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Abstract 
In this study, we conducted secondary analyses using the TEDS-M database to ex-
plore future mathematics specialists teachers’ opportunities to learn (OTL) how 
to teach mathematics. We applied latent class analysis techniques to differenti-
ate among groups of prospective mathematics specialists with potentially differ-
ent OTL mathematics pedagogy within the United States and Singapore. Within the 
United States, three subgroups were identified: (a) Comprehensive OTL, (b) Limited 
OTL, and (c) OTL Mathematics Pedagogy. Within Singapore, four subgroups were 
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identified: (a) Comprehensive OTL, (b) Limited Opportunities to Connect Classroom 
Learning with Practice, (c) OTL Mathematics Pedagogy, and (d) Basic OTL. Under-
standing the opportunities different prospective teachers had to learn from and their 
experiences with different components of instructional practice in university and 
practicum settings has implications for teacher preparation programs. 

Introduction 

Around the world, well-intentioned people disagree about how pri-
mary teachers should be prepared to teach mathematics effectively. 
Whereas the United Kingdom seems to be moving from university-
based to school-based teacher preparation, other countries, like the 
Philippines, have recently increased university-based requirements 
for teacher preparation. In the United States, some alternative teacher 
preparation programs minimize preparation and believe teachers can 
learn what they need to know by teaching (e.g., Teach for America). 
Research suggests teacher preparation matters in two ways. First, 
preparation can enhance the initial effectiveness of novice teachers 
who graduate from university-based undergraduate programs, partic-
ularly in comparison to teachers who come from alternative certifi-
cation programs (Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2006; 
2007; 2009; Darling-Hammond, Chung, & Frelow, 2002; Darling-
Hammond, Holtzman, Gatlin, & Heilig, 2005). Second, preparation 
reduces the well-documented attrition that occurs within the first five 
years of teaching (Henke, Chen, & Geis, 2000; National Commission 
on Teaching and America’s Future, 1996), increasing the likelihood 
of remaining in the profession long enough to become a more skilled 
professional— particularly after the third year (Boyd, Lankford, Loeb, 
Rockoff, & Wyckoff, 2007; Clotfelter, Ladd, & Vigdor, 2007). 

Documenting the types and quality of opportunities prospective 
teachers have to learn on the path to certification gives researchers 
the chance to study the extent to which programmatic visions of the 
knowledge and skills prospective teachers need to master classroom 
tasks are realized. Additionally, if the goal is to develop teachers who 
are prepared to address the complexities inherent within the tasks of 
teaching mathematics as well as increase the likelihood of retaining 
them, we need to determine which coursework and field experiences 
are central to cultivating prospective teachers’ professional knowledge 
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and skills for teaching mathematics. Some countries prepare mathe-
matics teachers at all levels as mathematics specialists; others prepare 
mostly primary generalists and secondary specialists. In the United 
States, mathematics specialists have become more in demand in the 
past decade as states have created primary mathematics specialist 
licensure (Association of Mathematics Teacher Educators [AMTE], 
2013). Although what is essential for teachers to learn and the opti-
mal timing of these learning experiences is debatable, there is con-
sensus regarding the importance of opportunities to learn the foun-
dations of mathematics pedagogy and instructional practice as well as 
to connect classroom learning to instructional practice. Indeed, pro-
spective teachers with differential learning opportunities exit prepara-
tion programs with disparate levels of knowledge and skills, which has 
enormous implications for student learning and achievement. Thus, 
in this study, we identify subgroups of future primary mathematics 
specialists teachers characterized by specific patterns of opportuni-
ties to learn mathematics pedagogy. 

The Teacher Education and Development Study in  
Mathematics (TEDS-M) 

The data for this study come from the Teacher Education and Develop-
ment Study in Mathematics (TEDS-M), an international comparative 
study of the preparation of primary and lower-secondary mathematics 
teachers. Data were collected from institutions, teacher educators, and 
future teachers from 17 developed and developing countries. The con-
ceptual framework, design, and methodology of this study are thor-
oughly documented in various other reports and can be found online: 
https://www.ilsa-gateway.org/studies/factsheets/64 . 

Theoretical Framework 

We frame this study with both theories of cultural contexts and theo-
ries connecting child development to the psychology of caregivers. Su-
per and Harkness’ (1986) developmental niche theory describes how 
cultural contexts shape child learning and development. The niche is 

https://www.ilsa-gateway.org/studies/factsheets/64
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composed of three subsystems: (a) the physical and social settings in 
which the child lives, (b) culturally regulated customs of child care 
and child rearing, and (c) the psychology of the caretakers and edu-
cators. For the purposes of this study, the latter subsystem, the psy-
chology of the caregivers and educators, may prove to be instructive. 
Super and Harkness theorize the psychology of the caregiver orga-
nizes child care strategies (pp. 556–557), while recognizing the influ-
ence of constraints within the physical environment, customs of child 
care, and the demands of caregiver activities. We extend this logic 
to teacher preparation: We believe the psychology of future teach-
ers—composed of beliefs about mathematics teaching and learning 
as well as professional bodies of knowledge germane to the tasks of 
teaching— serve as organizational influences that are related to fu-
ture classroom practices. 

Goodnow (2010) proposes four ways of specifying cultural con-
texts for empirical study: (a) multiplicity and context, (b) ideolo-
gies, values, and norms, (c) practices, activities, and routines, and 
(d) paths, routes, and opportunities. These approaches are not mutu-
ally exclusive of each other, but “paths, routes, and opportunities” (p. 
10) are the lenses through which we study the intended and achieved 
outcomes of teacher preparation programs. “Paths,” in Goodnow’s 
view, refer to the stages or steps individuals are expected to follow 
as they move through social institutions. The concept of “paths/path-
ways” gives rise to questions regarding expected timetables (Neugar-
ten, 1979), including the way one step is related to another, the skills 
needed for each step, and the flexibility afforded to those in need of 
alternative routes. Certainly, variability in path “access” and “avail-
ability,” or opportunities to learn, may in part account for heteroge-
neity in outcomes (Goodnow, 2005) within teacher preparation pro-
grams and is the focus of the current study. 

Thus, taken together, we consider multiple influences on outcomes, 
including academic achievement. Teachers’ knowledge and beliefs 
about mathematics teaching and learning frame their future class-
room practices. Understanding teachers’ paths (opportunities to learn) 
in turn frame the development of their knowledge and beliefs, within 
the cultural contexts of their teacher preparation programs. 
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Review of Relevant Literature 

Professional Knowledge for Teaching 

Understanding the knowledge used in teaching can help stakeholders 
in mathematics education to develop a sense of what it means to teach 
mathematics well and how to prepare prospective teachers. Teachers 
need to cultivate knowledge, competencies, and skills that will help 
them analyze and understand student thinking to provide the appro-
priate support and strategies for learning mathematics (Ball, Thames, 
& Phelps, 2008; Dalgarno & Colgan, 2007; Hill & Lubienski, 2007; 
Kelly, Luke, & Green, 2008). In fact, mathematics content knowledge 
is necessary but not sufficient – teachers need subject-matter exper-
tise (Schwab, 1978; Warfield, 2001), as well as mathematics peda-
gogical content knowledge for teaching (Ball, 1993; Ball et al., 2008; 
Lampert, 1990, 2001). Mathematical pedagogical content knowledge 
is a body of knowledge composed of what Ma (1999) refers to as “pro-
found” mathematical knowledge that teachers draw upon as they cali-
brate what are appropriate learning goals, anticipate and analyze stu-
dent misconceptions and errors, select and present representations of 
central mathematical concepts, and respond to student thinking and 
reasoning (Thames & Ball, 2010). Future teachers with a strong back-
ground in mathematics have a solid foundation to develop mathemat-
ics pedagogical content knowledge for teaching – if they are provided 
an appropriate set of preparation experiences. 

Mathematics Specialists 

Primary mathematics specialists are “teachers, teacher leaders, or 
coaches who are responsible for supporting effective mathematics in-
struction and student learning at the classroom, school, district, or 
state levels” (AMTE, 2013, p. 1). Within the TEDS-M database, primary 
mathematics specialists are prepared to teach one or two subjects 
(including mathematics), whereas their primary generalist peers are 
prepared to teach three or more subjects (Tatto et al., 2012). In gen-
eral, mathematics specialists are expected to take more mathematics 
content courses on the path to certification. In seeking to study the 
influence of teachers’ opportunities to learn on their mathematical 
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pedagogical content knowledge, this study focuses on a group of teach-
ers who, by virtue of their pathway to certification, had sufficient op-
portunities to learn mathematics. Thus, this paper focuses on primary 
mathematics specialists. 

It is the norm in many East Asian countries that all students learn 
mathematics from mathematics specialists starting in first grade (e.g., 
China and Japan). Internationally, countries such as Singapore have a 
history of producing effective teachers and specialists, as evidenced 
by student performance on the Trends in International Mathematics 
and Science Study (TIMSS) of the International Association for the 
Evaluation of Educational Achievement (IEA) (Mullis, Martin, Foy, & 
Arora, 2012). Primary mathematics specialists are able to focus their 
energies on developing and teaching mathematics lessons, whereas 
primary generalists must also prepare many other lessons, including 
language arts, science, and social studies. 

Within the United States, multiple stakeholders in mathematics ed-
ucation have released federal reports making the case that in-service 
primary teachers are not adequately prepared to meet the demands 
for increasing student achievement in mathematics (National Coun-
cil of Teachers of Mathematics, 2000; National Mathematics Advi-
sory Panel, 2008), given the poor mathematical preparation endemic 
to early childhood and primary educators (Graven, 2004; Grooten-
boer & Zevenbergen, 2008; Ginsburg, Lee, & Boyd, 2008; Hodgen & 
Askew, 2007; Lerman, 2012). Primary mathematics specialists have 
been identified as a promising strategy for improving early childhood 
mathematics teaching and learning (Reys & Fennell, 2003). Indeed, 
the AMTE (2013) and the Conference Board of Mathematical Sciences 
(CBMS, 2012) have each published position statements advocating for 
the establishment of a primary specialist license in the United States. 
There is growing evidence of the effectiveness of primary mathemat-
ics specialists for increasing student mathematics achievement from 
the Vermont Mathematics Initiative (Meyers & Harris, 2008) as well 
as the states of Ohio and Virginia (Brosnan & Erchick, 2010; Campbell 
& Malkus, 2011; Campbell, Ellington, Haver, & Inge, 2013). 

Theory, empirical studies, and wisdom of practice suggest math-
ematics content knowledge is necessary but not sufficient for high-
quality mathematics teaching. Thus, mathematics specialists need 
more than just knowledge of mathematics content. Recently, Campbell 
et al. (2013) released a handbook focusing on primary mathematics 
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specialists, outlining requisite knowledge-based skills and abilities 
that included mathematical content knowledge and mathematical ped-
agogical content knowledge described earlier in this section. Camp-
bell et al. (2013) also suggested specialists need: coaching strategies 
and skills, knowledge of mathematics curricula, knowledge of special 
populations of students, knowledge of assessment, and knowledge of 
research and resources. The foundation for the development of the 
aforementioned skills can be laid down in preparation programs, but 
must be animated through field experiences. It may be the case that 
prospective mathematics specialists benefit from field experiences in 
school/classroom settings where they are given opportunities to ob-
serve and participate in the daily work of teaching, as well as encoun-
ter and attempt to make sense of student thinking and reasoning. 

Opportunities to Learn 

The concept of opportunity to learn (OTL) was introduced by the IEA 
(e.g., the First and Second International Mathematics Studies) in the 
1960s and was considered to be a technical concept conceived as a 
means to ensure the validity of cross-national comparisons in mathe-
matics achievement. OTL captured curricular differences as “…a mea-
sure of whether or not students have had an opportunity to study a 
particular topic or learn to solve a particular type of problem pre-
sented by the test” (Husen as cited in Burnstein, 1993, p. xxxiii). 

McDonnell (1995) outlines the evolution of the use of the OTL as a 
technical concept for research and its utility in policy debates in the 
1990s. OTL entered policy debates under the premise that schools 
needed to provide students with “adequate” opportunities to learn be-
fore schools could be held accountable for meeting achievement stan-
dards. As a research tool, OTL was envisioned as an indicator that 
could help unpack the proverbial “black box” connecting school in-
puts and student outcomes. 

Ingvarson, Beavis, & Kleinhenz (2007) approached the question 
of OTL in the context of teacher education in their attempt to iden-
tify the characteristics of effective teacher-preparation programs, as 
reported by novice teachers who had just completed their first year 
of teaching. The purpose of this study was to provide guidance for 
policymakers regarding the standards that might be appropriate for 
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assessing and accrediting teacher education programs to ensure grad-
uates were well prepared to meet the demands of classroom teaching. 
Ingvarson and colleagues postulated there were three main factors as-
sociated with novice teachers’ preparedness to teach: personal back-
ground characteristics, pre-service courses and coursework (OTL), 
and the characteristics of the school where graduates had their first 
teaching position. 

To assess the extent to which novice teachers felt prepared to teach, 
Ingvarson et al. (2007) administered the Teacher Preparedness Sur-
vey to teachers beginning in their second year of teaching. In this 
study, OTL refers to both the form and substance of learning experi-
ences in teacher preparation programs in four domains (pp. 357–359): 
(a) “opportunity to learn content knowledge and how it is taught,” 
(b) “opportunity to learn the practice of teaching,” (c) “opportunity 
to learn via feedback from university staff,” and (d) “opportunity to 
learn assessment and planning.” The OTL variables were regressed 
onto the Australian Council for Educational Research Teacher Pre-
paredness Inventory (TPI). The TPI is composed of three factors (and 
their subscales): professional knowledge (professional knowledge and 
how to teach it and professional knowledge about students and how 
they learn); professional practice (professional practice to do with cur-
riculum, professional practice to do with classroom management, and 
professional practice to do with assessment); and professional engage-
ment (reflection on teaching and work with parents and others). 

Significant relationships were found between professional knowl-
edge and the OTL domains of content knowledge and how it is taught 
and assessment and planning. The OTL via feedback from university 
staff was also significant, but these coefficients were smaller. When 
the outcome was defined as perceptions of preparedness to teach, the 
OTL domain the practice of teaching had a strong effect, whereas the 
OTL domains content knowledge and how it is taught and assessment 
and planning had moderate effects. OTL variables, as defined in this 
study, had the strongest and most consistent effects on TPI scores 
and teacher perceptions of their preparedness to teach in their first 
year. The effects of this group of OTL variables were independent of 
the background characteristics of the teacher, the teacher’s in- school 
experiences during pre-service courses, and the school in which the 
teacher worked during his or her first year as a teacher. All of this sug-
gests that better understanding of OTL can allow us to make practical 
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policy recommendations for improving teacher education practices. 
Additionally, OTL in areas that can be considered connecting theory 
to practice seem to be particularly important for predicting teacher 
professional knowledge. 

Opportunity to Connect Classroom Learning to Practice 

The definition and conceptual argument regarding how theory relates 
to and can be used in practice have been topics of debate with respect 
to teacher preparation— notably, in the United States (e.g., Shulman, 
1998), the United Kingdom (e.g., Carr, 1992, 1995, 2003), the Neth-
erlands (e.g., Korthagen & Kessels, 1999), and Asian countries (e.g., 
Deng, 2004). Resolving this debate is outside the scope of this study. 
We thus subscribe to its most basic definition as described by the 
TEDS-M framework (Tatto et al., 2008): theory is a body of empirical 
findings that can be used to anchor prospective teachers’ interpreta-
tion of classroom events as they arise, make instructional decisions 
specific to the context of their classrooms, and assess and evaluate 
the outcomes of those decisions. 

The importance of the connection between pedagogical theory and 
practice can be understood through the lens of situated cognition the-
ory, which suggests professional knowledge, competencies, and skills 
are situated in and inseparable from the activities, context, and cul-
ture in which they are constructed (Brown, Collins, & Duguid, 1989). 
Situated cognition is connected to Goodnow’s (2010) paths, as teach-
ers reflect upon their opportunities to learn within their cultural con-
texts. Learning to teach, therefore, is a process of enculturation: pro-
spective teachers are apprenticed into particular practices and modes 
of thinking (Lortie, 1975) aligned with local cultural contexts (Good-
now). Field experiences are a context where future teachers have op-
portunities to cultivate sound professional judgment stemming from 
“…a coherent, enlightened, integrated body of knowledge that will in-
form, and in turn be informed by, classroom practice” (Calderhead & 
Robson, 1991, p. 1). Indeed, field experiences are a context in which 
prospective teachers’ mathematical pedagogical content knowledge 
for teaching can develop. 

Pedagogical content knowledge is composed of two key components 
(Shulman, 1986): (a) knowledge of student thinking, understanding, 
and difficulties with particular topic strands and concepts and (b) 
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knowledge of strengths and weaknesses of particular strategies and 
representations for teaching these topics. Crespo (2000) focuses on 
the first strand of pedagogical content knowledge by examining how 
prospective Canadian teachers in the middle of their two-year prep-
aration programs interpreted fourth-grade students’ mathematical 
thinking and reasoning through a mathematics letter exchange pro-
gram. Early analysis of the letters and interviews suggested prospec-
tive teachers were fixated on whether students generated the correct 
answers and were quick to make inferences about students’ mathe-
matics abilities and dispositions toward learning. However, after four 
or five rounds of correspondence, prospective teachers began to focus 
less on answers and more on students’ mathematical thinking. More-
over, prospective teachers began to question and revise claims about 
students’ mathematics abilities and attitudes, more skillfully distin-
guishing between describing and making inferences about student 
thinking. Crespo suggests the latter finding emerged in light of pro-
spective teachers being faced with contradictory data gathered from 
letter correspondence coupled with meeting their letter partners and 
spending time in their classrooms. This study highlights how acquiring 
access to students’ mathematical thinking and reasoning, in course-
work and in the field, can alter how prospective teachers see, talk, lis-
ten, and act toward their students. 

Although the theory underlying pedagogical content knowledge 
seems intricately connected with practice, in actuality, teachers do not 
always have the necessary OTL or time to connect theory to practice. 
Allen and Wright (2014) followed and interviewed one group of pro-
spective teachers regarding the factors that enabled or hindered their 
abilities to integrate classroom theory and practice during a three-
week field experience in the first year of their teaching programs in 
Australia. The authors report three central themes from semi-struc-
tured follow-up interviews with 11 teachers. First, prospective teach-
ers valued both theoretical and practical components of their gradu-
ate-level preparation programs—not privileging one at the expense of 
the other (contrary to other empirical studies that find practice be-
ing privileged over theory—e.g., Allen, 2009; Hartocollis, 2005). Sec-
ond, teachers’ opportunities to connect classroom learning to practice 
varied as a function of the clarity of stakeholders’ roles and respon-
sibilities. Third, prospective teachers supported the notion of linking 
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university coursework assessment to field experience as a means of 
bridging the gap between theory (the university classroom) and prac-
tice (field experience). Together, these themes reflect prospective 
teachers’ recognition that their competence as educators is in part 
reliant upon the development of what Cochran-Smith and Lytle (1999) 
refer to as the knowledge-for-practice (i.e., formal knowledge gener-
ated by university-based scholars for teachers to use in order to im-
prove practice) and knowledge-in-practice (i.e., knowledge that is em-
bedded within classroom practice and teacher reflection on practice). 

Imre and Akkoç (2012) examine the link between professional 
knowledge and field experiences more directly. Their case study 
closely examines the development of pedagogical content knowledge 
for number patterns in three prospective teachers (in the last year of 
their four-year programs) through a school field experience course 
in Turkey. The authors used prospective teachers’ lesson plans, vid-
eos of micro-teaching lessons, and follow-up interviews to examine 
the extent to which prospective teachers took student understanding 
and difficulties during microteaching. Analysis suggested observa-
tions in real classroom settings and discussions of those observations 
with university faculty and peers were responsible for improvement 
of prospective teachers’ pedagogical content knowledge. The authors 
further postulate that observing students in classrooms helped pro-
spective teachers identify students’ understanding of patterns, the 
difficulties students encounter, and specific strategies mentors use in 
real time. Thus, field placements are where prospective teachers have 
the opportunity to encounter, attend, and respond to student thinking, 
fertilizing the ground in which pedagogical content knowledge grows. 

Latent Class Analysis 

The extent to which individually varying patterns of university- and 
field-based OTL exist and contribute to differential levels of profes-
sional knowledge associated with high-quality teaching is unclear. 
However, within the framework for linear models, we are not able to 
observe whether some groups of prospective teachers have different 
patterns of OTL. Indeed, it may be the case that knowledge does not 
vary as a function of greater or fewer opportunities to learn—it may 
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be that some patterns of OTL are more consequential to the develop-
ment of knowledge than others. If this is the case, latent class analy-
sis may leverage our ability to investigate this hypothesis. 

Latent class analysis (LCA)1 is a type of latent variable mixture 
modeling—a flexible, person-centered analytic tool focused on sim-
ilarities and differences among individuals—standing in contrast to 
statistical modeling that focuses on relations among variables (Ber-
lin, Williams, & Parra, 2013; Muthén & Muthén, 1998). The goal of 
LCA is to identify homogeneous subgroups of individuals who pos-
sess a unique set of characteristics that differentiates them from 
other subgroups. Thus, within the LCA framework, subgroup mem-
bership is inferred from, not observed in, the data. This method em-
pirically subdivides individuals and places them in groups that are 
characterized by sharing similar “domains” of OTL. Here we use do-
mains to refer to related sets of opportunities to learn (cf. Ingersoll, 
Merrill, & May, 2014). Thus, the latent class analysis looked for dis-
tinct patterns of OTL shared by subgroups of prospective teachers 
within each country. 

Research Questions 

Is there a latent subgroup structure that adequately represents the 
heterogeneity of opportunities to learn among mathematics special-
ists across the United States and Singapore? If so, what are the types 
and their corresponding prevalence? 

Hypotheses: We expect to find more latent subgroups within the 
United States, where there are multiple pathways to certification 
that have extremely different OTL about connecting theory and 
classroom practice, than in Singapore, which has only one central-
ized institution that prepares teachers. 

1 Readers interested in more information about Latent Class Analysis may explore 
the extensive materials available from The Methodology Center at Pennsylvania 
State University’s College of Health and Human Development: https://method-
ology.psu.edu/ra/lca 

https://methodology.psu.edu/ra/lca
https://methodology.psu.edu/ra/lca
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Method 

The data used for this study were part of the larger TEDS-M study, 
in which 22,078 future teachers from 17 countries are represented. 
However, for the purpose of the current study, we focus on the sub-
sample of future primary mathematics specialists from two countries 
with complete data: the United States and Singapore. We restricted 
our sample to future primary mathematics specialists because in 
studying the associations among OTL mathematics pedagogy do-
mains, we know mathematics pedagogy is in some sense dependent 
on mathematical content knowledge: teachers do not typically have 
strong pedagogy related to mathematics content they do not under-
stand deeply. By focusing on mathematics specialists, we hoped the 
sample would contain teachers with adequate mathematical content 
knowledge, enabling us to focus on the OTL associations. We chose to 
include Singapore in the present analysis for two reasons. First, we 
wanted to choose a country with high mathematics content knowl-
edge scores for primary math specialists, in order to clarify the how 
OTL mathematics pedagogy relate to each other. As can be observed 
in Table 1, both countries have mathematical content knowledge and 
pedagogical knowledge scores that are above the international mean 
of 500; Table 1 illustrates country means and standard deviations 
(in parentheses). Second, Singapore has different qualifications for 
entry into the teaching profession and routes to certification than 
the United States. Although the models we specify to answer our re-
search question are not intended to be used for direct comparison 
across countries, interpreting findings descriptively can fortify our 
discussion with respect to how different “paths” and “routes” made 
accessible through OTL are associated with different preparation 
program outcomes. 

Table 1. Mean professional knowledge scores by primary mathematics specialists by country

 United States  Singapore
Professional knowledge  (n = 191)  (n = 117)

Mathematical content knowledge  555 (7)  600 (8)
Pedagogical content knowledge for teaching mathematics  534 (7)  604 (7)
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Measures 

Opportunity to Learn Latent Class Analysis Variables 

We selected three types of OTL factors to test the existence of la-
tent subgroups. Two of these factors, opportunity to learn instruc-
tional practice and opportunity to connect classroom learning to prac-
tice, had categorical response formats, whereas opportunity to learn 
mathematics instruction had a binary response format. The item re-
sponses for the variables that composed the opportunity to learn 
instructional practice and opportunity to connect classroom learn-
ing to practice factors were recoded to binary responses, consistent 
with Blömeke (2012). We acknowledge that this recoding results in 
the loss of variability. Yet, this recoding makes it possible to distin-
guish more clearly between OTL profiles.2 In the TEDS-M survey, 
“opportunity to learn mathematics pedagogy” is a categorical vari-
able where the response options were coded as 1 (never), 2 (rarely), 
3 (occasionally), and 4 (often). Such response options focus on fre-
quency of OTL; but by capturing mainly frequency, it is assumed all 
opportunities are of equivalent quality. We focus our attention on 
whether prospective teachers report having had any one particular 
learning opportunity. 

 Opportunity to Learn Mathematics Instruction 

This factor is composed of five binary response items with answers 
1 (did not study) or 2 (did study), which were included in the LCA. 
Future mathematics specialists were asked to indicate whether they 
studied a particular topic as part of their teacher preparation pro-
gram, such as: 

• Mathematics instruction (e.g., representation of a mathematical 
concept); 

• Developing teaching plans (e.g., selection and sequencing of 
mathematics content); 

2 Although a Latent Profile approach would allow for a greater number of responses, 
results of such analyses are not easily interpretable. 
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• Observation, analysis, and reflection; 
• Mathematics standards and curriculum; or 
• Affective issues in mathematics (e.g., anxiety). 

Opportunity to Learn Instructional Practice 

This factor was composed of six items that used a 4-point ordinal re-
sponse format, coded as 1 (never), 2 (rarely), 3 (occasionally), and 4 
(often). Since LCA is based on categorical data, the ratings were trans-
formed into binary codes with answers 1 (never/rarely) or 2 (occa-
sionally/often). Future mathematics specialists were asked to indicate 
how frequently they engaged in activities such as: 

• Explore how to apply mathematics to real-world problems; 
• Explore mathematics as the source for real-world problems; 
• Learn how to explore multiple solution strategies with pupils; 
• Learn how to show why a mathematics procedure works; 
• Make distinctions between procedural and conceptual 

knowledge when teaching mathematics concepts and 
operations to pupils; or 

• Integrate mathematical ideas from across areas of mathematics. 

Opportunity to Connect Classroom Learning to Practice 

This factor is composed of eight items that used a 4-point ordinal re-
sponse format coded as 1 (never), 2 (rarely), 3 (occasionally), and 4 
(often). Again, the ratings were transformed into binary codes with 
answers 1 (never/rarely) or 2 (occasionally/ often). Future mathemat-
ics specialists were asked to indicate how frequently they engaged in 
activities such as: 

• Observe models of teaching strategies you were learning in your 
courses; 

• Practice theories for teaching mathematics that you were learn-
ing in your courses; 

• Receive feedback about how well you had implemented teaching 
strategies you were learning about in your courses; 

• Collect and analyze evidence about pupil learning as a result of 
your teaching methods; 
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• Develop strategies to reflect upon your professional knowledge; 
• Demonstrate that you would apply the teaching methods you 

were learning in your courses; 
• Complete assessment tasks that asked you to show how you 

were applying ideas you were learning in your course; or 
• Test out findings from educational research about difficulties 

pupils have in learning. 

For more information, refer to the technical report by Tatto (2013), 
which is also available on the TEDS-M website. 

Covariates 

Based on the TEDS-M results more generally (Tatto, Rodriguez, Reck-
ase, Rowley, & Lu, 2013), we included the following variables as co-
variates: gender, the number of books in home (as a proxy for so-
cioeconomic status), and grades in high school (as a proxy for prior 
achievement). Given the TEDS-M results for countries, it is reason-
able to expect all of these variables to interact significantly with OTL, 
and thus we controlled for these in our analyses. By restricting our 
sample to prospective mathematics specialists, we thus did not con-
trol for mathematical content knowledge, since as a group, specialists 
have higher content knowledge. 

Analytical Method 

We used latent class analysis (Hagenaars & McCutcheon, 2002; Lanza, 
Dziak, Huang, Wagner, & Collins, 2015; McCutcheon, 1987) in Mp-
lus (Version 6.11, Muthèn and Muthèn 1998–2012) to identify sub-
groups of future teachers with specific patterns of opportunities to 
learn mathematics education pedagogy. This is a person-centered an-
alytic approach focused on similarities and differences among individ-
uals instead of relations among variables (Muthén & Muthén, 1998–
2012). This particular person-centered approach has been used before 
on the TEDS-M database in Blömeke (2012; also Blömeke, Hsieh, Kai-
ser, & Schmidt, 2014). Not all items were used, as some items did 
not demonstrate any variability of OTL within subgroups. This is an 
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acceptable practice within the LCA framework (e.g., Kim, Wang, Oro-
zco-Lapray, Shen, & Murtuza, 2013; Weaver & Kim, 2008). 

To determine the optimal number of latent subgroups, one would 
ideally apply a bootstrap as a dimension of fit criteria to consider. 
However, this option was not available to us if we wanted to include 
the TEDS-M sampling weights. We determined that it was important 
to include the sampling weights because they enable us to make ob-
servations about the latent subgroup composition that are generaliz-
able to prospective mathematics specialists who are prepared within 
the same country. 

For each country, we specified alternative models ranging from 
two to five subgroups. Model assessment and selection were also 
based on a variety of other fit criteria, including the log likelihood, 
Akaike’s Information Criterion (AIC; Akaike, 1974), Bayesian Infor-
mation Criterion (BIC; Schwarz, 1978), sample-size adjusted BIC 
(SSBIC; Sclove, 1987), and entropy. Smaller AIC, BIC, and SSBIC val-
ues indicate better fit; BIC in particular is an optimal indicator for 
LCA classes.3 The entropy statistic ranges from 0 to 1 and is a stan-
dardized summary measure of the classification accuracy of placing 
respondents into subgroups based on their model-based posterior 
probabilities. Thus, entropy values closer to 1 reflect better classi-
fication of individuals (Ramaswamy, DeSarbo, Reibstein, & Robin-
son, 1993). Using a combination of model fit indices strengthens the 
reliability of latent subgroup enumeration (Muthén, 2003). Lanza, 
Collins, Lemmon, and Schafer (2007) also suggest model interpret-
ability should be considered: each latent subgroup should be distin-
guishable from others based on item-response probabilities; latent 
subgroups should not be trivial in size (i.e., with a near-zero prob-
ability of membership); and it should be possible to assign a mean-
ingful label to each subgroup. 

3 The Latent variable mixture modeling discussion group on the Mplus webpage 
devotes considerable discussion to this topic, and responses favoring BIC include 
some by Muthén, author of Mplus. For more information, see http://www.stat-
model.com/discussion/messages/13/13. html?1462022592 

http://www.statmodel.com/discussion/messages/13/13. html?1462022592
http://www.statmodel.com/discussion/messages/13/13. html?1462022592
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Results 

Latent Class Analysis 

Tables 4 and 5 in the Appendix show the distribution of all variables 
used to select the base model for each country. 

Baseline Model Selection 

For all selected optimal solutions derived from latent class analyses, 
the AIC and BIC were the lowest, or the decline between two sequen-
tial models leveled off. The optimal solutions for each country are pre-
sented in Tables 2 and 3. In the discussion that follows, the number 
of subgroup profiles are described and labeled. 

Within each country, a latent subgroup profile was labeled accord-
ing to how it compares with other subgroup profiles on the three di-
mensions of OTL (mathematical instruction, instructional practice, 

Table 2. Goodness of fit criteria for various latent class models for United States (n = 191)

Number  # of  Log   
of classes  parameters   likelihood  AIC  BIC  SSBIC  Entropy

1 25 −1834 3715 3799 3720 –
2 42 −1136 2356 2481 2348 .878
3 65 −1076 2282 2475 2270 .901
4 82 −1045 2254 2498 2239 .916
5 111 −1021 2265 2596 2245 .893

Note: Dashes indicate criterion was not calculated for the model. Bold indicates the selected 
model.

Table 3 Goodness of fit criteria for various latent class models for Singapore (n = 117)

Number of  # of  Log 
classes  parameters   likelihood  AIC  BIC  SSBIC  Entropy

1 25 −1583 3215 3284 3205 –
2 42 −1074 2233 2349 2216 .852
3 62 −1034 2192 2363 2167 .904
4 88 −1004 2184 2427 2149 .930
5 102 −981 2167 2449 2126 .907

Note: Dashes indicate criterion was not calculated for the model. Bold indicates the selected 
model
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and connecting classroom learning to practice). Figures 1, 2, 3, 4, 5 
and 6 depict future mathematics specialists’ opportunities to learn 
conditional on latent subgroup membership. Please note the items are 
discrete; the lines connecting one OTL variable to another are present 

Fig. 1 Opportunity to learn mathematics pedagogy in the United States 

Fig. 2 Opportunity to learn instructional practice in the United States 
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Fig. 3 Opportunity to connect classroom learning to instructional practice in the 
United States 

Fig. 4 Opportunity to learn mathematics pedagogy in Singapore
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Fig. 5 Opportunity to learn instructional practice in Singapore 

Fig. 6 Opportunity to connect classroom learning to instructional practice in 
Singapore
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to more easily see the differences between subgroups. We applied a 
probability of .75 to determine whether subgroups had OTL each item; 
groups reporting an average OTL of more than .75 were considered 
to have had sufficient opportunities to learn that particular domain. 
Tables 6 and 7 (in the Appendix) depict the parameter estimates for 
the optimal latent subgroup solution for each country. We interpret 
the model parameters as the probability of any subgroup of prospec-
tive mathematics specialists reporting having had the OTL. For exam-
ple, in the first row for Table 6, there is a 91% and 100% probability 
that prospective mathematics specialists in the Mathematics Peda-
gogy and Comprehensive OTL subgroups, respectively, report having 
had OTL mathematics instruction. However, there is only 13% prob-
ability that prospective specialists in the Limited OTL would report 
having had the same OTL. 

In the United States, three latent OTL subgroup profiles emerged. 
The first latent subgroup comprises 6% of prospective U.S. teach-
ers and is depicted by blue lines in Figs. 1, 2 and 3. Members of this 
group, which we refer to as Limited OTL, report few opportunities to 
learn any of the mathematical pedagogical skills of interest. Whereas 
6% may seem small, it represents a non-trivial proportion of a rep-
resentative sample of pre-service teachers. Indeed, approximately 
one out of 20 teachers report limited OTL across all three domains. 
The second subgroup comprises 42% of prospective teachers and is 
depicted by yellow lines. We characterize this group as having OTL 
mathematics pedagogy. This group had lower probabilities of report-
ing OTL instructional practice. This group also had lower probabili-
ties of reporting having opportunities to connect classroom learning 
to instructional practice, with the exception of collecting and analyz-
ing evidence of pupil learning as a result of their teaching methods; 
to demonstrate that they could apply the teaching methods they were 
learning about in coursework; and to receive feedback about how well 
they had implemented teaching strategies they were learning about in 
coursework. The third subgroup comprises 52% of prospective teach-
ers. Depicted by black lines, this subgroup is characterized as having 
comprehensive OTL, although members report lower probabilities of 
both covering affective issues in mathematics and testing out findings 
from educational research about difficulties pupils have in learning 
in their coursework. 
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Figures 1, 2 and 3 are radar graphs that depict the profiles of OTL 
among the three subgroups. The vertices of each figure represent 
items within one of the OTL domains. The lines within the shape de-
pict probability levels for each item. For example, at the top of Fig. 
1, the probability of subgroups reporting the OTL mathematics ped-
agogy is nearly 100% for Subgroups 2 (OTL Mathematics Pedagogy) 
and 3 (Comprehensive OTL), but 12% for Subgroup 1 (Limited OTL). 

In Singapore, four latent OTL subgroup profiles emerged. The first 
latent subgroup comprises 23% of prospective mathematics special-
ists and is depicted by orange lines in Figs. 4, 5 and 6. This subgroup 
can be characterized as having limited opportunities to connect class-
room learning to instructional practice, although they do report being 
expected to demonstrate their ability to apply teaching methods they 
were learning about in coursework. Additionally, these prospective 
specialists had relatively low probabilities of reporting opportunities 
to study affective issues in mathematics and opportunities to learn 
how to show why a procedure works. The second subgroup comprises 
18% of prospective mathematics specialists and is depicted by yellow 
lines. This subgroup was characterized as having OTL mathematics 
pedagogy but limited OTL instructional practice and OTL connecting 
classroom learning to instructional practice. The third subgroup com-
prises 13% of prospective specialists and is depicted by green lines. 
This subgroup was characterized as having basic OTL. Prospective 
teachers in this group reported experiencing what could be considered 
a fundamental set of opportunities to learn to teach mathematics from 
each of the three OTL domains, which included OTL math instruction 
exploring how to apply mathematics to real-world problems and see-
ing math as a source for real-world problems. They also reported some 
opportunities to connect theory to instructional practice, including the 
opportunity to practice theories for teaching mathematics they were 
learning about in coursework, demonstrate that they could apply the 
teaching methods they were learning about in coursework, receive 
feedback about how well they implemented teaching strategies they 
were learning about in coursework, and develop reflection strategies. 
The fourth subgroup comprises 46% of prospective specialists and is 
depicted by black lines. This subgroup is characterized as having com-
prehensive OTL, although they did not report covering affective issues 
in mathematics, completing assessments tasks that required them to 
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apply ideas they were learning about through coursework, or testing 
out findings from educational research about difficulties pupils have 
in learning. Figures 4, 5 and 6 are radar graphs that depict the pro-
files of OTL between the four subgroups. 

Discussion 

The goal of this study was to identify distinct profiles of OTL within 
the United States and Singapore. Since the TEDS-M data encompasses 
weighted samples, the prospective math specialists included in this 
analysis can be considered to be representative of mathematics spe-
cialists in their countries. Multiple profiles of OTL were found in each 
country, even after controlling for the effect of gender and proxies for 
socioeconomic status and prior achievement. These subgroups can be 
labeled with respect to OTL mathematics instruction, instructional 
practice, and opportunities to connect classroom learning to practice. 
In the United States, three subgroups existed: Comprehensive OTL 
(52%), OTL Mathematics Pedagogy (42%), and Limited OTL (6%). 
These groups did not overlap much in their relative OTL the differ-
ent domains of mathematics pedagogy. Relative to the Comprehensive 
OTL subgroup, the OTL Mathematics Pedagogy subgroup has slightly 
fewer OTL mathematics pedagogy (specifically, affective issues and 
developing teaching plans), but distinctly fewer OTL connect class-
room learning to practice and OTL instructional practice. 

In Singapore, on the other hand, four subgroups existed. Unlike 
those in the United States, these subgroups varied in which one re-
ported the fewest opportunities to learn the different mathematical 
pedagogical domains. The Singapore subgroups are Comprehensive 
OTL (46%), Limited Opportunities to Connect Classroom Learning 
to Instructional Practice (23%), Basic OTL (13%), and Limited OTL 
(18%). The Basic OTL group presents an interesting pattern, with 
respondents reporting adequate opportunities to learn foundational 
pedagogy and develop the skills to participate in the most “basic” 
parts of the teaching cycle, such as opportunities to demonstrate 
their ability to enact teaching practices that are grounded in class-
room theory, receive feedback on the quality of their implementation 
of teaching methods, and develop the capacity to reflect upon how 
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these experiences have shifted their professional knowledge and un-
derstanding of teaching and learning. 

Our hypothesis that the United States, with more pathways (Good-
now, 2010) to certification, would have more subgroups, was not con-
firmed by the data. Prospective teachers in the United States have 
numerous options for becoming teachers and specialists, including 
public and private institutions, consecutive and concurrent routes, 
and widely varying course and field requirements. Teachers in the 
United States are prepared at more than 1300 institutions in all 50 
states, and although the United States has moved toward more cen-
tralized certification policies at the state level (Ingvarson et al., 2013), 
there is still great variation. We had thought that, given the singu-
lar teacher preparation institution in Singapore, prospective teachers 
there would be more uniform in their reported OTL. However, within 
the National Institute of Education in Singapore, there are 11 differ-
ent teacher preparation programs. Primary math specialists can be 
trained via either a concurrent or consecutive program. The TEDS-M 
Encyclopedia (Schwille, Ingvarson, & Holdgreve-Resendez, 2013) re-
ports great variation in the qualifications of supervisors in Singapore. 
There is also extensive variation in the required courses and durations 
of the different types of programs. Future research could look more 
closely at the Singapore teacher variation in OTL and explore connec-
tions to specific preparation programs with the National Institute of 
Education. Although the purpose of this study is not to statistically 
compare differential OTL between future mathematics specialists in 
the United States and Singapore, our findings may be instructive for 
program and thought leaders concerned with the extent to which pro-
grammatic visions are being achieved. 

Differential OTL naturally raises issues related to teaching qual-
ity and equity. Certainly, differential preparation of teachers has sig-
nificant implications for student access to highly qualified teachers. 
Within the United States, disadvantaged children living in urban or 
poor rural areas are disproportionally taught by teachers with lower 
qualifications: they have less teaching experience, fewer certifica-
tions and advanced degrees, and come from preparation institutions 
with lower levels of selectivity (e.g., Darling-Hammond, 2000; Jer-
ald, 2002). International comparisons of programs (including descrip-
tive, exploratory studies such as this one) enable reflection on other 
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possibilities for a given country. What does Singapore—whose special-
ist programs contain greater variability than that of the United States 
and whose students have historically and presently done well in as-
sessments such as the PISA and TIMSS—do to ensure equitable allo-
cation of highly qualified teachers? 

Opportunities to Connect Classroom Learning to Practice 

In both the United States and Singapore, approximately half of future 
mathematics specialists report comprehensive OTL (52% and 46%, 
respectively). However, the other half of future specialists in both 
countries report limited opportunities to connect classroom learn-
ing to instructional practice. We wonder about what happens in the 
classrooms of novice teachers who have strong mathematical content 
knowledge, but report limited opportunities to observe other teach-
ers in action, to experiment with and explore teaching methods in 
ways that serve to organize their professional bodies of knowledge 
and skills, or to encounter student thinking and reasoning from one 
moment to the next. This is particularly consequential for the United 
States, which is shifting toward developing mathematics specialists: 
Are future mathematics specialists really given the best possible pro-
fessional start toward developing the skills to enact the tasks of teach-
ing (Thames & Ball, 2010), including those outlined by Campbell et al. 
(2013), if nearly half of them report not having opportunities to trans-
late classroom learning to instructional practice? 

If we subscribe to situated learning theory (Brown et al., 1989) and 
recognize the power of learning in and from practice (Cochran-Smith 
& Lytle, 1999; Darling- Hammond, 1998; 2009), then, in order to ad-
dress limited opportunity to translate theory to practice, preparatory 
institutions may need to re-examine specific intended and achieved 
programmatic inputs as they relate to bridging this gap. Alternatively, 
it may be the case that some prospective specialists have found it dif-
ficult to connect field experiences with course content, for a variety 
of possible reasons. For example, there may have been a mismatch 
between course content and the field experiences being offered, or it 
may be that the connection between theory and practice was not fa-
cilitated by the course instructor. It may simply be the case that some 
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students did not self-advocate and request particular learning oppor-
tunities or simply overlooked them. Primary math specialists may en-
ter preparation programs already trained as primary generalists, in 
which case, they may not have the same OTL in some areas, such as 
math pedagogy, insofar as programs would assume prospective spe-
cialists had already acquired some basic knowledge. Particularly for 
consecutive routes to specialist certification, programs may require a 
bachelor’s degree focused on primary mathematics, and thus would 
only include OTL in more specialized aspects of teaching mathemat-
ics. Nevertheless, field experiences are a place where the tension be-
tween classroom theory and practice can be made productive, partic-
ularly when questions about teaching and learning arise in the context 
of interacting with real students and work in progress. Indeed, well-
designed clinical experiences are a setting that can “…empower [fu-
ture] teachers with greater understanding of complex situations rather 
than seek to control them with simplistic formulas or cookie cutter 
routines” (Darling-Hammond, 1998, p. 170). 

Limitations 

The findings of this study need to be considered in light of the follow-
ing limitations. First and foremost, selecting the optimal number of 
subgroups is not straightforward, as it requires the triangulation of 
fit statistics along with consideration of model interpretability. Fur-
ther, whereas the fit indices for weighted and un-weighted samples 
both indicated the same number of latent classes, we could not per-
form LCA bootstrap on the weighted sample, because of limitations in 
statistical software packages. Consequently, the optimal number of la-
tent subgroups present within the analyzed sample of each country is 
open to interpretation. Although our decisions align with our research 
question and related literature, others could make different decisions 
and also provide support for those decisions (e.g., to allow subgroups 
that capture smaller proportions of the sample, select a different sub-
group solution). Additionally, model fit indices do not perform opti-
mally with fewer than 100 observations, and a minimum of 200 ob-
servations is preferred (Nylund, Asparouhov, & Muthén, 2007). The 
standard, but not the preference, was met for both countries. 
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The latent subgroups are specific to those about to be certified as 
math specialists at the primary level. These participants are poten-
tially different from those being certified as primary generalists. A 
future study should determine whether these same latent subgroups 
are present in other populations, including those from other countries 
and earning different types of certification. For our purposes, we were 
looking for associations among those with potentially high mathemat-
ical knowledge, so the restriction to math specialists was reasonable. 

Further, the data are self-reported. Participants were asked to com-
plete a survey and report whether they had opportunities to learn 
each of 19 topics. Self-reports of opportunities to learn how to con-
nect classroom learning and practice are not the same as direct ob-
servation of teachers connecting classroom learning to their prac-
tices, through classroom observations and interviews. Furthermore, 
knowing whether participants had the opportunities to learn partic-
ular topics does not give us insight into the quality of these learning 
experiences. However, the novice teacher questionnaire utilized by 
TEDS-M does have good psychometric properties (Tatto et al., 2013), 
and research shows students’ perceptions of learning are related to 
their overall evaluation of courses and to “actual” learning (Centra & 
Gaubatz, 2005). 

Because of the differences in the items on the survey instrument, 
all participant responses were coded using a forced binary response. 
Whereas the LCA models binary responses, forcing 4-point scales into 
binary responses reduces the variability of the data. Although Latent 
Profile Analysis can handle responses with more than two categories, 
results of such analyses are not easily interpretable. Thus, LCA with 
constrained binary responses was considered preferable, in order to 
interpret the results. 

Despite these potential limitations, this study provides us with a 
way to describe potential differences in OTL. More research is needed 
to investigate OTL, particularly examining the quantity and quality 
associated with different OTL. Coupling self-report data with addi-
tional measures such as document and observational data from pro-
grams would aid in producing a more robust description of OTL and 
its potential influences. 
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Conclusions 

This study utilized a person-centered approach to identify different 
subgroups of prospective teachers who share OTL. The findings high-
light significant differences in patterns of OTL that would not have 
been identified using variable-centered methods. This approach al-
lows for meaningful distinctions to be made among opportunities to 
learn common across teacher preparation programs. 

The results of this study inform institutional policies by providing 
a more complete and complex understanding of the reported OTL of 
prospective mathematics specialists. In both the United States and 
Singapore, distinct groups emerge with markedly different reported 
OTL mathematics pedagogy. Future studies can more closely exam-
ine the alignment between the OTL that pre-service teachers perceive 
and the OTL institutions see their preparation programs as encom-
passing. Further research can also examine the associations among 
OTL, mathematical content knowledge, and mathematical pedagog-
ical content knowledge. Teacher preparation institutions can exam-
ine their curricula to determine whether the OTL they are providing 
for pre-service teachers are lacking in some of the key areas of math-
ematics pedagogy. 
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Appendix

Table 4 Frequency distributions for seventeen observed variables from the TEDS-M future 
teacher survey: Percent of future teachers who report opportunities to learn in the United 
States

 % Studied

Opportunity to learn mathematics instruction

Mathematics instruction  90.9%
Develop teaching plans  85.6%
Observation, analysis, and reflection  89.4%
Mathematics standards and curriculum  93.2%
Affective issues in mathematics  62.1%

Opportunity to learn instructional practice

Explore how to apply mathematics to real-world problems  79.4%
Explore mathematics as the source of real-world problems  80.2%
Learn how to explore multiple solution strategies with pupils  78.6%
Learn how to show why a mathematics procedure works  72.5%
Make distinctions between procedural and conceptual knowledge when teaching  65.6% 
    mathematics concepts and operations to pupils  
Integrate mathematics ideas from across areas of mathematics  71.0%

Opportunity to connect classroom learning to practice

Observe models of teaching strategies you were learning in coursework  76.2%
Practice theories for teaching mathematics you were learning in coursework  77.0%
Receive feedback about how well you had implemented teaching strategies you 91.2%
    were learning in coursework
Collect and analyze evidence about pupil learning as a result of your teaching methods 86.4%
Develop strategies to reflect upon your professional knowledge  83.9%
Demonstrate that you could apply the teaching methods you were learning in coursework 93.5%
Complete assessment tasks that asked you to show how you were applying ideas 80.0%
     you were learning in your courses
Test out findings from educational research about difficulties pupils have in learning  48.0%

All indicators were coded as 1 (Studied) = Occasionally/Often, 2 (Not Studied) = Never/Rarely for OTL 
Instructional Practice and OTL Connect Classroom Learning to Practice

Percentage Studied indicates the percentage of people who responded to an item who selected “studied.”
Data missing for 44 future teachers for OTL Mathematics Instruction, 45 for OTL Instructional Practice, 

and ≥ 50 for OTL Connect Classroom Learning to Practice
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Table 5 Frequency distributions for seventeen observed variables from the TEDS-M future 
teacher survey: Percent of future teachers who report opportunities to learn in Singapore

 % Studied

Opportunity to learn mathematics instruction

Mathematics instruction  95.7%
Develop teaching plans  76.1%
Observation, analysis, and reflection  82.8%
Mathematics standards and curriculum  92.3%
Affective issues in mathematics  42.2%

Opportunity to learn instructional practice

Explore how to apply mathematics to real-world problems  76.1%
Explore mathematics as the source of real-world problems  76.1%
Learn how to explore multiple solution strategies with pupils  76.1%
Learn how to show why a mathematics procedure works  66.7%
Make distinctions between procedural and conceptual knowledge when teaching 69.2%
    mathematics concepts and operations to pupils
Integrate mathematics ideas from across areas of mathematics  66.7%

Opportunity to connect classroom learning to practice

Observe models of teaching strategies you were learning in coursework  56.9%
Practice theories for teaching mathematics you were learning in coursework  75.9%
Receive feedback about how well you had implemented teaching strategies you 85.3%
    were learning in coursework
Collect and analyze evidence about pupil learning as a result of your teaching methods 56.0%
Develop strategies to reflect upon your professional knowledge  69.0%
Demonstrate that you could apply the teaching methods you were learning in coursework 93.1%
Complete assessment tasks that asked you to show how you were applying ideas 46.6%
    you were learning in your courses
Test out findings from educational research about difficulties pupils have in learning 25.9%

All indicators were coded as 1 (Studied) = Occasionally/Often, 2 (Not Studied) = Never/Rarely for Op-
portunities to Learn Instructional Practice and Opportunities to Connect Classroom Learning

Percentage Studied indicates the percentage of people who responded to an item who selected 
“studied.”
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Table 6 Parameter estimates for model of three latent opportunities to learn and effect of la-
tent subgroup membership on MPCK scores for mathematics specialists in the United States

 Limited OTL mathematics Comprehensive
 OTL (6%) pedagogy (42%) OTL (52%)

OTL mathematics education - instruction
Math instruction  .125  .906  1.000
Develop teaching plans  .125  .820  .970
Observation, analysis, and reflection  .000  .911  .956
Standards and curriculum  .124  .969  .986
Affective issues  .249  .575  .693

Opportunity to connect classroom learning to practice
Observe models of teaching strategies you .500  .606  .924
    learned in coursework
Practice theories for teaching mathematics .000  .662  .958
    that you learned in coursework
Complete assessment tasks that asked you .429  .610  .991
    to show how you were applying ideas you
    learned in coursework
Receive feedback about how well you .714 .792  1.000
    implemented teaching strategies you
    learned in coursework
Collect and analyze evidence of pupil .714  .773  .960
    learning as a result of your teaching methods
Test out findings from educational research .000  .256  .723
    about difficulties pupils have in learning
Develop strategies to reflect upon your .714  .646  .983
    professional knowledge
Demonstrate that you could apply the .857  .837  1.000
    teaching methods you were learning about
    in your coursework

OTL instructional practice
Explore how to apply mathematics to .000  .687  .974
    real-world problems
Explore mathematics as the source for .000  .704  1.000
    real-world problems
Learn how to explore multiple solution .625  .641  .946
    strategies with pupils
Learn how to show why a mathematics .124  .534  .958
    procedure works
Make distinctions between procedural and .000  .504  .888
    conceptual knowledge when teaching
    mathematics concepts and operations to pupils
Integrate mathematical ideas from across .000  .552  .928
    areas of mathematics
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Table 7 Parameter estimates for model of three latent opportunities to learn and effect of la-
tent subgroup membership on MPCK scores for mathematics specialists in Singapore

 Limited   
 opportunities to OTL  
 connect classroom mathematics Limited Compre-
 learning to practice pedagogy OTL hensive
 (23.03%) (17.62%) (13.35%) OTL (46%)

OTL mathematics education - instruction

Math instruction  1.000  1.000  .806  .962
Develop teaching plans  .763  .930  .150  .866
Observation, analysis, and reflection .886  1.000  .246  .898
Standards and curriculum  1.000  .956  .684  .943
Affective issues  .549  .371  .000  .546

Opportunity to connect classroom learning to practice

Observe models of teaching strategies .192 .438 .539 .809
     you learned in coursework
Practice theories for teaching mathematics .508 .675 .800 .898
     that you learned in coursework
Complete assessment tasks that asked .180 .189 .462 .721
     you to show how you were applying ideas  
     you learned in coursework
Receive feedback about how well .619 .714 .932  1.000
     you implemented teaching
     strategies you learned in coursework
Collect and analyze evidence of pupil .271 .286 .627 .799
     learning as a result of your teaching methods
Test out findings from educational research .000 .000 .000 .566
     about difficulties pupils have in learning
Develop strategies to reflect upon .325 .281 .810 1.000
      your professional knowledge
Demonstrate that you could apply  .882  .809  1.000  .980
     the teaching methods you were
     learning about in your coursework

OTL instructional practice

Explore how to apply mathematics  1.000 .309 .748 .837
     to real-world problems
Explore mathematics as the source .968 .261 .799 .857
 for real-world problems
Learn how to explore multiple  1.000 .150 .633 .929
     solution strategies with pupils
Learn how to show why a .687 .223 .576 .859
     mathematics procedure works
Make distinctions between procedural  .794 .199 .572 .884
     and conceptual knowledge when  
     teaching mathematics concepts and  
     operations to pupils
Integrate mathematical ideas from .735 .401 .437 .811
      across areas of mathematics
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