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Abstract

Automatic detection of ground moving objects (GMOs) from aerial camera platforms

(ACPs) is essential in many video processing applications, both civilian and military.

However, the extremely small size of GMOs and the continuous shaky motion of ACPs

present challenges in detecting GMOs for traditional methods. In particular, existing

detection methods fail to balance high detection accuracy and real-time performance.

This thesis investigates the problem of GMOs detection from ACPs and overcom-

ing the challenges and drawbacks that exist in traditional detection methods. The

underlying assumption used in this thesis is based on principal component pursuits

(PCP) in which the background of an aerial video is modelled as a low-rank matrix

and the moving objects are modelled as sparse corrupting this video. The research

in this thesis investigates the proposed problem in three directions: (1) handling the

shaky motion in ACPs robustly with minimal computational cost, (2) improving the

detection accuracy and radically lowering false detections via penalization term, and

(3) extending PCP’s formulation to achieve adequate real-time performance.

In this thesis, a series of novel algorithms are proposed to show the evolution of

our research towards the development of KR-LNSP, a novel robust detection method

which is characterized by high detection accuracy, low computational cost, adapt-

ability to shaky motion in ACPs, and adequate real-time performance. Each of the

proposed algorithms is intensively evaluated using different challenging datasets and
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compared with current state-of-the-art methods.
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Chapter 1

Introduction

1.1 Overview

The past few decades have witnessed a massive revolution in computer vision concepts,

theorems, and algorithms which in turn have had a significant impact in our modern

life. Using computer vision in different applications saves human life, time and money,

and in some cases computer vision offers more precise results than human visual

perception. One of the computer vision processes that occupies a great importance

in civilian and military applications is detecting ground moving objects (GMOs). For

example, GMOs detection allows an automatic reporting of traffic conditions in a

specific section of a road. Also, GMOs detection can be used to help secure country’s

border by warning security forces when an object to security interest is approaching.

This critical role of GMOs detection, applied to a growing number of domains, is

motivating researchers to investigate novel methods to achieve cost-effective, robust

and computationally efficient detection. Therefore, the primary aim driving research

in GMOs detection is to achieve a mature technological design for indoor environments

and stationary camera applications.

1
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With the use of aerial camera platforms (ACPs), such as unmanned air vehicles

(UAVs), drones, balloons, etc., computer vision applications (e.g. [1], [2]) become more

effective. This is due to the bird-eye view of ACP that allows a comprehensive analysis

of ground scenes. However, GMOs detection becomes more challenging because of

the shakiness of the ACPs and the relatively small size of GMOs. Therefore, a lot

of research effort has been directed toward resolving these challenges. Nevertheless,

GMOs detection methods still suffer from a lack of accuracy and high computational

cost.

With this in mind, this thesis investigates novel methods to resolve the problems

associated with detecting GMOs for ACPs. The backbone of this study is based on the

concept of principal component pursuits (PCP) where the background and the moving

objects are modelled as a low-rank and sparse matrices, respectively. Starting from

the PCP concept, we handle the camera motion of ACPs robustly, improve the sparse

modelling of the moving objects to enhance the accurate detection, and generalize the

low-rank matrix modelling of the background to achieve real-time performance.

The rest of this chapter is organized as follows. The motivation which stands

behind this thesis will be discussed in the next section. Next, the objective of this

thesis will be stated, followed by an explanation of the thesis contributions.. Finally,

the thesis outline is sketched.

1.2 Research Motivation

A growing trend in the application of computer vision relates to the capture and

analysis of aerial imagery from ACPs. However, using ACPs introduces many chal-

lenges when detecting ground moving objects (GMOs). First, the ground objects are

composed of few pixels which makes it difficult to detect these tiny/thin objects from
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cluttered environments. Second, the continuous shaky motion of the ACPs makes

all objects in the scene appear to be in motion; hence, distinguishing between static

objects and moving objects becomes more challenging. Although different recent

methods claim to handle the former problems, they suffer from at least one of the

following disadvantages: 1) high false detection rates, 2) low true detection rates,

or 3) high computational loads. The importance of using ACPs in different critical

applications and the absence of a real-time and robust detection method motivated

us to investigate the problem of detecting GMOs.

1.3 Research Objective

The objective of this research is to provide a method for robust ground moving objects

detection that has the following characteristics:

• Compensate the shaky camera motion of ACPs efficiently with low computa-

tional loads

• Achieve a robust detection for small GMOs, i.e. very low false detection rates

and high true detection rates.

• Meet the real-time performance requirements

1.4 Contributions Summary

The research presented in this thesis has the following contributions:

1. Proposing robust alignment method with low computational loads to handle the

shaky motion of UAVs. The research in this point are published in the following

(one journal and two conference papers):
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• Agwad ElTantawy and Mohamed S. Shehata. "MARO: matrix rank opti-

mization for the detection of small-size moving objects from aerial camera

platforms." Journal of Signal, Image and Video Processing 12, no. 4 (2018):

641-649.

• Agwad ElTantawy and Mohamed S. Shehata. "Moving object detection

from moving platforms using lagrange multiplier." In Image Processing

(ICIP), 2015 IEEE International Conference on, pp. 2586-2590. IEEE,

2015.

• Agwad ElTantawy and Mohamed S. Shehata. "UT-MARO: unscented

transformation and matrix rank optimization for moving objects detec-

tion in aerial imagery." In International Symposium on Visual Computing,

pp. 275-284. Springer, Cham, 2015. (Oral presentation, acceptance rate

16.5 % - 43/260)

2. Radical reduction of false detection rates and achieving a high true detection

rates. To this end, a regularization term is proposed that effectively distinguishes

GMOs from false detections. The proposed work on this point results in two

(2) novel methods, called KR-MARO and Spring-MARO, that are published in

the following (one journal and one conference paper)

• Agwad ElTantawy and Mohamed S. Shehata. "KRMARO: Aerial Detec-

tion of Small-Size Ground Moving Objects Using Kinematic Regularization

and Matrix Rank Optimization." IEEE Transaction on Circuits and Sys-

tem for Video Technology 2018. DOI: 10.1109/TCSVT.2018.2843761.

• Agwad ElTantawy, and Mohamed S. Shehata. "A novel method for seg-

menting moving objects in aerial imagery using matrix recovery and physi-

cal spring model." In Pattern Recognition (ICPR), 2016 23rd International
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Conference on, pp. 3898-3903. IEEE, 2016.

3. Achievement of a real-time detection with low false detection and high true

detection rates. This is accomplished via using null space in the detection. Our

contributions in this point resulted in 2 methods, LNSP and KR-LNSP, which

are being reviewed in the following (two journals)

• Agwad ElTantawy and Mohamed S. Shehata. "LNSP: Local Null-Space

Pursuit for Real-Time Detection in Aerial Surveillance" Under revision in

IEEE transaction on image processing

• Agwad ElTantawy and Mohamed S. Shehata. "A Sequential-based PCP

method for Ground-Moving Objects Detection from Aerial Videos" Under

revision in Journal of Signal, Image, and Video Processing

4. Abstract Based Review Papers:

• Agwad ElTantawy and Mohamed S. Shehata. "Towards Robust Track-

ing Algorithm" Annual Newfoundland Electrical and Computer Engineer-

ing Conference 2014

• Agwad ElTantawy and Mohamed S. Shehata. "Sparse Optimization for

Detecting Moving Objects" Annual Newfoundland Electrical and Computer

Engineering Conference 2015

In summary, the research presented in this thesis has contributed to the body of

knowledge through 2 journal papers and 5 conference papers, plus 2 submitted journal

papers.
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1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 provides a literature review of moving

object detection methods. Chapter 3 presents how the matrix rank optimization

concept is used to address the moving objects detection problem and how to handle

the shaky camera motion of UAVs. This is illustrated via the three proposed methods

UT-MARO, N-MARO, and I-MARO. Chapter 4 focuses on reducing false detection.

Thus, it demonstrates the regularization term used to accurately distinguish true

moving objects from static false detections. Chapter 5 illustrates effective usage of

the null space to achieve the real-time performance. Also, Chapter 5 demonstrates

integration of the regularization term with null space. Chapter 6 concludes the

presented work and depicts future work based upon the research and novel methods

proposed.



Chapter 2

Literature Review

The moving objects detection problem has attracted a lot of researchers in the past

and remains an area of urgent interest today. Therefore, the literature is rich with

proposed detection methods that attempt to tackle different challenges in detecting

moving objects [3] [4] [5] [6]. This chapter reviews detection methods that specifically

aim to overcome the problems associated with detecting moving objects from an

ACP. The main difficulties relate to the relatively small-size of the moving objects, the

continuous instability and shakiness of camera motion, the lack of clear differentiating

features on the moving objects, and cluttered noisy environments.

Generally, the methods of detecting moving objects from an ACP are categorized

into: (1) Background Modelling, (2) Feature-Based Detection, (3) Neural Network-

Based Detection, (4) Motion-Based Detection, (5) Different Image Cues for Detection,

and (6) Principle Component Pursuit for Detection. The following sections explain

each of these categories with examples and attempts to illustrate the advantages and

the disadvantages of each category.

7
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Figure 2.1: The pipeline of background modelling-based detection methods

2.1 GMOs Detection Using BackgroundModelling

The earliest approach to moving object detection adopted in the field is background

modelling. As shown in Figure 2.1, the detection is achieved in three steps: (1)

motion compensation, (2) background modelling, and (3) background and foreground

pixels classification/segmentation. Motion compensation aims to counter the camera

motion in ACPs. This approach involves calculating a transformation matrix that

represents misalignment between consecutive frames due to camera motion, and then,

uses this matrix to properly align the frames. In general, the transformation matrix is

calculated via optical flow across frames [7] or computing the transformation between

sets of matched features in consecutive frames [8]. Background modelling is a process

of constructing a representation of the background (called background model). The

background model is built from the background in previous frames. Classifying the

background and foreground (i.e. moving object) pixels is achieved by differentiating

and obtaining the relative variation of the model and input frame. The variation

is significant at foreground pixels, while the variation is very low in the background

pixels.

Generally, background modelling-based detection methods are grouped according

to the methods used to construct the background model: i.e., non-recursive, recursive,

and panoramic background.
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2.1.1 Non-recursive methods:

Non-recursive methods use previous n frames as a background model for the input

frame. Then, temporal variance between the input frame and the background model is

used to detect the moving objects. Typically, a pixel in the input frame is considered

as a foreground when its intensity value is greater than or less than the corresponding

pixel(s) in the background model.

Irani et al., in [7], use previous frame as a background model for input frame.

Subtracting input frame from the background model turns the background pixels to

zeros while retaining the moving objects’ pixels. In COCOA [8], a set of frames is

considered as the background model for input frame. Then, the moving objects are

detected using an accumulative frame difference between the background model and

input frame. Due to the simplicity of Non-recursive methods, they are sensitive to

illumination changes, which is common in outdoor environments [9].

2.1.2 Recursive methods:

Instead of directly using previous frames as the background model, recursive methods

uses statistical analysis to build the background model. Each pixel in the background

is represented by statistical parameters (e.g. mean and variance, etc.) and these

parameters are updated for each input frame. Hence, Recursive methods become

more reliable against illumination changes.

For example, Wren et al. [10] use a Gaussian model to build the background model

where each background pixel is represented by mean and variance. Next, the pixels

in an input frame are classified into background and moving object pixels based on

the following rules: If the intensity value of a pixel is outside the variance of its

corresponding pixel in the background model, then this pixel belongs to a moving
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object. However, if a pixel’s intensity is within the variance of its corresponding pixel

in the background model, then this pixel is a background pixel and it will be used

to update the mean and the variance in the background model. To model complex

background, Hayman et al. [11] use a mixture of Gaussian [12], while Zivkovic et

al. [13] propose an adaptive mixture of Gaussian method. In [14], a double Gaussian

model is applied to allow for greater adaptability for outdoor scenes.

The main drawback of recursive methods is that any error in the background

model can linger for a much longer period of time. Hence, the errors introduced by

the camera motion in ACPs corrupts the background model [9]. Although typical

recursive methods apply a motion compensation to handle the camera motion, in

practice, it is often difficult to ensure the accuracy and reliability of motion compen-

sation techniques.

2.1.3 Panoramic background methods:

These methods (e.g. [15]) use multiple images of the scene that are free from the

moving objects to construct a mosaic background [16]. This mosaic background is

employed as the background model. With this approach moving objects are detected

by comparing the mosaic background with the current frame. However, any turbulence

in the illumination or intensities between the mosaic background and the current frame

leads to significant false detection rates [9].

2.2 Feature-based Detection

Figure 2.2 shows the general steps to detect moving objects using feature-based de-

tection methods. First, a set of interest/feature points (e.g. SIFT features, corner

points, etc.) are detected and matched between two frames. Then, the matched fea-
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Figure 2.2: The pipeline of feature-based detection methods

tures are used to calculate a transformation matrix that maps the latter frame to the

former frame. The matched features that cannot be mapped using the transformation

matrix are designated outliers and they represent points on the moving objects. On

the other side, the matched features that can be mapped using the transformation

matrix are inliers and represent background points.

Ollero et al., in COMETS [17], uses corner points [18] as interest points. The

corner points are matched between a pair of frames to calculate a homography matrix

that maps the corner points in a latter frame into their corresponding locations in

a former frame. Then, moving objects are detected using outlier points that cannot

be mapped using the homography matrix. In [19], FAST features [20] are matched

between consecutive frames and used to calculate a homography matrix that repre-

sents the camera motion between frames. Next, the Least Median Square Estimator

(LMedS) algorithm [21] is used to classify FAST features into outlier and inlier. Fi-

nally, inlier points are clustered to form moving objects. In [22], Li et al. propose

using a Multiview-based Parameter Free (MPF) framework to detect moving objects

(or groups of moving people in crowded scenes) by tracking a set of feature points

over time. These points are grouped according to motion and context similarity into

different moving objects and differentiated from background. Xu et al. [23] enhance

the detection accuracy by proposing a framework that selects certain matched features

for use in calculating the transformation matrix.

Feature-based methods can attain a high accuracy under the assumption that

each moving object has a subset of the interest points. However, in the case of aerial
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imagery, this assumption is not always valid due to the small size of the moving objects

and the low contrast/blurring of the background [24].

2.3 Neural Network-based Detection

Instead of using traditional features (a.k.a. hand crafted features, e.g. FAST, HOG,

etc.), Convolutional Neural Network (CNN) [25] generates features to accurately de-

scribe the regions of moving objects and background regions. For example, in R-

CNN [26], Girshick et al. use a CNN to extract features from pre-selected regions,

then classify these regions using a SVM classifier [27]. Sermanet et al. propose

overfeat method [28] that comprises two CNNs. The first CNN detects regions that

contain the moving objects, while the second CNN estimates the bounding box of

these objects.

However, CNN-based methods suffer from the class imbalance problem [29] that

drastically reduces their performance. This problem occurs when the number of neg-

ative classes dominate the positive classes. Therefore, CNN provides an accurate

detection when the moving objects occupy a large part of the scene (e.g. ImageNet

dataset [30]). Yet, in the case of aerial imagery, the background (the negative class)

is the dominant part, while the moving objects (the positive class) are quite small

(you may have only one small object in a scene). As reported in [31], when testing

the CNN-based detection method [32] on aerial imagery, the detection accuracy drops

radically, i.e. the true positive rate (TPR) is 40 % on average. Tayara et al. in [33]

enhance the detection accuracy, i.e. TPR is 90.51 % when testing on the datasets [34]

and [35]. However, their method is limited to detecting a specific class of moving

objects( in the case vehicles) and requires high resolution images. Other techniques

attempt to solve the class imbalance problem, e.g. though data augmentation [36],
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however, they still cannot reach a high accuracy when augmenting few classes [37].

2.4 Motion-Based Detection

Figure 2.3: Example of using optical flow to detect a moving object

The general concept in motion-based detection [38] is to calculate a motion vector

for each pixel in the input frame using optical flow; then, group the pixels according

to their motion vectors into either moving object pixels or background pixels. The

motion vectors of background pixels satisfy the following three conditions:

• They are aligned with the global motion in the frame

• They have similar magnitude and direction

• They represent the majority in input frame
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Any motion vector that does not meet the former conditions is for a pixel on a moving

object. Figure 2.3 shows an example of detecting moving objects using optical flow.

Aslani et al. [39] implement the former concept by calculating motion vectors for

the input frame’s pixels using [40]; next, the moving objects are identified according to

the obtained motion vectors. Yokoyama et al. [41] use motion vectors and an object’s

contour to detect moving objects.

Instead of calculating the motion vector in one frame, Brox and Malik [42] propose

calculating motion vector over time to create long term pixel trajectories. Then,

spectral clustering is used to group these trajectories into background and moving

object trajectories. Similarly, Singh et al. [43] calculate pixel trajectories, but use a

bag of words classifier to detect moving objects’ trajectories.

Unfortunately, calculating the optical flow in motion-based detection methods

is the key failure of using these methods in detecting moving objects from ACPs.

The pioneer optical flow method [40], called Lukas Kanade, suffers from errors in

determining moving object boundaries [44]. Therefore, many errors are expected on

the edges, as the whole scene in aerial imagery is moving due to the camera motion.

To clarify this point, Lukas Kanade method is applied on frame 20 and 21 from UCF

aerial action 2, shown in Figure 2.4. From ellipses 4 and 5 in Figure 2.4, Lucas Kanade

method fails to detect the optical flow vectors correctly. Although, the background

motion is rigid, ellipses 1, 2, and 3, they have different optical flow vectors. This is

due to the existence of edges in these regions. The actual flow vectors of the moving

objects are marked by the red arrow in Figure 2.5.

Although the problem with Lucas Kanade method problem is solved in the Horn

and Schunk method [45], smoothness and data terms in Horn and Schunk do not

allow for discontinuities in the optical flow field to handle outliers robustly [46]. As

shown in Figure 2.6, the edges problem which characterizes and limits the Lucas
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Kanade method disappears in Horn and Schunk method. Nevertheless, it is hard

to distinguish the moving objects from that the resulting optical flow; as shown in

ellipses 1, 2, and 3 in Figure 2.6, motion vectors of moving objects are quite similar

to the motion vectors in the background pixels

Most of these drawbacks are successfully treated in modern optical flow methods

(e.g. [47]), however, their coarse-to-fine behaviour makes them inefficient when de-

tecting small or thin moving objects, such as in aerial imagery, [48]. An example of

coarse-to-fine optical flow methods is Classic-NL [49] (one of the modern and efficient

techniques for calculating optical flow) which down-samples an image into different

smaller scales, then calculates the optical flow from the smallest scale (coarse level)

to the original scale of the image (fine level). This down-sampling of the image wipes

out small or thin objects. For example, in Figure 2.7, the motion vectors in ellipses

1, 2, and 3 are different; however all these regions belong to the background and they

should have similar motion vectors. In ellipse 1 in Figure 2.7, angles of the optical

flow vectors are almost horizontal, while in ellipse 3 Figure (2.7), they are 45 degrees.

In ellipse 2 Figure 2.7, the angles are approximately 20 degrees.

Another general disadvantage of optical flow is the difference between motion

vectors and the physical motion field. For example, the physical motion field of the

barber’s pole is horizontal while the optical flow is vertical, as in Figure 2.8. This can

be observed in aerial imagery as well, in Figure 2.9.

2.5 Different Image Cues for Detection

In contrast to the former approaches described above that depend on one cue from

the frames, recently, researchers tend to merge different cues to improve detection

accuracy. Earlier attempts used spatial and temporal cues. Usually, the temporal
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information is extracted using either background modelling or optical flow to provide

an initial detection of the moving objects in consecutive frames. After that, the

spatial information, e.g. saliency, is used to filter the results. Shen et al. [50] use

frame difference with motion compensation to detect the moving objects, then pixel

and region saliency are used to filter the output. Pouzet et al. [24] propose to use

a spatio-temporal tracker after compensating the motion of the camera. Although

these methods may reduce the false detections, they still are not robust with small

size moving objects and moving camera platforms due to using background modelling

or optical flow in the initial detection.

2.6 Principle Component Pursuit for Detection

The basic idea of PCP is proposed by Candes et al. in [51] where `∗ − norm and

`1−norm can be used to obtain a low-rank matrix (core structure) and identify noise

in an corrupted observation matrix. Zhou et al. in [52] propose a relaxed PCP to

adapt to environmental noise. In TFOCS [53], l∞ − norm is used to capture the

quantization error in the observation matrix.

Recently, PCP (i.e., Robust Principal Component Analysis) has been extensively

used to resolve several of the main problems that arise in moving objects detection.

Adopting PCP into the detection is based on the assumption that a background

in a video can be viewed as the video’s core structure; hence, the background can

be modelled as a low-rank matrix which is obtained via `∗ − norm. Due to the

motion of the moving objects, they can be modelled as sparse corrupt the video and

obtained via `1−norm. PCP provides more robust and accurate detection in different

challenging indoor and outdoor environments [54]. Moreover, PCP shows great success

in detecting small moving objects [55]. Generally, PCP-based detection methods are
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divided into two groups: batch-based PCP detection and sequential PCP detection.

In batch-based PCP detection, a set of frames has to be buffered before performing

any detection. In contrast, sequential PCP detection methods can perform detection

without buffering frames. The following subsections illustrate different methods for

both batch-based PCP detection and sequential PCP detection methods showing the

evolution of using PCP methods in moving object detection.

2.6.1 Batch-based Principle Component Pursuit

Stationary Camera

In [56], the moving objects are detected by using `1−norm, an approach also used by

Candes et al. Additionally, to reduce the rate of false detections, the moving objects

are penalized based on their temporal connectivity using a total variation penalty.

Instead of using the temporal connectivity, Xin et al. [57] assume that moving objects

should correspond to meaningful shapes, such as human, cars, etc. For this purpose,

a Fused Lasso term is added to the minimization problem to penalize the spatial

connectivity between the pixels of moving objects. Rezaei et al. [58] use objectness

detection to penalize the moving objects. The objectness detection targets to score

the moving objects according to their salient properties that are obtained via Edge

boxes [59].

Tang et al. [60] achieve the detection of moving objects by introducing a new term,

i.e., l2,1 − norm in the Candes et al. formulation. This l2,1 − norm ensures that the

columns of the low rank matrix are zeros at the location of the moving objects. Zhu et

al. [61], use l2,1−norm and spatial connectivity term to penalize the moving objects.

In [62], the total variation penalty with l2,1 − norm is used to detect moving objects

with low false detections rates.
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Although these former PCP-based detection methods achieve a robust detection,

they do not consider the camera motion. Moreover, they penalize moving objects

based on spatial information or temporal connectivity, and ignore the motion cues of

these objects (e.g. motion pattern, displacement, etc.). Hence, these methods are not

suitable for the main problem investigated in this research, which is detecting moving

objects from moving ACPs.

Moving Camera

To handle camera motion, RASL-APG [63] formulates the detection problem using

PCP with a transformation domain which represents the misalignment between suc-

cessive frames. RASL-APG solves this formulation using the accelerated proximal gra-

dient (APG) algorithm [64]. In [65], Peng el al. propose RASL-IALM to enhance their

previous work (i.e. RASL-APG) by using IALM to solve the same formulation. Both

RASL-APG and RASL-IALM use the Newton method [66] to calculate the transfor-

mation domain. DECOLOR [54] utilizes the SOFT-IMPUTE algorithm [67] to solve

RASL-APG’s problem formulation, and employs the weighted-Newton method [68]

for better calculation of the transformation domain. Although DECOLOR reduces

false detections, it is at the expense of true detections.

3TD [55] use PCP and an object confidence map to penalize the moving objects

based on their motion cue. The object confidence map is constructed by using the

dense optical flow method [69] to obtain the motion pattern of each pixel. Then, the

object confidence map assigns a weight to each pixel according to its motion pattern.

Finally, the weights of these pixels are used to filter out false detections. Similarly,

Gao et al. [70] propose the Block-Sparse RPCA method, but instead of calculating

the dense optical flow, Block-sparse RPCA calculates the optical flow Classic-NL [49]

only in the regions that may contain moving objects (we refer to these regions with
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candidate moving objects as CMOs). First, Block-sparse RPCA uses RASL-IALM

to get initial detections of all CMOs, then applies the Classic+NL optical flow [49]

to create a saliency map. This saliency map is integrated into the PCP formulation

to detect the moving objects. However, coarse-to-fine behaviour of used optical flow

methods in 3TD and Block-sparse RPCA (i.e. dense optical flow method [69] and

Classic-NL [49]) their coarse-to-fine behaviour makes them inefficient to detect small

or thin moving objects, such as in aerial imagery, [48].

2.6.2 Sequential-based Principle Component Pursuit

The computational loads of batch processing nature in the above PCP detection

methods motivate many researchers to investigate handling of the computational load

drawback and reaching a real-time performance. Therefore, different sequential PCP

methods are proposed. The first attempt is GROUSE [71] which models the back-

ground as a subspace that lies in a low dimension subspace; Next, the background is

estimated at each time based on this low dimension subspace. Typically, GROUSE

recovers the background by minimizing the gradient of the `2 − norm cost function

between a video frame and the low dimension subspace, which is the orthonormal

matrix. Since the background is an evolving subspace, the orthonormal matrix is up-

dated based on the Grassmannian manifold. GRASTA [72] extends GROUSE in two

key ways: (1) modelling the moving objects as sparse corrupting a video frame which

can be detected by minimizing `1−norm, and (2) reducing the sensitivity to the noise

by computing a gradient of the `1−norm cost function. ROSETA [73] adds a smooth-

ness term to maintain the proximity of the orthonormal matrix current estimate to its

previous estimate, and it also adds an adaptive parameter selection strategy to reach

precise results with low computational overhead. Improved ROSETA [74] includes

an `2− norm data misfit term and an `1− norm regularization term applied to the
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outliers. Although GRASTA, ROSETA and improved ROSETA achieve adequate

real-time performance, they suffer from high false detections when used for aerial

videos. Xu et al., in GOSUS [75], enhance this performance via object contiguity by

penalizing the moving objects, but they fail to reach adequate real-time performance.

Instead of using the orthonormal matrix, Qui et al., in ReProCS [76], calculate the

null space [77] of the background in a set of frames, then project this null space into the

current frame to nullify the background and retain the moving objects. PracReProCS-

pPCA [78] extends ReProCS by introducing a slow subspace change where the sub-

space is estimated every n frames to adapt to the background changes. However,

PracReProCS-pPCA cannot cope with the rapid background changes caused by the

shaky camera motion in aerial videos. Moreover, ReProCS and PracReProCS-pPCA

are computationally intensive methods.

amFastPCP [79] replaces the constraints of the original PCP formulation [51]

with penalties to the subspace rank and vice versa. Then, the background is esti-

mated sequentially using a partial SVD, while the moving objects are detected using

a shrinkage of the current frame. Rodriguez et al., in incPCP [80], reduce the compu-

tational and memory loads by proposing thin SVD. Rodriguez et al. in [81] overcome

the ghost effect of amFastPCP and incPCP by substituting the standard `1− norm

with a projection onto the `1 − ball. Nevertheless, the performance of the method

in [81], incPCP and amFastPCP drops drastically in aerial videos because of the

camera motion.

To handle the camera motion in aerial videos, Chau et al., in [82], introduce a

transformation domain to align the current background estimate with the previous

backgrounds estimates; however, their method is computationally expensive. Shakeri

et al. propose COROLA [83] to handle both the camera motion and reduce the

computational loads. COROLA avails of the ideas in the DECOLOR [54] and OR-
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PCA [84] methods. Although, COROLA outperforms other S-PCP methods and

reduces the computational loads, it suffers from ghosts effects. The resulting errors

from this effect aggregate over time until the whole frame is detected as a single

moving object. Moreover, it does not meet real-time requirements.
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UCF aerial action 2, Frame 20

UCF aerial action 2, Frame 21

Motion vectors using Lukas Kanade method

Figure 2.4: Example of applying Lukas Kanade optical flow in detecting a moving
object
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UCF aerial action 2, Frame 20

UCF aerial action 2, Frame 21

True Motion vectors of the motion objects

Figure 2.5: Actual motion vectors for the moving objects in Frame 20 and 21 in UCF
aerial action
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UCF aerial action 2, Frame 20

UCF aerial action 2, Frame 21

Motion vectors using Horn and Schunk method

Figure 2.6: Example of applying Horn and Schunk optical flow in detecting moving
objects
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UCF aerial action 2, Frame 20

UCF aerial action 2, Frame 21

Motion vectors using Classic-NL method

Figure 2.7: Example of appying Classic-NL optical flow in detecting moving objects
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Figure 2.8: Motion vectors of moving barber’s pole
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UCF aerial action 2, Frame 20 UCF aerial action 2, Frame 21

Lucas Kanade method Horn and Schunk method

Classic-NL method

Figure 2.9: Motion vectors in aerial images



Chapter 3

Moving Objects Detection Using

Principle Component Pursuit

3.1 Introduction

The problem of retrieving the core structure of corrupted observations attracts a lot

of attention in different research fields [85], e.g. matrix completion, computer vision,

machine learning, etc. The first attempts in this direction are based on Principal Com-

ponent Analysis (PCA) [86] in which the core structure of the corrupted observation

is modelled as a low-rank matrix; hence, PCA searches for the best rank-k estimate of

this low-rank matrix that minimizes the `2 − norm between the observation and this

estimate. Although, PCA has been widely deployed in a diverse range of applications,

PCA is not suitable for use in modern applications that deal with grossly corrupted

observations. Recently, Principal component pursuit (PCP) [51] has been proposed

as a robust alternative for PCA. In PCP, the observation is decomposed into two

components: a low-rank component (the core structure) and a sparse component by

minimizing a weighted combination of the nuclear norm and the `1 − norm.

28
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3.2 Chapter Contributions

This chapter illustrates how PCP is utilized to formulate the problem of detecting

moving objects. Since the main scope of this thesis is detecting moving objects from

ACPs, this chapter focuses on handling camera motion in ACPs. To this end, three

detection methods are proposed: (1) Unscented Transformation with MAtrix Rank

Optimization (UT-MARO), (2) MAtrix Rank Optimization with weighted Newton

(N-MARO), and (3) MAtrix Rank Optimization with inexact Newton method (I-

MARO). These methods are published in one journal and two conferences:

• Agwad ElTantawy and Mohamed S. Shehata. "MARO: matrix rank optimiza-

tion for the detection of small-size moving objects from aerial camera platforms."

Journal of Signal, Image and Video Processing 12, no. 4 (2018): 641-649.

• Agwad ElTantawy and Mohamed S. Shehata. "Moving object detection from

moving platforms using lagrange multiplier." In Image Processing (ICIP), 2015

IEEE International Conference on, pp. 2586-2590. IEEE, 2015.

• Agwad ElTantawy and Mohamed S. Shehata. "UT-MARO: unscented transfor-

mation and matrix rank optimization for moving objects detection in aerial im-

agery." In International Symposium on Visual Computing, pp. 275-284. Springer,

Cham, 2015. (Oral presentation, acceptance rate 16.5 % - 43/260)

The results in this chapter are replicated from these former publications.
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3.3 Principal Component Pursuit for Moving Ob-

ject Detection

Given a sequence of frames, the goal is to extract the moving objects from these

frames. Ideally, the background intensity in these frames should not change except

for variations caused by illumination changes. Consequently, the background in the

frames is linearly correlated, which implies that this background can be modelled as

a low-rank matrix. However, the existence of moving objects, the motion of which

differs from that of the background, causes an interruption in the background intensity.

This interruption cannot fit into the low-rank model of the background. Therefore,

the moving objects can be modelled as sparse or outliers of the low-rank matrix.

From the above, the sequence of frames can be viewed as a combination of two

components: low-rank matrix (the background) and sparse (the moving object). To

detect the moving objects from a sequence of frames, the sequence should be decom-

posed into its components. Mathematically, this decomposition can be achieved by

solving the following PCP formulation:

min
B,O

Rank(B) s.t. F = B +O, ‖O‖0 ≤ ε (3.1)

where F ∈ IRn×m is a frames matrix that is defined as F = [vec(f1), ..., vec(fm)];

n is the resolution of a frame fi ∈ IRw×h; m is the number of frames in F ; vec :

IRw×h → IRn; B ∈ IRn×m denotes the background in the frames matrix; O ∈ IRn×m

represents the moving objects; Rank(.) signifies the rank of a matrix (matrix rank

is the maximum number of linearly independent column vectors in the matrix); ‖.‖0

denotes L0 − norm which is as a total number of non-zero elements in a matrix; ε is

a constant that represents the maximum number of corrupted pixels by the moving
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objects. A more convenient form of Eq. 3.1 can be rewritten in the following Lagrange

form:

min
B,O

Rank(B) + λ‖O‖0 s.t. F = B +O (3.2)

where λ is a weighting parameter.

However, optimizing Eq. 3.2 with the existence of the non-convex functions

Rank(.) and ‖‖0 is not tractable. Fortunately, a convex relaxation can be applied

under the assumption that the rank of B is not too high and the number of non-zero

entries in O is small [51]. Hence, the nuclear norm ‖B‖∗ and the `1−norm ‖O‖1 can

be used as the natural surrogates for Rank(B) and ‖O‖0, respectively to recover B

and O:

min
B,O

‖B‖∗ + λ‖O‖1 s.t. F = B +O (3.3)

‖.‖∗ is defined as the sum of singular values in a matrix. ‖.‖1 the sum of all

elements in a matrix.

The following sections illustrate the solution of the moving objects detection prob-

lem formulation in Eq. 3.3 via three proposed novel methods: UT-MARO, N-MARO,

and I-MARO. Additionally, each of these methods provides a unique way of handling

the camera motion in ACPs.

3.4 UT-MARO

The continuous motion of ACPs represents the main challenge for any such detection

method, as distinguishing between real moving objects and static background elements

(which will appear as moving) presents a number of unique technical difficulties. This

is similar to the case of using PCP formulation to detect moving objects from ACPs.

The camera motion in ACPs makes the similar background parts across the frames to
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be misaligned; hence, it puts the validity of modelling the background as a low-rank

in jeopardy. Therefore, UT-MARO proposes novel feature-based frame alignment

method to handle the camera motion problem. This alignment method utilizes the

unscented transformation [87] to calculate a transformation domain T that represents

the misalignment between consecutive frames (T ∈ IR3×3×m).

3.4.1 Unscented Transformation for Frame Alignment

Most PCP-based detection methods found in the literature, such as RASL-IALM,

use the Newton method to calculate the misalignment between frames. However,

estimating the misalignment using the Newton method is more complicated than

using the unscented transformation with a probability distribution approximation [87].

Typically, the unscented transformation uses a set of points, called sigma points {σ},

that encode the statistical properties of the input space. Then, these points are

propagated into the non-linear system to obtain a cloud of transformed points.

UT-MARO calculates T = {t1, ..., tm} (ti is an affine transformation matrix for

frame fi) by propagating a set of matched points between the frames in F through the

unscented transformation, as show in Figure 3.1. This is achieved via the following

steps:

1. Set the first frame in F as a reference frame fref

2. Detect SURF feature points [88] in fref

3. Detect SURF feature points in frame fi

4. Match these feature points with the corresponding SURF feature points in fref .

Mtchref (input space) represents the corresponding matches in fref , whileMtchi

(the transformed points) denotes the matched SURF feature points in fi.
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5. Compute the statistical properties, i.e. Mean and the covariance matrix Σ, for

Mtchi and Mtchref .

6. Calculate five sigma points for Mtchi and Mtchref as follows:

σi,1 = Meani (3.4)

σi,j = σi,1 ± (
√

(dim)Σi), j = 2, 3, 4, 5 (3.5)

where where σi,j denotes a sigma point forMtchi; dim is matched feature points

dimensions. The sigma points {σref,1, ..., σref,5} of Mtchref are calculated same

as in Eq. 3.4 and Eq. 3.5.

7. Calculate affine transformation matrix (t′i,j) for each corresponding pair of the

sigma points σi,j and σref,j. Since the minimum number of points required for

calculating the affine transformation matrix is four points, four extra sigma

points are calculated for both σi,j and σref,j. These extra sigma points are

calculated as follows:

σ
′

i,j,k = Mean
′

i,j ± (
√

(dim)Σi), k = 1, 2, 3, 4 (3.6)

where σ′i,j,k denotes an extra sigma point for σi,j; Mean
′
i,j = σi,j.

8. Calculate the affine transformation matrix ti that maps fi to fref as a weighted

average of the five transformation matrices {t′i,1, ..., t
′
i,5}, as shown in the follow-

ing equation:

ti = 1
5

5∑
i=0

wit
′

i,j (3.7)
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where wi,j are weight calculated as:

wi,1 = ξ

(d+ ξ) (3.8)

wi,j = ξ

(dim+ ξ) , j = 2, 3, 4, 5 (3.9)

where ξ is a scaling parameter.

9. Update fref by fi if the transformation matrix ti is greater than a certain thresh-

old. This will help adapt to compensate for high shakiness in new frames after

fi.

10. Repeat steps 2-9 for fi+1 to obtain ti+1

After calculating the transformation domain T , The frames in F are aligned as in

the following Equation:

F̃ = F • T (3.10)

where F̃ is a matrix of aligned frames, • is an alignment operator.

3.4.2 Video Decomposition

Given the alignment operation is applied on the frames in F , then, the problem

formulation in Eq. 3.3 can be re-written as:

min
B,O

‖B‖∗ + λ‖O‖1 s.t. F̃ = B +O (3.11)

Consequently, to detect the moving objects, UT-MARO decomposes F̃ into moving

objects and background. The decomposition is obtained via Inexact Augmented La-

grange Multiplier method (IALM). IALM is a type of Augmented Lagrange Multiplier
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Figure 3.1: Unscented Transformation of Feature Points

solver that is designed to provide an accurate and fast solution to PCP problems. It

is five times faster than other PCP solvers with a higher precision. IALM replaces the

constrained optimization problem in Eq. 3.11 with a series of unconstrained problems

and adds a penalty term to the objective function, as follows:

L(B,O) = ‖B‖∗ + λ‖O‖1 + 〈Y, F̃ −B −O〉+ µ

2‖F̃ −B −O‖
2
F (3.12)

where µ is a positive scalar; ‖.‖2
F is the Frobenius norm; and 〈X, Y 〉 denotes the inner

product. The Lagrange multiplier Y is calculated as:

Y ← Y + µ(F̃ −B −O) (3.13)
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Then, IALM chooses the best µ to reduce the number of singular value decompositions

(SVD) required to obtain the low-rank matrix and obtain accurate values for B and

O. Finally, an alternating strategy is adopted in which IALM minimizes Eq. 3.12

iteratively with respect to its components, i.e. B and O:

Bk+1 = argmin
B
L(B,Ok) (3.14)

Ok+1 = argmin
O
L(Bk, O) (3.15)

In the result of this section, the closed-form solutions of B and O are derived from

Eq. 3.14 and Eq. 3.15. For simplicity, the subscript k in these equations is dropped

when deriving the closed-form solutions. Also, the expected terms to be zeros due the

partial derivative are removed from the beginning. For example, when obtaining the

closed-form solution of B from Eq. 3.14, terms ‖O‖1, 〈Y, F̃ , and 〈Y,O〉 are turned to

be zeros since the partial derivative is over B.

Closed-form Solution of B

From Eq. 3.12, Eq. 3.14 can be written as follows:

B = argmin
B

‖B‖∗ + 〈Y,−B〉+ µ

2‖F̃ −B −O‖
2
F (3.16)

Since, ‖x‖2
f = 〈X,X〉, then we replace the Frobenius norm with an inner product,

expand the inner product and separate B:

B = argmin
B

‖B‖∗ + 〈Y,−B〉+ µ

2‖B‖
2
F − 2〈F̃ −O,B〉 (3.17)
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The former equation can be simplified as:

B = argmin
B

‖B‖∗ + µ

2‖B‖
2
f − 2〈F̃ + µ−1Y −O,B〉 (3.18)

Since, ‖B‖2
f = 〈B,B〉, then 〈F̃ + µ−1Y − O,B〉 can be combined with ‖B‖2

f into a

single Frobenius norm:

B = argmin
B

‖B‖∗ + µ

2‖B − F̃ + µ−1Y −O‖2
F (3.19)

By applying the single value thresholding algorithm [89], the closed-form solution is

B = USµ−1(Σ)V T (3.20)

where U , Σ and V are SVD of the term (F̃ +µ−1Y −O); Sα(x) is the soft thresholding

operator defined as in Eq. 3.21

Sα(x) = sign(x)×max{|x| − α, 0} (3.21)

Closed-form Solution of O

From Eq. 3.12, Eq. 3.15 can be written as follows:

O = argmin
O

λ

µ
‖O‖1 + 1

2‖O − (F̃ + µ−1Y −B)‖2
f (3.22)

Since the ‖O‖1 function is non-differentiable, then, subdifferential ∂ of Eq. 3.22 is

obtained and set to zero [90], as follows:

0 = λ

µ
sign(O) +O − (F̃ + µ−1Y −B) (3.23)
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rearrange the terms

O = λ

µ
sign(O) + F̃ + µ−1Y −B (3.24)

and this can be expressed as:

O =



F̃ + µ−1Y −B − λ
µ
, if F̃ + µ−1Y −B > λ

µ

F̃ + µ−1Y −B + λ
µ
, if F̃ + µ−1Y −B < −λ

µ

0, otherwise

(3.25)

This piecewise in the former equation is equivalent to the soft thresholding operator

in Eq. 3.15. Hence, the closed-form solution of O is:

O = Sλ
µ
(F̃ + µ−1Y −B) (3.26)

The complete UT-MARO algorithm is shown in Algorithm 1.

Algorithm 1 UT-MARO Algorithm
1: Input: F , µ, ρ
2: Output: O
3: procedure :
4: T ← CalculateTransformationDomain(F )
5: F̃ ← Alignment(F, T )
6: while not converge do
7: (U,Σ, V ) = svd(F̃ + µ−1Yk −Ok)
8: Bk+1 = USµ−1 [Σ]V T

9: Ok+1 = Sλµ−1 [F̃ + Yk −Bk+1]
10: Yk+1 = Yk + µk(F̃ −Bk+1 −Ok+1)
11: µk+1 = ρµk
12: end while
13: end procedure
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3.4.3 Method Analysis

UT-MARO reduces the computational loads in calculating the transformation via

unscented transformation. However, if the features are located in the moving objects

or concentrated in a specific part of the frame, the accuracy of the transformation

domain will decrease.

3.5 N-MARO

The UT-MARO’s disadvantages are the motive of developing N-MARO method. N-

MARO method uses a variation of the Newton method (the weighted Newton method

[68]) to provide more accurate results and faster convergence than the typical Newton

method. Moreover, N-MARO integrates T into the problem 3.3 to reach the optimal

solution when all B, O, and T are optimal. N-MARO problem formulation is as

follows:

min
B,O

‖B‖∗ + λ‖O‖1 s.t. F • T = B +O (3.27)

The following subsection shows the derivations of the closed-form solution of B, O,

and T

3.5.1 Weighted Newton Method for Frame Alignment

The non-linearity of F •T , due to the complicated dependence of F •T on T , represents

the main difficulty to calculate T directly. The classical method to overcome this

difficulty is to adopt Newton method (a.k.a Newton–Raphson method [91]). The

basic idea of the Newton method is to approximate a non-linear function via repeated

linearization. Initially, a non-linear function is approximated around an initial guess

that is supposed to be close to the true root of this function, next, the resulting value
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from the former approximation is used in the next approximation, and so on. Consider

a system of non-linear equations G(x) = 0; then, this system can be expanded using

Taylor series as:

G(x+4x) ≈ G(x) +G
′(x)4x (3.28)

where G′(x) is the derivative of G(x); 4x is the Newton step that approximates the

root value of the system in each iteration, as shown in Algorithm 2.

Algorithm 2 Newton method for estimating non-linear systems
1: Input: x0

2: Output: G(x)

3: while not converge do

4:

4x = − G(x)
G′(x) (3.29)

5: x← x+4x∗

6: end while

Similarly, F • T is expanded using Taylor series:

F • (T +4t) ≈ F • T + J4t (3.30)

where J denotes the Jacobian (J = ∂
∂T

(F • T )). Then, inspired by the weighted

Newton method in [54], T is iteratively updated as:

T ← T + (4t∗ × ζ) (3.31)

Where ζ is a scalar weighting value; 4t∗ is the optimal Newton step that is obtained
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by solving the following sub-problem:

min
B,O,4t

‖B‖∗ + λ‖O‖1 s.t. F • T + J4t = B +O (3.32)

3.5.2 Video Decomposition

N-MARO uses IALM to decompose F into B and O. IALM reformulates Eq. 3.32 as

follows:

L(B,O,4t) = ‖B‖∗+λ‖O‖1 + 〈Y, F •T +J4t−B−O〉+ µ

2‖F •T +J4t−B−O‖2
F

(3.33)

Then, the alternating strategy is used to minimize Eq. 3.33 iteratively with respect

to its components, i.e. B, O, and 4t:

Bk+1 = argmin
B
L(B,Ok,4tk) (3.34)

Ok+1 = argmin
O
L(Bk, O,4tk) (3.35)

4tk+1 = argmin
T
L(Bk, Ok,4t) (3.36)

In the following, the closed-form solutions of B, O, and 4t are derived from Eq.

3.34, Eq. 3.35, and Eq. 3.36. For simplicity, the subscript k in these equations is

dropped when deriving the closed-form solutions.

Closed-form Solution of B

From Eq. 3.33, Eq. 3.34 is written as:

B = argmin
B

‖B‖∗ + 〈Y,−B〉+ µ

2‖F • T +
m∑
i=1

Ji4t−B −O‖2
F (3.37)
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Since, ‖x‖2
f = 〈X,X〉, then replace the Frobenius norm with an inner product, expand

the inner product and separate B:

B = argmin
B

‖B‖∗ + 〈Y,−B〉+ µ

2‖B‖
2
F − 2〈F • T +

m∑
i=1

Ji4t−O,B〉 (3.38)

The former equation can be simplified as:

B = argmin
B

‖B‖∗ + µ

2‖B‖
2
f − 2〈F • T +

m∑
i=1

Ji4t+ µ−1Y −O,B〉 (3.39)

Since, ‖B‖2
f = 〈B,B〉, then 〈F • T + µ−1Y −O,B〉 can be combined with ‖B‖2

f into

a single Frobenius norm:

B = argmin
B

‖B‖∗ + µ

2‖B − F • T +
m∑
i=1

Ji4t+ µ−1Y −O‖2
F (3.40)

By applying the single value thresholding algorithm [89], the closed-form solution is

B = USµ−1(Σ)V T (3.41)

where U , Σ and V are SVD of the term (F • T +∑m
i=1 Ji4t+ µ−1Y −O).

Closed-form Solution of O

From Eq. 3.33, Eq. 3.35 is written as:

O = argmin
O

λ

µ
‖O‖1 + 1

2‖O − (F • T +
m∑
i=1

Ji4t+ µ−1Y −B)‖2
f (3.42)
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then, obtain the partial derivative of O. However, ‖O‖1 function is non-differentiable.

Thus, subdifferential ∂ of Eq. 3.42 is obtained and set to zero [90], as follows:

0 = λ

µ
sign(O) +O − (F • T +

m∑
i=1

Ji4t+ µ−1Y −B) (3.43)

rearrange the terms

O = λ

µ
sign(O) + F • T +

m∑
i=1

Ji4t+ µ−1Y −B (3.44)

and this can be expressed as:

O =



F • T + J4t+ µ−1Y −B − λ
µ
, if F • T + J4t+ µ−1Y −B > λ

µ

F • T + J4t+ µ−1Y −B + λ
µ
, if F • T + J4t+ µ−1Y −B < −λ

µ

0, otherwise
(3.45)

This piecewise in the former equation is equivalent to the soft thresholding operator

in Eq. 3.21. Hence, the closed-form solution of O is:

O = Sλ
µ
(F • T +

m∑
i=1

Ji4t+ µ−1Y −B) (3.46)

Closed-form Solution of 4t

From Eq. 3.33, Eq. 3.36 is written as:

4t = argmin
4t

‖F • T +
m∑
i=1

Ji4t+ µ−1Y −B −O‖2
F (3.47)
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Then, obtain partial derivative of 4t:

0 = F • T + J4t+ µ−1Y −B −O (3.48)

Rearrange the terms:

4t = J†(B +O − F • T − µ−1Y ) (3.49)

where J† is the pseudo inverse of the Jacobian matrix J .

The complete algorithm of N-MARO is depicted in Algorithm 3
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Algorithm 3 N-MARO Algorithm
1: Input: F , µ0, ρ0, T0

2: Output: O

3: procedure :

4: while not converge do

5: F • T ← updateAlignment(F, T )

6: J ← CalculateJacobin(F • T )

7: while not converge do

8: (U,Σ, V ) = svd(F • T + J4t+ µ−1Yk −Ok)

9: Bk+1 = USµ−1 [Σ]V T

10: Ok+1 = Sλµ−1 [F • T + J4t+ Yk −Bk+1]

11: 4tk+1 = J†k(Ok +Bk − F • T − µ−1
k Yk)

12: Yk+1 = Yk + µk(F • T + J4t−Bk+1 −Ok+1)

13: µk+1 = ρµk

14: end while

15: T ← T +4t∗

16: end while

17: end procedure

3.5.3 Method Analysis

As shown in the results section, N-MARO achieves better results than UT-MARO.

Yet, N-MARO falls into problems. The first problem is the significant computational

load due to using the weighted Newton method. The second problem is that B and

O in N-MARO algorithm may converge faster than T because the convergence rates

of IALM and the weighted Newton method are different.
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3.6 I-MARO

I-MARO was proposed to solve the problems with N-MARO via the following twofold

approach. First, I-MARO uses inexact Newton method to calculate T which reduces

the computational load radically and enhances the accurate calculation of T . Second,

I-MARO proposes a backtracking behavior to ensure that the moving objects are

detected only if T reaches its optimal value. The flow chart of the I-MARO method

is shown in Figure 3.2.

Figure 3.2: I-MARO Flowchart

3.6.1 Inexact Newton Method For Frame Alignment

Since calculating T based on feature points matching is risky, due to the reasons

mentioned above, we decided to estimate T by linearising F •T . Yet, the linearisation

using the Newton method (e.g. RASL-IALM [65]), or weighted Newton method (e.g.

N-MARO and DECOLOR [54]), is time consuming if the initial value T0 is far from the

solution [92]. Moreover, these Newton methods have a trade-off between the accuracy

and the amount of work per iteration [93], i.e. how many iterations of the inner-loop

of Algorithm 3 is required to solve the sub-problem in Eq. 3.32 to reach a certain level
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of accuracy. Usually, Newton-based methods (e.g. RASL-IALM, N-MARO, etc.) set

an arbitrary number of iterations to solve the sub-problem to limit the computational

loads. However, this number of iterations cannot guarantee the same level of accuracy

for all input datasets, because the accuracy of the calculated transformation domain

T fluctuates according to camera shakiness level of each dataset.

Hence, the inexact Newton method is a better alternative because it provides an

accurate and fast approximation of non-linear systems. Instead of the exact solution

of the sub-problem in Eq. 3.29 of obtaining the Newton step 4t∗, the inexact Newton

method adopts searching directions to generate the sequence of Newton steps without

solving this sub-problem exactly. The searching directions have to satisfy an inexact

Newton condition which is controlled by a forcing parameter. For a better under-

standing of the inexact Newton method, consider a system of non-linear equations

G(x) = 0. The inexact Newton method calculates a sequence of Newton steps {4x}

based on the searching directions that satisfy the condition in Eq. 3.50:

‖G(x) +G
′(x)4x‖ ≤ ηG(x) (3.50)

where η ∈ [0, 1) is the forcing parameter. Hence, instead of solving Eq. 3.29 exactly to

obtain 4x∗, the forcing parameter η can be used to obtain 4x to compute x directly,

as shown in Algorithm 4:

Algorithm 4 Inexact Newton method for estimating non-linear systems
1: while not converge do

2: Find a vector 4xk that satisfies:

3: ‖G(x) +G
′(x)4x‖ ≤ ηG(x)

4: x← x+4x

5: end while
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The convergence of the inexact Newton method is proved in [66] and [94].

Similar to Eq. 3.50, the subjective function in Eq. 3.27 can be written using the

inexact Newton method condition [66] as:

F • T − (B +O) + J4t ≤ η(F • T − (B +O)) (3.51)

Consequently, the close-form solution to calculating the Newton step 4t is derived as

follows: Rearrange Eq. 3.51 as:

(1− η)(F • T −B −O) + J4t = 0 (3.52)

4t = argmin
4t

〈Y, J4t〉+ µ

2 (1− η)‖F • T + J4t−B −O‖2
f (3.53)

Replace the Frobenious norm with an inner product, expand the inner product, and

separate J4t as below:

4t = argmin
4t

〈Y, J4t〉+ µ(1− η)
2 {〈J4t, J4t〉+ 2〈F • T −B −O, J4t〉} (3.54)

4t = argmin
4t

µ

2‖F • T + J4t+ (µ(1− η))−1Y −B −O‖2
f (3.55)

Obtain the partial derivative for 4t

0 = µ(1− η)
2 ∂(‖J4t+ (F • T + (µ(1− η))−1Y −B −O)‖2

f ) (3.56)

Rearranging the terms, then the closed-form solution of 4t is

4t = J†(B +O − F • T − (µ(1− η))−1Y ) (3.57)
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Finally, the transformation domain T is updated iteratively as :

T ← T +4t (3.58)

3.6.2 Video Decomposition

I-MARO integrates a backtracking behaviour into IALM to ensure that the optimal

values of B and O are obtained only if the frames are optimally aligned, in this way,

the incidence of false detections are reduced. The backtracking behaviour forces the

following three conditions to be true upon convergence:

1. d(4tk+1,4tk) ≈ 0

2. |4t| ≈ 0

3. ‖F•T−B−O‖
2
f

‖F•T‖2
f
≈ 0

where |.| is the absolute value; d(, ) denotes the Euclidean distance. According to

these conditions, three convergence scenarios are considered:

• All three conditions occur at the same time: this scenario means the solution of

the optimization problem is obtained when B, O and T converge to the optimal

values concurrently.

• First and second conditions occur before the third condition: this scenario refers

to T converging to the optimal value, but B and O are still not optimal. In this

scenario, I-MARO keeps optimizing B and O with the optimal value of T until

B and O converge to their optimal values.

• Third condition occurs before the first two conditions: This scenario implies that

I-MARO reaches the optimal values of B and O before obtaining the optimal
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value of T . In other words, the frames are not yet optimally aligned when the

moving objects are detected. Thus, I-MARO backtracks to values of B and O

at iteration k−κ (κ is positive integer) and then keeps solving the optimization

problem until one of the first two scenarios occurs.

It is worth mentioning that the backtracking behaviour does not affect the convergence

proof of the original IALM; it is similar to the proved convergence in [65]. But, instead

of setting B and O to zeros at each new F • T , I-MARO uses the values of iteration

number k− κ when the backtracking is required. Algorithm 5 describes the complete

I-MARO algorithm.

Algorithm 5 I-MARO Algorithm
1: Input: F , µ0, ρ0, T0
2: Output: O
3: procedure :
4: while True do
5: F • Tk+1 = UpdateAlignment(F, Tk)
6: Jk+1 = CalculateJacobin(F • Tk+1)
7: (U,Σ, V ) = svd(F • Tk+1 + µ−1Yk −Ok)
8: Bk+1 = USµ−1 [Σ]V T

9: Ok+1 = Sλµ−1 [F • Tk+1 + Yk −Bk+1]
10: 4tk+1 = J†k+1(Bk+1 +Ok+1 − F • Tk+1 − (µ(1− η))−1Yk)
11: Yk+1 = Yk + µk(F • Tk+1 −Bk+1 −Ok+1)
12: µk+1 = ρµk
13: Tk+1 = Tk +4tk+1

14: if ‖F•Tk+1−Bk+1−Ok+1‖2f
‖F•Tk+1‖2f

< ε then
15: if d(4tk+1,4tk) < ε and |4tk+1| < ζ then
16: Break
17: else
18: Bk+1 = Bk−κ
19: Ok+1 = Ok−κ
20: Yk+1 = Yk−κ
21: µk+1 = µk−κ
22: end if
23: end if
24: end while
25: end procedure
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Convergence

The backtracking behavior in I-MARO keeps the convergence the same as int he

original N-MARO. The convergence proof was proposed in [65]. In N-MARO, IALM

tries to obtain B and O at a new value of F • T in each iteration. Typically, F • T is

updated at each iteration of the outer-loop of Algorithm 3. The same logic is applied

in the backtracking behaviour of I-MARO; it gets the kth previous values of B and O

with better F • T .

Figure 3.3: I-MARO Convergence Demonstration

Assume point A in Figure 3.3 represents the optimal value achieved using IALM.

The backtracking returns point A backward to its ith previous value. Then, IALM

starts minimization from that value to reach the optimal value. In I-MARO case, the

backtracking does not affect the convergence of IALM. Hence, IALM tries to obtain

the values of B and O such that B +O equals the new F • T .

3.7 Experiment Setup

The evaluation of the proposed methods is twofold: detection accuracy evaluation

and computational load evaluation. The detection accuracy evaluation is carried out

on the DARPA VIVID [95], UCF aerial action [96], and VIRAT aerial [97] datasets.
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Overall, ten sequences from these datasets are used for the evaluation. These se-

quences were carefully chosen to represent different challenges that can be found in

typical aerial videos, e.g. various levels of shakiness, different environments, and di-

verse size of moving objects, as shown in Table 3.1. The shakiness level is computed

using peak signal noise ratio (PSNR) [98] as follows:

PSNR = 20× log10(MAX)− 10× log10MES (3.59)

MES = 1
w × h

w∑
α=1

h∑
ϕ=1

[fi(α, ϕ)− fj(α, ϕ)] (3.60)

where MAX is maximum intensity value of frames fi and fj; w and h are the width

and height of these frames. In the selected sequences, the shakiness level is between

19dB to 32dB (less dB (Decibel) means higher shakiness). The use of a variety of

environments where these sequences are captured tests the detection methods under

different conditions, such as, dynamic background and small displacement of the mov-

ing objects problems. For example, the dynamic background problem arises in forest

environments because of the motion of the losse objects, such as tree leaves. Small

displacement of the moving objects problem is obvious in urban areas or vehicle lots

where the vehicles are forced to move very slowly due to traffic conditions and slow

pace size of human is very small when seen from ACPs. The size of the moving objects

is one of the main factors when objectively evaluating any detection method, espe-

cially in the case of aerial imagery. Thus, the moving objects’ sizes in these sequences

are between 15× 15 pixels to 50× 50 pixels.

Numerically, the detection accuracy is computed using the true positive rate

(TPR) and the false positive rate (FPR), that are calculated as:

FPR = FP

FP + TN
(3.61)
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Table 3.1: Datasets Characteristics Summary

Dataset Sequences Environment Resolution Object sizes shakiness
PSNR(dB)

D
A
R
PA

Egtest 1
Runway 320× 240

30× 30 30
Egtest 2 20× 20 32
Egtest 3 Wooden area 50× 50 30
Egtest 5 15× 15 32

U
C
F Action 1

Urban area 480× 270
15× 25 23

Action 2 20× 30 22
Action 3 10× 20 26

V
IR

AT flight2tape1_2 Highway
360× 240

30× 20 23
flight2tape2_1 vehicle lots 50× 50 19
flight2tape3_2 Forest 30× 20 21

TPR = TP

TP + FN
(3.62)

where TP is a true detection and FP is a false detection. TN is true negative

and FN is false negative. TP and FP are calculated using a region-based measure

[55]. First, a binarization step is applied on the gray scale images that result from

a perspective detection method being evaluated. Second, a connected components

labelling algorithm is applied on the binary masks resulting from the previous step to

obtain contiguous regions. Finally, these regions are counted as TP if they overlap

with the ground truth, with a minimum of 25%, otherwise it is counted as FP . Since

the best threshold value used in the binarization step varies from one detection method

to another, the binarization is performed for different threshold values between 0 and 1

with step 0.02. Then, TPR and FPR are calculated at each threshold value, as in Eq.

3.61. The relationship between TPR and FPR is depicted using receiver operating

characteristic (ROC) curves, such as Fig. 3.4, then the tip point of the corresponding

ROC curve is considered the best TPR and FPR values for each of the detection

method being evaluated.

The computational load evaluation is reported in two forms: execution time and

complexity. The execution time is calculated on i5-4200U computer with the following
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hardware specifications: CPU @1.60GHz, 2.30 GHz, x64-based processor, and 4 GB

ram. The implementation of the respective detection method being evaluated is done

on MATLAB. The frame resolution used in calculating the execution time is 320 ×

240, and the execution time is computed as second(s) per frame. The complexity is

evaluated per iteration as all the detection methods under evaluation in this thesis

are iterative methods.

For an objective evaluation of our proposed methods, they have to be compared

with relevant PCP based detection methods found in the literature–namely, RASL-

IALM [65], RASL-APG [63], DECOLOR [54], and 3TD [55].
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Figure 3.4: ROC curves for UT-MARO, N-MARO, I-MARO, RASL-IALM, RASL-
APG, DECOLOR, and 3TD on DARPA VIVID
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Figure 3.5: ROC curves for UT-MARO, N-MARO, I-MARO, RASL-IALM, DE-
COLOR, and 3TD on UCF aerial action
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Figure 3.6: ROC curves for UT-MARO, N-MARO, I-MARO, RASL-IALM, DE-
COLOR, and 3TD on VIRAT
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Figure 3.7: Average ROC curves for UT-MARO, N-MARO, I-MARO, RASL-IALM,
DECOLOR, and 3TD

3.8 Results

3.8.1 Detection Accuracy Evaluation

As summarized in Figures 3.4, 3.5, 3.6, and 3.7, I-MARO proposes the best perfor-

mance for all datasets regardless of the shakiness of the ACPs, the size of the moving

object, or small movements of the background (such as those caused by wind). As

shown in Tables 3.2 and 3.3, I-MARO has the highest TPR, with an average of 95.4

%; I-MARO also keeps the FPR very low, at 4.8 % on average. RASL-IALM and

N-MARO have a high TPR (average 93.5 % and 93 %, respectively), but the FPR of

RASL-IALM and N-MARO are high (i.e. 11 % and 8.86 % on average, respectively).

In UT-MARO and RASL-APG, TPR gets lower with a higher FPR; their TPR is 90.6

% and 90.3 %, respectively; their FPR is 9.9 % and 15.3 %, respectively. DECOLOR

has a low FPR, on average, 2.82 % and 6 %, respectively; however, this reduction
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in their FPR is at the expense of the TPR which are 88.9 % and 79 % on average,

respectively. In 3TD, the TPR is low with a high FPR; its TPR is 86.4 % and its

FPR is 18.2 %.

More specifically, the smooth motion of the ACP in DARPA VIVID dataset reports

high TPR with low FPR for MARO, N-MARO, and UT-MARO. However, RASL-

IALM, RASL-APG and 3TD result in a high TPR and a high FPR. DECOLOR results

low FPR at the expense of TPR. In the case of small background movements, (e.g.

trees/branches), I-MARO reports, in general, a high TPR and a low FPR compared

with the current state-of-the-art methods that report a high FPR. To support this

claim, I-MARO and current state-of-the-art methods are tested using aerial imagery

datasets with a dynamic background that has small movements (all the datasets have

different level of shakiness caused by the movement of the aerial platform and wind).

Although N-MARO and UT-MARO have a low FPR, as is evident from DARPA

VIVID dataset sequence 3 (wooded area), the dynamic background and the shaky

ACP in VIRAT dataset sequence 1 (Forest) and sequence 2 (Rural area) increase their

FPR. Moreover, RASL-IALM, RASL-APG, and 3TD have a high FPR in the case of a

dynamic background. For sample results, please refer to figures 3.8 to 3.16. For the full

video sequence, please visit our website: https://phdthesisvisualresults.weebly.com/

3.8.2 Computational Load Evaluation

The best execution time with lowest complexity is achieved by UT-MARO with 1.7

seconds per frame. In the second place, I-MARO has execution time of 2.5 seconds

per frame. RASL-IALM , N-MARO, and DECOLOR have execution time of 4.5, 5.8,

and 6.2 seconds per frame, respectively. Despite of RASL-IALM and N-MARO use

IALM as a solver for the PCP formulation, using the traditional Newton method to

calculate T slows down their execution time. 3TD requires 10 seconds to process one
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Table 3.2: Quantitative evaluation of I-MARO, N-MARO, and UT-MARO on DARPA
VIVID, UCF aerial action and VIRAT datasets
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Table 3.3: Quantitative evaluation of I-MARO versus RASL-IALM, RASL-APG, DE-
COLOR, and 3TD
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frame. The execution time witnesses a huge hike in RASL-IALM due to the use of

the APG (which is very slow) as a solver for the PCP formulation and traditional

Newton method.

The complexity is calculated per iteration. It depends on the used solver for the

decomposion and the calculation of T . In [67] and [99], the complexity of APG,

IALM and SOFT-IMPUTE is O(m× n×min(m,n)), O(r×m× n), and O(Ω + r +

(M + n) × r2 2
δ
)‖Z ′λi−1

− Z∞λi ‖), respectively. m is the product of width and height

of the frames, n is the number of frames in the frame matrix, r is the rank of the

matrix; Z ′ = 0 and Z∞ denotes the output of SOFT-IMPUTE, λ is a regularization

parameter, Ω ⊂ {1, . . . ,m} × {1, . . . n} are the indices of the frame matrix. Since a

simplified O notation is used in this paper, the complexity of APG, IALM and SOFT-

IMPUTE is rewritten as O(n3) where n is the largest value in (m, n, r and Ω). Since

I-MARO uses the inexact Newton method to calculate T , its complexity is O(n3)

per iteration. In contrast, N-MARO, RASL-IALM, RASL-APG and DECOLOR use

the iterative Newton method, hence their complexity is O(n4). The complexity of

UT-MARO and 3TD is O(n3) as T is calculated as preprocessing using unscented

transformation and dense optical flow, respectively.

Table 3.4: Runtime analysis of UT-MARO, N-MARO, I-MARO, RASL-IALM, DE-
COLOR, 3TD, and RASL-APG
Method Time (Seconds per frame) Iteration Complexity
UT-MARO 1.7 O(n3)
N-MARO 5.8 O(n4)
I-MARO 2.5 O(n3)
RASL-IALM 4.5 O(n4)
DECOLOR 6.2 O(n4)
3TD 10.1 O(n3)
RASL-APG 60 O(n4)
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3.9 Conclusion

This chapter proposes three novel PCP based methods, namely UT-MARO, N-MARO,

and I-MARO. The three methods utilize IALM to solve the PCP formulation, but

each one of them has a unique way to estimate the transformation domain T . UT-

MARO uses unscented transformation; N-MARO uses the weighted Newton method;

I-MARO uses the inexact Newton method. The results show the following facts: (1)

UT-MARO reduces the computational loads, but its accuracy is not high in all cases,

(2) N-MARO gives a promising accuracy, but it is very time consuming, (3) I-MARO

balances between reaching high accuracy and keeping the computational loads low.

Moreover, I-MARO outperforms the relative current state-of-the-art-methods (RASL-

IALM, RASL-APG, DECOLOR, 3TD) in both accuracy and execution time.
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DARPA VIVID - Egtest 1 (frame #28)

UT-MARO N-MARO I-MARO

RASL-IALM RASL-IALM DECOLOR

3TD

Figure 3.8: Sample results of UT-MARO, N-MARO, I-MARO, and PCP-based de-
tection methods on DARPA VIVID
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DARPA VIVID - Egtest 2 (frame #71)
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3TD

Figure 3.9: Sample results of UT-MARO, N-MARO, I-MARO, and PCP-based de-
tection methods on DARPA VIVID continued
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DARPA VIVID - Egtest 3 (frame #5139)
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Figure 3.10: Sample results UT-MARO, N-MARO, I-MARO, and PCP-based detec-
tion methods on DARPA VIVID continued
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UCF Aerial Action - Action 1 (frame #28)
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RASL-IALM RASL-APG DECOLOR

3TD

Figure 3.11: Sample results of UT-MARO, N-MARO, I-MARO, and PCP-based de-
tection methods on UCF aerial action



66

UCF Aerial Action - Action 2 (frame #268)
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Figure 3.12: Sample results of UT-MARO, N-MARO, UT-MARO, and PCP-based
detection methods on UCF aerial action continued
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UCF Aerial Action - Action 3 (frame #53)
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Figure 3.13: Sample results of UT-MARO, N-MARO, I-MARO, and PCP-based de-
tection methods on UCF aerial action continued
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VIRAT - Flight2 tape1_2 (frame #27)
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Figure 3.14: Sample results of UT-MARO, N-MARO, I-MARO, and PCP-based de-
tection methods on VIRAT
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VIRAT - Flight2 tape2_1 (frame #18)
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Figure 3.15: Sample results of UT-MARO, N-MARO, I-MARO, and PCP-based de-
tection methods on VIRAT continued
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VIRAT - Flight2 tape3_2 (frame #300)

UT-MARO N-MARO I-MARO

RASL-IALM RASL-APG DECOLOR

3TD

Figure 3.16: Sample results of UT-MARO, N-MARO, I-MARO, and PCP-based de-
tection methods on VIRAT continued



Chapter 4

Principal Component Pursuit with

Regularization Term

4.1 Introduction

The previous chapter shows how the detection accuracy is improved via I-MARO. Yet,

FPR in all the proposed methods, including I-MARO, is considerable. For example,

UT-MARO has FPR 9.9 %, N-MARO has FPR 8.8 %, and I-MARO has FPR 4.8

%. The high FPR can be justified as modelling moving objects as sparse (in Eq.

4.1) is very general and it could be applied on any background object in the scene,

especially with existence of a little misalignment between frames. For example in

Figure 4.1, I-MARO method detects the white car as a moving object, but this car

is not moving. This is because of a small misalignment between frames that makes

the car to be considered as a sparse. In conclusion, modelling moving objects as

sparse cannot guarantee that the detected moving objects matrix O contains only

71
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truly moving objects; hence, the false detection rate is considerable.

min
B,O

Rank(B) s.t. F = B +O, ‖O‖0 ≤ ε (4.1)

Figure 4.1: Applying I-MARO on Frame 28 of UCF Aerial Action 1

4.2 Chapter Contributions

This chapter focuses on addressing the former problem to ensure that O has only

truly moving objects and significant reduction in the false detections. To this end, a

regularization term is integrated into PCP formulation 4.2. The regularization term

models the motion of moving objects in comparison with their surrounding static

objects. Through this modelling, the regularization term determines the most likely

moving object regions; hence, it limits the solution of O to true moving objects. In

other words, instead of modelling moving objects as sparse, using the regularization

term in PCP formulation models the moving objects as moving sparse.

In this chapter, a new PCP formulation is proposed. The work in this chapter is

presented in the following journal and conference papers:
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• Agwad ElTantawy and Mohamed S. Shehata. "KRMARO: Aerial Detection of

Small-Size Ground Moving Objects Using Kinematic Regularization and Ma-

trix Rank Optimization." IEEE Transaction on Circuits and System for Video

Technology 2018. DOI: 10.1109/TCSVT.2018.2843761.

• Agwad ElTantawy, and Mohamed S. Shehata. "A novel method for segmenting

moving objects in aerial imagery using matrix recovery and physical spring

model." In Pattern Recognition (ICPR), 2016 23rd International Conference

on, pp. 3898-3903. IEEE, 2016.

The results in this chapter are replicated from these two publications.

4.3 The Physical Intuition of The Regularization

Term

Assume you are in an airplane and looking from a side window down toward a road.

You observe a car on the ground and attempt to determine whether this car is mov-

ing or not. Unfortunately, it is not an easy task due to the continuous motion of the

airplane. This continuous motion makes the whole scene to be moving; hence, dif-

ferentiating actual moving objects from non-moving is difficult. This problem can be

resolved for objects that are static by nature, e.g. buildings, trees, etc.; however, how

about mobile objects, such as cars, human, bikes, etc. These mobile objects could be

in the scene but not moving. Moreover, the large distance between the airplane and

the car that you are observing makes the detection even harder. This distance makes

everything appear very small; hence, it will be hard to depend on spatial features of

the car to figure out if it is moving or not.

The best approach to handle this former problem is to compare the location of
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the car with the location of known static objects, e.g. trees, building, etc., over time.

If the car is moving, the distance between this car and the static objects will be

changed over time, i.e., the relative position will have changed and the distance will

have increased or decreased. On the other hand, the distance between the car and

static objects is fixed over time when the car is not moving.

Mathematically, the former process can be modelled using a mass-spring’s force

function to track the variation in the distances between objects that might be moving

and static landmarks. This force function provides a general modelling of the motion

of these objects’ motion with respect to the static landmarks over time, e.g. the

motion of an object towards and/or apart from the landmarks over time. Therefore,

spring force function is chosen to sufficiently model the variation over time between

moving objects and landmarks. After calculating the mass-spring’s force function

for each object, the regularization term uses the resulting forces to determine if this

object is moving or not. The following sections illustrates the details of calculating

the mass-spring’s force function and how the regularization term works.

4.4 Spring-MARO: Spring model with MAtrix Rank

Optimization

4.4.1 Problem Formulation

Spring-MARO models the moving objects as moving sparse. It detects the truly mov-

ing objects in two steps: 1) extracting candidate moving objects and 2) refining the

candidate objects. In the first step, Spring-MARO apply the matrix rank optimization

concepts that were presented in the previous chapter. The output of this step is the

identification of candidate moving objects (CMO). In the second step, the physical
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(a) True moving object (b) False detection

Figure 4.2: Transitional motion effect on compression spring over time

spring model classifies these candidate moving objects into false detections and true

moving objects. Each candidate moving object is modelled as a mass suspended to a

compression spring, and the spring base is attached to a manually selected landmark

LM which is a part of the scene. If a CMO is a true moving object, the mass should

make this spring either compressed or stretched over the time due to the motion of

the object, as shown in Figure 4.2-a, hence, the force of the spring will be significant.

On the other hand, the spring will be static and its force is zero when the object is

not moving, as shown in Figure 4.2-b.

From the above, the detection problem can be formulated as:

SM(min
B,Ǒ,T

‖B‖∗ + λ‖Ǒ‖1, s.t. F • T = B + Ǒ) (4.2)

where Ǒ ∈ IRn×m contains all candidate moving objects CMOs in F ; SM denotes

a spring model function that rejects all possible false detections that are detected in

Ǒ. As in the previous chapter, B is the underlying background, F • T denotes the

frames matrix aligned using the transformation domain T , ‖X‖∗ is the nuclear norm,
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and ‖X‖1 denotes L1 − norm.

4.4.2 Extracting Candidate Moving Objects

Spring-MARO makes an initial extraction of candidate moving objects by solving the

sub-problem Eq. 4.3 in the same strategy as N-MARO that was presented in the

previous chapter. Typically, the weighted Newton method calculates T , while IALM

solves the optimization problem via an alternative strategy with respect to B, Ǒ, and

T .

min
B,Ǒ,T

‖B‖∗ + λ‖Ǒ‖1, s.t. F • T = B + Ǒ (4.3)

The closed form-solutions of B, Ǒ, and T are shown in Eq. 4.4, Eq. 4.6, and Eq.

4.7, respectively.

B = USµ−1(Σ)V T (4.4)

[U,Σ, V ] = F • T + J4t+ µ−1Y − Ǒ (4.5)

Ǒ = Sλ
µ
(F • T + J4t+ µ−1Y −B) (4.6)

T ← T +4t (4.7)

where 4t is calculated as follows:

4t = J†(F • T + µ−1Y −B − Ǒ) (4.8)

J† is the pseudo inverse of the Jacobian matrix J .

4.4.3 Spring Model for Truly Moving Objects Detection

To calculate the spring force of a candidate moving object (CMO), it has to be

tracked over time, i.e. the location of this object has to be known in at least one
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previous frame, as well as the landmark (LM). To this end, a correlation tracker

with a searching window is used to detect the locations of Ǒ and LM in frames

fi and fi−ε. In the case of aerial imagery, matching Ǒ among the frames using

features, such as SURF [88], FAST [100], etc., is very difficult as these objects appear

very small. Generally, small objects suffer from lack of strong features, consequently

wrong matching is very frequent. Therefore, the matching in the proposed method

is accomplished using gradient template matching, as shown in Figure 4.3, in which

cross-normalization [101] is applied between the gradient of the CMO and the gradient

of the frame fi−ε. To avoid ambiguous matching, cross-normalization is done within a

searching window of frame fi−ε. This window is defined as an area where the moving

object is expected to be in frame fi−ε. In our experiments, the best width and height

of the searching window are 100 + width and 100 + height of the CMO, respectively.

However, the width and height of the searching window may be changed for other

datasets based on the objects speed, flight altitude, and focal length. The location

of the CMO is detected at frame fi from the previous step, i.e. extracting candidate

moving objects, while the location of LM is detected in both frames fi and fi−ε using

a pre-defined template.

After locating CMOs and their corresponding LMs, the force function of the

spring that connects them is calculated based on the difference in the distance between

CMO and LM in frames fi and fi−ε, as follows:

CSF (CMO,LM) = K(Li−ε − Li) (4.9)

Li−ε and Li represent the length of a spring in the system of spring frame fi−ε and

frame fi, respectively; CSF denotes compression spring force. K is spring constant

and it is equal to unity, in our case. Other forces that may affect the system of springs
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Figure 4.3: Tracking CMO in frame fi−ε

are ignored, such as gravity force, dampening force, etc., as they are irrelevant to

moving object segmentation.

To capture the motion in all directions, each CMO is attached with 8 springs in

different directions as shown in Figure 4.4. Then, the total forces of these springs are

used to judge whether Ǒ is moving or not using the regularization term SM , as in

Eq. 4.10.

O = SM(Ǒ) (4.10)

where SM(Ǒ) is defined as

O =


1, TF > ϕ

0, TF < ϕ

(4.11)

O ∈ IRn×m denotes the true moving objects; ϕ is an arbitrarily defined threshold

value; and TF is the total forces of the system of springs that is calculated from

Algorithm 6.
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Figure 4.4: System of Spring Setup

4.4.4 Method Analysis

Modelling the moving objects as moving sparse gives promising detection accuracy, as

will be shown in the results section. But Spring-MARO suffers from severe drawbacks

that may limit its accuracy. First, it assumes that the template of the LMs is not

changing in all the frames of a sequence, which is not the case in aerial imagery due

the camera motion. Second, an error in detecting the LMs location in one frame

leads to wrong results for all CMOs in this frame. Third, the spring model does not

consider the rotational motion of the moving objects.

4.5 KR-MARO: Kinematic Regularization andMA-

trix Rank Optimization

KR-MARO proposes a kinematic regularization term to the PCP formulation that

is based on an advanced spring model to overcome the drawbacks of SM in Spring-

MARO method. This kinematic regularization term enforces the solution O to have

moving objects in regions that have unique kinematic properties. Since, the motion of
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Algorithm 6 Calculate total force TF for candidate moving objects in frames fi
1: procedure

2: f̌i = vec†(Ǒ[i]) // f̌i has 1s at CMO and 0s any where else. vec† : IRn → IRw×h

3: Obtain CMOi, j in fi using connect component analysis

4: for (j=1 ; j<=ComponentsCount ; j++) do

5: υ = Σ8
w=1CSF (CMOi,j, LMw)

6: Update (f̌i) with υ at location of CMOi,j

7: end for

8: TF [i]← vec(fi) //vec : IRw×h → IRn

9: end procedure

a moving object can be translational or rotational or both, kinematic properties of a

moving object include translational and rotational motion. These two types of motion

are captured by compression and torsion springs, respectively. Contrary to Spring-

MARO, the selection of LMs is done automatically and they are updated for each

CMO at each frame. KR-MARO uses the inexact Newton method to calculate the

transformation domain, and backtracking behaviour in IALM to obtain the moving

objects only when the frames are optimally aligned.

4.5.1 Problem Formulation

KR-MARO integrates the kinematic regularization term into the PCP formulation as

follows:

min
B,O,T

‖B‖∗ + λ‖Γ(O)‖1, s.t. F • T = B +O (4.12)

where Γ : IRr×n → IRr×n is the kinematic regularization; it is a linear operator that

weighs the entries of O according to their kinematic properties, where the truly moving

objects are unchanged while false detections are set to zero. In fact, the integration of

the kinematic regularization into the PCP formulation leads to two types of sparse:
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truly moving objects and false detections. In other words, the frames matrix should

be decomposed into the background (B), the truly moving objects (O), and false

detections (D). Hence, KR-MARO is problem formulation is:

min
B,O,D,T

‖B‖∗ + λ‖Γ(O)‖1, s.t. F • T = B +O +D (4.13)

4.5.2 Closed-Form Solution

KR-MARO proposes a solution of the problem formulation in Eq. 4.13 based on the

inexact Newton method and IALM with backtracking behaviour. First, the formula-

tion is approximated as follows:

L(B,O,D,4t) = ‖B‖∗ + λ‖O‖1 + 〈Y, F • T + J4t−B −O −D〉+
µ
2‖F • T + J4t−B −O −D‖2

F

(4.14)

Then, the former equation is solved by minimizing with respect to its components, i.e.

B, O, D, and 4t. Inspired by the derivations in the previous chapter, the closed-form

solution of B, O, D, and 4t are obtained as follows:

• The closed-form solution of B is

B = USµ−1(Σ)V T

where U , Σ and V are the singular value decomposition (SVD) of the term

(F • T + µ−1Y −O −D).

• The closed-form solution of O is:

O = Sλ
µ

Γ(F • T + µ−1Y −B −D)
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To show how Γ controls the results in O, assume X = F • T + µ−1Y − B −D.

From the closed-form solution of O, X could fall in region 1, 2, or 3, as shown in

Figures 4.5 and 4.6. If X is in Regions 1, then X is zero and its corresponding

entry in O is considered as background. However, if X is in regions 2 or 3,

its corresponding entry in O is a moving object. Γ controls the boundaries of

regions 1, 2, and 3. When Γ is zero, then region 1 will disappear, and in this

case the corresponding entry of X in O is a moving object, as shown in Figure

4.6. However, if Γ is a very large value, then X will be in region 1 which mean

its corresponding entry O is a non-moving object, as shown in Figure 4.7.

Figure 4.5: possible values of the entries in O matrix

Figure 4.6: Regularization term Γ is zero:

Figure 4.7: Regularization term Γ is very large
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• The closed-form solution of D is derived as follows:

D = argmin
D

〈Y,−D〉+ µ

2‖F • T −B −O −D‖
2
f (4.15)

D = argmin
D

1
2‖D − (F • T + µ−1Y −B −O)‖2

f (4.16)

0 = 1
2∂(‖D − (F • T + µ−1Y −B −O)‖2

f ) (4.17)

D = F • T + µ−1Y −B −O (4.18)

• The closed-form solution of 4t is:

4t = B +O +D − J† − F • T − (µ(1− η))−1Y (4.19)

4.5.3 Kinematic Regularization Term

Modelling the Motion of CMO Using Compression and Torsion Springs

To judge the uniqueness of the kinematic properties of a CMO, it is modelled as a

mass suspended from two types of springs: a compression spring and torsion spring,

as shown in Figures 4.2 and 4.8. When the CMO is truly moving, at least one of

the former springs has a significant force (due to the compression and/or stretching

in the compression spring and/or twisting in the torsion spring). On the other hand,

the total forces of these springs is zero if the object is not moving.

Calculating for Forces of Compression and Torsion Springs

Similar to Spring-MARO, the first step to calculate a spring force is to track the loca-

tion of CMO and its corresponding LMs over the time using the gradient template

matching (Figure 4.3). Then, the force of the compression spring is calculated as
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(a) True moving object (b) False detection

Figure 4.8: Rotational motion effect on torsion spring over time

shown in Eq. 4.9. The force of torsion springs are calculated as

TSF (CMO,LM) = K(|θCMO − θLM |) (4.20)

where TSF is the Torsion Spring Force. θCMO is the angle between the locations of

a OCMO in fi and fi+m, respectively, while θLM is the angle between the locations of

LM of this OCMO in fi and fi+m, respectively. These angles are calculated using the

difference in y divided over the difference in x between two frames as follows:

θCMO = tan−1
(
4yCMO

4xCMO

)
, θLM = tan−1

(
4yLM
4xLM

)
(4.21)

where 4yCMO and 4xCMO are the differences of the CMO locations on Y-axis and

X-axis, respectively, in fi and fi+m; 4yLM and 4xLM are the differences of the LM

locations on Y-axis and X-axis, respectively, in fi and fi−ε.

Modelling CMO Motion Using a System of Springs

In KR-MARO, each CMO is connected to a system of springs that are arranged in all

directions (as shown in Figure 4.9) to handle different combinations of translational

and rotational motion. In each direction, there are two virtual springs, i.e. compres-
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Figure 4.9: KR-MARO is System of Springs

sion and torsion springs, attached to a CMO, and the base of each pair of springs

is connected to the same LM . For simplicity,
∮
w is used to denote the two springs

together, where w = 1...8. The base of
∮
w is connected to 8 landmarks {LMw} that

are defined as 8 windows adjacent to this OCndti,j in all directions and belong to the

background.

To accurately determine if CMO is truly moving and to avoid the restriction of

the minimum motion (in pixels per frame) that an object must move in order to be

detected, the forces of the system of springs are calculated over a set of frames defined

as set_F = {fi, fi±(m/3), fi±(m/2), fi±m} (m is an integer that was experimentally set

to be 6 ≤ m ≤ 15).

Calculating the kinematic regularization

Initially, all entries in matrices B, O, and D are zeros, while the entries in matrix Γ

are ones. Since IALM convergence is q-linear, then the entries in B, O, and D are
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Figure 4.10: System of Spring Setup on real frame

near to zero in the first few iterations, and the changes in F • T − B −D are small

during these iterations. Hence, CMOs cannot be detected in these early iterations.

However, during the later iterations, the values of B, O, and D increase; hence,

CMOs can be located as follows: first, calculate Ǒ = F • T −B −D, and Ǒ ∈ IRr×n

where each of its columns is a vector that contains CMOs found in frame fi. Second,

each column vector in Ǒ[i] is reshaped into a w × h matrix, and then binarized into

a binary mask f̌i. Finally, a connected component analysis is applied on each f̌i to

locate the groups of non-zero elements. The location of each of these groups in f̌i

corresponds to the location of a CMO in fi.

In KR-MARO, the LMs are selected automatically around each CMO, which

is in contrast to Spring-MARO which uses manually predefined LMs as shown in

previous section. To show how KR-MARO selects LMs, the following example is

instructive. Given a CMO that has a bounding box [xCMO, yCMO, wCMO, hCMO], 8

LMs are defined as windows located next to this CMO in all directions. The size of

this window is wLM × wLM ; and its top left corner is located on:

1. LM1 → (xCMO + wCMO + d, yCMO − wLM + d)
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2. LM2 → (xCMO + wCMO + d, yCMO)

3. LM3 → (xCMO + wCMO + d, yCMO + hCMO + d)

4. LM4 → (xCMO, yCMO + hCMO + d)

5. LM5 → (xCMO − wLM − d, yCMO − hCMO − d)

6. LM6 → (xCMO − wLM − d, yCMO)

7. LM7 → (xCMO − wLM − d, yCMO − wLM − d)

8. LM8 → (xCMO, yCMO − wLM − d)

where d is an arbitrary integer value which is used to avoid the overlapping between

LMs and CMO in the set_F . After obtaining the location of CMO and LM , the

total forces of the system of springs are calculated and the results update f̌i. Finally

the values in f̌i are used to set the values of Γ. The entries of Γ are zeros at true

moving objects when the corresponding value in f̌i > α, while Γ entries are arbitrary

large values at false detections (f̌i < α). Other Γ entries are by default ones. The

calculation of Γ is done every IALM iteration for newly detected CMOs. To determine

whether there are new CMOs, the corresponding entries of Γ should be ones for the

new CMOs. The Complete KR-MARO algorithm is illustrated in Algorithm 7. The

calculation of Γ is described in Algorithm 8

4.6 Results

To evaluate the performance of Spring-MARO and KR-MARO, the experiment in

section 3.7 is replicated. The results of this experiment are listed in Tables 4.1and

4.2. By analyzing these tables, the following observations are found: in DARPA
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Algorithm 7 Kinematic Regularization and MAtrix Rank Optimization (KR-
MARO)

1: Input: F , µ0, ρ0, T0

2: Output: O

3: procedure :

4: while True do

5: F • Tk+1 = UpdateAlignment(F, Tk)

6: Jk+1 = CalculateJacobian(F • Tk+1)

7: (U,Σ, V ) = svd(F • Tk+1 + µ−1Yk −Ok −Dk)

8: Bk+1 = USµ−1 [Σ]V T

9: Γk+1 = CalculateRegularizationTerm(F • Tk+1, Bk+1, Dk)

10: Ok+1 = Sλµ−1Γk+1 [F • Tk+1 + Yk −Bk+1 −Ok]

11: Dk+1 = F • Tk+1 + µ−1Yk −Bk+1 −Ok+1

12: 4tk+1 = J†k+1(Bk+1 +Ok+1 − F • Tk+1 − (µ(1− η))−1Yk)

13: Yk+1 = Yk + µk(F • Tk+1 −Bk+1 −Ok+1)

14: µk+1 = ρµk

15: Tk+1 = Tk +4tk+1

16: if ‖F•Tk+1−Bk+1−Ok+1−Dk+1‖2f
‖F•Tk+1‖2f

< ε then

17: if d(4tk+1,4tk) < ε and |4tk+1| < ζ then

18: Break

19: else

20: Bk+1 = Bk−κ

21: Ok+1 = Ok−κ

22: Dk+1 = Dk−κ

23: Yk+1 = Yk−κ

24: µk+1 = µk−κ

25: end if

26: end if

27: end while

28: end procedure
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Algorithm 8 Calculate the kinematic regularization Γ
1: Input: F • T , B, D

2: Output: Γ

3: procedure CalculateRegularizationTerm

4: Ǒ = Binarization(F • T −B −D)

5: for (i=1 ; i <= FramesCount ; i++) do

6: f̌i = vec†(Ǒ[i])

7: Obtain CMOi, j in fi using connect component analysis

8: for (j=1 ; j<=ComponentsCount ; j++) do

9: υ = Σ8
w=1CSF (CMOi,j, LMw)

10: ϕ = Σ8
w=1TSF (CMOi,j, LMw)

11: Update (f̌i) with υ + ϕ at location of CMOi,j

12: end for

13: TF [i]← vec(fi)

14: end for

15: if TF > α then Γ = 0

16: elseΓ = Ω // Ω is an arbitrary large value

17: end if

18: end procedure
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Figure 4.11: ROC curves for Spring-MARO, KR-MARO, UT-MARO, N-MARO, I-
MARO, RASL-IALM, RASL-APG, DECOLOR, and 3TD on DARPA VIVID
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Figure 4.12: ROC curves for Spring-MARO, KR-MARO, UT-MARO, N-MARO, I-
MARO, RASL-IALM, RASL-APG, DECOLOR, and 3TD on UCF aerial action
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Figure 4.13: ROC curves for Spring-MARO, KR-MARO, UT-MARO, N-MARO, I-
MARO, RASL-IALM, RASL-APG, DECOLOR, and 3TD on VIRAT
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Figure 4.14: Average ROC curves for Spring-MARO, KR-MARO, UT-MARO, N-
MARO, I-MARO, RASL-IALM, RASL-APG, DECOLOR, and 3TD



92

VIVID dataset, KR-MARO has FPR (0.3%) while achieving high TPR (97%). Al-

though MARO, N-MARO, UT-MARO and Spring-MARO have high TPR, their false

detections are noticeable. RASL-IALM, and RASL-APG and 3TD are able to achieve

good TPR (94%, 92.5% and 92.3% in order), but they suffer from high false detec-

tions; FPR is 6%, 6.5% and 11.3%, respectively. DECOLOR has very low TPR,

88.3%, with FPR equal to 1.6%.

In the UCF dataset, there is a shaky motion of the camera platform and the size

of the moving objects is very small. KR-MARO achieves the highest true detection:

TPR is 97.5% and false detections rate (FPR) is 0.2%. On the other hand, FPR

of MARO, N-MARO, RASL-IALM, RASL-APG are high compared to the proposed

method: 6.4%, 12.3%, 13.4%,14.4%, respectively. UT-MARO and Spring-MARO have

low false detections; however, this is at the expense of true detections. DECOLOR

and 3TD have high FPR and low TPR.

Although the shakiness in the VIRAT dataset is high, KR-MARO maintains the

best true detections (TPR is 95%) with very low false detections (FPR is 1%). MARO,

N-MARO and RASL-IALM get high true detections (TPR is 94.4%, 93% and 93%,

respectively), yet false detections are high (FPR is 7.4%, 13.6% and 13.7%, respec-

tively). The accuracy of UTMARO, Spring-MARO, RASL-APG, DECOLOR and

3TD severely suffers in this dataset, where their TPRs are 86.6%, 90%, 86.7%, 78.4%

and 87%, respectively, and their FPRs are 25%, 5.3%, 25%, 8.7% and 28.4%, respec-

tively. The complete relationship between TPR and FPR of the compared methods

is depicted via the ROC curves in figures 4.11 to 4.14. For sample results, please

refer to figures 4.15 to 4.23. For the full video sequence, please visit our website:

https://phdthesisvisualresults.weebly.com/
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Table 4.1: Quantitative evaluation (TPR and FPR) using DARPA VIVID, UCF aerial
action and VIRAT datasets

D
at
as
et

Sp
ri
ng

-
M
A
R
O

K
R
-M

A
R
O

U
T
-

M
A
T
O

N
-

M
A
R
O

I-
M
A
R
O

T
PR

FP
R

T
PR

FP
R

T
PR

FP
R

T
PR

FP
R

T
PR

FP
R

DARPA

Eg
te
st

1
96

.5
%

0.
09

%
98

%
1%

97
%

1%
96

%
0.
3%

96
%

0.
3%

Eg
te
st

2
10

0%
0.
3%

99
%

0.
2%

97
%

0.
1%

99
%

0.
7%

99
%

0.
7%

Eg
te
st

5
93

%
0.
9%

92
%

0.
4%

91
%

0.
6%

90
%

1%
90

%
1%

Eg
te
st

3
98

%
0.
7%

98
%

0.
2%

98
%

0.
9%

97
%

0.
9%

97
%

0.
9%

A
ve
ra
ge

96
.7
%

0.
49

%
97

%
0.
3%

95
.7
%

0.
6%

95
.5
%

0.
7%

95
.5
%

0.
7%

UCF

A
ct
io
n
1

87
%

3%
98

%
0.
4%

93
%

4%
86

%
10

%
95

%
10

%
A
ct
io
n
2

94
%

4%
97

%
0.
2%

81
%

4%
96

%
20

%
98

%
4%

A
ct
io
n
3

60
%

1%
96

%
0.
3%

95
%

5%
90

%
7%

96
%

5%
A
ve
ra
ge

80
%

2.
6%

97
%

0.
2%

89
.6
%

4.
3%

90
.6
%

12
.3
%

96
.4
%

6.
4%

VIRAT

Fl
ig
ht
2t
ap

e1
_
2

91
%

2%
98

%
0.
1%

80
%

40
%

94
%

9%
95

%
4%

Fl
ig
ht
2t
ap

e2
_
1

85
%

10
%

90
%

2%
90

%
25

%
91

%
23

%
92

%
10
%

Fl
ig
ht
2t
ap

e3
_
2

94
%

4%
98

%
0.
1%

90
%

10
%

94
%

9%
96

%
8%

A
ve
ra
ge

90
%

5.
3%

95
%

0.
7%

86
.6
%

25
%

93
%

13
.6
%

94
.4
%

7.
4%

T
ot
al

A
ve
ra
ge

88
.9
%

2.
8%

97
%

0.
4%

90
.6
%

9.
9%

93
%

8.
8%

95
.4
%

4.
8%



94

Table 4.2: Quantitative evaluation (TPR and FPR) using DARPA VIVID, UCF aerial
action and VIRAT datasets
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4.7 Conclusion

This chapter proposes two PCP based methods, namely Spring-MARO and KR-

MARO, that integrate a regularization term to enhance the detection accuracy. Spring-

MARO uses a simple spring model, based on compression spring, to build the regular-

ization term and the bases of the spring is a manually selected landmark. KR-MARO

proposes a kinematic regularization term based on an advanced spring model that

combines compression and torsion springs to handle translational and rotational mo-

tion. Moreover, KR-MARO solves the PCP formulation via IALM with backtracking

behaviour and the inexact Newton method, which is in contrast to Spring-MARO

that uses IALM and the weighted Newton method.

The performance evaluation of Spring-MARO shows a great success with DARPA

dataset, but its performance is badly affected in the rest of datasets. However, KR-

MARO keeps a stable performance for all datasets, e.g. high true detection rates and

very low false detection rates. Moreover, KR-MARO outperforms the current state-of-

the-art methods: I-MARO, N-MARO, UT-MARO, RASL-IALM, RASL-APG, DE-

COLOR, and 3TD. This superior performance of KR-MARO is credited mainly to its

kinematic regularization term.
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DARPA VIVID - Egtest 1 (frame #28)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-APG DECOLOR 3TD

Figure 4.15: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on DARPA VIVID
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DARPA VIVID - Egtest 2 (frame #71)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-APG DECOLOR 3TD

Figure 4.16: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on DARPA VIVID continued
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DARPA VIVID - Egtest 3 (frame #5139)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-IALM DECOLOR 3TD

Figure 4.17: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on DARPA VIVID continued
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UCF Aerial Action - Action 1 (frame #28)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-APG DECOLOR 3TD

Figure 4.18: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on UCF aerial action
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UCF Aerial Action - Action 2 (frame #268)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-APG DECOLOR 3TD

Figure 4.19: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on UCF aerial action continued
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UCF Aerial Action - Action 3 (frame #53)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-APG DECOLOR 3TD

Figure 4.20: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on UCF aerial action continued
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VIRAT - Flight2 tape1_2 (frame #27)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-APG DECOLOR 3TD

Figure 4.21: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on VIRAT
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VIRAT - Flight2 tape2_1 (frame #18)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-APG DECOLOR 3TD

Figure 4.22: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on VIRAT continued
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VIRAT - Flight2 tape3_2 (frame #300)

KR-MARO Spring-MARO UT-MARO

N-MARO I-MARO RASL-IALM

RASL-APG DECOLOR 3TD

Figure 4.23: Sample results of Spring-MARO , KR-MARO, and PCP-based detection
methods on VIRAT continued



Chapter 5

Sequential-based Principle

Component Pursuit

5.1 Introduction

Previous chapters study how to achieve accurate true detections and reduce false

detections. The result of these studies is KR-MARO method (presented in chapter 4)

that radically reduces false detection rates radically and keep true detection rates very

high. However, the presented methods so far, including KR-MARO, cannot provide

adequate real-time performance, the key requirement in aerial imagery applications,

as a typical consequence of their batch-based processing. This chapter investigates

how to extend PCP concepts to fulfill the real-time performance requirement.

5.2 Chapter Contributions

The contributions of this chapter are: (1) modelling the background in a video as a

subspace which lies in a low-dimension subspace (contrary to presented methods in

105
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previous chapter that models the background as a low-rank matrix), (2) proposing a

new PCP formulation based on local Null-Spaces, (3) integrating the kinematic reg-

ularization term into the new PCP formulation. These contributions are presented

through two methods: Local Null-Space Pursuit (LNSP) and Kinematic Regulariza-

tion with Local Null Space Pursuit (KR-LNSP). These methods have been submitted

to two journal papers as follows:

• Agwad ElTantawy and Mohamed S. Shehata. "LNSP: Local Null-Space Pur-

suit for Real-Time Detection in Aerial Surveillance" Under revision in IEEE

transactions on image processing

• Agwad ElTantawy and Mohamed S. Shehata. "A Sequential-based PCP method

for Ground-Moving Objects Detection from Aerial Videos" Under revision in

Journal of Signal, Image, and Video Processing

The results in this chapter are replicated from the former papers as well.

5.3 Null Space Pursuit

Given a noisy data observed in a finite time horizon such that data forms a matrix with

rank R, and according to PCP, this matrix can be decomposed into a core structure

and a sparse matrix. This core structure is a low-rank matrix where its rank is r and

r � R. Similarly, the background in a finite sequence of frames can be modelled as a

low-rank matrix; hence, the moving objects can be detected as sparse corrupting these

frames. Unfortunately, the former modelling of the background is the reason of the

batch processing behaviour in PCP detection methods. This is because a low-rank

matrix can be obtained only from multiple matrices; hence, input frames have to be

buffered to form a matrix.
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Figure 5.1: Principle components of the background

To overcome this problem, the former modelling of the background is extended

as explained in the following. Modelling the background B as a low-rank matrix means

the background vectors {vec(b1), vec(b2), ..., vec(bi)} in frames {vec(f1), vec(f2), ..., vec(fi)}

are linearly dependent. Hence, the background B ∈ IRm×n spans a few principal com-

ponents ∈ IRm×ς where ς � n. Based on this fact, the background in the whole video

stream can be modelled as a subspace B (see definition 5.3.1) which spans (or lies in) a

low-dimension subspace (called principal components space PC), i.e. span(PC) = B,

as shown in Figure 5.3. The background vectors {vec(b1), vec(b2), vec(b3), ...} ∈ B

can be grouped into {G1, G2, G3, ....}. Gρ ⊂ B is a group of colinear vectors i.e.

{∀ vec(bx), vec(by) ∈ Gρ| span(vec(bx)) = vec(by);x, y = 1, 2, 3, ..., sizeof(Gρ)}. In

the case of video processing, since the variation across consecutive frames is small,

then the degree of freedom between these frames is also small. Hence, the background

in a sequence of consecutive frames (i− ε to i) is most likely to exist in one Gρ, there-
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fore, Gρ can be defined as {vec(bi−ε), ..., vec(bi)} where i is the frame index, ε is a

small integer positive value. Consequently, from the definition of null space [77], the

orthonormal complement of the null space Ni−ε of vec(bi−ε) nullifies vec(bi):

N>i−εvec(bi) = 0 (5.1)

where the backgrounds vec(bi−ε) and vec(bi) in frames vec(fi) and vec(fi−ε) are col-

inear; Ni−ε = {x ∈ IRm| x>vec(bi−ε) = 0}. From the above, the moving objects can

be detected by nullifying vec(bi) using Ni−ε.

Definition 5.3.1. Assume K is a subset of a vector space V, K is called a subspace

of V when the zero vector 0 ∈ K, S is closed under addition, and K is closed under

multiplication by scales, as described below:

1. ~0 ∈ K

2. if ~u and ~v ∈ K, then ~u+ ~v ∈ K

3. if ~u ∈ K and α is a scaler, then c~u ∈ K

5.4 LNSP: Local Null Space Pursuit

The LNSP method uses the concept introduced above to provide a novel problem

formulation to detect the moving objects sequentially.

5.4.1 Problem Formulation

A typical frame in aerial surveillance is decomposed into a background and moving

objects:

vec(fi) = vec(bi) + vec(oi) (5.2)
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Then From Eq. 5.2, Eq. 5.1 can be written as:

N>i−εvec((fi − oi) • Ti) = 0 (5.3)

Similar to the original PCP formulation, the moving objects are modelled as sparse

that can be obtained by minimizing `1 − norm as follows:

min
ot

‖vec(ot)‖1

s.t. ‖N>t−1vec((fi − oi) • Ti)‖2 = 0
(5.4)

where ot is the moving objects; ‖.‖1 and ‖.‖2 are `1−norm and `2−norm, respectively.

However, Eq. 5.4 is based on the global null space, and calculating this null space

is very time consuming. To clarify these points, assume the following scenarios:

• Given a vector (V ) with size 76800, then V is divided into smaller non-overlapping

vectors with size 100, i.e. {v1, v2, . . . ., v768}. We end-up with 768 small vec-

tors. The time required to calculate the null space of each small vector vi is

0.0001 seconds on average, (according to the computer specifications described

in 3.7); then, the time required to calculate the null spaces for all small vectors

{v1, v2, . . . ., v768} is 0.07 seconds on average.

• Divide V into small vectors with size 400, i.e. {v′1, v
′
2, . . . ., v

′
192}, and we end-up

with 192 non-overlapping small vectors. The time required to calculate the null

space of each small vector v′i is 0.005 seconds on average, then the time required

to calculate the null spaces for all small vectors {v′1, v
′
2, . . . ., v

′
768} is 0.96 seconds.

For the cases above, the time required to calculate the null space is directly propor-

tional to the size of the vector.

LNSP calculates multiple local null spaces, as depicted in Figure 5.2. LNSP divides
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Figure 5.2: Detecting moving objects based on multiple local null spaces

the background into non-overlapping windows, and calculates a null space for each

bi−ε,j (where bi−ε,j ∈ IRw corresponds to a window and w is the window size, j is the

index of the window). Consequently, the detection problem is formulated as follows:

min
vec(oi)

∑k
j=1(‖vec(oi,j)‖1)

s.t.
∑k
j=1(‖N>i−ε,jvec((f i,j − oi,j) • Ti)‖2) = 0

(5.5)

where vec(oi,j) represents the moving objects in vec(f i,j) of the current frame vec(oi,j)

and vec(f i,j) ∈ IRw, and k is the number of windows.

5.4.2 Problem Formulation Solution

To solve Eq. 5.5, it is rewritten in the Lagrange form as:

L(vec(oi)) =
k∑
j=1

(‖vec(oi,j)‖1)− λ
k∑
j=1

(‖N>i−ε,jvec((f i,j − oi,j) • Ti)‖2) (5.6)



111

where λ is the Lagrange multiplier. The closed-form solutions to calculate Ti and oi

are illustrated in the next subsections.

The closed-form solution of Ti

LNSP proposes usage of the inexact Newton method for a rapid and an accurate

calculation of Ti. The inexact Newton method generates a sequence of {4ti} to

approximate T ∗i (the optimal value of Ti) by searching directions that satisfy the

inexact Newton method’s condition [102]. Hence, T ∗i must satisfy the following:

‖(bi−ε − (bi • Ti)) + Ji4ti‖ ≤ η‖(bi−ε − (bi • Ti))‖ (5.7)

where η is a forcing term; and J is the Jacobian matrix. Since bi is unknown in the

current frame, matrix Ti is calculated between fi and fi−ε, for simplicity. Accordingly,

Eq. 5.7 will be:

‖(fi−ε − (fi • Ti)) + Jt4ti‖ ≤ η‖(fi−ε − (fi • Ti))‖ (5.8)

The forcing term η is calculated as in [103]:

η = γ( ‖(fi−ε − (fi • Ti))Ω‖
‖(fi−ε − (fi • Ti))Ω−1‖

)α (5.9)

the superscript Ω refers to the iteration index in the inexact Newton method, γ ∈ [0, 1]

and α ∈ (1, 2]. From Eq. 5.8, 4ti is obtained as follows:

4tΩ = JΩξ((fi−ε − (fi • Ti))Ω − η(fi−ε − (fi • Ti)Ω)) (5.10)
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J i
ξ is the pseudo inverse of J i, and the Newton step 4tΩ updates TΩ

i iteratively, as:

TΩ+1
i = TΩ

i +4tΩi (5.11)

Closed-Form Solution of vec(oi)

To obtain the closed-form solution, the partial derivative over vec(oi) is calculated, as

follows:
k∑
j=1

(sign(vec(oi,j)))−
λ

2

k∑
j=1

(N>i−ε,jvec(f̃ i,j − oi,j)) = 0 (5.12)

where f̃ i,j represents f i,j aligned by T ∗i . The former equation is further expanded as:

(sign(vec(oi,1))− λ
2N

>
i−ε,1vec(f̃ i,1 − oi,1)) + . . .

+(sign(vec(oi,k))− λ
2N

>
i−ε,kvec(f̃ i,k − oi,k)) = 0

(5.13)

The optimal minimum value of oi is obtained by minimizing each part of this expan-

sion, e.g. (sign(vec(ot,1)))− λ
2Ni−ε,jvec(f̃ i,1 − ot,1)).

By applying convex optimization theory [90] and the subdifferential ∂ [104] of

each part of this expansion, the closed form solution to minimize vec(oi,j) is derived

as follows:

0 = sign(vec(oi,j))−
λ

2 (N>vec(f̃ i,j − oi,j)) (5.14)

0 = 2
λ
sign(vec(oi,j))−N>vec(f̃ i,j) +N>vec(oi,j) (5.15)

N>vec(oi,j) = 2
λ
sign(vec(o)) +N>vec(f̃ i,j) (5.16)

N>vec(oi,j) = S 2
λ
(N>vec(f̃ i,j)) (5.17)

vec(oi,j) = N>
ξ

i−ε,j(S 2
λ
(N i−ε,jvec(f̃ i,j)) (5.18)

where N>
ξ

i−ε,j is the pseudo inverse of N>i−ε,j, and S 2
λ
is the soft-thresholding operator
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[51] The complete LNSP algorithm is shown in Algorithm 9.

Algorithm 9 Local Null Space Pursuit (LNSP)
1: Input: fi−ε, fi,4T 0

i , γ, and α

2: Output: oi
3: procedure :

4: while Not Converge do

5: J = CalculateJacobian(ft−ε, ft • TΩ
i )

6: η = γ( ‖(fi−ε−(fi•Ti))Ω‖
‖(fi−ε−(fi•Ti))Ω−1‖)

α

7: 4tΩ = JΩξ((fi−ε − (fi • Ti))Ω − η(fi−ε − (fi • Ti)Ω))

8: TΩ+1
i = TΩ

i +4tΩi
9: end while

10: f̃i = fi • Ti
11: ForEach vec(f̃ i,j) ∈ vec(f̃i)

12: N = CalculateNullSpace(vec(bi−ε,j)>)

13: vec(oi,j) = N>
ξ

i−ε,j(S 2
λ
(N i−ε,jvec(f̃ t,j)))

14: EndForEach

15: end procedure

5.4.3 Method Analysis

Although the LNSP method successfully formulates the PCP problem in a form that

can be solved sequentially, it models the moving objects as only sparse (similar to

I-MARO, N-MARO, and UT-MARO). Hence, there is no guarantee that o contains

only truly moving objects.
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5.5 KR-LNSP: Kinematic Regularization with Lo-

cal Null Space Pursuit

The motivation of KR-LNSP method is to handle the drawbacks of the LNSP method

and ensure that o contains only actual moving objects and, hence, reduce FPR. Similar

to the KR-MARO method, the KR-LNSP method uses same kinematic regularization

to model the moving objects as moving sparse. However, calculating the kinematic

regularization term is time consuming due to the intensive searching for CMOs and

LMs in a frame. Therefore, KR-LNSP uses a cross search algorithm [105] to reduce

the computational load.

5.5.1 Problem Formulation

To enhance the detection results, the KR-LNSP method is proposed. It integrates

the kinematic regularization term into the LNSP problem formulation (i.e. 5.4) as

follows:

L(vec(oi), vec(di)) =
k∑
j=1

(‖vec(Γi,joi,j)‖1)− λ
k∑
j=1

(‖N>i−ε,jvec(f i,j − oi,j − di,j) • Ti)‖2)

(5.19)

where Γi,j denotes the kinematic regularization term for f i,j that penalizes the de-

tected moving objects based on their motion uniqueness, and si,j signifies the false

detections.
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5.5.2 Problem Formulation Solution

Similar to LNSP, KR-LNSP calculate T using the inexact Newton method as shown

in Eq. 5.11. The closed form solution of oi,j is derived as follows:

0 = vec(Γi,j Sign(oi,j))−
λ

2 (N>vec(f̃ i,j − oi,j − di,j)) (5.20)

0 = 2
λ
vec(Γi,j Sign(oi,j))−N>vec(f̃ i,j − di,j) +N>vec(oi,j) (5.21)

N>oi,j = 2
λ
vec(Γi,j Sign(oi,j)) +N>(f̃ i,j − di,j) (5.22)

N>oi,j = S 2
λ
vec(Γi,j(N

>(f̃ i,j − di,j)) (5.23)

oi,j = N>ξ(S 2
λ
vec(Γi,j)(N

>vec(f̃ i,j − di,j)) (5.24)

The closed form solution of di,j is derived as follows

0 = λ

2 (N>vec(f̃ i,j − oi,j − di,j)) (5.25)

0 = N>vec(f̃ i,j − oi,j − di,j) (5.26)

N>vec(di,j) = N>vec(f̃ i,j − oi,j) (5.27)

vec(di,j) = N>ξ(N>vec(f̃ i,j − oi,j)) (5.28)

Since calculating Γ is a computationally expensive process, especially when search-

ing for CMO and LM , KR-LNSP uses the cross search algorithm [105] to speed up

the searching for CMOi,j and LMi,j,k. the cross search algorithm is a logarithmic

step search where at each search step only 4 locations are tested, as shown Figure 5.3.

First, a searching step (p) is defined, then cross correlation is applied at 4 locations

that are far from the center of the searching window by p. At the best match location
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half the search step p/2 and re-apply cross correlation at 4 locations that is far from

the best matched location by p/2. Then repeat this process until the search step

reached 1. In figure, 5.3 arrows 1, 2, and 3 show the direction of the best matched

locations which are defined by solid red circles; the other non-solid circles show where

cross correlation is applied at each search step. The complete algorithm of KR-LNSP

is shown in Algorithm 10.

Figure 5.3: cross search algorithm

5.6 Results

For an objective evaluation of LNSP and KR-LNSP, they are compared with exist-

ing sequential-based and batch-based PCP methods using the same datasets and the

computer specification described in section 3.7. The compared sequential PCP meth-

ods are: COROLA [106] , PracReProCS-pPCA [78], GOSUS [75], ROSETA [73], and
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Algorithm 10 Kinematic Regularization with Local Null Space Pursuit (KR-LNSP)
1: Input: fi−ε, fi,4T 0

i , γ, and α

2: Output: oi
3: procedure :

4: while Not Converge do

5: J = CalculateJacobian(ft−ε, ft • TΩ
i )

6: η = γ( ‖(fi−ε−(fi•Ti))Ω‖
‖(fi−ε−(fi•Ti))Ω−1‖)

α

7: 4tΩ = JΩξ((fi−ε − (fi • Ti))Ω − η(fi−ε − (fi • Ti)Ω))

8: TΩ+1
i = TΩ

i +4tΩi
9: end while

10: f̃i = fi • Ti
11: while Not Coverage do

12: ForEach vec(f̃ i,j) ∈ vec(f̃i)

13: N = CalculateNullSpace(vec(bi−ε,j)>)

14: vec(oi,j) = N>ξ(S 2
λ
vec(Γi,j)(N

>vec(f̃ i,j − di,j))

15: vec(di,j) = N>ξ(N>vec(f̃ i,j − oi,j))

16: EndForEach

17: Γi = CalculateRegularizationTerm //as shown in Algorithm 8

18: end while

19: end procedure
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incPCP [80]. The compared batch-based PCP methods are KR-MARO, I-MARO,

Spring-MARO, UT-MARO, N-MARO, RASL-IALM [65] , RASL-APG [63], DE-

COLOR [54], and 3TD [55].
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Figure 5.4: KR-LNSP versus LNSP versus sequential PCP detection methods

Accuracy

By analysing Figure 5.4, Figure 5.5, Figure 5.6, and Table 5.6, it is evident that

KR-LNSP outperforms both sequential-based and batch-based PCP methods. KR-

LNSP provides a high TPR of 98% on average with a significantly low FPR of 0.4%

on average. Although LNSP and COROLA achieve high TPRs, their false detec-

tions are much higher compared to KR-LNSP (FPR is 3% and 9%, respectively). In

PracReProCS-pPCA, ROSETA, and incPCP, the false detections are very high, e.g.

their FPR is 19%, 42% and 39%, respectively. GOSUS does not have a high FPR as

in PracReProCS-pPCA, but it sacrifices the TPR (90% on average). Most compared
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Figure 5.5: KR-LNSP versus LNSP versus our batch-based PCP detection methods
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Figure 5.6: KR-LNSP versus LNSP versus other PCP detection methods
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batch-based PCP methods have either a high TPR with a high FPR (e.g. I-MARO,

RASL-MARO, N-MARO, and UT-MARO) or low FPR with low TPR (e.g. Spring-

MARO and DECOLOR). For 3TD, it has a low TPR and a high FPR. The detailed

TPR and FPR comparison between KR-LNSP, LNSP and other PCP methods (se-

quential and batch-based PCP detection methods) is found in Table 5.2 to Table 5.5.

For sample results, please refer to figures 5.7 to 5.15. For the full video sequence,

please visit our website: https://phdthesisvisualresults.weebly.com/

Execution time

As shown in Table 5.6 ROSETA has the best execution time compared to other

methods, it takes 0.05 seconds per frame. KR-LNSP and LNSP are the second best

methods in terms of the execution time, e.g. their execution time is 0.3 and 0.12 second

per frame, respectively. incPCP and COROLA come in third place, they require

around 1 second per frame. UT-MARO and I-MARO take 1.7 and 2.5 seconds on

average to process a frame. Other methods in the comparison, such as PracReProCS-

pPCA, GOSUS, RASL-IALM, N-MARO, Spring-MARO, DECOLOR, and 3TD, are

computationally intensive and take longer times

By looking at the combined performance and execution time, Table 5.6, KR-LNSP

provides the best accuracy compared to other PCP methods, either sequential-based

or batch-based. However, KR-LNSP consumes more time per frame compared to

LNSP. This time is consumed in calculating Γ which guarantees the significantly low

FPR. On the opposite side, ROSETA achieves real-time performance, but its accuracy

is significantly lower. The methods COROLA, GOSUS, KR-MARO, I-MARO, N-

MARO, UT-MARO, and RASL-IALM have moderate accuracy (still lower than KR-

LNSP), but they are computationally expensive. Spring-MARO, DECOLOR, and

3TD suffer from a low accuracy and quite high computational loads. incPCP is not
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Table 5.1: KR-LNSP versus LNSP versus current state-of-the-art methods
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Table 5.2: Complete TPR and FPR comparison between LNSP and sequential PCP
detection methods
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Table 5.3: Complete TPR and FPR comparison between KR-LNSP and sequential
PCP detection methods
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Table 5.4: Complete TPR and FPR comparison between KR-LNSP and our batch-
based PCP detection methods
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Table 5.5: Complete TPR and FPR comparison between KR-LNSP and other batch-
based PCP detection methods
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very computationally expensive, but its accuracy is the worst.

DARPA VIVID - Egtest 1 (frame #28)

LNSP KR-LNSP COROLA

GOSUS ROSETA incPCP

KR-MARO I-MARO

Figure 5.7: Sample results of the compared PCP detection methods on DARPA
VIVID

5.7 Conclusion

This chapter presents two novel sequential PCP methods, namely LNSP and KR-

LNSP. These methods successfully outperform current state-of the-art methods at
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DARPA VIVID - Egtest 2 (frame #71)

LNSP KR-LNSP COROLA

GOSUS ROSETA incPCP

KR-MARO I-MARO

Figure 5.8: Sample results of the compared PCP detection methods on DARPA
VIVID continued

both levels of detection accuracy (High TPR and low FPR) and reduce the compu-

tational loads. LNSP and KR-LNSP model the background as a subspace which lies

in a low-dimension subspace and the moving objects as sparse corrupting a video.

Based on the former modelling, LNSP and KR-LNSP propose a problem formulation

that uses the multiple local null spaces to detect the moving objects. Although LNSP

and KR-LNSP have similar values at TPR, KR-LNSP radically reduces the TPR,
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DARPA VIVID - Egtest 3 (frame #5139)

LNSP KR-LNSP COROLA

GOSUS ROSETA incPCP

KR-MARO I-MARO

Figure 5.9: Sample results of the compared PCP detection methods on DARPA
VIVID continued

compared to LNSP, thanks to the integration of the kinematic regularization term in

the problem formulation.
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UCF Aerial Action - Action 1 (frame #28)

LNSP KR-LNSP COROLA

GOSUS ROSETA incPCP

KR-MARO I-MARO

Figure 5.10: Sample results of the compared PCP detection methods on UCF aerial
action
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UCF Aerial Action - Action 2 (frame #268)

LNSP KR-LNSP COROLA

GOSUS ROSETA incPCP

KR-MARO I-MARO

Figure 5.11: Sample results of the compared PCP detection methods on UCF aerial
action continued
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UCF Aerial Action - Action 3 (frame #53)

LNSP KR-LNSP COROLA

GOSUS ROSETA incPCP

KR-MARO I-MARO

Figure 5.12: Sample results of the compared PCP detection methods on UCF aerial
action continued
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VIRAT - Flight2 tape1_2 (frame #27)

LNSP KR-LNSP GOSUS

ROSETA incPCP KR-MARO

I-MARO

Figure 5.13: Sample results of the compared PCP detection methods on VIRAT
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VIRAT - Flight2 tape2_1 (frame #18)

KR-LNSP LNSP GOSUS

ROSETA incPCP KR-MARO

I-MARO

Figure 5.14: Sample results of the compared PCP detection methods on VIRAT
continued
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VIRAT - Flight2 tape3_2 (frame #300)

KR-LNSP LNSP GOSUS

ROSETA incPCP KR-MARO

I-MARO

Figure 5.15: Sample results of the compared PCP detection methods on VIRAT
continued



Chapter 6

Conclusion and Future Work

6.1 Thesis summary

This thesis studies the detection GMOs from aerial images. The motivation behind

this thesis is the absence of robust GMOs detection method which is a key process

of ACPs applications. Current-state-of-the-art methods suffer from at least one of

the following: (1) high false detection rates, (2) low true detection rates, or (3) high

computational loads. This is justified as current-state-of-the-art methods may have

a restriction on the size of the moving objects, the shakiness of the ACPs, or both.

Moreover, they depend on computationally expensive techniques to sense the motion

of GMOs.

Therefore, the goal of this thesis is to provide a robust detection method that is

characterized by a precise detection of small size moving objects (i.e., high TPR and

low FPR), adaptability to high shaky motion of UAVs, and real-time performance.

To this end, the research in this thesis is demonstrated via seven novel detection

methods: UT-MARO, N-MARO, I-MARO, Spring-MARO, KR-MARO, LNSP, and

KR-LNSP. The first three methods, i.e. UT-MARO, N-MARO, and I-MARO, focus

135
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on enhancing the frame alignment. UT-MARO uses the unscented transformation to

estimate a transformation domain that aligns consecutive frames. N-MARO calculates

the transformation domain using weighted-Newton method. I-MARO computes the

transformation domain using inexact Newton method to balance between the accurate

estimation of the transformation domain and the processing load.

Spring-MARO and KR-MARO are proposed to lower the false detection rates.

They introduce a new problem formulation that models the true moving objects as

moving sparse. Typically, a regularization term that encodes temporal information

of the moving objects, is integrated into PCP formulation. The regularization term

in Spring-MARO is based on a spring-model that considers transnational motion.

KR-MARO proposes a kinematic regularization term based on an advanced system

of springs to accurately reflect the kinematic properties of the moving objects.

LNSP and KR-LNSP methods extend the concept in PCP to achieve real-time

performance. To this end, LNSP and KR-LNSP follow two strategies:

• Instead of modelling the background as a low-rank matrix, LNSP and KR-LNSP

model the background as a subspace which lies on a low-dimensional subspace.

Therefore, they can use the null space of the background in previous frames

to detect the moving objects in an input frame; hence, the detection can be

performed in a sequential manner.

• LNSP and KR-LNSP use multiple local null spaces to allow for real-time per-

formance.

KR-LNSP proposes an extra step over LNSP, which is integrating the kinematic

regularization term into the problem formulation to differentiate between truly moving

objects as false detections. Consequently, KR-LNSP successfully balances between

three attributes: 1) very low FPR via using the kinematic regularization, 2) high
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TPR due to extending PCP concept via modelling the background as a subspace that

lies on a low-dimension subspace, and 3) low computational load by using the inexact

Newton method, local null spaces, and the fast template matching method to obtain

the regularization term.

6.2 Achievements summary

Tables 6.1 and 6.2 summarize our achievements in comparison with existing PCP de-

tection methods. First, we introduce two alignments methods based on the unscented

transformation and inexact Newton method (UT-MARO and I-MARO). Second, the

solution of the PCP problem is extended by using the backtracking behaviour (as

shown in I-MARO and KR-MARO). Third, a regularization term is added to the PCP

formulation that captures the motion cue of the moving objects (as in KR-MARO,

Spring-MARO, and KR-LNSP). Finally, local null space is used to sequentially re-

cover the background from input frames and reach real-time performance (as shown

in LNSP and KR-LNSP).

From Table 6.1, our batch-based proposed methods (UT-MARO, N-MARO, I-

MARO, and KR-MARO) outperform relative current state-of-the-art methods (RASL-

IALM, RASL-APG, DECOLOR, and 3TD). However, their batch-based behaviour

prevents them from reaching the real-time performance. Therefore, we propose se-

quential PCP method (LNSP) that achieves the real-time performance. From Table

6.1 and Table 6.2, our proposed sequential methods, i.e. LNSP and KR-LNSP, out-

perform both batch-based PCP methods and sequential PCP methods, with minimal

processing time.
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Table 6.1: Comparison summary between the proposed batch-based PCP methods
and relevant current state-of-the-art methods

Method
Problem Formulation Problem Solution Performance

Moving
Objects

Modelling
Penalizing Term Video De-

composition

Transformation
Domain

Calculation
TPR FPR

Execution
time

(seconds
per frame)

Spring-MARO Moving Sparse Spring Model IALM
Weighted-
Newton
Method

88.9% 2.8% 6

KR-MARO Moving Sparse
Kinematic

regularization
Term

IALM with
Backtracking

Inexact
Newton
method

97% 0.4% 10

UT-MARO Sparse — IALM
Unscented
Transforma-

tion
90.6% 9.9% 1.7

N-MARO Sparse — IALM
Weighted-
Newton
Method

93% 8.8% 5.8

I-MARO Sparse — IALM with
Backtracking

Inexact
Newton
Method

95.4% 4.8% 2.5

RASL-IALM Sparse — IALM Newton
Method 93.5% 11% 4.5

RASL-APG Sparse — APG Newton
method 90.3% 15.3% 60

DECOLOR Sparse — SOFT-IMPUTE
Weighted-
Newton
Method

79% 6% 6.2

3TD

Sparse with
Unique Op-
tical Flow
Characteris-
tics

Object Confi-
dence Map IALM — 86.4% 18.2% 10.1

6.3 Future directions of the thesis

The growing of population of vehicles has an impact on computer vision processes.

One of these processes that has been affected is detecting moving objects. Typically,

the scenes in most urban areas are overcrowded with pedestrians, vehicles, bikes, etc.
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Table 6.2: Comparison summary between the proposed sequential PCP methods and
relevant current state-of-the-art methods

Method
Problem Formulation Problem Solution Performance

Moving
Objects

Modelling
Subspace Video De-

composition
Handling Camera

Motion TPR FPR

Execution
time

(seconds
per frame)

KR-LNSP Moving Sparse with Regularization Term Local Null Space Lagrange Multiplier

Calculate
Transformation
Domain Using
Inexact Newton

Method

98% 0.4% 0.3

LNSP Sparse Local Null Space Lagrange Multiplier

Calculate
Transformation
Domain Using
Inexact Newton

Method

98% 3% 0.12

COROLA
Sparse with

spatial
connectively

Matrix Basis OR-PCA

Calculate
Transformation
Domain Using

Weighted-Newton
Method

96% 9% 0.9

PracReProCS-
pPCA Sparse Null Space Lagrange Multiplier Updating

Subspace 93% 19% 14

GOSUS
Sparse with

Spatial
Connectively

Matrix Basis Lagrange Multiplier Updating Subspace 90% 8% 21

ROSETA Sparse Matrix Basis Lagrange Multiplier Updating
Subspace 90% 42% 0.05

incPCP Sparse Matrix Basis ThinSVD Updating
Subspace 71.1% 39% 0.8

Since, our future is oriented towards using ACPs, especially UAVs, so the detection of

GMOs should adapt to such overcrowded scenes. In other words, the new challenge

that should be addressed is the ability to detect small size objects where intermediate

spaces between these objects are extremely small. Therefore, the proposed kinematic

regularization term has to be calculated using a network of springs that connect

candidate moving objects with each other and group of these springs connected to a

static landmark. In that case, the forces of these springs can be used to determine

the true moving objects.
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