
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Faculty Publications from the Department of
Electrical and Computer Engineering Electrical & Computer Engineering, Department of

2017

Real-Time Pricing Strategy Based on the Stability of
Smart Grid for Green Internet of Things
Huwei Chen
Shanghai University

Hui Hui
Shanghai University

Zhou Su
Shanghai University, zhousu@ieee.org

Dongfeng Fang
University of Nebraska - Lincoln

Yilong Hui
Shanghai University

Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub
Part of the Computer Engineering Commons, and the Electrical and Computer Engineering

Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Chen, Huwei; Hui, Hui; Su, Zhou; Fang, Dongfeng; and Hui, Yilong, "Real-Time Pricing Strategy Based on the Stability of Smart Grid
for Green Internet of Things" (2017). Faculty Publications from the Department of Electrical and Computer Engineering. 508.
https://digitalcommons.unl.edu/electricalengineeringfacpub/508

https://digitalcommons.unl.edu/?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineeringfacpub/508?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages


Research Article
Real-Time Pricing Strategy Based on the Stability of
Smart Grid for Green Internet of Things

Huwei Chen,1 Hui Hui,1 Zhou Su,1 Dongfeng Fang,2 and Yilong Hui1

1School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
2Department of Electrical and Computer Engineering, University of Nebraska-Lincoln (UNL), Lincoln, NE, USA

Correspondence should be addressed to Zhou Su; zhousu@ieee.org

Received 16 December 2016; Accepted 23 February 2017; Published 20 March 2017

Academic Editor: Ning Zhang

Copyright © 2017 Huwei Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The ever increasing demandof energy efficiency and the strong awareness of environment have led to the enhanced interests in green
Internet of things (IoTs). How to efficiently deliver power, especially, with the smart grid based on the stability of network becomes
a challenge for green IoTs. Therefore, in this paper we present a novel real-time pricing strategy based on the network stability in
the green IoTs enabled smart grid. Firstly, the outage is analyzed by considering the imbalance of power supply and demand as well
as the load uncertainty. Secondly, the problem of power supply with multiple-retailers is formulated as a Stackelberg game, where
the optimal price can be obtained with the maximal profit for retailers and users. Thirdly, the stability of price is analyzed under
the constraints. In addition, simulation results show the efficiency of the proposed strategy.

1. Introduction

Internet of things (IoTs) has emerged as a new paradigm for
the next generation to enable diverse objects to exchange and
collect data with each other. Comparedwith the conventional
paradigms, more considerations are given to develop the
green IoTs where new energy efficient devices, protocols,
and architectures have been designed to interconnect with
the physical world [1–4]. Among the enabling green IoTs
technologies, the smart grid [5, 6] plays an important role in
realizing the green IoTs [7–10].

In the smart grid, the power can be delivered with the
two-way flow of information. The smart grid can form het-
erogeneous networks to connect the power supplier and con-
sumers with various devices [11–15].The green network tech-
nologies have been widely applied to manage, control, and
optimize the smart grid in the green IoTs [16–20].

For example, smart meters have been deployed in smart
grid to obtain the two-way flow of information and monitor
the power supply. Besides, heterogeneous networks with
small cells can support the spectrum sensing in smart grid
[21]. It makes it possible that the secondary users can utilize
the unoccupied channel when the primary users are absent,

resulting in an efficient use of the resources of spectrum in
smart grid [22–24].

However, it also brings new challenges as follows. (1) As
the delivery of power and data may be interrupted due to
the outage, the delivery of energy based on the stability of
networks needs to be discussed. (2) To improve the quality of
experience (QoE) for users in green IoTs, the suitable pricing
approach should be studied by considering both the demand
of users and the generation of power in green IoTs.

Although there have been some existing approaches [25–
30], they could not efficiently resolve the problems with the
following reasons. On one hand, most of them focus on
demand-side management in smart grid, where the stability
of networks is not considered enough. On the other hand, the
effect of outage in networks is not studied with the result that
network resources are not efficiently used.

In this paper, in order to resolve the above problems, we
propose the real-time pricing strategy based on the stability
of smart grid for green IoTs. At first, we analyze the outage
which is related to the imbalance of power supply and
demand as well as load uncertainty. The power supply model
is also developed with the transmission constraints.Then, we
formulate the problem of power supply for multiple-retailers
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as a Stackelberg dynamic game. The optimal price can be
obtained with the maximal profit for retailers while the price
is stable under the load constraints. Simulation results show
the effectiveness of the proposed strategy.

Unlike aforementionedworks, we study how to obtain the
optimal price strategy based on the system stability in the
heterogeneous network.Themain contributions of our paper
are summarized as follows.

(i) Based on the direct and cooperative communication,
respectively, the new power demand model for users
is formulated. The load uncertainty resulted from the
outage in the heterogeneous networks is also ana-
lyzed.

(ii) According to the relationship between users and
power retailers, we propose the novel power supply
model with power transfer among different retailers.
We introduce the Stackelberg game to obtain the
optimal pricing strategy with maximum profits for
retailers.

(iii) We further study and analyze the system stability
related to the optimal decision on the pricing with
the outage in the heterogeneous networks, under the
constraints of the power supply and power demand.

The rest of the paper is organized as follows. Section 2
presents a brief overview of the related work. Both of the
network model and power supply model are developed in
Section 3. Section 4 proposes the real-time pricing strategy
with multiretailers based on the Stackelberg game. The
analysis of the network stability is presented in Section 5.
Section 6 discusses the performance of the proposed strategy.
Section 7 concludes this paper.

2. Related Work

There have been a lot of related studies on the price decision-
making and power distribution in smart grid for green
IoTs. Bu et al. [27] developed a Stackelberg game model to
maximize the profits for electricity suppliers with demand-
side management. Matamoros et al. [31] studied the energy
supply in the island mode and obtained the minimum cost to
deliver the power. Chiu et al. [32] built mathematical models
based on the relationship between the energy generation
and the energy storage devices in smart grid. Huang et al.
[33] designed a robust controller with the optimal demand
response to manage the storage of energy.

Singh et al. [34] analyzed the home energy management
system with the real time price to improve the energy
consumption. Althaher et al. [35] proposed a scheduling
optimization algorithm to manage the time of household
appliances according to the needs of users. Bahrami et al.
[36] built an effective mathematical model to perform the
schedule for household appliances to improve the electricity
cost and environment protection. Feng et al. [37] presented
the pricing strategy and dynamic spectrum allocation with
the consideration of QoE and priorities of applications.

Hong and Zhu [38] studied the methods to minimize the
cost of power delivery and consumption based on the power
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Figure 1: Architecture of smart grid with heterogeneous networks.

flow model. Ahmed et al. [39] discussed the relay selection
mechanism for wireless cooperative communication in smart
grid. Bou-Harb et al. [40] studied the cyber vulnerabilities
to deal with the security threats for the smart grid. Ross et
al. [41] investigated the security communication deployed in
the smart grid and proposed the agent-based decentralized
protection system to strengthen the security. Li and Liang
[42] studied the optimal power allocation strategy with the
consideration of downlink capacity by formulating it as the
convex optimization problem.

Although the above existing works have made efforts
to improve the real-time pricing strategy in smart grid, the
optimization to improve the stability and outage is still not
considered. Therefore, in this paper, we present an effective
real-time pricing based on the stability of smart grid for green
IoTs.

3. System Model

In this section, we first show the communicationmodel.Then
the power model is presented.

3.1. Communication Model. In order to read conveniently,
we provide a list of major symbols in Abbreviations section,
whichwe shall define and use in this paper.We consider a het-
erogeneous network consisting of small cells and macrocells
which are deployed in smart grid [23]. As shown in Figure 1,
retailer 𝑖 (𝑖 ∈ (1, 2, . . . , 𝐼)) is located within the coverage of
macrocell. These retailers can be divided into different kinds
of groups based on the type of generated power, such as
photovoltaic generation and wind generation. Retailer 𝑖 can
directly communicate with users who are in the coverage of
small cell. On the other hand, retailer 𝑖 can also make the
connection with users through the relay service provided by
the macrocell. Similarly, there are some users in the coverage
of a small cell to buy the power and the set of users in the
small cell is denoted by J = (1, 2, . . . , 𝐽).
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When retailer 𝑖 directly communicates with user 𝑗, the
signal to noise ratio (SNR) is defined as 𝛾𝑖,𝑗. Then, according
to [43], the probability of outage becomes

𝜁out𝑖,𝑗 = Pr (𝛾𝑖,𝑗 < 𝛾th) . (1)

Here, 𝛾th denotes the threshold of SNR.
When retailer 𝑖makes the connectionwith user 𝑗 through

the relay node 𝑟, the probability of outage is described as

𝜁out𝑖,𝑟,𝑗 = Pr (𝛾𝑖,𝑗 < 𝛾th)
⋅ [Pr (𝛾𝑖,𝑟 < 𝛾th) + Pr (𝛾𝑖,𝑟 > 𝛾th) × Pr (𝛾𝑟,𝑗 < 𝛾th)] . (2)

Here, 𝛾𝑖,𝑟 is denoted as the SNR between retailer 𝑖 and relay
node 𝑟, while 𝛾𝑟,𝑗 is defined as the SNR between relay node 𝑟
and user 𝑗.
3.2. Power Supply Model. After buying the power from the
power market or other retailers, retailers determine the price
for users based on the information including the power
demand, utility, and satisfaction degree of users. Smartmeters
are equipped to deliver information such as the power
demand of users and the real-time price. Users can not only
choose any one of retailers based on their interests but also
adjust their power consumption to improve the power utility.

According to [27], the quadratic utility function of user 𝑗
(𝑗 ∈ J) can be obtained by

𝑈(𝑑𝑗) = 𝜔𝑗𝑑𝑗 − 𝜉𝑗2 𝑑2𝑗 , (3)

where 𝜔𝑗 is used to characterize user types, which is different
for different users. It implies that the increase value of𝜔𝑗 can improve user j utility 𝑈(𝑑𝑗) with the same power
consumption 𝑑𝑗 of user 𝑗. 𝜉𝑗 is the preset parameter related
to the saturation point of this utility function.

Considering the power cost for power retailer 𝑖, the profit
of user 𝑗 can be described by

𝐺(𝑝𝑖, 𝑑𝑗) = 𝑈 (𝑑𝑗) − 𝑝𝑖𝑑𝑗 = 𝜔𝑗𝑑𝑗 − 𝜉𝑗2 𝑑2𝑗 − 𝑝𝑖𝑑𝑗, (4)

where 𝑝𝑖 denotes the power price offered by retailer 𝑖.
Due to the outage during the two-way communication

between user 𝑗 and retailer 𝑖, the power demand of user 𝑗
supplied by retailer 𝑖 is (1 − 𝜁𝑖)𝑑𝑗 + 𝜁𝑖𝜃𝑗, where 𝜃𝑗 is the load
uncertainty based on outage probability 𝜁𝑖 [37].

The probability of outage is 𝜁𝑖 obtained by

𝜁𝑖 = min {𝜁out𝑖,𝑟,𝑗, 𝜁out𝑖,𝑗 } . (5)

Thus, (4) can be rewritten as

𝐺(𝑝𝑖, 𝑑𝑗) = 𝑈 (𝑑𝑗) − 𝑝𝑖𝑑𝑗
= 𝜔𝑗 [(1 − 𝜁𝑖) 𝑑𝑗 + 𝜁𝑖𝜃𝑗]
− 𝜉𝑗2 [(1 − 𝜁𝑖) 𝑑𝑗 + 𝜁𝑖𝜃𝑗]2
− 𝑝𝑖 [(1 − 𝜁𝑖) 𝑑𝑗 + 𝜁𝑖𝜃𝑗] .

(6)

Based on (6), as 𝜃𝑗 is a zero-mean random variable with
variance (𝜎𝜃)2, the expectation of user 𝑗with respect to 𝜃𝑗 can
be described in the following:

E {𝐺 (𝑝𝑖, 𝑑𝑗)} = 𝜔𝑗 (1 − 𝜁𝑖) 𝑑𝑗 − 𝜉𝑗2 𝜁2𝑖 𝜎2𝜃
− 𝜉𝑗2 (1 − 𝜁𝑖)2 𝑑2𝑗 − 𝑝𝑖 (1 − 𝜁𝑖) 𝑑𝑗

= (𝜔𝑖 − 𝑝𝑖) (1 − 𝜁𝑖) 𝑑𝑗 − 𝜉𝑦2 𝜁2𝑖 𝜎2𝜃
− 𝜉𝑗2 (1 − 𝜁𝑖)2 𝑑2𝑗 .

(7)

For the amount of power demands from all users, it
should not exceed the total power which can be provided by
retailers. Thus, we have

|J|∑
𝑗=1

[(1 − 𝜁𝑖) 𝑑𝑗 + 𝜁𝑖𝜃𝑗] ≤ 𝐷𝑖, (8)

where𝐷𝑖 denotes the total power supply in the case that QoE
between retailer 𝑖 and users is better.

4. Real-Time Pricing Strategy Based
Stackelberg Dynamic Model

4.1. Power Demand of Users. Users may adjust their power
consumption to obtain the maximal utility in response to the
price offered by retailer 𝑖. The optimal consumption can be
solved based on (7). As the quadratic function is a concave
function, we take the first derivation with respect to 𝑑𝑗 to
obtain the optimal consumption by

𝜕E {𝐺 (𝑝𝑖, 𝑑𝑗)}𝜕𝑑𝑗 = 0 ⇒
(𝜔𝑗 − 𝑝𝑖) (1 − 𝜁𝑖) − 𝜉𝑗 (1 − 𝜁𝑖)2 𝑑𝑗 = 0 ⇒

𝑑∗𝑗 = 𝜔𝑗 − 𝑝𝑖𝜉𝑗 (1 − 𝜁𝑖) .
(9)

Then, in the case that there are 𝐽 users supplied by retailer 𝑖,
the real amount of the power which can be supplied to users
by this retailer becomes

�̂�𝑖 = ∑
𝑗∈J
𝑑∗𝑗 = 𝜂𝑖 (𝐴 − 𝐵𝑝𝑖) . (10)

Here, in order to simplify the calculation, we define 1/(1 −𝜁𝑖) = 𝜂𝑖 in (10). 𝐴 and 𝐵 can be determined by 𝜔𝑗, and 𝜉𝑗,
described by

𝐴 = ∑
𝑗∈J

𝜂𝑖𝜔𝑗𝜉𝑗 ,
𝐵 = ∑
𝑗∈J

𝜂𝑖𝜉𝑗 .
(11)
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4.2. Utility Function of Retailers. Based on [44], the power
supply function is defined by

𝑓𝑖 (p) = �̂�𝑖 − 𝜀𝑖𝑝𝑖 + 𝐼∑
𝑛=1, 𝑛 ̸=𝑖

]𝑖,𝑛𝑝𝑛. (12)

Here, the vector is denoted as p = [𝑝1, 𝑝2, . . . , 𝑝𝑖, . . . , 𝑝𝐼]𝑇.𝜀𝑖 ∈ [0, 1] denotes the elastic coefficient of the price offered
by retailer 𝑖. ]𝑖,𝑛 ∈ [0, 1] means energy transfer ratio from
retailer 𝑖 to retailer n. ]𝑖,𝑛 = 0 and ]𝑖,𝑛 = 1 mean that power
retailer 𝑛 does not supply power to retailer 𝑖 and vice versa,
respectively.

According to [45, 46], the retailers can adjust the amount
of power supply based on the demands of users and then
make the optimal pricing strategy with maximum profits.
In our paper, the elastic coefficient implies the effect of the
change of power demand of users on the price of the retailers
in a given period.

In our paper, due to the competition among retailers, a
Stackelberg game is used to model the interactions of them
and determine the optimal pricing strategy based on (16)
and (17). The Stackelberg game is a complete information
game, and there are communication efforts for the game.
Each player obtains the knowledge about the optimal strategy
of other players when its strategy is decided.Thus, it canmake
its own optimal strategy based on the information.

Retailers sell power to users for profits after obtaining the
power from the power market. Based on [47, 48], the cost
function for retailer 𝑖 can be defined as follows:

𝐶𝑖 (p) = 𝛼𝑖 + 𝛽𝑖𝑓𝑖 (p) + 𝛿𝑖 (𝑓𝑖 (p))2 , (13)

where 𝛼𝑖 denotes the fixed cost to generate power by retailer𝑖. 𝛽𝑖 is the rate of the variety of the cost function curve. 𝛿𝑖
denotes the variable acceleration of the cost function curve.

Then, the profit function for retailer 𝑖 becomes

𝜋𝑖 (p) = 𝑓𝑖 (p) 𝑝𝑖 − 𝐶𝑖 (p) − 𝛾𝑓𝑖 (p) , (14)

where 𝛾 is the coefficient of the cost to transfer power through
different grids.

As the prices of retailers affect the price of each other,
Stackelberg gamemodel is developed to analyze the real-time
pricing and obtain the maximal profit for each retailer. Then,
we have

𝑝𝑖 (𝑡 + 1) = argmax𝜋𝑖 (𝑝𝑖 (𝑡) , p𝑖 (𝑡 + 1)) , (15)

where the vector p𝑖(𝑡 + 1) denotes the price of other retailers
except retailer 𝑖 at time 𝑡 + 1.

The solution of a multistage Stackelberg game is the
subgame perfect Nash equilibrium by the back-stepping
method, to obtain the maximum profit for each other. It can
be obtained by the derivative of 𝜋𝑖(𝑝𝑖(𝑡), p𝑖(𝑡 + 1)) as follows:

𝜕𝜋𝑖 (p)𝜕𝑝𝑖 = 0. (16)

Due to the dynamic feature of the power market and
incomplete information, each retailer may not acquire

enough information about other competitors in the game.
Then retailers are not be able to make the suitable pricing
strategy for the maximum profit. The modified function can
be introduced as follows:

𝑝𝑖 (𝑡 + 1) = 𝑝𝑖 (𝑡) + 𝜏𝑖𝑝𝑖 (𝑡) 𝜕𝜋𝑖 (𝑝𝑖 (𝑡) , p𝑖 (𝑡))𝜕𝑝𝑖 . (17)

Here, as the retailer may adjust his current price to the
optimal for obtaining the best utility, we introduce amodified
parameter for the price 𝜏𝑖 > 0, which means the adjustment
speed on the price.

Based on (17), a two-dimensional mapping related to
dynamic game model is expressed as

𝑝𝑖 (𝑡 + 1) = 𝑝𝑖 (𝑡)
+ 𝜏𝑖𝑝𝑖 (𝑡) 𝜕𝜋𝑖 (𝑝1 (𝑡) , . . . , 𝑝𝑖−1 (𝑡) , 𝑝𝑖 (𝑡) , . . . , 𝑝𝐼 (𝑡))𝜕𝑝𝑖 . (18)

The power retailer can get Nash equilibrium after several
rounds of the game. In this case, if one of retailers in the game
does not change the price, the others will not change their
prices, either.

𝑝1 (𝑡 + 1) = 𝑝1 (𝑡) = 𝑝∗1
𝑝2 (𝑡 + 1) = 𝑝2 (𝑡) = 𝑝∗2

...
𝑝𝑖−1 (𝑡 + 1) = 𝑝𝑖−1 (𝑡) = 𝑝∗𝑖−1
𝑝𝑖 (𝑡 + 1) = 𝑝𝑖 (𝑡) = 𝑝∗𝑖

...
𝑝𝐼 (𝑡 + 1) = 𝑝𝐼 (𝑡) = 𝑝∗𝐼 ,

(19)

where 𝑝∗𝑖 (𝑖 ∈ (1, 2, . . . , 𝐼)) is the optimal price.
Then, based on (10), (12)–(14), and (17)–(19), we have

𝑝1 (𝑡) {−2 (𝜂1𝐵 + 𝜀1) [1 + 𝛿1 (𝜂1𝐵 + 𝜀1)] 𝑝1 (𝑡)
+ []1,2𝑝2 (𝑡) + ]1,3𝑝3 (𝑡) + ⋅ ⋅ ⋅ + ]1,𝑖𝑝𝑖 (𝑡) + ⋅ ⋅ ⋅
+ ]1,𝐼𝑝𝐼 (𝑡) + 𝜂1𝐴] [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)] + (𝜂1𝐵
+ 𝜀1) (𝛽1 + 𝛾)} = 0

𝑝2 (𝑡) {−2 (𝜂2𝐵 + 𝜀2) [1 + 𝛿2 (𝜂2𝐵 + 𝜀2)] 𝑝2 (𝑡)
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+ []2,1𝑝1 (𝑡) + ]2,3𝑝3 (𝑡) + ⋅ ⋅ ⋅ + ]2,𝑖𝑝𝑖 (𝑡) + ⋅ ⋅ ⋅+ ]2,𝐼𝑝𝐼 (𝑡) + 𝜂2𝐴] [1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)] + (𝜂2𝐵
+ 𝜀2) (𝛽2 + 𝛾)} = 0

...
𝑝𝑖 (𝑡) {−2 (𝜂𝑖𝐵 + 𝜀𝑖) [1 + 𝛿𝑖 (𝜂𝑖𝐵 + 𝜀𝑖)] 𝑝𝑖 (𝑡)

+ [ 𝐼∑
𝑛=1, 𝑛 ̸=𝑖

]𝑖,𝑛𝑝𝑛 (𝑡) + 𝜂𝑖𝐴] × [1 + 2𝛿𝑖 (𝜂𝑖𝐵 + 𝜀𝑖)]

+ (𝜂𝑖𝐵 + 𝜀𝑖) (𝛽𝑖 + 𝛾)} = 0
...

𝑝𝐼 (𝑡) {−2 (𝜂𝐼𝐵 + 𝜀𝐼) [1 + 𝛿𝐼 (𝜂𝐼𝐵 + 𝜀𝐼)] 𝑝𝐼 (𝑡)

+ [ 𝐼∑
𝑛=1, 𝑛 ̸=𝐼

]𝐼,𝑛𝑝𝑛 (𝑡) + 𝜂𝐼𝐴] × [1 + 2𝛿𝐼 (𝜂𝐼𝐵 + 𝜀𝐼)]

+ (𝜂𝐼𝐵 + 𝜀𝐼) (𝛽𝐼 + 𝛾)} = 0.
(20)

The fixed points in (18) are

𝑀0 :

{{{{{{{{{{{{{{{{{{{{{{{

𝑝1 = 0
𝑝2 = 0...
𝑝𝐼−1 = 0
𝑝𝐼 = 0,

(21)

𝑀𝑖 :
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑝1 = 0
𝑝2 = 0...
𝑝𝑖−1 = 0
𝑝𝑖 = 𝜂𝑖𝐴 [1 + 2𝛿𝑖 (𝜂𝑖𝐵 + 𝜀𝑖)] + (𝜂𝑖𝐵 + 𝜀𝑖) (𝛽𝑖 + 𝛾)2 (𝜂𝑖𝐵 + 𝜀𝑖) [1 + 𝛿𝑖 (𝜂𝑖𝐵 + 𝜀𝑖)]...
𝑝𝐼−1 = 0
𝑝𝐼 = 0.

(22)

Substituting (16)–(19) into (20), it can also be rewritten by

𝐿p∗ = 𝐻, (23)

where 𝐿 and𝐻 are shown in the following:

𝐿 =
[[[[[[
[

−2 (𝜂1𝐵 + 𝜀1) [1 + 𝛿1 (𝜂1𝐵 + 𝜀1)] [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)] ]1,2 . . . [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)] ]1,𝐼[1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)] ]2,1 −2 (𝜂2𝐵 + 𝜀2) [1 + 𝛿2 (𝜂2𝐵 + 𝜀2)] . . . [1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)] ]2,𝐼... ... ... ...
[1 + 2𝛿𝐼 (𝜂𝐼𝐵 + 𝜀𝐼)] ]𝐼,1 [1 + 2𝛿𝐼 (𝜂𝐼𝐵 + 𝜀𝐼)] ]𝐼,2 . . . −2 (𝜂𝐼𝐵 + 𝜀𝐼) [1 + 𝛿𝐼 (𝜂𝐼𝐵 + 𝜀𝐼)]

]]]]]]
]
, (24)

𝐻 =
[[[[[[
[

−𝜂1𝐴 [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)] − (𝜂1𝐵 + 𝜀1) (𝛽1 + 𝛾)−𝜂2𝐴 [1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)] − (𝜂2𝐵 + 𝜀2) (𝛽2 + 𝛾)...
−𝜂𝐼𝐴 [1 + 2𝛿𝐼 (𝜂𝐼𝐵 + 𝜀𝐼)] − (𝜂𝐼𝐵 + 𝜀𝐼) (𝛽𝐼 + 𝛾)

]]]]]]
]
. (25)

Then, p∗ is able to be solved when parameters are
available in (20). To simplify the calculation, we study the
scenario that two retailers supply power to users (𝑖 = 1, 2).
Therefore, with (23) and (25), we obtain the Stackelberg
equilibrium by

𝑀 : {{{{{
𝑝∗1 = Φ11Ψ
𝑝∗2 = Φ21Ψ ,

(26)

where

Φ11 = 2 (𝜂2𝐵 + 𝜀2) [1 + 𝛿2 (𝜂2𝐵 + 𝜀2)]
⋅ [(𝜂1𝐵 + 𝜀1) (2𝛿1𝜂1𝐴 + 𝛽1 + 𝛾) + 𝜂1𝐴] + 𝜐1,2
× [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)]
⋅ [(𝜂2𝐵 + 𝜀2) (2𝛿2𝜂2𝐴 + 𝛽2 + 𝛾) + 𝜂2𝐴] ,

Φ21 = 2 (𝜂1𝐵 + 𝜀1) [1 + 𝛿1 (𝜂1𝐵 + 𝜀1)]
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⋅ [(𝜂2𝐵 + 𝜀2) (2𝛿2𝜂2𝐴 + 𝛽2 + 𝛾) + 𝜂2𝐴] + 𝜐2,1
× [1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)]
⋅ [(𝜂1𝐵 + 𝜀1) (2𝛿1𝜂1𝐴 + 𝛽1 + 𝛾) + 𝜂1𝐴] ,

Ψ = 4 (𝜂1𝐵 + 𝜀1) (𝜂2𝐵 + 𝜀2) [1 + 𝛿1 (𝜂1𝐵 + 𝜀1)]
× [1 + 𝛿2 (𝜂2𝐵 + 𝜀2)]
− 𝜐1,2𝜐2,1 [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)] [1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)] .

(27)

Remark 1. Due to the better feature of smart grid in trans-
ferring power, the cost in transferring power is lower. And,
there are lots of users supplied by retailers. Thus, in (24), the
constraints should satisfy 𝛾 < 2𝛿𝐼(𝜂𝐼𝐴 − 2) − 𝛽𝐼.

And in order to satisfy that Ψ is greater than or equal to
0, the positive parameters in (26) are satisfied as

2 (𝜂1𝐵 + 𝜀1) (𝜂2𝐵 + 𝜀2)[1 + 𝛿1 (𝜂1𝐵 + 𝜀1) + 𝛿2 (𝜂2𝐵 + 𝜀2)]2
> 𝜐1,2𝜐2,1(1 + 𝛿1𝜀1) (1 + 𝛿2𝜀2) .

(28)

5. Analysis of the Stability

In order to study the stability of the dynamic pricing strategy
related to profits of retailers, we design a Jacobian matrix
based on themodel of two-dimensional mapping (18) for two
retailers (𝑖 = 1, 2).

F (𝑝1, 𝑝2) = [1 + Γ11 Γ12Γ21 1 + Γ22] , (29)

where

Γ11 = 𝜏1 {𝜐1,2 [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)] 𝑝2
+ (2𝛿1𝜂1𝐴 + 𝛽1 + 𝛾) (𝜂1𝐵 + 𝜀1) + 𝜂1𝐴} − 4𝜏1 (𝜂1𝐵
+ 𝜀1) [1 + 𝛿1 (𝜂1𝐵 + 𝜀1)] 𝑝1,

Γ22 = 𝜏2 {𝜐2,1 [1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)] 𝑝1
+ (2𝛿2𝜂2𝐴 + 𝛽2 + 𝛾) (𝜂2𝐵 + 𝜀2) + 𝜂2𝐴} − 4𝜏2 (𝜂2𝐵
+ 𝜀2) [1 + 𝛿2 (𝜂2𝐵 + 𝜀2)] 𝑝2,

Γ12 = 𝜏1]1,2 [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)] 𝑝1,
Γ21 = 𝜏2]2,1 [1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)] 𝑝2.

(30)

We investigate and prove the stability of the Stackelberg
equilibrium as follows.

Theorem 2. The pricing system shown in (18) is unstable at the
points𝑀0,𝑀1, and𝑀2, respectively.

Proof. First of all, substituting𝑀0 into (29), we have
F (𝑀0) = [1 + Γ11 (𝑀0) 0

0 1 + Γ22 (𝑀0)] , (31)

where

Γ11 (𝑀0) = 𝜏1 [(2𝛿1𝜂1𝐴 + 𝛽1 + 𝛾) (𝜂1𝐵 + 𝜀1) + 𝜂1𝐴] ,
Γ22 (𝑀0) = 𝜏2 [(2𝛿2𝜂2𝐴 + 𝛽2 + 𝛾) (𝜂2𝐵 + 𝜀2) + 𝜂2𝐴] . (32)

Based on the proposed pricing strategywith the Lyapunov
Stability Theory, we analyze the stability of (18).

𝑄 (𝑀0) = −F (𝑀0)𝑇 − F (𝑀0)
= [−2 − 2Γ11 (𝑀0) 0

0 −2 − 2Γ22 (𝑀0)] .
(33)

According to Remark 1, we can obtain −2 − 2Γ11(𝑀0) < 0
and prove that it is unstable at point𝑀0.

Based on (18)-(19) and (22), with the similar method, we
can obtain −1−Γ11(𝑀1) < 0.Thus, we prove that it is unstable
at point𝑀1. With the same method, we can also prove that it
is unstable at point𝑀2. Therefore, we proveTheorem 2.

Theorem 3. The pricing system shown in (18) is asymptotically
stable at point𝑀.
Proof. Firstly, substituting𝑀 into (29), the Jacobian matrix
is rewritten by

F (𝑀) = [
[
1 − Γ11 (𝑀) 𝑝∗1 Γ12 (𝑀) 𝑝∗1
Γ21 (𝑀) 𝑝∗2 1 − Γ22 (𝑀) 𝑝∗2]]

, (34)

where

Γ11 (𝑀) = 2𝜏1 (𝜂1𝐵 + 𝜀1) [1 + 𝛿1 (𝜂1𝐵 + 𝜀1)] ,
Γ12 (𝑀) = 𝜏1𝜐1,2 [1 + 2𝛿1 (𝜂1𝐵 + 𝜀1)] ,
Γ21 (𝑀) = 𝜏2𝜐2,1 [1 + 2𝛿2 (𝜂2𝐵 + 𝜀2)] ,
Γ22 (𝑀) = 2𝜏2 (𝜂2𝐵 + 𝜀2) [1 + 𝛿2 (𝜂2𝐵 + 𝜀2)] .

(35)

In order to satisfy the stability, we have

Γ11 (𝑀) 𝑝∗1 − 1 > 0,
[1 − Γ11 (𝑀) 𝑝∗1 ] [1 − Γ22 (𝑀) 𝑝∗2 ]
> Γ12 (𝑀) Γ21 (𝑀) 𝑝∗1𝑝∗2 .

(36)

Furthermore, due to the property of implicit function in
(23), we have

1 − Γ11 (𝑀) 𝑝∗1 − Γ22 (𝑀) 𝑝∗2
= [Γ12 (𝑀) Γ21 (𝑀) − Γ11 (𝑀) Γ22 (𝑀)] 𝑝∗1𝑝∗2 .

(37)
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Table 1: Simulation parameters.

Items Value/assumptions
The signal noise power in direct
communication and cooperative
communication, respectively

−40 dBm
Path loss exponent 𝜅 3
The threshold value of SNR 𝛾th 5 dBm
The antenna gain constant𝐾𝑖 (𝑖 = 1, 2) 1
Transmission power in direct
communication 0.2W

Transmission power in cooperative
communication 0.1W

Covering distance in the wireless
communication 6 km

Through solving (37), we can get the region where the
pricing system (18) is asymptotically stable. At the same
time, the points which intersect with the horizontal axis and
vertical axis are shown as follows:

A : {{{{{
𝜏1 = 0
𝜏2 = Ψ2Φ21 (𝜂2𝐵 + 𝜀2) [1 + 𝛿2 (𝜂2𝐵 + 𝜀2)] ,

B : {{{
𝜏1 = Ψ2Φ12 (𝜂1𝐵 + 𝜀1) [1 + 𝛿1 (𝜂1𝐵 + 𝜀1)]𝜏2 = 0.

(38)

6. Simulation Results

Simulation experiments are used to verify the performance
of the proposal. We assume that there are two retailers in the
power market. Retailer 1 is the small-scaled power retailer
while retailer 2 is the large-scaled one. Based on [22], the
parameters of the utility function for power users are set
by 𝐴 = 2 and 𝐵 = 0.1. At the same time, according to
the scenario in [32], we determine the related parameters as
follows: 𝜀1 = 0.5, 𝜀2 = 0.6, 𝛼1 = 0.5, 𝛼2 = 2, 𝛽1 = 0.5,𝛽2 = 0.2, 𝛿1 = 𝛿2 = 0.5, and 𝛾 = 0.5. Here, based
on different power supply capacity of these two retailers, we
define 𝜐2,1 = 𝜛𝜐1,2 and 𝜎2𝜃 = 1. We assume that the noise in
this paper is additive white Gaussian noise (AWGN), and its
variance is 𝜎2 = −40 dBm. Based on [43, 49], we determine
other parameters and summarize them in Table 1.

Wefirst show the relationship between the energy transfer
ratio and the price by Figure 2. We can know that both of
prices of two retailers keep increasing with the increase of
the energy transfer ratio. And the difference between the two
retailers becomes less and less with the increase of energy
transfer ratio, although the price offered by retailer 2 is lower
than that of retailer 1 initially.

We continue to evaluate the relationship between the
profits of retailers and the energy transfer ratio in Figure 3.
Both of the profits keep increasing with the increase of energy
transfer ratio. Based on Figures 2 and 3, it is implied that
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Figure 2: Relationship between the energy transfer ratio and the
price with 𝜛 = 1.2.
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Figure 3: Relationship between the energy transfer ratio and the
profit with 𝜛 = 1.2.

retailers can obtain more profits through a higher energy
transfer ratio.

Next, in order to study the pricing strategy, we investigate
the impact of the outage on the optimal price and profit,
respectively. Based on the results in Figures 2 and 3, we set 𝜐1,2
to be 0.2. In Figure 4, we can see how the outage of retailer
1 affects its optimal price as well as its profits, where they
keep increasing with increase of its outage. In Figure 5, the
optimal price and profits of retailer 2 also keep increasing
with increase of its outage.

In addition, we test the stability of the price when the
modified parameters for the prices 𝜏1 and 𝜏2 are changed.
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Figure 4: (a) The outage versus the price for retailer 1. (b) The outage versus the profit for retailer 1.
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Figure 5: (a) The outage versus the price for retailer 2. (b) The outage versus the profit for retailer 2.

Here, the energy transfer ratios of retailer 1 and retailer 2 are
0.3 and 0.36, respectively. In Figure 6, we can obtain the stable
region when both the modified parameters and outage are
changed.

In Figure 7, we study the system stability related to the
optimal pricing strategy among different power retailers.
When the value of iteration is changed, both of the prices
of retailer 1 and retailer 2 keep increasing and then become
stable. From the results, we can know that the optimal price
of these power retailers can be stable when the related param-
eters are changed.

Finally, we compare performance of the proposed scheme
with the existing scheme [50].Here, we consider the overhead

function of price adjustment as 𝜑𝑖 = 𝑖(𝑝𝑖(𝑡+Δ𝑡)−𝑝𝑖(𝑡))2 +𝜖𝑖
(Δ𝑡 = N+), which is also used to evaluate the proposed
scheme and existing scheme, respectively. In this function,𝑖 and 𝜖𝑖 denote the preset parameters where 𝜁1 = 0.1 and𝜁2 = 0.5. Figure 8 depicts the overhead when the speed of
price adjustment is changed when 1 = 2 = 5, 𝜖1 = 𝜖2 = 3. It
can be known that the overhead with the existing scheme is
larger than that of the proposed scheme, which also implies
that the proposed strategy is better than the existing one.

Based on the above analysis, we can know that the pro-
posal can obtain a stable performance when the related
parameters are changed. Besides, it outperforms the existing
scheme with a low overhead.
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7. Conclusions

This paper has presented a real-time pricing strategy with
multiretailers in smart grid for green IoTs. We have analyzed
the outage related to the location of relay nodes in smart
grid enabled green IoTs, which affects imbalance between
power supply and demand. Then, a Stackelberg game model
has been designed to show the relationship between the
profit of multiretailers and the pricing. Next, the stability
of the pricing has been studied under the load constraints.
Finally, simulation results have shown that the proposal can
outperform the other existing methods. About the future
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Figure 8: The overhead comparison with different schemes.

work, the model will be extended to the microgrid system
including energy storage and renewable generation.

Abbreviations

J: Set of users in small cell, {1, 2, . . . , 𝐽}𝑑𝑗: Power consumption of user 𝑗𝑝𝑖: Power price offered by retailer 𝑖
p: Set of power price offered by retailers𝛾𝑖,𝑗: The signal noise to ratio (SNR), when

retailer 𝑖 directly communicates with user𝑗𝛾th: The threshold value of SNR𝜁𝑖: Retailer 𝑖 probability of outage in
heterogeneous networks

]𝑖,𝑛: Energy transfer ratio from retailer 𝑖 to
retailer 𝑛𝜏𝑖: Retailer 𝑖 adjustment speed on the price𝜋𝑖: Profit function of retailer 𝑖.
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