
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/24185

Leserf, Patrick and Saqui-Sannes, Pierre de and Hugues, Jérôme Trade-off Analysis for SysML Models Using Decision

Points and CSPs. (In Press: 2019) In: MODELS 2019, 15 September 2019 - 20 September 2019 (Munich, Germany).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/227533037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Trade-off Analysis for SysML Models
Using Decision Points and CSPs

Patrick Leserf

ESTACA’Lab
F-53000 Laval, France

patrick.leserf@estaca.fr

Pierre de Saqui-Sannes

ISAE-SUPAERO
Université de Toulouse

F-31055 Toulouse, France
pdss@isae-supaero.fr

Jérôme Hugues

ISAE-SUPAERO
Université de Toulouse

F-31055 Toulouse, France
jerome.hugues@isae-supaero.fr

ABSTRACT

The expected benefits of Model-Based System Engineering

(MBSE) include assistance to the system designer in finding

the set of optimal architectures and making trade-off

analysis. Design objectives such as cost, performance and

reliability are often conflicting. The SysML-based method

OOSEM and the ARCADIA method focus on the design and

analysis of one alternative of the system. They freeze the

topology and the execution platform before optimization

starts. Further, their limitation quickly appears when a large

number of alternatives must be evaluated. The paper avoids

these problems and improves trade-off analysis in a MBSE

approach by combining the SysML modeling language and

so-called “decision points”. An enhanced SysML model

with decision points shows up alternatives for component

redundancy, and instance selection and allocation. The same

SysML model is extended with constraints and objective

functions using an optimization context and parametric

diagrams. Then a representation of a constraint satisfaction

multi-criteria objective problem (CSMOP) is generated and

solved with a combination of solvers. A demonstrator

implements the proposed approach into an Eclipse plug-in;

it uses the Papyrus and CSP solvers, both are open-source

tools. A case study illustrates the methodology: a mission

controller for an Unmanned Aerial Vehicle (UAV) that

includes a stereoscopic camera sensor module.

Keywords: MBSE, Optimization, SysML, CSP, Papyrus,

System engineering, Optimal architecture design, Decision

points.

1. INTRODUCTION
According to INCOSE [1], Model-based systems

engineering (MBSE) is the formalized application of

modeling to support system engineering activities, from

requirements to validation. These activities have

traditionally been performed using document-based

approaches. The expected benefits of MBSE include better

specification and design quality, reuse of design artifacts,

and a coherent model of the system to be developed.

Selecting a modeling language is a key issue for MBSE.

Originally, mathematical formalisms (e.g. [2]) were

introduced, allowing analysis and optimization by means of

specific tools. Over the past decade, joint efforts of OMG

and INCOSE have lead to the standardization of SysML [3],

a modeling language that addresses important issues such as

requirements, architecture and behaviors.

The paper addresses one MBSE activity within a SysML

context: trade-off analysis among alternatives for the system

model in order to meet design objectives, such as cost,

performance, reliability and other inputs from the

stakeholders’ needs. These needs are often conflicting, and

the goal of trade-off analysis is to provide a balanced

solution [4].

To find a balanced solution, several methods are available

to specify, design, and verify the system to build. The

Object-Oriented System Engineering Method (OOSEM)

from OMG [4], is the only one using SysML.

The specification and design steps of OOSEM include two

highly important activities [4]:

1. Synthesis of alternative variants by structuring the

system, and
2. Evaluation of variants associated with trade-off

analysis so as to determine a set of optimal solutions.

A designer who synthesizes alternative variants needs to

minimize objectives such as cost, performance and failure

rate. Examples of objectives include cost and performance,

redundancy level for failure rate, and allocation for

performance. [5] and [6] rely these design decisions on a

pure optimization problem and separate them from design

representation. Conversely, the paper discusses a MBSE

approach based on SysML language [3].

With OOSEM and SysML 1.5, OMG introduced stereotypes

to allow trade-off analysis in the form of objective functions

and measure of effectiveness (moe). For each variant of the

system, a «moe» stereotype models the values to be

optimized, and an external tool computes the objective

functions values. A component variant is explicitly defined

by inheritance from generic components, and only a limited

number of variants shall be considered. Our approach allows

modeling a large number of variants by using “decision

mailto:pdss@isae-supaero.fr
mailto:jerome.hugues@isae-supaero.fr

points”. The designer uses them to model variation in

component instance choices, redundancy level or allocation.

The notion of decision points is close to that of variability

[7], but remains specific to system engineering decisions

and to their combinations.

In terms of drawback, OOSEM/SysML aggregates the

different objectives into a single one called the “utility

function”. In the paper, a new approach suggests the best

configurations to the designer, and finds the Pareto-optimal

solutions [8] that have the lowest (or equivalently low)

values for all objective functions.

For the designer, the benefits of our approach is threefold.

First, it allows to model a large number of alternatives,

without having to define them explicitly in detail. Second, it

allows a real optimization process from the model, instead

of a simple analysis of the different alternatives of the

system. Third, we propose a Pareto Front analysis of the

optimal solutions, instead of a global ranking based on the

weighted sum of the different objective. This allows a better

decision process, with more degree of freedom and fewer

hidden solutions. At the end, the solution selected by the

decision maker is highlighted in the model, which allows

round-trip optimization even if it is done manually for the

moment.

In our approach, we provide to the designer a way to model

alternatives (the decision points) and objectives. Then the

proposed algorithms generate a constraint satisfaction and

multi-criteria objective problem (CSMOP) representation

from the (SysML) model. The designer can solve the

CSMOP problem and select solutions. At the end, a proof of

concept is achieved by interfacing the Papyrus SysML tool

with several solvers.

Figure 1 depicts a corollary contribution in the form of a

three-step method:

❶ SysML Modeling for optimization (cf. sections 3 and 4).

An initial SysML model describes a system without

alternative. New stereotypes extend the model for

optimization purposes. A SysML parametric diagram

models a “MDO context” optimization context and contains

the model variants (decision points). The solver is selected,

and objective functions are defined using the solver

language.

❷ Model transformation. The SysML model produced by

the first step is transformed into a description of a CSMOP

problem. The CSMOP description defines variables by their

domains, global constraints and objective functions.

❸ Best solutions generation. The optimal solutions are

calculated with different solvers such as CHOCO [9] or

PyOpt [10], depending on the kind of decision points,

corresponding to discrete or continuous problems. The

designer can select the solutions that better fit the

requirements in term of power, performance or any other

type of metric. The selected design is used for domain-

specific optimizations such as scheduling analysis.

 MDO Context

definition : objective

functions, decision

points and constraints

definition

❷ Model transformation

Initial SysML Model

 CSMOP model

generation

❶ SysML

Modeling for

 optimization

Algorithm

and solver

use

No

One solution selected by
the decision-maker ?

Yes

Update initial model

& Detailed optimization

 ❸ Best solutions

 generation and stored

in MDO context

Solver

Figure 1 “Methodology Overview”

The paper is organized as follows. Section 2 gives the

background for SysML modeling, variants modeling and

optimization. Section 3 addresses meta-model for decision

points, and transformation algorithms. Section 4 instantiates

in SysML. Section 5 adds a plug-in to Papyrus and applies

the proposed approach to a UAV modeled. Section 6 surveys

related work. Section 7 concludes the paper and outlines

future work.

2. BACKGROUND

2.1 SysML

Figure 2 "SysML diagrams"

A system model in SysML is made up of a set of diagrams

categorized into four groups (Figure 2). Requirement

BDD

Structure Behavior

REQ

Requirement

ACT

Parametrics

PAR

Find the best

alternatives

IBD

diagrams (REQ) describe requirements. Activity diagrams

(ACT) represent the behavior of the system. Block

Definition Diagrams (BDD) and Internal Block Diagrams

(IBD) describe the architecture of the system. Finally,

parametric diagrams represent constraints on property

values such as 𝑈 = 𝑅𝐼, used to support engineering

analyses.

Figure 1 also links optimization to the so-categorized

diagrams. For example, the Allocate relationship links

elements from different SysML diagrams. Allocate modifies

the allocated element, creating problems when different

allocation patterns are needed. The Assign stereotype is an

alternative representation for the allocation, based on

semantic neutral UML::Comment. The Assign stereotype

can be used either to specify possible allocation (allowing to

perform optimization) or to specify an actual allocation in

the system, depending on the context. To represent variable

allocation, we can create a new stereotype deriving from

Allocate, corresponding to the concept we need for trade-off

analysis.

2.2 MBSE Method and trade-off analysis
When the OMG consortium standardized the first version of

SysML in [11], the OOSEM method was proposed by [2].

The OOSEM activities produce artifacts represented by

SysML diagrams and stereotypes. OOSEM [4] is a top-

down, scenario-driven process that supports the analysis,

specification, design and verification of systems. During the

design process, trade-off analysis is a major activity of

OOSEM.

Figure 3 “Trade-off analysis with OOSEM”

To perform trade-off analysis, OOSEM recommends

building an analysis context, with a Parametric Diagram

(PAR) and a Block Definition Diagram (BDD). These

diagrams contain functions tagged with the

«ObjectiveFunction» stereotype. A global performance

value is obtained with a weighed sum, and calculated with

an external tool. To compare different variants for the

system, each variant is modeled with block values tagged

with «moe» stereotypes. Figure 3 (from [4]) presents a PAR

diagram with two variants for a camera: “with light” and

“low light”. A global performance value is calculated from

four objectives including weigh and light level. The

specialization mechanism is used to model each variant from

SysML blocks.

2.3 Pareto Frontier
Figure 3 depicts a cost function where the designer is

inclined to weigh each objective, according to their

importance. The main drawback of this method stems from

the linear approximation of the global performance function.

The concept of multi-objective optimization or Pareto

optimality addresses these problems [8]. It describes a multi-

objective optimization problem by:

𝑚𝑖𝑛 𝒇(𝑥) = [𝑓1(𝒙), 𝑓2(𝒙), … 𝑓𝑛(𝒙)] 𝑤𝑖𝑡ℎ 𝒙 ∈ 𝑆

Above, f is the objective function vector and S the set of

solutions. As far as system design is concerned, the

objective functions and constraints can be linear (such as the

cost) or nonlinear (such as failure rate). For a minimization

problem, an alternative named A dominates another one

named B if and only if:

{
∀𝑖 ∈ {1. . 𝑛} 𝑓𝑖(𝒂) ≤ 𝑓𝑖(𝒃)

∃𝑖 ∈ {1. . 𝑛} 𝑓𝑖(𝒂) < 𝑓𝑖(𝒃)

We consider as solution the set of non-dominated

assignments. The Pareto frontier in Figure 4 consists of all

alternatives that are not dominated by another one. The

Pareto frontier is a powerful help for the designer, compared

to the weighted sum approach.

2.4 Classification of decisions problems
Figure 3 depicts a trade-off analysis where the designer

selects one component instance (a camera) from a list of off

the shelf components. This is an instance decision problem,

a decision problem largely encountered in system

engineering.

Another common decision problem deals with attributes

values of the blocks. It corresponds to a value decision

problem, where value types can be integer (discrete

problem), real (continuous problem) or both (mixed

problem). The designer wants to find the optimal

combination of attributes to minimize (or maximize) several

objectives.

Figure 4 “Pareto frontier”

 𝑓1(𝒙) = 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒

A

B

C
𝑓2

(𝒙) = 𝐶𝑜𝑠𝑡

For a designer using MBSE, instances and attributes values

are not the only degree of freedom for the system. The

structure of the system has to be considered too, especially

at early phase of design. The typical representation of this

problem is the Redundancy and Allocation Problem (RAP)

discussed in [6] and [12]. The RAP problem deals with

component selection, for cost and reliability optimization at

system level. It is formalized as an optimization problem. It

is not connected to any MBSE approach. In the RAP

problem, the connection topology is fixed as a serial-parallel

model.

The last degree of freedom generally studied in system

design trade-off is the allocation of sources elements onto

target elements. This happens with embedded system

design, where the applications elements are allocated to the

Processing Elements (PE) of the HW platform.

In [13], the authors compare software architecture

optimization methods, few of them using SysML or UML.

Concerning the degrees of freedom, component

selection/duplication (instance and redundancy) represents

40% of the approaches and allocation represents 33%.

2.5 CSMOP problems for trade-off analysis
Trade-off analysis can be obtained by resolving a multi-

objectives optimization problem (CSMOP) including

constraints. The following definition is applicable:

Definition 1. A Constraint Satisfaction MultiObjective

Optimization Problem (CSMOP) is a quadruple {𝒙, 𝐷, 𝐶, 𝒇}

made up of

 An array of decisions variables 𝒙 = [𝑥1, 𝑥2, . . 𝑥𝑛],

 A set of n domains 𝐷 = {𝐷1, 𝐷2, . . 𝐷𝑛} with 𝑥𝑖 ∈ 𝐷𝑖 ,

 A set of m constraints 𝐶 = {𝐶1, 𝐶2, . . 𝐶𝑚} where 𝐶𝑖 is a
Boolean function involving a sequence of variables
𝑋(𝐶𝑖) = {𝑥𝑖1, 𝑥𝑖2, . . 𝑥𝑖𝑚} called its scope,

 An array of functions 𝒇(𝒙) = [𝑓1(𝒙), 𝑓2 … 𝑓𝑛(𝒙))]
where 𝑓𝑖(𝒙) is an objective function, which maps
every solution to a numerical value.

The set of domain D refers to either continuous domain

when Di⊂ℝ or discrete domain when Di⊂ℕ.

In [14], the authors propose to iteratively resolve a CSMOP

problem 𝑀0 = {𝒙, 𝐷, 𝐶, 𝒇} and to derive from it a basic

Constraint Satisfaction Problem (CSP) 𝑁0 = {𝒙, 𝐷, 𝐶} .
Then 𝑁1 is obtained from 𝑁0 𝑎𝑛𝑑 𝑀0 by adding a new

constraint 𝑐𝑖 = 𝑓𝑖(𝒙) . An initial solution 𝑆1 for the

𝑁1 problem is found using a branch and bound algorithm. A

new constraint 𝑐𝑖 < 𝑓𝑖(𝑆) is then added to 𝑁1 to obtain 𝑁2

and a new solution 𝑆2 to 𝑁2can be found. These steps are

repeated until no solution is found. The last solution found

is the optimal one for 𝑓𝑖(𝒙) .

This approach relies on CSP problem resolution. CSP are

widely used in combinatorial and optimization problems but

also in continuous domain, as needed for trade-off analysis

in MBSE. It has a great advantage: its declarative nature

allows the constraints to be expressed in a natural way, and

existing algorithms are particularly effective for reducing

the size of the search space. Several solvers exist such as

CHOCO [9] [15] for discrete variables, and PyOpt [10] for

continuous domain.

2.6 Variant modeling
During the trade-off analysis, the designer of a complex

system has to evaluate a large number of alternatives, and a

specific approach is needed.

With variant modeling [16], one specifies design

alternatives by explicitly modeling them in a single model,

and annotating them using variation points. Variant

modeling is often associated with software product lines and

feature models [17], with the intention to create many

variants of a product. A feature diagram is hierarchically

organized, starting with a feature node at the root position.

Another technique is to use a separate variability language,

such as CVL [18]. For optimization, it is essential for the

designer to clearly identify the SysML elements subject to

variability, rather than to define them in a separated

language or diagram. This is why the paper uses extensions

of SysML to define variability for optimization purposes.

However, relying optimization on “decision points” remains

compatible with the CVL concepts, and is a subset of CVL

features.

2.7 Summary
OOSEM/SysML proposes a weighted-sum approach to

perform trade-off analysis, which is fully convenient when

the designer evaluates only few variants of the system

model. Variant modeling and feature models can model a

large number of variants, but the elements submitted to

variation are not clearly identified. For the system designer,

four different degrees of freedom shall be considered:

instance, redundancy, values and allocation. However,

trade-off analysis can be obtained directly by resolving a

multi-objectives optimization problem (CSMOP) including

constraints, using a CSP solver.

Instead of formulating the CSMOP problem directly, there

is a need for the system designer to generate and solve

CSMOP problem from the SysML model. To model the

degrees of freedom, we propose to use “decision points” to

represent instance choice, redundancy and allocation. The

augmented model is transformed into a CSMOP problem,

and a solver provides the Pareto frontier.

3. Decision points, Constraints and Context
Previous section shows how it is important for the system

designer to model four degrees of freedom: instance and

redundancy, values, and allocation. This section represents

the corresponding decision points with a meta-model and

sketches algorithms creating variables for a CSMOP

problem.

3.1 Decision points for CSMOP

3.1.1 Redundancy and instance choice
The meta-model describing decision points is not restricted

to SysML language and may be reused for another MBSE

language such as AADL language [19]. The MBSE

language we consider supports the concept of class and

composite relations between these classes. Each class has a

set of typed attributes. The system to be optimized is a set of

classes and composite relations. A composite relation

associates a whole class with a set of parts, with a given

multiplicity. A set of instances is also associated with a

class, because system analysis requires taking both instances

and their attributes values into account.

The decision points (DP) for redundancy and instance

choice are represented in Figure 5. The “InstanceDecision”

dpi is associated with a class and a set of instances 𝐼𝐵 =
{𝑖𝑏1, 𝑖𝑏2 … 𝑖𝑏𝑚}, and is used to represent a component

choice. The “StructureDecision” dps is linked to a

composite relationship to represent a variable redundancy

𝑟 ∈ {1 … 𝑛} of a class in the system.

Pkg [Profile] Decision Specification

1
+getClass

DecisionPoint

0..1

0..*

Composition

1

+getComposition0..1

DecisionSpecification

InstanceDecision

TableName:String

StructureDecision

MaxValue:Integer

2..* {ordered}

Class

+Instance

+getID

+getPart
1

Instance

ValueList:Value[1..*]

Figure 5: Decision points for instance and structure

From the decision points, it is possible to create several

variables and domains for the definition of a CSMOP

problem. We consider the following alternatives for dpi and

dps:

1. The class C has only one decision point dpi. For this

single degree of freedom, one bounded integer variable

 𝑥 ∈ [1. . m] identifies one instance 𝑖𝑏𝑖

2. The class C has one decision point dps. One bounded

integer variable 𝑦 ∈ [1. . n] identifies the redundancy

level of the class.

3. The class C has both decision points dpi and dps. For

this combined configuration, we create a matrix of

Boolean variables 𝑥𝑖𝑗 ∈ {0,1} 𝑖 ∈ {1. . n}, 𝑗 ∈ {1. . m}

where:

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑖𝑏𝑗 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑖 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 1 “dps and dpi variables”

From a given model including two sets of decision points

DPS and DPI, a three-steps algorithm generates the

variables:

Step 1: Check the consistency of the model. Each 𝑑𝑝 ∈
{𝐷𝑃𝐼 ∪ 𝐷𝑃𝑆} has to be linked to a class of the model.

Otherwise the designer has to change the model.

Step 2: For each dps linked to a Class C, search if a dpi is

attached to C. If so then create a Boolean matrix 𝑥𝑖𝑗 and

remove dpi from DPI. Otherwise create a bounded integer

variable for dps.

Step 3: Create a bounded integer variable for each 𝑑𝑝𝑖 ∈
 𝐷𝑃𝐼

3.1.2 Allocation problem
For the allocation problem, the target MBSE shall

implement a mechanism allowing connecting elements at

different levels of abstraction, or with different types such

as software and hardware. It is possible to allocate an

activity to a resource for execution, or a small physical

component to a bigger one with a given volume. In order to

find the set of optimal allocations, we use the variable

allocation depicted by Figure 6.

Pkg [Profile] Variable Allocation

VariableAllocate

nature: SpatialDistribution

From: Element

To : Element[1..MaxElement]

MaxElement:integer

Cost : AllocationParameter[1..*]

1

Source

VariableAllocComment

Name:String

Ap : AllocationParameter[1..*]

Target

1..* {ordered}
From

To

DeploymentSpecification

1..*
1..*

Global Constraint

DifferentTarget SameTarget

SystemUnderAnalysis

0..1

0..*

Figure 6 “variable allocation for optimization”

The system under analysis must be characterized by a

deployment specification containing all possible allocations

of the system. Each allocation can be represented by

“VariableAllocateComment” when the source and targets

are represented in the same diagram. “VariableAllocate” is

used otherwise. In both cases a unique source element can

be allocated to a set of target elements with specific

parameters, such as a cost for each allocation. Specific

constraints for allocation can be added, to specify a target

for a set of source elements.

The deployment specification is checked with the

verification of each variable allocation. A valid variable

allocation shall contain a unique source and a set of at least

two target elements.

From the model with variable allocation, it is possible to

create variables 𝑋 = {𝑥1, 𝑥2, . . 𝑥𝑛} and domains 𝐷 =
{𝐷1, 𝐷2, . . 𝐷𝑛}, for the definition of an optimization problem.

𝑋 and 𝐷 are obtained from 𝑆 = {𝑠1, 𝑠2, . . 𝑠𝑛}, the set of

source elements and from 𝑇 = {𝑡1, 𝑡2, . . 𝑡𝑚} the set of target

elements of variable allocation.

First formulation with 𝐷𝑖 ⊂ ℕ

∀𝑠𝑖 ∈ 𝑆, ∀𝑡𝑗 ∈ 𝑇 𝑥𝑖 = 𝑗 ⇔ 𝑠𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑗

Equation 2 “integer formulation for allocation”

Second formulation with 𝐷𝑖 = {0,1}

∀𝑠𝑖 ∈ 𝑆, 𝑡𝑗 ∈ 𝑇 𝑥𝑖𝑗 = {
 1 if 𝑠𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 3 “Boolean formulation for allocation”

Second formulation has a drawback: it creates a matrix of

Boolean instead of a scalar. But it offers simpler expressions

for constraints and objective functions. From a given

deployment specification, the below algorithm generates the

variables of the second formulation:

Step 1: Create Boolean matrix 𝑥𝑛𝑚 from the source list and

the target list TA1.

Step 2: For each array 𝑥i , add a constraint to restrict the

allocation of one source to only one target.

Step 3: For each Variable allocation v of the model and 𝑥i ,

obtain the set TA2 of possible targets. Then for each 𝑡 ∈
𝑇𝐴1 if t ∉ 𝑇𝐴2 then x𝑖𝑗 = 0 .

3.2 Constraints
In MBSE, several constraints limit the number of variants

during the search for optimal solutions. Figure 7 identifies a

set of constraints for system optimization and combines

them with decision points.

Pkg [Profile] System Optimization Constraints

«stereotype»

SystemOptimization

Constraint

StructureConstraint BindingConstraint AllocationConstraint

InstanceExclusion
Instance

Association

Fork Fusion Point2Point

SameTarget DifferentTarget Capacity

Figure 7 “Constraints for system optimization”

The “StructureConstraints” are used with structure and

instance decision points. When several instances of two

classes C1 and C2 are constrained with

“InstanceAssociation”, these instances must be associated in

the real system. If we consider the variables defined by

Equation 1, we can add the following constraint to the

optimization problem, associating instance j of class A and

instance k of class B:

∑ 𝑎𝑖𝑗

𝑛

𝑖=1

≤ ∑ 𝑏𝑖𝑘

𝑛

𝑖=1

Equation 4 Instance Association

The binding constraints are used when two classes C1 and

C2 are connected through connection ports. We have

constraints between the total input port number e2 of C2 and

the total output port number s1 of C1, depending on the kind

of connection: fork, fusion or point to point (Figure 8).

Figure 8 “Connection type for class ports

For a “fork” constraint, we have:

∑ 𝑏𝑖𝑗𝑒2

𝑖,𝑗

≥ ∑ 𝑎𝑖𝑗

𝑖,𝑗

𝑠1

And for a fusion constraint:

∑ 𝑏𝑖𝑗𝑒2

𝑖,𝑗

≤ ∑ 𝑎𝑖𝑗

𝑖,𝑗

𝑠1

Regarding as allocation constraints, we consider 𝛽 ⊆ 𝑆 a set

of source elements that shall be allocated (or not) to a target

t ∈ 𝑇. The integer formulation (Equation 2) adds a global

constraint to the problem:

𝐴𝑙𝑙𝐸𝑞𝑢𝑎𝑙(𝑥𝑖) 𝑤𝑖𝑡ℎ 𝑥𝑖 ∈ 𝛽

The Boolean formulation (Equation 3) adds a set of m

constraints:

∀ 𝑗 ∈ {1. . 𝑚} 𝐴𝑙𝑙𝐸𝑞𝑢𝑎𝑙(𝑥𝑖𝑗) 𝑤𝑖𝑡ℎ 𝑥𝑖 ∈ 𝛽

Capacity constraints include both the capacity use, such as

memory use, and the utilization factor of each target

element. They can be easily expressed with the Boolean

formulation. With 𝑚𝑗 the total amount of capacity for the

target 𝑡𝑗, 𝑚𝑖 the resource capacity needed for resource 𝑠𝑖, we

have:

∀ 𝑗 ∈ {1. . 𝑚} ∑ 𝑥𝑖𝑗𝑚𝑖

𝑖

≤ 𝑚𝑗

3.3 Optimization context
A Multi Domain Optimization Context (MDO Context)

represents a situation that needs to be optimized in order to

maximize or minimize a set of objective functions. The

MDO context is a part of the system model and brings

together the different elements needed to optimize the

system. For the system designer, MDO context is the central

point to drive optimization.

MDO Context is defined in Figure 9 and includes:

1. A reference toward the system under analysis (SUA),

which contains the previously defined decision points,

for instance, redundancy and allocation.

2. An optimization model “OptModel” containing the

mathematical representation of variables. Specific

Boolean or integer models can be used. The OptModel

has constraints, corresponding to a mathematical

expression, on the language of the solver. The

constraints and variables of the OptModel can be

generated from the decision points and user defined

constraints, with the algorithms proposed by the paper.

Fork Fusion Point to point

3. One or several objective functions. Each function

calculates one objective value to be minimized or

maximized. Parameters of this function include the

variables of the OptModel and the attributes values of

the SuA. The ParetoFront is used to generate optimal

solutions, according the different objectives and with

the selected solver. The solver choice is a parameter of

the MDO Context.

Pkg [Profile] MDO Context [with properties and associations]

MDO Context

SystemUnderAnalysis

ObjectiveFunction

parameters

solver : Solver Kind

ParetoFront

OptModel

1

:SystUnderAnalysis

1:OptimizationModel

1..* :ObjFunction1 :ParetoFront

parameters

goal:OptimizationGoal

constraints

parameters

constraints

parameters

constraints

Environment

0..1

:Environment

BooleanModel IntegerModel

Figure 9 “MDO Context”

The environment represents the context of use, in which we

want to find out optimal solutions. The environment may

include static elements such as data defined by Classes, or

dynamic scenarios described by SysML sequence diagrams.

Table 1 “Connection with SysML and AADL”

Generic

element

SysML

metaclass

AADL element

Class Block Device, memory,

processor, bus

Composition Block, BDD

diagram

Subcomponents

Class Attribute Property Properties

Allocation Allocate for

behavior

Allowed

processor

binding property

Source

elements for

allocation

Action/Activity Single thread or

list or thread

Target

elements for

allocation

Block or part Single processor

or processor list

Class instance Instance diagram Instance model

Constraint Constraint block Annotation

3.4 Summary
The meta-model proposed in this section represents decision

points, constraints and an optimization context. It supports

optimization activities with any MBSE language. We

assume that the target MBSE language is composed of

generic elements needed for system optimization. Table 1

lists these generic elements and connects them to SysML

and AADL.

4. SysML and solver integration

4.1 Stereotypes for optimization
Modeling languages such as UML or SysML are defined

using metamodeling, describing the language concepts with

metaclasses [20]. The stereotype is a special type of

metaclass, derived from an existing UML concept or from

another stereotype. To make the concepts presented in

section 3 compatible with the UML and SysML semantics,

Figure 10 connects decision points to SysML metaclasses

and stereotypes.

1

«stereotype»
SysML::

Block

«metaclass»
UML::Comment

«metaclass»
UML4SysML::Association

«Stereotype»
InstanceDecision

«Stereotype»
StructureDecision

«metaclass»
UML::InstanceSpecification

+Instance

0..1

1

1

0..1

«Stereotype»
ComponentInstance

1

«Stereotype»
DecisionPoint

0..1

0..1

«Stereotype»
CommentDecisionLink

Aggregation:aggregationKind=
ComDecisionLink
isBinary()=True

TableName:String

Figure 10 “Decision points with SysML”

In Figure 10, the “DecisionPoint” stereotype extends the

UML::Comment metaclass. The “InstanceDecision” is

connected to a SysML block, and to an instance

specification from SysML. The “StructureDecision” applied

to a composite association represents a variable redundancy.

A specialization of association “CommentDecisionLink”

connects a decision point to a block.

In Figure 12, a SysML model fragment shows a video sensor

block with decision points for instance and structure. The

sensor block can be duplicated or not for redundancy, and

each block has two possible instances. Each instance has

cost and reliability values to compute the cost and the

reliability of the system.

The validation of the annotated model is proceed by

checking the correct use of decision points. Instance

decision point shall be connected to a block, and the

structure decision point to a composite association with a

minimum cardinality of two on the part side.

The optimal combination of instances and redundancy is

obtained by using the Pareto front representation, modeled

by the MDO context.

Pkg [Profile] MDO Context

«metaclass»
SysML::Blocks::Block

«Stereotype»
MDO Context

«stereotype»
SystemBlock

«metaclass»
SysML::Constraints::

ConstraintBlock

«metaclass»
UML4SysML::Association

«Stereotype»
SysML::

ObjectiveFunction «stereotype»
SystUnderAnalysis

isBinary()=True

«stereotype»
OptimizationModel

Aggregation:aggregatio
nKind=shared

Aggregation:aggregati
onKind=composite

«Stereotype»
ParetoFront

«Stereotype»
OptModel

Parametric
diagram

«Stereotype»
MDO context

diagram

«stereotype»
ObjFunction

Aggregation:aggregati
onKind=composite

«stereotype»
ParetoFront

Aggregation:aggregati
onKind=composite

BDD
diagram

Figure 11 “MDO context with SysML”

The MDO Context integration in SysML is represented in

Figure 11. SysML introduces the concept of “diagram

usage” to represent a particular usage of a diagram type. A

diagram is not a metaclass in UML but the concept of

extending a diagram for a particular diagram usage is

possible with SysML [3]. In Figure 11, the stereotype

notation represents the MDO context diagram, extending the

parametric diagram.

Figure 12 “SysML model with decision points”

A parametric diagram is a restricted form of internal block

diagram (IBD). It contains constraint blocks representing

equations. That is why the MDO Context refers to both BDD

and parametric diagrams. In Figure 11, the “MDO Context”

block extends the SysML stereotype “ConstraintBlock”.

This constraint block is used as a top-level block for the

associated parametric diagram. This constraint block has a

reference (not shown in the figure) towards the

“SystemBlock” which is the representation of the system

under analysis. The “SystemBlock” includes the decision

points stereotypes described in previous paragraph. The

“OptModel” block shows the representation of the decision

variables given by Equation 1 “dps and dpi variables”, using

an integer array or Boolean matrix. Using both types

requires creating two sets of variables and inserting them as

parameters in the “OptModel” block, using constraints. The

objective functions are other parts of the “MDO Context”.

Each objective function has parameters for binding inputs

with the system under analysis and with the “OptModel”

constraint block.

A key point for the problem formulation and complexity is

the decision variable definition, because it directly

influences the framework performances. We propose

Algorithm 1 to assist the SysML designer in this task. This

algorithm creates the appropriate decision variables and

constraints used by the framework, from the deployment

specification contained in the SysML model. The algorithm

variables are listed in Table 2.

Table 2 Algorithm variables

Name Stereotype Description

VA «Deployment

Specification»

The set of variable allocate

elements in the input SysML

model

v «VariableAllo

cate»

The current variable allocate

element

s « Source» The source element to be

allocated, such as a task

TA «TargetList» The set of target elements

allocated to s with the variable

allocate

t «Target» The current target element, with

identifier “id”

P The ouput CSP problem to build

The algorithm goes through the deployment specification of

the SysML model containing the list of “variableAllocate”

elements depicted by Figure 6. Two encoding type can be

selected. If the encoding type in the SysML model is

Boolean, Algorithm 1 is used. A Boolean matrix of decision

variables matches the entire deployment specification. We

start to retrieve the list of available sources and target

elements from the model (line 3-6). Then for each source

element of the model, we add a global constraint (line 10,

AddAtMostConstraint) corresponding to equation (3)

meaning that a source is allocated to only one target. For

each variable allocation, if a source is not allocated to an

existing target as given in equation (5), we set the

corresponding Boolean variable to FALSE (line 15).

Table 3 Algorithm primitives

Name Description

GetFrom(), GetTo() Retrieve the list of sources

and target elements of relation

“variableAllocate”.

CreateBoolMatrixVariable() Create variables for P

problem

AddBoolConstraint() Add a Boolean constraint to P,

with one Boolean variable,

AddAtMostConstraint() Add at most constraint for

matrix of Boolean variable,

AddScalarConstraint() Add a scalar constraint to P,

with an array of variables

After the variable creation, the constraints defined in

paragraph 3.2 can be generated (line 20-26). Capacity

constraint generation is shown, using a scalar constraint and

a transposed 𝑇𝑠 Boolean matrix. A SameTarget constraint is

generated also with AddBoolEqConstraint.

Table 3 gives the list of primitives used by the algorithm.

The primitives are general enough to apply to any

optimization problem, but their specific implementation

depends on the selected solver.

We obtain the following results for the CHOCO solver with

a model including four target elements and one source

element, with one variable allocation from s0 to target 0,1,3

, one capacity constraint and one SameTarget constraint.

4.2 Solver integration
We evaluated several CSP and optimization solvers. The

goal is to integrate them in an open-source framework, such

as Eclipse [21] and Papyrus [22]. We can classify the solvers

in two groups. The first group contains black-box tools such

as Minion [23] or RealPaver [24]. These solvers are not

suitable for us, because we want to integrate them into an

open-source framework.

Algorithm 1: decision variable creation from SysML

model with Boolean Matrix and capacity constraints

01:Input: 𝑉𝐴 =
 {𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑦𝑠𝑀𝐿 𝑚𝑜𝑑𝑒𝑙}

02: 𝐶𝑆𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑃 ← ∅

03: 𝑆𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑠𝑡 𝑆 ← 𝑀𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐸𝑙𝑚𝑡𝑠()

04: 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡 𝑇𝐴1 ← 𝑀𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝐸𝑙𝑚𝑡𝑠()

05: 𝐶𝑜𝑛𝑠𝑡𝑟𝐿𝑖𝑠𝑡 𝐶 ← 𝑀𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠()

06: 𝑖𝑛𝑡 𝑃𝑚𝑎𝑥 = 𝑇𝐴1. 𝐶𝑎𝑟𝑑()

07: 𝑖𝑛𝑡 𝑆𝑚𝑎𝑥 = 𝑆. 𝐶𝑎𝑟𝑑()

08: 𝑃. 𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑜𝑜𝑙𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑠, 𝑆𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥)

10: 𝐴𝑑𝑑𝐴𝑡𝑀𝑜𝑠𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑠, 𝑆𝑚𝑎𝑥)

11: For 𝑣 in 𝑉𝐴 :

12: 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡𝐿𝑖𝑠𝑡 𝑇𝐴2 ← 𝑣. 𝑔𝑒𝑡𝑇𝑜()

13: For 𝑡 in 𝑇𝐴1 :

14: If (𝑡 ∉ 𝑇𝐴2)

15: 𝑃. 𝐴𝑑𝑑𝐵𝑜𝑜𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡("𝑠[𝑖][𝑗] = 𝐹𝑎𝑙𝑠𝑒")

16: 𝑗 + +;

17: Endfor

18: 𝑖 + +

19: Endfor

20: 𝐶𝑜𝑛𝑠𝑡𝑟𝐿𝑖𝑠𝑡 𝐶 ← 𝑀𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠()

21: 𝑃. 𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑜𝑜𝑙𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑇𝑠, 𝑠)

22: For 𝑐 in 𝐶 :

23: If (𝑐. 𝑇𝑦𝑝𝑒 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

24: AddScalarConstraint("≤", 𝑇𝑠, 𝑆, 𝑇𝐴1)

25: If (𝑐. 𝑇𝑦𝑝𝑒 = 𝑆𝑎𝑚𝑒𝑇𝑎𝑟𝑔𝑒𝑡)

26: AddBoolEqConstraint(𝐶, 𝑠, 𝑇𝐴1)

27: 𝑘 + +;

28: Endfor

29: Return 𝑃

Result obtained with Algorithm 1 :

private static final int S_MAX=2;

private static final int T_MAX=4;

BoolVar[][] s =

VariableFactory.boolMatrix("s", S_MAX,T_MAX,

solver);

For(int i=0;i<S_MAX;i++)

// a source s is allocated to one target

SatFactory.addAtMostOne(s[i]);

// allocation to t2 is excluded for s0

SatFactory.addBoolEq(s[0][2],FALSE);

For(int j=0;j<T_MAX;j++) {

// Same Target constraint for s0 and s1

SatFactory.addBoolEq(s[0][j], s[1][j]);

// Capacity Constraints for targets

solver.post(ICF.scalar(Ts[j],MemorySource

,"<=",TargetMemory));

}

Table 4 Solver evaluation

Solver PyOpt Labix Choco ECLiPSe

Language Python Python Java ECLiPSe

Domains Boolean + - + +

 Integer + + + +

 Real ++ - + +

 Set of variables + - ++ +

Constraints

 Arithmetic integer + + + +

 real -

 Global - - ++ +

Optimization yes no yes no

 Mono/Multi-

objective

 multi

++(genetic)

no multi

+

-

 Algorithms ++ - + -

Suitable for

decision points

 Value

decision,

real types

Instance,

Structure

Instance,

Structure,

Allocation

Instance,

Structure

The second group includes object libraries and functions

dedicated to CSP and optimization problem, written in

JAVA or Python language. This is the group of solvers we

have investigated: Labix [25], PyOpt [10], CHOCO [9] and

ECLIPSE [26]. The first criterion for choosing a solver is the

type of variables it uses. For the previously defined decision

points, we need both integer and real variables. A second

important criterion is the ability to handle sets of variables

and global constraints. With this feature, we easily formulate

system constraints such as “AllDifferent” on a group of

variables. We considered also the possibility to perform

multi-objective optimization inside the solver, and the use of

different algorithms (Backtracking, MAC) for CSP problem

solving.

From the results presented in Table 4, we selected the Labix

solver for our first experimentations with structure and

instance decision problems. The PyOpt solver is suited for

variables in continuous domain, which is useful for value

decision problems. The CHOCO solver is similar to Labix,

but with much more capabilities. CHOCO can handle global

constraints, needed for allocation problems with a large

exploration space. The ECLIPSE solver was not selected

because the solver was coded using a declarative language

similar to Prolog.

5. Case Study and tool
A UAV model serves as case study for the methodology and

the algorithms implemented as a plug-in of the SysML

Papyrus tool.

5.1 Autonomous UAV
Autonomous Unmanned Aerial Vehicles (UAVs),

sometimes called flying robots, are being used for

intelligence, surveillance, and reconnaissance missions [27].

Autonomous UAVs have an increased level of autonomy

and more complex scenarios are envisioned [28]. UAVs

range from remotely piloted vehicles to more sophisticated,

fully autonomous UAVs. At an intermediate level for

autonomous UAV, fault or event adaptive UAVs perform

on-board trajectory re-planning from obstacle detection, and

combine this feature with a mission realization.

Communication to ground control system cannot be

permanently guaranteed and on-board power is limited.

Therefore, processing and decision-making are entirely done

on board. The HW reliability and the system cost have to be

considered first. The HW platform is made up of CMOS

image sensors, processing elements and UAV interface

networks (transceivers). These three components may be

redundant, for safety purposes, and they are selected in a

repository of instances. In the next paragraph, Our

optimization approach is used to determine the optimal HW

configuration, with a SysML model including decision

points, and a CSMOP problem generation and solving.

5.2 Hardware redundancy and instances
The hardware system is made up of several components and

described by a block definition diagram. The HW platform

for the UAV system in Figure 13 contains one or two

sensors, processing elements and transceivers for onboard

network. Three decision points for redundancy and three for

instances are respectively related to the sensor, the CPU and

the Transceiver composition.

Figure 13 “ BDD for UAV with decision points”

The reliability and the cost of each HW instance are

integrated into the model of the system by associating a

value list with blocks attributes. These values are presented

in Table 5.

Table 5 “Reliability and cost for instances”

Component Family Mean Reliab. Cost (€)

Sens. 1-3 OVH56 0.930-0.940 40-45

Sens. 4-6 OVH74 0.940-0.950 45-50

CPU 1-3 ARM7 0.950-0.970 30-40

CPU 4-6 ARM8 0.970-0.980 40-50

Trans. 1-3 TJA 0.975-0.980 35-37

Trans. 4-6 MCP 0.980-0.985 37-40

The MDO Context contains two objectives functions, the

reliability 𝑅 to be maximized and the cost 𝐶 to be minimized.

The objectives functions are inserted in the model with a

constraint block. The MDO Context is represented by a

parametric diagram, as shown in Figure 14 Parametric

diagram for MDO Context.”

Figure 14 Parametric diagram for MDO Context

The objective functions have the following expression with

the Boolean decisions variable of Equation 1:

min 𝐶 = ∑ 𝑐𝑗𝑘 [𝑥𝑖𝑗𝑘 + 𝑒𝑥𝑝 (𝜃𝑖 ∑ 𝑥𝑖𝑗𝑘

𝑘

)]

𝑖,𝑗,𝑘

 max 𝑅 = ∏ [1 − ∏[1 − 𝑥𝑖𝑗𝑘𝑟𝑗𝑘]

𝑗,𝑘

]

𝑘

From a SysML/Papyrus model with six decision points, the

three-steps algorithm described in paragraph 3.1 generates a

36-decision variables CSMOP problem. With the Labix CSP

solver [25], a backtracking algorithm implemented in

Python, and a posteriori objective function evaluation, we

obtain 8,850 solutions in 11 minutes of computation time.

The results are obtained with a JAVA implementation of

algorithm 1 running on an Intel i5 3GHz machine with 4 GB

RAM.

Figure 15 “Pareto frontier”

 In Figure 15 the X-axis displays the Failure rate (1-Rs)

instead of reliability Rs. Each point figures a solution to the

CSMOP problem obtained with the Python Labix solver.

The solid line figures the Pareto frontier, in a particular

region of interest selected by the user from the set of

solutions.

For a maximum cost of €190 and a failure rate < 100 10-6,

Table 6 presents the three best trade-off configurations

selected by the designer.

Table 6 Cost and Failures rates

Sol.# Sensor CPU Trans. Cost FR(10-

6)

45 S1+S1 CPU1 T1+T4 190 40

42 S1+S3 CPU1 2xT1 180 50

39 S1+S3 2xCPU1 2xT1 170 60

The optimal HW platform for reliability and cost consists of

CPU1 and a set of sensors and transceivers. CPU1 is a multi-

core platform: an Exynos 5422 Octa host processor, with

four “Big” cores and four “Little” cores.

The HW components being chosen, the position of the

camera in the UAV structure must be precisely determined.

From a MBSE point of view, this problem deals with

attributes values of the HW blocks. It corresponds to a value

decision problem, where value types can be real (continuous

problem). In this case, we can use “Values decision points”

connected to class attributes and a solver such as PyOpt [10]

for solving the CSMOP problem. The results are available in

[29]. For the UAV system designer, next conflicting

objectives to be optimized are the power dissipation and the

computational capability. The allocation of software onto

hardware helps to minimize these goals.

5.3 Software to Hardware allocation

The CPU1 contains four powerful “Big” Cortex A15 cores

and four slower “Little” Cortex A7 cores. The maximum

dissipated power is 4 Watt for big cores and 1 Watt for little

cores. Another feature of CPU1 is that unused cores can be

switched-off, rather than left idle. Thus, unused cores suffer

no static leakage or dynamic switching power, and the

minimum amount of used core shall be preferred to

minimize dissipated power.

Figure 16 “BDD with variable allocation and global

constraint”

The SW application of the UAV includes a set of scheduling

resources for the mission realization (Path calculation) and a

set for picture processing, obstacle detection and trajectory

replanning.

Figure 16 presents a BDD from the SW package, including

the SW/HW allocation. The «VariableAllocate» stereotype

defined in paragraph 3.1.2, Figure 6 is used for the variable

allocation of “S6” obstacle detection resource. For each

resource, the “WCET_BC” and the “WCET_LC” attributes

give the WCET value for one processor core. Other

resources are characterized in Table 7. The “SameCore”

constraint, equivalent to “SameTarget” constraint in Section

2, specifies that S6 and S7 resources shall be allocated to the

same core, because they share a large amount of data for

picture processing.

Table 7 Schedulable resources for UAV

Id Name
WCET for

BigCore(ms)

Period
(ms)

Heap
Memory
size(KB)

S0 Get Frame 10 80 300

S1
Show

Picture
20 90 100

S2 Filtering 1 30 100 200

S3 Filtering 2 30 100 100

….

S8
Obstacle

detection
30 90 200

S9
Trajectory

Replanning
35 100 200

The SysML model includes also capacity constraints,

presented in section 2, for each core. The “CoreMemory”

constraint limits the core memory usage for the SW

allocation and the utilization factor constraints limit the ratio

between WCET and Period.

For a configuration “C1g”with 10 resources allocated to 8

cores we obtain 3,135 solutions (Figure 17) with a resolution

time of 0.5s. The the Eclipse/CHOCO environment was

running on an Intel i5 3GHz machine with 4 GB RAM. For

each set of distinct solutions, two objectives are calculated.

First, the CPU dissipated power with a scalar product.

Second, the number of allocated cores. These two objectives

shall be minimized by the designer to obtain optimal

solutions. For “C1g” configuration we obtain 40 optimal

solutions presented in Table 8 and Figure 17. A scheduling

analysis if performed on each optimal solution (last column

of Table 8).

Figure 17 “Solutions for C1G”

Table 8 Optimal solutions for C1G

Core

number

Possible

allocation

Little

Cores

load

(%)

Big

cores

load

(%)

Dissipated

Power (w)
Schedulable

3 1 0 1.799 2.699 yes

4 9 0.6 1.266 2.02 no

5 18 1.044 1.118 1.91 no

6 12 1.687 0.904 1.859 no

5.4 Papyrus tool and new plug-in
To support the methodology depicted by Figure 1, a plug-in

has been added to the Papyrus modeling environment [22]

with the Eclipse Modeling Framework (EMF) [21]. The

plug-in uses open-source software. The three following

features are supported by the plug-in and the profile

presented in Figure 18:

Figure 18 Papyrus tool and plug-in

1. The designer uses stereotypes to add decision points to

his/her model. The Papyrus tool supports UML profiling

by providing extensions to UML-based profiles. The

stereotypes we propose are implemented in a custom

profile. Therefore, the designer can define his/her own

graphical or tabular notation to model the decision points

described previously. In this step, he or she defines an

optimization context diagram, including constraints

blocks for objectives functions.

2. From the optimization context block, the designer

generates a JAVA code similar to the one presented by

listing 1. The source code is generated with a plug-in we

have developed. The plug-in uses the XTEND language

[30] for retrieving information from the model, with the

template expressions feature. Template expressions

(Listing 2) are multi-line strings within triple quotes and

interpolated values from the model in French quotation

marks. The result of this step is an updated JAVA file for

the CSP problem, in the same Eclipse workspace but in

a different project.

Listing 2 : Template expression with XTEND

3. Run the JAVA code generated in step 2, with a project

using the selected solver. The results are displayed with

a Pareto diagram. Other CSP solvers may be used at this

step. In previous work [31], [29] we have experimented

the Labix solver [31] for instance and structure decision

points and the PyOpt solver for value decision points.

Both solvers are written in Python and can be integrated

in the Eclipse environment.

«IF VarKind==Allocation»

// Schedulable Resource number

private static final int S_MAX = «ResourceList.getNum()»

private static final int C_MAX = «CoreList.getNum()»

Solver solver = new Solver("Allocation problem"); '''

«ENDIF»

4. From the Pareto diagram, the table of optimal solutions

can be displayed by the user. In this table, the detail of

each solution is given, with the values of decision

variables such as allocations or component choices. With

this table, it is possible for the user to highlight the

corresponding values in the model. This manual

operation will be automated in the future with a new

feature. This feature will allow round-trip optimization,

by freezing decision points values after a first

optimization step, and by adding other decision points in

a second step. This iterative method reduces the

complexity of the problem induced by the number of

decision points.

6. Related Work
In [32], Min et al propose a multi-objective optimization

from SysML model, by using the ModelCenter commercial

tool. ModelCenter is a graphical environment for analysis

and optimization. The designer provides a structural

description of the system with SysML blocks that include

properties. Then the block properties are connected one by

one to a ModelCenter analysis block in a parametric

diagram. This matches one of our decision points, the “Value

decision”, using connection with a commercial tool.

In [12] the authors propose a transformation from a feature

model [17] to a mathematical representation of an

optimization problem. Then a solver solves a combinatorial

problem. Feature models represent all the products of a

software product line. They are used in the whole product

line development but not in MBSE with SysML.

With the COMPLEX methodology proposed in [33], the

designer creates the various alternatives of allocations with

the MARTE profile [34] and annotations. The alternative

creation presented in Figure 19 is often manual: several

variants can be missed and the size of the design space is a

severe limitation. Also, in MARTE, the allocation semantics

is ambiguous and unusable when numerous alternatives of

allocations have to be modeled. For the transformation to

analysis model and problem solving, the COMPLEX

methodology proposes exhaustive search and the results are

obtained by simulation. On a multi-core HW platform, the

number of possible allocations can be significantly higher

than on other HW platforms and the total simulation time

becomes a problem.

Figure 19 “Allocation with MARTE and COMPLEX”

7. Conclusions
The paper discusses trade-off analysis in a MBSE approach

that associates SysML with so-called “decision points”.

Whether the approach is instantiated on SysML, the concept

of decision points is not specific to one MBSE language and

enables covering the four kinds of decisions problems

largely found in system engineering: instance decision,

redundancy, values and allocation problem.

For SysML, the paper proposes new stereotypes (decision

points, global constraints and optimization context)

extending the initial model without variants for trade-off

analysis. Then, the algorithm proposed in the paper

transforms the extended SysML model into a CSP

optimization problem (CSMOP); the process includes

decision variables, constraints and objectives functions.

Several solvers have been benchmarked in order to address

this CSMOP problem: CHOCO [9], PyOpt [10] and Labix

[25]. The designer selects a solver, stored in the model,

according to the kind of decision points, and according to the

strategy required by the problem resolution. The

methodology was tested on a multi-core UAVs model and

validated with the plug-in that we have developed using

Papyrus and Eclipse.

Unlike approaches published in [12] [32] [33], the one

discussed in this paper allows to model the entire problem at

the SysML model level, without programming code at the

optimization tool level. Instead of manually connecting the

SysML model with an optimization solver, it is possible to

generate the problem description file using a SysML

extension and our plug-in. This is particularly useful at early

stage of design, when the exploration space is very large.

With the proposed methodology, the design space

exploration is more efficient, reducing the number of

possible solutions before a detailed analysis such as

scheduling analysis.

In the near future, the algorithm described in Section 4 will

be optimized in terms of integration into the Papyrus tool,

the purpose being to integrate and to compare several search

strategies for the CSP problem resolution. The tool be

improved with the highlighting of decision points values in

the model, after a user selection of a particular optimal

solution. This will allow iterative optimization by fixing

decision points values after a first optimization and by

adding new decision points. Another algorithm will be

developed to help the user for the solver choice. Integration

of detailed analysis, different from scheduling analysis for

optimal solutions, will be studied too.

8. REFERENCES

[1] INCOSE, "Systems Engineering Handbook: A Guide

for System Life Cycle Processes and Activities V3.1",

Cecilia Haskins, CSEP, 2007.

[2] A. W. Wymore, "Model-based systems engineering",

CRC Press, 1993.

[3] SysML, «"OMG Systems Modeling Language (OMG

SysML™) V1.5",» 2017. [En ligne]. Available:

http://www.omg.org/spec/SysML/1.5/.

[4] S. M. A. &. S. R. Friedenthal, "A practical guide to

SysML : the system modeling language", Morgan

Kaufman, 2014.

[5] M. Chern, «"On the computational complexity of

reliability redundancy allocation in a series system,",»

Operations research letters, vol. 11, n° %15, pp. 309-

315, 1992.

[6] D. W. &. S. A. E. Coit, "Optimization approaches to

the redundancy allocation problem for series-parallel

systems," in Proceedings of Fourth Industrial

Engineering Research Conference Proceedings, 1995,

pp. 342-349.

[7] Ø. M.-P. B. O. J. O. G. K. &. S. A. Haugen, «"Adding

standardized variability to domain specific languages,"

in Proceedings of : Software Product Line

Conference,» 2008, p. 139–148.

[8] I. DAS, «"A preference ordering among various

Pareto optimal alternatives, ",» Structural

optimization, vol. 18, n° %11, pp. 30-35, 1999.

[9] CHOCO, ""Choco solver"," EMN, 2016. [Online].

Available: http://choco-solver.org/.. [Accessed 2016].

[10] R. E. J. P. W. &. M. J. R. Perez, «"pyOpt: a Python-

based object-oriented framework for nonlinear

constrained optimization. Structural and

Multidisciplinary Optimization",» Structural and

Multidisciplinary Optimization, vol. 45, n° %11, pp.

101-118, 2012.

[11] UML2, «"OMG. OMG Unified Modeling Language

(OMG UML™) V2.5",» 2007. [En ligne]. Available:

http://www.omg.org/spec/UML/2.5.

[12] P. &. K. H. D. Limbourg, «"Multi-objective

optimization of generalized reliability design

problems using feature models—A concept for early

design stages",» Reliability Engineering & System

Safety, vol. 93, n° %16, pp. 815-828, 2008.

[13] A. B. B. G. L. K. A. &. M. I. Aleti, «"Software

architecture optimization methods: A systematic

literature review,",» chez IEEE Transactions on

Software Engineering, vol. 39, 2013, pp. 658-683.

[14] F. V. B. P. &. W. T. Rossi, Handbook of constraint

programming, Elsevier, 2006.

[15] N. R. G. &. L. X. Jussien, «"Choco: an open source

java constraint programming library," CPAIOR'08

Workshop on Open-Source Software for Integer and

Contraint Programming (OSSICP'08),» 2008, pp. 1-

10.

[16] M. V. G. J. &. B. J. Svahnberg, «"A taxonomy of

variability realization techniques,",» Software:

Practice and Experience, vol. 35, n° %18, p. 705–754,

2005.

[17] K. C. S. H. J. N. W. a. P. A. Kang, "Feature-Oriented

Domain Analysis (Foda) Feasibility Study,", Software

Engineering Institute, Carnegie Mellon University,

1990.

[18] I. &. F. K. Reinhartz-Berger, «"Comprehensibility of

orthogonal variability modeling languages: the cases

of CVL and OVM," in Proceedings of the 18th

International Software Product Line Conference,» vol.

1, ACM, 2014, pp. 42-51.

[19] P. H. D. P. G. a. J. J. H. Feiler, "The architecture

analysis & design language (AADL): An

introduction.", Carnegie-Mellon Univ Pittsburgh PA

Software Engineering Inst., 2006.

[20] B. G. S. Sélic, "Modeling and Analysis of Real-Time

and Embedded Systems with UML and MARTE",

Morgan Kaufmann, 2014.

[21] Eclipse, «"Eclipse Modeling Framework",» 2016. [En

ligne]. Available:

http://www.eclipse.org/modeling/emf/.

[22] Papyrus, «"Outil Papyrus",» CEA, 2015. [En ligne].

Available: https://eclipse.org/papyrus/.

[23] I. P. J. C. &. M. I. Gent, «"Minion: A fast scalable

constraint solver" In ECAI,» 2006.

[24] L. &. B. F. Granvilliers, «"Algorithm 852: Realpaver:

an interval solver using constraint satisfaction

techniques",» ACM Transactions on Mathematical

Software (TOMS), vol. 32, n° %11, pp. p. 138-156.,

2006.

[25] G. Niemeyer, 2016. [En ligne]. Available:

https://labix.org/python-constraint.

[26] K. R. &. W. M. Apt, "logic programming using

ECLiPSe,", Cambridge University Press, 2006.

[27] J. P. F. C. K. K. C. &. B. L. F. How, «"Increasing

autonomy of UAVs",» Robotics &Automation

Magazine, vol. 16, n° %12, pp. 43-51, 2009.

[28] D. &. D. U. Weatherington, «"Unmanned aircraft

systems roadmap, 2005-2030",» Deputy, UAV

Planning Task Force, OUSD (AT&L), 2005.

[29] P. S.-S. P. D. H. Leserf, «"Multi-Domain optimization

with SysML modeling," in Proceedings of ETFA 20th

IEEE conference,» Luxembourg, IEEE, Sept. 2015,

pp. 1-8.

[30] L. Bettini, "Implementing Domain-Specific

Languages with Xtext and Xtend,", Packt Publishing

Ltd, 2013.

[31] P. S.-S. P. D. H. J. &. C. K. Leserf, «"Architecture

Optimization with SysML Modeling A Case Study

Using Variability",» chez MDE and software

developement - CCIS, vol. 580, Springer, Déc. 2015.

[32] B. I. K. A. A. &. P. C. J. Min, «"Process integration

and design optimization for model-based systems

engineering with SysML," In ASME 2011

International Design Engineering Technical

Conferences and Computers and Information in

Engineering Conference,» American Society of

Mechanical Engineers, 2011, pp. 1361-1369.

[33] F. e. a. Herrera, «The COMPLEX methodology for

UML/MARTE Modeling and design space

exploration of embedded systems,» Journal of

Systems Architecture, pp. 55-78, 2014.

[34] MARTE, «"UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded Systems V1.1",»

2011. [En ligne]. Available:

http://www.omg.org/spec/MARTE/1.1.

