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Metasurface base on uneven layered fractal elements
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1College of Information Engineering, Communication University of China,
Beijing 100024, China
2Department of Electrical and Computer Engineering, University of Nebraska-Lincoln,
NE 68182, USA
3Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China

(Received 10 November 2017; accepted 13 February 2018; published online 29 March 2018)

A novel metasurface based on uneven layered fractal elements is designed and
fabricated for ultra-wideband radar cross section (RCS) reduction in this paper.
The proposed metasurface consists of two fractal subwavelength elements with differ-
ent layer thickness. The reflection phase difference of 180◦ (±37◦) between two unit
cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results
from the phase cancellation between two local waves produced by these two unit
cells. The diffuse scattering of electromagnetic (EM) waves is caused by the ran-
domized phase distribution, leading to a low monostatic and bistatic RCS simultane-
ously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency
range from 6.6 to 23.9 GHz with a ratio bandwidth (fH /fL) of 3.62:1 under normal
incidences for both x- and y-polarized waves. Both the simulation and the measure-
ment results are consistent to verify this excellent RCS reduction performance of
the proposed metasurface. © 2018 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5013106

I. INTRODUCTION

With the rapid development of the contemporary radio technology and the military electronic
technology, the ability of the combat defence systems search and track the target have been enhanced
at a great extent.1 There are many researches focus on the achievement of electromagnetic (EM)
transparency or invisibility of the target in recent years. Radar cross section (RCS) as an important
physical quantity is used to characteristic the electromagnetic scattering properties of the target.
To reduce the RCS effectively of the target is a challenging objective for the electromagnetic
researchers. Different techniques have been proposed in the previous literatures to reduce the RCS,
such as applying radar absorbing materials (RAM) which transforms the electromagnetic energy into
heat,2 however the RAM often operate in the vicinity of the resonance frequency. Another technique
is altering the appearance of the target (Shaping) to redirect the scattered field to more directions, but
that increases the complexity of the design.3

Metamaterials are artificial structures which capability of manipulating the electromagnetic
waves to obtain unusual properties, such as negative refraction,4 subwavelength focusing,5 and elec-
tromagnetic invisibility cloaking.6 Metasurface, as a new kinds of ultra-thin metamaterials that consist
of a monolayer of planar metallic structure, provides an unique way of manipulating the EM waves
and achieves the excellent RCS reduction of metallic targets. Generally, phase cancellation is uti-
lized to achieve RCS reduction. The basic idea is to exploit the cancellation effects arising from the
well-known 180◦ phase difference between the corresponding reflection coefficients. The scattered
energy could be redirected away from the source direction. A planar structure based on a combination

aCorrespondence and requests for materials should be addressed to Zengrui Li (email: zrli@cuc.edu.cn)
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of perfect electric conductor (PEC) and artificial magnetic conductor (AMC) in a chessboard-like
metasurface is proposed in Ref. 7. But due to the narrow reflection in-phase bandwidth of the AMC,
the RCS reduction frequency range is limited. In Ref. 8, a 10 dB RCS reduction more than 40% fre-
quency bandwidth is obtained by using two AMC unit cells based on Jerusalem Cross configuration.
In 2015, C. A. Balanis et al.9 proposed a hexagonal checkerboard surface of periodic phase arrange-
ment, with the -10 dB monostatic RCS reduction bandwidth of about 61%. A chessboard metasurface
which consists of four E-shaped and saltire arrow unit cells can achieve a frequency bandwidth of
85% for 10 dB RCS reduction in 2016,10 then Su proposed a metasurface based on a symmetric split
ring and a cut wire, the RCS is suppressed by 10 dB from 7.9 to 20.8 GHz.11 Moreover, in Ref. 12 a
frequency bandwidth of 84.7% with 10 dB RCS reduction is obtained. A kind of polarization rotation
reflection surface (PRCS) based on the unit cell consists of a square and L-shaped patches is applied
to achieve a 10 dB reduction over frequency bandwidth of 98%.13 A chessboard-like meaturface is
designed and fabricated in Ref. 14, by applying a binary optimization algorithm and linking it to a
full-wave simulation package, it works over an ultra-wide band of frequency from 3.8 to 10.7 GHz.
In addition, Ref. 15 proposed a coding phase gradient metasurface (CPGM) made of the N-shape
metallic pattern, which could come true 10 dB RCS reduction in frequency bands of 7.8-13.5 GHz
with a radio bandwidth of 1.95:1. To meet the needs of engineering applications, it is highly desirable
to design a metasurface for reducing monostatic and bistatic RCS of the object over an ultra-wide
frequency band.

In this article, two kinds of Minkowski fractal structures are chosen as the basic unit cells to
compose the proposed chessboard metasurface. Through design precisely this two unit cells to obtain
their reflection phase difference of 180◦±37◦. The proposed metasurface realizes a more than 10 dB
RCS reduction in an ultra-wide frequency band from 6.6 to 23.9 GHz with a bandwidth of 113%
(ratio bandwidth of 3.62:1) for both polarizations. In addition, the array theory and particle swarm
optimization (PSO) algorithm are utilized to optimize and obtain phase layout for diffusion scattering
of EM waves under x- and y-polarized normal incidence. The simulated and the measured results
validate effectively the capacity of the proposed metasurface for reducing the monostatic and bistatic
RCS of the target and significantly extending frequency bandwidth.

II. OPTIMIZED METASURFACE DESIGN

A. Unit cell designs

Minkowski Fractal element is chosen as the basic unit cell of the proposed metasurface on
account of its fractal geometry with an excellent self-similar property, which is useful for adjusting
the unit cell size and broadening the working bandwidth, in addition, the simple design and the easy
fabrication. This paper uses two kinds of Minkowski fractal elements, one is patch structure, and the
other is ring structure. The basic unit cell is constituted of two metallic layers which are separated
by a F4B substrate plate with dielectric constant of 2.65 and loss tangent of 0.001. Fig. 1 shows the
3D modeling, as well as, the top view and side view of two fractal elements.

The parameters of the unit cell A and B are also shown in Fig. 1. The bottom layer is metallic
plate. In a certain frequency band, the reflection phase of the basic unit cell is influenced by its
geometrical parameters. In our simulation, the substrate thickness h1 and h2 change in 2, 4, 6 mm,
meanwhile, the side length L1 varies from 0.8 to 7.8 mm and the side length L2 varies from 1.6
to 7.9 mm both with the step size of 0.1 mm. While the other dimensions are fixed as follows: the
periodicity of the unit cell is P=8 mm, the width is w=0.3 mm, the inside length is Lin=1.5 mm and
gap is g=0.7 mm. These two kinds of unit cells are independently simulated by frequency domain
solver with periodic boundary condition (PBC) of CST microwave studio to obtain the reflection
phase.

For a dual checkerboard metasurface the RCS reduction can be approximated by

RCS reduction= 10 log [
A1ejP1 + A2ejP2

2
]2 (1)

where A1 and A2 are the reflection coefficient amplitudes of two unit cells, and P1 and P2 are
their reflection phase. According to this formula, more than 10 dB RCS reduction can be achieved
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FIG. 1. 3D modeling and geometry of the basic unit cells. (a) the unit cell A (b) the unit cell B.

when phase difference of two basic unit cells is between 180◦±37◦. Hence, after the simulation, we
use a MATLAB program to look for two unit cells with 180◦±37◦ phase difference in the largest
possible frequency band. The job of this program is to compare the frequency bandwidth of any
two different unit cells with a 180◦±37◦ reflection phase difference. This searching process results
in the optimal parameters of two basic unit cells, which are h1=2, L1=7.8 and h2=6, L2=3.7 mm,
respectively. The reflection phase curves versus frequency of these two unit cells as well as their
reflection phase difference are descripted in Fig. 2. A clear find from the curves, the reflection
phase difference (180◦±37◦) stays in the frequency range from 6.41 to 22.79 GHz. Compared with
previous researches, the frequency bandwidth can be extended effectivity by the Minkowski fractal
element. In other words, two selected unit cells can be used in a chessboard configuration to achieve
a low-scattering property in ultra-wide frequency band.

B. Metasurface design

In order to satisfy the periodic boundary condition (PBC) used in simulation, a lattice contains 8×8
identical unit cells. The proposed metasurface constituted of 4×4 lattices. The geometry structure

FIG. 2. Reflection phase of two unit cells and phase difference between them.
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FIG. 3. Geometry structure of the proposed metasurface.

is shown in Fig. 3. The dimension of the lattice and the metasurface is d=64 and D=256 mm,
respectively. The proposed metamaterials are comprised of digital elements and are controlled by the
coding sequences of them.16 In binary case the phase difference is 180◦, therefore for 1-bit coding
metamaterials, artificially regulate “0” element with a 0◦ phase response and “1” element with a
180◦ phase response. In this article, the unit cell A and B are denominated as “0” and “1” binary
digital elements, respectively.

Once the lattice has been prepared, we are going to search for the optimal layout of the meta-
surface. The simplest way is to create a random phase distribution matrix.17 But it cannot guarantee
an optimal result, and the continuous phase of change is difficult to achieve in reality. Hence, we
adopt a comprehensive approach combining array theory, coding matrix and optimization algorithm
to solve this issue. Considering the array of M×N lattices of opposite reflection phase (0◦ and 180◦),
according to the array theory, the scattering field of the metasurface can be expressed as

ES(θ, ϕ)=EF(θ, ϕ) · AF(θ, ϕ) (2)

where θ and ϕ are the elevation and azimuth angles, respectively. EF and AF are the pattern function
of a lattice and the array factor, respectively. Here, the EF is fixed and the AF is expressed by

AF (θ, ϕ)=
M∑

m=1

N∑
n=1

exp
{
−j

[
2πsinθ

(
cosϕ · mdx + sinϕ · ndy

)
/λ + Ø (m, n)

]}
(3)

FIG. 4. The simulated monostatic RCS of the proposed coding metasurface and the equal-sized PEC surface under x- and
y-polarized incident waves.
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FIG. 5. The bistatic RCS reduction of the metasurface versus frequency at different angles of incidence. (a) Normal incidence.
(b) 20 degrees angle of incidence. (c) 40 degrees angle of incidence.

The lattices are uniformly spaced with dx in the x direction and dy in the y direction. ∅ (m, n) is
the initial phase of the lattice. To realize EM wave diffusion on a planar metasurface, we propose
a scheme so that all the digital elements of the metasurface are randomly arranged to achieve the
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FIG. 6. The 3-D plots of the simulated scattering pattern of the proposed metasurface and the equal-sized PEC surface at
(a) 7 GHz (b) 13 GHz.

desired diverse scattering pattern. In this scheme, a particle-swarm optimization (PSO) algorithm is
employed to find the optimal arrangement of the digital elements. During the optimization, a far-field
pattern prediction algorithm is used as an auxiliary module to save the effort required for tremendous
full-wave simulations.18,19 Fig. 3 shows the optimal phase layout, which could redirect the scattering
energy to more directions under normal incidence.

III. SIMULATED AND MEASURED RESULTS

A. Simulated result

To corroborate the physical phenomena above-mentioned, as well as, the RCS reduction and
diffusion effects of the proposed metasurface, the transient solver of CST Microwave Studio is used
to full-wave simulate the full structure under normal incidence with x- and y-polarizations. An equal-
sized perfect electric conductor (PEC) surface is simulated as the reference. Fig. 4 shows the simulated
monostatic RCS of the proposed metasurface and the reference PEC surface. A larger than 10 dB RCS
reduction is achieved over the ultra-wide frequency ranges from 6.4 to 23 GHz (112.8% bandwidth).
It is worth noting that the RCS reduction bandwidth is in accordance with the results predicted by
the reflection phase difference features between two fractal basic unit cells as shows in Fig. 2. Due
to the symmetry, the phase response of the lattice is the same for both polarizations. Thus the RCS
reduction of the proposed metasurface is polarization independence.

In the previous section, an optimal layout of the metasurface is obtained, it is done because of
more sidelobes will be increased and the EM energy is redirected to more direction. The bistatic RCS
reduction is defined by

Bistatic RCS Reduction=
Max (Bistatic RCS of metasurface)

Max (Bistatic RCS of equal−sizedmetal)
(4)
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where the Max(. . .) function domain covers the bistatic scattering angles (θs and ϕs) which cov-
ers the upper half-space of the metasurface (0 ≤ θs ≤ 0.5π and 0 ≤ ϕs ≤ 2π). The bistatic RCS
reduction at different incident angles versus frequency for both TM and TE-polarization is shown
in Fig. 5. From the figures, it is found that the excellent bistatic RCS reduction when the angle of
incidence changes and the bistatic RCS reduction of the proposed metasurface is also polarization
independence.

To further illustrate the performance of the proposed metasurface, the comparison of the simulated
3D bistatic scattering patterns of the proposed metasurface and the equal-sized PEC surface for normal
incidence at 7 and 13 GHz are illustrated in Fig. 6. The maximum bistatic RCS value is reduced
by 9.6 and 10.2 dB at 7 and 13 GHz, respectively. The proposed metasurface generates diffusion
scattering instead of the peak scattering of the reference PEC surface. According to the law of energy
conservation, the maximum of scattered field is suppressed at a low level, leading to a low bistatic
RCS.

To investigate the scattering profiles of the proposed metasurface under oblique incidences,
we considered four incident angels (θin =15◦, 20◦, 30◦, 40◦) for both transverse-electric (TE) and
transverse-magnetic (TM) polarizations in this simulation. Figs. 7(a) and (b) show the simulated RCS
reduction of the metasurface over a broad frequency band at the incidence angles considered. From
these figures, we can see clearly that in the case of TM-polarization, the metasurface works well

FIG. 7. Simulation results of the metasurface under the oblique incidences for (a) TE-polarization (b) TM-polarization.
TE/TM: The direction of the electric/magnetic field is perpendicular to the plane of incidence.
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FIG. 8. Monostatic RCS measurement (a) The fabricated metasurface (b) Schematic view of the compact range system.

for a wide range of incident angles, however, the operation bandwidth of the metamaterial decreased
as the incident angle increased for TE-polarization. At the same time, we notice this phenomenon
also appears in the other designs reported in the literature.20–22 It means that the high sensitivity to
the incident angle for TE-polarization is not only a challenge for our design but also the objective in
our future work.

B. Measured result

In order to confirm the theoretical results and the validity of the simulation, a sample of the
proposed metasurface with a total dimensions 256×256 mm2 is fabricated and measured. The sam-
ple is manufactured by LPKF ProtoLaser with printed circuit board (PCB) technology, is depicted
in Fig. 8(a). Because the dielectric layer of the proposed metasurface is uneven, these 16 lat-
tices are fabricated independently and we paste them on a metal plate according to the phase
arrangement, as shown in Fig. 3. The monostatic RCS is measured by compact range system of
National Electromagnetic Scattering Laboratory in Beijing. The measurement setup is shown in
Fig. 8(b). For the monostatic RCS reduction measurement, two identical horn antennas are used as
transmitting and receiving devices. The spherical waves emitted by the horn antenna are reflected

FIG. 9. The simulated and measured monostatic RCS reduction of the proposed coding metasurface under x-polarized normal
incident.
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TABLE I. Comparisons between the results of this work and earlier checkerboard surfaces. RCSR: Radar Cross Section
(RCS) Reduction, FR: Frequency range, BW: The relative bandwidth (BW = (fH � fL)/fc, fc = (fH + f L)/2), RBW: The ratio
bandwidth (RBW = fH /fL).

RCSR (<=dB) FR (GHz) BW (%) RBW

8 -10 14.5-21.8 40.2 1.50
9 -10 4.2-7.9 61 1.88
10 -10 9.4-23.3 85 2.47
11 -10 7.9-20.8 89.9 2.63
12 -10 17-42 84.7 2.47
13 -10 6.1-17.8 98 2.91
15 -10 3.8-10.7 95 2.81
16 -10 9.83-19.12 64.2 1.95
This work -10 6.6-23.9 113 3.62

by the parabolic metal reflector and become a plane wave. Short test distance between metasur-
face sample and reflector is easy to meet the far field conditions. Then, the scattering performance
is evaluated by the transmission coefficients obtained by vector network analyzer. The measured
monostatic RCS reduction curve versus frequency under x-polarized normal incidence is shown
in Fig. 9. A larger than 10 dB monostatic RCS is obtained over an ultra-wide frequency band
from 6.6 to 23.9 GHz with a ratio bandwidth of 3.62:1. The measured result agrees well with
the simulation result. Slight frequency deviation can be attributed to fabrication and measurement
error. Moreover, Table I shows the comparison between the previous researches and this work.
Through the comparison of available results, the RCS reduction bandwidth is extended significantly
by our proposed metasurface. Overall, the excellent performance of the proposed metasurface is
verified.

IV. CONCLUSION

A novel metasurface based on uneven layered fractal elements is designed, fabricated and
measured for ultra-bandwidth RCS reduction. The proposed metasurface consists of two kinds of
Minkowski fractal elements, one is patch and the other is ring structure. The 180◦±37◦ reflection
phase difference between this two unit cells that realizes a more than 10 dB RCS reduction from
6.6 to 23.6 GHz (113% frequency bandwidth). The particle swarm optimization (PSO) algorithm
combining with the array theory are utilized to optimize the coding matrix of digital elements and
obtain the optimal layout for diffusion scattering under normal incidence, leading to an excellent
bistaic RCS reduction. The measurement and simulation results are consistent to verify the ultra-
bandwidth diffusion scattering and RCS reduction performance of the proposed metasurface for both
polarizations.
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