
Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22467

Official URL

DOI : https://doi.org/10.1007/978-3-319-98812-2_9

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Negre, Elsa and Ravat, Franck and Teste,
Olivier OLAP queries context-aware recommender system. (2018)
In: International Conference on Database and Expert Systems
Applications (DEXA 2018), 3 September 2018 - 6 September 2018
(Regensburg, Germany).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/227533024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OLAP Queries Context-Aware

Recommender System

Elsa Negre1(B), Franck Ravat2, and Olivier Teste2

1 Paris-Dauphine University, PSL Research Universities, CNRS UMR 7243,
LAMSADE, Paris, France
elsa.negre@dauphine.fr

2 Université de Toulouse, IRIT, CNRS UMR 5505, Toulouse, France
{ravat,teste}@irit.fr

Abstract. It becomes hard and tedious to easily obtain relevant deci-sional data in
large data warehouses. In order to ease user exploration during on-line analytical
processing analysis, recommender systems are developed. However some
recommendations can be inappropriate (irrele-vant queries or non-computable queries).
To overcome these mismatches, we propose to integrate contextual data into the
recommender system. In this paper, we provide (i) an indicator of obsolescence for
OLAP queries and (ii) a context-aware recommender system based on a contextual
post-filtering for OLAP queries.

1 Introduction

A substantial effort of the scientific community in the last decades has been to
develop data warehousing and on-line analytical processing (OLAP) [1]. Data
warehouses (DWs) are built using materialized views [2] based on the multidi-
mensional model, which consists in describing data as a data cube [3]. Contem-
porary DWs form large multidimensional networks where it becomes hard and
tedious to explore and easily obtain relevant decisional data [4].

Context. One possible opportunity is to extend decision support systems with
recommender system approaches [5]. The recommendation approaches are popu-
lar to provide personalized results into large volumes of data [6]. However, there
is few research in the field of OLAP query recommendation [7,8].

Paper Issue. Although these approaches allow recommending queries for a
given user, the recommended queries may be not satisfactory because the solu-
tion space is limited to queries that existed in the past. The problem of out

of date recommended queries is the dissatisfaction of the recommender system
users. We identified two reasons for the dissatisfaction:

– Irrelevant queries for users, which are not used for long time. These old queries
may be considered out of date by users.

_ https://doi.org/10.1007/978-3-319-98812-2 9

– Non-computable queries due to data updating: stored data are periodically
refreshed, and possibly updated.

Motivating Example. The illustrating example concerns a product company.
Users analyze quantities of sales of products according to time and stores. To
support this analysis, they query the DW (Fig. 1) where the analysis subject is
Quantity and the three available analysis axes are Store, Product and Time. Each
of them is organized according to a hierarchy of attributes, which represent vari-
ous granularities. OLAP analysis consists in applying different sessions of queries
on the schema defined above. After applying a user query, a recommender system
proposes different possible queries that can help the user in his/her analysis.

Given a user query qc and a set of past queries Ω that the recommender

system kept, recommending queries aims to provide a subset QR ⊆ Ω similar

to qc. QR = {(qri, σi) | σi ∈ [0..1] is a similarity value between qri and qc} is an

ordered set of recommended queries qri ranked to the more similar to the less

similar regarding to qc.

Suppose that, today, a user wants to know the quantity of beverages of the
range ‘Fanta’ sold in New York City and San Francisco in 2016 via the query qc

such that: qc = “Sales of Fanta in San Francisco and New York City in 2016”.
OLAP queries that can complete the analysis. To suggest additional queries, the
OLAP recommender system (RS) calculates similar queries denoted QR from
the set of stored past queries denoted Ω (previous launched queries between
2005 and 2017). The recommendations returned by the system may be QR =
{(qr1, 0.95), (qr2, 0.94), (qr3, 0.92)} where:

– qr1 = “Sales of Cola in New York City in 2012”
– qr2 = “Profits related to Fanta in New York City and San Francisco in 2016”
– qr3 = “Sales of Fanta in the store M1 of New York City”

Due to periodically refreshing, the DW only contains now products sold in US
from 2012 to 2017. In classical RS, the stored queries is kept with non-calculable
queries or it is cleaned by deleting out of date queries.

– qr1 is out of date because the query handles data related to 2012, which are
out of date for the user who focuses on 2016.

– qr3 is out of date because the store M1 of New York City is closed since 2011.
The M1 data no longer exist in the current DW.

Only Q′
R = {(qr2, 0.94)} is usable. Interesting queries, e.g. QR\Q′

R are lost
because part of data is not kept, and then it is not possible to calculate these
out of date queries. Here, qc is launched in 2017 and qr1 could be really inter-
esting for data related to 2016. In the same way, qr3 could be interesting for
data related to 2016 and either for another store(s), or cities. To overcome these
drawbacks, we intend to define an OLAP context-aware RS allowing the recom-
mendation of some past queries such as qr1 and qr3 that are out of date and/or
non calculable into classical RS. We want to extend classic RS where recom-
mended queries are extended with contextual data. In the example, qr1 and

Fig. 1. Example of DW star schema Fig. 2. Our context-aware approach

qr3 could be reformulated. The RS may provide a set of contextualized queries
Qcxt = {(qcxt1, 0.99), (qcxt3, 0.96)} where:

– qcxt1 = “Sales of Cola in New York City in 2016”.
– qcxt3 = “Sales of Fanta in all stores of New York City”.

Finally, given a user query qc, and a past queries set Ω, our approach aims
at calculating Q′

R ∪ Qcxt = { (qcxt1, 0.99), (qcxt3, 0.96), (qr2, 0.94) }, where
Q′

R is the set of “usable” recommended queries and Qcxt is a set of out of date
queries that are contextualized to be relevant regard to qc. Figure 2 illustrates
the approach to extend the set of recommended queries by reformulating some
out of date queries (instead of delete these queries).

Paper Contributions and Organization. In this paper, we propose a
context-aware recommender system based on a contextual post-filtering for
OLAP queries where we contextualize queries recommended by a classic log-
based recommender system. The paper is organized as follows: Sect. 2 presents
the related work on OLAP recommender systems and Context-aware recom-
mender systems (CARSs). Section 3 details our indicator of obsolescence and
our OLAP queries CARS. Section 4 presents some experiments and results.

2 Related Work

In this section we present some related work about, OLAP recommender systems
(RSs) and Context-aware recommender systems (CARSs).

OLAP Recommender Systems. RSs are a particular form of information
filtering designed to present information items (e.g., movies, books, ...) that
may interest the user. RSs have been studied in many fields, including cognitive
science, information retrieval, web and e-commerce. However, some works have
focused on recommendations in the field of data warehouses analyzed by OLAP
queries and proposed methods and algorithms to assist the user in her/his query-
ing process by proposing relevant queries (items). Among these, some focused on
exploiting user profiles and preferences [9], and others focused on the discoveries
made during analyses [10] as well as on exploiting logs containing sequences of
queries previously run by other users on the same cube [11].

The quality of RSs may be measured by prediction/classification/ranking
accuracy, user coverage and recommendation diversity (see [12] for further
details). To the best of our knowledge, there does not exist any measure or
indicator verifying if the recommendations returned by a RS are out of date.

Context-Aware Recommender Systems. The probably most widely
accepted definitions of context is the one of [13] where: “Context is any infor-
mation that can be used to characterize the situation of an entity”. A key
accessor to the context in any context-aware system is a well designed model.
Some context modeling approaches exist [14,15]. Another complementary app-
roach is to incorporate context. [16] explains that CARSs “generate more rel-
evant recommendations by adapting them to the specific contextual situation
of the user”. Traditionally, the problem of recommendation can be summa-
rized as the problem of estimating scores for items that have not been seen
by a user, i.e. as a prediction problem where the RS predicts the user’s rat-
ings for a given item according to a user profile, it is a rating function:
rRS : Users × Items → Ratings [16]. With context, the rating function for
CARS becomes: rCARS : Users × Items × Contexts → Ratings [16]. Further-
more, the context can be incorporated in various stages of the recommendation
process: (i) pre-filtering, (ii) post-filtering, and (iii) contextual modeling [16].
Finally, [17] concludes that post-filtering seems to be the more efficient.

To the best of our knowledge, there exists no CARS in OLAP field. So, in
this paper, our goal is to propose a CARS based on a contextual post-filtering
for OLAP queries.

3 OLAP Queries Context-Aware Recommender System

3.1 Definitions

A N-dimensional Cube C has for schema C = 〈D1, ..., DN , F 〉 where: (i) For
i ∈ [1, N], Di is a dimension, (ii) F is a fact containing the set of measures.

For a dimension D (of the cube C), having for schema an ordered list of m

attributes {Lj} (∀j ∈ [1,m], where m is the depth of the dimension). L1 is the
lowest granularity attribute. Each attribute Lj of the hierarchy is the child of a
single parent present at the level of granularity immediately higher Lj+1 of the
hierarchy. In the following, ADOM(D) =

⋃m
j=1 adom(Lj), where adom(Lj) is

the set of existing values of Lj on C and ADOM(D) is the set of all existing
attribute values of dimension D (on C).

Given a cube C = 〈D1, ..., DN , F 〉, a multidimensional query qM on C can
be represented as qM = 〈q1,qN 〉 where ∀i ∈ [1, N] , qi is a relational query (to
obtain the values of the attributes of each dimension Di). Thus, qM = q1(D1) ×
... × qN (DN) = ×N

i=1qi(Di).

3.2 ObsoIndic

As displayed in the previous section, there does not exist any indicator verifying
if recommended OLAP queries returned by a RS are out of data of use and/or
missing data. First of all, we give the definitions of some notations.

– QR is the set of all possible recommended queries
– Q′

R is the set of computable recommended queries (Q′
R ⊂ QR)

So, we define a new indicator for OLAP queries log-based RS, ObsoIndic

that measures the number of recommended queries that are obsolete of use (i.e.
“old”/irrelevant) or obsolete of data (i.e. non-computable) in relation to the total
number of recommended queries such that:

ObsoIndic =
|QR| − |Q′

R|

|QR|

where ObsoIndic ∈ [0; 1] and the lower the value, the higher the non-obsolescence
of the recommendations.

For example, according to the motivating example (Sect. 1), the log-based
RS returns three recommendations (QR): qr1

, qr2
and qr3

where qr1
and qr3

are
out of date. Our indicator is: ObsoIndic = 3−1

3 ≈ 0.666: more than 66% of
the recommended queries are irrelevant or non-computable. So this RS needs to
enhance its process by integrating our context-aware approach.

Fig. 3. Our proposition. Red arrows are inputs and Blue arrows are execution (Color figure
online)

3.3 Global Process

Unlike classic approaches, ours aims at recommending queries that did not exist.
Starting from log-based recommended queries, our system exploits additional
information to obtain context-aware recommendations (not existing queries). In
fact, “old”/irrelevant queries will be updated and non-computable queries will
become computable. Our approach mixes decision making process, recommenda-
tion process and contextual data to help a decision-maker. We extend a classic RS
where returned queries are improved with contextual data. Then, the obtained
context-aware recommendations are returned to the decision-maker. Figure 3
displays this additional component. During the recommendation process, the
OLAP query, qc, launched by the decision-maker (i) is logged, (ii) updates the

context and (iii) is the input of the RS. Then, the log-based RS returns a set of
recommended queries QR = {qri

}. Our proposition starts from this point: the
contextualization process. Each query qri

of QR is processed. Then:

1. the query qri
can be processed and is not out of date, in which case, this

query is added to the final output QRcxt
, or

2. the query qri
is out of date, in which case, this query does require some

updates according to a given context and the new context-aware query qcxti

is added to the final output QRcxt
.

Finally, this set QRcxt
= {qri

} ∪ {qcxti
} of context-aware recommendations is

returned to the decision-maker.
Specifically, given a current query qc, and Ω the set of all past queries (query

log), the log-based RS proposes a set of recommended queries QR ⊆ Ω that
can follow qc in an analysis session. The set QR is composed of queries qri

(∀i ∈ [1; |Ω|]) dated ti (see Recommendation process part of Fig. 3). Ω can
contain relatively old or even obsolete queries. In our approach, to overcome
these two cases of obsolescence (because of using only the contents of a log Ω),
we want QRcxt

⊆ ∆ (where ∆ represents all the queries that can be launched
on the cube C1 (Ω ⊂ ∆)). So when the queries qri

recommended for qc are not
out of date, we do not act. By cons, when queries qri

are considered out of date,
we want to contextualize them. What we mean by “context-aware queries” is,
intuitively, to put the queries “in the style of today”. More formally, we have
to modify each obsolete query to make them relevant and appropriate to the
specific context of the current query qc (see Contextualization process part of
Fig. 3). In more details, during the contextualization process, there are two steps:
(i) Processing the qri

and (ii) Contextualizing the obsolete qri
.

3.4 Defining/Modeling Context

The context is a set of contextual information [18]. To take fully account of the
context of OLAP analysis, we represent it using 5 categories of elements (accord-
ing to [19]): Time, Individuality, Relations (between users), Activity, Material.

Context modeling is still complicated given the nature of the data and/or
contextual information: the model must be able to manage various data sources,
their quality and lifetime heterogeneity and their imperfect nature [20]. Accord-
ing to [21], only the ontological model allows a good partial validation of the
data and a good formalization of the model. Thus, we use the general ontology
of [19] regrouping the five categories.

3.5 Contextualization Process

The contextualization process can be modeled as an algorithm where the inputs
are the set QR of recommended queries returned by the classic log-based RS
(during the recommendation process), the log of queries Ω, the cube on which
queries are launched, some contextual data/information and the obsolescence
threshold. Concretely, for each recommended query qri

of QR:

– when qri
is computable and obsolete of use (isObsoleteU), the RecCxtOld

function updates qri
into qri

(cxt) which is added to the final set QRcxt
;

– when qri
is computable and not obsolete of use, qri

does not require any
update and is added to the final set QRcxt

;
– when qri

is not computable, the RecCxtData function updates qri
into

qri
(cxt) which is added to the final set QRcxt

.

Finally, the set QRcxt
of context-aware recommendations is returned by our

following Algorithm which complexity is O(|QR| × t × k × |Ω|
3
) where |QR| is

the number of queries in QR, t is time to calculate the more complicated query,
k is the number of clusters and |Ω| is the size of the query log Ω.

Algorithm. Context-aware recommended queries: CarsOlap
Require: C1 the cube on which queries are launched

QR : the set of recommended queries returned by the log-based recommender system
Context : contextual data/information (ontology)
Ω : the log of queries
ObsoTh : the obsolescence threshold

Ensure: QRcxt
: the set of context-aware recommended queries

QRcxt
= ∅

for each qri
(∀i ∈ |QR|) do

if qri
⊂ C1 (computable on C1) then

if isObsoleteU(qri
, Ω, ObsoTh) then

Obsolescence of use/irrelevance:
QRcxt

← QRcxt
∪ RecCxtOld(qri

, Context, Ω, ObsoTh, C1)
else

QRcxt
← QRcxt

∪ qri

end if

else

Obsolescence of data (non-computable):
QRcxt

← QRcxt
∪ RecCxtData(qri

, Context, C1)
end if

end for

Deleting duplications
return QRcxt

The boolean isObsoleteU(q,Ω,ObsoTh) function returns true when the
query q has not been launched in Ω since a certain time (ObsoTh is a threshold,
Sect. 4.2 shows how to define its value).

The RecCxtOld(q, Context,Ω,ObsoTh,Cube) function updates the query
q which is obsolete of use with the contextual data Context. If the query
q contains a selection on some temporal levels, the corresponding values are
replaced/upgraded with the TIME category of the Context, by keeping the time
span between the time the query q was launched and time selections. If the
query q does not contains temporal selections, the k-medoid clustering algo-
rithm is used to partition the more recent queries of the log Ω (according to the
threshold ObsoTh). Each cluster clj is represented by a specific query : q

j
med.

Then, the query q is replaced by the more similar q
j
med. Only if the obtained

context-aware query is computable on Cube and can be displayed1 (according
to the MATERIAL category of the Context), it is returned by the system.

1 Note that the obtained context-aware query may be update by rolling-up, level by
level, until the query can be displayed (according to the MATERIAL category) .

The RecCxtData(q, Context, Cube) function updates the query q which is
non-computable on Cube, with the contextual data Context. If it is a schema
problem, i.e. some levels do not exist or are not accessible, and the corresponding
dimension exists, then, the query q rolls-up to the ‘ALL’ level of this dimension.
If it is an other schema problem, i.e. some dimensions do not exist or are not
accessible, then this dimension is removed from q and some constraints are added
through the INDIVIDUALITY category of the Context. If it is a data problem,
i.e. some values of levels do not exist or are not accessible, and the corresponding
level exists, then, all the existing values of the level are displayed and some
constraints are adding through the INDIVIDUALITY or TIME categories. Only
if the obtained context-aware query is computable on Cube and can be displayed
(see footnote 1) (according to the MATERIAL category), it is returned by the
system.

4 Experiments

We present the results of the experiments we have conducted to assess the capa-
bilities of our framework. We used synthetic data produced with our own data
generator [11]. Both our prototype and our generator are developed in Java
using JRE 1.6.0-27 with Postgres 9.1.10 and Mondrian 3.3.0.14703. All tests are
conducted with a Core i5-2520M (2.5 Ghz × 4) with 8 GB of RAM using Linux
Ubuntu 12.04.

4.1 Data Set

The process of synthetic log generation is detailed in [11]. Our experiments are
conducted with the log-based RS prototype: RecoOLAP [22].

4.2 Results

Obsolescence Threshold. Obsolescence and freshness were studied in the
case of OLAP queries [23]. Here, we attempt to experimentally determine the
threshold value of obsolescence of a query log. We make 10 successive 10-fold

Fig. 4. F-Measure of the recommendations for the 10 validations

Fig. 5. User feedback analysis (% of pertinent recommendations, left: for each of the 5 cases

and right: for different status of responders).

cross validation. First, the generated set of sessions is partitioned, according to
the seniority of the sessions in the log, in 10 equally sized subsets, i.e. 10 deciles.
We then make a 10-fold cross validation with the 10 deciles. For each such session
sc of size n, we use the sequence of the first n − 1 queries as the current session,
and we compute the recommendations for the n-th query. The generated log
contains 610 queries (100 sessions).

Figure 4 shows the inverse cumulative frequency distribution of the recorded
F-measure for the 10 validations (d1-10 is the log with 100 sessions, d1-9 contains
the 9 more recent deciles, 90 sessions, ... and d1 contains the more recent decile,
10 sessions). This experiment allows us to tune our system in order to choose for
the obsolescence threshold the value that achieves best F-measure. First, note
that these good results can be explained by the density of the log generated.
Second, as many machine learning systems, the more logs are large, the better
the quality. So it is normal that d1 − 10 obtains the best results. In the case of
d1, the log is small but provides a relatively good quality (over 70% of sessions
have a F-measure ≥ 0.8). From d1 − 2 to d1 − 5, less than 60% of sessions reach
a F-measure ≥ 0.8 (which is not satisfactory). Starting from d1 − 6, results are
correct (and close to those of d1), we can conclude that we must keep at least
the 6 first deciles. Finally, the obsolescence threshold can be defined as 6

10 , e.g. if
the log sessions spread over 10 years, sessions/queries over 6 years are obsolete.

User Feedback. User feedback is weakly used to evaluate RSs, due to the dif-
ficulty of setting up a protocol and/or the one to involve users (who find the
task time-consuming), but a user feedback evaluation allows to position the user
at the heart of the evaluation knowing that the vocation of the RS is to satisfy
the user. In order to test the quality of the context-aware recommendations, we
established a protocol of tests conducted with 72 real users2 on the FoodMart
dataset3. Starting from a session of queries (where goal is explained), users are

2 Students, researchers, professionals from different French universities and enterprises
- Master 1 students: 21%, Master 2 st.: 61%, researchers: 15% and professionals: 3%.

3 http://mondrian.pentaho.org.

offered 3 recommendations (note that users do not know which system returned
which recommendation) from (i) the log-based RS (RecoOLAP), (ii) our propo-
sition, CarsOLAP, (iii) taken at random from the log. Users should choose which
recommendation seems the most relevant for each of the 5 cases4. Figure 5 shows
that whatever the case and whatever the responder’s status, CarsOLAP’s recom-
mendations are always the most pertinent (more than 50% even more than 80%).
Notice that professionals never chose a recommendation obtained by random.

According to this feedback analysis, it seems that recommendations obtained
with our proposition, CarsOLAP, a CARS based on a contextual post-filtering,
are more relevant than recommendations obtained with a classic log-based RS.

5 Conclusion

In this paper, we exposed the limits of classic log-based RSs when recom-
mending OLAP queries. Indeed, recommended queries can be irrelevant or non-
computable. In order to overcome these limitations, we propose (i) an indicator
of obsolescence and (ii) to enhance these systems (especially when our indicator
value is poor), a process for contextualizing recommended queries and develop a
CARS. In OLAP area, we model the concept of Context as an ontology including
five categories of elements: Individuality, Activity, Time, Relations and Material.
Our contextual post-filtering approach couples a classic recommendation process
and a contextualization process where recommended queries returned by classic
RS are contextualized to obtain context-aware recommended queries. This allows
the system to recommend more relevant and context-aware recommendations.

As future work, we intend to perform experiments on real datasets and scale
them up. Some experiments will be perform on more or less obsolete datasets to
compare results and, obtain user feedbacks to compare the recommendation
quality. Our CARS should be applicable both to detailed as well as aggre-
gated data. Our system must be able to choose whether the query runs or
not on detailed data or on aggregates. In the same way, our system should
remove irrelevant aggregates and/or create new ones. Finally, other approaches
can be proposed to modeling and integrating context into CARSs, taking into
account for example, the multidimensional nature of context. Furthermore, we
hope that RSs will become more than context-aware RSs and perhaps even
context-driven RSs.

References

1. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26(1), 65–74 (1997)

2. Hammer, J., Garcia-Molina, H., Widom, J., Labio, W., Zhuge, Y.: The stanford
data warehousing project. IEEE Data Eng. Bull. 18(2), 41–48 (1995)

4 The questionnaire (in French) is available online: http://www.lamsade.dauphine.fr/
∼negre/questionnaire.html.

3. Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. DMKD 1(1), 29–53 (1997)

4. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP multi-
dimensional networks. In: SIGMOD 2011, New York. ACM, pp. 853–864 (2011)

5. Bobadilla, J., Ortega, F., Hernando, A., GutiéRrez, A.: Recommender systems
survey. Knowl.-Based Syst. 46, 109–132 (2013)

6. Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Flexrecs: expressing and combining
flexible recommendations. In: SIGMOD 2009, New York, pp. 745–758. ACM (2009)

7. Bimonte, S., Negre, E.: Evaluation of user satisfaction with OLAP recommender
systems: an application to recoolap on a agricultural energetic consumption
datawarehouse. IJBIS 21(1), 117–136 (2016)

8. Ravat, F., Teste, O.: Personalization and OLAP databases. In: New Trends in Data
Warehousing and Data Analysis, pp. 1–22 (2009)

9. Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: an approach to express and evaluate
OLAP preferences. IEEE Trans. Knowl. Data Eng. 23(7), 1050–1064 (2011)

10. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: VLDB, pp.
307–316(2000)

11. Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recommendations for
OLAP discovery-driven analysis. IJDWM 7(2), 1–25 (2011)

12. Negre, E.: Information and Recommender Systems. Advances in Information Sys-
tems Set. WILEY-ISTE (2015)

13. Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7
(2001)

14. Strang, T., Popien, C.L.: A context modeling survey. In: UbiComp, Nottingham,
pp. 31–41, September 2004

15. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-
oriented survey of context models. SIGMOD Rec. 36(4), 19–26 (2007)

16. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp.
217–253. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-
3 7

17. Panniello, U., Gorgoglione, M.: Context-aware recommender systems: a comparison
of three approaches. In: CEUR Workshop Proceedings, vol. 771 (2011)

18. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context.
In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CON-
TEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74255-5 42

19. Negre, E.: Pertinent context information for OLAP applications. In: KMIKS 2017
(2017)

20. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing appli-
cations: models and approach. Pervasive Mob. Comput. 2(1), 37–64 (2006)

21. Soualah Alila, F.: CAMLearn: a context-aware mobile learning recommender sys-
tem. Application to M-Learning Domain. Ph.D. thesis, Dijon, France (2015)

22. Giacometti, A., Marcel, P., Negre, E.: Recommending multidimensional queries.
In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol.
5691, pp. 453–466. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03730-6 36

23. Röhm, U., Böhm, K., Schek, H.J., Schuldt, H.: Fas: A freshness-sensitive coordina-
tion middleware for a cluster of olap components. In: VLDB, pp. 754–765 (2002)

