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Bayesian Analysis (2018) 13, Number 4, pp. 1111–1135

Bayesian Model Selection of Regular Vine
Copulas

Lutz F. Gruber∗,† and Claudia Czado‡

Abstract. Regular vine copulas are a flexible class of dependence models, but
Bayesian methodology for model selection and inference is not yet fully developed.
We propose sparsity-inducing but otherwise non-informative priors, and present
novel proposals to enable reversible jump Markov chain Monte Carlo posterior
simulation for Bayesian model selection and inference. Our method is the first
to jointly estimate the posterior distribution of all trees of a regular vine copula.
This represents a substantial improvement over existing frequentist and Bayesian
strategies, which can only select one tree at a time and are known to induce bias.
A simulation study demonstrates the feasibility of our strategy and shows that it
combines superior selection and reduced computation time compared to Bayesian
tree-by-tree selection. In a real data example, we forecast the daily expected tail
loss of a portfolio of nine exchange-traded funds using a fully Bayesian multivari-
ate dynamic model built around Bayesian regular vine copulas to illustrate our
model’s viability for financial analysis and risk estimation.

Keywords: multivariate analysis, dependence modeling, copula modeling, vine
copulas, Bayesian inference, posterior simulation, importance sampling,
simulation studies, financial analysis, risk forecasting.

1 Introduction

Multivariate models do not typically allow much customization of either marginal or
dependence characteristics. Copula modeling is a more flexible approach to capture
multivariate dependencies, in which univariate models describe marginal effects and the
joint dependence effects are modeled by a copula (Nelsen, 2006; McNeil et al., 2005;
Kurowicka and Cooke, 2006; Kurowicka and Joe, 2010). That marginal models are not
required to be from the same family or to share any characteristics makes copulas a
very convenient tool for statistical analyses. More specifically, a copula is a multivariate
distribution function C with uniform marginals. It forms a multivariate distribution F1:d

out of the univariate marginal distributions F1, . . . , Fd by modeling the joint pattern of
the transformed marginal data ui := Fi(xi) (Sklar, 1959):

F1:d(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) := C(u1, . . . , ud).

A challenge of multivariate modeling is that multivariate models can not easily be
constructed in higher dimensions. But there is a rich set of bivariate copulas available of
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which the theoretical properties are known and the densities are analytically tractable
(Joe, 2001). This motivates the pair copula construction: combine a number of different
bivariate—“pair”—copulas using nested conditioning to create a multivariate copula
(Joe, 1996; Bedford and Cooke, 2001).

A regular vine copula pair copula construction uses a sequence of linked trees V =
(T1, . . . , Td−1), called the regular vine, to specify the building plan of the pair copula
construction. Tree Tj = (Nj , Ej), 1 ≤ j ≤ (d − 1), corresponds each edge e ∈ Ej to
a parametric pair copula that is conditional on d − j variables; Be denotes the copula
family of this pair copula and θe;Be denotes its parameters.

Current literature treats tree-by-tree selection procedures that first estimate tree T1

of the regular vine V , then estimate the tree T2 conditional on the estimate of tree T1,
and so forth, until they estimate the last tree Td−1 conditional on the estimates of trees
T1, T2, . . . , Td−2; examples are Gruber and Czado (2015)’s stepwise Bayesian approach
and Dißmann et al. (2013)’s frequentist stepwise heuristics-based approach. These meth-
ods perform extremely well when the selection of the regular vine tree structure is not
important; this is the case, for example, with Gaussian data. Selection methods that
proceed tree-by-tree work less effectively with more complex data. Existing literature on
Bayesian model selection of vine copulas is mostly limited to selecting pair copulas Be,
e ∈ Ek of trees Tk ∈ V , conditional on a given regular vine tree structure V : Smith et al.
(2010); Min and Czado (2010, 2011) discuss the selection of pair copulas in drawable
vine copulas, which are a subclass of regular vine copulas. Gruber and Czado (2015)’s
is the only Bayesian strategy to also select the regular vine tree structure V , however,
as mentioned above, it proceeds tree-by-tree.

We propose sparsity-inducing but otherwise non-informative priors and provide a
fully Bayesian extension of Gruber and Czado (2015)’s Bayesian tree-by-tree method
that estimates all levels of a regular vine copula jointly. Our method is the first to se-
lect all levels of a regular vine copula simultaneously and it is the only fully Bayesian
model selection strategy that applies to the general class of regular vine copulas. Our
simultaneous selection method eliminates bias induced by tree-by-tree model selection
procedures and outperforms existing procedures by a wide margin, as is shown in exten-
sive simulation studies. Our implementation is based on reversible jump Markov chain
Monte Carlo (MCMC; Green, 1995), and uses innovative ideas to generate proposals
that facilitate rapid convergence to high posterior density regions of the huge model
space. One of the approaches discussed employs a pre-MCMC importance resampling
step that allows entire regular vine tree structures be sampled according to a newly
introduced importance score.

This paper is organized as follows. Section 2 and Supplementary Appendix A (Gru-
ber and Czado, 2017) describe regular vine copulas and reversible jump MCMC, the
key model and method used in this paper. Sections 3 and 4 present our fully Bayesian
strategies to select the pair copula families (Section 3) and regular vine and pair copula
families jointly (Section 4). Both sections discuss our choice of priors and sampling al-
gorithms; the simulation studies for both methods are presented in Section 5. Section 6
shows a real data example about forecasting value at risk and expected tail loss of a
portfolio of nine exchange-traded funds, and Section 7 concludes this paper.
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Copula Notation Parameters Kendall’s τ Tail-dependence

Independence I τ = 0 λL = λU = 0
Gaussian N ρ ∈ (−1, 1) τ = 2

π arcsin(ρ) λL = λU = 0
t T ρ ∈ (−1, 1) τ = 2

π arcsin(ρ) λL = λU

ν > 1 = 2Tν+1

(
−
√

(ν + 1) 1−ρ
1+ρ

)
Double Clayton I C δ ∈ R τ = δ

2+|δ| λL = 2−1/|δ|, λU = 0

Double Clayton II C δ ∈ R τ = − δ
2+|δ| λL = 0, λU = 2−1/|δ|

Double Gumbel I G δ ∈ R τ = δ
1+|δ| λL = 0, λU = 2− 21/(1+|δ|)

Double Gumbel II G δ ∈ R τ = − δ
1+|δ| λL = 2− 21/(1+|δ|), λU = 0

Table 1: Candidate pair copula families for use in the pair copula construction, and
their parameter transformations.

2 Methods and Notation

Regular vine copulas are pair copula constructions that use a regular vine tree sequence
as their building plan and bivariate copulas as their building blocks (Joe, 1996; Bed-
ford and Cooke, 2001). We summarize key definitions and results from these papers in
Appendix A.

2.1 Notation

Regular Vines For each level k, STPk denotes the set of all spanning trees Tk =
(Nk, Ek) that satisfy the proximity condition for a given tree Tk−1 (see Definition A.1
in Appendix A; Appendix A also shows an example of a regular vine tree sequence and
permissible vine trees). The edge set Ek−1 of tree Nk−1 constitute the node set Nk of
tree Tk for k > 1; for tree T1, N1 is the set of integers from 1 to d. Note that the set of
permissible tree STPk changes when changes are made to tree Tk−1. Furthermore, B
shall denote the set of candidate pair copula families; in the remainder B will consist
of the pair copula families listed in Table 1.

Pair Copulas Table 1 lists candidate pair copula families for use in the pair copula
construction. The Double Clayton and Double Gumbel copulas combine different ro-
tations of the regular Clayton and Gumbel copulas to also allow modeling of negative
dependence:

cDouble Clayton I(u1, u2; δ) =

{
cClayton(u1, u2; δ) if δ ≥ 0,

cClayton(1− u1, u2;−δ) if δ < 0,
(1)

cDouble Clayton II(u1, u2; δ) = cDouble Clayton I(u1, 1− u2; δ), (2)

cDouble Gumbel I(u1, u2; δ) =

{
cGumbel(u1, u2; δ + 1) if δ ≥ 0,

cGumbel(1− u1, u2;−δ + 1) if δ < 0,
(3)

cDouble Gumbel II(u1, u2; δ) = cDouble Gumbel I(u1, 1− u2; δ). (4)
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The parameter transformations from the copulas’ natural parameters to their Kendall’s
τ ’s are provided in Tables 1 and 2 of Brechmann and Schepsmeier (2013).

Pair Copula Parameters Throughout this paper, all one-parameter pair copulas are
parameterized in terms of their Kendall’s τ , and the t copula is parameterized by its
Kendall’s τ and the logarithm of its degrees of freedom. The common parameterization
makes it easier to compare different copulas’ parameters and propose good parameter
values when the pair copula families change. The notation of the parameter (vector) of
the copula of edge e is θe ≡ τe for a one-parameter copulas and θe = (τe, log νe) for the
t copula. The parameters of all pair copulas of the regular vine copula are collectively
referred to by θV .

MCMC Iterates The following assumes the selection of an d-dimensional regular vine
copula C = (V ,BV ,θV). The r-th MCMC iterate of a variable, or other quantity of
interest, is superscripted by r. Proposals are superscripted by an asterisk sign (∗),
and updated variables in the r-th iteration are superscripted by r,NEW . Proposal
distributions are denoted by q and priors are denoted by π. Subscripts may be used to
detail the affiliation of these quantities.

2.2 Reversible Jump MCMC

Reversible jump MCMC (Green, 1995) is an extension of the classic Metropolis-Hasting
algorithm (Metropolis et al., 1953; Hastings, 1970) that enables simulation from target
distributions of varying dimensionality, such as they appear in Bayesian model selection.
Reversible jump MCMC has a long history of being used in Bayesian model selection
of vine copulas, see, for example, Min and Czado (2011); Gruber and Czado (2015).
Our approach is an evolution of Gruber and Czado (2015)’s to estimate all levels of
the regular vine copula jointly. In our application, the model space is the set of all
d-dimensional regular vine copulas C = (V ,BV , ·). The parameter space is the set of all
valid parameters θV of the vine copula’s pair copulas.

There are two kind of moves to update the sampling chain: within-model moves,
which update only the parameters within a given model, and between-model moves,
which update the model and its parameters simultaneously. We use standard Metropolis-
Hastings updates for the within-model moves, and carefully designed between-model
updates to achieve satisfactory exploration of the model space. Our between-model
moves are detailed in Sections 3 and 4. Algorithm 2.1 shows the general reversible jump
MCMC mechanism for posterior simulation.

Algorithm 2.1 (Reversible JumpMCMC for Posterior Simulation).

1: Select starting values: set the regular vine

V0 = (T 0
1 = (N0

1 , E
0
1), . . . , Td−1 = (N0

d−1 = E0
d−2, E

0
d−1))

to an arbitrary regular vine on d dimensions; set all pair copula families B0
V to the

independence copula, i.e., ce;Be(·, ·) = 1 for e ∈ E0
1 , . . . , E

0
d−1.

2: for each MCMC iteration r = 1, . . . , R do
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3: Perform a within-model move: update the parameters θV . Obtain updated param-
eters θr,NEW

V through a Metropolis-Hastings step with random walk proposals from
a mixture of normal distributions:

Cr = (Vr,Br
V ,θ

r
V) := (Vr−1,Br−1

V ,θr,NEW
V ).

4: Perform a between-model move: update the regular vine V along with, or only,
the pair copula families BV and parameters θV to Vr,NEW , Br,NEW

V and θr,NEW
V

(Algorithms B.1, B.2 of Appendix B):

Cr = (Vr,Br
V ,θ

r
V) := (Vr,NEW ,Br,NEW

V ,θr,NEW
V ).

5: end for
6: return the Bayesian posterior sample

(Cr)r=1,...,R = (Vr,Br
V ,θ

r
V)r=1,...,R.

3 Posterior Inference for Pair Copula Families

Our Bayesian selection strategy extends Min and Czado (2011)’s, which can only select
the pair copulas of drawable vine copulas, to select the pair copulas of general regular
vine copulas. Furthermore, our method does not share Smith et al. (2010)’s limitation
to only detect conditional independencies versus one global pair copula alternative: we
can select different copula families for each pair, and the set of candidate copula families
B is not limited to one copula family.

A scenario in which the regular vine tree structure is known is when the modeler
wishes to obtain a closed-form parametric (conditional) distribution for a specific subset
of variables. For example, the modeler could want to know what the conditional distri-
bution of variable 1 given variable 2 is; in this case, the modeler would select a regular
vine tree structure that contains the respective edges, and only leaves open the selection
of the pair copula families. In most cases, however, the regular vine tree structure is
unknown and requires model selection, which is treated in Section 4.

3.1 Priors

We choose priors that induce model sparsity, but do not otherwise skew the posterior.
Specifically, we assume

π(BV) ∝ exp(−λdBV ), (5)

π(θe | BV) ∝
{
Uniform(−1,1)(τe) if Be is a one-parameter copula,(
Uniform(−1,1)(τe) ·

1(1,30)(νe)·log(νe)∫ 30
1

log(x)dx

)
if Be is a t copula,

(6)

where dBV denotes the number of parameters of the regular vine copula C = (V ,BV ,θV)
or, equivalently, the dimension of the parameter vector θV . The prior on the parameters
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θV is uniform prior on the Kendall’s τ ’s and the log-degrees of freedom of the t copula.
We limit the degrees of freedom from above by 30 to make the prior proper, and because
the t copula becomes too similar to the Gaussian copula as ν increases.

When the effect of π(θe | BV) is neglected, the prior on the pair copula families
BV has some appealing characteristics: for λ = 0, the posterior mode will be at the
global maximum likelihood model; for λ = 1, the posterior mode will be at the global
AIC (Akaike information criterion) optimum; while λ > 1 will provide even stronger
shrinkage. Given that the independence pair copula is not likelihood-identifiable when
compared with a Gaussian copula with Kendall’s τ = 0, shrinkage priors are an effec-
tive tool to reduce over-fitting. We find that λ = 1 yields a desirous degree of model
parsimony without being too restrictive, and will use this value in the simulation study
and data example below.

3.2 Between-Model Move to Update (BV , θV)

This between-model move for our reversible jump MCMC sampler (Algorithm 2.1) up-
dates the pair copula families BV and parameters θV . It does not change the regular
vine V = (T1, . . . , Td−1), which specifies the building plan of the pair copula construc-
tion. This between-model move consists of a proposal step (Lines 1–13 of Algorithm B.1
of Appendix B) and an acceptance/rejection step (Line 14). The line numbers in this
section refer to Algorithm B.1 of Appendix B.

Proposal Step The first step selects how many pair copulas are updated,N , and selects
this many edges E ⊆ E1 ∪ · · · ∪ Ed−1 as representatives of the pair copula families to
be updated, BE = (Be | e ∈ E) (Lines 1 and 2). After this, the algorithm iterates
through each selected pair copula e ∈ E to propose a new copula family B∗

e ∈ B \ Br
e

(Lines 4–13). Our proposal step guarantees that the proposal differs in exactly N pair
copula families from the current state by excluding the current copula family from
the set of qualifying candidate families. An auxiliary step evaluates the likelihood of
each candidate pair copula family B∗

e ∈ B \ Br
e with their parameters θ̃e;B∗

e
chosen to

match the current copula’s Kendall’s τ and tail-dependence coefficients λL or λU . If
the parameters of the proposal copula are not identifiable by Kendall’s τ and the upper
and lower tail-dependence coefficients, λU and λL, respectively, (maximum likelihood)

parameter estimation can be used to obtain θ̃e;B∗
e
. We align the proposal distribution

closely with the posterior by making the proposal weights of each candidate family
proportional to its likelihood (Line 6):

qB(Br
e → B∗

e) ∝ L(B∗
e ; θ̃e;B∗

e
| U) for B∗

e ∈ B \ Br
e ;

but re-weight small proposal probabilities to observe a lower bound that ensures that the
acceptance probabilities of moves away from states with low proposal probabilities are
large enough for good mixing behavior of the sampling chain (Line 7): if qB(Br

e → B∗
e) <

κmaxB∈B\Br
e
qB(Br

e → B) for some candidate pair copula B∗
e , then we set qB(Br

e →
B∗
e) = κmaxB∈B\Br

e
qB(Br

e → B).
After the selected pair copulas’ proposal families are drawn from these proposal dis-

tributions, a new parameter vector θ∗
e;B∗

e
is proposed for every pair copula of the regular
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vine copula. For pair copulas e ∈ E whose families were changed, new parameters θ∗
e;B∗

e

come from a truncated normal mixture distribution centered at the matched parameter
θ̃e;B∗

e
and truncated to the domain of the respective parameters; for all other pair copu-

las e �∈ E, the new parameters θ∗
e;B∗

e
come from a truncated normal mixture distribution

centered at the current parameters’ values θr
e;Be

(Line 8). The mixture proposals im-
prove the acceptance rate of the proposals as follows. A small variance component tends
to produce high posterior density proposals; and a high variance component increases
the proposal probability of the return move φ(θ∗

e;Br
e
,Σi)(θ

r
e;Br

e
) in the numerator of the

acceptance probability (7), especially when the current state θr
e;Br

e
of the sampling chain

is not close to the proposal mean θ∗
e;Br

e
. The covariance matrices Σi and mixture weights

ωi of the parameter proposal distribution are tuning parameters.

Acceptance Step The acceptance/rejection step uses the well-established Metropolis-
Hastings acceptance probability of a proposal C∗ := (Vr,B∗

V ,θ
∗
V) to ensure that the

posterior distribution is the equilibrium distribution of the sampling chain (Line 14),

α =
L(Vr,B∗

V ,θ
∗
V | U)

L(Vr,Br
V ,θ

r
V | U)

· π(V
r,B∗

V ,θ
∗
V)

π(Vr,Br
V ,θ

r
V)

·
∏
e∈E

qB(B∗
e → Br

e)

qB(Br
e → B∗

e)

·
∑
i

ωi

⎛⎝∏
e∈E

φ(θ̃e;Br
e
,Σi)

(θr
e;Br

e
)

φ(θ̃e;B∗
e
,Σi)

(θ∗
e;B∗

e
)
·
∏
e �∈E

φ(θ∗
e;Br

e
,Σi)(θ

r
e;Br

e
)

φ(θr
e;Br

e
,Σi)(θ

∗
e;Br

e
)

⎞⎠ . (7)

This representation of the acceptance probability uses the likelihood times prior propor-
tionality of the posterior density. We write φ(μ,Σ)(·) for the density of the multivariate
normal distribution with mean μ and covariance matrix Σ. Equation (7) accounts for any
birth/death moves by implicitly shrinking or expanding the interpretation of φ(μ,Σ)(·)
as the density function of a variable-dimension normal distribution.

Pseudo Code Pseudo code of this update procedure is provided in Appendix B.1.

4 Joint Posterior Inference for the Regular Vine and
Pair Copulas

Selection of the regular vine tree structure V is more complex and computationally
intensive than selection of the pair copula families BV . The main challenge for selection

of the tree structure is the vast candidate model space: there are d!
2 × 2(

d−2
2 ) different

d-dimensional regular vine tree structures (Morales-Napoles, 2011). To illustrate this
point, there are approximately 4.87e+14 different regular vines on 10 dimensions. This
number is too high to expect posterior simulation to explore the full model space in
feasible runtime. The key performance metric for any Bayesian model selection scheme
thus becomes how quickly and reliably it moves towards high posterior density regions.

We present two different approaches for between-model moves to jointly update the
tree structure V and pair copula families BV . The first between-model move (Section 4.3)
is a local-search update that builds up the proposal for a new regular vine V tree-by-
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Vine Search Space Vine Copula Search Space
Joint Stepwise Joint Stepwise

Dimension d Selection Selection Selection Selection

2 1 1 7 7
3 3 3 1,029 154
4 24 < 20 2,823,576 < 5,642
5 480 < 145 1.3559e+11 < 305,767
6 23,040 < 1,441 1.0938e+17 < 22,087,639
7 2,580,480 < 18,248 1.4413e+24 < 1.9994e+9
8 660,602,880 < 280,392 3.0387e+32 < 2.1789e+11
9 3.8051e+11 < 5,063,361 1.0090e+42 < 2.7791e+13
10 4.8705e+14 < 105,063,361 5.2118e+52 < 4.0632e+15

Table 2: Size of the search space for vines V and vine copulas (V ,BV) with seven can-
didate families, i.e., |B| = 7, by dimension d.

tree, starting from the current state vine; the second move (Section 4.4) uses importance
sampling to draw entire regular vine tree sequences from a weighted distribution of vines.

4.1 Differences to Gruber and Czado (2015)’s Selection Method

Gruber and Czado (2015)’s method performs a Bayesian tree-by-tree posterior simu-
lation of each level k = 1, . . . , d − 1 of a regular vine copula, conditional on already
selected states of the previous levels 1, . . . , k−1. The posterior distribution of each level
is collapsed into the posterior mode so that the model selection procedure can proceed
to the next level k+1. In the end, one obtains a level-by-level Bayesian procedure that
produces a point estimate of the model. In this paper, we present a method to estimate
the posterior distribution of all levels of a regular vine copula jointly—the output are
many different regular vine copulas that represent draws from the posterior distribution
of all regular vine copulas.

The key conceptual adjustment to change the equilibrium distribution of the sam-
pling chain is to swap the two nested for-loops in the general sampling algorithm: in
Gruber and Czado (2015), the outer for-loop iterates through the levels of the regular
vine copula and the inner for-loop runs through the MCMC iterations; contrariwise,
our outer for-loop runs through the MCMC iterations while the inner for-loop iterates
through the levels of the regular vine copula.

This seemingly trivial swap of the nested for-loops comes with significant challenges
for successful implementation in practice: the model search space of simultaneous se-
lection of all levels is enormously larger than for tree-by-tree selection (Table 2 from
(Gruber and Czado, 2015, Table 1)). We crafted a proposal mechanism for between-
model moves that achieves quick convergence to desirable models in the large candidate
space while only requiring few tuning parameters. That said, the acceptance proba-
bilities of between-model moves are still sensitive to the choice of parameter proposal
distributions, given each step updates a large number of parameters.
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4.2 Priors

We choose priors that enforce model sparsity, but do not make structural assumptions
about the vine copula. Specifically, we assume

π(V) = discrete Uniform(·), (8)

π(BV | V) ∝ exp(−λdBV ), (9)

π(θe | V ,BV) ∝
{
Uniform(−1,1)(τe) if Be is a one-parameter copula,(
Uniform(−1,1)(τe) ·

1(1,30)(νe)·log(νe)∫ 30
1

log(x)dx

)
if Be is a t copula,

(10)

where dBV denotes the number of parameters of the regular vine copula C = (V ,BV ,θV)
or, equivalently, the dimension of the parameter vector θV . Conditionally on the regular
vine V , the priors on the pair copulas BV and parameters θV are the same as the ones
used in Section 3.1. Again, we will use λ = 1 value in the simulation study and data
example below.

4.3 Between-Model Move to Update (V,BV , θV) (Version I)

The first step selects the lowest level K of the regular vine copula that will be changed
in this iteration (Line 1 of Algorithm B.2 of Appendix B); all subsequent trees TK , . . . ,
Td−1 will have to be adjusted, too, as the proximity condition (Definition A.1) ties them
to the lower-level trees. This between-model move leaves the trees and pair copulas of
the levels k = 1, . . . ,K − 1 unchanged from the current state. The line numbers in this
section refer to Algorithm B.2 of Appendix B.

Vine Proposal Step The proposal for tree T ∗
K = (NK , E∗

K) ∈ STPK \ T r
K of level K

can come from a weighted distribution over the set of candidate trees STPK (Line 4).
Possible versions of this include independent uniform proposals (11), Kendall’s τ -weight-
ed proposals (12), or random walk proposals (13),

qT (T
r
K → T ∗

K) = qT (T
∗
K) ∝ 1, (11)

qT (T
r
K → T ∗

K) = qT (TK∗) ∝
∏

e∈E∗
K

(δ + |τe|), (12)

qT (T
r
K → T ∗

K) ∝ p|E
∗
K∩Er

K | · (1− p)|E
∗
K\Er

K |. (13)

The parameters p and δ of the proposal distributions for tree TK are MCMC tuning
parameters. Values p > 0.5 increase the probability that the proposal tree T ∗

K has many
common edges with the current state tree T r

K ; the situation is reversed for p < 0.5. Small
values of δ skew the proposal distribution towards trees T ∗

K with heavy edge weights (in
absolute Kendall’s τ ’s), while large values of δ decrease the impact of edge weights on
the proposal probabilities, which makes the proposal distribution more uniform.

The proposals for trees TK+1, . . . , Td−1 are drawn from a discrete uniform distribu-
tion over all permissible trees, qT (T

r
k → T ∗

k ) = qT (T
∗
k ) =

1
|STPk| (Line 6). Note that the
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set STPk, and its cardinality, depend on the lower level trees T1, . . . , Tk−1. The proposal
probabilities will not generally cancel each other out in the acceptance probability, as
a result (17).

Family and Parameter Proposal Step The proposals for the pair copula families B∗
k =

{B∗
e∗ | e∗ ∈ E∗

k} of levels k = K:(d − 1) are generated similar to Algorithm B.1 of
Appendix B (Lines 4–13 in Algorithm B.1 of Appendix B; Lines 10–21 in Algorithm B.2
of Appendix B). However, the selection of the pair copula families is adapted in two
ways: first, all pair copula families in B are now permissible candidates; second, the
parameters θ̃e∗;B∗

e∗
of each pair copula e∗ ∈ E∗

k are chosen such that the theoretical

Kendall’s τ , and tail-dependence coefficients λL and λU of the t copula, agree with the
corresponding empirical quantities of the data (ui(e∗);D(e∗),uj(e∗);D(e∗)). Alternatively,
the parameters could be maximum likelihood-estimated, but this would be substantially
more computationally expensive.

Once new trees and pair copula families are proposed, we propose new parameters
θ∗
V = (θ∗

1, . . . ,θ
∗
d−1) for the pair copulas of all levels k = 1, . . . , d − 1. The proposal

parameters θ∗
k for pair copulas e from levels k = 1, . . . ,K − 1 are drawn from a normal

mixture distribution centered at the current parameters θr
e;Br

e
(Line 20); the proposal

parameters θ∗
k for pair copulas e∗ from levels k = K, . . . , d − 1 are centered at the

parameters θ̃e∗;B∗
e∗

(Line 15).

Proposal Summary The complete proposal state is C∗ = (V∗,B∗
V ,θ

∗
V), where

V∗ = (T r
1 , . . . , T

r
K−1, T

∗
K , . . . , T ∗

d−1), (14)

B∗
V = (Br

1, . . . ,Br
K−1,B∗

K , . . . ,B∗
d−1), and (15)

θ∗
V = (θ∗

1, . . . ,θ
∗
d−1). (16)

Acceptance Step The proposal C∗ = (V∗,B∗
V ,θ

∗
V) is accepted with acceptance prob-

ability (Line 22)

α =
L(V∗,B∗

V ,θ
∗
V | U)

L(Vr,Br
V ,θ

r
V | U)

· π(V
∗,B∗

V ,θ
∗
V)

π(Vr,Br
V ,θ

r
V)

·
∏

k=K:(d−1)

qT (T
∗
k → T r

k )

qT (T r
k → T ∗

k )
·

∏
k=K:(d−1)

∏
e∈Er

k
qB(Br

e)∏
e∗∈E∗

k
qB(B∗

e∗)

·
∑
i

ωi

⎛⎝ ∏
k=1:(K−1)

∏
e∈Er

k

φ(θ∗
e;Br

e
,Σi)(θ

r
e;Br

e
)

φ(θr
e;Br

e
,Σi)(θ

∗
e;Br

e
)

·
∏

k=K:(d−1)

∏
e∈Er

k
φ(θ̃e;Br

e
,Σi)

(θr
e;Br

e
)∏

e∗∈E∗
k
φ(θ̃e∗;B∗

e∗
,Σi)

(θ∗
e∗;B∗

e∗
)

⎞⎠ . (17)

This Metropolis-Hastings acceptance probability ensures that the sampling chain will
have the joint posterior distribution of the regular vine V , pair copula families BV and
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parameters θV as its stationary distribution. Equation (17) uses the likelihood times
prior proportionality of the posterior density.

Pseudo Code Pseudo code of this update procedure is provided in Appendix B.2.

4.4 Between-Model Move to Update (V,BV , θV) (Version II)

This between-model move to update the regular vine V generates a large importance
sample of regular vines that it will draw its proposals from. The proposals for the pair
copula families BV and parameters θV are generated as in the previous section.

Motivation We would like to generate proposals that lie in high-posterior density
regions for most efficient MCMC sampling. We observe that the posterior density is
typically dominated by the likelihood function of the model, unless overly informative
priors are used. We propose a score SV that approximates the expected log-likelihood of
a regular vine copula with a given regular vine tree structure V and will use importance
re-sampling to generate proposals from a distribution qT (V) ∝ SV .

Scoring We propose the sum of squared Kendall’s τ ’s of all pairs as an approximation
of the expected log-likelihood of a regular vine tree structure V :

SV :=
∑

k=1:(d−1)

∑
e∈Ek

τ2e . (18)

We exploit a few facts about regular vine copulas to back up our score approximation:
1) the log-likelihood of a regular vine copula can be obtained as the sum of the log-
likelihoods of all pair copulas; 2) if all pair copula families are Gaussian, the resulting
regular vine copula is a multivariate Gaussian copula irrespective of its regular vine tree
structure; 3) the correlation parameter of each pair copula equals that pair’s partial
correlation; 4) the correlation parameter Pearson’s ρ can be transformed to Kendall’s
τ ; and 5) the expected likelihoods of the pair copula families listed in Table 1 tend to
increase with the strength of association parameter Kendall’s τ .

Pre-MCMC Importance Sampling Before the start of our reversible jump MCMC
sampler (Algorithm 2.1), we generate a large importance sample with different regular
vine tree structures V (Algorithm B.3 of Appendix B). We generate the samples Vi,
i = 1, . . . , I, from conditionally uniform tree-by-tree proposal distributions

q(V) =
∏

k=1:(d−1)

q(Tk|T1, . . . , Tk−1), where (19)

q(Tk|T1, . . . , Tk−1) =
1

|STPk|
. (20)

Each sample Vi is assigned importance weight αi =
SVi

q(Vi) .
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Algorithm Parameter

B.1 p(N = k) = 1
4 log

(
1− 1−e−4

NVe−4+k(1−e−4)

)
, where NV is the number of

pair copulas of the regular vine copula
B.1 and B.2 κ = 0.05
B.1 and B.2 ω1 = 0.9;

Σ1 = 0.0032 for the Kendall’s τ of one-parameter copulas;

Σ1 =

(
0.0032 0

0 0.032

)
for the (τ, log ν) parameter vector of the t

copula;
ω2 = 0.1 and Σ2 = 102Σ1

B.2 qT (T
r
K → T ∗

K) ∝
∏

e∈E∗
K
(δ + |τe|) with δ = 0.2;

qT (T
r
k → T ∗

k ) =
1

|STPk| for k > K

Table 3: MCMC tuning parameters for Algorithms B.1 and B.2 of Appendix B.

Vine Proposal Step At iteration r of Algorithm 2.1, a proposal regular vine V∗ is
drawn from the importance sample (Vi, αi), i = 1, . . . , I (Algorithm B.4 of Appendix B).

Pseudo Code Pseudo code detailing this importance sampling and update procedure
is provided in Appendix B.3.

5 Simulation Studies

5.1 Estimation of (BV , θV)

We generate multiple simulation data sets from different regular vine copulas to apply
our Bayesian selection strategy to. Initial values for our MCMC simulation are regular
vine copulas with the true models’ tree structures but Gaussian pair copulas for all
pairs.

Our reversible jump MCMC sampler was run with the tuning parameters described
in Table 3. These settings were used throughout this paper: in the simulation study
for the selection of the pair copula families for the 6-dimensional and 10-dimensional
simulation data, for the joint selection of the regular vine structure and pair copula
families for the 6-dimensional and 10-dimensional simulation data, and for the real data
example with 9-dimensional data. The results are based on the last 15,000 MCMC
iterations of a total of 20,000, and the analyses were replicated 100 times each.

Simulation Software

We implemented our model selection procedure in a proprietary C++ software pack-
age. Our software uses OpenMP for shared memory parallelization of the likelihood
computation and parameter optimization. Our software uses the random spanning tree
and minimum spanning tree algorithms provided by the boost graph library, and our
numerical optimizer uses the CppAD library for automatic differentiation.
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Scenario 1 2 3 4

# Pairs 15 15 15 15
# I pairs 0 0 10 0
# Selected as I 0 0 10 0
# T pairs 2 3 1 0
# Selected as T 2 3 1 0
# Shrunk to I, N, G, C 0 0 0 0
# N pairs 6 4 2 15
# Selected as N 6 4 2 15
# Shrunk to I 0 0 0 0
# G or C pairs 7 8 2 0
# Selected as G or C 7 8 2 0
# Shrunk to I 0 0 0 0

Table 4: Summary of the simulation study in 6 dimensions.

6-Dimensional Test Data

This analysis re-uses the simulation data sets from Gruber and Czado (2015), but with
a different focus: here we assume the true models’ regular vine tree structures as known
and simultaneously select all pair copula families; Gruber and Czado (2015) selected
the regular vine trees and the pair copula families sequentially by tree. All of the 100
simulation data sets for each scenario consist of 500 entries. The data generating regular
vine copulas are shown in Tables 13–16 of Appendix D.

Table 4 summarizes the results of this study, based on the aggregated posterior
distribution of the pair copula families across all 100 replications (see Tables 13–16 of
Appendix D). The posterior mode family of every pair copula agrees with the one of the
true model, providing empirical support of our selection strategy. The posterior modes
of most pairs have empirical posterior probabilities in excess of 80%. Furthermore, the
results of Scenario 3 also show that our shrinkage priors reliably detect independence
pair copulas, which define sparsity patterns and can allow for model reduction.

It took about 50 minutes to generate 20,000 posterior samples for 10 parallel repli-
cations on a 32-core node.

10-Dimensional Test Data

Here we use small sample, 10-dimensional data with each simulation data set consisting
of only 200 entries. We expect more widely-dispersed posteriors resulting from the com-
bination of less information and a larger candidate model space. Again, the selection is
replicated 100 times with independently drawn simulation data sets from each scenario
to minimize sample bias.

There are seven main scenarios that cover three different regular vine structures (X1,
X2, X3) that are truncated at different levels (T2, T3, etc.) to exhibit varying degrees
of sparsity. The main goal of this simulation study is to establish that our Bayesian



1124 Bayesian Model Selection of Regular Vine Copulas

Scenario X1-T6 X1-T2 X2-T8 X2-T3 X3-T9 X3-T3 X3-T2

# Pairs 45 45 45 45 45 45 45
# I pairs 11 29 11 27 10 23 29
# Selected as I 11 29 10 27 6 23 29
# T pairs 6 3 5 3 8 6 5
# Selected as T 0 0 4 0 5 1 0
# Shrunk to N, G, C 6 3 1 3 2 5 5
# Shrunk to I 0 0 0 0 1 0 0
# N pairs 8 4 13 8 9 6 5
# Selected as N 7 4 8 6 7 6 5
# Shrunk to I 1 0 4 2 1 0 0
# G or C pairs 20 9 16 7 18 10 6
# Selected as G or C 15 9 12 6 15 9 6
# Shrunk to I 4 9 1 1 3 1 0

Table 5: Summary of the simulation study in 10 dimensions.

Figure 1: Log-likelihood trace plot of replication 1 of Scenario X3-T9.

selection method can converge quickly to high posterior density regions, shows good
mixing behavior across different models, and identifies sparsity patterns.

Table 5 summarizes the results of this study. The data generating models as well
as the complete aggregated posterior analysis is shown in Tables 17–23 of Appendix D.
Detection of conditional independencies is excellent: in five scenarios, all conditional
independencies are identified; in the remaining two scenarios 10 out of 11, and 6 out of
10 independence pairs are identified. Furthermore, most scenarios see additional pairs
shrunk to (conditional) independence, and some t pair copulas shrunk to one-parameter
copulas, as is expected from our combination of small sample size and a shrinkage prior.
The vast majority of pair copulas selected for the remaining, not-shrunk, pairs (125 out
of 131) preserve the original copulas’ tail-dependence and symmetry characteristics.

The generation of 20,000 reversible jump MCMC iterations for 10 parallel scenarios
took about 60 minutes to complete on a 32-core node. The log-likelihood trace plot of
Figure 1 shows rapid convergence to a high-posterior density set; Scenario X3-T9 was
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chosen for this illustration, because the smallest number of independence pairs should

make it the most challenging for model selection. This suggests that our strategically

designed proposals can quickly explore the candidate model space, which contained

|B|45 = 745 models. Our results illustrate that Bayesian model selection is possible in

a very large discrete model space, and that the use of reversible jump MCMC can be

suitable for such large-scale problems.

Summary Comments

Our fully Bayesian model selection strategy for the pair copula families of regular vine

copulas extends beyond selection strategies discussed in existing literature. We showed

that our proposed Bayesian selection method and reversible jump MCMC implemen-

tation work very well together in obtaining Bayesian posterior samples. Scalability in

dimension d seems unproblematic, given that the computational run time and selection

accuracy did not deteriorate significantly from dimension d = 6 to d = 10. Furthermore,

our proposed shrinkage prior is effective in avoiding over-fitting, while it still lets the

posterior sample retain all relevant copula pairs. As expected, there was no obvious

effect of the tree structure on selection performance.

5.2 Joint Estimation of (V,BV , θV)

We will show empirical evidence that our reversible jump MCMC scheme selects suitable

models and compare the results from our novel, fully Bayesian model selection method

with those from selection methods suggested in existing literature (Dißmann et al. (2013)

for frequentist and Gruber and Czado (2015) for Bayesian tree-by-tree selection) to

provide context perspective and highlight the benefits of using our strategy.

The analysis will focus on evaluating the log-likelihoods as the main metric of model

fit that separates regular vine copulas with different tree structures V . Section 5.1 al-

ready evaluated sparsity detection and pair copula family selection of the pair copula

family updates, which we will re-use from Section 3. Our analysis is based on the

last 10,000 MCMC iterations out of 25,000. The quoted log-likelihoods of our fully

Bayesian selection methods are the averages of the log-likelihoods from MCMC itera-

tions i = 15,001, . . . , 25,000; the quoted log-likelihoods of the tree-by-tree methods are of

these methods’ point estimates. If the parameters from the fully Bayesian analysis were

averaged to their posterior means, the log-likelihoods would increase by several units.

The between-model updates are generated from a 50%–50% mixture of Algo-

rithms B.1 and B.2 of Appendix B. This means that in each iteration r = 1, . . . , R,

with probability 50%, Algorithm 2.1 will update only the pair copula families BV and

parameters θV (Algorithm B.1 of Appendix B), or jointly update the regular vine tree

structure V , pair copula families BV and parameters θV (Algorithm B.2 of Appendix B).

Given the increased complexity of this sampling scheme, all analyses are replicated only

50 times instead of 100 times as in Section 5.1.
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Scenario 1 2 3 4

True model (MLE) 3782 3434 794 1390
Seq. frequentist selection 2883 2677 800 1383
Seq. Bayesian selection 3053 2916 796 1386
Fully Bayesian selection (I) 3661 3174 785 1382
Fully Bayesian selection (II) 3697 3226 785 1382

Table 6: Average log-likelihoods across all 50 replications; the log-likelihoods of the
fully Bayesian procedures are the posterior means of the log-likelihoods, while all other
log-likelihoods are those of the point estimates. The highest log-likelihoods are in bold.

6-Dimensional Test Data

This study uses the same 6-dimensional test data sets used in Section 5.1. Table 6
shows the comparative model fit of the selected models in terms of their log-likelihoods.
Our proposed Bayesian selection strategies clearly outperform the existing methods
in selecting regular vine copulas in Scenarios 1 and 2. The true model of Scenario 3 is
truncated to the first level; this explains why the tree-by-tree selection methods perform
on par with our fully Bayesian strategy here; Scenario 4 is of a multivariate Gaussian
copula, so selection of the regular vine tree structure does not play a role and all methods
perform on a level. Furthermore, our scoring-based proposals slightly outperform the
Kendall’s τ -based proposals.

An analysis of the sampling chains reveals that once the chain has converged to a
local posterior mode, the regular vine tree structure V tends to remain at the mode with
further posterior variation only occurring in the pair copula families and parameters.
Considering that different regular vine tree structures can lead to substantially different
models, this is fully expected. The high log-likelihoods of Table 6 show that the tree
structures V occurring in the posterior sample represent suitable models, which suggests
that the posterior simulation does not get stuck at premature levels.

It took about 2 hours to generate 25,000 posterior samples for eight replications in
parallel on a 32-core node, and the preparation of the importance sample (size I =
300,000) was completed in several minutes.

10-Dimensional Test Data

This study uses the same 10-dimensional test data sets used in Section 5.1, and Table 7
compares the log-likelihoods of the selected models from different selection methods. We
only compare against Dißmann et al. (2013)’s frequentist tree-by-tree selection method,
given that Gruber and Czado (2015) only provided an analysis of 6-dimensional simu-
lation data.

There are approximately 4.87e+14 different regular vines on 10 dimensions, which
makes exploration of the full model space practically impossible. Our carefully designed
proposal mechanism enables quick convergence to high posterior density regions and suc-
ceeds in selecting more suitable models than Dißmann et al. (2013)’s frequentist strategy
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Scenario X3-T9 X2-T8 X1-T6 X2-T3 X3-T3 X1-T2 X3-T2

Number of non-trivial trees 9 8 6 3 3 2 2
True model (MLE) 1727 1707 1652 858 1256 1022 948
Seq. frequentist selection 1618 1339 1450 832 1265 1000 969
Fully Bayesian selection (I) 1717 1477 1480 822 1236 968 933
Fully Bayesian selection (II) 1729 1498 1477 825 1239 963 935

Table 7: Average log-likelihoods across all 50 replications; the log-likelihoods of the
fully Bayesian procedures are the posterior means of the log-likelihoods, while all other
log-likelihoods are those of the point estimates. The highest log-likelihoods are in bold.

in the most complex scenarios (X1-T6, X2-T8, and X3-T9). The superior performance
of simultaneous selection in estimating complex dependence models is the most signif-
icant result of this study, given that we developed simultaneous selection specifically
to estimate complex dependence structures, which were mis-selected by tree-by-tree
methods. The results in Table 7 show not only substantial improvement of goodness of
fit relative to tree-by-tree selection, but also excellent performance in absolute terms
measured against the maximum likelihoods of the true models.

The models selected by the frequentist tree-by-tree selection method have slightly
higher log-likelihoods than the average log-likelihood of our fully Bayesian posterior
samples in Scenarios X1-T2, X2-T3, X3-T3, and X3-T2, which represent models of
reduced complexity. In Scenarios X1-T2 and X3-T2, all pair copulas on levels greater
or equal to 3 are independence copulas, and in Scenarios X2-T3 and X3-T3 or all
pair copulas on levels greater or equal to 4 are independence copulas. Heavily truncated
models benefit tree-by-tree selection and harm simultaneous selection of all trees because
the latter still searches the enormously large model space of all 10-dimensional regular
vine copula while tree-by-tree selection searches a much smaller model space, at each
step conditional on assuming all higher order trees consist of independence pair copulas
only. Even so, fully Bayesian selection is just narrowly behind tree-by-tree selection here,
while tree-by-tree selection performed substantial weaker than simultaneous selection
in selecting the complex models discussed above (Scenarios X1-T6, X2-T8, and X3-T9).

It took about 3–4 hours, depending on the scenario, to generate 25,000 posterior
samples for three replications in parallel on a 32-core node; the score resampling based
strategy required an additional 40–50 minutes to prepare the importance sample (size
I = 500,000) before the start of reversible jump MCMC sampling.

Summary Comments

Our fully Bayesian model selection strategy for regular vine copulas is the first of its
kind in two ways: it is the first selection method to estimate all levels of a regular vine
copula jointly, and it is the first selection method to yield a fully Bayesian posterior
sample. Our simulation study shows that our proposed Bayesian selection method and
our reversible jump MCMC implementation work very well together in selecting su-
perior models, and perform better than existing methods when working with complex
dependence structures.
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Fully Bayesian selection of the regular vine tree structure V is challenged by the
faster-than-exponential growth of the model space in dimension d. Our study showed
that our Bayesian methods work extremely well in our d = 6 and d = 10-dimensional
simulation scenarios, especially when the data shows very complex dependence struc-
tures. Computing time restrictions mean that in practice only an increasingly small
fraction of the total model space can be explored as the dimension of the problem is
increased. With that in mind, we decided to run our MCMC sampler for “only” 25,000
iterations to highlight its quick convergence to high-posterior density regions, which is
a key to successful application in practice.

Our fully Bayesian analysis is substantially faster than Gruber and Czado (2015)’s
Bayesian tree-by-tree analysis, which performs a full posterior simulation for each level
k = 1, . . . , d − 1. In contrast, our fully Bayesian strategy performs only one posterior
simulation. The models selected by our method with pre-MCMC importance sampling
(Version II) perform slightly better than the models from our sampler without that pre-
processing step; however, this improvement in selection comes at the cost of additional
computing time. It appears pragmatic to use the faster version without pre-MCMC
importance sampling in most cases, given that it already provides all key benefits of
simultaneous selection at less cost. Compared to tree-by-tree methods, both versions of
our simultaneous selection method offer faster computation and better selection perfor-
mance making them universally superior to previous approaches.

Our results suggest that full Bayesian analysis is most beneficial if there are sub-
stantial conditional dependencies in the data. If the variables are mostly conditionally
independent, tree-by-tree selection methods are likely to perform just as well.

6 Example: Forecasting Portfolio Value at Risk and
Expected Tail Loss

We provide a novel, and more extensive analysis of Gruber and Czado (2015)’s financial
data set. Again, we set up a joint multivariate model through marginal time series DLMs
and a copula dependence model. Our analysis will focus on out-of-sample forecasts of
value at risk and expected tail loss (also called conditional value at risk). The value at
risk at level α% of a portfolio return r is just the (1− α%)-quantile of its distribution,
and it gives a worst case estimate under the assumption that the realized outcome will
be within the “good α% of scenarios.” On the other hand, the expected tail loss is the
conditional expectation of the return r, given the “bad (1− α%) of scenarios” (Acerbi
and Tasche, 2003).

6.1 Description of the Data

The data contains 440 daily historical closing prices from January 2013 through Septem-
ber 2014 of nine exchange-traded funds (ETFs). The data were downloaded from http://

finance.yahoo.com, and the nine selected ETFs are described in Table 8. These nine
ETFs serve as an example of a diversified portfolio that the average retail investor could
invest in and cover U.S. stocks, corporates, real estate, and commodities.

http://finance.yahoo.com
http://finance.yahoo.com
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j Symbol Name Exposure

1 IVV iShares Core S&P 500 ETF Large-cap U.S. stocks
2 IJH iShares Core S&P Mid-Cap ETF Mid-cap U.S. stocks
3 IJR iShares Core S&P Small-Cap ETF Small-cap U.S. stocks
4 HYG iShares iBoxx $ High Yield Corpo-

rate Bond ETF
High yield corporate bonds

5 LQD iShares iBoxx $ Investment Grade
Corporate Bond ETF

U.S. investment grade corporate
bonds

6 RTL iShares Retail Real Estate Capped
ETF

U.S. retail property real estate
stocks and real estate investment
trusts (REITs)

7 REZ iShares Residential REIT Capped
ETF

U.S. residential real estate stocks
and real estate investment trusts
(REITs)

8 SLV iShares Silver Trust Silver
9 IAU iShares Gold Trust Gold

Table 8: Details of the selected ETFs.

The daily prices are transformed to daily log-returns, and the log-returns of each
ETF are modeled by a univariate dynamic linear model (DLM; West and Harrison
(1997); Prado and West (2010)). Details of the marginal models are provided in Ap-
pendix C.

6.2 Joint Multivariate Model

The joint multivariate model is composed of all nine marginal univariate DLMs and a
copula as the dependence model.

Learning and Forecasting The portfolio forecasting period begins in 2014, given that
we use the 2013 data (t = 1:252) to estimate the posterior distribution of the regu-
lar vine copulas. We use Bayesian model averaging (BMA; Hoeting et al., 1990) over
this posterior sample to generate the copula forecasts on the 9-dimensional unit cube,
which then feed into the quantile function of the forecast t distributions of the marginal
time series DLMs to generate sequential out-of-sample forecasts on the observation
scale. While we do not change the copula over time, the univariate DLMs are updated
sequentially on each day trading day t = 1:440; the out-of-sample prediction period
contains 188 trading days, t = 253:440. This forecasting process is summarized be-
low:

1: Select the copula using the u-data from 2013 (t = 1:252).
2: for each day t = 253:440 of 2014 do
3: Update the univariate DLMs using observation yt;
4: Apply the time evolution step to get the step-ahead priors;
5: Sample k = 1:N multivariate uk = (uk

1 , . . . , u
k
9)-vectors from the posterior-

weighted mixture of vine copulas (BMA);
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# N pairs # T pairs # G pairs # C pairs # I pairs

Seq. frequentist selection 5 11 7 6 7
Seq. Bayesian selection 10 0 3 0 23
Bayesian Family selection 11 6 10 2 6
Fully Bayesian selection (I) 11 4 9 1 11
Fully Bayesian selection (II) 10 6 5 4 11

Table 9: Summary of selected models for the financial data set.

6: Estimate the forecast distribution of yt+1 from the Monte Carlo sample

ŷk
t+1 = (T−1

non std(u
k
1 ; r1,t+1, a1,t+1, R1,t+1 + c1,t+1), . . . , (21)

T−1
non std(u

k
9 ; r9,t+1, a9,t+1, R9,t+1 + c9,t+1).

7: end for

Selected Copulas We used Dißmann et al. (2013)’s frequentist tree-by-tree selection
method, Gruber and Czado (2015)’s Bayesian tree-by-tree method and our three fully
Bayesian methods to select the dependence models. The two tree-by-tree methods and
our to fully Bayesian methods from Section 4 select regular vine copulas autonomously;
our Bayesian family selection method from Section 3 requires us to provide a regular
vine tree structure V as a partly specified model input. We specify the regular vine
structure as a drawable vine whose first tree T1 is a path from nodes 1 to 9; this is a
very simple and yet intuitive structure, given that ETFs from the same asset class are
neighbors in the first tree. The copulas are estimated given the transformed u-data from
January through December 2013, t = 1:252.

Table 9 shows summary statistics of the selected models. The models selected by
the tree-by-tree methods can be found in Tables 7 and 8 of Gruber and Czado (2015);
Tables 24–26 of Appendix E show the marginal posterior distributions of the pair copula
families of our fully Bayesian methods. The posterior distributions are based on the
last 10,000 MCMC iterations out of a total of 25,000. The posterior samples from
both our fully Bayesian methods that also select the regular vine tree structure do not
change the tree structure after burn-in, which allows the pair-based evaluation of the
copula families. The model selected by Gruber and Czado (2015)’s Bayesian tree-by-tree
method has the most independence pair copulas, and Dißmann et al. (2013)’s frequentist
tree-by-tree model estimate has the most pair copulas with tail-dependence as well as
the most asymmetric pair copulas.

6.3 Results

Analysis Method We investigate the expected tail loss forecasts of a portfolio to assess
the adequacy of the estimated model. Our study assumes that the portfolio invests in
the nine ETFs as to maximize the expected risk-adjusted portfolio return assuming that
the returns of the ETFs are independent,
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# 10% VaR Hits # 15% VaR Hits

Theoretical value 19 28
Seq. frequentist selection 17 24
Seq. Bayesian selection 17 24
Bayesian Family selection 20 28
Fully Bayesian selection (I) 20 28
Fully Bayesian selection (II) 20 26

Table 10: Number of value at risk hits under different dependence models.

10% ETL 10% OL 15% ETL 15% OL

Seq. frequentist selection -0.61% -0.72% -0.53% -0.62%
Seq. Bayesian selection -0.60% -0.72% -0.52% -0.62%
Bayesian Family selection -0.54% -0.67% -0.47% -0.57%
Fully Bayesian selection (I) -0.56% -0.67% -0.49% -0.57%
Fully Bayesian selection (II) -0.57% -0.67% -0.50% -0.60%

Table 11: Forecast expected tail loss (ETL) and average observed losses (OL) under
different dependence models. The forecasts with the smallest forecast error are in bold.

wt = arg max
w=(w1,...,w9)

w′μ̂t√
w′Σ̂twt

subject to
∑
j=1:9

wj = 1 and 0 ≤ wj ≤ 0.25, (22)

where μ̂t = (a1,t, . . . , a9,t) denotes the forecast returns of the individual ETFs, and

Σ̂t = diag((R1,t + c1,t) · r1,t/(r1,t − 2), . . . , (R9,t + c9,t) · r9,t/(r9,t − 2)) denotes their
forecast variances. We base the portfolio investment decisions on the independence
model so that the same portfolio is used when we compare the portfolio risk forecasts
from the different copula models.

Analysis of Forecasts Our out-of-sample analysis of the forecasts begins in January
2014 and ends in September 2014 (t = 253:440) and contains 188 trading days. Table 10
compares the number of value at risk hits under different dependence models; those
from our fully Bayesian models are substantially closer to the theoretical values at 10%
and 15% than those from the frequentist and Bayesian tree-by-tree methods. Table 11
compares the forecast expected tail losses with the observed quantities. Here we defined
the observed losses as the realized portfolio returns on the days of value at risk hits.
Again, the forecasts from our fully Bayesian models are closer to the observed values
than the forecasts from the two treewise selected models. The forecast errors of all
models are very similar and show a mean of about -0.10%. Lastly, Figure 2 illustrates
the observed portfolio returns, forecast 90% value at risk and expected tail loss, and
observed value at risk hits (observed losses) from our fully Bayesian model (selection
method II).

Conclusions We showed that the combination of univariate time series DLMs with
a Bayesian regular vine copula is a strong couple to forecast financial asset returns.
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Figure 2: Observed portfolio returns (gray, solid), forecast 90% value at risk (blue,
dashed) and expected tail loss (red, solid), and observed value at risk hits (black crosses).
Forecasts are from our fully Bayesian model (selection method II).

The models selected by our fully Bayesian methods yielded superior forecasts than
the treewise selected models. While the forecast accuracy for the expected tail losses
were relatively similar, the value at risk forecasts of these fully Bayesian models were
substantially more accurate than those from the treewise learned models. Our findings
confirm that the quantification of model uncertainty through fully Bayesian selection
contributes to more reliable risk forecasts.

7 Discussion and Outlook

Our algorithm estimates all levels of a regular vine copula simultaneously. This first-of-
its-kind procedure represents a major improvement over current tree-by-tree selection
procedures. Our simulation studies showed that our proposed method to select the
pair copula families excels at selecting suitable pair copulas and identifying sparsity
patterns through conditional independencies. Furthermore, our fully Bayesian strategies
to select all levels of a regular vine copula jointly showed a major improvement of model
fit compared to existing frequentist and Bayesian methods that proceed tree-by-tree.
At the same time, computation time could be reduced substantially by fully Bayesian
selection, which requires only one posterior simulation instead of one for each level
k = 1, . . . , d− 1. Most important for application in practice, the sampling chains of our
reversible jump MCMC samplers converge rapidly to high posterior density models, and
the set of tuning parameters listed in Table 3 worked well without further tweaking for
a broad range of dependence structures and datasets of different dimensions.

Eventually, the rapidly growing candidate space (as the dimension of the problem
is increased) limits the scalability of any MCMC-based selection method. We view our
method as one that is ideally suited for applications in low to medium dimensions
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(up to around 10). Dißmann et al. (2013)’s frequentist heuristics-based procedure scales
more easily to higher-dimensional problems; however, that procedure has only empirical
and no proper probabilistic justification, and it does not provide model samples from
a Bayesian posterior distribution over the candidate model space. Future research in
scalable Bayesian methods may need to impose very restricting priors that keep the size
of the candidate model space small enough for simulation-based exploration. Another
avenue of future research could be an extension of Bayesian methods for factor vine
copulas (such as Schamberger et al. (2017)) to higher dimensions.

Our real-data example proved the feasibility of using our proposed model selection
strategies to specify a fully Bayesian multivariate time series model for forecasting risk
metrics of a portfolio of financial assets. Our copula-based time series models produced
highly accurate value at risk and expected tail loss forecasts at different levels, benefiting
from inherent quantification of model uncertainty through Bayesian posterior analysis.
We expect widespread adoption of our Bayesian selection methods, also in other contexts
than financial risk modeling, given the improved out-of-sample forecasting performance
and elimination of selection bias inherent in tree-by-tree methods.

Kim et al. (2013) illustrated in an example how the use of mixture pair copulas in
pair copula constructions can improve the model fit. Incorporating mixture pair copulas
in regular vine pair copula constructions comes with a host of challenges that open up
avenues for future research regarding selection, sparsity constraints and conditions for
identifiability of such models. Furthermore, the choice of alternative priors is mostly
uninvestigated as of yet and can be another topic of future research.

Supplementary Material

Supplementary Appendix of Bayesian Model Selection of Regular Vine Copulas (DOI:
10.1214/17-BA1089SUPP; .pdf).
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