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Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle
fibers and lower proportions of insulin-sensitive Type I fibers near term

Dustin T. Yates,1,2 Caitlin N. Cadaret,1 Kristin A. Beede,1 Hannah E. Riley,1 Antoni R. Macko,2

Miranda J. Anderson,2 Leticia E. Camacho,2 and Sean W. Limesand2
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Yates DT, Cadaret CN, Beede KA, Riley HE, Macko AR,
Anderson MJ, Camacho LE, Limesand SW. Intrauterine growth-
restricted sheep fetuses exhibit smaller hindlimb muscle fibers and
lower proportions of insulin-sensitive Type I fibers near term. Am J
Physiol Regul Integr Comp Physiol 310: R1020–R1029, 2016. First
published April 6, 2016; doi:10.1152/ajpregu.00528.2015.—Intra-
uterine growth restriction (IUGR) reduces muscle mass and insulin
sensitivity in offspring. Insulin sensitivity varies among muscle fiber
types, with Type I fibers being most sensitive. Differences in fiber-
type ratios are associated with insulin resistance in adults, and thus we
hypothesized that near-term IUGR sheep fetuses exhibit reduced size
and proportions of Type I fibers. Placental insufficiency-induced
IUGR fetuses were �54% smaller (P � 0.05) than controls and
exhibited hypoxemia and hypoglycemia, which contributed to 6.9-
fold greater (P � 0.05) plasma norepinephrine and �53% lower (P �
0.05) plasma insulin concentrations. IUGR semitendinosus muscles
contained less (P � 0.05) myosin heavy chain-I protein (MyHC-I) and
proportionally fewer (P � 0.05) Type I and Type I/IIa fibers than
controls, but MyHC-II protein concentrations, Type II fibers, and
Type IIx fibers were not different. IUGR biceps femoris muscles
exhibited similar albeit less dramatic differences in fiber type propor-
tions. Type I and IIa fibers are more responsive to adrenergic and
insulin regulation than Type IIx and may be more profoundly im-
paired by the high catecholamines and low insulin in our IUGR
fetuses, leading to their proportional reduction. In both muscles, fibers
of each type were uniformly smaller (P � 0.05) in IUGR fetuses than
controls, which indicates that fiber hypertrophy is not dependent on
type but rather on other factors such as myoblast differentiation or
protein synthesis. Together, our findings show that IUGR fetal mus-
cles develop smaller fibers and have proportionally fewer Type I
fibers, which is indicative of developmental adaptations that may help
explain the link between IUGR and adulthood insulin resistance.

fetal growth restriction; fetal programming; myocyte

A GROWING NUMBER OF STUDIES have linked intrauterine growth
restriction (IUGR) to insulin resistance, obesity, and metabolic
syndrome later in life (5, 31, 59, 61, 62, 68, 81). The fetal
adaptations underlying these complications have not been
fully characterized but likely include structural and func-
tional changes in skeletal muscle development, since muscle
is the primary site for insulin-stimulated glucose disposal
(27). Throughout life, IUGR-born individuals generally ex-
hibit less muscle mass and greater central fat deposition (3,
33, 43, 90), and we recently showed that semitendinosus
muscle fibers in IUGR fetal sheep are smaller near term due
in part to impaired myoblast proliferative capacity (86).
Moreover, protein analysis of muscle samples in other

studies have shown evidence of impaired insulin signaling
(39, 40, 63, 64). Reduced muscle growth and insulin-
stimulated glucose consumption may represent essential
nutrient-sparing adaptations in IUGR fetuses but also likely
contribute to insulin resistance and metabolic dysfunction in
adulthood (87, 89).

Skeletal muscle is composed of heterogeneous populations
of muscle fibers that can be classified by expression of different
myosin heavy chain (MyHC) isoforms, and rat studies have
shown that responsiveness to insulin differs among fiber types
(34, 38, 55). Insulin-stimulated glucose uptake rates are great-
est in Type I fibers (slow oxidative; MyHC-I) and lowest in
Type IIx fibers (fast glycolytic; MyHC-IIx). The response of
Type IIa fibers (fast oxidative/glycolytic; MyHC-IIa) to insulin
is intermediate between Type I and Type IIx myofibers. Each
skeletal muscle is composed of specific fiber-type ratios, and
composition differences in thigh muscles have been associ-
ated with insulin resistance in adult men (40, 49). We
postulate that IUGR conditions alter fetal fiber-type ratios in
a way that promotes development of insulin resistance in
IUGR skeletal muscle. Specifically, we would expect re-
duced proportions of the most insulin-sensitive fiber type:
Type I fibers. Furthermore, reductions in size may occur
disproportionately in Type I fibers and result in further
decreases in insulin sensitivity.

The objective of this study was to determine whether fiber
type-specific differences in size and ratios occur in IUGR fetal
skeletal muscles near the end of gestation. The study was
performed using a well-characterized IUGR model (26, 54, 71,
72) in which pregnant ewes are exposed to high ambient
temperatures for an extended period during midgestation to
generate natural placental insufficiency (11, 14, 32, 71). In
these animals, the reduced size and transport capacity (11, 69,
70, 80) of the placenta prevent it from meeting the nutrient
requirements for rapid fetal growth that occurs late in gesta-
tion, after animals are returned to thermoneutral conditions.
Hyperthermia-induced placental insufficiency results in pat-
terns of progressively worsening hypoxemia, hypoglycemia,
and asymmetrical fetal growth restriction (22, 48, 51, 53)
congruent to other models of placental insufficiency (21, 23–
25, 46, 60, 84) as well as humans (30, 36, 76). We evaluated
two commonly studied mixed-fiber type hindlimb muscles, the
semitendinosus and biceps femoris, that are similar-sized and
adjacently located. Under normal circumstances these muscles
express comparable fiber sizes, fiber-type ratios, and metabolic
enzyme profiles (35, 42, 44) but differences in vascularity and
innervation (67, 85), as well as temporal aspects of develop-
ment (29).
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MATERIALS AND METHODS

Animals and experimental treatments. Animal care and use was
approved by the Institutional Animal Care and Use Committee at The
University of Arizona, Tucson, AZ, which is accredited by the
American Association for Accreditation of Laboratory Animal Care.
Animal studies were performed at the University of Arizona Agricul-
tural Research Complex.

Columbia-Rambouillet crossbred ewes with singleton pregnancies
confirmed by ultrasound were obtained from Nebeker Ranch (Lan-
caster, CA). IUGR fetuses (n � 7; 4 male, 3 female) were generated
by inducing placental insufficiency as previously described (48, 53).
Briefly, pregnant ewes were exposed to elevated ambient temperatures
(40°C for 12 h/day, 35°C for 12 h/day; dew point 22°C) from the 40th
to the 95th day of gestational age (dGA). Age-matched control fetuses
(n � 6; 3 male, 3 female) were generated from ewes housed at 25°C
and pair-fed to the average daily intake of the IUGR group. At 120 �
1 dGA, indwelling polyvinyl catheters were surgically placed in the
fetal abdominal aorta via the hindlimb pedal artery as previously
described (50, 52). Catheters were tunneled subcutaneously to the
flank of the ewe and exteriorized. At 132 � 1 dGA, a series of three
fetal blood samples were collected from each animal in 5-min inter-
vals as previously described (48, 88). Ewes and fetuses were eutha-
nized at 134 � 1 dGA with Euthansol (Merck Animal Health). Fetal,
placental, and organ weights were measured postmortem. Fetal sem-
itendinosus and biceps femoris muscles were collected for immuno-
histochemistry and gene expression analysis.

Blood sample analysis. Fetal blood samples were analyzed as
previously described (48, 88). Whole blood oxygen, carbon dioxide,
and pH levels were determined with an ABL 720 blood gas analyzer
(Radiometer, Copenhagen, Denmark). Plasma glucose and lactate
concentrations were determined with an YSI 2700 SELECT biochem-
istry analyzer (Yellow Springs Instruments, Yellow Springs, OH).
Plasma insulin and norepinephrine concentrations were determined by
commercial ELISA kits (Ovine Insulin, ALPCO Diagnostics, Wind-
ham, NH; 2-CAT, Rocky Mountain Diagnostics, Colorado Springs,
CO) as previously described (88), with intra-assay and inter-assay
coefficients of variance of less than 15% for each.

Immunohistochemistry. Central, cross-sectional biopsies of the
semitendinosus and biceps femoris muscles were fixed in 4% para-
formaldehyde and phosphate-buffered saline (PBS; pH 7.3), embed-
ded in OTC Compound, and frozen as previously described (18, 86).
Eight-micrometer sections were mounted on Fisherbrand Superfrost
Plus microscope slides (Thermo Fisher Scientific, Waltham, MA) and
immunostained. Briefly, tissues were washed in PBS with 0.1%
Triton-X-100 (Sigma-Aldrich) and then steamed with 10 mM citric
acid buffer (pH 6; Sigma-Aldrich) for antigen retrieval. Nonspecific
binding was blocked with 0.5% NEN blocking buffer (Perkin-Elmer,
Waltham, MA). Primary antiserum diluted in PBS � 1% bovine
serum albumin was applied overnight at 4°C (primary antiserum was
excluded in negative controls). Fiber types were determined with
antibodies raised in the mouse against MyHC-I (BA-D5, 1:20; DSHB,
University of Iowa, Iowa City, IA), MyHC-II (F18, 1:20; DSHB),

MyHC-I/MyHC-IIa (BF-32, 1:20; DSHB), and MyHC-IIx (6H1,
1:150; DSHB) (13). Fibers were counterstained with rabbit antidesmin
(1:200; Sigma-Aldrich). Immunocomplexes were detected with affin-
ity-purified immunoglobulin antiserum conjugated to Alexa Fluor 594
(1:3,000; Invitrogen Life Technologies, Carlsbad, CA) or Alexa Fluor
488 (1:2,500; Jackson ImmunoResearch Laboratories, West Grove,
PA). Fluorescent images were visualized on a Leica DM5500 micro-
scope system and digitally captured with a Spot Pursuit 4 Megapixel
CCD camera (Diagnostic Instruments, Sterling Heights, MI). Images
were analyzed with Image Pro Plus 6.3 software (Media Cybernetics,
Silver Spring, MD) and ImageJ (National Institutes of Health,
Bethesda, MD) to determine fiber-type proportions and mean cross-
sectional areas. To prevent evaluator bias during morphometric as-
sessment, histological images were encoded to conceal animal and
treatment designations.

Myosin heavy chain electrophoresis. Snap-frozen muscle samples
(50 mg) were homogenized in 200 �l of RIPA buffer containing
manufacturer recommended concentrations of Halt Protease and Halt
Phosphatase Inhibitor Cocktails (Thermo Fisher). Homogenates were
then sonicated and centrifuged (2500 g; 10 min), and supernatant was
collected. Total protein concentrations were determined by Pierce
BCA Assay (Thermo Fisher). Samples were incubated at room tem-
perature for 10 min, heated at 70°C for 10 min, combined with
Bio-Rad 4� Laemmli Sample Buffer (Bio-Rad, Hercules, CA) to a
1� concentration, and loaded at 10 �g/well. MyHC isoforms were
separated by SDS-PAGE (66, 78). Stacking gels consisted of 47%
vol/vol glycerol (100%), 6% vol/vol acrylamide-bisacrylamide (50:1),
110 mM Tris (pH 6.7), 6 mM EDTA, 0.4% vol/vol SDS (10%), 0.1%
vol/vol ammonium persulfate (10%), and 0.05% vol/vol tetramethyl-

Table 1. Primers for qPCR

Gene Protein Primer Sequence Product Size Accession Number

MYH7 MyHC-I GAG ATG GCC GCG TTT GGG GAG 283 AB058898.1
GGC TCG TGC AGG AAG GTC AGC

MYH2 MyHC-IIa ACC GAA GGA GGG GCG ACT CTG 109 AB058896.1
GGC TCG TGC AGG TGG GTC ATC

MYH1 MyHC-IIx AAA GCG ACC GTG CAG AGC AGG 154 AB058897.1
GGC TCG TGC AGG TGG GTC ATC

RPS15 s15 ATC ATT CTG CCC GAG ATG GTG 134 AY949774.1
TGC TTT ACG GGC TTG TAG GTG

MYH, myosin heavy chain.

Table 2. Morphometric data

Variable Control (n � 6) IUGR (n � 7) P Value

dGA 135 � 0.5 134 � 0.5 NS
Uteroplacental mass, g

Uterus 491 � 48 398 � 48 NS
Placenta 297 � 31 131 � 29 �0.01

Number of placentomes 89.3 � 6.6 74.2 � 6.2 NS
Average placentome

mass, g 3.34 � 0.33 2.01 � 0.31 �0.01
Fetal mass, g

Fetus 3,279 � 199 1,491 � 184 �0.01
Carcass 2,531 � 152 1,098 � 141 �0.01

Carcass/fetus, % 77.2 � 0.6 73.5 � 0.6 �0.01
Relative organ mass,

g/fetal kg
Brain 16.2 � 2.6 29.9 � 2.4 �0.01
Heart 6.9 � 0.3 8.5 � 0.2 �0.01
Liver 26.5 � 2.3 30.1 � 2.2 NS
Lungs 28.3 � 1.5 32.0 � 1.4 NS
Kidneys 6.5 � 0.9 8.3 � 0.9 NS
Spleen 2.9 � 0.3 2.0 � 0.3 NS

Values are means � SE; n, number of animals. NS, not significant.
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ethylenediamine (TEMED, 100%). Resolving gels were composed of
35% vol/vol glycerol (100%), 9% vol/vol acrylamide-bisacrylamide
(50:1), 230 mM Tris (pH 8.8), 115 mM glycine, 0.4% vol/vol SDS
(10%), 0.1% vol/vol ammonium per sulfate (10%), and 0.05% vol/vol
TEMED (100%). The upper running buffer consisted of 100 mM Tris,
150 mM glycine, 0.1% SDS, and 0.07% 2	-mercaptoethanol in
distilled water, and the lower running buffer consisted of 50 mM Tris,
75 mM glycine, and 0.05% SDS in distilled water. Electrophoresis
was performed on a Mini-PROTEAN Tetra Cell (Bio-Rad) at 4°C for
24 h at a constant 150 V. After electrophoresis, gels were stained
overnight with Gel-Code Blue (Thermo Fisher), destained in distilled
water, and imaged on an Odyssey infrared imaging system (LI-COR
Biosciences, Lincoln, NE). MyHC-I and collective MyHC-II bands
were measured by densitometry (Image Studio Lite Ver 5.0; LI-COR).

Myosin heavy chain Western immunoblot. Skeletal muscle proteins
were separated by SDS-PAGE and transferred to polyvinylidene
fluoride membranes as previously described (17, 52). Membranes
were incubated in Tris-buffered saline � 0.1% Tween-20 � 5%
nonfat dry milk for 1 h to block nonspecific binding and then
incubated overnight at 4°C with mouse anti-MyHC-I or MyHC-II
primary antibodies diluted in Tris-buffered saline � 0.1% Tween-20
� 5% nonfat dry milk. MyHC immunoblots were normalized to
	-tubulin (1:3,000; RB-9249, Thermo Fisher). Immunocomplexes
were detected with goat antimouse IgM horseradish peroxidase-
conjugated secondary antibody (1:5,000; Santa Cruz Biotechnology,
Santa Cruz, CA) or with goat antimouse IgG horseradish peroxidase-
conjugated secondary antibody (1:20,000; Bio-Rad) using West Pico
Chemiluminescent Substrate (Thermo Scientific, Rockford, IL) and
exposed to X-ray film. Densitometry values were determined with
ImageJ software.

Quantitative PCR. RNA was extracted from ground muscle (200
mg) using the QIAprep Spin MiniPrep kit (Qiagen, Valencia, CA) and
was reverse transcribed in triplicate (16). Oligonucleotide primers
(Table 1) were synthesized as previously described (17) and PCR
products were cloned into pCR II (Invitrogen) and confirmed with
nucleotide sequencing (University of AZ Genetics Core, Tucson, AZ)
(16). Primer efficiencies and standard curves were determined from
plasmid DNA, which were linear over six orders of magnitude.
Concentrations of mRNA for each gene were determined by qPCR
using SYBR Green (Qiagen) in an iQ5 Real-Time PCR Detection
System (Bio-Rad Laboratories). Samples were initially denatured
(95°C for 15 min) and then amplified with 45 cycles of denaturing
(96°C for 30 s), annealing (60–62°C for 30 s), and fluorescence
measurement during extension (72°C for 10 s). Melt curves were
performed after amplification to confirm product homogeneity.
mRNA concentrations for each gene of interest were determined from
triplicate cDNA and normalized to mRNA concentrations of ribo-
somal protein s15.

Statistical analysis. All data were analyzed by ANOVA using the
GLM procedure of SAS (SAS Institute, Cary NC) to determine
treatment effects. Fetal sex was initially included as a covariate in all
analysis but was only significant for liver weight and was removed
from the model for all other parameters. For each fetus, values for

whole blood and plasma parameters represent the average of the three
blood samples. Mean semitendinosus and biceps femoris muscle fiber
cross-sectional areas were determined from a minimum of 300 fibers
across 10 nonoverlapping fields of view. The percentages of fibers
staining positive for each MyHC were determined from a minimum of
1,500 fibers per muscle. MyHC mRNA concentrations normalized to
the s15 housekeeping gene are expressed as the amount relative to
controls. Individual MyHC protein concentrations analyzed by elec-
trophoresis are expressed as the percentage of total MyHC protein.
Individual MyHC protein concentrations analyzed by Western immu-
noblot were normalized to 	-tubulin protein content and are expressed
as the relative density compared with controls. Pearson correlation
analyses were performed using the CORR procedure of SAS. All data
are expressed as means � SE.

Table 3. Fetal blood and plasma parameters

Variable Control (n � 6) IUGR (n � 7) P Value

Plasma norepinephrine,
pg/ml 323 � 303 2216 � 208 �0.01

Plasma insulin, ng/ml 0.32 � 0.05 0.15 � 0.05 0.04
Plasma glucose, mM 1.05 � 0.10 0.69 � 0.09 0.02
Plasma lactate, mM 1.82 � 0.33 3.02 � 0.31 0.02
Blood O2, mM 3.40 � 0.23 2.15 � 0.21 �0.01
Blood O2 saturation, % 48.0 � 5.2 31.7 � 4.8 0.04

Values are means � SE; n, number of animals. IUGR, intrauterine growth
restriction.

Control                               IUGR
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Fig. 1. Immunostaining for fiber type in fetal semitendinosus muscles. Repre-
sentative micrographs are depicted for control and intrauterine growth restric-
tion (IUGR) semitendinosus cross sections (8 �m). Sections were stained for
myosin heavy chain (MyHC) isoforms (green) and counterstained for desmin
(red). A: Type I fibers (MyHC-I); B: Types I or IIa fibers (MyHC-I/IIa); C:
Type II fibers (MyHC-II); D: Type IIx fibers (MyHC-IIx). White magnification
bar � 50 �m.
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RESULTS

Morphometrics. Uterine weights were not different between
ewes carrying IUGR and control fetuses (Table 2), but placen-
tas from IUGR fetuses weighed �65% less (P � 0.05) than
placentas from controls. The number of placentomes was not
different between IUGR and control fetuses, but average
weight per placentome was less (P � 0.05) in IUGR fetuses.

IUGR fetuses were �65% lighter than controls (P � 0.05;
Table 2). Carcass weight and carcass weight/fetal weight were
also lower (P � 0.05) in IUGR fetuses. When compared with
controls, IUGR fetal brain, heart, lungs, kidneys, and spleen
were smaller (P � 0.05; data not shown). Liver was also
smaller (P � 0.05) in females than males, but fetal sex and
fetal treatment group did not interact. When normalized to fetal
weight (Table 2), relative brain and heart weights were greater
(P � 0.05) in IUGR fetuses and relative liver, lung, kidney,
and spleen weights were not different compared with controls.

Fetal blood and plasma analysis. Plasma norepinephrine
concentrations were �690% greater (P � 0.05) and plasma
insulin concentrations were �53% less (P � 0.05) in IUGR
fetuses than in controls (Table 3). IUGR fetuses also had lower
(P � 0.05) plasma glucose concentrations and higher (P �
0.05) plasma lactate concentrations than controls. Blood oxy-
gen content and saturation were both lower (P � 0.05) in
IUGR fetuses compared with controls. Partial pressure of
carbon dioxide was not different between the two groups.

Fiber type distribution and size. Proportions of Type I fibers,
Type II fibers, combined Type I/IIa fibers, and Type IIx fibers
were identified by MyHC staining (Fig. 1). The proportion of
Type I fibers and the combined proportion of Type I/IIa fibers
were less (P � 0.05) in IUGR fetuses than in controls for both
semitendinosus and biceps femoris muscles (Fig. 2), but the
proportion of Type II fibers and the proportion of Type IIx
fibers were not different between IUGR and control fetuses for
either muscle. Average cross-sectional areas were lower (P �
0.05) for all fiber types in IUGR muscles compared with
controls (Fig. 3). Proportions of Type I/IIa fibers in semiten-
dinosus muscle and Type II fibers in biceps femoris muscles
were positively correlated (P � 0.05) with plasma insulin
concentrations (r � 0.62 and 0.65, respectively). Proportions
of Type I and Type I/IIa fibers in semitendinosus muscles (r �

0.64 and 
0.68, respectively) and biceps femoris muscles
(r � 
0.45 and 
0.70, respectively) were negatively corre-
lated (P � 0.05) with plasma norepinephrine concentrations.

Skeletal muscle protein. The percentage of total MyHC that
was identified by protein electrophoretic mobility as MyHC-I
was lower (P � 0.05) and the percentage identified as
MyHC-II was greater (P � 0.05) in IUGR than in control
semitendinosus muscles (Fig. 4A). However, no differences in
MyHC-I or MyHC-II percentages of total MyHC were ob-
served between IUGR and control biceps femoris muscles.
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Fig. 2. Muscle fiber-type proportions. The percentages of total fibers (means �
SE) are presented for control and IUGR fetal semitendinosus and biceps
femoris muscle sections. Control, open bars; IUGR, black bars. A: Type I fibers
(MyHC-I positive); B: Types I or IIa fibers (MyHC-I/IIa positive); C: Type II
fibers (MyHC-II positive); D: Type IIx fibers (MyHC-IIx positive) were
determined by immunostaining. All sections were counterstained for desmin to
determine total fiber numbers. *Differences (P � 0.05) between control and
IUGR groups within each muscle.
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Immunoblot analysis showed less (P � 0.05) MyHC-I in
IUGR semitendinosus muscles than in controls but similar
concentrations of MyHC-II between the two groups (Fig. 4B).

Myosin heavy chain gene expression. MyHC-I mRNA con-
centrations were less (P � 0.05) in IUGR semitendinosus
muscle but greater (P � 0.05) in IUGR biceps femoris muscle
compared with controls (Fig. 5). IUGR fetuses contained less
(P � 0.05) MyHC-IIa mRNA than controls in both semiten-
dinosus and biceps femoris muscles. MyHC-IIx mRNA con-
centrations were not different between the two groups in either
muscle.

DISCUSSION

Our findings in hindlimb muscles from near-term fetal sheep
show that placental insufficiency-induced IUGR reduces the pro-
portion of Type I fibers alone as well as the collective proportion
of Types I and IIa, but does not alter the total proportion of Type
II fibers or the proportion of the Type IIx subgroup. Size, how-
ever, was reduced in all IUGR fibers regardless of type. Skeletal
muscle is the principal tissue for insulin-stimulated glucose utili-
zation, and muscle mass and fiber type composition greatly affect
insulin sensitivity and glucose homeostasis (34, 38, 55). Thus
smaller fibers and less Type I and IIa fibers may begin to
explain the link between IUGR and skeletal muscle insulin
resistance in adulthood (40, 63). Our morphometric data show
that the fetal response to placental insufficiency included asym-
metric growth restriction in which fetal carcass weight was
diminished to a greater extent than fetal body weight. Dispro-
portional reduction of lean tissue, especially muscle, is a
hallmark of IUGR fetuses (12, 47, 65) that has been shown to
continue throughout the lifespan of the offspring (3, 33, 43, 82,
90), leaving them at greater risk for metabolic disorders (5, 28,
61, 68, 81). Decreased oxygen and nutrient supply to the fetus
due to placental insufficiency make nutrient-sparing adapta-
tions necessary for survival, and the high metabolic plasticity
of skeletal muscle makes it an ideal tissue for nutrient sparing,
even at the expense of growth (87, 89). Indeed, our findings
indicate that fetal adaptations to IUGR conditions alter fiber-
type ratios and restrict hypertrophy of all fibers in two postural
hindlimb muscles, which would be consistent with less capac-
ity for insulin-stimulated glucose utilization.

The proportions of Type I fibers alone and the combined
proportions of Types I and IIa fibers in semitendinosus and
biceps femoris muscles were substantially reduced by IUGR,
but proportions of total Type II fibers and of Type IIx fibers
were not affected. We attribute these changes in fiber compo-
sition to differences in the responsiveness of each fiber type to
the conditions caused by placental insufficiency. Our IUGR
fetuses suffered from a �40% reduction in blood oxygen
content that stimulated a near sevenfold increase in circulating
norepinephrine, the main catecholamine secreted by the pre-
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natal adrenal gland (2). Catecholamines have been shown to
affect fetal muscle growth and development (6), and we have
demonstrated chronic, progressively worsening hypercat-
echolaminemia over the third trimester in this model previ-
ously (22, 48, 53). In rodents and lambs, 	-adrenergic agonists
have been shown to reduce the ratio of Type I to Type II fibers
(9, 37, 57, 91), presumably due to the differences in adrenergic
receptor profiles between the two fiber types (reviewed in Ref.
75). In rat muscle, for example, 	-adrenergic receptor densities
in Type I fibers are twofold to threefold greater than in Type II

Semitendinosus                   Biceps Femoris

M
yH

C
-II

a
m

R
N

A
(N

or
m

al
iz

ed
 to

 C
on

tro
l)

M
yH

C
-I 

m
R

N
A

(N
or

m
al

iz
ed

 to
 C

on
tro

l)

1.15

1.08

1.00

0.93

0.85

1.15

1.08

1.00

0.93

0.85

M
yH

C
-II

x
m

R
N

A
(N

or
m

al
iz

ed
 to

 C
on

tro
l)

1.15

1.08

1.00

0.93

0.85

A

C

B

Fig. 5. Myosin heavy chain gene expression. Control, open bars; IUGR, black
bars. A: MyHC-I; B: MyHC-IIa; C: MyHC-IIx mRNA concentrations were
measured in control and IUGR semitendinosus and biceps femoris samples,
normalized to s15 mRNA concentrations and are expressed as amount relative
to controls (means � SE). *Differences (P � 0.05) between control and IUGR
groups within each muscle.

Semitendinosus                      Biceps Femoris

M
yH

C
-II

 p
ro

te
in

(%
 T

ot
al

 M
yH

C
 p

ro
te

in
)

M
yH

C
-I 

pr
ot

ei
n

(%
 T

ot
al

 M
yH

C
 p

ro
te

in
)

20

15

10

90

85

80

MyHC-I                                 MyHC-II

M
yH

C
 p

ro
te

in
(N

or
m

al
iz

ed
 to

 C
on

tro
l)

1.5

1.0

0.5

0.0

A

B

Fig. 4. Myosin heavy chain protein content. Control, open bars; IUGR, black
bars. A: electrophoretic mobility was used to separate MyHC-I and MyHC-II
fractions of total protein isolated from control and IUGR semitendinosus and
biceps femoris samples. The percentage of total MyHC protein (means � SE)
for MyHC-I and MyHC-II protein content are presented. *Differences (P �
0.05) between control and IUGR groups within each muscle. B: semitendino-
sus MyHC-I and MyHC-II protein content was measured by immunoblot and
normalized to 	-tubulin content and expressed as the relative density compared
with controls (means � SE). *Differences (P � 0.05) between control and
IUGR groups.

R1025IUGR REDUCES TYPE I MYOFIBER EXPRESSION

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00528.2015 • www.ajpregu.org



fibers. Not surprisingly, fiber oxidative capacity closely corre-
lates with adrenergic receptor numbers as well (58, 73, 74).
Chronic administration of 	-adrenergic agonists to rats sub-
stantially downregulated receptor content in the Type I-domi-
nant soleus muscle but did not have the same effect in the Type
II-dominant extensor digitorum longus muscle (73, 74). In the
present study, higher plasma norepinephrine concentrations
were highly correlated with reductions in the proportion of
Type I fibers and in the collective proportion of Types I and
IIa, and thus it is presumable that chronic stimulation by the
high catecholamine levels in our IUGR fetuses reduced the
presence of these highly oxidative fibers. Alternatively, high
catecholamines or other factors may have delayed the normal
perinatal increase of Type I fibers that occurs in most muscles
(19, 56). In swine, for example, Type I fibers from naturally
growth-restricted (“runt”) piglets showed signs of immature
formation at birth that was not present in normal-sized litter-
mates and that disappeared within a few weeks of birth (1).
However, maternal nutrient-restriction models of IUGR in
sheep show decreased Type I fibers in offspring at 6 mo of age,
which indicates a more permanent outcome rather than a
transient delay (20).

Reduced ratios of Type I and IIa fibers in IUGR fetuses
could have major implications on glucose homeostasis. Skel-
etal muscle accounts for �80% of the body’s insulin-stimu-
lated glucose utilization (27), and insulin sensitivity is three- to
fourfold higher in Type I fibers and twofold higher in Type IIa
fibers than in Type IIx fibers (34, 38, 55). In adults, muscle-
specific insulin sensitivity is positively correlated to the per-
centage of Type I fibers and negatively correlated to the
percentage of Type IIx fibers (49), which is likely due to the
greater content of insulin receptor, Glut4, and other insulin
signaling proteins in Type I fibers (4, 15, 45). Reduced Type
I/IIa-to-Type IIx fibers ratios are common in adults suffering
from obesity, Type 2 diabetes, and metabolic syndrome (4, 77)
and have been linked to IUGR-induced low birth weight in
humans and animals (8, 40, 92). Thus it is reasonable to
conclude that the differences in fiber-type composition ob-
served in the muscles of our IUGR fetuses are part of an
adaptive response that predisposes them to metabolic compli-
cations later in life.

Insulin stimulates hypertrophic growth of fibers during late
gestation and after birth (reviewed in Ref. 14), and we previ-
ously found that adaptive programming in IUGR fetal muscle
leads to smaller fibers but not lower fiber density near term
(86). However, our previous study did not distinguish between
individual fiber types. In our present study, we show that Type
I and Type II fibers are uniformly smaller (�32–37%) in both
semitendinosus and biceps femoris muscles. It is doubtful that
catecholamines were directly responsible for reduced muscle
mass in our IUGR fetuses, as 	-adrenergic agonists are in fact
commonly used to increase lean mass in food animals (9, 10).
Rather, it is more likely that rate of muscle growth is decreased
by the chronically low insulin concentrations that resulted from
the combination of high catecholamines and low glucose con-
centrations. Indeed, Bassett and Hanson (6, 7) showed that a
week-long infusion of catecholamines restricted muscle growth
in fetal sheep, but that a simultaneous insulin infusion rescued
it. It should be noted that IGF-1 and other important muscle
growth factors were not measured in this study but were
previously shown to be reduced in IUGR fetal sheep (17, 41,

79, 83). Equivalent reduction in size of the various types of
fibers despite their natural differences in insulin and adrenergic
sensitivities supports our previous findings that IUGR muscle
mass is reduced primarily by decreased myoblast proliferation
rates (86).

Perspectives and Significance

Our findings in near-term IUGR fetal sheep reveal two key
adaptive changes in skeletal muscle that may help explain
greater propensity for insulin resistance in adulthood. First, we
found that the proportions of fibers with highly oxidative
phenotypes were reduced in two different hindlimb muscles,
but proportions of the more glycolytic fiber types were normal,
which would imply lower capacity for insulin-stimulated glu-
cose utilization by these muscles. We speculate that this
change results from the greater sensitivity of oxidative fiber
types to the physiological conditions induced by placental
insufficiency, especially elevated catecholamines. Second, we
found that IUGR fibers were uniformly decreased in size
regardless of fiber type, which explains greater loss of lean
mass and more pronounced asymmetric growth patterns. The
fiber type-independent reduction in size also appears to support
our previous findings which indicate that poor muscle growth
in IUGR fetuses is primarily due to impaired myoblast func-
tion. The difference in fiber-type composition and reduction in
muscle mass observed in our IUGR fetuses have also been
observed in IUGR-born adults with metabolic disorders and
could represent mechanistic links for the fetal origins of met-
abolic dysfunction that increase the risk for obesity and Type
2 diabetes.

ACKNOWLEDGMENTS

The authors are solely responsible for the content, which does not neces-
sarily represent the official views of the National Institutes of Health or United
State Department of Agriculture. The MyHC antibodies were obtained from
the Developmental Studies Hybridoma Bank developed under the auspices of
the NICHD and maintained by The University of Iowa, Department of
Biology, Iowa City, IA.

GRANTS

This work was supported by Award R01 DK084842 (to S. W. Limesand)
from the National Institute of Diabetes and Digestive and Kidney Diseases and
by Award 2012-67012-19855 (to D. T. Yates) from the National Institute of
Food and Agriculture, USDA. L. E. Camacho was supported by T32 HL7249
(J. Burt) and by Award 2016-67012-24672 (to L. Camacho) from the National
Institute of Food and Agriculture, USDA.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

D.T.Y., L.E.C., and S.W.L. conception and design of research; D.T.Y.,
C.N.C., K.A.B., H.E.R., A.R.M., M.J.A., L.E.C., and S.W.L. performed
experiments; D.T.Y., C.N.C., K.A.B., H.E.R., A.R.M., M.J.A., L.E.C., and
S.W.L. analyzed data; D.T.Y., K.A.B., and S.W.L. interpreted results of
experiments; D.T.Y. prepared figures; D.T.Y. drafted manuscript; D.T.Y.,
C.N.C., L.E.C., and S.W.L. edited and revised manuscript; D.T.Y., C.N.C.,
K.A.B., H.E.R., A.R.M., M.J.A., L.E.C., and S.W.L. approved final version of
manuscript.

REFERENCES

1. Aberle ED. Myofiber differentiation in skeletal muscles of newborn runt
and normal weight pigs. J Anim Sci 59: 1651–1656, 1984.

R1026 IUGR REDUCES TYPE I MYOFIBER EXPRESSION

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00528.2015 • www.ajpregu.org



2. Adams MB, Phillips ID, Simonetta G, McMillen IC. Differential effects
of increasing gestational age and placental restriction on tyrosine hydrox-
ylase, phenylethanolamine N-methyltransferase, and proenkephalin A
mRNA levels in the fetal sheep adrenal. J Neurochem 71: 394–401, 1998.

3. Aihie Sayer A, Syddall HE, Dennison EM, Gilbody HJ, Duggleby SL,
Cooper C, Barker DJ, Phillips DI. Birth weight, weight at 1 y of age, and
body composition in older men: findings from the Hertfordshire Cohort
Study. Am J Clin Nutr 80: 199–203, 2004.

4. Albers PH, Pedersen AJ, Birk JB, Kristensen DE, Vind BF, Baba O,
Nohr J, Hojlund K, Wojtaszewski JF. Human muscle fiber type-specific
insulin signaling: impact of obesity and type 2 diabetes. Diabetes 64:
485–497, 2015.

5. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type
2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipi-
daemia (syndrome X): relation to reduced fetal growth. Diabetologia 36:
62–67, 1993.

6. Bassett JM, Hanson C. Catecholamines inhibit growth in fetal sheep in
the absence of hypoxemia. Am J Physiol Regul Integr Comp Physiol 274:
R1536–R1545, 1998.

7. Bassett JM, Hanson C. Prevention of hypoinsulinemia modifies catechol-
amine effects in fetal sheep. Am J Physiol Regul Integr Comp Physiol 278:
R1171–R1181, 2000.

8. Beauchamp B, Ghosh S, Dysart MW, Kanaan GN, Chu A, Blais A,
Rajamanickam K, Tsai EC, Patti ME, Harper ME. Low birth weight
is associated with adiposity, impaired skeletal muscle energetics and
weight loss resistance in mice. Int J Obes (Lond) 39: 702–711, 2015.

9. Beermann DH, Butler WR, Hogue DE, Fishell VK, Dalrymple RH,
Ricks CA, Scanes CG. Cimaterol-induced muscle hypertrophy and al-
tered endocrine status in lambs. J Anim Sci 65: 1514–1524, 1987.

10. Bell AW, Bauman DE, Beermann DH, Harrell RJ. Nutrition, develop-
ment and efficacy of growth modifiers in livestock species. J Nutr 128:
360s–363s, 1998.

11. Bell AW, Wilkening RB, Meschia G. Some aspects of placental function
in chronically heat-stressed ewes. J Dev Physiol 9: 17–29, 1987.

12. Beltrand J, Verkauskiene R, Nicolescu R, Sibony O, Gaucherand P,
Chevenne D, Claris O, Levy-Marchal C. Adaptive changes in neonatal
hormonal and metabolic profiles induced by fetal growth restriction. J Clin
Endocrinol Metab 93: 4027–4032, 2008.

13. Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy
chain expression in rat, mouse, and human skeletal muscle using multi-
color immunofluorescence analysis. PLos One 7: e35273, 2012.

14. Brown LD. Endocrine regulation of fetal skeletal muscle growth: impact
on future metabolic health. J Endocrinol 221: R13–R29, 2014.

15. Castorena CM, Mackrell JG, Bogan JS, Kanzaki M, Cartee GD.
Clustering of GLUT4, TUG, and RUVBL2 protein levels correlate with
myosin heavy chain isoform pattern in skeletal muscles, but AS160 and
TBC1D1 levels do not. J Appl Physiol 111: 1106–1117, 2011.

16. Chen X, Fahy AL, Green AS, Anderson MJ, Rhoads RP, Limesand
SW. 	2-Adrenergic receptor desensitization in perirenal adipose tissue in
fetuses and lambs with placental insufficiency-induced intrauterine growth
restriction. J Physiol 588: 3539–3549, 2010.

17. Chen X, Rozance PJ, Hay WW, Limesand SW. Insulin-like growth
factor and fibroblast growth factor expression profiles in growth-restricted
fetal sheep pancreas. Exp Biol Med (Maywood) 237: 524–529, 2012.

18. Cole L, Anderson M, Antin P, Limesand S. One process for pancreatic
	-cell coalescence into islets involves an epithelial-mesenchymal transi-
tion. J Endocrinol 203: 19–31, 2009.

19. d’Albis A, Couteaux R, Janmot C, Roulet A. Specific programs of
myosin expression in the postnatal development of rat muscles. Eur J
Biochem 183: 583–590, 1989.

20. Daniel ZC, Brameld JM, Craigon J, Scollan ND, Buttery PJ. Effect of
maternal dietary restriction during pregnancy on lamb carcass character-
istics and muscle fiber composition. J Anim Sci 85: 1565–1576, 2007.

21. Danielson L, McMillen IC, Dyer JL, Morrison JL. Restriction of
placental growth results in greater hypotensive response to alpha-adren-
ergic blockade in fetal sheep during late gestation. J Physiol 563: 611–620,
2005.

22. Davis MA, Macko AR, Steyn LV, Anderson MJ, Limesand SW. Fetal
adrenal demedullation lowers circulating norepinephrine and attenuates
growth restriction but not reduction of endocrine cell mass in an ovine
model of intrauterine growth restriction. Nutrients 7: 500–516, 2015.

23. De Blasio MJ, Gatford KL, McMillen IC, Robinson JS, Owens JA.
Placental restriction of fetal growth increases insulin action, growth, and
adiposity in the young lamb. Endocrinology 148: 1350–1358, 2007.

24. de Boo HA, Eremia SC, Bloomfield FH, Oliver MH, Harding JE.
Treatment of intrauterine growth restriction with maternal growth hor-
mone supplementation in sheep. Am J Obstet Gynecol 199: 559 e551–
e559, 2008.

25. de Boo HA, van Zijl PL, Smith DE, Kulik W, Lafeber HN, Harding
JE. Arginine and mixed amino acids increase protein accretion in the
growth-restricted and normal ovine fetus by different mechanisms. Pediatr
Res 58: 270–277, 2005.

26. de Vrijer B, Davidsen ML, Wilkening RB, Anthony RV, Regnault TR.
Altered placental and fetal expression of IGFs and IGF-binding proteins
associated with intrauterine growth restriction in fetal sheep during early
and mid-pregnancy. Pediatr Res 60: 507–512, 2006.

27. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP.
The effect of insulin on the disposal of intravenous glucose. Results from
indirect calorimetry and hepatic and femoral venous catheterization. Di-
abetes 30: 1000–1007, 1981.

28. Desai M, Gayle D, Babu J, Ross MG. Programmed obesity in intrauter-
ine growth-restricted newborns: modulation by newborn nutrition. Am J
Physiol Regul Integr Comp Physiol 288: R91–R96, 2005.

29. Deveaux V, Picard B, Bouley J, Cassar-Malek I. Location of myostatin
expression during bovine myogenesis in vivo and in vitro. Reprod Nutr
Dev 43: 527–542, 2003.

30. Economides DL, Proudler A, Nicolaides KH. Plasma insulin in appro-
priate- and small-for-gestational-age fetuses. Am J Obstet Gynecol 160:
1091–1094, 1989.

31. Flanagan DE, Moore VM, Godsland IF, Cockington RA, Robinson JS,
Phillips DI. Fetal growth and the physiological control of glucose toler-
ance in adults: a minimal model analysis. Am J Physiol Endocrinol Metab
278: E700–E706, 2000.

32. Galan HL, Hussey MJ, Barbera A, Ferrazzi E, Chung M, Hobbins JC,
Battaglia FC. Relationship of fetal growth to duration of heat stress in an
ovine model of placental insufficiency. Am J Obstet Gynecol 180: 1278–
1282, 1999.

33. Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C. Intrauterine
programming of adult body composition. J Clin Endocrin Metab 86:
267–272, 2001.

34. Goodyear LJ, Hirshman MF, Smith RJ, Horton ES. Glucose trans-
porter number, activity, and isoform content in plasma membranes of red
and white skeletal muscle. Am J Physiol Endocrinol Metab 261: E556–
E561, 1991.

35. Granlund A, Jensen-Waern M, Essen-Gustavsson B. The influence of
the PRKAG3 mutation on glycogen, enzyme activities and fibre types in
different skeletal muscles of exercise trained pigs. Acta Vet Scand 53: 20,
2011.

36. Greenough A, Nicolaides KH, Lagercrantz H. Human fetal sympathoa-
drenal responsiveness. Early Hum Dev 23: 9–13, 1990.

37. Hayes A, Williams DA. Long-term clenbuterol administration alters the
isometric contractile properties of skeletal muscle from normal and dys-
trophin-deficient mdx mice. Clin Exp Pharmacol Physiol 21: 757–765,
1994.

38. Henriksen EJ, Bourey RE, Rodnick KJ, Koranyi L, Permutt MA,
Holloszy JO. Glucose transporter protein content and glucose transport
capacity in rat skeletal muscles. Am J Physiol Endocrinol Metab 259:
E593–E598, 1990.

39. Jensen CB, Storgaard H, Dela F, Holst JJ, Madsbad S, Vaag AA. Early
differential defects of insulin secretion and action in 19-year-old caucasian
men who had low birth weight. Diabetes 51: 1271–1280, 2002.

40. Jensen CB, Storgaard H, Madsbad S, Richter EA, Vaag AA. Altered
skeletal muscle fiber composition and size precede whole-body insulin
resistance in young men with low birth weight. J Clin Endocrinol Metab
92: 1530–1534, 2007.

41. Jensen EC, Harding JE, Bauer MK, Gluckman PD. Metabolic effects
of IGF-I in the growth retarded fetal sheep. J Endocrinol 161: 485–494,
1999.

42. Kellis E, Galanis N, Natsis K, Kapetanos G. Muscle architecture
variations along the human semitendinosus and biceps femoris (long head)
length. J Electromyogr Kinesiol 20: 1237–1243, 2010.

43. Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M,
Grp HS. Fetal programming of body composition: relation between birth
weight and body composition measured with dual-energy X-ray absorp-
tiometry and anthropometric methods in older Englishmen. Am J Clin Nutr
82: 980–987, 2005.

44. Kirchofer KS, Calkins CB, Gwartney BL. Fiber-type composition of
muscles of the beef chuck and round. J Anim Sci 80: 2872–2878, 2002.

R1027IUGR REDUCES TYPE I MYOFIBER EXPRESSION

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00528.2015 • www.ajpregu.org



45. Kong X, Manchester J, Salmons S, Lawrence JC Jr. Glucose trans-
porters in single skeletal muscle fibers. Relationship to hexokinase and
regulation by contractile activity. J Biol Chem 269: 12963–12967, 1994.

46. Lang U, Baker RS, Khoury J, Clark KE. Effects of chronic reduction in
uterine blood flow on fetal and placental growth in the sheep. Am J Physiol
Regul Integr Comp Physiol 279: R53–R59, 2000.

47. Larciprete G, Valensise H, Di Pierro G, Vasapollo B, Casalino B,
Arduini D, Jarvis S, Cirese E. Intrauterine growth restriction and fetal
body composition. Ultrasound Obstetr Gynecol 26: 258–262, 2005.

48. Leos RA, Anderson MJ, Chen X, Pugmire J, Anderson KA, Limesand
SW. Chronic exposure to elevated norepinephrine suppresses insulin
secretion in fetal sheep with placental insufficiency and intrauterine
growth restriction. Am J Physiol Endocrinol Metab 298: E770–E778,
2010.

49. Lillioja S, Young AA, Culter CL, Ivy JL, Abbott WG, Zawadzki JK,
Yki-Jarvinen H, Christin L, Secomb TW, Bogardus C. Skeletal muscle
capillary density and fiber type are possible determinants of in vivo insulin
resistance in man. J Clin Invest 80: 415–424, 1987.

50. Limesand SW, Hay WW Jr. Adaptation of ovine fetal pancreatic insulin
secretion to chronic hypoglycaemia and euglycaemic correction. J Physiol
547: 95–105, 2003.

51. Limesand SW, Rozance PJ, Macko AR, Anderson MJ, Kelly AC, Hay
WW Jr. Reductions in insulin concentrations and beta-cell mass precede
growth restriction in sheep fetuses with placental insufficiency. Am J
Physiol Endocrinol Metab 304: E516–E523, 2013.

52. Limesand SW, Rozance PJ, Smith D, Hay WW Jr. Increased insulin
sensitivity and maintenance of glucose utilization rates in fetal sheep with
placental insufficiency and intrauterine growth restriction. Am J Physiol
Endocrinol Metab 293: E1716–E1725, 2007.

53. Macko AR, Yates DT, Chen X, Green AS, Kelly AC, Brown LD,
Limesand SW. Elevated plasma norepinephrine inhibits insulin secretion,
but adrenergic blockade reveals enhanced 	-cell responsiveness in an
ovine model of placental insufficiency at 0.7 of gestation. J Dev Orig
Health Disease 4: 402–410, 2013.

54. Macko AR, Yates DT, Chen X, Shelton LA, Kelly AC, Davis MA,
Camacho LE, Anderson MJ, Limesand SW. Adrenal demedullation and
oxygen supplementation independently increase glucose-stimulated insu-
lin concentrations in fetal sheep with intrauterine growth restriction.
Endocrinol: en20151850, 2016.

55. Mackrell JG, Cartee GD. A novel method to measure glucose uptake and
myosin heavy chain isoform expression of single fibers from rat skeletal
muscle. Diabetes 61: 995–1003, 2012.

56. Maier A, McEwan JC, Dodds KG, Fischman DA, Fitzsimons RB,
Harris AJ. Myosin heavy chain composition of single fibres and their
origins and distribution in developing fascicles of sheep tibialis cranialis
muscles. J Musc Res Cell Mobil 13: 551–572, 1992.

57. Maltin CA, Delday MI, Reeds PJ. The effect of a growth promoting
drug, clenbuterol, on fibre frequency and area in hind limb muscles from
young male rats. Biosci Rep 6: 293–299, 1986.

58. Martin W, Murphree S, Saffitz J. Beta-adrenergic receptor distribution
among muscle fiber types and resistance arterioles of white, red, and
intermediate skeletal muscle. Circ Res 64: 1096–1105, 1989.

59. Mericq V, Ong KK, Bazaes R, Pena V, Avila A, Salazar T, Soto N,
Iniguez G, Dunger DB. Longitudinal changes in insulin sensitivity and
secretion from birth to age three years in small- and appropriate-for-
gestational-age children. Diabetologia 48: 2609–2614, 2005.

60. Muhlhausler BS, Duffield JA, Ozanne SE, Pilgrim C, Turner N,
Morrison JL, McMillen IC. The transition from fetal growth restriction
to accelerated postnatal growth: a potential role for insulin signalling in
skeletal muscle. J Physiol 587: 4199–4211, 2009.

61. Newsome CA, Shiell AW, Fall CH, Phillips DI, Shier R, Law CM. Is
birth weight related to later glucose and insulin metabolism?–A systematic
review. Diabet Med 20: 339–348, 2003.

62. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Associ-
ation between postnatal catch-up growth and obesity in childhood: pro-
spective cohort study. BMJ 320: 967–971, 2000.

63. Ozanne S, Jensen C, Tingey K, Storgaard H, Madsbad S, Vaag A. Low
birthweight is associated with specific changes in muscle insulin-signal-
ling protein expression. Diabetologia 48: 547–552, 2005.

64. Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag
AA. Low birthweight is associated with specific changes in muscle
insulin-signalling protein expression. Diabetologia 48: 547–552, 2005.

65. Padoan A, Rigano S, Ferrazzi E, Beaty BL, Battaglia FC, Galan HL.
Differences in fat and lean mass proportions in normal and growth-
restricted fetuses. Am J Obstet Gynecol 191: 1459–1464, 2004.

66. Picard B, Barboiron C, Chadeyron D, Jurie C. Protocol for high-
resolution electrophoresis separation of myosin heavy chain isoforms in
bovine skeletal muscle. Electrophoresis 32: 1804–1806, 2011.

67. Rab M, Mader N, Kamolz LP, Hausner T, Gruber H, Girsch W. Basic
anatomical investigation of semitendinosus and the long head of biceps
femoris muscle for their possible use in electrically stimulated neosphinc-
ter formation. Surg Radiol Anat 19: 287–291, 1997.

68. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ,
Hales CN, Bleker OP. Glucose tolerance in adults after prenatal exposure
to famine. Lancet 351: 173–177, 1998.

69. Regnault TR, de Vrijer B, Galan HL, Davidsen ML, Trembler KA,
Battaglia FC, Wilkening RB, Anthony RV. The relationship between
transplacental O2 diffusion and placental expression of PlGF, VEGF and
their receptors in a placental insufficiency model of fetal growth restric-
tion. J Physiol 550: 641–656, 2003.

70. Regnault TR, de Vrijer B, Galan HL, Wilkening RB, Battaglia FC,
Meschia G. Umbilical uptakes and transplacental concentration ratios of
amino acids in severe fetal growth restriction. Pediatr Res 73: 602–611, 2013.

71. Regnault TR, Galan HL, Parker TA, Anthony RV. Placental develop-
ment in normal and compromised pregnancies. Placenta 23, Suppl A:
S119–S129, 2002.

72. Regnault TR, Orbus RJ, de Vrijer B, Davidsen ML, Galan HL,
Wilkening RB, Anthony RV. Placental Expression of VEGF, PlGF and
their Receptors in a Model of Placental Insufficiency-Intrauterine Growth
Restriction (PI-IUGR). Placenta 23: 132–144, 2002.

73. Ryall JG, Gregorevic P, Plant DR, Sillence MN, Lynch GS. 	2-Agonist
fenoterol has greater effects on contractile function of rat skeletal muscles
than clenbuterol. Am J Physiol Regul Integr Comp Physiol 283: R1386–
R1394, 2002.

74. Ryall JG, Plant DR, Gregorevic P, Sillence MN, Lynch GS. Beta
2-agonist administration reverses muscle wasting and improves muscle
function in aged rats. J Physiol 555: 175–188, 2004.

75. Sato S, Shirato K, Tachiyashiki K, Imaizumi K. Muscle plasticity and
beta(2)-adrenergic receptors: adaptive responses of beta(2)-adrenergic
receptor expression to muscle hypertrophy and atrophy. J Biomed Bio-
technol 2011: 729598, 2011.

76. Setia S, Sridhar MG, Bhat V, Chaturvedula L, Vinayagamoorti R,
John M. Insulin sensitivity and insulin secretion at birth in intrauterine
growth retarded infants. Pathology 38: 236–238, 2006.

77. Stuart CA, McCurry MP, Marino A, South MA, Howell ME, Layne
AS, Ramsey MW, Stone MH. Slow-twitch fiber proportion in skeletal
muscle correlates with insulin responsiveness. J Clin Endocrinol Metab
98: 2027–2036, 2013.

78. Talmadge RJ, Roy RR. Electrophoretic separation of rat skeletal muscle
myosin heavy-chain isoforms. J Appl Physiol 75: 2337–2340, 1993.

79. Thorn SR, Regnault TR, Brown LD, Rozance PJ, Keng J, Roper M,
Wilkening RB, Hay WW Jr, Friedman JE. Intrauterine growth restric-
tion increases fetal hepatic gluconeogenic capacity and reduces messenger
ribonucleic acid translation initiation and nutrient sensing in fetal liver and
skeletal muscle. Endocrinology 150: 3021–3030, 2009.

80. Thureen PJ, Trembler KA, Meschia G, Makowski EL, Wilkening RB.
Placental glucose transport in heat-induced fetal growth retardation. Am J
Physiol Regul Integr Comp Physiol 263: R578–R585, 1992.

81. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD.
Fetal origins of hyperphagia, obesity, and hypertension and postnatal
amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab
279: E83–E87, 2000.

82. Vielwerth SE, Jensen RB, Larsen T, Holst KK, Molgaard C, Greisen
G, Vaag A. The effect of birthweight upon insulin resistance and associ-
ated cardiovascular risk factors in adolescence is not explained by fetal
growth velocity in the third trimester as measured by repeated ultrasound
fetometry. Diabetologia 51: 1483–1492, 2008.

83. Wali JA, de Boo HA, Derraik JG, Phua HH, Oliver MH, Bloomfield
FH, Harding JE. Weekly intra-amniotic IGF-1 treatment increases
growth of growth-restricted ovine fetuses and up-regulates placental
amino acid transporters. PLos One 7: e37899, 2012.

84. Wallace JM, Milne JS, Aitken RP, Hay WW. Sensitivity to metabolic
signals in late-gestation growth-restricted fetuses from rapidly growing ado-
lescent sheep. Am J Physiol Endocrinol Metab 293: E1233–E1241, 2007.

85. Woodley SJ, Mercer SR. Hamstring muscles: architecture and innerva-
tion. Cells Tissues Organs 179: 125–141, 2005.

R1028 IUGR REDUCES TYPE I MYOFIBER EXPRESSION

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00528.2015 • www.ajpregu.org



86. Yates DT, Clarke DS, Macko AR, Anderson MJ, Shelton LA, Nearing
M, Allen RE, Rhoads RP, Limesand SW. Myoblasts from intrauterine
growth-restricted sheep fetuses exhibit intrinsic deficiencies in prolifera-
tion that contribute to smaller semitendinosus myofibres. J Physiol 592:
3113–3125, 2014.

87. Yates DT, Green AS, Limesand SW. Catecholamines mediate multiple
fetal adaptations during placental insufficiency that contribute to intrauter-
ine growth restriction: Lessons from hyperthermic sheep. J Pregnancy.
doi:10.1155/2011/740408, 2011.

88. Yates DT, Macko AR, Chen X, Green AS, Kelly AC, Anderson MJ,
Fowden AL, Limesand SW. Hypoxaemia-induced catecholamine secre-
tion from adrenal chromaffin cells inhibits glucose-stimulated hyperinsu-
linaemia in fetal sheep. J Physiol 590: 5439–5447, 2012.

89. Yates DT, Macko AR, Nearing M, Chen X, Rhoads RP, Limesand
SW. Developmental programming in response to intrauterine growth
restriction impairs myoblast function and skeletal muscle metabolism. J
Pregnancy 2012: 631038, 2012.

90. Yliharsila H, Kajantie E, Osmond C, Forsen T, Barker DJP, Eriksson
JG. Birth size, adult body composition and muscle strength in later life. Int
J Obes 31: 1392–1399, 2007.

91. Zeman RJ, Ludemann R, Easton TG, Etlinger JD. Slow to fast
alterations in skeletal muscle fibers caused by clenbuterol, a 	2-receptor
agonist. Am J Physiol Endocrinol Metab 254: E726–E732, 1988.

92. Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M.
Maternal nutrient restriction affects properties of skeletal muscle in off-
spring. J Physiol 575: 241–250, 2006.

R1029IUGR REDUCES TYPE I MYOFIBER EXPRESSION

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00528.2015 • www.ajpregu.org

http://dx.doi.org/10.1155/2011/740408

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	3-29-2016

	Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term
	Dustin T. Yates
	Caitlin N. Cadaret
	Kristin A. Beede
	Hannah E. Riley
	Antoni R. Macko
	See next page for additional authors
	Authors


	Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term

