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ABSTRACT:

Geo-referenced real-time vehicle and person tracking in aerial imagery has a variety of applications such as traffic and large-scale
event monitoring, disaster management, and also for input into predictive traffic and crowd models. However, object tracking in
aerial imagery is still an unsolved challenging problem due to the tiny size of the objects as well as different scales and the limited
temporal resolution of geo-referenced datasets. In this work, we propose a new approach based on Convolutional Neural Networks
(CNNs) to track multiple vehicles and people in aerial image sequences. As the large number of objects in aerial images can
exponentially increase the processing demands in multiple object tracking scenarios, the proposed approach utilizes the stack of
micro CNNs, where each micro CNN is responsible for a single-object tracking task. We call our approach Stack of Micro-Single-
Object-Tracking CNNs (SMSOT-CNN). More precisely, using a two-stream CNN, we extract a set of features from two consecutive
frames for each object, with the given location of the object in the previous frame. Then, we assign each MSOT-CNN the extracted
features of each object to predict the object location in the current frame. We train and validate the proposed approach on the vehicle
and person sets of the KIT AIS dataset of object tracking in aerial image sequences. Results indicate the accurate and time-efficient
tracking of multiple vehicles and people by the proposed approach.

1. INTRODUCTION

Multi-person and -vehicle tracking has several applications such
as large-scale event and traffic monitoring, disaster manage-
ment, and predictive traffic and crowd modeling. Tracking of
all vehicles and people in aerial imagery can provide valuable
information about the traffic and crowd situation on the ground
as aerial imagery allows capturing images of large areas in a
very short time. Object tracking in visual data, locating objects
of interest in sequences of video frames, is called Visual Object
Tracking (VOT). VOT has attracted many research works for a
long time and it is still an unsolved problem due to the existing
challenges such as cluttered background as well as considerable
variations in viewpoints, illuminations, and occlusion.

VOT methods can be categorized into single- and multiple-object
tracking (SOT and MOT) methods. While in SOT, we track a
single object throughout a given image sequence, in MOT, we
track multiple objects within the image sequence at the same
time. In ground imagery, for instance in the autonomous driv-
ing, MOT is a key element for an autonomous vehicle to plan
its path by tracking the trajectories of dynamic objects such as
people and vehicles. In recent years, the VOT methods based
on deep learning specifically Convolutional Neural Networks
(CNNs) (Girshick et al., 2014, Girshick, 2015, Ren et al., 2015,
Lin et al., 2017) have shown promising performances in MOT
scenarios (Wojke et al., 2017, Bewley et al., 2016). However,
most of these methods suffer from high computational costs and
slow processing, especially extracting features from each can-
didate object locations in every frame (El-Shafie et al., 2019).
The complexity increases exponentially by increasing the num-
ber of objects. In order to employ CNNs for VOT purposes,
one approach is to train CNNs as object versus background
classifiers in an online manner and apply them to a number of
sampled candidate regions, where the region with the highest
classification score is then selected as the most visually sim-

Figure 1. Sample frames from the vehicle and person tracking
sets of the KIT AIS dataset

ilar region (Nam, Han, 2016). As the classifier is trained on-
line on the object of interest, this approach could be slow de-
pending on the number of objects and the CNNs’ complexities.
The offline-training-based approaches however, are much faster
than the online-training-based ones. In these approaches, CNNs
are trained to regress to the new object positions by getting the
cropped area of the previous frame centering at the object and
the crop of the current frame as two inputs (Held et al., 2016).
The outputs of the CNNs are the bounding box positions of the
objects in the current frame.

The tracking approaches are also categorized into short- and
long-term tracking. In short-term tracking according to the defin-
ition provided by (Kristan et al., 2016), there is not re-detection
module meaning that the object is always present throughout
the sequence. In contrast, in the long-term tracking, partial oc-
clusion or disappearance does not stop the tracking method (Ben-
fold, Reid, 2011). In this category, methods can re-detect the
object after reappearance. The object detectors, including CNN-
based ones, could be used to re-detect the objects after their
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Figure 2. Overview of (a) GOTURN and (b) our proposed modification to GOTURN.

reappearance. For instance, GOTURN (Held et al., 2016) and
MDNet (Nam, Han, 2016) are short-term and KCF (Henriques
et al., 2014) is a long-term tracker. In addition, trackers can be
categorized into offline and online trackers (Luo et al., 2014).
While the online trackers only consider the current and previ-
ous frames, the offline ones make use of all frames including
the future ones.

In this work, we address geo-referenced real-time tracking of
multiple vehicles and people in aerial imagery. Specifically
speaking, we tackle the task of MOT in a short-term scenario
as our method does not include re-detection module. Object
tracking in aerial imagery introduces additional challenges such
as small size of the objects and the limited temporal resolu-
tion of geo-referenced datasets. Furthermore, due to their wider
field of view, the number of objects in aerial imagery is usually
large which can exponentially increase the processing demands
especially in the tracking of multiple objects. Taking all into
account, the aim of this work is to introduce an approach for
speeding up multi-object tracking while takes advantage of the
state-of-the-art performance of CNNs. Our approach utilizes
the stack of micro CNNs, where each micro CNN is respons-
ible for the tracking of a single object which we call it Stack
of Micro Single-Object-Tracking CNNs (SMSOT-CNNs). The
stacking mechanism not only allows the complexity to grow
linearly as the number of objects increases, but also facilitates
parallelism of the process. In our experiments, we focus on the
tracking of vehicles and people in various motion and crowd
density scenarios. As a base CNN for the SMSOT-CNNs, we
modify the GOTURN single-object tracking network (Held et
al., 2016). Figure 2 (b) represents the overview of the modified
GOTURN.

In ground imagery, the existence of large-scale and diverse track-
ing datasets such as the MOT17 dataset (Milan et al., 2016)
with 33,705 frames allows developing various methods based
on deep learning. However, in the aerial imagery domain, the

lack of large and diverse tracking datasets limited the develop-
ment of well-performing object tracking methods. In this work,
we use the KIT AIS dataset1 in our experiments. This dataset
comprises a vehicle tracking set with 229 frames and a per-
son tracking set with 190 frames where their frame rates vary
around 2 Hz. Figure 1 shows example frames of the KIT AIS
dataset. The images are provided by the German Aerospace
Center (DLR) using the 3K camera system composed of three
standard DSLR cameras (a nadir-looking and two side-looking
cameras) mounted on an airborne platform. Due to the differ-
ent flight altitudes and the camera configurations, the images
are with different ground sampling distances (12–15 cm) and
viewing angles.

In the following, Section 2 provides a brief overview of a num-
ber of existing VOT methods. Section 3 describes the proposed
SMSOT-CNNs approach. Section 4 explains the experimental
setup and discusses the results. Section 5 concludes the paper.

2. RELATED WORKS

Kalman and Particle filtering have been widely used in single
object tracking. The approaches based upon Kalman filtering
consider both the speed and position of motion resulting in ac-
curate object tracking (Cuevas et al., 2005, Okuma et al., 2004).

(Bochinski et al., 2017) proposed a simple tracking approach
based on computing Intersection-over-Union (IoU) in matching
an object in consecutive frames by overlapping the frames. As
is uses the position information, it works on very high speed,
however, sacrificing the accuracy particularly in complex ob-
jects and scenes. Another similar method which uses position
information is Simple Online and Real-time Tracking (SORT)
method as an online tracker (Bewley et al., 2016) which can be
combined with CNN-based object detectors (Azimi et al., 2018,

1https://www.ipf.kit.edu/code.php
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Figure 3. Indication of the tracking results of GOTURN on example aerial image sequences acquired by web search. (a) Successful
tracking with small object and the presence of occlusion. (b) Tracking the object in the presence of scale change between the frames.

(c) Example of a failure case when the object is occluded for a longer time.

?). It employs Kalman filter for predicting the object positions
in each frame based on their positions in the previous frame.
Hungarian method is used for matching the detected objects in
the frame with the predicted positions. Finally, IoU of the detec-
ted and predicted bounding boxes is used as affinity measure for
matching the detection and the track. SORT methods are more
accurate and precise than the simple IoU trackers; nevertheless,
they introduce more false positives. Deep SORT (Wojke et al.,
2017) adds re-identification to affinity between the detections
and tracks which increases the tracking accuracy. A combina-
tion of appearance, motion, and interaction affinity components
through Recurrent Neural Networks (RNNs) shows promising
tracking results (Sadeghian et al., 2017). In this approach, deep
learning networks are used in online MOT scenario both for ob-
ject detection and affinity modeling including appearance mod-
eling by re-identification approaches. Approaches relaying on
Correlation Filters (CF) have recently shown outperforming the
key point-matching methods for multiple object tracking (Kart
et al., 2019). A combination of CNN-based features with CF
trackers has shown superior tracking accuracy in several track-
ing benchmarks (Milan et al., 2016) although using the deep
CNN features increases the computational costs.

MDNet (Multi-Domain Network) takes advantage of the domain-
specific and shared layers in order to track different objects
from various domains. While the shared layers are trained off-
line, the domain-specific layers are trained online on the target
video frames. The network is trained iteratively, where in each
iteration, one domain-specific branch is trained on a video. In
spite of its high tracking accuracy, MDNet is rather slow in pro-
cessing the videos with high-frame rates and therefore, it is used
only when the high accuracy is required.

GOTURN (Tracking Using Regression Networks) was proposed
to alleviate the speed issue while preserving the tracking accur-
acy. The CNN layers of GOTURN are trained on collections of
images and videos with bounding box annotations. In the in-
ference time, GOTURN is applied with the frozen weights and
without fine-tuning which allows it to reach the high speed of
100 fps. Figure 2 (a) shows the overview of GOTURN. Using
the light-weight CNNs together with the offline training and on-
line tracking, GOTURN can accurately track single objects in a

high frame rate. Thus in this work, we use it in designing our
SMSOT-CNNs approach.

3. METHODOLOGY

In the proposed SMSOT-CNNs approach, we assign each ob-
ject with its given initial location to a MSOT-CNN which will
be responsible for tracking the object through the image se-
quence. Then we integrate the results of all MSOT-CNNs for
each image frame to derive the final multi-object tracking res-
ult of the frame. As a base CNN for designing the SMSOT-
CNNs, we consider the GOTURN network (Held et al., 2016).
This method has shown to be significantly faster than the other
CNN-based methods. It considers less number of candidate ob-
ject locations and therefore, provides course object localization
which is refined through a bilinear interpolation of the extracted
CNN feature maps from the course localization phase. Utiliz-
ing interpolations instead of extracting new feature maps (for
finer localization) speeds up the tracking process significantly.

In order to validate the tracking performance of GOTURN on
aerial image sequences, we selected three different videos with
the frame rate of 25–35 fps from the web. The videos represent
different challenges such as changes in viewpoints, scales, and
illuminations together with the presence of occlusion and back-
ground clutter. Figure 1 demonstrates examples of the tracking
results in which for a better illustration of the results, we have
sampled and presented representative frames. As the results
show, GOTURN is able to detect small objects even when they
are partially occluded (Figure 1 a). Furthermore, it is able to
keep track of the object even if the scale changes throughout
the image sequences (Figure 1 b). However, in some cases such
as when the object is occluded for a longer time, GOTURN may
fail tracking the object (Figure 1 c).

GOTURN takes two consecutive video frames as input to the
neural network modules and predicts the tracked object loc-
ation in the current frame. We train it entirely offline with
video frames and images so that it learns a generic relation-
ship between the appearance and motion of objects and use it
for tracking new objects in the inference time. In order to show
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(a) GOTURN
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(b) GOTURN+CONV
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Figure 4. Network structures of GOTURN and our two modifications to it.

the object of interest to the network, we scale a crop of the pre-
vious frame centered on the object and give it to the network
as input. Afterwards, we pad the crop to provide the network
with some contextual information of the object’s surroundings.
Assuming that the object moves smoothly through space, we
select and crop a search region in the current frame based on
the object’s location in the previous frame. Then we scale the
search region and feed it to the network as the second input. Af-
terwards, we regress via the network the object coordinates i.e.
bottom right and top left corners of the corresponding bounding
box in the search region. Figure 2 (a) represents the overview
of the GOTURN method.

The GOTURN architecture composed of two identical sequences
of convolutional layers that extract the features of the input im-
age crops at different levels. The outputs of these convolutional
layers are concatenated and fed into a sequence of fully connec-
ted (FC) layers. These layers compare the features of the object
of interest in the previous frame to the features of the search
region in the current frame in order to find the new position
of the object. Figure 4 (a) details the GOTURN’s architecture,
where X, Y, and Z in each ConvX-Y-Z denote the convolutional
layer’s kernel size, number of output filters, and stride value,
respectively. In GOTURN, the FC layers should learn com-
plex features to be robust against variety of changes occurring
to the object (e.g., translation, rotation, illumination, occlusion,
deformation) between the two frames. The last FC layer com-
prise 4 nodes representing the coordinates of the output bound-
ing box. After each convolutional and FC layer, ReLU non-
linearity is used. In addition, a dropout non-linearity is applied
to each FC layer.

In order to increase the tracking accuracy of GOTURN, we pro-
pose a number of modifications to the network structure such as
applying batch normalization after the first convolutional lay-
ers and adding extra convolutional layers before the FC layers.
Figure 2 (b) and Figure 4 (b,c) demonstrate the GOTURN net-
work structure modified by adding extra convolutional layers.
The ablation study of the networks on the KIT AIS dataset is
provided in Section 4.

4. RESULTS AND DISCUSSION

For our experiments, we use Titan XP GPUs. The training
configuration is similar to the original GOTURN (Held et al.,

Metrics Descriptions
IDF1 ID F1-Score
IDP ID Global Min-Cost Precision
IDR ID Global Min-Cost Recall
TP True Positive – Number of Detected Objects
FP False Positive – Number of False Detections
FN False Negative – Number of Lost Objects
Rcll Recall – TP over Number of Objects
Prcn Precision – TP over Sum of TP and FP
FAR False Acceptance Rate
MT Ratio of Mostly Tracked Trajectories
PT Ratio of Partially Tracked Trajectories
ML Ratio of Mostly Lost Trajectories
IDS Number of Identity Switches
FM Fragmentation

MOTA Multiple Object Tracker Accuracy
MOTP Multiple Object Tracker Precision

MOTAL Multiple Object Tracker Accuracy Log
Hz Tracker Speed in Frame per Second

Table 1. Descriptions of the metrics used for quantitative
evaluations.

2016), with a scheduled learning rate of 10e-6 and the SGD op-
timizer. In order to quantitatively evaluate the trained models,
we consider the widely-used metrics in the MOT domain (Milan
et al., 2016) listed in Table 1. Among all these metrics, the
MOT performance can be generally evaluated by MOTA and
MOTP. MOTA considers all tracking errors including false pos-
itives, misses, and mismatches throughout all frames.

MOTA = 1− Σt(FNt + FPt + IDSt)

ΣtGTt
, (1)

where t is the frame index and GT denotes the number of ground
truth objects. MOTP evaluates the trackers’ precision in estim-
ating object positions. It is computed as the total position error
for the matched objects throughout all frames averaged by the
total number of matched objects.

MOTP =
Σt,idt,i

Σtct
, (2)

In these evaluations, we consider three categories of tracked ob-
jects: Mostly Tracked (MT) – object is tracked successfully for
>80% of its lifetime, Mostly Lost (ML) – object is tracked suc-
cessfully for <20% of its lifetime, and Partially Tracked (PT)
which are the rest of the objects.

The KIT AIS dataset composed of 9 vehicle tracking sequences
with 229 frames and 13 person tracking sequences with 190



frames. The images are acquired by DLR-3K camera system
composed of a nadir-looking and two side-looking DSLR cam-
eras, mounted on an airborne platform. The image sequences
were recorded with the frame rate of 2 Hz, and with differ-
ent ground sampling distances (12–15 cm) and viewing angles.
The length of the sequences in the vehicle dataset ranges from
14 to 47 frames, and in the person dataset ranges from 4 to 24
frames. The person dataset is split into a training and an evalu-
ation set with 7 and 9 image sequences, respectively. However,
the vehicle dataset is provided as a whole. Therefore, for our
experiments, we split it into a training and evaluation set with 5
and 4 image sequences, respectively.

Table 2 shows the ablation study of GOTURN and its modi-
fied variants on the vehicle sequences of KIT AIS dataset, us-
ing different configurations. According to the table, original
GOTURN (GOT) achieves MOTA of 23.0 and MOTP of 73.3
with the batch size of 50. Increasing the batch size to 150 im-
proves MOTA and MOTP to 24.7 and 73.6, respectively. This
indicates the key role of the batch size in training a CNN net-
work in the tasks with large number of objects. In the training
of GOT, only the FC layers were trained whereas the convolu-
tional layers were frozen with the weights trained on the Im-
ageNet dataset, similar to the original work (Held et al., 2016).
Nevertheless, in our experiments, the images and therein ob-
jects look significantly different from those of in the ImageNet
dataset. Therefore, by training GOT with not frozen (NF) con-
volutional weights, we can observe dramatic increase of MOTA
and MOTP to 32.0 and 77.1, respectively.

Recently, batch normalization (BN) layer has shown superior
performance in comparison with dropout layers as a regular-
ization technique avoiding overfitting issues (Ioffe, Szegedy,
2015). In order to evaluate the effects of BN on the tracking
performance of GOTURN, we add a single BN layer after the
first convolutional layers in both branches. However, accord-
ing to the results, this ruins the tracking accuracy (MOTA drops
to 19.2). We suppose that BN layers receive very diverse re-
gions of interest and thus, normalization dismisses the unique
features for each object of interest and merges their features.
More comprehensive investigations are needed to find out the
reason behind the network behaviour in the presence of BN.

In order to make the network deeper and extract richer fused
features, we insert extra convolutional layers after concatenat-
ing the features from the two branches. We consider adding one
and three convolutional layers separately to investigate the net-
work’s depth impact on the tracking performances. According
to the results, even adding a single convolutional layer signific-
antly boosts the tracking accuracy and increases MOTA from
32.0 to 39.1. Increasing the number of extra convolution layers
to three, further improves MOTA to 41.1. This verifies the sig-
nificance of richer high-level fused features in the tracking ac-
curacy. According to Table 2, although increasing the number
of additional convolutional layers from one to three generally
increases the tracking accuracy, it slightly reduces the percent-
age of the mostly tracked (MT) objects. This could be due to
the ID switch or fragmentation. Hints that the stack of convolu-
tional layers after the concatenation step can increases the risk
of losing track of objects.

Table 3 represents the ablation study results of person tracking
on the KIT AIS dataset. The results indicate that the network
behaves similarly for the vehicle and person tracking scenarios.
In training the networks with unfrozen convolutional weights,
we used the DLR’s Aerial Crowd Dataset (Bahmanyar et al.,

Figure 5. Linear increasing of the inference time for each frame
by the increase in the number of objects in the frames.

2019) as an additional aerial image dataset to increase the di-
versity of the learned features. As it can be seen in Table 3,
the values of MOTA and MOTAL are negative. Due to the
large number of people in the sequences and the complexities
of the scenes, there is a higher probability of missing people
which results in many lost bounding boxes all over the scenes,
i.e., large FP and FN. Comparing the results of Tables 2 and 3
demonstrate that the person tracking in aerial imagery is a more
complex than vehicle tracking for GOTURN, as all the metrics
shows significant lower performance of the tracker on the per-
son dataset.

Tables 4 and 5 show the tracking results of the best perform-
ing model (GOT-NF-3Conv) on the test image sequences of the
vehicle and person datasets. The results show that most of the
errors in both datasets are due to fragmentation and FPs. This
could be caused by occlusions and complex backgrounds in the
scenes. We suppose that training the models on a larger data-
set with a more scene diversity could help overcoming these
issues to a large degree. Figures 6 and 7 illustrate examples
of the vehicle and person tracking results, where the white and
blue bounding boxes depict the ground truth and predictions,
respectively.

Figure 5 represents the processing speed (Hz) of the SMSOT-
CNNs approach verus the number of objects presented in the
scenes. According to the figure, the complexity is increased
linearly by the increase in the number of tracked objects.

5. CONCLUSION

In this work, we proposed a new approach based on a stack of
micro CNNs to track multiple vehicles and people in aerial im-
age sequences. The proposed method is able to make use of the
promising performance of CNNs while keep the computation
cost reasonable in the presence of large number of objects in
aerial images. As a base single-object tracker based on CNN,
we selected the GOTURN network and validated its perform-
ance on the vehicle and person sets of KIT AIS tracking data-
set. In addition, we modified the GOTURN network by adding
a number of convolutional layers in order to enrich its higher
level features. Results demonstrated that this modification leads
to 28.4% and 10.2% increase in the vehicle and person track-
ing performance, respectively. Due to the existing occlusions
and complex backgrounds, a larger and more diverse dataset
could help improving the tracking results in future studies. Fur-
thermore, other state-of-the-art light-weight tracking networks
could be considered as the base tracking method.
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Figure 6. Sample illustrations of the tracking results for the vehicle dataset based on GOT-NF-3Conv/150 model.



Model/batch size IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↑ MT (%)↑ PT (%)↓ ML (%)↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
GOT/50 60.8 59.1 62.5 64.9 61.3 18.9 56.5 24.3 19.2 2037 1748 47 91 23.0 73.3 23.9
GOT/150 61.2 59.7 62.9 65.4 62.0 18.4 59.1 20.0 20.9 1991 1720 34 99 24.7 73.6 25.4
GOT-NF/150 65.6 63.7 67.7 69.3 65.3 16.98 64.3 19.5 16.2 1834 1525 25 63 32.0 77.1 32.4
GOT-NF-BN/150 59.2 57.5 61.0 63.1 59.5 19.79 58.3 17.8 23.9 2137 1835 47 70 19.2 76.2 20.1
GOT-NF-Conv/150 69.4 67.5 71.3 72.5 68.7 15.22 70.0 15.2 14.8 1644 1367 16 58 39.1 77.1 39.4
GOT-NF-3Conv/150 69.8 68.2 71.5 73.1 69.7 14.6 69.1 17.4 13.5 1577 1338 14 57 41.1 77.3 41.4

Table 2. Quantitative results of multi object tracking ablation study for the Vehicle dataset with the total number of 230 vehicles. The
sequences are of 4.5 Hz. ↑ and ↓ stand for “higher and lower is better” accordingly.

Model/batch size IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↑ MT (%)↑ PT (%)↓ ML (%)↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
GOT/32 25.2 24.5 25.8 30.7 29.1 130.1 13.8 54.6 31.6 8976 8340 297 703 -46.5 67.9 -44.0
GOT/150 27.5 26.8 28.2 33.2 31.6 125.3 15.2 55.4 29.4 8649 8031 275 721 -41.0 67.5 -38.7
GOT-NF/150 32.3 31.5 33.1 36.8 35.0 119.1 23.4 52.4 24.2 8213 7605 198 619 -33.2 70.0 -31.6
GOT-NF-BN/150 31.1 30.4 31.9 35.4 33.7 121.6 20.0 57.0 23.0 8393 7767 167 621 -35.8 69.6 -34.4
GOT-NF-Conv/150 33.6 32.8 34.5 37.9 35.9 117.7 24.9 51.8 23.3 8122 7474 171 620 -31.1 70.5 -29.7
GOT-NF-3Conv/150 34.0 33.2 34.9 38.2 36.4 116.4 25.0 52.5 22.5 8028 7427 157 614 -29.8 71.0 -28.5

Table 3. Quantitative results of our multi object tracking ablation study for the Person dataset with the total number of 1043 people.
The sequences are of 1.1 Hz. ↑ and ↓ stand for “higher and lower is better” accordingly.

Image Sequence # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↑ GT MT (%)↑ PT (%)↓ ML (%)↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
MunichCrossroad-02 46 57.4 56.2 58.6 60.4 58.0 20.96 66 54.5 24.2 21.3 943 854 7 32 16.3 72.5 16.6
MunichStreet-02 21 89.0 85.8 92.4 92.5 85.9 5.6 47 91.5 2.1 6.4 113 56 0 4 77.3 81.8 77.3
MunichStreet-04 23 78.0 76.9 79.16 80.6 78.3 11.7 68 75.0 14.7 10.3 339 294 3 9 58.1 80.9 58.3
StuttgartCrossroad-01 15 69.7 66.9 72.7 75.8 69.8 13.0 49 59.2 26.5 14.3 182 134 4 12 42.2 74.4 42.8
overall 105 69.8 68.2 71.5 73.1 69.7 14.6 230 69.1 17.4 13.5 1577 1338 14 57 41.1 77.3 41.4

Table 4. Quantitative results of the GOT-NF-3Conv/150 model on different image sequences of the Vehicle dataset. ↑ and ↓ stand for
“higher and lower is better” accordingly.

Image Sequence # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↑ GT MT (%)↑ PT (%)↓ ML (%)↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA-Crossing-02 13 49.9 49.7 50.1 52.1 51.6 42.6 94 24.5 52.1 23.4 554 544 11 71 2.3 68.8 3.2
AA-Walking-02 17 30.7 30.2 31.3 33.8 32.7 109.6 188 15.5 38.9 45.6 1864 1767 34 140 -37.2 68.0 -36.0
Munich-02 31 23.6 22.7 24.5 28.8 26.7 156.3 230 8.6 38.3 53.1 4846 4363 105 316 -52.1 68.4 -50.4
RaR-Snack-Zone-02 4 61.6 61.4 61.8 64.4 63.9 78.5 220 37.3 62.3 0.4 314 308 2 39 27.9 77.9 28.0
RaR-Snack-Zone-04 4 61.2 61.1 61.3 63.8 63.6 112.5 311 34.4 64.6 1.0 450 445 5 48 26.8 76.7 27.2
Overall 69 34.0 33.2 34.9 38.2 36.4 116.4 1043 25.0 52.5 22.5 8028 7427 157 614 -29.8 71.0 -28.5

Table 5. Quantitative results of the GOT-NF-3Conv/150 model on different image sequences of the Person dataset. ↑ and ↓ stand for
“higher and lower is better” accordingly.

(a)

(b)

Figure 7. Sample illustrations of the tracking results for the vehicle dataset based on GOT-NF-3Conv/150 model.
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