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Abstract: Due to its all time capability, synthetic aperture radar (SAR) remote sensing plays an
important role in Earth observation. The ability to interpret the data is limited, even for experts, as the
human eye is not familiar to the impact of distance-dependent imaging, signal intensities detected
in the radar spectrum as well as image characteristics related to speckle or steps of post-processing.
This paper is concerned with machine learning for SAR-to-optical image-to-image translation in
order to support the interpretation and analysis of original data. A conditional adversarial network
is adopted and optimized in order to generate alternative SAR image representations based on the
combination of SAR images (starting point) and optical images (reference) for training. Following this
strategy, the focus is set on the value of empirical knowledge for initialization, the impact of results
on follow-up applications, and the discussion of opportunities/drawbacks related to this application
of deep learning. Case study results are shown for high resolution (SAR: TerraSAR-X, optical:
ALOS PRISM) and low resolution (Sentinel-1 and -2) data. The properties of the alternative image
representation are evaluated based on feedback from experts in SAR remote sensing and the impact
on road extraction as an example for follow-up applications. The results provide the basis to explain
fundamental limitations affecting the SAR-to-optical image translation idea but also indicate benefits
from alternative SAR image representations.

Keywords: synthetic aperture radar (SAR); deep learning; interpretation;
generative adversarial networks

1. Introduction

Synthetic aperture radar (SAR) sensors constitute an important source of information in Earth
observation as they allow planning data takes in a reliable manner. The possibility to acquire calibrated
signals from a satellite platform and the absence of restrictions related to atmospheric conditions
provides important opportunities in the context of, e.g., scene monitoring, situation documentation,
or change detection tasks. However, interpreting details in SAR images is a challenging task and
pushes experts to their limits. First, SAR imagery inherently contains geometric distortions due to
distance dependence along the range axis and signatures related to radar signal wavelengths (mm to
cm). In contrast, the human eye is familiar with perspective projections and signals in the visible part of
the electromagnetic spectrum. Second, prominent signatures are opportunistic, sparse and often do not
correspond to physically existing structures due to signal multiple reflections [1]. Finally, the coherent
summation of signal responses from individual scatterers in resolution cells leads to strong intensity
fluctuation for surfaces, referred to as the speckle effect (see [2]), e.g., for agricultural fields. Thus,
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distinguishing structural information in SAR images is difficult, which does not necessarily ease with
an increase of spatial resolution.

In consideration of the above points, it can be expected that users of SAR data may wish to
use additional means on occasion to facilitate the interpretation of SAR images. This paper follows
this idea and investigates the potential of generative deep learning models in the context of SAR
image interpretation and the impact of data initialization. The main objective is to find out whether
SAR-to-optical image translation is feasible in a well-generalizing manner given the current network
architectures and available training data (moderate and high resolution optical and SAR images).
SAR images are translated into near-optical representations which is motivated by the familiarity
of the human eye to such representations, access to appropriate data sets for training, and possible
advantages for follow-up techniques for fusing complementary SAR and optical data.

The authors are aware that there are fundamental limits that cannot be compensated.
First, an exhaustive learning of the transition from a single channel SAR image to a multi-channel
optical image is expected to be an ill-posed problem, as is the colorization of gray-scale images in
classical computer vision [3]. The difficulty of the task is increased by the variability of surface
characteristics such as surface standard deviation and correlation length, permittivity, or chemical
composition, which contribute to specific wavelength- and temperature-dependent signal responses.
Finally, SAR and optical data are acquired with different imaging concepts. Optical data follow
perspective projections or push-broom imaging configurations. In contrast, SAR data are acquired
with stop-and-go acquisitions along the flight path of the sensor. An example for the difference
between SAR and optical images for a scene with buildings, forest and fields is shown in Figure 1.
It can be seen that the SAR image emphasizes physical properties of surfaces whereas the optical
image provides more structural details. Radar signals are detected with varying spatial distance and
post-processed (referred to as SAR focusing) in order to increase the spatial resolution of the images.
A compensation of range-dependent image distortion requires prior knowledge about the geometry
of scenes, e.g., based on digital surface models [4]. However, this information is not available in the
default SAR-to-optical translation task.

Figure 1. Comparison between acquired SAR (left) and optical (right) images.

Thus, in contrast to related work on SAR-to-optical image-to-image translation (see Section 2),
we hypothesize that it is not possible to go the full path from SAR to actual optical data, and that
the translation will always end up at a certain point in between. This paper addresses one possible
destination point, using an adapted conditional generative adversarial network, taking domain-specific
potentials and peculiarities into specific consideration. The discipline of conditional adversarial
networks (cGANs) offers promising strategies for generating artificial images and has already
successfully been adapted to tasks in multi-sensor remote sensing, e.g., [5–7]. Considering the
current state-of-the-art, this paper investigates the utilization of an adapted version of the CycleGAN
architecture [8] for the SAR-to-optical image translation task and the value of domain knowledge
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(e.g., initialization, sensor/image characteristics) for improving results. In the context of a case
study, benefits and limitations of the SAR image translation method are addressed. Moreover,
translation results are evaluated in terms of interpretation support (simplified understanding of
original SAR images), despeckling capabilities, feature extraction (example: road detection) compared
to state-of-the-art methods as well as the combination of features and context.

The document is structured as follows. Section 2 summarizes related literature and explains the
relevance of the reported work. Thereafter, important aspects of interest are introduced in Section 3.
The method for image translation is introduced in Section 4, which is followed by the presentation of
results for a case study in Section 5. The last part of the paper is focused on evaluating and discussing
the image translation results (Section 6). Finally, the conclusion and an outlook to future work are
given in Section 7.

2. Related Work

Different strategies for deep learning-based data analysis have entered the field of remote
sensing [9]. In the context of SAR image despeckling, the use of convolutional neural networks
(CNNs) has already been studied successfully [10]. In the proposed algorithm, which uses a residual
net [11], results are comparable to state-of-the-art strategies such as BM3D [12] and NL-SAR [13].
Beyond despeckling, researchers have started to investigate the use of conditional generative
adversarial networks (cGANs) for image-to-image translation. As an example, a U-Net architecture
extended by spatial Gram matrices computation is used in [14] to enhance the quality of SAR imagery
by translating low resolution Sentinel 1 images to high-resolution images similar to Terra-SAR-X
data. The spatial Gram matrices produced a better distributed content, with similarities to the real
TerraSAR-X patches, but it also generated many fictional elements. In [7], the potential of the translation
of SAR into optical images for easing the process of multi-sensor image matching was evaluated based
on the well-established pix2pix architecture [15]. The experimental results showed a good performance
of the network even without a priori known features. In a similar manner, [5] demonstrated how this
form of image-to-image translation can help to ease the coregistration of SAR and optical images for
an improvement of the geolocation of optical data. Although the training was experienced to be quite
expensive, and although it remains difficult to evaluate artificial, GAN-generated images by standard
metrics, visual inspection and comparison to standard similarity measures such as NCC, BRISK and
SIFT show the great potential of this approach.

Adding to these pioneering studies, the SAR-GAN network [16] was proposed to translate SAR
to optical images to solve the despeckling task and to add color information to the input SAR image.
After training the network with samples from Google Maps and generated SAR patches, despeckling
performance is comparable to the one achieved when using pix2pix. A similar case is reported in [17],
where additional layers that are manually labeled for segmentation (i.e., urban, forest) are added,
allowing the system to work with a smaller data set but more discriminative features. Multitemporal
SAR imagery can be also beneficial to remove the speckle effect as shown in [18], where a deep
residual network is compared with pix2pix. It also shows the advantage of using cGANs with
respect to a traditional CNN. Another case of dedicated SAR-optical CNN architecture employing
a pseudo-siamese structure is described in [19]. The proposed network aims at the matching of
corresponding image patches. As this study showed, the size of the patches played an important role,
with larger patch sizes providing better results. A further study based on this architecture feeds the
network with hard negative samples [20], where an additional network stage increases the data set
and supports the identification of incorrect results. In a second stage, the pseudo-siamese network is
applied for the matching of the SAR and optical patches. Also, the recently published SEN1-2 data set
has been used for some preliminary experiments regarding SAR-optical image matching, SAR image
colorization, and SAR-to-optical image-to-image translation [21].

cGANS have been also applied for filling gaps in optical images. In the case of [6], an architecture
based on pix2pix replaces regions covered by clouds. Similarly, a cGAN for cloud removal in
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multispectral imagery exploiting SAR data as auxiliary information in a fusion manner is described
in [22].

All these initial results confirm the potential of cGANs in multi-sensor remote sensing tasks.
They are able to reduce the speckle effect, produce smooth textures, fill missing content and represent
a feasible direction towards sensor fusion. On the downside, training cGANS is usually difficult
due to the computational costs and the visual quality evaluation (objective metrics are not available
for stylization tasks). Similarly, the stylization might lead to the loss of relevant image contents and
location accuracy, as a result of possible geometric changes. Furthermore, all the mentioned example
cases make use of supervised learning, thus requiring large databases of paired imagery. Since this is
often difficult to achieve, especially in multi-sensor scenarios, we additionally propose to make use of
unsupervised cGAN architectures. Despite some of the expected limitations for the described approach,
we want to focus on the possibilities to achieve a high quality representation in the generated images.
Hence, we apply different strategies to improve the interpretation of the images while preserving most
of the original informative content. Changes in the implementation will be applied to aim for a better
result and set an acceptable baseline, comparable to other state of the art approaches.

3. Aspects of Interest

This section summarizes the most relevant aspects addressed by this work. On the one hand,
we intend to identify and adapt the most suitable conditional adversarial network for our task.
On the other hand, we intend to investigate different aspects in the context of the SAR-to-optical
image-to-image translation task:

• Dynamic range of signal intensity, speckle statistics: SAR images are characterized by the strong
variability of signal intensity. Hence, an important question to address is how to handle the high
dynamic range of SAR image intensities and the presence of speckle.

• Freedom/fiction: In contrast to hand-crafted operators for image processing, deep learning-based
approaches are difficult to steer. This opens ways to alternative and creative data representations
but also to fiction. In terms of data interpretation, the impact is different when looking at full
images or local details. Accordingly, it is important to classify the impact of fiction.

• Geometry: Areas considered for image translation are characterized by a variable mix of land
cover types, e.g., urban, forests, fields, settlements. It is expected that the quality of translation
results will not be equal but vary, too.

• Spatial resolution: Case studies should be conducted for variable spatial resolutions in order to
see resulting effects at structural details (e.g., smoothing) and larger scales (e.g., speckle handling).

• Training: Compared to many machine learning tasks, the amount of accessible training data is
limited. Accordingly, it is important to try different training strategies for the translation task.

• Human perception: We follow the idea that cGAN-based approaches can support the
interpretation of original SAR images by adding a complementary, artificially generated image.
In this context, the focus is on human perception and the transition of speckled image parts.

• Follow-up applications: Besides visual perception, the properties of cGAN-based results in terms
of follow-up applications have to be described. In this work, we have chosen road extraction as
use case scenario.

4. Image-to-Image Translation Strategy

4.1. The CycleGAN Architecture

One can find different alternatives in the literature for tackling image-to-image translation tasks.
cGANs are a suitable option due to their properties to generate images based on two references, one for
content and one for style. Since SAR is geometrically accurate, we use the rich content information
provided but use a stylizing from the optical side, where humans can deduct easier the elements
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shown in the image. Due to its capability to work with spatially uncoupled image pairs, we choose the
CycleGAN [8] for the investigations in this paper.

The selected architecture follows the cGAN principle [23], where two adversarial models are
trained simultaneously. On the one hand, the generator (G) aims to produce realistic samples similar to
the ones belonging to the original data set (x). On the other hand, the discriminator (D) has to decide
whether images belong to x or were obtained from G. G aims to minimize log(1− D(G(z))), while D
does it for logD(x). Unlike the GAN principle, where the generator is not conditioned, an image
is given as extra information (y) combined with prior input noise pz(z), i.e., images are generated
based on conditions imposed by the input. The overall training process aims at optimizing the value
function V(G, D):

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x|y)] +Ez∼pz(z)[log(1− D(G(z|y)))] (1)

cGANs have been implemented for different tasks, showing a robust design and implementing
optimization techniques. They are based on convolutional layers, which reduce the number
of parameters in comparison to fully connected (FC) layers. Beyond, residual networks [11],
batch normalization [24], instance normalization [25], Adam optimization [26] and initialization
algorithms such as Xavier [27] are among the included improvements.

One of the most prominent cGANs is called pix2pix [15]. It uses a U-Net architecture in a 16
layer design for translation. Complementary image pairs with common structural information are
required as input, which implies a supervised learning process. Pix2pix considers two loss functions
for training, LcGAN (which is the conditional adversarial loss, [23]) and LL1 (which uses the L1-norm
to compare with the objective images). The balance of both weights influences the creation of artifacts
and blurriness of the generated images. This design has been already applied in remote sensing [6].

The CycleGAN architecture is partially based on the pix2pix code but works with decoupled
image pairs as input, i.e., enabling unsupervised learning. Moreover, the translation is learned in two
directions, creating two generators and two discriminators. Hence, an image is processed through
both generators whose result is expected to be the same as the input (consistency). CycleGAN then
computes three losses, two for both GAN translations and one for the consistency. Since it does
not require supervised learning, it assumes there is an underlying relation capable of being learned
between the domains. It exploits what is called “cycle consistency”, where if there is a translator
G : X → Y and a second translator F : Y → X, then G and F are inverses of each other and have
a bijective mapping. Thence, a consistency loss is added to favor F(G(x)) ≈ x and G(F(y)) ≈ y,
apart from the two adversarial losses [28] needed for both learning processes.

Therefore, the full objective is expressed in terms of the generator G, the discriminator D, and the
domains X and Y as:

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + λLcyc(G, F) (2)

where λ helps to control the weight given to each objective. The architecture of the network, which is
shown in Figure 2 is based on the design described in [29] and the discriminator from [15].

A set of training processes was conducted to observe results for each network by using default
conditions and a few modifications of the hyperparameters when the generated images were promising.
Since CycleGAN is able to handle paired and unpaired data to feed the training process, we compared
the results obtained by changing only this hyperparameter in both cases. Unsupervised learning
(unpaired data) reached the same quality level as the supervised one, indicating the robustness of the
CycleGAN architecture.
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Figure 2. Architecture of CycleGAN.

In Figure 2, we can observe the internal architecture of CycleGAN as a representative example for
a solution based on deep learning. Downsampling steps are applied in the first layers, followed by a
set of residual network blocks and an upsampling process at the end to restore the image to its original
size. Dimensions for the intermediate blocks are based on the original paper dataset, but changes in
the input data resolutions might lead to different values. Convolutions between the blocks remain
with the same specifications, although the names for the intermediate labels might not match with
the dimensions.

4.2. Optimization Steps

Section 4.1 has introduced the general idea of image translation with alternative networks.
However, it is not reasonable to perform SAR image translation with default cGAN networks,
since these were designed for different purposes. Moreover, the SAR data have to be prepared
as input to the network environment. Starting with basic CycleGAN, several steps of optimization
have been conducted to improve the results of SAR image translation.

According to [30], the fine tuning of parameters offers strong opportunities in terms of
optimization. However, it would require a huge computational power to reach the respective
hyperparameters. Hence, we take into account the tuning of some of them in order to outperform
the default conditions. We tuned the leaning rate up to 0.0005, while reducing the number of epochs
to 80. We wanted to reduce the training times and preserve a similar performance at the end of the
process by increasing the learning rate. The input/output number of channels was set to 1, since both
domains are panchromatic, and additional colors can not be learned. An initialization algorithm for the
weights reduces the possibility of collapsed and vanished parameters in parts of the training process,
we used the implemented Xavier algorithm [27] and the learning mode (which means supervised and
unsupervised frameworks) was also analyzed. As both provided a result similar in terms of quality,
we stayed with the unsupervised one as it is a remarkable feature of the architecture.

Furthermore, the size of the patches plays an important role. By evaluating different sizes,
we observed better results in the 512 × 512 patches than the smaller resolutions. The larger the
size, the more appealing was the grayscale distribution. However, larger patches also increase the
computation time and represent a challenge to the capabilities of the network that was trained with
patches up to 512 × 512 pixels size in [8]. The whole image cannot be processed with the current
architecture and if we try to reconstruct the original image from the patches, radiometric differences
are significant at the boundaries, since the distribution of the grayscale is computed independently
per patch. Increasing the patch size shifts this to a larger scale but does not change the nature of the
patch-based approach. We found a good compromise between calculation time and image quality by
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using a patch size of 512 × 512. This size is also suitable as it fully covers many elements such as roads,
lakes, forests and large man made structures, providing more context than smaller resolutions.

Modifying the internal architecture of CycleGAN has an effect on the level of detail of the
generated images. Several residual layers [11] is added and compared to the shorter versions until the
improvements are not noticeable. More of these layers do not damage the performance but increase
substantially the number of parameters and might lead to overfitting. The implemented model
consisted of 12 residual blocks (3 additional blocks more than the default case), where a better level of
detail is achieved in the generated images, showing that capabilities also for urban patches, that include
more information in small sections. Additionally, a 15 layers model was used for comparison, but not
significant changes were observed. Hence, no more layers were implemented to avoid overfitting.

We also adapt the intensity values of the images as input for the training process. Optical and SAR
imagery have a different nature in terms of radiometry, the original SAR intensities are not suitable
as input for the network. Due to the measurement process, most of values captured by SAR are low,
while having few outliers in extremely high numbers. This produces images where black regions
dominate and just a few points/lines are distinguishable in white. Many significant values are packed
into the lowest values of intensity. To adapt this, we use intensity clipping, apply a logarithmic scaling
of SAR image intensity in order to derive near-Gaussian distributions and normalize the intensity of
the patches belonging to a same image.

In terms of optimizing the appearance of translated SAR images, we aim for different properties.
First, we intend to reduce the speckle effect in the images. We expect the architecture to be
able to learn the distribution of speckle and set the hyperparameters that achieve a good output
quality. Simultaneously, we plan to generate smooth textures for extended homogeneous areas with
little content.

One of the most difficult aspects to control in GANs is the creation of objects that follow the
style of the desired domain but do not represent properly the ones described in the content image,
producing fiction. This might create elements such as houses, roads, forests, etc., in regions where
these do not really exist, misleading the interpretation of the users. To reduce this effect, changes in
the input data set showed a positive outcome. The pre-processing steps already described improved
the images in terms of fiction presence. While the logarithmic adjust applied reduced significantly
the fiction, the normalization (by taking the whole image before the pre-processing) vanished most of
it. Since this scale had a good performance to identify individual objects (avoiding merged regions),
less additional content was produced.

Nonetheless, we also attempt to preserve the main geometric features such as roads, coastal lines
or change in crop fields sections. Some boundaries and edges are preferred to stay sharp to define
clearly individual objects or significant changes on the ground. As described before, the residual layers
added to the architecture help to improve the level of detail. Sharper edges (even for urban areas) and
isolation of individual objects were obtained with the additional three layers.

Lastly, it is important to preserve an adequate gray-scale depending on the region (like black
for water bodies). Although the choice of gray level of the elements is learned up to a certain limit,
we expect some consistency for the real appearance of the objects, like dark colors for water bodies or
filling of buildings if the walls are measured. Changes in the input data set facilitate the learning of this
property in the network. Steps applied to the input data set (mainly the logarithmic scale transform for
SAR) made distinguishable bright objects and generated a better contrast. Logarithmically scaled areas
with speckle may represent a source of noise in the generated images. However, such an effect was not
observed in the derived images. Two reasons contribute to this finding. Firstly, the additional clipping
process reduces significantly the influence of outliers and, secondly, the difficulty for the mapping
between the two domains is simplified as a result of having normal distributions for both optical and
SAR data.
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5. Case Study

5.1. Data for Case Study

The optical imagery used for our test study was obtained from the ALOS PRISM satellite with
a spatial resolution of 2.5 m. Overall we utilized 46 images from 13 European cities spread over
7 countries, more specifically from Poland (Kalisz, Rzeszow), England (Bristol, Leeds, Lincoln, London,
Portsmouth, Wirral), Germany (Bonn), Portugal (Aveiro), Ireland (Dublin), France (Le Havre) and
Bulgaria (Stara Zagora). Complementary to that, SAR imagery was derived from the high resolution
sensor TerraSAR-X satellite (see [31] for mission details), captured in stripmap mode. The original
spatial resolution of the data is 1.25 m. For the case study, the data was up-sampled to 2.5 m to match
the optical data. A brief summary of both data sets can be found in Table 1. All optical and SAR image
pairs were aligned in the Urban Atlas project [32] manually and have an overall alignment error of
around 3 m. In the following we will refer to this data set as the Urban Atlas data set.

Table 1. Specifications for the optical and SAR acquisition.

Imagery Urban Atlas SEN1-2

Optical
Satellite ALOS PRISM

2.5 m resolution

Satellite Sentinel 2
RGB bands

<1% cloud coverage

SAR
Satellite TerraSAR-X

stripmap mode
1.25 m resolution

Satellite Sentinel 1
Vertically polarized

5 m azimuth
20 m range

A total of 7437 patches with a size of 512× 512 pixels were used for training and 1005 for testing.
Test and training sets do not share patches and the original files are separated for the sets as explained
in Table 2, where the distribution of the 46 files is described regarding the belonging set. The overlap
between adjacent patches was 50% to have the maximum number of relatively independent ones.
The long available database also helps to reduce any possible overfitting of the network by providing
many features in the samples to be learned.

Table 2. Image distribution in data set.

Set Cities (Files per Site, 46 in Total)

Training Aveiro (2), Bonn (2), Bristol (4), Dublin (2), Kalisz (11), Leeds (3), Le Havre (2), Lincoln (4), London (7)

Development London (2), Portsmouth (2)

Test Rzeszow (3), Stara Zagora (1), Wirral (1)

The optical and SAR image patches are spatially aligned to allow both supervised and
unsupervised training (spatially corresponding or independent patch pairs). The spatial resolution
of the image data is suitable to distinguish individual buildings and to identify boundaries between
man-made structures such as bridges or roads. The image data cover urban, semi-urban and rural
areas as well as natural sections such as forests or lakes. Semi-urban regions are interesting in terms of
object densities and open fields in terms of surface homogeneity. All kinds of land cover were used for
training and testing.

An additional data set is used to analyze the performance of image transition on a different
resolution level. The SEN1-2 data set is an open access source generated at Technical University of
Munich (TUM) [21]. SAR patches are obtained from Sentinel-1 in a vertically polarized (VV) mode with
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a pixel spacing of 5m in azimuth and 20m in range direction. The optical counterpart was captured by
the Sentinel 2 satellite in the RGB bands with less than 1% of cloud coverage as additional selection
criterion (see Table 1 for summary).

5.2. Study Set Up

Due to the long training time required by CycleGAN, the number of epochs was reduced from 200
to 80. The comparison of supervised and unsupervised training showed a similar performance. Hence,
the results were actually generated under the unsupervised framework, considering the intended
flexibility in terms of possible future applications (independent image pairs). The training is conducted
with 7437 patch pairs without spatial correspondence. Input and output are set to only 1 channel.
The initialization of the parameters is obtained by the Xavier algorithm.

A problem in the colorization was caused by the wide range of SAR image intensities. As a strategy
to reduce the impact of intensity outliers, the SAR pixel values are transformed to a logarithmic scale.
Thereafter, the lower and upper 2% of intensities are assigned with the minimum and maximum value
(clipped to limits). As a result, an adapted intensity distribution similar to a Gaussian function is
derived, which represents an expedient balance between low and high pixel values.

About the size of the patches, these are cropped from the original images into 512 × 512 pixels
size. The size can be handled by the CycleGAN network and its size covers large regions such as
forests, roads, lakes, etc. An overlap of 50% between neighbouring patches was applied.

The trainings were conducted in a CPU included 4 Intel Core 2 Quad CPU Q9450 processors at
2.66 GHz running Ubuntu 16.04. Two GPU models were also used: the NVIDIA GeForce GTX Titan X
with 12 GB GDDR5, 7 Gbps memory speed and 1075 MHz clock, and the NVIDIA Titan X with 12 GB
G5X buffer. 10 Gbps memory speed and 1531 MHz clock. According to the specific setup, training
times varied between 10 and 15 days, depending on the number of layers trained. For the case shown
in the results, 12 days were needed for computation.

5.3. Results and Comparison

The following results are obtained based on the test patches from the Urban Atlas data set.
In Figure 3, we show samples for urban, semi-urban and rural areas generated with the CycleGAN set
up described in Section 5.2.

From the obtained patches, we can observe that the SAR images are actually translated
into a new domain with features similar to the optical references (sharpness, smoothness,
color distribution). Prominent geometric characteristics related to roads, crop fields, man made
structures, significant scatterers, etc. are preserved while the granular nature of speckle is eliminated.
As examples, this is distinguishable in the first and fourth row on the left of Figure 3 for areas including
fields, inhabited regions and a main road. Looking into the details, it can be seen that number of
houses changes. Many buildings are mapped into individual blocks as intended but some are merged,
others erased and a few more are generated because of the context, but do not represent a building in
the real scene (fiction).
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Figure 3. Results obtained from the applied network, organized in two blocks. Left: original SAR file,
center: images generated with adapted CycleGAN, right: optical image.

In terms of speckle reduction, the performance is better for rural and semi-urban areas, where few
man made artifacts are located and the density of the objects is lower. It also works for urban sections
although dense areas suffer from content vanishing (see Figure 3, right column, last two rows) due to
smoothing and the impact of speckle on the object appearance. This might also create fiction content in
the new patches where the presence of speckle is interpreted as a small scatterer like in 1st column,
4th row in Figure 3 where houses are hallucinated by the generator.

Compared to its optical partner, a SAR image contains less structural details and information
from a different part of the electromagnetic spectrum, which automatically leads to further limits of
image translation. As seen in Figure 3, the inversion of colors in extended areas or water bodies could
not be learned. Additionally, the separation of adjacent crop fields is an easy to detect feature in optical
imagery but remains not observable in the CycleGAN results, where only some gradients between
adjacent fields are present.

In order to derive a better orientation, we compare the CycleGAN results with results generated
by a network based on the DRIT [33] architecture and an NL-SAR [13] implementation [34]. Figure 4
presents the results for visual inspection. Compared with DRIT results, we see a similar image
characteristics. The distribution of gray values is better for CycleGAN results whereas DRIT produces
too many bright blobs. Dense urban areas are favored by DRIT where more individual elements
are still distinguishable and less fiction is created. On the contrary, DRIT generates more fiction in
semi-urban and rural areas than CycleGAN.

Differences are apparent when comparing the network results with the images generated with
the NL-SAR algorithm. In this case, almost all the structural information from the SAR images is
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preserved, as well as the most dominant scatterers. Keeping more geometric details is appreciated.
However, the interpretability of the generated images does not necessarily improve. The NL-SAR
algorithm has no freedom to create image content/context and partly introduces disturbing patterns
where the networks favor smooth surfaces.

Advantages of the CycleGAN results include the preservation of the main roads and their mostly
sharp edges. Connections between roads are translated as well. Also, crop fields are still distinguishable
although the gray values might not be similar to the one optical reference. Individual houses are
created in a desirable way, having clusters of them in the expected regions, while the number of them
often does not correspond to the original SAR image. The main difficulty seems to arise in dense urban
regions where buildings have a blurry appearance while the despeckling filters are still effective. Large
buildings are also not completely recovered. Walls can be identified, but rooftops and elements around
cannot be identified as part of the same structure in many cases.

Figure 4. Results from the CycleGAN network compared to other approaches. First column:
original SAR image, second: CycleGAN result, third: DRIT result, fourth: NL-SAR result [34], last:
optical image.
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Besides to the visible aspects discussed above, there is an interesting aspect that should be taken
into account. According to the findings published in [35], CycleGAN might not be learning all the
information required to reconstruct the images but hide part of it in the higher frequencies of the
image. This produces variations between adjacent pixels that are indistinguishable to the naked eye but
mimic slightly rough surfaces (instead of the smooth desired result). If we amplify regions assumed to
have uniform color, a significant variation is observed. In [35], an adaptive histogram equalization is
applied to enhance this variation. In this way, the added high frequency components can be detected if
compared to the ground truth. Moreover, since the images are translated by using information in low
frequencies, it might be the reason to get rid off part of the speckle effect. Additionally, the distribution
of the speckle has an effect on the generated image where experiments with artificial added noise
in [35] showed a significant change in the reconstruction. While the generated images are definitely
easier for interpretation, the translation method may have a lack of robustness to incorporated noise.

The image translation results for the SEN1-2 data set [21] are shown in Figure 5. These images
were only generated to observe the performance of the learned features in a different dataset.
Although the interpretability can be mislead due to the big amount of fiction (in comparison to
the high-resolution data set), the despeckling performance is convincing again. Interesting effects to
observe are the creation of urban elements where a forest is expected (see first row). In the second raw,
prominent geometric features are again generated, but the content is almost empty. Dense urban areas
are simplified and only a few structures are being produced. The last row has more semantic meaning,
roads, semi urban regions and crop fields are translated. It is still far from the optical reference.

Figure 5. Results from the generator applied to the SEN1-2 data set. Left are the original SAR patches,
the middle column shows the generated images by the network and the right are the optical references.



Remote Sens. 2019, 11, 2067 13 of 19

It is also important to mention that patches are not only obtained from a different data set, but also
another patch size, which might have an influence in the presented results. An additional training
process for the network with patches from the same dataset would be required to generate better
quality results, although the locations in SEN1-2 have larger variations in content. This leads to
different descriptions for man-made structures like houses, bridges, roads and also for elements in
nature such as the types of vegetation. While the training might produce a more general model to
adapt to different locations, a larger database is needed to handle and learn the variety of elements
present in the scenes.

6. Inspection of CycleGAN Results

6.1. Support of Interpretation

There are currently no suitable metrics to evaluate the result in terms of interpretability.
Nonetheless, visual inspection provides feedback about the achieved performance of the neural
networks in comparison with other approaches. Therefore, we conducted a survey with 12 experts
from German Aerospace Center (DLR; members from: Earth Observation Center, Microwaves and
Radar Institute) and TU Munich (Signal Processing in Earth Observation group) in order to evaluate
the quality of the image translation process. In the survey, participants were presented with 20 samples,
where each sample consisted of five image patches: the original SAR image, the corresponding optical
image and the three generated images from CycleGAN, DRIT and NL-SAR. The positions of the
five images within one sample were random to avoid a bias on the decision. We asked SAR experts
and people outside the field of study, which of the generated images they preferred to have a better
understanding/interpretation of the original SAR image. The provided samples included urban,
semi-urban, rural and nature scenarios to analyze the differences in the obtained content. Samples are
generated from the 1005 patches taken for the test set. Altogether, 320 votes were collected with the
following result: the CycleGAN-based image was preferred in 177 cases (55.45%), DRIT-based on
86 (26.95%), NL-SAR-based on 54 (16.92%) and two samples were without decision. Regarding the
field of expertise of the surveyed people, we separate the group into three categories: SAR experts,
optical imagery experts and those who work with both sources. While the CycleGAN was preferred
by the three groups individually, the SAR experts selected the NL-SAR result for second place.

It can be said that the CycleGAN-based serves the interpretation of SAR images best while
NL-SAR works better for the single task of despeckling. Neural networks in both cases (CycleGAN
and DRIT) help to support the human perception in comparison to the original SAR images. Results of
both architectures are similar in terms of style (compare Figure 4) but show variations in the gray level
distribution, object separability, and the impact of fiction. Details are described better in the NL-SAR
case which removes the speckle effect on the images more effectively. However, NL-SAR does not add
contextual information to understand the scene topic. As a result, experts preferred CycleGAN areas
with weak context (rural, semi-urban, nature) while NL-SAR prevailed in urban areas where structural
information is strong in the SAR image.

6.2. Extraction of Features

To study the object aspect consistency in images translated from SAR to optical imagery with our
CycleGAN, we trained a state-of-the-art Fully-Convolutional neural Network (FCN), DeepLabv3+ [36],
on the road extraction data set from [37]. This data set contains two SAR images captured by the
TerraSAR-X satellite over the countryside the city of Lincoln, England, at a ground sampling distance of
1 m/px. The training image has a size of 16384× 12288 px and the test image a size of 4096× 12288 px.
The binary ground truth contains pixel-wise road labels, composed of variable-thickness lines laid
over highways, country roads, and dirt paths, as visible in Figure 6 (green and blue pixels together
compose the ground truth labels). We processed the original SAR images with a non-local filter on the
one hand (SAR-NL), and with our CycleGAN on the other hand. We evaluated the road candidate
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extraction using the Intersection over Union (IoU), precision and recall as is common practice in the
remote sensing community:

IoU(y, p) = ∑N
i yi pi

∑N
i (yi + pi − yi pi)

(3)

Precision(y, p) = ∑N
i yi pi

∑N
i pi

(4)

Recall(y, p) = ∑N
i yi pi

∑N
i yi

(5)

where yi ∈ {0, 1} is the binary label for pixel i, 1 for roads and 0 for background, and pi ∈ {0, 1} is the
road candidate probability thresholded at 0.5 for pixel i, and N is the total number of pixels. The final
performance after 50 training epochs is reported in Table 3.

Table 3. Test results of DeepLabv3+ trained for road segmentation on various image types.

Imagery IoU Precision Recall

CycleGAN 35.63% 61.63% 45.78%

NL-SAR 38.58% 63.24% 49.72%

SAR 40.45% 65.08% 51.66%

Figure 6 shows the prediction confusion for each data type over two regions of interest.
Green pixels are successfully extracted road pixels, while blue and red ones are undetected road
pixels and wrong road candidates respectively. All segmentation are satisfyingly complete, in that few
road segments were missed, and feature regular, continuous road lanes with smooth borders. Most of
the differences between SAR, NL-SAR and CycleGAN results come from missing and superfluous
segments, as well as connectivity issues at intersections. In CycleGAN images, shallow edges were
visibly smoothed out or even erased during the SAR to optical style transfer, making the road detection
more challenging. These observations confirm the findings in [37] that SAR imagery contains critical
information that less sharp imagery does not preserve, as is the case with NL filtering and our
method. The quantitative results show that training on CycleGAN images does not increase the raw
performance of a segmentation network, although the major part of the road objects were successfully
extracted. This means that the generated images retained enough of the features from the SAR images
so that the object semantics were preserved through the generative process.
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Figure 6. Binary road segmentation results of the DeepLabv3+ models trained on the SAR, NL-SAR
and CycleGAN image data sets separately. Rows 1 and 3: image samples. Rows 2 and 4:
segmentation confusion, colored as follows: green pixels are true positives, blue are false negatives,
and red are false positives.

6.3. Combination of Features and Context

Keeping in mind that FCNs perform better on original SAR imagery, we move back to the intention
of using the alternative SAR image representation for interpretation support. Our generated images
provide useful global context information to help identify ground objects from a human perception
perspective. Figure 7 illustrates this idea: road candidates extracted from the original SAR image are
superimposed on both the original SAR and CycleGAN-based SAR image representation in order
to combine semantic information with the texture context. It can be seen that the CycleGAN-based
image adds valuable visual cues (for instance, buildings appear more clearly on CycleGAN images
than on SAR) which ease the understanding of features in terms of context (road network in rural
scene). Fiction is present in the CycleGAN scene but does not affect the expression of the scene topic.
Radiometric changes at patch borders are distinguishable and appear to the patch-based concept of
CycleGAN. For discarding this issue the patch size could be extended to the full scene in order to
derive radiometric consistency for the CycleGAN result. The radiometric changes would be shifted to
the new patch borders, though, not discarding this drawback of CycleGAN.
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Figure 7. Overlay of the road candidates detected on SAR (marked yellow) over the SAR image (left)
and CycleGAN image (right).

7. Conclusions and Outlook

Looking at the results of the presented case study and evaluation results, cGANs, and
particularly CycleGAN, indicate promising potential towards image translation in remote sensing tasks,
specifically for the support of SAR image interpretation. CycleGAN takes advantage of the large data
sets acquired by satellite missions and works unsupervised which eases training for future experiments.

Results derived from CycleGAN varied significantly depending on the scene to be translated,
i.e., it was better for rural/semi-urban areas and worse for urban areas. Although the network
preserves independent crop field blocks, it faces difficulties to isolate buildings and walls in large
cities, where these can be blurred or merged into larger elements. Cases were only natural elements
are shown such as mountains or water bodies are well preserved with respect to boundaries but
the assigned gray values might lead to false conclusions. As with city areas, individual objects in
dense regions such as trees in forests are not always generated. Roads and plain man made structures
preserve their sharp edges in most cases but the thicker ones sometimes vanish. Notwithstanding,
the generated categories (houses, roads, trees) lead to comprehensible representations for the users,
allowing understanding of the type of objects located in the scenes. Altogether, CycleGAN unfolds its
advantages in the expression of context, not locally.

In terms of strategy optimization, the pre-processing of the data set showed to be valuable to
emphasize relevant features in the original data. Clipping removes high and low intensities and
helps emphasizing structural information and reducing the impact of fiction in the resulting images.
The level of detail and separability of objects were improved by implementing a deeper model of the
network, with the additional residual layers. Dense urban areas obtained a superior representation
under this model. About the hyperparameter tuning, it was useful in the first steps, where the speckle
effect and colorization were addressed. However, the recovery of structural information and large
elements required the other optimization strategies to be achieved.

One of the outstanding outcomes of the network was undoubtedly the despeckling of the imagery.
The architecture is able to learn the speckle distribution and suppresses its appearance in the generated
images. The quality obtained is comparable to other state of the art solutions, as shown with
NL-SAR [13], while adding valuable context information (patch topic). Nonetheless, it leads to
an excessive smoothing in some scenes and radiometric differences between adjacent patches, which
still needs to be better controlled. Experiments for evaluation showed that CycleGAN results ease
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interpretation and allow adding valuable background information to features extracted from original
SAR data (here: road network).

Future work will focus on the integration of new optimization algorithms, loss functions and
architectural designs. Apart from that, a more detailed explanation about the influence of numeric
transformations applied to the dataset has to be studied to have a better understanding of the
pre-processing steps.
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