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ABSTRACT 

The expected benefits of Model-Based System Engineering 

(MBSE) include assistance to the system designer in finding 

the set of optimal architectures and making trade-off 

analysis. Design objectives such as cost, performance and 

reliability are often conflicting. The SysML-based method 

OOSEM and the ARCADIA method focus on the design and 

analysis of one alternative of the system. They freeze the 

topology and the execution platform before optimization 

starts. Further, their limitation quickly appears when a large 

number of alternatives must be evaluated. The paper avoids 

these problems and improves trade-off analysis in a MBSE 

approach by combining the SysML modeling language and 

so-called “decision points”. An enhanced SysML model 

with decision points shows up alternatives for component 

redundancy, and instance selection and allocation. The same 

SysML model is extended with constraints and objective 

functions using an optimization context and parametric 

diagrams. Then a representation of a constraint satisfaction 

multi-criteria objective problem (CSMOP) is generated and 

solved with a combination of solvers. A demonstrator 

implements the proposed approach into an Eclipse plug-in; 

it uses the Papyrus and CSP solvers, both are open-source 

tools. A case study illustrates the methodology: a mission 

controller for an Unmanned Aerial Vehicle (UAV) that 

includes a stereoscopic camera sensor module. 

Keywords: MBSE, Optimization, SysML, CSP, Papyrus, 

System engineering, Optimal architecture design, Decision 

points. 

1. INTRODUCTION 
According to INCOSE [1], Model-based systems 

engineering (MBSE) is the formalized application of 

modeling to support system engineering activities, from 

requirements to validation. These activities have 

traditionally been performed using document-based 

approaches. The expected benefits of MBSE include better 

specification and design quality, reuse of design artifacts, 

and a coherent model of the system to be developed. 

Selecting a modeling language is a key issue for MBSE. 

Originally, mathematical formalisms (e.g. [2]) were 

introduced, allowing analysis and optimization by means of 

specific tools. Over the past decade, joint efforts of OMG 

and INCOSE have lead to the standardization of SysML [3], 

a modeling language that addresses important issues such as 

requirements, architecture and behaviors. 

The paper addresses one MBSE activity within a SysML 

context: trade-off analysis among alternatives for the system 

model in order to meet design objectives, such as cost, 

performance, reliability and other inputs from the 

stakeholders’ needs. These needs are often conflicting, and 

the goal of trade-off analysis is to provide a balanced 

solution [4]. 

To find a balanced solution, several methods are available 

to specify, design, and verify the system to build. The 

Object-Oriented System Engineering Method (OOSEM) 

from OMG [4], is the only one using SysML. 

The specification and design steps of OOSEM include two 

highly important activities [4]: 

1. Synthesis of alternative variants by structuring the 

system, and 
2. Evaluation of variants associated with trade-off 

analysis so as to determine a set of optimal solutions. 

A designer who synthesizes alternative variants needs to 

minimize objectives such as cost, performance and failure 

rate. Examples of objectives include cost and performance, 

redundancy level for failure rate, and allocation for 

performance. [5] and [6] rely these design decisions on a 

pure optimization problem and separate them from design 

representation. Conversely, the paper discusses a MBSE 

approach based on SysML language [3]. 

With OOSEM and SysML 1.5, OMG introduced stereotypes 

to allow trade-off analysis in the form of objective functions 

and measure of effectiveness (moe). For each variant of the 

system, a «moe» stereotype models the values to be 

optimized, and an external tool computes the objective 

functions values. A component variant is explicitly defined 

by inheritance from generic components, and only a limited 

number of variants shall be considered. Our approach allows 

modeling a large number of variants by using “decision 
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points”. The designer uses them to model variation in 

component instance choices, redundancy level or allocation. 

The notion of decision points is close to that of variability 

[7], but remains specific to system engineering decisions 

and to their combinations. 

In terms of drawback, OOSEM/SysML aggregates the 

different objectives into a single one called the “utility 

function”. In the paper, a new approach suggests the best 

configurations to the designer, and finds the Pareto-optimal 

solutions [8] that have the lowest (or equivalently low) 

values for all objective functions.  

For the designer, the benefits of our approach is threefold. 

First, it allows to model a large number of alternatives, 

without having to define them explicitly in detail. Second, it 

allows a real optimization process from the model, instead 

of a simple analysis of the different alternatives of the 

system. Third, we propose a Pareto Front analysis of the 

optimal solutions, instead of a global ranking based on the 

weighted sum of the different objective. This allows a better 

decision process, with more degree of freedom and fewer 

hidden solutions. At the end, the solution selected by the 

decision maker is highlighted in the model, which allows 

round-trip optimization even if it is done manually for the 

moment. 

In our approach, we provide to the designer a way to model 

alternatives (the decision points) and objectives. Then the 

proposed algorithms generate a constraint satisfaction and 

multi-criteria objective problem (CSMOP) representation 

from the (SysML) model. The designer can solve the 

CSMOP problem and select solutions. At the end, a proof of 

concept is achieved by interfacing the Papyrus SysML tool 

with several solvers.  

Figure 1 depicts a corollary contribution in the form of a 

three-step method: 

❶ SysML Modeling for optimization (cf. sections 3 and 4). 

An initial SysML model describes a system without 

alternative. New stereotypes extend the model for 

optimization purposes. A SysML parametric diagram 

models a “MDO context” optimization context and contains 

the model variants (decision points). The solver is selected, 

and objective functions are defined using the solver 

language. 

❷ Model transformation. The SysML model produced by 

the first step is transformed into a description of a CSMOP 

problem. The CSMOP description defines variables by their 

domains, global constraints and objective functions. 

❸ Best solutions generation. The optimal solutions are 

calculated with different solvers such as CHOCO [9] or 

PyOpt [10], depending on the kind of decision points, 

corresponding to discrete or continuous problems. The 

designer can select the solutions that better fit the 

requirements in term of power, performance or any other 

type of metric. The selected design is used for domain-

specific optimizations such as scheduling analysis.

  MDO Context 

definition : objective 

functions, decision 

points  and constraints 

definition

❷ Model transformation

Initial SysML Model

 CSMOP  model 

generation 

❶ SysML

Modeling for

 optimization

Algorithm 

and solver 

use

No

One solution selected by 
the decision-maker ?

Yes

Update initial model

& Detailed optimization 

 ❸  Best solutions

 generation and stored 

in MDO context

Solver

 

Figure 1 “Methodology Overview” 

The paper is organized as follows. Section 2 gives the 

background for SysML modeling, variants modeling and 

optimization. Section 3 addresses meta-model for decision 

points, and transformation algorithms. Section 4 instantiates 

in SysML. Section 5 adds a plug-in to Papyrus and applies 

the proposed approach to a UAV modeled. Section 6 surveys 

related work. Section 7 concludes the paper and outlines 

future work. 

2. BACKGROUND  

2.1 SysML 
 

 

 

 

 

 

 

 

 

 

 

Figure 2 "SysML diagrams" 

A system model in SysML is made up of a set of diagrams 

categorized into four groups (Figure 2). Requirement 

BDD

Structure Behavior

REQ

Requirement

ACT

Parametrics

PAR

Find the best 

alternatives

IBD 



diagrams (REQ) describe requirements. Activity diagrams 

(ACT) represent the behavior of the system. Block 

Definition Diagrams (BDD) and Internal Block Diagrams 

(IBD) describe the architecture of the system. Finally, 

parametric diagrams represent constraints on property 

values such as 𝑈 = 𝑅𝐼, used to support engineering 

analyses.  

Figure 1 also links optimization to the so-categorized 

diagrams. For example, the Allocate relationship links 

elements from different SysML diagrams. Allocate modifies 

the allocated element, creating problems when different 

allocation patterns are needed. The Assign stereotype is an 

alternative representation for the allocation, based on 

semantic neutral UML::Comment. The Assign stereotype 

can be used either to specify possible allocation (allowing to 

perform optimization) or to specify an actual allocation in 

the system, depending on the context. To represent variable 

allocation, we can create a new stereotype deriving from 

Allocate, corresponding to the concept we need for trade-off 

analysis. 

2.2 MBSE Method and trade-off analysis 
When the OMG consortium standardized the first version of 

SysML in [11], the OOSEM method was proposed by [2]. 

The OOSEM activities produce artifacts represented by 

SysML diagrams and stereotypes. OOSEM [4] is a top-

down, scenario-driven process that supports the analysis, 

specification, design and verification of systems. During the 

design process, trade-off analysis is a major activity of 

OOSEM. 

 

Figure 3 “Trade-off analysis with OOSEM” 

To perform trade-off analysis, OOSEM recommends 

building an analysis context, with a Parametric Diagram 

(PAR) and a Block Definition Diagram (BDD). These 

diagrams contain functions tagged with the 

«ObjectiveFunction» stereotype. A global performance 

value is obtained with a weighed sum, and calculated with 

an external tool. To compare different variants for the 

system, each variant is modeled with block values tagged 

with «moe» stereotypes. Figure 3 (from [4]) presents a PAR 

diagram with two variants for a camera: “with light” and 

“low light”. A global performance value is calculated from 

four objectives including weigh and light level. The 

specialization mechanism is used to model each variant from 

SysML blocks.  

2.3 Pareto Frontier 
Figure 3 depicts a cost function where the designer is 

inclined to weigh each objective, according to their 

importance. The main drawback of this method stems from 

the linear approximation of the global performance function. 

The concept of multi-objective optimization or Pareto 

optimality addresses these problems [8]. It describes a multi-

objective optimization problem by: 

𝑚𝑖𝑛 𝒇(𝑥) = [𝑓1(𝒙), 𝑓2(𝒙), … 𝑓𝑛(𝒙)   ] 𝑤𝑖𝑡ℎ 𝒙 ∈ 𝑆 

Above, f is the objective function vector and S the set of 

solutions. As far as system design is concerned, the 

objective functions and constraints can be linear (such as the 

cost) or nonlinear (such as failure rate). For a minimization 

problem, an alternative named A dominates another one 

named B if and only if: 

{
∀𝑖 ∈ {1. . 𝑛}  𝑓𝑖(𝒂) ≤ 𝑓𝑖(𝒃) 

∃𝑖 ∈ {1. . 𝑛}  𝑓𝑖(𝒂) < 𝑓𝑖(𝒃) 
 

We consider as solution the set of non-dominated 

assignments. The Pareto frontier in Figure 4 consists of all 

alternatives that are not dominated by another one. The 

Pareto frontier is a powerful help for the designer, compared 

to the weighted sum approach. 

 

 

 

 

 

 

 

 

 

 

 

2.4 Classification of decisions problems  
Figure 3 depicts a trade-off analysis where the designer 

selects one component instance (a camera) from a list of off 

the shelf components. This is an instance decision problem, 

a decision problem largely encountered in system 

engineering. 

Another common decision problem deals with attributes 

values of the blocks. It corresponds to a value decision 

problem, where value types can be integer (discrete 

problem), real (continuous problem) or both (mixed 

problem). The designer wants to find the optimal 

combination of attributes to minimize (or maximize) several 

objectives.  

Figure 4 “Pareto frontier” 

    𝑓1(𝒙) = 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 
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For a designer using MBSE, instances and attributes values 

are not the only degree of freedom for the system. The 

structure of the system has to be considered too, especially 

at early phase of design. The typical representation of this 

problem is the Redundancy and Allocation Problem (RAP) 

discussed in [6] and [12]. The RAP problem deals with 

component selection, for cost and reliability optimization at 

system level. It is formalized as an optimization problem. It 

is not connected to any MBSE approach. In the RAP 

problem, the connection topology is fixed as a serial-parallel 

model.  

The last degree of freedom generally studied in system 

design trade-off is the allocation of sources elements onto 

target elements. This happens with embedded system 

design, where the applications elements are allocated to the 

Processing Elements (PE) of the HW platform. 

In [13], the authors compare software architecture 

optimization methods, few of them using SysML or UML. 

Concerning the degrees of freedom, component 

selection/duplication (instance and redundancy) represents 

40% of the approaches and allocation represents 33%. 

2.5 CSMOP problems for trade-off analysis 
Trade-off analysis can be obtained by resolving a multi-

objectives optimization problem (CSMOP) including 

constraints. The following definition is applicable: 

Definition 1. A Constraint Satisfaction MultiObjective 

Optimization Problem (CSMOP) is a quadruple {𝒙, 𝐷, 𝐶, 𝒇} 

made up of 

 An array of decisions variables 𝒙 = [𝑥1, 𝑥2, . . 𝑥𝑛], 

 A set of n domains 𝐷 = {𝐷1, 𝐷2, . . 𝐷𝑛} with 𝑥𝑖  ∈  𝐷𝑖 ,  

 A set of m constraints 𝐶 = {𝐶1, 𝐶2, . . 𝐶𝑚} where 𝐶𝑖 is a 
Boolean function involving a sequence of variables 
𝑋(𝐶𝑖) = {𝑥𝑖1, 𝑥𝑖2, . . 𝑥𝑖𝑚} called its scope, 

 An array of functions 𝒇(𝒙) = [ 𝑓1(𝒙), 𝑓2 … 𝑓𝑛(𝒙)) ] 
where 𝑓𝑖(𝒙) is an objective function, which maps 
every solution to a numerical value. 

The set of domain D refers to either continuous domain 

when Di⊂ℝ or discrete domain when Di⊂ℕ.  

In [14], the authors propose to iteratively resolve a CSMOP 

problem 𝑀0 = {𝒙, 𝐷, 𝐶, 𝒇} and to derive from it a basic 

Constraint Satisfaction Problem (CSP) 𝑁0 = {𝒙, 𝐷, 𝐶} . 
Then 𝑁1 is obtained from 𝑁0 𝑎𝑛𝑑 𝑀0 by adding a new 

constraint 𝑐𝑖 = 𝑓𝑖(𝒙) . An initial solution 𝑆1 for the 

𝑁1 problem is found using a branch and bound algorithm. A 

new constraint 𝑐𝑖 < 𝑓𝑖(𝑆) is then added to 𝑁1 to obtain 𝑁2 

and a new solution 𝑆2 to 𝑁2can be found. These steps are 

repeated until no solution is found. The last solution found 

is the optimal one for 𝑓𝑖(𝒙) . 

This approach relies on CSP problem resolution. CSP are 

widely used in combinatorial and optimization problems but 

also in continuous domain, as needed for trade-off analysis 

in MBSE. It has a great advantage: its declarative nature 

allows the constraints to be expressed in a natural way, and 

existing algorithms are particularly effective for reducing 

the size of the search space. Several solvers exist such as 

CHOCO [9] [15] for discrete variables, and PyOpt [10] for 

continuous domain. 

2.6 Variant modeling 
During the trade-off analysis, the designer of a complex 

system has to evaluate a large number of alternatives, and a 

specific approach is needed. 

With variant modeling [16], one specifies design 

alternatives by explicitly modeling them in a single model, 

and annotating them using variation points. Variant 

modeling is often associated with software product lines and 

feature models [17], with the intention to create many 

variants of a product. A feature diagram is hierarchically 

organized, starting with a feature node at the root position. 

Another technique is to use a separate variability language, 

such as CVL [18]. For optimization, it is essential for the 

designer to clearly identify the SysML elements subject to 

variability, rather than to define them in a separated 

language or diagram. This is why the paper uses extensions 

of SysML to define variability for optimization purposes. 

However, relying optimization on “decision points” remains 

compatible with the CVL concepts, and is a subset of CVL 

features. 

2.7 Summary 
OOSEM/SysML proposes a weighted-sum approach to 

perform trade-off analysis, which is fully convenient when 

the designer evaluates only few variants of the system 

model. Variant modeling and feature models can model a 

large number of variants, but the elements submitted to 

variation are not clearly identified. For the system designer, 

four different degrees of freedom shall be considered: 

instance, redundancy, values and allocation. However, 

trade-off analysis can be obtained directly by resolving a 

multi-objectives optimization problem (CSMOP) including 

constraints, using a CSP solver. 

Instead of formulating the CSMOP problem directly, there 

is a need for the system designer to generate and solve 

CSMOP problem from the SysML model. To model the 

degrees of freedom, we propose to use “decision points” to 

represent instance choice, redundancy and allocation. The 

augmented model is transformed into a CSMOP problem, 

and a solver provides the Pareto frontier. 

3. Decision points, Constraints and Context 
Previous section shows how it is important for the system 

designer to model four degrees of freedom: instance and 

redundancy, values, and allocation. This section represents 

the corresponding decision points with a meta-model and 

sketches algorithms creating variables for a CSMOP 

problem.  

3.1 Decision points for CSMOP 

3.1.1 Redundancy and instance choice 
The meta-model describing decision points is not restricted 

to SysML language and may be reused for another MBSE 

language such as AADL language [19]. The MBSE 



language we consider supports the concept of class and 

composite relations between these classes. Each class has a 

set of typed attributes. The system to be optimized is a set of 

classes and composite relations. A composite relation 

associates a whole class with a set of parts, with a given 

multiplicity. A set of instances is also associated with a 

class, because system analysis requires taking both instances 

and their attributes values into account. 

The decision points (DP) for redundancy and instance 

choice are represented in Figure 5. The “InstanceDecision” 

dpi is associated with a class and a set of instances 𝐼𝐵 =
{𝑖𝑏1, 𝑖𝑏2 … 𝑖𝑏𝑚}, and is used to represent a component 

choice. The “StructureDecision” dps is linked to a 

composite relationship to represent a variable redundancy 

𝑟 ∈  {1 … 𝑛} of a class in the system. 

Pkg [Profile] Decision Specification

1
+getClass

DecisionPoint

0..1

0..*

Composition

1

+getComposition0..1

DecisionSpecification

InstanceDecision

TableName:String

StructureDecision

MaxValue:Integer

2..* {ordered}

Class

+Instance

+getID

+getPart
1

Instance

ValueList:Value[1..*]

 

Figure 5: Decision points for instance and structure 

From the decision points, it is possible to create several 

variables and domains for the definition of a CSMOP 

problem. We consider the following alternatives for dpi and 

dps: 

1. The class C has only one decision point dpi. For this 

single degree of freedom, one bounded integer variable 

 𝑥 ∈ [1. . m] identifies one instance 𝑖𝑏𝑖   

2. The class C has one decision point dps. One bounded 

integer variable  𝑦 ∈ [1. . n] identifies the redundancy 

level of the class. 

3. The class C has both decision points dpi and  dps. For 

this combined configuration, we create a matrix of 

Boolean variables 𝑥𝑖𝑗 ∈ {0,1}  𝑖 ∈ {1. . n}, 𝑗 ∈ {1. . m} 

where: 

𝑥𝑖𝑗 =    {
1 𝑖𝑓 𝑖𝑏𝑗 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑖 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                       
 

Equation 1 “dps and dpi variables” 

From a given model including two sets of decision points 

DPS and DPI, a three-steps algorithm generates the 

variables: 

Step 1: Check the consistency of the model. Each 𝑑𝑝 ∈
{𝐷𝑃𝐼 ∪ 𝐷𝑃𝑆} has to be linked to a class of the model. 

Otherwise the designer has to change the model. 

Step 2: For each dps linked to a Class C, search if a dpi is 

attached to C. If so then create a Boolean matrix 𝑥𝑖𝑗  and 

remove dpi from DPI. Otherwise create a bounded integer 

variable for dps. 

Step 3: Create a bounded integer variable for each 𝑑𝑝𝑖 ∈
 𝐷𝑃𝐼 

3.1.2 Allocation problem 
For the allocation problem, the target MBSE shall 

implement a mechanism allowing connecting elements at 

different levels of abstraction, or with different types such 

as software and hardware. It is possible to allocate an 

activity to a resource for execution, or a small physical 

component to a bigger one with a given volume. In order to 

find the set of optimal allocations, we use the variable 

allocation depicted by Figure 6. 

Pkg [Profile] Variable Allocation 

VariableAllocate

nature: SpatialDistribution

From: Element

To : Element[1..MaxElement]

MaxElement:integer

Cost : AllocationParameter[1..*]

1

Source

VariableAllocComment

Name:String

Ap : AllocationParameter[1..*]

Target

1..* {ordered}
From

To

DeploymentSpecification

1..*
1..*

Global Constraint

DifferentTarget SameTarget

SystemUnderAnalysis

0..1

0..*

 

Figure 6 “variable allocation for optimization”  

The system under analysis must be characterized by a 

deployment specification containing all possible allocations 

of the system. Each allocation can be represented by 

“VariableAllocateComment” when the source and targets 

are represented in the same diagram. “VariableAllocate” is 

used otherwise. In both cases a unique source element can 

be allocated to a set of target elements with specific 

parameters, such as a cost for each allocation. Specific 

constraints for allocation can be added, to specify a target 

for a set of source elements. 

The deployment specification is checked with the 

verification of each variable allocation. A valid variable 

allocation shall contain a unique source and a set of at least 

two target elements. 

From the model with variable allocation, it is possible to 

create variables 𝑋 = {𝑥1, 𝑥2, . . 𝑥𝑛} and domains 𝐷 =
{𝐷1, 𝐷2, . . 𝐷𝑛}, for the definition of an optimization problem. 

𝑋 and 𝐷 are obtained from 𝑆 = {𝑠1, 𝑠2, . . 𝑠𝑛}, the set of 

source elements and from  𝑇 = {𝑡1, 𝑡2, . . 𝑡𝑚} the set of target 

elements of variable allocation. 

First formulation with 𝐷𝑖 ⊂ ℕ 

∀𝑠𝑖 ∈ 𝑆, ∀𝑡𝑗 ∈ 𝑇    𝑥𝑖 = 𝑗 ⇔ 𝑠𝑖  𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜  𝑡𝑗  

Equation 2 “integer formulation for allocation” 

Second formulation with 𝐷𝑖  = {0,1} 



∀𝑠𝑖 ∈ 𝑆, 𝑡𝑗 ∈ 𝑇     𝑥𝑖𝑗 =  {
 1 if 𝑠𝑖  𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑗       

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
 

Equation 3 “Boolean formulation for allocation” 

Second formulation has a drawback: it creates a matrix of 

Boolean instead of a scalar. But it offers simpler expressions 

for constraints and objective functions. From a given 

deployment specification, the below algorithm generates the 

variables of the second formulation: 

Step 1: Create Boolean matrix 𝑥𝑛𝑚  from the source list and 

the target list TA1. 

Step 2: For each array 𝑥i , add a constraint to restrict the 

allocation of one source to only one target. 

Step 3: For each Variable allocation v of the model and 𝑥i , 

obtain the set TA2 of possible targets. Then for each 𝑡 ∈
𝑇𝐴1 if t ∉ 𝑇𝐴2 then x𝑖𝑗 = 0 . 

3.2 Constraints  
In MBSE, several constraints limit the number of variants 

during the search for optimal solutions. Figure 7 identifies a 

set of constraints for system optimization and combines 

them with decision points. 

Pkg [Profile] System Optimization Constraints 

«stereotype»

SystemOptimization 

Constraint

StructureConstraint BindingConstraint AllocationConstraint

InstanceExclusion
Instance

Association

Fork Fusion Point2Point

SameTarget DifferentTarget Capacity

 

Figure 7 “Constraints for system optimization” 

The “StructureConstraints” are used with structure and 

instance decision points. When several instances of two 

classes C1 and C2 are constrained with 

“InstanceAssociation”, these instances must be associated in 

the real system. If we consider the variables defined by 

Equation 1, we can add the following constraint to the 

optimization problem, associating instance j of class A and 

instance k of class B: 

∑ 𝑎𝑖𝑗

𝑛

𝑖=1

≤ ∑ 𝑏𝑖𝑘

𝑛

𝑖=1

 

Equation 4 Instance Association 

The binding constraints are used when two classes C1 and 

C2 are connected through connection ports. We have 

constraints between the total input port number e2 of C2 and 

the total output port number s1 of C1, depending on the kind 

of connection: fork, fusion or point to point (Figure 8). 

 

Figure 8 “Connection type for class ports 

For a “fork” constraint, we have: 

∑ 𝑏𝑖𝑗𝑒2

𝑖,𝑗

≥ ∑ 𝑎𝑖𝑗

𝑖,𝑗

𝑠1  

And for a fusion constraint: 

∑ 𝑏𝑖𝑗𝑒2

𝑖,𝑗

≤ ∑ 𝑎𝑖𝑗

𝑖,𝑗

𝑠1 

Regarding as allocation constraints, we consider 𝛽 ⊆ 𝑆 a set 

of source elements that shall be allocated (or not) to a target 

t ∈ 𝑇.  The integer formulation (Equation 2) adds a global 

constraint to the problem: 

𝐴𝑙𝑙𝐸𝑞𝑢𝑎𝑙(𝑥𝑖) 𝑤𝑖𝑡ℎ 𝑥𝑖 ∈  𝛽 

The Boolean formulation (Equation 3) adds a set of m 

constraints: 

∀ 𝑗 ∈ {1. . 𝑚}  𝐴𝑙𝑙𝐸𝑞𝑢𝑎𝑙(𝑥𝑖𝑗)  𝑤𝑖𝑡ℎ 𝑥𝑖 ∈  𝛽 

Capacity constraints include both the capacity use, such as 

memory use, and the utilization factor of each target 

element. They can be easily expressed with the Boolean 

formulation. With 𝑚𝑗 the total amount of capacity for the 

target 𝑡𝑗, 𝑚𝑖 the resource capacity needed for resource 𝑠𝑖, we 

have: 

∀ 𝑗 ∈ {1. . 𝑚}    ∑ 𝑥𝑖𝑗𝑚𝑖

𝑖

≤  𝑚𝑗       

3.3 Optimization context 
A Multi Domain Optimization Context (MDO Context) 

represents a situation that needs to be optimized in order to 

maximize or minimize a set of objective functions. The 

MDO context is a part of the system model and brings 

together the different elements needed to optimize the 

system. For the system designer, MDO context is the central 

point to drive optimization.  

MDO Context is defined in Figure 9 and includes: 

1. A reference toward the system under analysis (SUA), 

which contains the previously defined decision points, 

for instance, redundancy and allocation. 

2. An optimization model “OptModel” containing the 

mathematical representation of variables. Specific 

Boolean or integer models can be used. The OptModel 

has constraints, corresponding to a mathematical 

expression, on the language of the solver. The 

constraints and variables of the OptModel can be 

generated from the decision points and user defined 

constraints, with the algorithms proposed by the paper.  

Fork Fusion Point to point 



3. One or several objective functions. Each function 

calculates one objective value to be minimized or 

maximized. Parameters of this function include the 

variables of the OptModel and the attributes values of 

the SuA. The ParetoFront is used to generate optimal 

solutions, according the different objectives and with 

the selected solver. The solver choice is a parameter of 

the MDO Context. 

Pkg [Profile] MDO Context [with properties and associations]
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parameters
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parameters
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Figure 9 “MDO Context” 

The environment represents the context of use, in which we 

want to find out optimal solutions. The environment may 

include static elements such as data defined by Classes, or 

dynamic scenarios described by SysML sequence diagrams. 

Table 1 “Connection with SysML and AADL” 

Generic 

element 

SysML 

metaclass 

AADL element 

Class Block Device, memory, 

processor, bus 

Composition Block, BDD 

diagram 

Subcomponents 

Class Attribute Property Properties 

Allocation Allocate for 

behavior 

Allowed 

processor 

binding property 

Source 

elements for 

allocation 

Action/Activity Single thread or 

list or thread 

Target 

elements for 

allocation 

Block or part Single processor 

or processor list 

Class instance Instance diagram Instance model 

Constraint Constraint block Annotation 

3.4 Summary 
The meta-model proposed in this section represents decision 

points, constraints and an optimization context. It supports 

optimization activities with any MBSE language. We 

assume that the target MBSE language is composed of 

generic elements needed for system optimization. Table 1 

lists these generic elements and connects them to SysML 

and AADL.  

4. SysML and solver integration 

4.1 Stereotypes for optimization 
Modeling languages such as UML or SysML are defined 

using metamodeling, describing the language concepts with 

metaclasses [20]. The stereotype is a special type of 

metaclass, derived from an existing UML concept or from 

another stereotype. To make the concepts presented in 

section 3 compatible with the UML and SysML semantics, 

Figure 10 connects decision points to SysML metaclasses 

and stereotypes.  

1

«stereotype»
SysML::

Block

«metaclass»
UML::Comment

«metaclass»
UML4SysML::Association

«Stereotype»
InstanceDecision

«Stereotype»
StructureDecision

«metaclass»
UML::InstanceSpecification

+Instance

0..1

1

1

0..1

«Stereotype»
ComponentInstance

1

«Stereotype»
DecisionPoint

0..1

0..1

«Stereotype»
CommentDecisionLink

Aggregation:aggregationKind=
ComDecisionLink
isBinary()=True

TableName:String

 

Figure 10 “Decision points with SysML” 

In Figure 10, the “DecisionPoint” stereotype extends the 

UML::Comment metaclass. The “InstanceDecision” is 

connected to a SysML block, and to an instance 

specification from SysML. The “StructureDecision” applied 

to a composite association represents a variable redundancy. 

A specialization of association “CommentDecisionLink” 

connects a decision point to a block.  

In Figure 12, a SysML model fragment shows a video sensor 

block with decision points for instance and structure. The 

sensor block can be duplicated or not for redundancy, and 

each block has two possible instances. Each instance has 

cost and reliability values to compute the cost and the 

reliability of the system.  

The validation of the annotated model is proceed by 

checking the correct use of decision points. Instance 

decision point shall be connected to a block, and the 

structure decision point to a composite association with a 

minimum cardinality of two on the part side. 

The optimal combination of instances and redundancy is 

obtained by using the Pareto front representation, modeled 

by the MDO context.  
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Figure 11 “MDO context with SysML” 

The MDO Context integration in SysML is represented in 

Figure 11. SysML introduces the concept of “diagram 

usage” to represent a particular usage of a diagram type. A 

diagram is not a metaclass in UML but the concept of 

extending a diagram for a particular diagram usage is 

possible with SysML [3]. In Figure 11, the stereotype 

notation represents the MDO context diagram, extending the 

parametric diagram. 

 

Figure 12 “SysML model with decision points” 

A parametric diagram is a restricted form of internal block 

diagram (IBD). It contains constraint blocks representing 

equations. That is why the MDO Context refers to both BDD 

and parametric diagrams. In Figure 11, the “MDO Context” 

block extends the SysML stereotype “ConstraintBlock”. 

This constraint block is used as a top-level block for the 

associated parametric diagram. This constraint block has a 

reference (not shown in the figure) towards the 

“SystemBlock” which is the representation of the system 

under analysis. The “SystemBlock” includes the decision 

points stereotypes described in previous paragraph. The 

“OptModel” block shows the representation of the decision 

variables given by Equation 1 “dps and dpi variables”, using 

an integer array or Boolean matrix. Using both types 

requires creating two sets of variables and inserting them as 

parameters in the “OptModel” block, using constraints. The 

objective functions are other parts of the “MDO Context”. 

Each objective function has parameters for binding inputs 

with the system under analysis and with the “OptModel” 

constraint block. 

A key point for the problem formulation and complexity is 

the decision variable definition, because it directly 

influences the framework performances. We propose 

Algorithm 1 to assist the SysML designer in this task. This 

algorithm creates the appropriate decision variables and 

constraints used by the framework, from the deployment 

specification contained in the SysML model. The algorithm 

variables are listed in Table 2. 

Table 2 Algorithm variables 

Name Stereotype Description 

VA «Deployment

Specification» 

The set of variable allocate 

elements in the input SysML 

model  

v «VariableAllo

cate» 

The current variable allocate 

element  

s « Source» The source element to be 

allocated, such as a task 

TA «TargetList» The set of target elements 

allocated to s with the variable 

allocate 



t «Target» The current target element, with 

identifier “id” 

P  The ouput CSP problem to build 

The algorithm goes through the deployment specification of 

the SysML model containing the list of “variableAllocate” 

elements depicted by Figure 6. Two encoding type can be 

selected. If the encoding type in the SysML model is 

Boolean, Algorithm 1 is used. A Boolean matrix of decision 

variables matches the entire deployment specification. We 

start to retrieve the list of available sources and target 

elements from the model (line 3-6). Then for each source 

element of the model, we add a global constraint (line 10, 

AddAtMostConstraint) corresponding to equation (3) 

meaning that a source is allocated to only one target. For 

each variable allocation, if a source is not allocated to an 

existing target as given in equation (5), we set the 

corresponding Boolean variable to FALSE (line 15).  

Table 3 Algorithm primitives 

Name Description 

GetFrom(), GetTo() Retrieve the list of sources 

and target elements of relation 

“variableAllocate”. 

CreateBoolMatrixVariable() Create variables for P 

problem 

AddBoolConstraint() Add a Boolean constraint to P, 

with one Boolean variable, 

AddAtMostConstraint() Add at most constraint for 

matrix of Boolean variable, 

AddScalarConstraint() Add a scalar constraint to P, 

with an array of variables 

 

After the variable creation, the constraints defined in 

paragraph 3.2 can be generated (line 20-26). Capacity 

constraint generation is shown, using a scalar constraint and 

a transposed 𝑇𝑠 Boolean matrix. A SameTarget constraint is 

generated also with AddBoolEqConstraint. 

Table 3 gives the list of primitives used by the algorithm. 

The primitives are general enough to apply to any 

optimization problem, but their specific implementation 

depends on the selected solver. 

We obtain the following results for the CHOCO solver with 

a model including four target elements and one source 

element, with one variable allocation from s0 to target 0,1,3 

, one capacity constraint and one SameTarget constraint. 

4.2 Solver integration 
We evaluated several CSP and optimization solvers. The 

goal is to integrate them in an open-source framework, such 

as Eclipse [21] and Papyrus [22]. We can classify the solvers 

in two groups. The first group contains black-box tools such 

as Minion [23] or RealPaver [24]. These solvers are not 

suitable for us, because we want to integrate them into an 

open-source framework.  

 

Algorithm 1: decision variable creation from SysML 

model with Boolean Matrix and capacity constraints 

01:Input: 𝑉𝐴 =
 {𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑦𝑠𝑀𝐿 𝑚𝑜𝑑𝑒𝑙}  

02:  𝐶𝑆𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑃 ← ∅ 

03:   𝑆𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑠𝑡   𝑆 ←  𝑀𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐸𝑙𝑚𝑡𝑠( ) 

04:   𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡   𝑇𝐴1 ←  𝑀𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝐸𝑙𝑚𝑡𝑠( ) 

05:   𝐶𝑜𝑛𝑠𝑡𝑟𝐿𝑖𝑠𝑡   𝐶 ←  𝑀𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠( ) 

06:  𝑖𝑛𝑡 𝑃𝑚𝑎𝑥 = 𝑇𝐴1. 𝐶𝑎𝑟𝑑() 

07:  𝑖𝑛𝑡 𝑆𝑚𝑎𝑥 = 𝑆. 𝐶𝑎𝑟𝑑() 

08:  𝑃. 𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑜𝑜𝑙𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑠, 𝑆𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥) 

10:  𝐴𝑑𝑑𝐴𝑡𝑀𝑜𝑠𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑠, 𝑆𝑚𝑎𝑥) 

11:  For 𝑣  in 𝑉𝐴 : 

12:     𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡𝐿𝑖𝑠𝑡 𝑇𝐴2  ←  𝑣. 𝑔𝑒𝑡𝑇𝑜( )  

13:     For 𝑡  in 𝑇𝐴1 : 

14:           If  (𝑡 ∉   𝑇𝐴2  )  

15:               𝑃. 𝐴𝑑𝑑𝐵𝑜𝑜𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡("𝑠[𝑖][𝑗] = 𝐹𝑎𝑙𝑠𝑒") 

16:           𝑗 + +; 

17:     Endfor 

18:     𝑖 + + 

19:  Endfor 

20:   𝐶𝑜𝑛𝑠𝑡𝑟𝐿𝑖𝑠𝑡   𝐶 ←  𝑀𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠( ) 

21:  𝑃. 𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑜𝑜𝑙𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑇𝑠, 𝑠) 

22: For 𝑐  in 𝐶 : 

23:     If  (𝑐. 𝑇𝑦𝑝𝑒 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  )  

24:               AddScalarConstraint("≤", 𝑇𝑠, 𝑆, 𝑇𝐴1 ) 

25:     If  (𝑐. 𝑇𝑦𝑝𝑒 = 𝑆𝑎𝑚𝑒𝑇𝑎𝑟𝑔𝑒𝑡  )  

26:               AddBoolEqConstraint(𝐶, 𝑠, 𝑇𝐴1 ) 

27:     𝑘 + +; 

28:  Endfor 

29: Return 𝑃 

 

Result obtained with Algorithm 1 : 

private static final int S_MAX=2; 

private static final int T_MAX=4; 

BoolVar[][] s = 

VariableFactory.boolMatrix("s", S_MAX,T_MAX, 

solver); 

For(int i=0;i<S_MAX;i++) 

// a source s is allocated to one target  

SatFactory.addAtMostOne(s[i]); 

// allocation to t2 is excluded for s0 

SatFactory.addBoolEq(s[0][2],FALSE); 

For(int j=0;j<T_MAX;j++) { 

// Same Target constraint for s0 and s1 

SatFactory.addBoolEq(s[0][j], s[1][j]); 

// Capacity Constraints for targets 

solver.post(ICF.scalar(Ts[j],MemorySource

,"<=",TargetMemory)); 

} 



 

Table 4 Solver evaluation 

Solver   PyOpt Labix Choco ECLiPSe 

Language   Python Python Java ECLiPSe 

Domains Boolean  + - + + 

 Integer  + + + + 

 Real  ++ - + + 

 Set of variables  + - ++ + 

Constraints       

 Arithmetic integer + + + + 

  real  -   

 Global  - - ++ + 

Optimization   yes no yes no 

 Mono/Multi-

objective 

 multi 

++(genetic) 

no multi 

+ 

 

- 

 Algorithms   ++ - + - 

Suitable for 

decision points 

  Value 

decision, 

real types 

Instance,  

Structure 

Instance,  

Structure, 

Allocation 

Instance,  

Structure 

 

The second group includes object libraries and functions 

dedicated to CSP and optimization problem, written in 

JAVA or Python language. This is the group of solvers we 

have investigated: Labix [25], PyOpt [10], CHOCO [9] and 

ECLIPSE [26]. The first criterion for choosing a solver is the 

type of variables it uses. For the previously defined decision 

points, we need both integer and real variables. A second 

important criterion is the ability to handle sets of variables 

and global constraints. With this feature, we easily formulate 

system constraints such as “AllDifferent” on a group of 

variables. We considered also the possibility to perform 

multi-objective optimization inside the solver, and the use of 

different algorithms (Backtracking, MAC) for CSP problem 

solving.  

From the results presented in Table 4, we selected the Labix 

solver for our first experimentations with structure and 

instance decision problems. The PyOpt solver is suited for 

variables in continuous domain, which is useful for value 

decision problems. The CHOCO solver is similar to Labix, 

but with much more capabilities. CHOCO can handle global 

constraints, needed for allocation problems with a large 

exploration space. The ECLIPSE solver was not selected 

because the solver was coded using a declarative language 

similar to Prolog. 

 

5. Case Study and tool 
A UAV model serves as case study for the methodology and 

the algorithms implemented as a plug-in of the SysML 

Papyrus tool. 

5.1 Autonomous UAV 
Autonomous Unmanned Aerial Vehicles (UAVs), 

sometimes called flying robots, are being used for 

intelligence, surveillance, and reconnaissance missions [27]. 

Autonomous UAVs have an increased level of autonomy 

and more complex scenarios are envisioned [28]. UAVs 

range from remotely piloted vehicles to more sophisticated, 

fully autonomous UAVs. At an intermediate level for 

autonomous UAV, fault or event adaptive UAVs perform 

on-board trajectory re-planning from obstacle detection, and 

combine this feature with a mission realization. 

Communication to ground control system cannot be 

permanently guaranteed and on-board power is limited. 

Therefore, processing and decision-making are entirely done 

on board. The HW reliability and the system cost have to be 

considered first. The HW platform is made up of CMOS 

image sensors, processing elements and UAV interface 

networks (transceivers). These three components may be 

redundant, for safety purposes, and they are selected in a 

repository of instances. In the next paragraph, Our 

optimization approach is used to determine the optimal HW 

configuration, with a SysML model including decision 

points, and a CSMOP problem generation and solving. 



5.2 Hardware redundancy and instances 
The hardware system is made up of several components and 

described by a block definition diagram. The HW platform 

for the UAV system in Figure 13 contains one or two 

sensors, processing elements and transceivers for onboard 

network. Three decision points for redundancy and three for 

instances are respectively related to the sensor, the CPU and 

the Transceiver composition. 

 

Figure 13 “ BDD for UAV with decision points” 

The reliability and the cost of each HW instance are 

integrated into the model of the system by associating a 

value list with blocks attributes. These values are presented 

in Table 5. 

 

Table 5 “Reliability and cost for instances” 

Component Family Mean Reliab.  Cost (€) 

Sens. 1-3 OVH56 0.930-0.940 40-45 

Sens. 4-6 OVH74 0.940-0.950 45-50 

CPU 1-3 ARM7 0.950-0.970 30-40 

CPU 4-6 ARM8 0.970-0.980 40-50 

Trans. 1-3 TJA 0.975-0.980 35-37 

Trans. 4-6 MCP 0.980-0.985 37-40 

 

The MDO Context contains two objectives functions, the 

reliability 𝑅 to be maximized and the cost 𝐶 to be minimized. 

The objectives functions are inserted in the model with a 

constraint block. The MDO Context is represented by a 

parametric diagram, as shown in Figure 14 Parametric 

diagram for MDO Context.” 

 

Figure 14 Parametric diagram for MDO Context 

The objective functions have the following expression with 

the Boolean decisions variable of Equation 1: 

min 𝐶 =  ∑ 𝑐𝑗𝑘 [𝑥𝑖𝑗𝑘 + 𝑒𝑥𝑝 (𝜃𝑖 ∑ 𝑥𝑖𝑗𝑘

𝑘

)]

𝑖,𝑗,𝑘

  

 max 𝑅 =  ∏ [1 − ∏[1 − 𝑥𝑖𝑗𝑘𝑟𝑗𝑘]

𝑗,𝑘

 ]

𝑘

  

 

From a SysML/Papyrus model with six decision points, the 

three-steps algorithm described in paragraph 3.1 generates a 

36-decision variables CSMOP problem. With the Labix CSP 

solver [25], a backtracking algorithm implemented in 

Python, and a posteriori objective function evaluation, we 

obtain 8,850 solutions in 11 minutes of computation time. 

The results are obtained with a JAVA implementation of 

algorithm 1 running on an Intel i5 3GHz machine with 4 GB 

RAM. 

 

 

Figure 15 “Pareto frontier” 

 In Figure 15 the X-axis displays the Failure rate (1-Rs) 

instead of reliability Rs. Each point figures a solution to the 

CSMOP problem obtained with the Python Labix solver. 

The solid line figures the Pareto frontier, in a particular 

region of interest selected by the user from the set of 

solutions. 



For a maximum cost of €190 and a failure rate < 100 10-6, 

Table 6 presents the three best trade-off configurations 

selected by the designer. 

Table 6 Cost and Failures rates 

Sol.# Sensor CPU Trans. Cost FR(10-

6) 

45 S1+S1 CPU1 T1+T4 190 40 

42 S1+S3 CPU1 2xT1 180 50 

39 S1+S3 2xCPU1 2xT1 170 60 

 

The optimal HW platform for reliability and cost consists of 

CPU1 and a set of sensors and transceivers. CPU1 is a multi-

core platform: an Exynos 5422 Octa host processor, with 

four “Big” cores and four “Little” cores. 

The HW components being chosen, the position of the 

camera in the UAV structure must be precisely determined. 

From a MBSE point of view, this problem deals with 

attributes values of the HW blocks. It corresponds to a value 

decision problem, where value types can be real (continuous 

problem). In this case, we can use “Values decision points” 

connected to class attributes and a solver such as PyOpt [10] 

for solving the CSMOP problem. The results are available in 

[29]. For the UAV system designer, next conflicting 

objectives to be optimized are the power dissipation and the 

computational capability. The allocation of software onto 

hardware helps to minimize these goals. 

5.3 Software to Hardware allocation 

The CPU1 contains four powerful “Big” Cortex A15 cores 

and four slower “Little” Cortex A7 cores. The maximum 

dissipated power is 4 Watt for big cores and 1 Watt for little 

cores. Another feature of CPU1 is that unused cores can be 

switched-off, rather than left idle. Thus, unused cores suffer 

no static leakage or dynamic switching power, and the 

minimum amount of used core shall be preferred to 

minimize dissipated power. 

Figure 16 “BDD with variable allocation and global 

constraint” 

The SW application of the UAV includes a set of scheduling 

resources for the mission realization (Path calculation) and a 

set for picture processing, obstacle detection and trajectory 

replanning. 

Figure 16 presents a BDD from the SW package, including 

the SW/HW allocation. The «VariableAllocate» stereotype 

defined in paragraph 3.1.2, Figure 6 is used for the variable 

allocation of “S6” obstacle detection resource. For each 

resource, the “WCET_BC” and the “WCET_LC” attributes 

give the WCET value for one processor core. Other 

resources are characterized in Table 7. The “SameCore” 

constraint, equivalent to “SameTarget” constraint in Section 

2, specifies that S6 and S7 resources shall be allocated to the 

same core, because they share a large amount of data for 

picture processing. 

Table 7 Schedulable resources for UAV 

Id Name 
WCET for 

BigCore(ms) 

Period 
(ms) 

Heap 
Memory 
size(KB) 

S0 Get Frame 10 80 300 

S1 
Show 

Picture 
20 90 100 

S2 Filtering 1 30 100 200 

S3 Filtering 2 30 100 100 

….     

S8 
Obstacle 

detection 
30 90 200 

S9 
Trajectory 

Replanning 
35 100 200 

 

The SysML model includes also capacity constraints, 

presented in section 2, for each core. The “CoreMemory” 

constraint limits the core memory usage for the SW 

allocation and the utilization factor constraints limit the ratio 

between WCET and Period.  

For a configuration “C1g”with 10 resources allocated to 8 

cores we obtain 3,135 solutions (Figure 17) with a resolution 

time of 0.5s. The the Eclipse/CHOCO environment was 

running on an Intel i5 3GHz machine with 4 GB RAM. For 

each set of distinct solutions, two objectives are calculated. 

First, the CPU dissipated power with a scalar product. 

Second, the number of allocated cores. These two objectives 

shall be minimized by the designer to obtain optimal 

solutions. For “C1g” configuration we obtain 40 optimal 

solutions presented in Table 8  and Figure 17. A scheduling 

analysis if performed on each optimal solution (last column 

of Table 8 ). 

 



 

Figure 17 “Solutions for C1G” 

 

Table 8  Optimal solutions for C1G 

Core 

number 

Possible 

allocation 

Little 

Cores 

load 

(%) 

Big 

cores 

load 

(%) 

Dissipated  

Power (w) 
Schedulable 

3 1 0 1.799 2.699 yes 

4 9 0.6 1.266 2.02 no 

5 18 1.044 1.118 1.91 no 

6 12  1.687 0.904 1.859 no 

 

5.4 Papyrus tool and new plug-in 
To support the methodology depicted by Figure 1, a plug-in 

has been added to the Papyrus modeling environment [22] 

with the Eclipse Modeling Framework (EMF) [21]. The 

plug-in uses open-source software. The three following 

features are supported by the plug-in and the profile 

presented in Figure 18: 

 

Figure 18 Papyrus tool and plug-in 

1. The designer uses stereotypes to add decision points to 

his/her model. The Papyrus tool supports UML profiling 

by providing extensions to UML-based profiles. The 

stereotypes we propose are implemented in a custom 

profile. Therefore, the designer can define his/her own 

graphical or tabular notation to model the decision points 

described previously. In this step, he or she defines an 

optimization context diagram, including constraints 

blocks for objectives functions. 

2. From the optimization context block, the designer 

generates a JAVA code similar to the one presented by 

listing 1. The source code is generated with a plug-in we 

have developed. The plug-in uses the XTEND language 

[30] for retrieving information from the model, with the 

template expressions feature. Template expressions 

(Listing 2) are multi-line strings within triple quotes and 

interpolated values from the model in French quotation 

marks. The result of this step is an updated JAVA file for 

the CSP problem, in the same Eclipse workspace but in 

a different project. 

Listing 2 : Template expression with XTEND  

3. Run the JAVA code generated in step 2, with a project 

using the selected solver. The results are displayed with 

a Pareto diagram. Other CSP solvers may be used at this 

step. In previous work [31], [29] we have experimented 

the Labix solver [31] for instance and structure decision 

points and the PyOpt solver for value decision points. 

Both solvers are written in Python and can be integrated 

in the Eclipse environment.  

«IF VarKind==Allocation» 

# // Schedulable Resource number 

private static final int S_MAX = «ResourceList.getNum()» 

private static final int C_MAX = «CoreList.getNum()» 

Solver solver = new  Solver("Allocation problem"); ''' 

«ENDIF» 



4. From the Pareto diagram, the table of optimal solutions 

can be displayed by the user. In this table, the detail of 

each solution is given, with the values of decision 

variables such as allocations or component choices. With  

this table, it is possible for the user to highlight the 

corresponding values in the model. This manual 

operation will be automated in the future with a new 

feature. This feature will allow round-trip optimization, 

by freezing decision points values after a first 

optimization step, and by adding other decision points in 

a second step. This iterative method reduces the 

complexity of the problem induced by the number of 

decision points. 

6. Related Work 
In [32], Min et al propose a multi-objective optimization 

from SysML model, by using the ModelCenter commercial 

tool. ModelCenter is a graphical environment for analysis 

and optimization. The designer provides a structural 

description of the system with SysML blocks that include 

properties. Then the block properties are connected one by 

one to a ModelCenter analysis block in a parametric 

diagram. This matches one of our decision points, the “Value 

decision”, using connection with a commercial tool. 

In [12] the authors propose a transformation from a feature 

model [17] to a mathematical representation of an 

optimization problem. Then a solver solves a combinatorial 

problem. Feature models represent all the products of a 

software product line. They are used in the whole product 

line development but not in MBSE with SysML.  

With the COMPLEX methodology proposed in [33], the 

designer creates the various alternatives of allocations with 

the MARTE profile [34] and annotations. The alternative 

creation presented in Figure 19 is often manual: several 

variants can be missed and the size of the design space is a 

severe limitation. Also, in MARTE, the allocation semantics 

is ambiguous and unusable when numerous alternatives of 

allocations have to be modeled. For the transformation to 

analysis model and problem solving, the COMPLEX 

methodology proposes exhaustive search and the results are 

obtained by simulation. On a multi-core HW platform, the 

number of possible allocations can be significantly higher 

than on other HW platforms and the total simulation time 

becomes a problem. 

 

 

Figure 19 “Allocation with MARTE and COMPLEX” 

7. Conclusions 
The paper discusses trade-off analysis in a MBSE approach 

that associates SysML with so-called “decision points”. 

Whether the approach is instantiated on SysML, the concept 

of decision points is not specific to one MBSE language and 

enables covering the four kinds of decisions problems 

largely found in system engineering: instance decision, 

redundancy, values and allocation problem. 

For SysML, the paper proposes new stereotypes (decision 

points, global constraints and optimization context) 

extending the initial model without variants for trade-off 

analysis. Then, the algorithm proposed in the paper 

transforms the extended SysML model into a CSP 

optimization problem (CSMOP); the process includes 

decision variables, constraints and objectives functions. 

Several solvers have been benchmarked in order to address 

this CSMOP problem: CHOCO [9], PyOpt [10] and Labix 

[25]. The designer selects a solver, stored in the model, 

according to the kind of decision points, and according to the 

strategy required by the problem resolution. The 

methodology was tested on a multi-core UAVs model and 

validated with the plug-in that we have developed using 

Papyrus and Eclipse. 

Unlike approaches published in [12] [32] [33], the one 

discussed in this paper allows to model the entire problem at 

the SysML model level, without programming code at the 

optimization tool level. Instead of manually connecting the 

SysML model with an optimization solver, it is possible to 

generate the problem description file using a SysML 

extension and our plug-in. This is particularly useful at early 

stage of design, when the exploration space is very large. 

With the proposed methodology, the design space 

exploration is more efficient, reducing the number of 

possible solutions before a detailed analysis such as 

scheduling analysis. 

In the near future, the algorithm described in Section 4 will 

be optimized in terms of integration into the Papyrus tool, 

the purpose being to integrate and to compare several search 

strategies for the CSP problem resolution. The tool be 

improved with the highlighting of decision points values in 

the model, after a user selection of a particular optimal 

solution. This will allow iterative optimization by fixing 

decision points values after a first optimization and by 

adding new decision points. Another algorithm will be 

developed to help the user for the solver choice. Integration 

of detailed analysis, different from scheduling analysis for 

optimal solutions, will be studied too.  
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