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Abstract: Remotely sensed data can be used to model the fractional cover of green vegetation
(GV), non-photosynthetic vegetation (NPV), and soil in natural and agricultural ecosystems. NPV
and soil cover are difficult to estimate accurately since absorption by lignin, cellulose, and other
organic molecules cannot be resolved by broadband multispectral data. A new generation of satellite
hyperspectral imagers will provide contiguous narrowband coverage, enabling new, more accurate,
and potentially global fractional cover products. We used six field spectroscopy datasets collected in
prior experiments from sites with partial crop, grass, shrub, and low-stature resprouting tree cover
to simulate satellite hyperspectral data, including sensor noise and atmospheric correction artifacts.
The combined dataset was used to compare hyperspectral index-based and spectroscopic methods
for estimating GV, NPV, and soil fractional cover. GV fractional cover was estimated most accurately.
NPV and soil fractions were more difficult to estimate, with spectroscopic methods like partial
least squares (PLS) regression, spectral feature analysis (SFA), and multiple endmember spectral
mixture analysis (MESMA) typically outperforming hyperspectral indices. Using an independent
validation dataset, the lowest root mean squared error (RMSE) values were 0.115 for GV using either
normalized difference vegetation index (NDVI) or SFA, 0.164 for NPV using PLS, and 0.126 for
soil using PLS. PLS also had the lowest RMSE averaged across all three cover types. This work
highlights the need for more extensive and diverse fine spatial scale measurements of fractional
cover, to improve methodologies for estimating cover in preparation for future hyperspectral global
monitoring missions.

Keywords: fractional cover mapping; field spectroscopy; PRISMA; HISUI; EnMAP; HyspIRI; Surface
Biology and Geology (SBG)
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1. Introduction

Terrestrial vegetation is dynamic, with both photosynthetically active and inactive vegetation cover
varying on seasonal, annual, and decadal time scales. To quantify spatial and temporal variations in
vegetation cover, previous studies have modeled cover in natural and agricultural ecosystems as having
three fractional components that sum to 100% cover: photosynthesizing or “green” vegetation (GV),
non-photosynthesizing vegetation (NPV), and bare soil [1–4]. NPV cover includes dead and senescent
leaves and needles, plant litter, and non-photosynthesizing branch and stem tissues. A transition from
GV to NPV or soil cover is a hallmark of both seasonal and long-term drought. Grasslands senesce
during periods of drought, resulting in a decrease in GV cover and a corresponding increase in NPV
cover [5]. Long-term drought can result in canopy dieback and mortality, producing similar changes in
fractional cover [6].

Changes in fractional cover also occur with disturbances like insect infestation [7] and wind
damage [2]. Senescence and the “curing” of vegetation leads to increased fire danger, and both GV and
NPV cover are correlated with fuel moisture content and can be used to measure seasonal changes in
fire danger [8]. Changes in NPV cover can indicate the build-up of fine fuel biomass over time [9], while
fractional soil cover is closely tied to fire severity [10]. As vegetation regrows following disturbance,
GV cover increases and soil cover decreases over time [11].

Fractional cover of GV, NPV, and soil is also important in agricultural systems. In croplands,
GV cover typically increases through the growing season, followed by exposure of NPV and soil
following harvest. Crop residue is an important form of NPV that can indicate tillage practices used
for the management of both soil erosion and carbon flux [12,13]. In rangelands, GV and NPV cover are
related to degradation of pastures [14,15] and forage quality [16].

Fractional cover of GV, NPV, and soil have been frequently mapped using linear spectral
mixing techniques, either directly (e.g., [17,18]) or through the use of multispectral indices (e.g., [3]).
GV cover can be easily estimated from broadband multispectral data due to the distinguishing spectral
characteristics of healthy, photosynthesizing vegetation: chlorophyll absorption, the red edge, high
near infrared (NIR; 700–1400 nm) reflectance, and liquid water absorption in the shortwave infrared
(SWIR, 1400–2500 nm). NPV cover is spectrally distinct from soil due to absorption by non-pigmented
organic molecules, primarily lignin and cellulose, but most broadband multispectral sensors are not
able to resolve lignocellulose absorption features centered near 2100 and 2300 nm [19].

Hyperspectral sensors (also commonly referred to as imaging spectrometers) have narrow bands
(5–10 nm full-width half maximum (FWHM)) capable of fully resolving lignocellulose absorption
features, and hyperspectral data have consistently demonstrated more accurate mapping of fractional
cover when compared to multispectral data [3,14,17,20]. As a result, a new generation of satellite
hyperspectral sensors should improve fractional cover mapping. Hyperspectral missions recently
launched or planned for launch over the next several years include the Hyperspectral PRecursor
of the Application Mission (PRISMA [21]), the Hyperspectral Imager Suite (HISUI; [22]), and the
Environmental Monitoring and Analysis Program (EnMAP; [23]). All of these missions have “VSWIR”
sensors covering visible through SWIR wavelengths (approximately 400–2500 nm) and will be tasked
due to a limited number of scenes that can be acquired per orbit.

Progress is also being made toward hyperspectral global monitoring missions. The 2007
US National Academies decadal survey on Earth science and applications [24] recommended the
Hyperspectral Infrared Imager (HyspIRI) as a Tier 2 mission. HyspIRI was to have a VSWIR instrument
and a complementary thermal infrared sensor [25]. The 2017 decadal survey set new priorities for
the following decade, with a stronger focus on science and application needs, rather than prioritizing
specific missions [26]. Science and application objectives grouped under Surface Biology and Geology
(SBG) were designated as priority observation needs, with a VSWIR hyperspectral sensor being the
favored measurement approach for addressing those objectives. Based on the heritage design from
HyspIRI and SBG observation requirements, a future hyperspectral global monitoring mission can be
projected to have 30 m spatial resolution, 380–2500 nm spectral range with 10 nm FWHM bands, and a
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16-day revisit period [25,26]. Beyond a mission based on SBG observation requirements, there is also
potential for hyperspectral sensors on Landsat and Sentinel missions in the late 2020s [27,28].

With the advent of these new hyperspectral sensors and the continuing need for fractional cover
information, more assessment of the potential accuracy of spectroscopic GV, NPV, and soil fractional
cover estimates is required [29]. As fractional cover could be a global “Level 3” product from a future
mission based on SBG observation requirements, quantitative comparisons of methods for deriving
fractional cover from reflectance spectra are also needed. This paper uses in situ collected field spectra
with corresponding fractional cover estimates based on field photography or geometry to simulate
VSWIR hyperspectral imager spectra. Our objectives are to use these simulated VSWIR spectra to
evaluate competing methods for estimating GV, NPV, and soil fractional cover from hyperspectral
data, and to compare the potential accuracy of each method.

2. Materials and Methods

2.1. Simulated VSWIR Spectra

Field spectra collected in six separate prior experiments were used to simulate spectra measured
by a VSWIR satellite imaging spectrometer. Each field spectrum in these datasets has a corresponding
fractional cover of GV, NPV, and/or soil determined from field photography or geometry. All reflectance
spectra in the field experiments described below were measured using Analytical Spectral Devices
(ASD) field spectrometers (ASD Incorporated/Malvern Panalytical, Westborough, MA, USA). The native
sampling intervals of ASD spectrometers range from approximately 1.4 nm for the visible/near-infrared
detector (VNIR; 350 to 1000 nm) to approximately 2.2 nm for the SWIR detectors (1001 to 2500 nm).
ASD instruments resample the native channels using cubic spline interpolation before recording 2151
channels at standardized wavelengths (350 to 2500 nm) at a 1 nm interval [30]. The spectral bandpass of
ASD spectrometers vary across the wavelength range of each detector and differs between spectrometer
models, ranging from approximately 3 to 12 nm [31].

Daughtry and Hunt [32] collected 600 field spectra from seven different agricultural field sites near
Beltsville, Maryland, USA. These spectra captured fields with varying cover of soil, crop residue, and
young corn, soybean, or wheat plants. The 18◦ foreoptic of an ASD FieldSpec Pro spectrometer was
mounted alongside a digital camera on a pole at 2.3 m above the surface with a 0◦ view zenith angle.
Photographs of the spectrometer field-of-view were overlain by a matrix of 156 points, and visual
interpretation was used to assign each point as GV, NPV, or soil. Fractional cover for each spectrum
was determined by dividing the number of points in each class by the total number of points. These
spectra and fractional cover estimates will be referred to in this paper as “DH-crop”.

A second agricultural dataset included only NPV and soil cover, and was derived from Quemada
and Daughtry [33]. An ASD FieldSpec 3 with an 18◦ foreoptic was used to measure the reflectance of
soil and crop residue mixtures for a field near Beltsville. Crop residue cover and moisture conditions
were manually manipulated in a series of experiments carried out on three different dates. Both the
spectrometer foreoptic and a digital camera were mounted on a pole at 2.3 m above the surface at
a 0◦ view zenith angle. Photographs of the spectrometer field-of-view were overlain by a matrix of
132 points, and visual interpretation was used to assign each point as NPV or soil. As with DH-crop,
fractional cover was determined by dividing the number of points in each class by the total number
of points. Relative water content (RWC) of soil and residue was measured for all spectra. Spectra of
material with RWC in excess of 60% were excluded from this analysis due to strong SWIR darkening,
providing a total of 410 spectra and associated NPV-soil fractional cover values. These spectra and
fractional cover estimates will be referred to in this paper as “QD-crop”.

A dataset including only GV and NPV cover was derived from time series grassland spectra
collected at Coal Oil Point near Goleta, California, USA. Spectra were measured at 12 plots from
December 2015, through the following May, with an average interval between measurements of 17 days,
providing a total of 129 spectra. An ASD FieldSpec 4 with no foreoptic (25◦ field-of-view) was placed in
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a sample frame to measure the same field-of-view on each date. A digital camera was placed over the
same sampling frame to take a photograph of the spectrometer field-of-view. Both the fiber and camera
were mounted on a tripod at 1.05 m above the surface and a 0◦ view zenith angle. A decision tree
classifier, trained on multiple years of images collected at this location, was applied to each photograph
to classify the red, green, and blue digital number values of each photograph pixel into GV, NPV,
and shadow classes. To calculate fractional cover of GV and NPV, the number of pixels in each class
was divided by the sum of pixels in the GV and NPV classes, thus excluding shadowed pixels. These
spectra and fractional cover estimates will be referred to in this paper as “CA-grass”.

A second dataset containing only GV and NPV cover was derived from grassland spectra acquired
at six sites in Rondônia, Brazil by Numata et al. [14]. An ASD Full Range spectrometer with no foreoptic
(22◦ field-of-view) was used to measure spectra every 5 m along 100 m transects, with a height of 1 m
above the surface. Each field-of-view was photographed, and photographs were digitally decomposed
into GV, NPV+Soil, and shadow classes using empirically determined red, green, and blue digital
number value thresholds [14]. This method was unable to separate NPV and soil cover, so for this
paper, all field photographs were visually inspected for partial soil cover and spectra containing any
suspected soil cover were discarded. Cover fractions for the remaining 60 spectra were normalized
to remove shadow. These spectra and fractional cover estimates will be referred to in this paper
as “RO-grass”.

A dataset containing time series shrub spectra was collected from coastal southern California
and the University of California Sedgwick Reserve, both in Santa Barbara County, California,
USA [34]. Measured species included evergreen broadleaf shrubs Arctostaphylos glauca, Baccharis
pilularis, Ceanothus cuneatus, and Ceanothus megacarpus; drought-deciduous broadleaf shrubs Artemisia
californica and Salvia leucophylla; and evergreen needleleaf shrub Adenostoma fasciculatum. This dataset
contained only GV and NPV cover. Spectra were measured approximately every two weeks for a year,
starting in April 2011, with some gaps in temporal coverage. An ASD Full Range field spectrometer
with no foreoptic (24◦ field-of-view) was used to measure the sunlit side of individual shrub canopies
from a height of approximately 1 m above the canopy. The same shrub canopies were revisited on each
date. Each field-of-view was photographed, with GV and NPV fractional cover estimated using the
same method as for CA-grass. The 595 spectra and fractional cover estimates from this dataset will be
referred to in this paper as “CA-shrub”.

The final dataset providing only GV and soil cover was derived from spectra collected over a
resprouting clonal Populus stand near Wallula, Washington, USA [35,36]. Resprouting trees ranged
between 10 cm and 60 cm in height. Spectra were measured using an ASD Full Range spectrometer
with no foreoptic (24◦ field-of-view) with a height of 0.5 m above each canopy. Leaf area index (LAI)
was measured using destructive harvesting and ranged from 1.8 to 8.75 [35]. Percent cover of GV and
soil was determined geometrically, by measuring the semi-major and semi-minor axis of each canopy,
calculating the elliptical canopy area, and then dividing by the area of the field-of-view. Of twenty-four
spectra collected, twenty had complete GV cover and four had GV cover ranging from 57% to 84%.
These spectra and fractional cover estimates will be referred to in this paper as “WA-tree”.

All reflectance spectra were convolved to 10 nm bands to approximate the anticipated bandpass
function of a VSWIR instrument satisfying anticipated SBG observation requirements [26]. The synthetic
bands used centers spaced every 10 nm between 400 and 2500 nm, and a 10 nm Gaussian FWHM.
To make the simulated spectra a better approximation of spectra measured by a satellite sensor, the 10 nm
reflectance spectra were converted to radiance using a lookup table generated using MODTRAN 5.3 [37],
radiance-dependent sensor noise was added, and then reflectance was retrieved from the resulting
radiance spectra. The MODTRAN simulations varied reflectance between 0 and 70% at a 0.1% interval,
and assumed a 30◦ solar zenith angle, 2 cm column water vapor, and 30 km visibility for a standard
mid-latitude summer atmospheric profile with rural aerosol scattering. Based on the reflectance value
in each band, radiance was spline interpolated from the radiance values in the lookup table. At the
time of this study, the instrument or instruments selected to implement SBG measurement objectives
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are not yet known. Consequently, we used a HyspIRI VSWIR spectrometer design as a conservative
performance bound to apply instrument noise to the radiance spectra. The radiance-dependent noise
function was based on a comprehensive model of the HyspIRI VSWIR spectrometer design, with
instrument photon throughput and all significant noise sources including detector, photon, and read
noise for each band (R. Green, personal communication). Using the noise function, Gaussian noise was
added to each spectrum [38]. Finally, the spectra were processed through a variant of the ATREM code
(ATmospheric REMoval) currently used for Airborne Visible InfraRed Imaging Spectrometer (AVIRIS)
data [39].

The resulting reflectance spectra approximate products from a satellite imaging spectrometer,
complete with noise and atmospheric correction residuals. Figure 1 compares an original 1 nm field
spectrum to a simulated 10 nm VSWIR spectrum. Bands on the edge of major atmospheric water
vapor absorption features, shown in black, were not used for further analysis. Residuals caused by
atmospheric correction were similar across all spectra, since the same MODTRAN model atmosphere
and the same input parameters for ATREM were used across the entire library. The residuals shown in
Figure 1 resemble residuals frequently seen in AVIRIS reflectance data, and presumably will be present
in some form in future hyperspectral satellite reflectance products. In an actual global hyperspectral
dataset, spatial variation in atmospheric correction residuals would be an additional source of error.
All field reflectance spectra convolved to the 10 nm bandpass function [40] and simulated VSWIR
spectra including noise and atmospheric correction residuals [41] have been made available as spectral
libraries with full metadata on the Ecosystem Spectral Information System (EcoSIS; [42]).
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Figure 1. A single 1 nm oversampled field spectrum (green) processed to a simulated 10 nm bandwidth
VSWIR spectrum (orange). Bands excluded due to proximity to atmospheric water vapor absorption
features are shaded black. VSWIR includes the visible, near infrared, and shortwave infrared
spectral regions.

We designed the error assessment for fractional cover estimation in this study to resemble
hypothetical error assessment for global fractional cover mapping by using separate spatial and
temporal subsets of the VSWIR spectral library for algorithm training and validation. Random
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assignment of data into training and validation subsets could inflate accuracy compared to real-world
application, since spectra from each prior experiment are not independent observations, but rather are
correlated in space and in time. To provide a more rigorous assessment of error for each fractional
cover metric described in Section 2.2, the simulated VSWIR spectral library was split and assigned into
training and validation subsets using primarily spatial or temporal criteria. The DH-crop and RO-grass
spectra were split by site. For DH-crop, four sites (345 spectra) were assigned to the training subset
and three sites (255 spectra) were assigned to the validation subset. The single site with the highest
diversity in fractional cover was purposefully put into the training subset to provide a more robust
training spectral library. For RO-grass, three sites (33 spectra) were assigned to the training subset
and three sites (27 spectra) were assigned to the validation subset. QD-crop, CA-grass, and CA-shrub
spectra were split by date. For QD-crop, the first two dates/moisture treatments (214 spectra) were
added to the training subset and the final date/moisture treatment (102 spectra) was added to the
validation subset. For CA-grass, the date of peak greenness was determined across all twelve sites,
and all spectra preceding and including that date (72 spectra), representing the green-up period, were
assigned to the training subset. All spectra following that date (57 spectra), representing the dry-down
period, were assigned to the validation subset. For CA-shrub, 349 “greenup season” spectra within the
months of January–June were placed in the training subset. The remaining 246 “dry season” spectra
within the months of August–December were placed in the validation subset. Finally, the WA-tree
spectra were randomly and equally split into the training and validation subsets, due to the small
number of spectra (24) and single site/single date collection. The subset with greater variation in
fractional cover was assigned as the training subset.

Across all six contributing datasets, the training library totaled 1025 spectra and the validation
library totaled 698 spectra, providing an approximate 60/40% split between training and validation
data. Training and validation sets were not equivalently distributed across fractional cover space,
however. Figure 2 displays ternary diagrams representing the fractional cover of each spectrum in the
training (Figure 2a) and validation (Figure 2b) libraries. Only the DH-crop dataset had all three cover
types, with the other datasets falling along the NPV-GV, NPV-soil, or GV-soil axes. The NPV-GV axis
had the densest coverage due to three datasets (RO-grass, CA-grass, and CA-shrub) missing soil cover.
The validation library had fewer spectra with high GV fraction and with GV-soil mixtures compared to
the training library (Figure 2).

2.2. Hyperspectral Fractional Cover Metrics

Two broad categories of hyperspectral metrics were tested for their ability to estimate GV, NPV,
and soil fractional cover: indices and spectroscopic methods. The hyperspectral indices evaluated
in this study all used two or three individual bands, while three spectroscopic methods used a large
number of contiguous bands. Indices were calculated for training library spectra, and then linear or
quadratic functions were used to determine the best-fit relationship between each index and fractional
cover. The best-fit function for each index was applied to the spectra in the independent validation
library. The spectroscopic methods were trained using training library spectra as described below
and then used to predict fractional cover from the validation library spectra. For both indices and
spectroscopic methods, fractional cover predicted from the validation library spectra was compared to
the actual fractional cover.

Traditional red-NIR vegetation indices are strongly correlated with GV fractional cover [43,44].
For this study, three standard vegetation indices were used to estimate GV fractional cover: NDVI, EVI,
and NDII (abbreviations defined in Table 1). NDVI relies on spectral contrast between chlorophyll
absorption and NIR reflectance [45], with EVI adding correction factors to account for variation in
background brightness and reducing the impacts of aerosol scattering through the use of a blue
band [46]. NDII relies on canopy liquid water absorption in the SWIR [47]. All three indices increase
as GV cover increases. Additional vegetation indices were also tested, including multiple variants of
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the soil adjusted vegetation index (SAVI) [48]. We have included results for these additional indices in
the supplemental materials for this paper.

For each reflectance term listed in Table 1, the 10 nm band centered on the indicated wavelength
was used to calculate each index. NDVI used a reflectance minimum at 670 nm for the red band,
while EVI used the approximate MODIS band center at 650 nm. Each index was regressed against
the GV fraction from the training library, and fit with a second degree polynomial function due to the
saturation of these indices with increasing LAI [49,50]. The best-fit quadratic equation was used to
predict GV fraction from the validation spectral library.
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We used three indices developed for direct measurement of lignocellulose absorption expressed
by NPV cover (Table 2). CAI was developed to contrast lignocellulose absorption at 2100 nm with two
reference bands at 2000 and 2200 nm [51,52]. We used wavelengths further refined by Serbin et al. [53]
to take advantage of 10 nm bandwidth and avoid the effects of carbon dioxide absorption closer to
2000 nm (Table 2). Both ligno-cellulose absorption index (LCA) and the SWIR normalized residue index
(SINDRI) were developed for Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) bands, and thus were not optimized for capturing lignocellulose absorption [54,55]. We used
ASTER band centers for LCA, and the hyperspectral version of SINDRI (hSINDRI) described in Serbin
et al. [55]. The best-fit linear function between each index and NPV fractional cover was applied to the
spectra from the validation library.

Table 1. Metrics related to green vegetation (GV) fractional cover. ρ is reflectance; all subscript numbers
are wavelengths in nm.

Metric Full Name Formula References

NDVI normalized difference
vegetation index

ρ860−ρ670
ρ860+ρ670

[45]

EVI enhanced vegetation index 2.5× ρ860−ρ650
ρ860+6×ρ650−7.5×ρ470+1 [46]

NDII normalized difference
infrared index

ρ860−ρ2130
ρ860+ρ2130

[47]

SFA spectral feature analysis

area670nm = areabelow − areaabove,
where areabelow and areaabove are
relative to the continuum line

using endpoints at 540 and 760 nm

[56]

MESMA multiple endmember
spectral mixture analysis [57]

PLS partial least squares
regression [58]

Table 2. Metrics related to non-photosynthetic vegetation (NPV) fractional cover. ρ is reflectance;
all subscript numbers are wavelengths in nm.

Metric Full Name Formula References

CAI cellulose absorption index 0.5× (ρ2030 + ρ2210) − ρ2100 [53]

LCA ligno-cellulose absorption index (ρ2200 − ρ2160) + (ρ2200 − ρ2330) [54]

hSINDRI hyperspectral SWIR normalized
residue index

ρ2210−ρ2260
ρ2210+ρ2260

[55]

SFA spectral feature analysis

area2100nm = areabelow − areaabove,
where areabelow and areaabove are

relative to the continuum line using
endpoints at 2040 and 2210 nm

[56]

MESMA multiple endmember spectral
mixture analysis [57]

PLS partial least squares regression [58]

Soil does not have characteristic absorption features like GV (chlorophyll) or NPV (lignin and
cellulose). Soil spectra may express many different mineral absorptions, or none at all in the VSWIR
wavelengths [59], so no single index was available to apply to the spectral libraries used in this study.
Instead, the indices with the lowest RMSE for predicting validation library GV and NPV fractional
cover were used to create a narrowband index soil approximation (Table 3). This metric was calculated
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as 1 − (GVNDVI + NPVCAI), where GVNDVI is GV cover estimated using the best-fit polynomial function
for NDVI and NPVCAI is NPV cover estimated using the best-fit linear function for CAI.

Table 3. Metrics related to soil fractional cover.

Metric Full Name

1 − (GVNDVI + NPVCAI) narrowband index soil approximation
1 − (GVSFA + NPVSFA) SFA soil approximation

MESMA multiple endmember spectral mixture analysis
PLS partial least squares regression

Spectral feature analysis (SFA) with continuum removal was applied to selected absorption
features for estimating GV and NPV fractional cover, including the 670 nm chlorophyll absorption
feature to estimate GV cover (Table 1) and the 2100 nm lignocellulose feature to estimate NPV cover
(Table 2). A second lignocellulose absorption feature at 2300 nm has been previously linked to plant
biochemical composition [60,61], but the 2100 nm feature was selected for use with SFA due to higher
signal-to-noise in the simulated VSWIR spectra. Continuum removal is a method used to isolate and
remove the influence of the other absorptions present in the spectrum, not including the absorption
feature of interest [62]. In linear continuum removal, the continuum is defined by the line connecting
bands at points on the left and right sides of an absorption feature. Area between the spectrum and
the continuum line, both above (areaabove) and below (areabelow) the line, can be calculated, using the
continuum line to normalize the reflectance values [56]. Parameters such as feature depth and area
have been correlated with the amount or concentration of an absorbing chemical [56,60].

Since the spectra analyzed in this study included the full range of GV and NPV cover, including
spectra containing no GV or NPV cover, some spectra did not have absorption features at 670 and
2100 nm and reflectance could exceed the continuum line. To account for area both above and below
the continuum line, net area was calculated as areabelow − areaabove. This net area has higher positive
values when an absorber in the continuum range is present, and allows for negative values when an
absorber is not present and spectral shape leads to a net area above the continuum line.

The two net area metrics, area670nm and area2100nm, were calculated using USGS Processing Routines
in IDL for Spectroscopic Measurements (PRISM) software [63]. Both net area metrics were calculated
for the training spectral library, and then regressed against GV cover and NPV cover respectively,
using a second-degree polynomial model for GV and a linear model for NPV. The resulting regression
coefficients were then applied to the validation spectral library to predict both GV and NPV fractional
cover. Similar to spectral indices, SFA was unable to directly estimate soil cover due to the lack of a
characteristic absorption feature. To approximate soil fractional cover for the validation library using
SFA, the sum of SFA-estimated GV cover (SFAGV) and NPV cover (SFA-NPV) was subtracted from one
(Table 3).

The final two metrics used the entire VSWIR spectrum from 400 to 2500 nm, excepting the water
vapor influenced bands shown in black in Figure 1. Multiple endmember spectral mixture analysis
(MESMA; [57]) was used to directly estimate GV, NPV, and soil fractional cover based on linear mixtures
of selected endmembers. MESMA is an extension of spectral mixture analysis, which uses a fixed set of
endmembers to model fractional cover within a pixel [1]. Each endmember represents a particular type
of pure cover, and each pixel or spectrum is modeled as a linear combination of those endmembers.
Endmember fractions are constrained to sum to one. Unlike simple spectral mixture analysis, MESMA
allows the number and identity of endmembers to change, such that multiple spectra could represent
pure GV, NPV, or soil cover. We used three- and four-endmember mixing models, where each model
consisted of a photometric shade endmember and two or three non-shade endmembers taken from GV,
NPV, and soil cover types. MESMA assigns the best-fit mixing model and the resulting estimated cover
fractions to each modeled spectrum. For comparison with field-assessed fractional cover data, fractions
estimated by MESMA are shade normalized, dividing each fraction by the sum of the non-shade
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fractions. MESMA has been widely used to model sub-pixel fractional cover using multispectral and
hyperspectral data [64].

Endmember selection is typically the most effort-requiring step for fractional cover modeling
using MESMA, since different endmember libraries can result in large differences in predicted fractional
cover. Local investigations typically achieve the best performance by developing endmember libraries
that capture variability in specific species, vegetation condition, and terrain [64]. For use on pooled
data from six datasets using spatial and temporal subsets, we developed a more generic approach that
selects optimal endmember models, rather than optimal endmembers. First, potential endmembers
were selected from the training library by requiring at least 95% fractional cover in one of the three
cover types. The endmember average RMSE (EAR) technique, as described by [65,66] and implemented
in ViperTools [67], was used to find the most six most representative GV, NPV, and soil endmembers
from the training library. Three- and four-endmember mixing models, where each model consisted
of a photometric shade endmember and two or three non-shade endmembers, were then used to
model the training library. Endmember fractions were constrained to between −10% and 110%.
Six endmembers for each cover type provided a total of 324 unique mixing models: 36 GV-NPV-shade
models, 36 NPV-soil-shade models, 36 GV-soil-shade models, and 216 GV-NPV-soil-shade models.
An iterative approach [68,69] was used to select the individual three- and four-endmember mixing
models that most accurately estimated cover fractions in the training library. Models were iteratively
added to and subtracted from a model list, and changes to the model list that resulted in the largest
improvement in mean fraction RMSE were retained. This process selected 29 individual mixing
models before mean RMSE could no longer be improved, including six GV-NPV-shade models,
nine NPV-soil-shade models, seven GV-soil-shade models, and seven GV-NPV-soil-shade models.
The model set selected from the training library was then applied to the validation library, and the
best-fit model was used to assign an estimated fractional cover to each spectrum. Modeled fractions
were shade normalized, dividing each fraction by the sum of the non-shade fractions. Due to shade
normalization, the final fractional cover modeled by MESMA could be outside the range of −10%
to 110%.

Partial least squares regression (PLS) was the final spectroscopic method used to estimate GV,
NPV, and soil fractional cover. PLS uses orthogonal projection to create latent vectors (components)
that model the relationship between fractional cover and spectral reflectance, and is an appropriate
method for dealing with the multicollinearity inherent in hyperspectral reflectance data [70]. PLS has
been widely applied in remote sensing to estimate plant biochemical constituents [71–73]. The R
package pls [58] was used to construct a separate single-response PLS model for each cover type.
Overfitting using an inflated number of components is a concern for PLS, and as a result our models
were trained using subsets of the training library. Eighty percent of the training library was selected
over 100 iterations, and model fit was determined using leave-one-out validation for each training
library subset. The optimal number of components was determined when the prediction residual sum
of squares (PRESS) was minimized, and successive components did not improve RMSE as assessed
using a t-test. Once the optimal number of components was determined, a final PLS model was created
using the entire training library, and the model was subsequently applied to the validation library
using the same number of components.

Based on the metrics described above and in Tables 1–3, predicted cover fractions were compared
to actual cover fractions for the 698 spectra in the validation library. No attempt was made to correct
predicted fractional cover that was less than zero or that exceeded one. RMSE was calculated for each
metric, and a best-fit linear function was used to calculate the coefficient of determination (R2).

3. Results

GV fractional cover was estimated with lower error in comparison to NPV and soil fractional
cover (Table 4). Due to the spectral distinctiveness of GV cover, both simple indices and spectroscopic
methods performed relatively well in predicting fractional cover. NDVI, one of the most basic



Remote Sens. 2019, 11, 2072 11 of 23

vegetation indices, and SFA, a spectroscopic method focusing solely on a chlorophyll absorption feature
in this case, outperformed the other metrics when applied to the validation library. Plots comparing
predicted and actual GV fractions from the validation library demonstrate underestimation of GV
fraction at the highest levels of fractional cover (Figure 3), with the exceptions of MESMA (Figure 3e)
and PLS (Figure 3f). High GV fraction spectra were a relatively small percentage of the training library,
and lower representation combined with the non-linear relationship between metrics and chlorophyll
absorption are likely responsible for underestimation of GV. NDVI and EVI performed similarly at
intermediate GV fractional cover (Figure 3a,b). At high GV cover, EVI was better able to account for
saturation effects, but at very low GV cover, EVI produced higher error in estimated GV fractions,
in balance resulting in higher RMSE.

Table 4. Root mean squared error (RMSE) and R2 values for fractional cover metrics, ordered by cover
type and then from lowest to highest validation library RMSE.

Cover Training Validation
Type Metric RMSE R2 RMSE R2

GV NDVI 0.115 0.865 0.115 0.845
GV SFA 0.108 0.880 0.115 0.841
GV PLS 0.075 0.942 0.125 0.807
GV EVI 0.133 0.817 0.130 0.794
GV NDII 0.138 0.805 0.147 0.753
GV MESMA 0.136 0.846 0.149 0.793

NPV PLS 0.102 0.873 0.164 0.641
NPV SFA 0.175 0.627 0.176 0.587
NPV CAI 0.187 0.572 0.177 0.618
NPV MESMA 0.159 0.711 0.181 0.592
NPV LCA 0.201 0.509 0.211 0.476
NPV hSINDRI 0.261 0.167 0.256 0.157
Soil PLS 0.089 0.933 0.126 0.850
Soil MESMA 0.144 0.831 0.135 0.832
Soil 1 − (GVNDVI + NPVCAI) 0.197 0.736 0.141 0.870
Soil 1 − (GVSFA + NPVSFA) 0.175 0.748 0.167 0.804

NPV fractional cover had higher validation RMSE values than GV or soil (Table 4). PLS had the
lowest validation RMSE for NPV. SFA and CAI, both based on the 2100 nm lignocellulose absorption
feature, produced similar NPV validation RMSE values, but demonstrated very different errors when
plotted (Figure 4). CAI, LCA, and hSINDRI overestimated NPV fraction for spectra possessing
high GV fraction (Figure 4a–c). hSINDRI demonstrated a particularly poor relationship between
predicted and actual NPV fraction (Table 4, Figure 4c). All four metrics based solely on lignocellulose
absorption tended to underestimate NPV cover at the highest fractions, while MESMA and PLS did
not demonstrate this tendency.

Unlike other metrics, the MESMA mixing models we created could explicitly exclude one of the
cover types when modeling a spectrum. For example, a mixture of GV and NPV with no soil could
be modeled by a three-endmember model consisting only of a GV endmember, an NPV endmember,
and a shade endmember. Discriminating NPV and soil at low fractional cover is difficult, however,
and MESMA sometimes chose an incorrect three endmember model. Figure 4e demonstrates that
several crop spectra with no actual NPV cover were assigned a best-fit model including an NPV
endmember, when a three-endmember model including no NPV endmember would have been
more appropriate.
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(a) NDVI, (b) EVI, (c) NDII, (d) SFA, (e) MESMA, and (f) PLS. See Table 1 for metric definitions.
The color of each point indicates the actual GV, NPV, and soil fraction. The diagonal line is a 1:1 ratio
and the symbol indicates the vegetation type in the source dataset.
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Figure 4. Actual vs. predicted non-photosynthetic vegetation (NPV) fractional cover for the validation
library for (a) CAI, (b) LCA, (c) hSINDRI, (d) SFA, (e) MESMA, and (f) PLS. See Table 2 for metric
definitions. The color of each point indicates the actual GV, NPV, and soil fraction. The diagonal line is
a 1:1 ratio and the symbol indicates the vegetation type in the source dataset.
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Soil fractions were estimated with lower validation RMSE than NPV, but soil error values should
be viewed cautiously. Forty-four percent of the training library spectra and 47% of the validation
library spectra contained no soil cover, resulting in a large spread of predicted soil fraction values at
the lowest end of actual soil fraction values (Figure 5). Relatively poorer representation of soil also
likely improved model fits over the training data for all metrics except PLS (Table 4). PLS had the
lowest validation RMSE for soil. Both the index and SFA approximations overestimated soil fractions
below 0.5, while MESMA and PLS did not show a systematic bias.
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Across all three cover types, PLS had the lowest average validation RMSE (0.138). Index-based
methods had the next lowest average validation RMSE (0.146), with the caveat that CAI demonstrated
poor performance on spectra with high GV cover, which were underrepresented in our analysis.
SFA (0.153) and MESMA (0.155) had similar average RMSE across all three cover types. While PLS
showed the best performance in distinguishing NPV and soil, PLS was not without issues. A large
number of latent components, 57 for GV and soil and 99 for NPV, resulted from the training library.
PLS coefficients picked up some important spectral features, including higher weightings for visible,
red edge, and NIR wavelengths for predicting GV fractions and a high weighting for a 1730 nm
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feature associated with lignocellulose for predicting NPV fractions (Figure 6). Other spectral features
highlighted by the PLS coefficients make less intuitive sense, like a peak for NPV at 660 nm near the
chlorophyll absorption maximum. Difficult-to-interpret coefficient spectra is a common outcome of
PLS [72,73], although high frequency variation in our coefficients may indicate that overfitting was still
occurring despite our efforts to minimize it.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 23 

 

Across all three cover types, PLS had the lowest average validation RMSE (0.138). Index-based 
methods had the next lowest average validation RMSE (0.146), with the caveat that CAI demonstrated 
poor performance on spectra with high GV cover, which were underrepresented in our analysis. SFA 
(0.153) and MESMA (0.155) had similar average RMSE across all three cover types. While PLS showed 
the best performance in distinguishing NPV and soil, PLS was not without issues. A large number of 
latent components, 57 for GV and soil and 99 for NPV, resulted from the training library. PLS 
coefficients picked up some important spectral features, including higher weightings for visible, red 
edge, and NIR wavelengths for predicting GV fractions and a high weighting for a 1730 nm feature 
associated with lignocellulose for predicting NPV fractions (Figure 6). Other spectral features 
highlighted by the PLS coefficients make less intuitive sense, like a peak for NPV at 660 nm near the 
chlorophyll absorption maximum. Difficult-to-interpret coefficient spectra is a common outcome of 
PLS [72,73], although high frequency variation in our coefficients may indicate that overfitting was 
still occurring despite our efforts to minimize it. 

 

Figure 6. Partial least squares regression coefficients for GV, NPV, and soil fraction models. 

4. Discussion 

Our results demonstrated that spectroscopic methods like PLS, SFA, and MESMA have 
advantages over simple hyperspectral indices, including in many cases lower RMSE and improved 
ability to estimate GV and NPV fractional cover at extreme high values. The gap between 
spectroscopic methods and spectral index performance was relatively small for GV cover, since 
spectral features associated with GV cover are much more distinct than the spectral features that 
allow for separation of NPV and soil. Spectral indices, even those using narrow bands optimized for 
lignocellulose absorption, were less accurate for estimating NPV fractions than spectroscopic 
measures such as SFA and PLS. Spectra with elevated GV fractions were particularly problematic for 
spectral indices associated with NPV. Figure 7 shows an example comparison of two spectra with 
very different actual fractional cover but similar CAI values. DH-crop spectrum “SF_032” was 12% 
NPV, 88% GV, and 0% soil. A second spectrum from the same dataset, “SF_101,” was more 
characteristic of a moderate NPV cover spectrum with 65% NPV, 29% GV, and 6% soil. Visible, NIR, 
and SWIR reflectance are broadly different in this example, but CAI values were essentially the same 
(0.00743 for SF_032 and 0.00795 for SF_101). CAI underestimated NPV fraction by 10% for SF_101, 

-125

-100

-75

-50

-25

0

25

50

75

100

400 700 1000 1300 1600 1900 2200 2500

PL
S 

co
ef

fic
ie

nt
s

Wavelength (nm)

NPV GV Soil

Figure 6. Partial least squares regression coefficients for GV, NPV, and soil fraction models.

4. Discussion

Our results demonstrated that spectroscopic methods like PLS, SFA, and MESMA have advantages
over simple hyperspectral indices, including in many cases lower RMSE and improved ability to
estimate GV and NPV fractional cover at extreme high values. The gap between spectroscopic methods
and spectral index performance was relatively small for GV cover, since spectral features associated
with GV cover are much more distinct than the spectral features that allow for separation of NPV and
soil. Spectral indices, even those using narrow bands optimized for lignocellulose absorption, were less
accurate for estimating NPV fractions than spectroscopic measures such as SFA and PLS. Spectra with
elevated GV fractions were particularly problematic for spectral indices associated with NPV. Figure 7
shows an example comparison of two spectra with very different actual fractional cover but similar
CAI values. DH-crop spectrum “SF_032” was 12% NPV, 88% GV, and 0% soil. A second spectrum from
the same dataset, “SF_101,” was more characteristic of a moderate NPV cover spectrum with 65% NPV,
29% GV, and 6% soil. Visible, NIR, and SWIR reflectance are broadly different in this example, but CAI
values were essentially the same (0.00743 for SF_032 and 0.00795 for SF_101). CAI underestimated
NPV fraction by 10% for SF_101, but due to similar relative reflectances, overestimated NPV fraction
by 43% for SF_032. Use of additional spectral information, including reflectance across the visible,
NIR, and SWIR, can clearly distinguish that SF_032 does not have moderate NPV cover. To accurately
predict NPV fractional cover across the full range of GV cover, a spectroscopic method should be used.
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Figure 7. A comparison of a low NPV cover spectrum (SF_032) and moderate NPV cover spectrum
(SF_101) with similar CAI values (0.00743 and 0.00795, respectively). Squares indicate the bands used
to calculate CAI (see Table 2 for band wavelengths).

PLS and MESMA provided the most accurate estimates of soil fraction. The lack of a diagnostic
absorption feature for soil meant that predicted soil fraction was directly or indirectly dependent
on predicted GV and NPV fractions, except in the case of PLS. Clay mineral absorption features can
reduce CAI values [74], but impacts of mineral absorption features on other methods for estimating
fractional cover have not been assessed. Spectroscopic methods that can take into account a variety of
soil spectra shapes, like MESMA and PLS, may prove advantageous for estimating fractional cover
across diverse soil types. Identifying spectra dominated by minerals present in soil and rock using
spectral feature comparison methods, such as USGS Tetracorder [75] and PRISM [63] algorithms, could
reduce error by screening for a wide range of mineral spectral signatures.

Although MESMA utilized the full VSWIR spectrum, in some cases it performed more poorly
than the other two spectroscopic methods and some narrowband indices. Successful implementation
of MESMA depends on endmember selection, and alternative endmember model selection methods
could produce lower error in predicted fractions. Techniques for optimal band selection could also lead
to improved results from MESMA [76–78]. Machine learning methods like random forests and neural
networks could provide alternative methods for utilizing full spectrum data to improve fractional cover
estimation [79–81]. In providing our training and validation libraries to the remote sensing community
through ECOSIS, we are encouraging others to test alternative methods that may outperform the
methods used in this analysis.

Despite its poorer performance, MESMA may still have advantages for global fractional cover
mapping. Endmember libraries can be easily expanded to incorporate a diversity of cover types,
without requiring retraining like PLS, SFA, or narrowband indices would. Constraints used in MESMA,
such as requiring fractions to sum to one, may also be useful for producing outputs with more physically
reasonable values. Additionally, MESMA can directly estimate fractional cover from spectra without
the additional step of regression to model relationships between metrics and fractional cover.
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The training and validation library RMSE values reported in this study (Table 4) are sometimes
higher than those described by previous studies. Previous studies typically report RMSE for their
model fit to all data rather than for an independent validation dataset, making direct comparison more
difficult. Daughtry and Hunt [32] found a 0.141 RMSE for the best-fit linear relationship between CAI
and NPV cover. The Daughtry and Hunt [32] spectra were included as part of this study, but our
higher RMSE for CAI can be explained by our greater diversity in cover types and use of spatial
subsets from the DH-crop dataset for training and validation. Guerschman et al. [20] applied an
index-based mixing model to field spectrometer data to obtain RMSE values of 0.104 for GV, 0.121 for
NPV, and 0.118 for soil. Guerschman et al. [82] used indices calculated from Landsat and MODIS data
to estimate GV, NPV, and soil fractional cover across all of Australia. Their best RMSE values were for
three-pixel-by-three-pixel areas from Landsat, producing RMSE values of 0.112 for GV, 0.162 for NPV,
and 0.130 for soil. Many factors potentially contribute to differences in RMSE between this study and
previous studies, including differences in spectral resolution, differences in methods used to assess
fractional cover in the field and from spectra, and the diversity of cover types within a dataset. Use of
spatially and temporally partitioned training and validation subsets in this study likely increased
error, but hopefully is a closer approximation of errors that could be anticipated from global fractional
cover mapping.

This study highlights the urgent need for better and more diverse ground-based estimates of
fractional cover. A majority of our field spectra only contained two out of three cover fractions and
were not representative of global variability in surface types or fractional cover. Measuring fractional
cover is more difficult for higher stature vegetation, but such datasets would greatly improve the
diversity of GV cover. Wood and stems are important additions to NPV cover not captured by our
library. Even more critical is the inclusion of a greater variety of mineral spectra. Globally, a diversity
of mineral signatures can be found in semi-arid and arid regions and areas cleared of vegetation by
human activity. For example, in excess of 50 mineral signatures have been identified and mapped in
large area coverage of airborne hyperspectral imagery [83,84]. When accounted for, mineral absorption
features could increase separability of soil from NPV, leading to more accurate estimates of fractional
cover. Due to soil moisture impacts on reflectance spectra, fractional cover accuracy across a range
of soil moisture conditions needs to be assessed [33,85]. It is also important to consider that only
three cover types and their mixtures were examined in our analysis. GV, NPV, and soil mixtures are
common in natural and agricultural ecosystems, but fractional cover of snow [86,87] and impervious
surfaces [88,89] are also critically important for some applications. Modification of current techniques
or combination of algorithms that allow for multiple cover types and mixtures of cover types may be
required for accurate fractional cover mapping at global scales.

Scaling of ground-measured fractional cover to 30 m spatial resolution presents significant
challenges. Photography at ground level and transects can capture fine-scale mixtures of GV, NPV,
and soil [32], but this type of cover assessment is difficult to scale to coarser spatial resolution. High
spatial resolution satellite data can be used to classify fractional cover at meter or sub-meter scales [17],
but may miss mixtures in cover that occur at finer spatial scales, like partially senesced grasses and
mixtures of green and dead leaves. Imagery from low altitude platforms (i.e., unmanned aerial systems)
or field-deployed hyperspectral cameras may offer the best opportunity to capture centimeter-scale
mixtures of cover types over areas spanning tens or hundreds of meters. Field assessments of fractional
cover need more consistent protocols to account for spatial and temporal variation in cover types and
to allow easier integration between datasets collected across a diverse set of ecosystems. An additional
future challenge will be quantifying uncertainty in fractional cover estimates. Uncertainty in estimated
fractional cover will vary by ecosystem due to variation in vegetation type, vegetation phenology, and
the spatial scale and degree of mixing.
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5. Conclusions

Our analysis demonstrates that accuracy of fractional cover estimation across GV, NPV, and soil
cover types improves when spectroscopic methods are used. PLS, SFA, and MESMA are all promising
methods for fractional cover mapping, but for different reasons. PLS produced high accuracies within
the validation library, but coefficients were difficult to interpret and portability to other datasets is
not clear. Use of PLS for creating fractional cover products from satellite VSWIR data will require
more comprehensive training data. SFA performed well for GV and NPV but had higher error for
very high fractions of each cover type and provided the lowest accuracy for estimating soil fraction.
MESMA trailed PLS and SFA accuracies for GV and NPV cover but could benefit from alternative
methods for selecting endmember models and may have greater flexibility for mapping fractional
cover of surfaces outside of the GV-NPV-soil triad. The ability of all spectroscopic methods to estimate
soil fractional cover remains largely untested due to the relatively small number and low diversity of
soil spectra, and variation in soil reflectance will likely prove challenging to any method adopted for
global fractional cover mapping. Data from the upcoming PRISMA, HISUI, and EnMAP missions,
as well as regional airborne campaigns, will likely assist in capturing this variation and in refining
methods for global fractional cover mapping.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/18/2072/s1.
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