (depicted by the SysML ”black diamond” arrow).
The parameters needed to achieve network dimensioning are
included into comments, themselves linked to the relevant
blocks depicting an equipment. Annotations are written in the
language introduced by Section IV-B.

III. WOPANETS AND NETWORK CALCULUS

A. WoPANets

WoPANets (Worst-case Performance Analysis of Embedded
Networks [6]) answers an important critical embedded sys-
tems design challenge: verification of temporal and functional
constraints in the worst-case. Besides ensuring the proper
functioning of the system in its environment this allows
to guarantee strict certification requirements, particularly for
avionics and space systems.

The opportunity to make this worst-case performance anal-
ysis since the early design phases will allow designers to make
important decisions concerning the systems parameters tuning
and dimensioning.

To apply WoPANets, one first specifies the system in
terms of application profiles and network architecture. The
application profiles can then be defined relying on events
traces or more commonly on traffic contracts. The latter define
the main characteristics of the exchanged traffic flows using
packet lengths, period or inter-arrival time, deadline, traffic
class, jitter, burst size or source, just to mention a few.
WoPANets implements a state-of-the-art Network Calculus
timing analysis [6].

B. Network Calculus

Network Calculus is a mathematical theory introduced by
Cruz in 1991 [7], [8]. It was extended and formalized using
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Fig. 2. Illustration of delay and backlog

algebra (min, +) by Chang [9], by Le Boudec and Thiran [10],
and by Bouillard, Boyer and Le Corronc [11].

Network Calculus was used to certify an industrial config-
uration of the network AFDX [12] and to study an extended
AFDX network [13], and TTEthernet [14] .

Network Calculus derives deterministic upper bounds on
network parameters such as the backlog of network switches
and the delay of messages. In order to compute these bounds,
Network Calculus models incoming flows with an arrival
curve α(t) and availability of elements on traffic path with
a minimal service curve β(t). Traffic delays are bounded by
the horizontal distance between α and β, whereas backlog are
bounded by the vertical distance as illustrated in Figure 2.

IV. CONTRIBUTIONS

A. New Method for SysML and TTool

Section II presented the three-step method associated with
SysML and TTool. This section complements the requirements
capture and analysis steps with a network dimensioning step
(Figure 1).

The Network Dimensioning step has two roles.
• First, to check whether the requirements are correct

or not, and to possibly initiate discussions with users,
stakeholders and system designers if the requirements
related to network dimensioning are not satisfied.

• Second, to refine the initial assumptions if the worst-case
analysis revealed pessimism in the early assumptions.

For example, a common requirement in embedded networks
is deadline. Every message must cross the network faster than
its flow’s deadline. The exact traversal time of one message is
unknown. The classically associated assumption is to consider
that this message’s worst case traversal time (an upper bound
to the exact traversal time) is equal to its deadline. Let’s note
D, the deadline, T the exact traversal time of the message,
and WCTT its worst case traversal time (T ≤WCTT ). The
requirement to check is: T ≤ D. And the initial assumption
is to consider that WCTT = D. With an early network
dimensioning step for each message, it is possible to compute
an upper bound of its exact traversal time. Let’s note this
bound B. Considering a message, if its bound is lower than
its deadline (B ≤ D) it means:

• First, the associated is satisfied: T ≤ B ≤ D



• Second, our initial assumption was pessimist. We can
refine it: WCTT = B.

B. Annotated context diagrams

The network dimensioning step requires representing all
network information on a diagram. In this paper, that informa-
tion is located in annotating SysML block diagrams that serve
as context diagrams.

An Annotated Context Diagram (Figure 3) is a graph with
two types of nodes: Equipments and Switches. An equipment
is a 2-uple (name, service policy) and a switch is a 4-
uple (name, scheduling policy, technological latency, switching
technique). Their attributes are specified in annotations. Nodes
are connected by annotated links. A link is a 2-uple (name,
transmission capacity). Flows are notes connected to an equip-
ment. A flow is a 8-uple (name, type, period, jitter, minimal
packet size, maximal packet size, priority and routing).

An attribute is described using an annotations: equipment,
switch, link, or flow. Figure 4 depicts the meta-model of
annotated Context Diagrams.

The syntax used in annotations is defined by the following
Backus-Naur form:
〈Annotation〉 ::= 〈equipment〉 | 〈switch〉 | 〈link〉 | 〈flow〉
〈equipment〉 ::= Equipment 〈name〉 〈serv policy〉
〈switch〉 ::= Switch〈name〉 〈serv policy〉 〈tech latency〉

〈switch tech〉
〈link〉 ::= Link〈name〉 〈capacity〉
〈flow〉 ::= Flow〈name〉 〈type〉 〈period〉 〈jitter〉

〈min size〉 〈max size〉 〈priority〉 〈routing〉
〈name〉 ::= name"="〈string〉
〈serv policy〉 ::= service-policy"="(

FIRST IN FIRST OUT

| STATIC PRIORITY
)

〈tech latency〉 ::= tech-latency"=" 〈integer〉 〈time unit〉
〈time unit〉 ::= µs | ms | s

〈switch tech〉 ::= switching-technique"="(
STORE AND FORWARD

| CUT THROUGH | WORM HOLE
)

〈capacity〉 ::= transmission-capacity"="
〈integer〉 〈speed unit〉

〈speed unit〉 ::= bps | Mbps | Gbps

〈type〉 ::= type"="
(
PERIODIC | SPORADIC

)
〈period〉 ::= period"=" 〈integer〉 〈time unit〉
〈jitter〉 ::= jitter"=" 〈integer〉 〈time unit〉
〈min size〉 ::= min-payload"=" 〈integer〉 bytes
〈max size〉 ::= max-payload"=" 〈integer〉 bytes

〈priority〉 ::= priority"="
(
Low | High

)
〈routing〉 ::= 〈routing〉 〈target〉 | 〈target〉
〈target〉 ::= Routing":" 〈string〉 "=" 〈path〉
〈path〉 ::= 〈path〉 "/" 〈string〉 | 〈string〉

C. Interfacing TTool and WoPANets

TTool allows you to create annotated context diagrams and
save them as an xml file. A parser has been developed using
Python. It takes as input an annotated context diagram edited
with TTool, and converts the XML file of the model into the
input format of WoPANets (Figure 5).

It is then possible to make a worst case performance analysis
with WoPANets. The output of WoPANets allows us to check
the requirements and to update the assumptions of the initial
model.

V. CASE STUDY

We will now apply the method described above to a
case study. Section V-A describes the considered network.
Section V-B explains how this case study can be modeled
with a context diagram. Finally, section V-C shows how the
worst-case analysis of WoPANets can help refining the initial
assumptions.

A. Network description

The network to model [15], [16] is part of an aircraft’s Flight
Management System that controls the display of navigation
information on the flight displays. In order to realize this
function, several calculators and sensors are interconnected
through an AFDX network. AFDX [17] is an aeronautical
embedded network based on switched Ethernet technology.
Each data flow is modeled with a virtual link, namely a
unidirectional path from the source equipment to all the
destination equipments. The virtual link is characterized by its
BAG (minimum distance between two consecutive messages)
and its maximal message size.

On Figure 6, the AFDX network consists of seven modules
(from M1 to M7) that host the avionics functions. These
modules are interconnected by five switches (from S1 to S5).
And finally the information supplied by the sensors arrive
on the network via two remote data concentrators RDC1 and
RDC2. Switches ports and module ports operate at 100 Mbps.

The different elements of the network must exchange infor-
mation. This implies having multiple data flows through the
network. In this case study there are twelve periodic flows
(twelve virtual links, from VL1 to VL12) and so their BAG
is also their period.

To each of these flows is associated a deadline constraint. In
this case study, the deadline of each flow is equal to its period.
Therefore the associated assumption consists in assuming the
worst traversal time of each flow equal to its period. Table I
summarized all the constraints and assumptions associated
with the twelve flows. Moreover assumptions can be used in
order to build a network abstraction diagram (see Figure 7).
This diagram does not represent the entire network, flows
being only characterized by their destinations an by their worst
case traversal time. This type of diagram is used to model the
rest of the system with the application part, so the detailed
characteristics of the network are no longer needed.
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Fig. 3. Context diagram example.

B. Integration of the case study into TTool

The characteristics of the network being known, we can
create a SysML context diagram (section IV-B) using the
diagram editor of TTool.

Each switch is modeled by one node stereotyped by
<<Switch>>. The module and remote data concentrators are
both modeled by nodes stereotyped by <<Equipment>>.

Each node is annotated with a comment that contains all
information relative to the relevant switch or module.

Last, all the flows are modeled via notes connected with the
sender of each flow.

A simplified (without annotation) context diagram of the
case study is represented by Figure 6. Part of the complete
diagram is reproduced on Figure 8: it particularly contains
the characteristics of two flows (VL3 and VL4). Finally the
complete diagram is represented by Figure 9.

C. Worst case analysis of WoPANets

The worst case analysis of WoPANets computes a traversal
time upper bound for each flow (B see Section IV-A). In this
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Fig. 4. Annotated Context Diagram meta-model
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Fig. 5. Interfacing TTool and WoPANets

TABLE I
INITIAL REQUIREMENTS AND ASSUMPTIONS

Name:destination Deadline Worst Case Traversal Time
(requirement) (assumption)

VL1:M3 32ms 32ms
VL1:M4 32ms 32ms
VL2:M3 32ms 32ms
VL2:M4 32ms 32ms
VL3:M1 8ms 8ms
VL4:M7 16ms 16ms
VL5:M1 8ms 8ms
VL6:M7 16ms 16ms
VL7:M3 64ms 64ms
VL8:M4 64ms 64ms
VL9:M5 32ms 32ms

VL10:M6 32ms 32ms
VL11:M3 32ms 32ms
VL11:M4 32ms 32ms
VL12:M3 32ms 32ms
VL12:M4 32ms 32ms

case study, the network is lightly loaded. Further, all deadlines
are met: all upper bounds returned by WoPANets are lower
than the previously expected maximum deadlines (B ≤ D).
Moreover, it is possible for us to update the assumptions, by
using these upper bounds in our estimate of the worst case
traversal time (WCTT = B). Table II shows what are the
new assumptions for each flow. These news values allow to
update the network abstraction diagram Figure 10.

VI. RELATED WORK

Little work has been published on including a network
dimensioning activity using network calculus in the early
stages of the life cycle of distributed systems. In [18], Apvrille
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Fig. 6. Simplified context diagram of the case study
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Fig. 7. Initial network abstraction diagram

et al. proposed a UML-class notation as a front-end for an
early version of WoPANets ; however this approach was
restricted to software modeling while ours fits in with a
systems approach. Considering UML diagrams, they have been
used in [19], [20] punctually and for documentation purposes
only. [20] integrates network calculus to Matlab/Simulink
for schedulability purposes. However, [20] does not address
distributed systems nor formal verification and moreover the
choice of Matlab/Simulink restricts the work on the design
phase. In [15], the idea of associating the network calculus
to modeling is proposed for AADL models and considering
scheduling issues.

Network calculus and WoPANets are not the only approach
used to compute deterministic performances of embedded
network. For example, MAST [21], an open model for the de-

scription of event-driven real-time systems, allows to compute
a worst-case response time schedulability analysis using a set
of open source tools. Also, CPA (compositional performance
analysis) is an approach to formal performance analysis of
large embedded systems commercialized as SymTA/S [22].
All of these approaches have been compared in [23].

VII. CONCLUSIONS

The paper revisits the method associated with SysML and
TTool to include a network dimensioning activity in the
early stages of the life cycle of distributed systems. TTool is
interfaced with WoPANets and thus builds upon the network
calculus theory to dimension networks. The proposed approach
is illustrated using an AFDX network.

In [18] Apvrille et al. proposed a UML-class notation
as a front-end for an early version of WoPANets. In the
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Fig. 8. Part of the complete context diagram of the case study

TABLE II
UPDATED REQUIREMENTS AND ASSUMPTIONS

Name:destination Deadline Worst Case Traversal Time
(requirement) (assumption)

VL1:M3 32ms 434µs
VL1:M4 32ms 434µs
VL2:M3 32ms 434µs
VL2:M4 32ms 434µs
VL3:M1 8ms 483µs
VL4:M7 16ms 504µs
VL5:M1 8ms 483µs
VL6:M7 16ms 504µs
VL7:M3 64ms 552µs
VL8:M4 64ms 552µs
VL9:M5 32ms 172µs

VL10:M6 32ms 172µs
VL11:M3 32ms 594µs
VL11:M4 32ms 594µs
VL12:M3 32ms 594µs
VL12:M4 32ms 594µs

current paper, the idea of dimensioning networks is no longer
restricted to software modeling and our proposal fits in with a
systems approach. Further, each block in the class diagram can
be cloned in the requirement or modeling assumption diagram
in order to concretely link dimensioning to requirements and
assumptions, and contribute to achieve requirement traceabil-
ity, which is an important issue in system engineering.

Finally, the annotated context diagram that has been dis-
cussed is specifically addressing AFDX networks. The ap-
proach is being adapted to other types of networks; for
example, the CAN bus.
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Fig. 9. Context diagram of the case study
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