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Abstract 

Treeline, the ecotone between forest and alpine or tundra ecosystems, is perceived as the 

thermal limit to tree growth, reproduction, and survival and in a warming world, we 

expect treelines to shift to higher elevation and latitudes. Despite increases in 

temperatures, there has been no ubiquitous change in treeline position. Shifts in treeline 

position will be dependent on increased recruitment, the production or dispersal of viable 

seed followed by germination and seedling establishment and survival, at treeline. To 

examine how biotic interactions constrain or facilitate black spruce and tamarack 

recruitment at alpine treeline, we conducted a series of observational and experimental 

studies along an altitudinal gradient in central Newfoundland, Canada. We found treeline 

population to be simultaneously seed and establishment limited, however if seedlings 

become established we found seedling survival to be high. Our results highlight the need 

for multiple factors to align temporally for recruitment to occur. 
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Chapter 1: Introduction and thesis overview 

1. 1 Introduction 

Understanding drivers of species’ abundance and distributions has been a central 

theme throughout the history of biogeographical studies and has current implications for 

modern ecological issues involving impacts of global climate change. Species’ 

distributions are the spatial representation of the combination of abiotic and biotic 

conditions that support a specie’s growth, survival, and reproduction (Harper, 1977). 

While biotic conditions have long been recognized to influence species’ range limits (e.g., 

Connell, 1961), historically there has been a focus on abiotic conditions, particularly 

temperature and precipitation, as determinants of species’ distributions, especially 

species’ uppermost altitudinal and latitudinal limits (e.g., Dana, 1953; Dobzhansky, 1950; 

MacArthur, 1972). This focus on abiotic drivers is not unfounded, as species 

physiological tolerance to abiotic conditions unequivocally influence species distributions 

(Sexton et al., 2009). However, the focus on abiotic drivers has resulted in limited 

empirical knowledge on the relative importance of biotic factors in driving species’ range 

limits and we are currently limited in our ability to generalize across species, interactions, 

and conditions in which biotic interactions drive range limits (Hille Ris Lambers et al., 

2013).  

Climate change is predicted to have widespread effects on species’ distributions, with 

populations expected to shift upslope and/or to higher latitudes (Chen et al., 2012). 

However, observed variability in the magnitude and direction of species’ responses to 

changing climatic conditions suggests that biotic factors are driving, or interacting with 
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abiotic conditions to drive species’ range limits (Hille Ris Lambers et al., 2013). In 

response, biotic factors, in particular interactions, have been increasingly recognized as 

determinants of species distributions at broad spatial scales (Lewis et al., 2017). 

Competitors, consumers, mutualists, and facilitators will influence a species’ ability to 

grow, survive, and reproduce and therefore, intuitively, affect a species’ abundance and 

distribution (Wiens, 2011). However, there is currently a paucity of empirical evidence on 

when biotic interactions control species’ range limits and in turn, how these biotic 

interactions will mediate species’ response to climate change (reviewed by Hille Ris 

Lambers et al., 2013). Studies of climate change effects on species distributions will 

allow for the increased understanding of the relative importance of abiotic and biotic 

drivers on determining species’ range limits (Sexton et al., 2009).  

Treeline, the ecotone between forest and tundra or alpine ecosystems, represents the 

uppermost latitudinal or altitudinal conditions that support tree growth, survival, and 

reproduction (Körner, 1998). Despite the term treeline, there is no ‘line’ that represents 

forest range limits; treeline is the zonal transition marked by a decline in tree density from 

closed canopy forest to tree species limit (Smith et al., 2003). The geographical position 

of treeline is thought to be primarily controlled by thermal conditions, as evidenced by 

global scale correlations between seasonal mean temperature and treeline position 

(Körner & Paulsen, 2004; Körner, 2012; Paulsen & Körner, 2014). Therefore, with the 

alleviation of thermal constraints, treeline position is expected to shift upslope and to 

greater latitudes. Particular focus has been placed on predicting the response of trees; not 

only is the geographical limit of forests the most conspicuous transition in vegetation 
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structure but forests cover approximately half of the Earth’s terrestrial surface (Aitken et 

al., 2008).  

The process of tree range expansion is initially dependent on successful recruitment 

at, or beyond, the treeline ecotone. Early-life stages have long been recognized to 

disproportionally affect recruitment, as early-life stages are both most abundant and most 

vulnerable (Harper, 1977). Therefore, seed survival, germination, and seedling 

establishment and survival can have long standing effects on species abundance and 

distribution (Harper, 1977; Chambers & MacMahon, 1994; Clark et al., 2013) The 

reproduction limitation hypothesis poses that the position of treeline is governed by the 

failure of trees to successfully recruit beyond range limits (Körner, 1998).  

Fundamentally, climate controls plant recruitment; warm summers promote pollen 

and seed cone initiation (Owens & Blake, 1985), minimum heat sums are required for 

proper embryo development (Sirois et al., 1999), seasonal cues drive germination and 

seedling emergence (Walck et al, 2011), and seasonal frosts can result in death across all 

early-life stages (Zasada, 1971). However, despite atmospheric temperatures increasing 

worldwide, there has been no ubiquitous change in global treeline position (Harsch et al., 

2009). This variability in treeline response suggests that non-climatic factors, including 

biotic interactions, may override or modulate the effects of temperature on treeline 

position, inhibiting or slowing treeline response to changing climatic conditions. Multiple 

biotic interactions can modulate the effects of atmospheric warming on recruitment either 

directly (i.e., consumption by seed predators; Brown & Vellend, 2014; Jameson et al., 

2015) or indirectly (i.e., amelioration of environmental conditions by facilitators; Wheeler 
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et al., 2011). Despite the recognized importance of early-life stages and biotic interactions 

in governing species distributions, there is uncertainty about how biotic drivers interact 

with early-life stages to shape current and future species distributions.   

 Recruitment at treeline is generally considered to be seed limited (e.g., Sirois, 

2000; Meunier et al., 2007; Brown et al., 2018). Climate change is predicted to increase 

seed production (Krebs et al., 2012); however, the production and/or dispersal of seed to 

treeline does not guarantee recruitment will occur. Recruitment limitations can result 

from numerous abiotic and biotic factors and that occur across multiple life stages, from 

seeds attached to parent plants to germination, seedling establishment and survival  (Clark 

et al., 1999, 2013; Nathan & Muller-Landau, 2000). Consequently, recruitment 

limitations, and the fate of seeds, need to be assessed at both pre-dispersal and post-

dispersal stages (Nathan & Muller-Landau, 2000; Clark et al., 2013). Patterns of seed 

production do not consistently align with patterns of seed viability and pre-dispersal 

processes, such as pollen limitations and pre-dispersal seed predation, may keep treeline 

populations seed limited (Sirois, 2000; Jameson et al., 2015; Kroiss et al., 2015; Kambo 

& Danby, 2017; Brown et al., 2018). Subsequent post-dispersal processes, including 

predation, competition, and herbivory, may further constrain recruitment where, despite 

the arrival of viable seed to treeline, seedlings fail to establish (Clark et al., 1999; Bråthen 

et al., 2010; Munier et al., 2010; Wheeler et al., 2011; Dufour-Tremblay et al., 2012; 

Kambo & Danby, 2017).  

 Successful germination does not guarantee seedling establishment and survival, as 

abiotic requirements at one life stage may not be advantageous at another (Cranston & 
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Hermanutz, 2013). Due to the small stature of seedlings, microsite conditions are likely to 

have a greater influence on recruitment than local climatic conditions (Resler, 2006; 

Körner, 2016; Renard et al., 2016). Established individuals at treeline have been found to 

alter microsite conditions (e.g., increasing snow accumulation, providing protection from 

wind and herbivory, and reducing radiative extremes; reviewed by Holtmeier, 2009). 

Conifer seedlings at treeline have been found to be positively associated with tree islands 

(Alftine & Malanson, 2004; Renard et al., 2016) and individual krummholz (Batllori et 

al., 2009), suggesting that established individuals at treeline alter microclimatic 

conditions in a way that facilitates seedling establishment and survival. Facilitation, the 

interaction of one species altering the environment in a way that enhances the growth, 

survival, or reproduction of a neighbouring species (Bronstein, 2009), is an important 

factor at range limits and facilitative interactions between established individuals and 

seedlings has been proposed as a potential mechanism for treeline advance (Holtmeier & 

Broll, 2007; Presas et al., 2009; Cranston & Hermanutz, 2013; Renard et al., 2016).    

1.2 Thesis rationale 

The province of Newfoundland and Labrador, to date, is 1.5°C warmer than 

historical average (1968-1990) and is projected to continue to warm across the island of 

Newfoundland, with temperature changes most pronounced during the winter (+2-4°C by 

mid-21st century) and to a lesser extent in the summer (+1°C by mid-21st century; Finnis, 

2013; Finnis & Daraio, 2018). Temperature changes of maritime areas are expected to 

occur slowly due to the moderating effects of the ocean. The mean annual temperature of 

central Newfoundland is approximately 3°C (2007-2017; Middle Arm weather station, 
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Environment Canada), implying that increases in mean winter temperatures will result in 

more precipitation falling as rain than snow. The number of frost days are projected to 

decrease dramatically by the mid-21st century, with the island experiencing 10 to 15 fewer 

frost events a year, with autumn and spring becoming more like summer than winter 

(Finnis, 2013; Finnis & Daraio, 2018). A shortened winter will result in an increased 

growing season, with 200 to 400 additional growing degree days projected for the island 

(Finnis, 2013; Finnis & Daraio, 2018). The impacts of climate change on precipitation 

across the province are expected to be minimal, where frequency and intensity of drought 

and/or dry spells are projected to remain constant and small increases in mean winter and 

spring precipitation are projected (Finnis, 2013; Finnis & Daraio, 2018). The projected 

changes in Newfoundland’s climatic conditions support the global prediction that forest 

range limits are expected to shift upslope, and to greater latitudes.  

Evidence suggests that non-climatic factors, including biotic interactions, likely 

slow or inhibit the ability for forest distribution to respond to broad scale climatic change 

(Harsch et al., 2009). The effect of biotic interactions (e.g., competition, consumption, 

facilitation) on species’ ability to track changing climate controls are difficult to predict, 

as there is lack of empirical evidence on how biotic interactions control current range 

limits and in turn, how the magnitude and direction of these biotic drivers may be 

modified in a warmer world (Hille Ris Lambers et al., 2013). In order to accurately 

predict treeline advance to climate change, we must first increase our understanding on 

the direction and magnitude biotic drivers have on reproduction, growth, and survival at 

current range limits (Hille Ris Lambers et al., 2013; Hargreaves et al., 2014).  
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While asexual reproduction is common at treeline (Payette & Gagnon, 1979; 

Viktora et al., 2011), significant changes in treeline position will depend on successful 

recruitment at, or beyond current range limits. Despite the recognized importance early-

life stages have on the abundance and distribution of species (Harper, 1977), there is 

uncertainty about how biotic drivers affect seed production and germination, and 

subsequent seedling survival at range limits. Observational studies alone cannot parse the 

multiple, interacting factors involved with range expansion, thus there is a critical need 

for manipulative experiments to understand the response of species’ distributions to a 

warming world (Hille Ris Lambers et al., 2013). Here, we present findings from a series 

of complementary observational and experimental studies examining how predicted biotic 

drivers’ affect black spruce (Picea mariana) and tamarack (Larix laricina) recruitment at 

altitudinal treeline in Newfoundland. The studies presented in this thesis offer a novel 

examination of recruitment at treeline, examining the effect of several biotic interactions 

across a series of early life stages. Our findings complement previous studies examining 

the importance of ecological processes in shaping the geographical position of treelines 

and fill a geographical knowledge gap in treeline research. To the best of our knowledge, 

we are the first to experimentally examine whether biotic interactions will affect 

altitudinal treeline advance on the island of Newfoundland, filling a geographical gap in 

treeline research.  

1.3 Study site 

The study took place on a south-west facing slope on the Baie Verte Peninsula in 

central Newfoundland, Canada (49⁰35.2’ N, 56⁰13.7’ W; Figure 1.1). The central 
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Newfoundland ecoregion has the most continental climate of the island, with relatively 

warm summers and cold winters (Damman, 1983), experiencing a mean annual 

temperature of approximately 3°C (2007-2017; 49°41’ N, 56°06’W; Middle Arm weather 

station, Environment Canada). Precipitation mirrors island-wide averages, with 

approximately 1200 mm total annual precipitation and about 350 cm falling as snow 

(2007-2017; 49°41’ N, 56°06’W; Middle Arm weather station, Environment Canada). 

The growing season spans mid-May through the end of September (Damman, 1983), 

accumulating approximately 1200 growing degree days (2007-2017; 49°41’ N, 56°06’W; 

Middle Arm weather station, Environment Canada; GDD based on 5°C threshold, 

MacPherson & MacPherson 1981). To date, the island of Newfoundland has warmed 

approximately 1.5°C (Finnis, 2013; Finnis & Daraio, 2018). Due to the regulating effects 

of the ocean, projected temperature changes are minimal (+2-4°C by mid-21st century); 

however, total GDD is expected to increase by 30 to 40% (Finnis, 2013; Finnis & Daraio, 

2018).    
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Figure 1.1 Map of the study site on the Baie Verte Peninsula of Newfoundland, Canada. 

The dashed box outlines the altitudinal gradient in which the studies were conducted. 

The central Newfoundland ecoregion is the most distinctly boreal assemblage on 

the island (Damman, 1983). Predominantly black spruce (Picea mariana [Mill.] B.S.P.) 

stands are common in the northcentral subregion (i.e., the Baie Verte Peninsula) and 

arctic-alpine flora is restricted to areas of increased topographic relief (Damman, 1983). 

Altitudinal treeline, across the island of Newfoundland, occurs at low altitudes, rarely 

exceeding 350 m a.s.l., and areas at, or above treeline support krummholz (locally 

referred to as tuckamore), heathlands, and bogs (MacPherson, 1995).        

With increasing elevation, the study site’s vegetation transitions from a closed 

canopy black spruce dominant forest to an ericaceous heath with isolated patches of 

stunted black spruce and scattered tamarack (Larix laricina [Du Roi] K. Koch) (Figure 

1.2a). We designated two study sites across the altitudinal gradient, the forest site (~130 

m; Figure 1.2b) and the treeline site (~240 m; Figure 1.2c). The forest site is characterized 

as a black spruce- feathermoss forest type, where the canopy is predominately composed 
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of black spruce with a few balsam fir (Abies balsamea [L.] Mill.) and the feathermoss 

substrate is predominantly Pleurozium schreberi and at lower abundance Hylocomium 

splendens and Ptillium crista-castrensis. The forest transitions to ericaceous heath at 

approximately 200 m a.s.l., the uppermost elevation of erect, tree-form black spruce 

individuals. The treeline site is characterized as a Kalmia heath (Meades, 1983), where 

ericaceaus dwarf shrub cover is dominated by Kalmia angustifolia, with Rhododendron 

groenlandicum and Vaccinium angustifolium being the next two most abundant shrubs, 

and groundcover vegetation is composed of fruticose, caribou lichens predominately 

Cladonia stellaris. Isolated patches of stunted, krummholz black spruce and scattered 

tamarack individuals occur across the treeline site.  
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Figure 1.2 Photographs of a) the south-west facing altitudinal gradient (49⁰35.2’ N, 

56⁰13.7’ W), b) the forest site characterized as black spruce- feathermoss forest type, and 

c) the treeline site characterized as Kalmia heath.  

1.4 Study species 

1.4.1 Black Spruce 

Black spruce is the dominant tree species at the study sites and stands are common 

throughout the northcentral subregion of the central Newfoundland ecoregion (Damman, 

1983). The species is widely distributed across the North American boreal forest, 

inhabiting a broad range of environmental conditions, with populations often forming 

latitudinal  and alpine treeline (Timoney et al., 1992). Mature individuals, within range 

limits, exhibit tree form and reach average heights of 12 to 20 m (Viereck & Johnston, 
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1990), while at treeline, black spruce individuals are often stunted and deformed 

exhibiting a semiprostrate, shrub form (Viereck & Johnston, 1990).  

Sexual reproduction follows two year cycles, with reproductive buds developing 

in the growing season of the first year, a period of winter dormancy, pollination and 

fertilization occurring in the spring and subsequent maturation of cones and fertilized 

embryos by the fall of the second year. Black spruce seed cones are semi-serotinous 

where high temperatures experienced during fires open cones and increase seed release. 

Absent of fire, cones remain partially closed and seeds are gradually released throughout 

the year. Seeds are primarily wind dispersed; although despite the small size and presence 

of wings, seeds are rarely dispersed greater than 80 m from the stand (Viereck & 

Johnston, 1990). Vegetative reproduction, by layering, is common at treeline and is an 

important mode of reproduction during periods of harsh environmental conditions that 

impede sexual reproduction (Viereck & Johnston, 1990; Holtmeier & Broll, 2010).  

1.4.2 Tamarack 

Tamarack is absent from the forest site but occurs alongside black spruce, at lower 

densities, at the treeline site. Tamarack has a wide distribution, spanning the North 

American boreal forest from Newfoundland and Labrador to central Alaska. At latitudinal 

and alpine treeline, tamarack is often found in association with black spruce (Payette, 

1993). While deformed, shrub-like growth forms can occur, tamarack individuals at 

treeline, despite being stunted, usually occur in tree form (Payette, 1993).  

Similar to black spruce, sexual reproduction of tamarack follows two year cycles 

from reproductive bud differentiating to seed production. Small cones are borne 
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throughout the crown and small, winged seeds are released in the fall upon cone ripening 

(Johnston, 1990). Tamarack seeds are larger than black spruce seeds (550,000 -710,000 

seeds/kg and 890,000 seeds/kg respectively; Johnston, 1990; Viereck & Johnston, 1990). 

Few seeds are dispersed greater than twice the height of the individual (Johnston, 1990). 

While vegetative reproduction, through layering, can occur, it is considered much less 

important than regeneration by seed (Payette et al., 1982).   

1.5 Thesis objectives  

To identify how biotic interactions may constrain or facilitate black spruce and 

tamarack recruitment at altitudinal treeline, we conducted a series of complementary 

observational and experimental studies in both field and laboratory settings. We examined 

the effects of predicted biotic interactions across two early-life stages: 1) seed production 

and germination (Chapter 2) and 2) seedling survival (Chapter 3).  

For recruitment to occur, there are several filters that seeds must surpass, starting 

with the production of viable seed by parent plants to the arrival and retention of seed in 

microsites that allow for germination and seedling establishment (Clark et al., 2013; 

Chambers & MacMahon, 1994). Given the complex nature of recruitment, it is not 

surprising that recruitment at treeline has been compared to a very difficult hurdle race 

(Holtmeier, 2009). Chapter 2 aims to quantify a suite of recruitment limitations, from 

seed production to germination. To do so, we ask a sequence of research questions, 

addressing predicted life stage specific hurdles to conifer seed production, germination, 

and seedling emergence. Specifically, we ask how i) seed limitations and ii) establishment 

limitations vary across altitudinal species range limits.  
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Successful seedling germination and establishment does not guarantee seedling 

survival; in Chapter 3, we examine whether established black spruce and tamarack 

individuals at treeline facilitate the survival of seedlings. Facilitation by tree islands has 

been identified as a potential route for range expansion of boreal conifers (Alftine & 

Malanson, 2004; Renard et al., 2016). Due to the small stature of seedlings, microsite 

conditions drive establishment and survival (Resler, 2006).  In Chapter 3, we aim to i) 

quantify how microclimatic conditions change with distance from established black 

spruce and tamarack at altitudinal treeline and ii) determine how established individuals 

and microclimate conditions interact to affect seedling survival at treeline.  

The studies presented in this thesis will increase our understanding of the 

mechanisms governing recruitment at treeline in Newfoundland and, therefore, will 

provide insight into how Newfoundland’s altitudinal treelines will respond to changing 

climatic conditions. This in turn, will help advance the understanding of the role of biotic 

interactions play in driving current treeline position more broadly and help generalize 

how and when biotic interactions will modulate species’ response to climate change.   
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Chapter 2: Biotic filtering of boreal conifer recruitment at alpine treeline 

Abstract 

Treeline, the ecotone where forest transitions to alpine or tundra ecosystems, is 

considered the thermal limit to tree growth and survival. Despite temperature increases 

across mountainous areas and high latitudes globally, there has been no ubiquitous 

change in treeline position. The process of range expansion must initially depend on 

increased recruitment at, or beyond current range limits. Recruitment limitations have 

been hypothesized as a mechanism for the variable response of treeline position to 

climate warming. We conducted a series of observational and experimental studies to 

quantify early-life stage constraints, from seed production to seedling establishment, on 

black spruce (Picea mariana) and tamarack (Larix laricina) recruitment at an altitudinal 

treeline ecotone in central Newfoundland, Canada. We found recruitment at treeline to be 

simultaneously seed and establishment limited. The treeline populations produced fewer 

seeds than the forest populations and black spruce seeds produced by the treeline 

population were of lower viability. Tamarack was more seed limited than black spruce 

where seed viability was low regardless of altitudinal position. Post-dispersal seed 

predation greatly constrained recruitment across the altitudinal gradient; however, black 

spruce seeds experienced the lowest levels of invertebrate seed predation on the lichen 

mat at treeline. If seeds are not consumed, individuals at treeline are establishment 

limited because germination and seedling establishment was both less abundant and 

delayed on lichen substrate. Our study highlights the need for multiple factors to align 

temporally for significant recruitment at treeline to occur.   
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Keywords: altitudinal treeline, range expansion, recruitment limitations, seed viability, 

seed predation, invertebrate, substrate suitability, Picea mariana, Larix laricina  

2.1 Introduction 

As sessile organisms, trees are fixed in space; therefore, any changes in 

geographic distribution are dependent on recruitment via the production or dispersal of 

viable seeds and subsequent seedling establishment and survival at or beyond range limits 

(Nathan & Muller-Landau, 2000; Briceño et al., 2015; Johnson et al., 2017). Dispersal 

ability, abiotic conditions, and biotic interactions may each constrain recruitment, where 

recruitment limitations can occur through multiple processes and across multiple life 

stages (Clark et al., 1999). Globally, the distributional limit of trees where forests 

transition to alpine or tundra ecosystems, herein termed the treeline ecotone, is ascribed 

as the thermal limit to tree growth, survival, and reproduction (Körner, 1998). Human-

induced environmental change and the alleviation of thermal constraints is predicted to 

have widespread effects on species distributions (Chen et al., 2012) and treelines are 

expected to advance beyond their current climatic tolerances to greater elevations and 

latitudes (Malcolm et al., 2002). Despite average temperatures increasing across 

mountainous areas and high latitudes around the world (IPCC 2014; Pepin et al., 2015), 

there has been no ubiquitous change in the geographical position of global treelines 

(Harsch et al., 2009); suggesting that non-climatic factors, including dispersal limitations 

and biotic interactions, operating at local to regional scales may constrain recruitment 

more than direct temperature constraints (Brown & Vellend, 2014; Jameson et al., 2015; 

Kroiss et al., 2015; Kambo & Danby, 2017).  
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The transition from seed production to seedling establishment has long been 

recognized as an important bottleneck to recruitment (Harper, 1977), as individuals are 

both abundant and highly vulnerable at early-life stages (Chambers & MacMahon, 1994; 

Nathan & Muller-Landau, 2000; Clark et al., 2013). The reproduction hypothesis states 

that the functional position of treeline is dictated by the failure for trees to successfully 

recruit beyond range limits (Körner, 1998). Recruitment limitations, and the fate of seeds, 

must be examined across multiple stages from seeds attached to parent plants, pre-

dispersal processes, to seedling establishment and survival, post-dispersal processes 

(Nathan & Muller-Landau, 2000; Clark et al., 2013). Seed limitations, defined as the 

failure for a sufficient number of seeds to arrive at uncolonized sites, can occur due to 

either low seed production and/or poor dispersal ability (Clark et al., 2013). While 

recruitment at treeline cannot occur without the production and dispersal of seed, simply 

the arrival of seed at treeline does not guarantee recruitment will occur (Nathan & Muller-

Landau, 2000; Clark et al., 2013). Establishment limitations occur when environmental 

conditions at uncolonized sites limit seedling establishment regardless of seed arrival 

(Nathan & Muller-Landau, 2000; Clark et al., 2013). Seed and establishment limitations 

are not mutually exclusive and can be thought as being inversely related, where solely 

seed limited populations are on the opposite end of a gradient from solely establishment 

limited ones (Muller-Landau et al., 2002; Clark et al., 2007).  

Individuals at treeline have been found to produce fewer seeds relative to 

individuals within range limits, and it is predicted that fecundity will increase with the 

alleviation of climatic constraints (Case & Taper, 2000; Krebs et al., 2014; Roland et al., 
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2014). However, increased production of seed does not necessarily lessen seed limitations 

as evidence suggests patterns in seed production do not consistently match patterns in 

seed viability (Sirois, 2000; Roland et al., 2014; Brown et al., 2018). Pollen limitations 

driven by low genetic diversity and/or low abundance in parent tree populations can 

produce empty, non-viable seeds (Kroiss et al., 2015; Brown et al., 2018), while viable 

seeds produced may be removed from the population through pre-dispersal predation 

(Jameson et al., 2015; Kambo & Danby, 2017). Treeline populations composed of 

krummholz individuals (i.e., stunted, clonal trees) likely produce lower viability seed due 

to decreased genetic diversity (Viktora et al., 2011); however, these populations might 

experience lower levels of pre-dispersal seed predation due to decreased stand densities 

(Gärtner et al., 2011). If pre-dispersal limitations are sufficiently strong, seed-mediated 

treeline advance will be dependent on the dispersal of viable seed from within-range 

populations and subsequent post-dispersal processes (Chambers & MacMahon, 1994; 

Clark et al., 1999), discussed below.  

Post-dispersal processes may have additive effects on seed limitations, further 

constraining recruitment at treeline. Post-dispersal seed predation has long been 

considered an important process in regulating plant demographics (e.g., Hulme, 1998) 

and experimental evidence suggests that predation at temperate and boreal treelines can 

be significantly limiting (Munier et al., 2010; Wheeler et al., 2011; Brown & Vellend, 

2014; Kambo & Danby, 2017). Substrate, the groundcover on which a seed falls, can 

greatly influence germination success of tree species and unsuitable substrate may impede 

forest range expansion (LePage et al., 2000; Charron & Greene, 2002; Dufour Tremblay 
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& Boudreau, 2011; Wheeler et al., 2011; Brown et al., 2015). Moreover, high abundance 

of allelopathic shrub species, particularly ericaceous shrubs, at alpine treelines have been 

found to constrain tree recruitment (Bråthen et al., 2010; Dufour-Tremblay et al., 2012b). 

Allelopathic compounds are leached from leaves following rainfall or spring snow melt 

and are absorbed into seeds during imbibition, a crucial first stage of germination 

(Chiapusio et al., 1997). Substrate composition, vascular plant community composition, 

and the magnitude of post-dispersal seed predation likely have interactive effects. Given 

these complex factors, it is not surprising that recruitment at treeline has been compared 

to a very challenging hurdle race (Holtmeier, 2009); to successfully recruit, a seed must 

first make it through the series of biotic filters and arrive where local environmental 

conditions meet the requirements for germination and establishment. 

Despite the recognized importance of biotic interactions as drivers of species 

geographic distributions in the literature (Hille Ris Lambers et al., 2013) and the 

understanding that early-life stages can disproportionately influence the abundance and 

distribution of species (Harper, 1977), there remains uncertainty surrounding the role of 

biotic interactions in mitigating tree species responses to climate change at their 

distributional limit. To accurately predict whether climate induced treeline advance will 

occur, we must first understand how biotic interactions control recruitment at current 

range limits. Experimental and observational studies across environmental gradients that 

transition from within range to at, or beyond, range limits are the first steps to examining 

the magnitude and direction of biotic interactions at range limits and in turn how biotic 
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interactions may alter geographic response to climate change (Hille Ris Lambers et al., 

2013; Hargreaves et al., 2014).  

Individuals may be removed from a population at any life stage as a cohort of 

potentially germinable seeds transitions from parent plants to established seedlings 

(Figure 2.1). The relative importance of seed and establishment limitations on recruitment 

are often examined through seed addition experiments; however, seed addition 

experiments are limited in the ability to examine processes that drive recruitment 

limitations (Clark et al., 2007). As many processes can result in seed mortality, ideally 

seed addition experiments should be paired with studies that examine specific 

mechanisms (Clark et al., 2007). To quantify the magnitude of each potential biotic 

interaction on black spruce (Picea mariana [Mill.] B.S.P.) and tamarack (Larix laricina 

[Du Roi] K. Koch) recruitment at alpine treeline, we conducted a series of observational 

and experimental studies along an altitudinal gradient. Specifically, we examined whether 

predicted biotic interactions drive: (1) seed limitations, and (2) establishment limitations, 

and how the magnitude of these limitations differ between forest and treeline populations. 

Compared to forest populations, we expected the treeline population to: (i) produce fewer 

seeds of lower viability, (ii) experience greater levels of post-dispersal seed predation, in 

particular by vertebrate seed predators, and (iii) have less germination and seedling 

establishment, driven by competitive interactions with lichen substrate and ericaceous 

shrubs.  
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Figure 2.1 Predicted biotic filters to recruitment at altitudinal treeline. We conducted a 

series of observational and experimental studies to examine the bolded biotic filters.  

2.2 Methods 

The study took place on a south-west facing slope on the Baie Verte Penisula in 

central Newfoundland, Canada (49⁰35.2’ N, 56⁰13.7’ W). This ecoregion has the most 

continental climate of the island, with relatively warm summers and cold winters 

(Damman, 1983), experiencing a mean annual temperature of approximately 3°C (2007-

2017; Middle Arm weather station, Environment Canada). Precipitation mirrors island 

wide averages, with approximately 1200 mm total annual precipitation and about 350 cm 

falling as snow (2007-2017; Middle Arm weather station, Environment Canada). The 

central Newfoundland ecoregion is the most distinctly boreal assemblage on the island 

(Damman, 1983). With increasing elevation, the study slope’s vegetation transitions from 

a closed canopy black spruce forest to an ericaceous heath with isolated patches of 
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stunted black spruce and tamarack. We established two study sites, the forest site at low 

elevation within the study species range (~130 m) and the treeline site at the study species 

range limits (~240 m). The forest site understory is composed of sparse vascular plant 

cover (predominately Cornus canadensis and Clintonia borealis) and is dominated by 

feathermoss (predominately Pleurozium schreberi and lesser so Hylocomium splendens). 

The treeline site is composed of distinct islands of stunted black spruce interspersed in 

open areas dominated by woody, ericaceaous shrubs (predominately Kalmia angustifolia 

and lesser so Rhododendron groenlandicum and Vaccinium angustifolium). Caribou 

lichens (predominately Cladonia stellaris) dominate the treeline understory, while 

isolated patches of mosses (predominately Pleurozium schreberi) occur at the base of 

black spruce and tamarack individuals.   

 2.2.1 Pre-dispersal seed production and viability 

Maturing black spruce and tamarack cones were harvested at the end of the 2017 

growing season (Sept 19-21st). Cones were collected from low and high elevation, in the 

general proximity of the established forest and treeline study sites. Black spruce cones 

were also collected at timberline, the uppermost limit of the forest population, defined as 

the area where trees are still in arborescent form but are less dense than closed canopy 

forest. At the treeline site, we harvested all the black spruce cones within 10 tree islands 

(aggregations of stunted and deformed, shrub-form trees; Harsch & Bader, 2011) and 

harvested on average 48 cones each from 10 tamarack individuals. At the forest site, 

where black spruce individuals were too tall to harvest cones directly, we collected 

individual cones and cone-bearing twigs recently clipped by red squirrels (Tamiasciurus 
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hudsonicus), which were abundant on the forest floor. No cones collected from the forest 

floor showed signs of red squirrel predation. Low elevation tamarack cones were 

collected from five individuals growing in an open, wet meadow approximately 75 m 

away from the forest site. At timberline, we harvested cones from 10 black spruce 

individuals; tamarack was absent from this location. Cones were collected into paper 

bags, brought back to the laboratory, and stored at 20°C until seed extraction.   

In the laboratory, seed extraction from cones followed established standard 

protocols (black spruce protocol modified from Safford, 1974; Leadem, 1997; and Green, 

pers. comm.; tamarack protocol modified from Pauley, 1965; Rudolf, 1974). Cones were 

soaked in deionized water for approximately 24 hours and let dry at room temperature for 

24-72 hours. Black spruce cones were then dried at 60°C for 16 hours, while tamarack 

cones were dried at 50°C for 8 hours. Following drying, cones were tumbled in a sieve 

shaker for 10 minutes to separate extracted seed from woody cone material. The 

extraction cycle was repeated three times for black spruce and twice for tamarack. 

Extracted seeds were grouped by individual.  

Extracted seeds were counted and seed production was calculated per individual 

as the number of seeds extracted divided by the number of cones harvested. To determine 

the viability of extracted seed, we conducted a 28-day laboratory germination trial where 

25 seeds harvested from each individual were placed on moist filter paper in a 9 cm Petri 

dish and watered with deionized water every second day. If fewer than 25 seeds were 

extracted from an individual, we used all the seeds that were extracted. Seeds experienced 

16 hours of light per day (6400 K full-spectrum, T5 lamp with omni-max reflector; Jump 



32 

 

Start, Hydrofarm, Petaluma, CA, USA), which mimics sunlight duration at peak growing 

season in the study area, at room temperature (~20°C). Seeds were considered germinated 

if the length of their radicle was at least four times that of the seed coat (Leadem et al., 

1997) and seed viability was calculated as the total number of germinants divided by the 

number of seeds. To quantify pre-dispersal damage, 25 seeds from each individual were 

visually inspected under a dissecting microscope for holes in the seed coat and 

longitudinally sectioned to assess embryo condition (Figure 2.2). When fewer than 25 

seeds were extracted, we visually inspected the seeds that failed to germinate in the seed 

viability germination trial.  

 

Figure 2.2 Examples of pre-dispersal damage observed for tamarack seeds: a) no 

damage, b) aborted embryo, c) pre-dispersal insect predation.    

2.2.2 Field germination experiment 

Experimental plots were established in October 2016; seed availability and 

substrate structure were manipulated following the basic framework of the Global 

Treeline Range Expansion Experiment (G-TREE; Brown et al., 2013) (2 species, +/0 seed 
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addition, +/0 substrate scarification) at both forest and treeline sites. Within each site 

(treeline and forest), plots (0.5 x 0.5 m) were organized into blocks of six, and blocks 

were systematically placed in areas of similar slope. At the treeline site, where facilitation 

is predicted to play an important role (Choler et al., 2001, Bruno et al., 2003), blocks 

were established in close proximity to and on the leeward side of tree islands, and paired 

blocks were established in open areas, presumably void of tree island facilitation (Figure 

2.3). Each of the treatments was replicated 10 times for a total of 180 plots.  

 

Figure 2.3 Schematic diagram of the field germination experiment. a) Two sites, forest 

and treeline, were established along the study slope. Within each site, plots (0.5 m2) were 

organized into blocks of six, one plot per treatment (2 species, +/0 seed addition, +/0 

substrate scarification). At the treeline site, b) facilitated blocks (established on the 

leeward side of tree islands, presumed facilitators; n=10) were paired with c) open blocks 

(established in open areas, presumably void of facilitation; n=10) and at the forest sites, d) 

forest blocks were established (n=10). Black boxes were overlaid on photos of each block 

type to outline plots visible in each picture.  

To test whether seed availability is limiting, we experimentally sowed 

approximately 250 (0.376±0.0001 g) P. mariana seeds or exactly 200 L. laricina seeds in 

plots assigned the seeding treatments. All seeds were obtained from the Department of 

Fisheries, Forestry and Agrifoods’ Wooddale Provincial Tree Nursery, where they were 
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stored between -8 to -10°C. Picea mariana seed (>95% viable) was collected from the 

Springdale provenance, approximately 12 km southwest of the study site, in 1988 and L. 

laricina seed (74% viable) was collected from the Wooddale Tree Nursery lot, whose 

parent population was composed of individuals from across the island, in 2015. Seed 

viability was determined in a 28-day laboratory germination trial following the procedure 

described above, where 50 seeds were placed on moist filter paper in each 9 cm Petri 

dish.  

To assess substrate suitability under field conditions, we scarified half of the 

experimental plots using a hand cultivator. This process removed all surface plant litter 

and living surface cover of mosses and lichens, while leaving vascular plants intact. To 

determine biomass removed, scarified substrate from a subset of plots (n=15 per site) was 

dried at 60⁰C for two days, and weighed. 

Plots were surveyed monthly for emergent seedlings from May to September 

2017. Due to minimal emergence across the field experiment, with only 12 germinants (5 

black spruce and 7 tamarack; all in plots with scarified substrate) observed, we were 

unable to analyze emergence and seedling establishment. However, incidental 

observations of ant activity and seed predation during seedling emergence surveys led to 

our formation of further hypotheses explaining biotic constraints on treeline range 

expansion at the study site, described below.     

2.2.3 Post-dispersal seed predation experiment 

Driven by the low emergence in the field germination trial, we examined the role 

of post-dispersal seed predation in limiting recruitment by establishing a post-dispersal 
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seed predation experiment (experimental design adapted from Cȏté et al., 2005). 

Treatments were installed at both the forest and treeline site and replicated at each of the 

established field germination experiment blocks (+/0 cage, +/0 scarified, 2 species; n=10). 

Cylindrical cages, where the top was pinched and secured shut (galvanized hardware 0.64 

cm mesh cloth, 15 cm diameter x 30 cm height; Figure 2.4), were used to exclude birds 

and small mammals. Cage bottoms were buried 5 cm and secured in the ground with 10 

cm long staples. Seed cups were constructed out of 5 cm diameter PVC pipe cut into 4 cm 

sections. Two layers of 1 mm mesh tulle was glued to the bottom of each section to create 

a cup that was permeable to water but prevented the loss of seeds. Two seed cups, one 

with black spruce seeds and one with tamarack seeds, were installed within each cage to 

quantify invertebrate seed predation. Two uncaged seed cups were placed in close 

proximity (between 25 and 50 cm) to quantify total seed predation (small mammal, birds, 

and invertebrate predation; Figure 2.4). To test how substrate composition influences 

post-dispersal seed predation, we installed seed cups and cages on both undisturbed and 

scarified substrates. Seed cups were filled with the local substrate; undisturbed treatments 

were filled with feathermoss at the forest site and caribou lichen at the treeline site, and 

scarified treatments were filled with local organic soil. Five seeds were placed in each 

seed cup, black spruce or tamarack respectively, and left in situ for approximately one 

month (Aug 13th to Sept 20th, 2017). At the end of the experimentation period, the entire 

contents of each seed cup were collected and seeds were removed from the substrate by 

hand in the lab. Predation pressure was calculated using the formula (1 – (number of 

seeds relocated in the laboratory/ 5)) (Cȏté et al., 2005).  
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Figure 2.4 Post-dispersal seed predation experimental design, a) two seed cups, one with 

black spruce seeds and one with tamarack seeds, were placed inside each seed predator 

exclosure cage and two seed cups were placed in close proximity to, but outside predator 

exclosure cages. Seed cups and cages were installed on both b) intact substrate and c) 

scarified substrate. Treatments were installed at both the forest and treeline site (+/0 cage, 

+/0 scarified, 2 species; n=10); the treeline site is pictured here. 

2.2.4 Substrate suitability laboratory trial  

To further investigate substrate suitability, the original G-TREE seeding 

experiment was paired with a laboratory germination trial that examined germination 

ability, establishment, and survival of black spruce and tamarack across substrates 

collected from the low and high elevation sites of the seeding experiment. A laboratory 

germination trial allowed us to compare substrate suitability across substrate types while 

controlling for factors that co-vary along the elevational gradient. Moreover, it allowed 

for more intensive monitoring of germinant establishment than in the field. 
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Feathermoss, predominantly Pleurozium schreberi, was collected from the forest 

site and fruticose caribou lichen (predominantly Cladonia stellaris) was collected from 

the treeline site. We transplanted substrate into aluminum trays (20.3 x 9.8 x 6.3 cm), 

modified to have drainage holes, on top of a thin layer of dampened commercial peat 

(Figure 2.5). Control trays were completely filled with peat (Figure 2.5), which mimics 

substrate in the scarified plots and is a commonly used substrate in siliviculture. We 

randomly sowed 50 seeds of either black spruce or tamarack per tray (n=27 per species). 

Seeds experienced 16 hours of light per day (6400 K full-spectrum T5 lamp with omni-

max reflector; Jump Start, Hydrofarm, Petaluma, CA, USA), mimicking sunlight duration 

at peak growing season, room temperature (~20⁰C), and were sprayed with water every 

day for the first 28 days. The arrangement of trays was changed every two to three days, 

to avoid any spatial biases.  

Following the first germination event, trays were surveyed for germinants every 

three days for 28 days. As with the petri dish germination trials, seeds were considered 

germinated when their radicle was four times the length of the seed coat (Leadem et al., 

1997). Seedlings were considered alive if they had at least one green needle (Renard et 

al., 2016).  

Germination index was calculated as the number of germinants observed divided 

by the product of the number of seeds sown and the proportion of seed that was viable, 

which standardizes the number of germinants observed by seed viability and allows for 

comparisons across species.  
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Figure 2.5 The three substrates used in the laboratory substrate germination experiment, 

from right to left: moss (predominately P. schreberi), lichen (predominately C. stellaris), 

and control (commercial peat). Each tray was sown with either 50 black spruce or 

tamarack seeds (n=27 per species) and following the first germination event, trays were 

surveyed for germinates every 3 days for 28 days.  

2.2.5 Kalmia-biotic community laboratory trial  

Kalmia angustifolia has long been understood to interfere with black spruce 

establishment and growth; although the exact mechanism(s) of interference is still 

debated, there is evidence suggesting allelopathic effects on seedling establishment 

(Mallik, 2003). We hypothesized that the high abundance of Kalmia at the treeline site 

may have contributed to the low emergence observed from the field germination 

experiment.  

Allelopathic competition by Kalmia is difficult to quantify in the field due to 

multiple, interacting competitive effects between shrubs and seedlings (Mallik, 2008). To 

examine potential allelopathic effects of Kalmia on black spruce and tamarack 

germination, we conducted a laboratory germination trial using Kalmia and soil leachates. 

Mature, living Kalmia leaves were collected from several individuals across the treeline 
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site, and organic soil was collected from three distinct locations from each of the forest 

and treeline sites, at the end of the 2017 growing season (Sept 21st) and transported to the 

lab. Organic soil samples were homogenized at site level with large roots and living plant 

material removed, and frozen until used. To produce leachate for the experiment, 5 g of 

Kalmia leaves, 10 g of treeline site organic soil, and 10 g of forest site organic soil were 

each mixed with 250 mL deionized water and allowed to sit for 24 hours, four hours of 

which the slurries were agitated at low speed using an orbital shaker. Slurries were 

filtered through Whattman No. 1 filter paper and were kept refrigerated at 6°C (leachate 

protocol adapted from Mallik, 1987).    

Germination capacity of black spruce and tamarack under the leachates was 

determined in a 28-day laboratory germination trial under the laboratory conditions used 

in all previous trials, described above. Each petri dish contained 25 seeds on filter paper 

moistened with one of the three leachates or deionized water used as a control (n=10 

dishes per treatment; Figure 2.6). Each dish was moistened every second day with the 

assigned treatment. Petri dishes were surveyed every two days and number of germinants 

were recorded. At the end of the trial period, germinants were dried for at 60°C for 48 

hours and weighed.  
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Figure 2.6 The Kalmia-biotic community germination trial. Each petri dish contained 

either 25 black spruce or tamarack seeds on moistened filter paper, one of the three 

leachates or deionized water used as a control (n=10 per treatment). Petri dishes were 

moistened every second day with the assigned treatment. The petri dishes were the same 

across all treatments; however, the Kalmia leaf leachate stained the filter paper yellow 

and the petri dishes that appear yellow were those that were watered with Kalmia leaf 

leachate.  

2.2.6 Statistical analyses  

All statistical analyses were performed using R version 3.3.1 (R Core Team, 2016) 

via RStudio version 1.1.149 (RStudio Team, 2016). We used the “glmmTMB” package 

for beta distributed and Poisson distributed generalized linear mixed models (Brooks et 

al., 2017).  

We used generalized linear models to analyze the response of (i) black spruce and 

tamarack seed production (Poisson distribution for count data), (ii) black spruce and 

tamarack seed viability (binomial distribution), and (iii) black spruce and tamarack pre-

dispersal damage (binomial distribution) between elevational sites. Seed viability and pre-

dispersal damage models assumed binomial distribution as the response variables are 

proportional data (e.g., number of seeds germinated divided by the total number of seeds 

sown; Zuur et al., 2009).  
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To assess site, cage, and substrate effects on post-dispersal black spruce and 

tamarack seed predation in our field experiment, we used generalized linear mixed 

models with a beta distribution and block included as a random effect. Beta distributions 

are appropriate when proportional data fail to meet the assumption of independence 

(Ospina & Ferrari, 2010). Here, we assume that if one deployed seed was consumed it 

was more likely another seed deployed in the same seed cup would be consumed, and 

thus each seed could not be assumed to have an independent response to our treatments.  

To assess substrate suitability for black spruce and tamarack emergence in our 

laboratory trial, we used generalized linear models, to analyze how (i) time to first black 

spruce and tamarack germination event (normal distribution) and (ii) black spruce and 

tamarack germination odds (binomial distribution for proportion data) varied between 

substrates (lichen, moss, and peat). Likewise, we used generalized linear models to 

analyze how (i) time to first black spruce and tamarack germination event (normal 

distribution) and (ii) black spruce and tamarack germination odds (binomial distribution 

for proportion data) responded to the leachate treatments. We assessed model fit for all 

models using residual diagnostics (Zuur et al., 2009). 

2.3 Results 

2.3.1 Pre-dispersal seed production and viability 

 Individuals of both species produced fewer seeds per cone at the treeline site 

compared to individuals at the forest site; black spruce individuals produced on average 

4.5 times fewer seeds per cone, while tamarack individuals produced on average 7 times 

fewer seeds per cone at treeline compared to within the forest (Figure 2.7; Table 2.1). 
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Black spruce seed production (i.e., number of seeds per cone) did not vary between 

individuals at the forest site and those at timberline, both producing on average roughly 

39 seeds per cone, although the seeds produced at the forest site had greater viability 

(73.2 ± 9.25% viable compared to 64.0 ± 24.4% viable respectively; Figure 2.7).  Across 

the elevation gradient, black spruce seed viability decreased with increasing elevation, 

where seeds produced at treeline were the least viable (50.5 ± 22.8%; Figure 2.7). No 

evidence of pre-dispersal seed predation was observed and non-viable seeds were solely 

caused by embryo abortion regardless of site. Tamarack seed viability was low across 

both forest and treeline sites, where on average only around 1 out of every 20 seeds 

produced germinated (7.20 ± 3.44% viable at the forest site and 4.19 ± 1.34% viable at 

treeline; Figure 2.7). The majority of non-viable tamarack seeds had aborted embryos 

(83.2 ± 5.99% aborted at the forest site and 94.7 ± 2.17% aborted at treeline), although 

low levels of pre-dispersal seed predation did occur (10.7 ± 3.79% seeds consumed at 

forest site and 5.27 ± 2.17% seeds consumed at treeline; Figure 2.7).  



43 

 

Table 2.1 Summary of results from generalized linear models on black spruce and 

tamarack seed production, seed viability, and pre-dispersal seed damage (degrees of 

freedom (df)=29 for black spruce and df=24 for tamarack). Black spruce and tamarack 

cones were harvested along an elevational gradient at the forest site and the treeline site, 

in addition black spruce cones were harvested from timberline (n=10, except tamarack at 

forest site where n=5). The sites were used as predictor variables and the intercept 

represents the forest site. Seed production models assume a Poisson distribution and the 

seed viability and seed damage models assume a binomial distribution. Values in bold 

indicate a significance difference (α≤0.05). 

 Parameter Estimate SE z-Value p-Value 

Seed Production     

      Black Spruce     

 Intercept 39.3538 3.4984 11.249 <0.0001 

 Timberline  0.1387 4.9476 0.028 0.9780 

 Treeline -

30.7869 
4.9476 -6.223 <0.0001 

      Tamarack     

 Intercept 5.8104 0.8201 7.085 <0.0001 

Timberline  - - - - 

 Treeline -4.9915 1.0044 -4.97 0.00026 

Seed Viability     

      Black Spruce     

 Intercept 1.0048 0.1428 7.037 <0.0001 

 Timberline -0.4294 0.1943 -2.21 0.0271 

 Treeline -0.9268 0.1942 -4.771 <0.0001 

      Tamarack     

 Intercept -2.5564 0.346 -7.388 <0.0001 

 Timberline  - - - - 

 Treeline -0.2768 0.475 -0.583 0.5600 
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Figure 2.7 Mean number of seeds produced per cone across sites across the altitudinal 

range limits of a) black spruce and b) tamarack. No tamarack individuals occurred at 

timberline. The number of viable seeds per cone was calculated using seed viability 

determined in the lab germination trial. The number of aborted seeds and pre-dispersal 

predation per cone was calculated from the proportions determined through visual 

inspection.  Please note y-axes are of different scale.  

2.3.2 Post-dispersal seed predation experiment 

  Site, cage treatment, and scarification treatment all had significant effects on the 

predation pressure (the proportion of seeds removed from seed cups) of black spruce 

seeds (Figure 2.8; Table 2.2). Overall, the cage treatment had the largest effect, where the 

proportion of removed (presumed consumed) black spruce seeds was consistently lower 

under cages. Independent of whether they were within the forest site or at treeline, all 

uncaged seeds were effectively consumed (i.e., missing and presumed predated upon). 

Site had a weak effect on black spruce seed predation, where marginally fewer seeds were 

consumed at treeline. In general, scarification had a negative effect on black spruce seed 

predation, although there were significant interactions between site and scarification, and 

cage and scarification. Scarification at treeline switched the sign of the model estimate 
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from positive to negative, meaning that black spruce seeds on scarified substrate at 

treeline were more likely to be consumed, but black spruce seeds on scarified substrate in 

the forest site were less likely to be consumed. Similarly, the interaction between cage 

and scarification switched the sign of the model estimate to negative, meaning that a 

lower proportion of caged black spruce seeds on unscarified substrate were consumed 

than those on scarified substrate. This effect is likely driven by the treeline site, where on 

average 7.0%±14.9% of caged black spruce seeds on unscarified substrate were removed 

compared to 67.0% ± 22.7% of caged black spruce seeds on scarified substrate. In 

contrast to black spruce, the proportion of consumed tamarack seeds solely responded to 

the cage treatment, where tamarack seeds under cages were significantly less likely to be 

consumed; all tamarack seeds not protected by a cage were effectively consumed (Figure 

2.8; Table 2.2).  
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Table 2.2 Summary of results from the generalized linear mixed models of predation 

pressure on black spruce and tamarack seeds in the post-dispersal seed predation 

experiment. Experimental sites were located at two elevational sites, the forest site and at 

treeline. Both models assume binomial distribution and include block as a random effect. 

Values in bold indicate a significance difference (α≤0.05). 

 Parameter Estimate SE z-Value p-Value 

Black Spruce     

 Intercept -3.091 0.4555 -6.785 <0.0001 

 Caged 4.050 0.5755 7.037 <0.0001 

 Scarified 1.144 0.4590 2.492 0.0127 

 Treeline 1.036 0.4392 2.358 0.0184 

 Caged:Scarified -1.782 0.4518 -3.943 <0.0001 

 Scarified:Treeline -1.692 0.5035 -3.361 0.0008 

 Caged:Treeline -0.117 0.4810 -0.243 0.8084 

Tamarack      

 Intercept -2.5395 0.3719 -6.829 <0.0001 

 Caged 4.3667 0.5257 8.307 <0.0001 

 Scarified 0.2369 0.4049 0.585 0.559 

 Treeline 0.2052 0.3777 0.543 0.587 

 Caged:Scarified -0.4205 0.4132 -1.018 0.309 

 Scarified:Treeline -0.4129 0.4359 -0.947 0.344 

 Caged:Treeline -0.3007 0.4361 -0.690 0.490 
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Figure 2.8 Odds of post-dispersal seed predation (mean ± SE) in cages (cross-hatching) and control plots across substrate 

treatment and elevation.   
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2.3.3 Substrate suitability laboratory trial  

Germination on lichen was both delayed and less abundant than on moss or 

control substrates (Figure 2.9; Table 2.3). Lichen had the greatest significant effect on 

time until first germination event for both black spruce and tamarack, where it took over 

two times longer for black spruce and nearly two times longer for tamarack to emerge on 

lichen than on the control substrate. Moss also slowed the time it took for the first 

germination event for both black spruce and tamarack relative to the control substrate, but 

had a smaller effect than lichen. Similarly, lichen had the greatest effect on the odds of 

germination where the proportion of germinated black spruce seeds on lichen was very 

low; on average only 6.32% ± 3.99% of black spruce seeds germinated and 1.8% ± 1.91% 

of tamarack seeds germinated (compared to 82.4% ± 9.15% and 52.5% ± 15.8% 

germinated seeds on control respectively).  Moss also significantly reduced black spruce 

and tamarack germination odds but had less of an effect than lichen, where on average 

25.3% ± 10.3% of black seeds germinated and 9.00% ± 9.36% of tamarack seeds 

germinated. 
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Table 2.3 Summary of results from generalized linear models of black spruce and 

tamarack date of 1st germination event and germination odds from the substrate 

germination trial (df=26). Moss was collected from the forest site, lichen was collected 

from the treeline site, and peat was used as a control. Substrates were used as predictor 

variables and the intercept represents the control substrate. The date of 1st germination 

models assume normal distribution and the test statistic is a t-value, while the germination 

odds models assume binomial distribution and the test statistics is the z-value. Values in 

bold indicate a significance difference (α≤0.05). 

 Parameter Estimate SE Test Statistic p-Value 

Date of 1st Germination    

      Black Spruce     

 Intercept 7.000 0.831 8.426 <0.0001 

 Moss   3.000 1.175 2.553 0.0178 

 Lichen 10.125 1.211 8.360 <0.0001 

      Tamarack     

 Intercept 11.333 1.342 8.445 <0.0001 

Moss 6.167 1.956 3.152 0.0053 

 Lichen 10.667 2.246 4.750 0.0001 

Germination Odds    

      Black Spruce     

 Intercept 1.543 0.125 12.370 <0.0001 

 Moss -2.627 0.166 -15.840 <0.0001 

 Lichen -4.239 0.232 -18.300 <0.0001 

      Tamarack     

 Intercept 0.102 0.110 0.931 0.3520 

 Moss -2.415 0.221 -10.945 <0.0001 

 Lichen  -4.100 0.426 -9.618 <0.0001 
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Figure 2.9 Germination index, calculated as the number of germinates observed divided by the product of the number of seeds 

sown and seed viability, (mean ± SE) of a) black spruce and b) tamarack across the three substrate types (control- commercial 

peat, feathermoss, and caribou lichen) over the duration of the laboratory substrate germination trial.  



51 

 

2.3.4 Kalmia-biotic community laboratory trial  

 Leachate treatments had minimal to no detectable effects on the timing and odds 

of black spruce and tamarack germination (Table 2.4). The timing of the first black spruce 

germination event was the same across all treatments and leachate treatments had no 

effect on black spruce germination odds. The Kalmia leachate significantly delayed the 

date of the first tamarack germination event, although the magnitude of this effect was 

minimal (delay = 1 day). The organic treeline soil leachate had a marginally significant 

effect on date of first tamarack germination event, but as residuals deviated slightly this 

effect is likely not statistically meaningful. The organic forest soil leachate had a 

significant, positive effect on tamarack germination odds, although the strength of this 

effect was small as the odds of germination increased by approximately 1.1 times, and 

therefore is likely not biologically significant.  
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Table 2.4 Summary of results from generalized linear models of black spruce and 

tamarack date of 1st germination event and germination odds from the leachate 

germination trial (df=40). Leachates were made using organic soil collected from the 

forest and treeline sites, fresh Kalmia leaves from the treeline site, and deionized water 

was used as a control. Leachates were used as predictor variables and the intercept 

represents the deionized water. The date of 1st germination model assume normal 

distribution and the test statistic is a t-value, while the germination odds models assume 

binomial distribution and the test statistics is the z-value. The date of 1st germination 

model failed to meet model assumptions and should be interpreted with caution. Values in 

bold indicate a significance difference (α≤0.05). 

 Parameter Estimate SE Test Statistic p-Value 

Date of 1st Germination    

    Tamarack     

 Intercept 7.000 0.2357 29.700 <0.0001 

Organic soilF 0.600 0.3333 1.800 0.0803 

 Organic soilT 0.800 0.3333 2.400 0.0217 

 Kalmia leavesT 1.000 0.3333 3.000 0.0049 

Germination Odds    

    Black Spruce     

 Intercept 4.119 0.5040 8.172 <0.0001 

 Organic soilF 0.701 0.8707 0.805 0.4210 

 Organic soilT 1.398 1.1216 1.247 0.2120 

 Kalmia leavesT 0.701 0.8707 0.805 0.4210 

    Tamarack     

 Intercept 0.925 0.1403 6.593 <0.0001 

 Organic soilF 0.592 0.2163 2.736 0.0062 

 Organic soilT 0.020 0.1988 0.099 0.9208 

 Kalmia leavesT 0.250 0.2046 1.222 0.2217 

 

2.4 Discussion 

Recruitment of black spruce and tamarack at alpine treeline is greatly constrained 

by biotic filters occurring across multiple life stages, as seeds transition from parent 

plants to established seedlings (Figure 2.10). Here, we provide empirical evidence that 

both tree species produced few seeds per cone at treeline and that those seeds produced 

were less viable, suggesting that recruitment at treeline is primarily seed limited. If such 

severe seed limitations were overcome, we have shown that subsequent establishment 
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limitations strongly inhibit recruitment. First, seeds experience intense predation pressure, 

as we found that effectively all seeds were consumed by post-dispersal seed predators. 

Surviving seeds must then germinate and persist on the substrate they have dispersed to, 

yet we have empirically shown that the odds are against them. Lichen, the substrate on 

which more seeds escaped predation at the treeline population, was also the substrate on 

which germination was both delayed and less abundant.   
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Figure 2.10 Flow diagram illustrating the proportion of individuals lost for every 

1,000,000 seeds produced by the forest population at each measured biotic filter for black 

spruce a) forest population and b) treeline population and tamarack c) forest population 

and d) treeline population. Number of seeds produced at treeline compared to the forest 

represents the proportion of seeds produced by the treeline populations compared to the 

forest populations, as determined by the observational seed production study. All black 

spruce individuals at the forest population were lost to post-dispersal seed predation, so 

flow diagram assumes that biotic filter is overcome and proportion of individuals lost to 

substrate constraints is calculated from the number of viable seeds.    
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2.4.1 Pre-dispersal processes: seed limitations at treeline 

At the most fundamental level, seed production is controlled by climate, and 

studies have attributed unfavourable climatic conditions at treeline to decreased seed 

production and viability (Sirois, 2000; Meunier et al., 2007; Krebs et al., 2012; Roland et 

al., 2014; Brown et al., 2018  but see Kroiss & Hille Ris Lambers, 2015). We found that 

production of viable black spruce and tamarack seed was lower at treeline; meaning, 

recruitment at range limits is currently seed limited, similar to other coniferous range 

edge populations (e.g., Sirois, 2000; Meunier et al., 2007; Viglas et al., 2013; Jameson et 

al., 2015; Brown et al., 2018). Seed production at treeline is expected to increase with the 

alleviation of climatic constraints as longer growing seasons will likely result in increased 

resource accumulation and, in turn, increased resource allocation to reproduction (Krebs 

et al., 2012). We anticipate that landscape-level seed production at treeline will remain 

seed limited in the short term, despite expected increases in seed production, because of 

lower stand densities at treeline where there are fewer reproductive individuals. Stand 

densification will need to occur for landscape-level seed production at treeline to equal 

that within range limits (Kroiss & Hillrislambers, 2015).  

As expected, black spruce seed produced by the treeline population was of lower 

viability than seed produced from the within range, forest population. Pollen limitations, 

via failure to fertilize or self-pollination, are major drivers of low seed viability 

(Sorensen, 1969; Owens & Blake, 1985; Owens et al., 2005) and have been found to 

operate at range edge populations (Elliott, 1979; Sirois, 2000). Black spruce is 

anemophilous and successful wind pollination has been linked to conspecific density and 
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plant height (Friedman & Barrett, 2009), characteristics that both decline at treeline. No 

seeds were completely absent of an embryo suggesting that black spruce individuals at 

treeline were successfully fertilized. Our findings align with previous research on eastern 

North American alpine treelines (Jameson et al., 2015), where reproductive capacity of 

boreal conifers was hypothesized to not be pollen limited as the distances between forest 

and treeline populations were within pollen dispersal distances (as quantified by 

O’Connell et al., 2007). Similarly, the distance between our forest and treeline 

populations (~290m) were well within the pollen dispersal distance (250-3000m; 

O’Connell et al., 2007). Unlike Jameson et al. (2015), however, we found effectively no 

signs of pre-dispersal black spruce seed predation and found that non-viable seeds were 

driven by embryo abortion. While we cannot determine the causal mechanism for embryo 

abortion, we speculate that an increase in non-viable, aborted seeds at treeline is driven 

by increased self-fertilization. Clonal reproduction of black spruce is common at treeline 

(Payette & Gagnon, 1979; Viktora et al., 2011) and with this increasing genetic 

interrelatedness of individuals the likelihood of self-fertilization (Mimura & Aitken, 

2007). However, decreased seed viability at the treeline population may be driven by, or 

partially driven by, altitudinal climatic constraints; for example, late spring frost can lead 

to embryo abortion (Caron & Powell, 1989).  

Tamarack seed viability was low across both populations, with the majority of 

seeds produced per cone being non-viable. Like black spruce and in alignment with 

Jameson et al. (2015), no tamarack seeds were completely void of an embryo meaning 

that failure to fertilize is not driving low seed viability across the altitudinal gradient. 
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However, in contrast to findings along another eastern North American alpine treeline 

(Jameson et al., 2015), a small proportion of non-viable tamarack seeds were caused by 

pre-dispersal seed predation with the most non-viable seeds containing aborted embryos. 

Low seed viability is common among Larix spp. and is driven by a high rate of embryo 

abortion (Farmer & Reinholt, 1986; Lewandowski et al., 1991). In line with previous 

studies, most of the seeds produced by both populations contained aborted embryos. 

Genetic diversity of tamarack stands have been found to be lower than other boreal 

conifers and self-fertilization has been identified as a leading cause of aborted embryos 

(Knowles et al., 1987). The proportion of non-viable seeds did not vary between 

populations suggesting that both populations experience similar rates of self-fertilization. 

Genetic diversity increases with stand density, therefore self-fertilization decreases with 

stand density (Knowles et al., 1987), and the density of tamarack individuals is low 

across the altitudinal gradient.  

Our results suggest that recruitment at treeline is currently seed limited; however, 

dispersal from source populations at lower elevations may lessen the magnitude of, or 

overcome, seed limitations at treeline (Johnson et al., 2017). We did not quantify seed 

rain but we speculate that dispersal may alleviate black spruce seed limitations. While 

seed rain is, understandably, related to seed production (Kambo & Danby, 2017), our 

black spruce timberline is within the effective dispersal zone of spruce seeds (79 m as 

estimated by Johnston & Smith, 1983; >300m as estimated by Piotti et al., 2009), 

suggesting that dispersal from lower elevations can augment viable seed produced at 

treeline. In contrast, dispersal from the low elevation tamarack population is unlikely to 
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alleviate tamarack seed limitations at treeline as the low elevation population is beyond 

the effective dispersal zone of tamarack seed (60 m as estimated by Johnston, 1975) and 

the majority of seeds produced by the low elevation population were non-viable. 

Moreover, black spruce and tamarack undergo can mast events, years of increased seed 

production, (Johnston, 1990; Sirois, 2000), and seed limitations at treeline might be 

overcome during mast years.   

2.4.2 Post-dispersal processes: cumulative constraints on establishment  

Despite experimentally overcoming seed limitations in the field germination 

experiment, effectively none of the seeds added survived to the seedling stage indicating 

that establishment limitations are of greater relative importance than seed limitations in 

constraining recruitment (Clark et al., 2007). Through complementary empirical tests, we 

demonstrate that multiple post-dispersal processes constrain recruitment in conflicting 

ways. There is an interesting mismatch between substrate that promotes seed retention 

and substrate that is suitable for seed germination and seedling establishment at treeline. 

The complex, three-dimensional characteristic of the lichen mat that results in decreased 

invertebrate black spruce seed predation is a significant barrier to germination and 

seedling establishment. Therefore, disturbance that removes the lichen mat 

simultaneously decreases establishment limitations and increases seed limitations. The 

opposing direction of these filters on black spruce recruitment at treeline highlights how 

multiple factors need to align temporally for geographical range shifts to occur (Kroiss et 

al., 2015; Kambo & Danby, 2017). Treeline advance will likely be dependent on episodic 
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periods of seedling establishment, when conditions align to overcome the multiple filters 

to recruitment (Harsch et al., 2009; Kambo & Danby, 2017). 

Our post-dispersal seed predation experiment results highlight that boreal conifer 

recruitment, across the altitudinal gradient, is greatly constrained by seed predation. We 

found higher levels of post-dispersal seed predation than previous studies (Côté et al., 

2003, 2005; Munier et al., 2010; Wheeler et al., 2011), as effectively all seeds of both 

black spruce and tamarack that were not protected from vertebrates were consumed 

regardless of site or substrate. The large magnitude of seed consumption is likely why 

there was effectively no seedling emergence observed in the initial field germination trial. 

It is important to note that predation pressure will likely differ between seasons, as food 

availability changes (Côté et al., 2003). Here, seeds were disseminated in the fall for the 

field germination trial while the post-dispersal seed predation experiment quantified 

summer seed predation only. However, Côté et al. (2003) found increased predation 

pressure on black spruce seeds in the winter than the summer, suggesting that post-

dispersal seed predation is likely to be a dominant constraint on regeneration over the 

winter following natural seed dispersal in the fall. Masting is a commonly recognized 

mechanism for overcoming seed predator limitations, where regionally high years of seed 

production lowers the percentage of seeds lost to seed predators (Kelly & Sork, 2002). 

Both black spruce and tamarack experience masting (Johnston, 1990; Sirois, 2000) and 

we argue that masting is required to overcome post-dispersal seed predation constraints 

and for successful recruitment at treeline to occur.  
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Most post-dispersal seed predation studies do not differentiate between the 

relative importance of different guilds of seed consumers and the importance of 

invertebrates as post-dispersal seed predators has likely been underestimated (Hulme, 

1998). Here, we assume that any seeds removed from seed cups that were protected by 

cages, which excluded vertebrate seed predators, were consumed by invertebrate seed 

predators (Côté et al., 2005). To the best of our knowledge, only one other study has 

investigated post-dispersal seed predation by invertebrates in North America’s boreal 

forest; in this study Côté et al. (2005) attributed seed consumption to generalist boreal 

ants (Myrmica spp. and Formica spp.) and the ground beetle, Pterostichus adstrictus. We 

found that black spruce seed consumption by invertebrates was dependent on both site 

and scarification treatment, where post-dispersal invertebrate predation pressure was 

lowest on undisturbed substrate, lichen, at treeline and the greatest on disturbed substrate 

at treeline. Although Côté et al. (2005) did not study an altitudinal gradient, they 

similarly observed lowest levels of invertebrate predation on lichen – spruce forest and 

the greatest levels in a non-vegetated, recently burned site, which our substrate 

disturbance treatment mimics. We speculate that the complex three-dimensional physical 

structure characteristic of fruticose lichens (e.g., Cladonia spp.) decreases the probability 

of an invertebrate encountering a seed, as opposed to the relatively two-dimensional 

structure of bare ground. Based on this argument, we expected a similar trend for the 

forest population, as undisturbed moss substrate is more structurally complex than 

disturbed ground; however, we found invertebrate seed consumption was greater on 

undisturbed Pleurozium moss substrate than on the scarified, disturbed bare ground. 

While relatively more complex in structure compared to bare soil, Pleurozium moss is 
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much denser compared to Cladonia lichen substrates, and seeds were observed to stay on 

the surface (Wheeler et al., 2011), likely increasing the likelihood of a seed being 

encountered by a predator. In contrast with black spruce, invertebrate predation of 

tamarack seeds did not differ between substrate treatments at treeline. Tamarack seeds are 

larger than black spruce, and our field observations indicate they did not penetrate the 

lichen mat, preventing its beneficial protection.  

If treeline is establishment limited, seed predation will likely play a minor role in 

constraining recruitment because most seeds will be unable to germinate and become 

established regardless of seed predation; in other words, seeds that are lost to predation 

are doomed anyway (Hulme, 1998; Clark et al., 2007). In agreement with numerous other 

studies, our substrate suitability lab trial clearly demonstrates that substrate composition 

has an effect on establishment success (e.g., LePage et al., 2000; Charron & Greene, 

2002; Dufour Tremblay & Boudreau, 2011; Wheeler et al., 2011; Brown & Vellend, 

2014). Suitability of substrate is a function of its chemical and physical characteristics, 

with particular importance ascribed to: substrate temperature, moisture availability, and 

penetrability (Leadem et al., 1997). Previous work has found conifer establishment is 

reduced on lichen substrates (Charron & Greene, 2002; Dufour Tremblay & Boudreau, 

2011; Wheeler et al., 2011) and as expected, we found that lichen both delayed and 

reduced the abundance of black spruce and tamarack establishment. Black spruce and 

tamarack germination is dependent on consistent soil moisture (Holtmeier, 2009) and the 

poor water-retention capacity of lichen mats may explain low rates of establishment 

(Allen, 1929; Charron & Greene, 2002). Moreover, the porous nature of a thick lichen 
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mat could prevent seedling radicles from reaching the soil, or alternatively if seeds fall 

deep into the lichen mat, emerged seedling may be unable to penetrate the upper layers of 

the substrate (Allen, 1929; Asplund & Wardle, 2016). The decreased establishment 

success on Cladonia lichen compared to Pleurozium moss suggests that recruitment at 

treeline, where lichen substrate dominates, is more establishment limited than the forest.  

Establishment was much greater on our control peat substrate, suggesting that 

recruitment at treeline may be dependent on disturbance that exposes bare soil, 

decreasing establishment limitations. Bare soil has long been recognized as the ideal 

substrate for black spruce and tamarack germination and establishment (Viereck & 

Johnston, 1990; Johnston, 1990) and seeding experiments that have simulated 

disturbances (Munier et al., 2010; Wheeler et al., 2011) or have examined naturally 

occurring disturbances (Dufour Tremblay & Boudreau, 2011) have found increased 

emergence on disturbed substrate compared to intact alpine substrate. Disturbances can 

occur across variety of scales from cryoturbation (Sullivan & Sveinbjörnsson, 2010), to 

caribou trampling (Dufour Tremblay & Boudreau, 2011) and bear digs (Wheeler et al., 

2011), to fires (Brown & Johnstone, 2012; Brown et al., 2015). However, in harsh 

environments such as alpine treeline, the relative importance of facilitative interactions 

can outweigh that of competitive interactions (Choler et al., 2001; Callaway, 2007; 

Bronstein, 2009). Wheeler et al. (2011) found black spruce emergence to be greatest on 

simulated disturbed ground, however Pleurozium moss substrate was found to enhance 

seedling establishment and survival at treeline and suggesting that the physical structure 

of Pleurozium may ameliorate the challenging alpine environment. Moreover, despite 



63 

 

widespread evidence that lichen substrates are unsuitable for conifer establishment, 

Dufour-Tremblay et al. (2012) observed disproportionate numbers of tamarack seedlings 

established on lichens at treeline, suggesting that lichens may lessen establishment 

limitations, potentially via microsite amelioration (e.g., increased levels of humidity; 

Dufour-Tremblay et al., 2012). While seedling establishment associated with the field 

germination experiment was extremely low, all seedlings that were observed occurred in 

scarified plots, we speculate that facilitative effects in the field may not outweigh the 

competitive effects observed in the substrate suitability lab trial.  

Ericaceous shrubs, in particular Kalmia angustifolia, are highly abundant at the 

treeline population (unpublished data) but, contrary to predictions, we found Kalmia and 

soil leachates to have no detectable effect on black spruce and tamarack germination. 

Leachates from other ericaceous shrubs, Empetrum nigrum and Vaccinium uliginosum, 

have been found to decrease black spruce and to a lesser extent tamarack germination 

(Dufour-Tremblay et al., 2012b). Empetrum nigrum and several Vaccinium species occur 

at our treeline population although the lack of response to the high soil leachate suggests 

that they occur at low enough abundance that their negative impacts are negligible. 

However, it is important to note that allelopathy is difficult to quantify in natural 

conditions due to multiple co-occurring plant-plant interactions (Mallik, 2008) and, while 

we used similar methodology to previous studies, experimental leachates likely differ 

from concentrations experienced in situ.  Kalmia has long been recognized to inhibit 

black spruce regeneration (e.g., Mallik, 1987) and following disturbance black spruce 

forests stands in Newfoundland have failed to regenerate, undergoing a state change to 
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Kalmia heath (Mallik, 1995). Our results suggest that competitive exclusion by Kalmia 

does not occur at the seedling emergence stage but the high Kalmia abundance at the 

treeline population may have additive effects on establishment limitations, constraining 

seedling growth and survival at slightly later post-emergence life stages (Mallik, 1987; 

Bradley et al., 1997; Wallstedt et al., 2002; Zeng & Mallik, 2006).  

2.4.3 Conclusions 

We demonstrate, through a series of observational and experimental studies, that 

recruitment at treeline, and thus changes in geographical position of treeline, is 

constrained by a series of biotic filters that likely will override any positive effects 

associated with the alleviation of climatic constraints. Recruitment is firstly seed limited, 

where production of black spruce and tamarack seed was lower at treeline compared to 

the forest population. Black spruce seed viability decreased with increasing elevation and 

recruitment at treeline is likely dependent on dispersal of viable seed from individuals at 

lower elevations. Tamarack was more seed limited with very few viable seeds being 

produced, regardless of altitudinal position. More attention is needed to evaluate the 

details of this filter, such as: population level cone production, dispersal ability, and 

temporal variability in viable seed production. Recruitment both within range and at 

treeline are greatly constrained by post-dispersal seed predation, where effectively all 

black spruce and tamarack seeds were consumed, a constraint that may be overcome by 

masting. Yet, even if a larger proportion of seeds escape predation during a mast year, 

recruitment at treeline will likely not occur because lichen substrate poses as a significant 

barrier to germination and seedling establishment. While bare ground greatly increased 



65 

 

germination and seedling establishment, suggesting that a pulse of recruitment will follow 

a disturbance event, any seed that disperses to bare ground will likely be eaten before it 

can establish. The mismatch between conditions that promote germination and seedling 

establishment and decrease invertebrate post-dispersal seed predation at treeline presents 

an interesting conflict, where disturbance that removes the lichen mat reduces 

establishment limitations while simultaneously increasing seed limitations. Despite the 

high abundance of ericaceous shrubs at treeline, we detected no allelopathic effects on 

black spruce and tamarack initial seedling emergence. Competitive exclusion through 

allelopathy may occur at later life stages than assessed here, and future research should 

examine whether Kalmia heath at treeline negatively affects seedling establishment, 

growth, and survival. We conclude that recruitment at alpine treeline in central 

Newfoundland is simultaneously seed and establishment limited and that changes to 

geographic treeline position are dependent on the temporal alignment of multiple factors. 

Our study compliments previous work that highlights the importance of local to regional 

scale, non-climatic constraints in shaping geographical distribution of treeline and 

reinforces the necessity to better understand the generality of non-climatic constraints in 

prediction global treeline response to a warming climate.   
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Chapter 3: Can established individuals at treeline facilitate seedling survival? 

Abstract 

Facilitation, the interaction of one species altering the environment in a way that enhances 

the fitness of a neighbouring species, has long been considered to be an important factor 

at range limits. Due to their small stature, seedlings can experience microsite conditions 

and facilitation by established conifers at treeline, and this has been identified as a 

potential route for range expansion of boreal trees. To quantify how microclimatic 

conditions change with distance away from established conifers and how microclimate 

and established conifers interact to promote seedling survival, we transplanted black 

spruce and tamarack seedlings along transects leading away from black spruce tree 

islands and tamarack individuals, both presumed facilitators, and in open areas. Island 

treeline advance is equally dependent on increased recruitment and decreased dieback; we 

paired the transplant experiment with an observational study to quantify black spruce tree 

island growth constraints. Despite changes in microclimatic conditions with distance 

away from presumed facilitators and between transect types, there were no trends in black 

spruce and tamarack seedling survival. Seedling survival was high across summer and 

winter (>85%) indicating this life stage is not a bottleneck to recruitment. The 

symmetrical pattern in height across black spruce tree islands suggests that dieback is not 

limiting and tree islands are expanding.    

Keywords: altitudinal treeline, range expansion, biotic interactions, tree islands, 

facilitation, seedling transplants, Picea mariana, Larix laricina  
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3.1 Introduction 

Evidence is mounting that species are not consistently responding to climate 

change at the rate or in the direction predicted by climate factors alone (Hille Ris 

Lambers et al., 2013). Treeline, the ecotone characterized by the transition between forest 

and alpine or arctic ecosystems, is perceived as the thermal limit to tree survival, growth, 

and reproduction and therefore is expected to shift upslope and poleward in response to 

atmospheric warming. However, due to the small-stature of seedlings, it is not 

atmospheric conditions but microsite conditions, controlled in part by surrounding 

vegetation and topography, that are critical drivers of seedling survival and thus a species’ 

distribution (Resler, 2006; Körner, 2016; Renard et al., 2016). The discrepancy between 

the alleviation of global-scale thermal constraints and small-scale microsite conditions 

may explain why there has been no ubiquitous trend in treeline response to atmospheric 

warming to date (Harsch et al., 2009). 

Treeline response to climate change is dependent on the treeline form, i.e., the 

spatial pattern of established individuals at treeline (Harsch et al., 2009; Harsch & Bader, 

2011). Island treelines consist of patches of trees or krummholz, which are deformed, 

multi-stemmed trees, occurring beyond the continuous forest limit and interspersed in a 

matrix of alpine or tundra vegetation (as defined by Harsch & Bader, 2011). Krummholz 

are a common response to exposed environments and have been reported extensively at 

alpine and arctic treelines, particularly at sites described as wind exposed (Harsch & 

Bader, 2011). The formation and persistence of tree islands has long been attributed to 

positive feedback driven by facilitative interactions that modulate the negative effects of 
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exposure (e.g., Marr, 1977; Holtmeier, 1982), where dieback is greater on the windward 

side of tree islands and growth and recruitment is greater on the leeward side (Bekker et 

al., 2009; Harsch & Bader, 2011; Renard et al., 2016). 

Facilitation is defined as an interaction where an established individual 

ameliorates the environment in a way that increases the fitness of a neighbouring 

individual (Bronstein, 2009). For plants, facilitative and competitive interactions are 

inexorably linked as all plants require the same basic resources (Brooker & Callaghan, 

1998). The balance between facilitative and inhibitive effects are often context dependent 

and conditional (Bronstein, 2009). For example, the relative strength of facilitation and 

competition is predicted to vary inversely along environmental stress gradients, with 

positive interactions typically outweighing negative interactions in harsh environments, 

such as alpine ecosystems (Callaway, 2007). Despite findings that support the role 

facilitation plays in forming stable plant communities, little research has focused on the 

role facilitation has on species’ responses to global change impacts (reviewed by Brooker, 

2006), which is surprising given that facilitative interactions have been found to increase 

the occurrence of individuals at their species’ range limits and has been proposed as a 

mechanism for range expansion (Choler et al., 2001; Germino et al., 2002; Bruno et al., 

2003). 

Conifer seedlings at treeline have been found to have non-random spatial 

association, suggesting that amelioration of the environment at microscales will increase 

seedling survival (Resler et al., 2005; Malanson et al., 2007; Kambo & Danby, 2018). 

There is evidence that the occurrence of conifer seedlings at treeline is positively affected 
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by: tree islands (Alftine & Malanson, 2004; Renard et al., 2016), individual krummholz 

(Batllori et al., 2009), topographic features (Resler et al., 2005; Resler, 2006), herb cover 

(Germino et al., 2002; Maher & Germino, 2006), and moss (Wheeler et al., 2011). These 

suitable microsites, or ‘safe sites’, that facilitate recruitment are often attributed to taller 

neighbours that ameliorate the harsh environment by reducing the effects of multiple 

stressors, in particular creating shelter from damaging winds and radiative extremes 

(reviewed by Holtmeier, 2009). Exposure to high winds and radiative extremes have 

cascading effects, altering soil temperature and moisture, snow regime, and soil nutrient 

availability, potentially resulting in seedling desiccation, freezing damage, and 

photodamage (reviewed by Holtmeier, 2009). The compounding effects of multiple 

abiotic stressors support the prediction that the upslope treeline expansion will depend on 

the availability of ‘safe sites’ (Holtmeier, 2009; Cranston & Hermanutz, 2013).  

Feedback between individual plants and their environment at micro-scales can 

drive patterns in vegetation composition at larger scales (Alftine & Malanson, 2004). 

There is a critical need to better understand how microsite modifications by established 

trees, or groups of trees, will affect treeline response to a warming world (Harsch & 

Bader, 2011). The mechanisms of how established trees, or tree islands, modify the 

environment will likely be structure- and species- dependent (Holtmeier, 2009; Holtmeier 

& Broll, 2010). To quantify how established conifers feedback to affect seedling survival 

at treeline, we conducted a seedling transplant experiment where black spruce (Picea 

mariana [Mill.] B.S.P.) and tamarack (Larix laricina [Du Roi] K. Koch) seedlings were 

transplanted along transects leading away from the leeward side of presumed facilitators 
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(i.e., black spruce tree islands and tamarack) and in open areas, presumably void of 

facilitation. We predicted that microsite conditions would change with distance from 

established conifers, and that microsite conditions experienced on the leeward side of 

presumed facilitators would positively feedback to promote transplant seedling survival. 

We further examined if tree island height varied with distance from windward side, 

working under the hypotheses that if height increases with distance from windward side, 

then tree islands’ growth is constrained by wind exposure. If positive effects of seedling 

survival are accompanied by equal negative dieback, tree islands, and thus treeline, will 

remain static (Harsch & Bader, 2011).  

3.2 Methods 

  Our study was conducted along a south-west facing slope on the Baie Verte 

Peninsula in central Newfoundland, Canada (49⁰35.2’ N, 56⁰13.7’ W). The climate in the 

area is boreal with a strong maritime influence, experiencing a mean annual air 

temperature of 3°C and on average 1200 mm of annual precipitation, of which about 350 

cm accumulates as snow (2007-2017; Middle Arm weather station, Environment 

Canada). With increasing elevation, the study slope’s vegetation transitions from a 

closed-canopy black spruce dominated forest to alpine treeline, an ericaceous heath with 

scattered tamarack and isolated islands of krummholz black spruce. At treeline, all black 

spruce individuals occurred as krummholz islands, while all tamarack individuals 

occurred as erect, upright individuals; herein, black spruce will be referred to as tree 

islands and tamarack as individuals. For a comprehensive study site description, see 

Chapter 1.      
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3.2.1 Experimental design 

To assess the potential role of tree islands as facilitators at the treeline site, we 

systematically established short (~2 m) transects extending downslope on the leeward 

side of established conifers (black spruce tree islands and individual tamarack; presumed 

facilitators) and in open patches (presumably void of facilitation). Predominant wind 

direction was determined by observing tree growth and flagging. To examine how 

survival varies with distance from established individuals, we transplanted one black 

spruce and one tamarack seedling at five positions along each transect: i) base of 

established individual (within tree island), ii) under tree island canopy, iii) canopy edge, 

iv) transition to treeless patch, and v) treeless patch (Figure 3.1). Transects extended from 

both established black spruce (n=10) and tamaracks (n=5) to examine inter- and 

intraspecific effects. We established 120 cm transects in open patches (n=10) parallel to 

the slope and transplanted one black spruce and one tamarack at five equally spaced 

positions, mimicking the tree island transects. Distance to the nearest upslope facilitator 

was measured for each open transect. To contextualize seedling survival at range edges 

compared to survival within the current range, the procedure for establishing open patch 

transects was replicated at the forest site (n=10).  
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Figure 3.1 Schematic diagram seedling transplant experimental design, illustrating one 

block. Approximately 2 m long transects extended downslope, on the leeward side of 

black spruce tree islands (n=10) and tamarack individuals (n=5), as well as in open areas 

presumably void of facilitation (n=10). One black spruce and one tamarack seedling was 

transplanted at 5 positions along the facilitated transects: ① at the base of individuals, ② 

under the conifer canopy, ③ canopy edge, ④ transition to treeless patch, and ⑤ in 
open, treeless patch; and every 30 cm along open transects.   

 

Seedlings for the field experiment were grown in the laboratory from seed 

acquired from black spruce and tamarack populations in central Newfoundland (see 

Chapter 2 for seed source details). Seedlings were propagated in celled forestry trays (67 

3.5 cm diameter by 9 cm deep cells per tray) in potting soil, experiencing 16 hours of 

light per day (6400 K full-spectrum T5 lamp with omni-max reflector; Jump Start, 

Hydrofarm, Petaluma, CA, USA) at room temperature (~20°C) for 127 days. In the week 

prior to transplanting, seedlings were exposed to ambient temperature and solar radiation 

outside of the laboratory in an effort to reduce transplantation stress. To control for 

differences between individuals, we measured seedling height and number of buds before 

transplanting (Renard et al., 2015). At the beginning of the 2017 growing season (June 
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13th and 16th, 2017), the four month old seedlings were transplanted to the experimental 

sites. At the treeline site, where there is a thick Cladonia sp. mat, we planted seedlings 

flush with the soil underneath the lichen mat, to mimic where establishment would likely 

occur from naturally dispersed seed (Asplund & Wardle, 2016; Deines et al., 2007). It is 

important to note that the effect of transplant stress on seedling performance is 

confounded with the effect of microsite conditions on seedling performance. To further 

minimize transplant stress, we watered all transplants on June 16th, 2017 (Grau et al., 

2012; Castanha et al., 2013). Seedlings were surveyed monthly from July to September 

2017 and again in June 2018. During each survey, we measured seedling survival 

(alive/dead) and qualitatively ranked the health of living seedlings as good, fair, or poor 

(Figure 3.2). Seedlings were considered alive if they had at least one green needle 

(Renard et al., 2015).  

 

Figure 3.2 Black spruce seedlings qualitatively ranked as: a) good, b) fair, and c) poor 

(note the single green needle).  

3.2.2 Biotic measurements 

To quantify the biotic environment experienced by seedlings, we visually 

estimated the percent cover of all vascular plants, bryophytes, and lichens (to species), 

and litter in a 25 x 25 cm quadrat surrounding each transplanted seedling. Total and 

a) c) 
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species-specific canopy cover were estimated using a spherical densitometer. All percent 

cover estimations were rounded to the nearest 5%.  

To quantify the structure (height and area) of the black spruce tree islands, we 

measured the dimensions of the 10 black spruce tree islands that were associated with 

seedling transplant transects, as well as an additional 7 tree islands (n=17). Area of the 

tree islands was approximated using the formula for the area of an ellipse (𝐴 = 𝜋𝑎𝑏; 

where a is the length of the tree circle perpendicular to the slope and b is the length 

parallel to the slope; Albertsen et al., 2014). Height of the tallest vertical stem was 

measured every metre along the length of tree island parallel to the slope. Only black 

spruce tree islands were analyzed, as tamarack did not form clonal clusters in our study 

area.  

3.2.3 Abiotic, microclimatic measurements 

To assess soil temperature experienced by seedlings, we buried soil temperature 

data loggers (Maxim Integrated, iButton Thermochron, DS1921G-F5#) along a subset of 

transects at the treeline site (n=5 open transects, n=5 black spruce transects, and n=2 

tamarack transects). Temperature was recorded every 4 hours for the duration of the 

experiment (June 13th, 2017 to June 4th, 2018). As protection from temperature extremes 

is a commonly ascribed benefit facilitated plant-plant interactions (Brooker, 2006), we 

calculated the average minimum and maximum soil temperatures for each season 

(summer: June 13th – Sept 21st, 2017; winter: Sept 22nd, 2017 to June 4th, 2018) by taking 

the mean of the daily minimum and maximum temperatures recorded.  
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Soil moisture measurements were taken monthly over the course of the growing 

season at each of the five positions along the experimental transects. Soil moisture was 

measured at 5 cm depth using a water moisture sensor (volumetric soil water content; 

Procheck, Decagon Devices, Pullman, WA, USA), except for the July survey where soil 

cores collected from ~5 cm were brought back to the lab for moisture assessment. We 

dried 5 g of wet soil for 48 hours and 60°C and July soil moisture was calculated by 

dividing dry weight by wet weight. We measured soil pH in the laboratory by combining 

5 g of soil with 10 mL of deionized water, stirred, and allowed to come to equilibrium for 

30 minutes prior to measuring pH with pH tracer pocketester (LaMotte Company, 

Chestertown, MD, USA). 

We measured average surface light intensity at each position along each transect 

over a 15 second period. At the treeline site, light intensity measurements were taken with 

a quantum sensor (Li-Cor Inc., Lincoln, NE, USA) at i) the lichen surface level, 

underneath any upright vegetation, and ii) approximately 1 m, above any vegetation. At 

the forest site where we could not measure above vegetation light intensity, we took three 

light intensity measurements in a canopy gap. Measurements were taken on clear days 

(July 14th and 16th, 2017), effectively void of cloud cover, over a 4 hour (treeline site) and 

2 hour (forest site) time period encompassing solar noon. To increase the generality of the 

light measurements, we used the unobstructed light intensity measurements, taken above 

any vegetation, to standardize the surface light intensity measurements. Light availability, 

a standardized light metric, was calculated as one minus the difference between average 

above vegetation light intensity and average surface light intensity divided by the above 
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vegetation light intensity. We assume that light availability remains constant over varying 

light conditions experienced over the summer growing season.  

Wind speed measurements (EA-3010 handheld anemometer; La Crosse 

Technology, La Crescent, MN, USA) were taken at each position along the transects 

during peak growing season (July 14th-15th, 2017). To account for high variability 

between wind speed measurements, we simultaneously measured wind speed at substrate 

surface level and directly above at 2 m and calculated wind interception as the difference 

between wind speed at 2 m and wind speed at surface level, divided by wind speed at 2 

m. As for light availability, we assumed that wind interception, a standardized wind 

metric, remains constant across varying wind conditions.   

To capture the pulse of soil nutrients available to alpine plants following spring 

thaw (Edwards et al., 2007; Zinger et al., 2011), we deployed separate cation and anion 

exchange membranes (Plant Root Simulator (PRS®) probes; Western Ag Innovations 

Inc., Saskatoon, SK, Canada) along a subset of transects at the treeline site (n=5 open 

transects, n=5 black spruce transects, and n=2 tamarack transects). Probes were buried at 

three positions along each transect: the beginning, middle, and end. To account for soil 

heterogeneity (Johnson et al., 2010; Johnson et al., 2011; Das Gupta et al., 2015), three 

probes of each type were used at each sampling location and averaged for data analysis. 

Probes were left in situ over the winter (Oct 22nd, 2017 to June 4th, 2018; burial 

length=255 days) and were collected the following spring. Western Ag Innovations Inc. 

conducted nutrient supply rate analyses (NO3
-, NH4

+, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, 

Pb, Al, and Cd).      
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3.2.4 Statistical analysis 

  All statistical analyses were performed using R version 3.3.1 (R Core Team, 

2016) via RStudio version 1.1.149 (RStudio Team, 2016). To explore biotic trends at the 

treeline site, we performed nonmetric multi-dimensional scaling (nMDS) with a Bray-

Curtis dissimilarity index using the treeline site plant community abundance data and the 

‘vegan’ package version 2.4-4 (Oksanen et al., 2013). We ran the analysis using one to 

six dimensions and selected a three-dimensional model as it minimized both stress and 

dimensions (McCune and Grace, 2002). We performed two interpretative aids on the 

nMDS: 1) to interpret whether the biotic communities differed among transect treatment 

and along transects, we drew convex hulls that enclosed all sites within each transect 

treatment (black spruce, tamarack, or open) and fit distance to established individual to 

the ordination, and 2) to aid in the visualization of seedling survival at the treeline site, 

we coloured each site to correspond with the qualitative seedling health ranking made at 

the end of the growing season (September 2017 survey) and at the end of the winter (June 

2018 survey). 

To examine how microclimatic conditions vary with distance from facilitator and 

between facilitator types, we ran linear mixed models predicting variation within 

biologically important abiotic factors as a function of distance (Dist), facilitator identity 

(Fa), and their interaction (Equation 1; using the ‘lm4’ package; Bates et al., 2015). To 

account for spatial dependence along transects, transect (T), nested within block (Blk), 

was included as a random factor (Keitt et al., 2002; Equation 1).  We ran residual 

diagnostics to test all models met assumptions.  
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                    𝐴𝑏𝑖𝑜𝑡𝑖𝑐 𝐹𝑎𝑐𝑡𝑜𝑟 ~ 𝐷𝑖𝑠𝑡 + 𝐹𝑎 + 𝐷𝑖𝑠𝑡 ∗ 𝐹𝑎 + (1|𝐵𝑙𝑘: 𝑇)              [1]  

Analysis of covariance (ANCOVA), with type III sums of squares, was then used 

to partition variation in each biologically important abiotic factor between distance (Dist, 

variation explained by the distance away from presumed facilitators) and transect type 

(Fa, variation explained by the identity of facilitator, or unfacilitated). The interactive 

effect (Dist*Fa) explored whether the effect of distance from facilitator on the modeled 

abiotic factors was dependent on the identity of the facilitator.    

If tree island growth is constrained by wind exposure, we expect the vertical 

height of tree islands to increase with distance from the windward edge (Albertsen et al., 

2014). To determine if black spruce tree islands at treeline are expanding, we ran a linear 

mixed model predicting variation in vertical height (Height) as a function of distance 

from the leeward side (Distance; Equation 2; using the ‘lm4’ package; Bates et al., 2015). 

To account for potential sheltering effects larger tree islands may have, area (Area) was 

included as a random factor (Equation 2). We ran residual diagnostics to test if the model 

met assumptions. 

                                     𝐻𝑒𝑖𝑔ℎ𝑡 ~ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (1|𝐴𝑟𝑒𝑎)                                   [2] 

3.3 Results 

   The three dimensional ordination converged after 100 iterations and had a final 

stress of 15.18 (stress <20 is considered acceptable; McCune and Grace, 2002). Axis 1 

separated treeless patches (high Kalmia angusitfolia and Cladonia lichen cover) from 

areas with established conifers (i.e., high conifer cover; Figure 3.3), while axis 2 
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separated black spruce tree islands from established tamarack individuals (Figure 3.3). It 

appears that the biotic environments converge at approximately two meters away from 

the base of established individuals at treeline (note overlapping polygons in the centre of 

Figure 3.3).   

 
Figure 3.3 Non-metric multidimensional scaling ordination (k=3, stress= 15.18) of 

treeline site plant community composition and abundance grouped by seedling transplant 

treatment. Distance (in cm) from established individuals is overlaid on the ordination. 

Each point represents the 25x25cm quadrat surrounding each transplanted seedlings, 

points closer together have more similar plant species community composition.  

Transplant survival at treeline was high across both seasons. Over the course of 

the experiment, 95.0% of black spruce seedlings and 92.7% of tamarack seedlings 

survived (Figure 3.4). Summer survival was lower than winter survival at treeline for 

both species (93.3% and 96.7%, respectively, for black spruce; 86.7% and 98.7%, 

respectively, for tamarack; Table 3.1). There were no spatial trends in black spruce or 

tamarack seedlings mortality across ordination space, suggesting that neither facilitator 

type nor distance from facilitator affected survival (Figure 3.4). Black spruce seedling 
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health was generally assessed as good and there are no trends in the spatial distribution of 

health classifications across ordination space (Figure 3.4a,b). Tamarack seedling health 

classifications were more variable than black spruce, with more individuals classified as 

fair or poor health (Figure 3.4). Tamarack seedlings ranked in good health occurred 

across the ordination; however, there was a cluster of healthy seedlings associated with 

high black spruce cover (Figure 3.4c,d).   

Table 3.1 The probability of survival of black spruce and tamarack seedling transplants at 

treeline over the two seasons, summer and winter, observed across three transect types 

and along the five transplant positions (n=150).  

Black Spruce  

 Summer   Winter  

 Open Spruce Tamarack Open Spruce Tamarack 

1 1.0 1.0 0.8 1.0 0.8 1.0 

2 0.8 1.0 1.0 1.0 1.0 1.0 

3 0.9 0.9 1.0 1.0 1.0 1.0 

4 1.0 0.8 1.0 0.9 1.0 0.8 

5 1.0 1.0 0.8 1.0 1.0 1.0 

Tamarack  

 Summer  Winter  

 Open Spruce Tamarack Open Spruce Tamarack 

1 1.0 1.0 0.8 1.0 1.0 1.0 

2 1.0 1.0 0.2 0.9 1.0 1.0 

3 1.0 0.9 1.0 0.9 1.0 1.0 

4 0.9 0.8 0.8 1.0 1.0 1.0 

5 0.9 0.9 0.8 1.0 1.0 1.0 
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Figure 3.4 Non-metric multidimensional scaling ordination (k=3, stress= 15.18) of 

treeline site plant community composition and abundance with sites coloured to represent 

qualitative a) black spruce seedling summer health, b) black spruce winter seedling 

health, c) tamarack summer seedling health, and d) tamarack winter seedling health. 

Distance from established black spruce tree islands and tamarack individuals is overlaid 

on the ordination.    

 

Our linear mixed models indicated that during the 2017 growing season light 

availability, average minimum soil temperature, and average summer soil moisture 

changed with distance from presumed facilitators, and that the rate of change was 

dependent on transect type; average maximum soil temperature changed with distance 
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from presumed facilitator but rate of change was consistent across transect types 

(Table 3.2; Figure 3.5). Transect type affected the direction in which light availability 

changed with distance (Table 3.2). Light availability increased with increasing 

distance along facilitated transects (0.0038 %·m-1 ± 0.0015 %·m-1 for black spruce and 

0.0035 %·m-1 ± 0.0026%·m-1 for tamarack), but decreased with distance along 

unfacilitated transects (-0.0008 %·m-1 ± 0.0007 %·m-1; Table 3.2). The rate that 

minimum summer soil temperatures changed with distance from facilitator was greater 

for black spruce and tamarack transects (0.0058°C·m-1 ± 0.0036°C/m and 0.0056° 

C·m-1 ± 0.0048 C·m-1 respectively) than for unfacilitated transects (8.80 x 10-4 ° C·m-1 

± 0.0013° C·m-1). Transect type had no effect on maximum summer soil temperature 

(0.0022° C·m-1 ± 0.0017° C·m-1 across all transects; Table 3.2). The rate that percent 

soil moisture changed with distance was dependent on transect type, where rate of 

change was greater for black spruce and tamarack transects (0.00054 %·m-1 ± 0.00037 

%·m-1 and 0.0013 %·m-1 ± 0.0004 %·m-1 respectively), than for unfacilitated transects 

(6.0 x 10-5 %·m-1 ± 0.0002 %·m-1; Table 3.2). Distance from facilitator and transect 

type didn’t affect percent wind interception, where on average seedlings experienced a 

wind velocity of 0.183 m·s-1 ± 0.048 m·s-1 (Table 3.2).  

Our linear mixed models indicate that winter microclimatic conditions did not 

vary along transects or across transect types (Table 3.2). The average winter minimum 

soil temperature across the winter was 2.12°C ± 0.11°C, and the average maximum 

soil temperature was 2.72°C ± 0.10°C.  However, our models indicate that distance 

from facilitator or transect type had minimal effects on available soil nutrients. 

Available soil ammonium, important for conifer seedling growth at early 
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establishment life stages (Staples et al., 1999; Robinson et al., 2001), decreased 

marginally with distance from established individuals (8.65 x 10-5 μg NH4
+·10cm-2· 

255 days-1·m-1 ± 0.0024 μg NH4·10cm-2· 255 days-1·m-1), but did not vary between 

facilitator types (Table 3.2). The rate of change in available soil magnesium, a 

necessary element for photosynthetic function (Levitt, 1954), marginally increased 

with distance along black spruce and tamarack transects (2.00 μg Mg·10cm-2· 255 

days-1·m-1 ± 2.95 μg Mg·10cm-2· 255 days-1·m-1 and 5.72 μg Mg·10cm-2· 255 days-

1·m-1  ± 3.08 μg Mg·10cm-2· 255 days-1·m-1, respectively) but decreased with distance 

along unfacilitated transects (-0.87 μg Mg·10cm-2· 255 days-1·m-1 ± 2.13 μg 

Mg·10cm-2· 255 days-1·m-1; Table 3.2). Available soil manganese differed marginally 

across facilitator types; however, the residuals deviated from assumptions of normality 

and heterogeneity, so the effect should be interpreted with caution (Table 3.2). 

Distance from facilitator or transect type had no effect on available soil calcium, 

potassium, phosphorous, zinc, sulfur or aluminium (Table 3.2; Appendix I). Soil 

nitrate, iron, copper, boron, lead, and cadmium were below detectable levels 

(Appendix I).  
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Figure 3.5 Biologically important abiotic factors: a) light availability, b) average 

minimum summer soil temperature, c) average maximum summer soil temperature, d) 

average summer soil moisture, e) minimum winter soil temperature, f) average maximum 

winter soil temperature, g) soil ammonium, h) soil magnesium, and i) soil manganese as a 

linear function of distance (cm) away from nearest presumed facilitator at altitudinal 

treeline in central Newfoundland. Transect type is indicated by colour and symbol. Lines 

represent linear fit, with shading over the 95% confidence intervals. See table 3.1 for 

analysis of covariance (ANCOVA) summary.  
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Table 3.2  Summary of linear mixed models predicting biologically important abiotic factors with distance from facilitator, 

facilitator type, and their interaction at altitudinal treeline in central Newfoundland. Analyses of covariance (ANCOVAs), with a 

type III error, was used to partition the variation within abiotic factors across treatments. Bold values are significant, where 

*p<0.05, **p<0.01, ***p<0.001. 

Summer Abiotic Properties 

     Dist.      Trans.      Dist. * Trans.   

  df MS F-value df MS F-value df MS F-value 

 Light 

Availability  

1 2.2516 31.433*** 2 0.88641 12.375*** 2 1.38284 109.913*** 

 Wind 

Intercept 

1 0.0078  1.080 2 0.01113 1.54045 2 0.00105 0.14558 

 Avg. Min. 

Soil Temp  

1 2.4875 27.719*** 2 0.07088 0.7898 2 0.45192 5.0359* 

 Avg. Max. 

Soil Temp 

1 5.9210  7.014* 2 0.27590 0.72444 2 1.28450 0.22867 

 Avg. Soil 

Moisture 

1 0.1683 45.800*** 2 0.03009 8.190*** 2 0.06042 16.447*** 

           

Winter Abiotic Properties 

 Avg. Min. 

Soil Temp 

1 0.00012 0.0088 2 0.00925 0.07103 2 0.14786 1.135 

 Avg. Max. 

Soil Temp 

1 0.00310 0.04186 2 0.00640 0.0863 2 0.03258 0.43955 

 Soil 

Ammonium 

1 3.7918 6.0311* 2 1.0588 1.6841 2 1.6872 0.08807 

 Soil 

Calcium 

1 90446 1.653 2 123111 2.250 2 171011 3.125 

 Soil 

Magnesium 

1 659620 6.701* 2 178709 1.818 2 735848 3.743* 
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Table 3.2 (Continued)   

Winter Abiotic Properties Continued  

  Dist.  Trans.  Dist. * Trans.   

  df MS F-Value df MS F-Value df MS F-Value 

 Soil 

Potassium 

1 9453.7 1.042 2 5268.5 0.581 2 6536.9 0.7206 

 Soil 

Phosphorous 

1 0.00551 0.5486 2 0.09958 0.9919 2 0.0507 0.5057 

 Soil 

Manganese 

1 61.955 1.1435 2 195.223 3.6033* 2 142.499 2.6302 

 Soil  

Zinc 

1 58.932 0.6297 2 35.236 0.3765 2 3.602 0.0385 

 Soil  

Sulphur 

1 15.790 0.1237 2 39.779 0.3117 2 46.46 0.3641 

 Soil 

Aluminium  

1 37.089 0.0279 2 245.80 0.1850 2 27.894 0.0201 
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We detected no trend in black spruce tree island height and position away from 

leeward side (Figure 3.6; t-value= -1.44, p-value= 0.152). On average, tree islands were 

25.58 m2 ± 2.83 m2 with an average height of 1.02 m ± 0.01 m.  

 
Figure 3.6 Height of black spruce tree circles as a function of position within black 

spruce tree islands established at treeline in central Newfoundland (n=17). The line 

represents the linear model fit and the shaded region represents the 95% confidence 

interval (t-value= -1.44, p-value= 0.152).   

 

3.4 Discussion 

Positive feedback loops between established individuals and recruiting seedlings 

have long been considered the dominant process driving and maintaining tree island 

patterns at treeline ecotone (i.e., Wilson & Agnew, 1992) and have been proposed as a 

potential route for treeline range expansion (Holtmeier & Broll, 2017). Our field 

experiment across alpine treeline ecotone does not provide evidence to support 

facilitation of seedlings by adults, at least across the first year of the seedling life stage. 
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Despite changes in both abiotic and biotic environments with distance from tree islands 

and established individuals, black spruce and tamarack survival in our experiment was 

high (~90%) and we observed no trends in black spruce or tamarack seedling survival 

between facilitated and unfacilitated transects. Seedling survival, across the first year, was 

not a bottleneck to alpine treeline advance along the studied altitudinal gradient; if 

limitations surrounding seed production, germination, and seedling establishment 

(reported in Chapter 2) are overcome, our results suggest that recruitment at treeline will 

likely occur, at least to the seedling life stage studied here. Here, we discuss the effect of 

established conifers on hypothesized abiotic drivers of seedling survival at treeline. 

3.4.1 Solar radiation and subsequent effects 

As predicted, incoming solar radiation at ground level increased with distance 

away from established black spruce tree islands and individual tamarack, but only to a 

point, in that we observed a decrease in solar radiation with distance along open transects. 

This observed peak in solar radiation at intermediate distances from established 

individuals aligns with the associated transition in the understory biotic community at the 

treeline site, where Kalmia occurrence increases in abundance. Kalmia continues to 

increase in abundance and height (personal observation) with increasing distance away 

from established individuals, likely driving the decrease in incoming solar radiation along 

the open transects.  

Tree islands and established individuals interact with incoming solar radiation, 

transforming it into sensible heat and long-wave radiation (Holtmeier & Broll, 2017). 

Canopies of tall, established vegetation can mediate surface temperatures through 
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shading, reducing maximum temperatures, and by reducing heat lost through long-wave 

radiation at night, increasing minimum temperatures (Smith et al., 2003). We found that 

growing season soil temperature at treeline follow the expected trend, where soil 

temperature extremes increased with distance away from established individuals. We 

expected warmer soils to be drier due to increased evaporation; however, soil moisture 

decreased with distance from established individuals. We speculate that the soils are 

driest near established conifers due a combination of tree and shrub-driven 

microenvironments. To elaborate, we hypothesize that transpiration demands of tree 

islands and established tamarack are higher than the Kalmia heath community, while 

simultaneously, the low-stature Kalmia shrub canopy reduces moisture loss via direct 

evaporation, with the net result of drier soils near established conifers.  

Light is a key resource, but radiative extremes associated with unobstructed sky 

exposure can result in high ground temperatures, soil desiccation, photoinhibition, and 

increased susceptibility to damaging frosts, potentially jeopardizing seedling survival 

(Germino et al., 2002). Numerous studies have found that reduction in sky exposure by 

established vegetation or microtopographic features facilitates seedling establishment and 

survival at treeline (e.g., Germino et al., 2002; Smith et al., 2003; Gómez-Aparicio et al., 

2005; Maher, Germino, & Hasselquist, 2005; Maher & Germino, 2006; McIntire et al., 

2016; but see Cranston & Hermanutz, 2013). Despite variation in incoming light, soil 

temperature extremes, and soil moisture, all biologically important abiotic factors, we 

observed no changes in black spruce or tamarack seedling growing season survival across 
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the treeline; suggesting that the variation in microsite environmental conditions equally 

meet seedling requirements.  

3.4.2 Wind and subsequent effects  

Treeline advance requires survival in much windier environments, as 

individuals colonize treeless habitats where wind is not mitigated by the physical 

structure of the forest. Strong winds can cause physiological stress, desiccation, and 

mechanical damage to seedlings (Holtmeier & Broll, 2007). Against expectations, we 

observed no difference in surface wind with distance away from the leeward side of 

facilitators. The seedlings were transplanted flush with the soil, nestled within a thick 

lichen mat, well within the surface boundary layer (Körner, 2016), as evidenced by the 

drastic decline in wind speed measured between 2 metres and surface level. We 

expect, therefore, seedlings likely will not experience growing season wind induced 

stressors until they reach a height that exceeds the protective boundary layer (Körner, 

2016).  

The interaction between wind and established individuals at treeline has been 

found to have a larger effect on winter seedling survival than growing season survival 

(Holtmeier & Broll, 2010; Renard et al., 2016). Tree islands interact with wind to affect 

the distribution of snow at treeline, where more snow accumulates at the leeward side of 

established individuals compared to treeless mountain patches (Holtmeier & Broll, 2017). 

Snow cover provides protection against harsh winter conditions by providing insulation, 

mediating extreme temperature conditions. We observed no trends in winter seedling 

survival across treeline, suggesting that there are no changes in snow cover with distance 
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from established individuals, or at least no changes that influence the size class of 

seedling studied here. The treeline site is on the lee side of convex topography, where the 

interaction between topography and wind results in increased accumulation of snow 

relative to the windward side and crests of convex topography (Holtmeier 2005; 

Holtmeier & Broll, 2010). We speculate that topographic controls of snow distribution 

override the effects of established black spruce tree islands and tamarack individuals. 

Uniform snow cover across treeline is consistent with our findings that average minimum 

and maximum winter soil temperatures did not vary across treeline.   

3.4.3 Secondary effects  

Alpine soils are generally considered nutrient limited, where low soil temperatures 

constrain microbial activity (Rustad et al., 2001). Growth limitations, where the 

production of plant cells is less than minimum requirements for renewal of plant tissue or 

growth, driven by low nutrient availability is considered a mechanism governing the 

position of tree range limits (Körner, 1998). At the scale of individual trees, soils on the 

leeward side of established conifers at treeline have been found to have been found to be 

more nutrient rich than adjacent alpine soils (Holtmeier & Broll, 1992; Cairns, 1999; 

Liptzin & Seastedt, 2009). Tree islands and established individuals alter soil 

microclimatic conditions, through interactions with both incoming solar radiation and 

wind, and organic matter inputs; key controls on microbial decomposition (Cairns, 1999; 

Liptzin & Seastedt, 2009). 

Manipulative experiments at treeline have found positive effects between seedling 

performance and nutrient availability (Grau et al., 2012; Cranston & Hermanutz, 2013). 
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Despite changes in the plant community composition and summer soil microclimatic 

conditions with distance from established conifers at treeline, we found no variation in the 

majority of soil nutrients (except available soil ammonium and magnesium). Available 

inorganic nitrogen, a macronutrient essential for plant growth, is thought to be primarily 

controlled by winter snow cover and therefore, is expected to decrease with distance away 

from tree islands (Bowman, 1993; Cairns, 1999; Liptzin & Seastedt, 2009). Despite 

observing no soil temperature differences with distance from established conifers, 

indicative of a homogenous snowpack, we found available soil ammonium to decrease 

with distance from established conifers. Contradictory patterns between tree islands, snow 

cover, and available inorganic nitrogen have previously been observed (positive effect: 

Cairns, 1999; no effect: Malanson & Butler, 1994; Liptzin & Seastedt, 2009), suggesting 

that factors other than snow cover, such as organic matter inputs, may control inorganic 

nitrogen availability (Seastedt & Adams, 2001). Increases in base cations (Ca, Mg, K) on 

the leeward side of tree islands has been attributed to increased dust deposition driven by 

tree island-wind interactions (Liptzin & Seastedt, 2009). We found available soil 

magnesium to decrease with increasing distance from established tree islands but found 

no changes in available soil calcium or potassium. We speculate that inputs from 

underlying bedrock may override variation due to dust deposition (Liptzin & Seastedt, 

2009). We recommend additional research on how tree islands affect nutrient availability, 

especially examining summer nutrient availability due to the effect established conifers 

had on soil microclimatic conditions. High seedling survival, regardless of variation in 

soil ammonium and magnesium, suggest that nutrient levels are not limiting seedling 

survival (Jacobs et al., 2014; Trant et al., 2015).   



104 

 

3.4.4 Established tree islands and dieback 

 Island treelines are thought to be the balance between increased recruitment on 

the leeward side and dieback on the windward side (Harsch & Bader, 2011). Advance in 

island treelines is therefore equally dependent on increased recruitment as well as the 

amelioration of factors limiting growth within established tree islands (Harsch & Bader, 

2011). Growth limitations have been found to occur year-round but dieback is considered 

primarily due to winter wind and snow and spring and autumn frosts, where exposed 

stems are susceptible to mechanical damage by wind and temperature stress (Wardle, 

1968; Butler, 2009; Harsch & Bader, 2011). Self-facilitation has been found to alleviate 

these stressors, where branches on the leeside of tree islands are directly protected from 

stressors via sheltering from wind and indirectly via tree island-wind-snow interactions 

(Cairns, 2001; Harsch & Bader, 2011). Therefore, tree island height is commonly 

observed to increase, and dieback to decrease, from the windward to the leeward side 

(Marr, 1977; Cairns, 2001). We detected no trend in height across black spruce tree 

islands from windward to leeward side; symmetrical height suggests growth is not 

constrained and that tree islands are expanding (Albertsen et al., 2014). We suggest tree 

islands should be re-surveyed annually to assess if a switch in black spruce growth form 

from krummholz to erect tree is occurring.     

3.4.5 What is hindering treeline advance? 

Environmental conditions that support one life stage are not necessarily beneficial 

for other life stages (Cranston & Hermanutz, 2013). Regardless of distance from black 

spruce tree islands or tamarack individuals and the associated microclimatic changes, 
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transplant seedling survival was high; however, no naturally occurring seedlings were 

observed. Previous research along this altitudinal gradient indicates overwhelming 

constraints on the seed and establishing seedling life stages (as discussed in Chapter 2). 

Black spruce and tamarack treeline populations produced fewer seeds of low viability; 

recruitment at treeline is likely dependent of dispersal of seeds from forest populations. If 

seed limitations are overcome, the majority of seeds dispersed to treeline will be 

consumed. Bare ground greatly increased germination and seedling establishment over 

lichen substrates that occur at treeline; however, black spruce seeds that disperse to bare 

ground are more likely to be consumed. Multiple factors need to align temporally to 

overcome seed and seedling establishment limitations at altitudinal treeline in central 

Newfoundland; although, if these series of biotic filters are overcome, seedling 

recruitment is likely to occur.       

While we found no constraints across the first year of the seedling life stage at 

altitudinal treeline, this does not guarantee survival once individuals surpass the 

favourable microclimatic conditions of the lichen boundary layer (Körner, 2016). There is 

currently a lack of knowledge on the growth and survival at the sapling stage, which is 

particularly problematic because the presence of seedlings beyond current range limits is 

sometimes concluded as evidence for treeline advance (Harsch et al., 2009; Körner, 

2016). The sapling stage is inherently hard to study, especially if no saplings are present 

at treeline, due to temporal constraints. We recommend repeat surveys of established 

seedlings at treeline to assess sapling survival once individuals are exposed to 

atmospheric conditions (Körner, 2016).            
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Chapter 4: Summary and conclusions 

Treeline, the ecotone between forest and tundra or alpine ecosystems, is perceived 

as the thermal limit to tree growth, reproduction, and survival and with the alleviation of 

climatic constraints, treeline is expected to shift to higher elevations and latitudes 

(Körner, 1998, 2012; Körner & Paulsen, 2004; Paulsen & Körner, 2014). To date, there 

has been no uniform trend in treeline response to changing climatic conditions, 

suggesting that biotic interactions may override thermal controls (Harsch et al., 2009; 

Hille Ris Lambers et al., 2013). The presence or absence of competitors, consumers, 

mutualists, and facilitators will affect species’ occurrence and abundance and therefore, 

affect how species’ distributions respond to changing climatic conditions (Hille Ris 

Lambers et al., 2013).  

Newfoundland is currently 1.5°C warmer than historical average and is projected 

to continue to warm, with a shortened winter resulting in an additional 200-400 growing 

degree days across a longer growing season (Finnis, 2013; Finnis & Daraio, 2018). The 

projected future climatic conditions support the prediction that treelines in Newfoundland 

will shift upslope; however, if we are to accurately understand treeline response to 

Newfoundland’s changing climate, we must understand the role biotic interactions have 

on driving current range limits (Hille Ris Lambers et al., 2013; Hargreaves et al., 2014). 

Changes in alpine treeline position threatens to displace alpine biota, potentially altering 

Newfoundland’s biodiversity (Holtmeier & Broll, 2007). A loss of alpine ecosystems 

would have cascading socio- economic and -cultural affects, as alpine ecosystems are 

primary areas of snow machine use and would alter resident’s transportation, hunting, and 
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wood collection practises (Waight, 2014). To the best of our knowledge, the research 

presented in this thesis is the first to examine biotic drivers of altitudinal treeline position 

on the island of Newfoundland.   

This thesis examines biotic drivers of treeline position through the reproduction 

limitation hypothesis: functional positional of treeline is explained by the failure for trees 

to recruit beyond range limits (Körner, 1998). Intuitively, treeline advance depends on 

increased recruitment, the production or dispersal of viable seed and subsequent seedling 

establishment and survival, at, or beyond treeline (Nathan & Muller-Landau, 2000; 

Briceño et al., 2015; Johnson et al., 2017). Early-life stages are both most abundant and 

most vulnerable, and therefore disproportionally affect recruitment (Harper, 1977). This 

thesis examines the affect biotic interactions at two early-life stages: i) seed and 

germination limitations (Chapter 2) and ii) seedling survival limitations (Chapter 3).  

Seed and germination limitations were approached from the framework that 

recruitment from seed is comparable to a hurdle race, where a seed needs to pass through 

several biotic filters for recruitment to occur (Holtmeier, 2009). To quantify the relative 

importance of predicted biotic interactions on constraining black spruce and tamarack 

recruitment at treeline, we conducted a series of observational and experimental studies 

across an altitudinal gradient in central Newfoundland. Recruitment at treeline was 

simultaneously seed- and establishment-limited. Treeline populations produced fewer 

seeds than forest populations, and these seeds had low viability. If seed limitations are 

overcome, we found that establishment limitations, driven by post-dispersal seed 

predation and unsuitable ground cover for germination, will constrain recruitment. Our 
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findings highlight the need for multiple factors to align simultaneously if recruitment at 

treeline is to occur.  

Seedlings at treeline have been found to have non-random spatial association, 

suggesting that amelioration of the environment at microscales will increase 

establishment and survival (Resler et al., 2005; Malanson et al., 2007). Suitable 

microsites or ‘safe sites’ that facilitate establishment are often attributed to taller 

neighbours, including tree islands (Alftine & Malanson, 2004; Batllori et al., 2009; 

Renard et al., 2016). Environmental requirements at one life stage are not necessarily 

beneficial for another life stage (Cranston & Hermanutz, 2013); seedling survival is not 

guaranteed if seed production and seedling establishment limitations are overcome. To 

quantify how microclimatic conditions change with distance from facilitators and in turn, 

how tree islands and microclimate interact to promote seedling survival at range edges, 

we transplanted black spruce and tamarack seedlings at altitudinal treeline along transects 

leading away from tree islands, presumed facilitators, and in open areas, presumably void 

of facilitation. We qualitatively assessed seedling health and quantified a suite of abiotic 

factors throughout the growing season and following winter. Despite observing unique 

summer microclimatic conditions on the leeward side of tree islands, we observed no 

spatial pattern in seedling survival. Seedling survival was high across the forest-treeline 

ecotone, suggesting that seed and establishment limitations are the bottleneck to 

recruitment at altitudinal treeline in central Newfoundland.  

The principal limitation of this research is temporal scale. Assessments of early-

life stage cohorts at only one point of time does not allow for the long term conclusions 
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on population dynamics at range limits (Körner, 2016). Climate fundamentally controls 

plant recruitment (Zasada, 1971; Owens & Blake, 1985; Sirois et al., 1999; Walck et al., 

2011) and annual variation in climatic conditions will likely result in variation in 

production of viable seeds, germination, and seedling survival. Long-term monitoring of 

early-life stages is required to understand the consequences of temporal variation in 

recruitment at treeline, in particular the effect of mast years, and how production and 

survival of early-life stages respond to changing climatic conditions. Similar to issues 

surrounding intrinsic temporal variation, strength of biotic interactions will likely show 

inter-annual variation. For example, pre- and post-dispersal seed consumption pressures 

will differ year to year as seed production, food habitats, and seed predator abundance 

change (Hulme, 1998; Côté et al., 2003). Moreover, there is significant uncertainty in 

how the magnitude and direction of biotic interactions will change under changing 

climatic conditions (Hille Ris Lambers et al., 2013). Lastly, short-term studies are 

insufficient to study how biotic interactions, in particular plant-plant interactions, change 

with ontogeny (Soliveres et al., 2010). By conducting a series of observational and 

experimental studies, we were able to examine the effect of predicted biotic interactions 

across multiple early-life stages. However, we suggest that future research further 

examine the effects of Kalmia on seedling establishment beyond seedling emergence 

stage (Mallik, 1987; Wallstedt et al., 2002; Zeng & Mallik, 2006), and facilitative effects 

established tree islands and tamarack individuals have on seedling survival and growth 

once seedlings grow beyond the protective lichen boundary layer (Körner, 2012, 2016).  

 This thesis lends support to the reproduction limitation hypothesis, where 

recruitment at treeline is simultaneously seed- and establishment-limited. However, if 
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seed and establishment limitations are overcome, seedling survival is high and 

recruitment is likely to occur. Despite short comings associated with short-term studies, 

the studies presented in this thesis present invaluable insight into biotic drivers of treeline 

position and the potential for treeline advance in central Newfoundland. Few studies 

examining the reproduction limitation hypothesis have examined several limitation 

mechanisms across multiple early-life stages (but see Wheeler et al., 2011; Dufour-

Tremblay et al., 2012; Cranston & Hermanutz, 2013; Kroiss et al., 2015; Kambo & 

Danby, 2017); by conducting a series of observational and experimental studies, we are 

able to assess the relative effects of several biotic interactions on recruitment across a 

series of early-life stages at one site. There is currently uncertainty surrounding how 

biotic interactions modulate species’ distributional response to climate change and how 

the direction and magnitude of these interactions may be altered by changing climatic 

conditions (Hille Ris Lambers et al., 2013). Results and discussion presented throughout 

this thesis provide the first step, determining the relative importance of biotic interactions 

in governing current species’ range limits, and provide a baseline for future studies. 
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Appendix I: Soil nutrients 

To investigate how available soil nutrients vary with distance from facilitators and 

between transect types, we buried separate cation and anion exchange membranes (Plant 

Root Simulator (PRS®) Probes; Western Ag Innovations Inc., Saskatoon, SK) at three 

positions (beginning, middle, and end) along a subset of each transect type (n=5 open 

transects, n=5 black spruce transects, and n=2 tamarack transects). Probes were left in situ 

over the winter (burial period=255 days; Oct 22nd, 2017 to June 4th, 2018), collected the 

following spring, and sent to Western Ag Innovations Inc. to conduct nutrient supply rate 

analysis (NO3
-, NH4

+, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, and Cd). Nitrate, iron, 

copper, boron, lead, and cadmium supply rates were all below the detection levels (Table 

AII.1). 

 

 

 

  

 



126 

 

Table AI.1 Summary of detection levels, as set by Western Ag Innovations Inc. (Saskatoon, SK), and average nutrient supply 

rate (± standard error), calculated across all transect types (n=12), at three burial positions along the transects (beginning, middle, 

end) over the burial period (Oct 22nd, 2017 to June 4th, 2018; 255 days). Nitrate, iron, copper, boron, lead, and cadmium were all 

below the detection levels. Asterisks denote nutrients that significantly varied across treatment types. 

  Transect Position 

 

 

Nutrient 

Detection Level 

(μg·10cm-2· 255 

days-1) 

Beginning 

(μg·10cm-2· 255 

days-1) 

Middle 

(μg·10cm-2· 255 

days1) 

End 

(μg·10cm-2· 255 

days-1) 

NO3
- 2.0 < detection levels 

* NH4
+ 2.0   5.0 ± 0.32   5.0 ± 0.37  4.3 ± 0.36 

Ca    2.0 531.0 ± 87.12 416.3 ± 94.63 553.6 ± 99.72 

*    Mg 4.0 585.0 ± 112.0 769.6 ± 106.3 769.4 ± 94.17 

K 4.0 180.0 ± 34.21 149.2 ± 26.90 126.9 ± 30.15 

P 0.2   1.0 ± 0.07   0.9 ± 0.13   0.9 ± 0.06 

Fe 0.4 < detection levels 

*   Mn 0.2 13.0 ± 4.60 11.4 ± 4.62   7.0 ± 2.01 

Cu 0.2 < detection levels 

Zn 0.2   6.0 ± 1.13 12.8 ± 5.19   9.9 ± 3.11 

B 0.2 < detection levels 

S 2.0 21.0 ± 3.60 24.9 ± 4.44 15.2 ± 2.52 

Pb 0.2 < detection levels 

Al 0.4 26.0 ± 8.13 49.0 ± 20.50 23.0 ± 4.99 

Cd 0.2 < detection levels 

 


