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ABSTRACT 

 

Mitochondrial dysfunction has been implicated in the aetiology of monogenic Parkinson’s disease (PD). 

Yet the role that mitochondrial processes play in the most common form of the disease; sporadic PD, is 

yet to be fully established.  Here we comprehensively assessed the role of mitochondrial function 

associated genes in sporadic PD by leveraging improvements in the scale and analysis of PD GWAS data 

with recent advances in our understanding of the genetics of mitochondrial disease.  First, we identified 

that a proportion of the “missing heritability” of the PD can be explained by common variation within 

genes implicated in mitochondrial disease (primary gene list)  and mitochondrial function (secondary gene 

list). Next we calculated a mitochondrial-specific polygenic risk score (PRS) and showed that cumulative 

small effect variants within both our primary and secondary gene lists are significantly associated with 

increased PD risk. Most significantly we further report that the PRS of the secondary mitochondrial gene 

list was significantly associated with later age at onset. Finally, to identify possible functional genomic 

associations we implemented Mendelian randomisation, which showed that 14 of these mitochondrial 

function associated genes showed functional consequence associated with PD risk. Further analysis 

suggested that the 14 identified genes are not only involved in mitophagy but implicate new mitochondrial 

processes. Our data suggests that therapeutics targeting mitochondrial bioenergetics and proteostasis 

pathways distinct from mitophagy could be beneficial to treating the early stage of PD.  
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INTRODUCTION  

  

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder characterized 

pathologically by the death of dopaminergic neurons in the substantia nigra (SN) and aggregation of α-

synuclein protein (encoded by SNCA), within intraneuronal inclusions called Lewy bodies. The majority of 

PD cases are apparently sporadic in nature (~95%). Aging is a major risk factor for the disease and due to 

population ageing the prevalence of PD is predicted to increase rapidly, making the identification of 

therapeutic targets a high priority1–3 . 

  

Although there have been great advances in understanding both the genetic architecture and cellular 

processes involved in PD, the exact molecular mechanisms that underlie PD remain unknown 1. However, 

it is suggested that PD has a complex etiology, involving several molecular pathways, and understanding 

these specific pathways will be key to establishing mechanistic targets for therapeutic intervention.  While 

several key pathways are currently being investigated, including autophagy, endocytosis, immune 

response and lysosomal function, 4–7 mitochondrial function was the first biological process to be 

associated with PD 8,9. 

  

An interest in mitochondrial function and PD began with the observation that exposure to the drug 1-

methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP) can cause rapid parkinsonism and neuronal loss in 

the SN in humans, and that this is mediated through inhibition of complex I of the mitochondrial electron 

transport chain 7,10,11. Subsequent work suggested that individuals with sporadic PD have reduced 

complex I activity not only in the SN, but in other brain regions and peripheral tissues 12. Genetic studies 

focusing on monogenic forms of PD provided further support for the involvement of mitochondrial 

dysfunction in the disease. Pathogenic mutations that lead to autosomal recessive forms of PD have been 

reported in PINK1, PARK2, PARK7, CHCHD2 and VPS13C and the proteins they encode are all now known 

to be involved in the mitochondrial quality control system and in particular mitophagy 13–16.  

 

Therefore in this paper, we aim to comprehensively assess the role of mitochondrial function in sporadic 

PD by leveraging improvements in the scale and analysis of PD genome wide association study (GWAS) 

data with recent advances in our understanding of the genetics of mitochondrial disease.  The availability 

of large scale genome wide association data in PD cases and the rapid identification of genetic lesions that 

underlie mitochondrial disease provide an opportunity to systematically assess the role of genetic 
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variability in mitochondrial linked genes in the context of risk for PD17. In this study we combine these 

new resources with current statistical tools, such as polygenic risk scoring and Mendelian randomisation, 

to explore the role of mitochondrial function in both PD risk and age at onset of disease to obtain novel 

insights. 

 

RESULTS  

 

A component of the  “missing heritability” of PD lies within mitochondria function genes 

 

The general workflow for the genetic analysis used in this study is shown in Figure 1. First, to study the 

importance of mitochondrial function in sporadic PD, we investigated the heritability of PD specifically 

within genomic regions that contained genes annotated as important in mitochondrial function. The 

construction of this annotation was driven by the principle that genomic regions, which are known to be 

the sites of mutations in individuals with rare mitochondrial diseases or are candidate regions for such 

mutations provide the best evidence for involvement in mitochondrial function.  

 

Using GCTA, heritability estimates were first calculated for the four largest IPDGC GWAS datasets and 

including all variants (UK_GWAS, SPAIN3, NIA, DUTCH). Due to the low number of included cases, the 

heritability estimates in the other IPDGC datasets were deemed less reliable. Consistent with previous 

heritability estimates from both Keller and colleagues (2012; 24%) and Chang and colleagues (2017; 21%), 

our random effects meta-analysis for the four datasets identified 23% (95% CI 12-34, p= 2.72E-05) 

phenotypic variance associated with all PD samples (Table 1 & 2). There was a high degree of consistency 

across the cohorts. 

  

After establishing the consistency of our heritability estimates we next calculated heritability using only 

variants located within genic regions specified as being of primary (n=176) or secondary (n=1463) 

importance in mitochondrial function. Genes within the primary or secondary lists, which had already 

been identified in the most recent PD meta-analysis were excluded 6. The heritability estimate using a 

random-effects meta-analysis for the primary gene list was estimated to be a modest 0.26% (95% CI -0.11-

0.66, p=0.166). However, the heritability estimate using a random-effects meta-analysis for the secondary 

list, namely genes implicated in mitochondrial function or morphology as well as disease, was estimated 

to be 1.67% (95% CI -0.07-0.32, p=0.041).  
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Mitochondria function specific polygenic risk score is significantly associated with disease status  

 

Next, we calculated PRS to capture the addictive effect of all common variants within genes implicated in 

mitochondria function on PD risk. PRS is a particularly powerful approach in this context because it is able 

to efficiently incorporate information from all hits including sub-significant hits, which may nonetheless 

be etiologically relevant. 

 

Using this approach the primary and secondary mitochondrial genomic annotations were found to be 

significantly associated with PD disease status. Remarkably, the primary gene list consisting of only 176 

genes implicated in Mendelian mitochondrial disorders, was associated with PD with an odds ratio of 1.12 

per standard deviation increase in the PRS from the population mean (random-effects p-value = 6.00E-04, 

beta = 0.11, SE = 0.03).  The secondary gene list, which also included genes implicated in mitochondria 

function or morphology, was associated with PD with a higher odds ratio of 1.28 per standard deviation 

increase in the PRS from the population mean (random-effects p-value =1.9E-22, beta = 0.25, SE = 0.03) 

(Figure 2). Together, these analyses not only provide further support for importance of mitochondrial 

processes in PD, but potentially provide a tool for identifying PD patients most likely to benefit from 

treatments specifically targeting mitochondrial function. 

 

Mitochondria function-specific polygenic risk score is significantly associated with later age at onset 

 

Although multiple lines of evidence point to the importance of mitochondrial dysfunction as a primary 

cause of PD, impaired mitochondrial dynamics appears to be common to a wide range of 

neurodegenerative diseases including Huntington’s disease18,19, amyotrophic lateral sclerosis20,21 and 

Alzheimer’s disease22–25. The latter suggests that even when impaired mitochondrial function is not the 

primary event in disease pathogenesis, it is a common outcome and could contribute to disease 

progression. We sought to test this hypothesis by investigating the importance of common variation 

within our mitochondrial gene lists in determining the age at onset of PD (AAO). Given the significant lag 

period between PD pathophysiology and symptoms, AAO was used as an indirect measure of disease 

progression. This analysis was performed using PRS since it has been consistently found to be the main 

genetic predictor of AAO 6,2627,28 with higher genetic risk scores being significantly associated with an 

overall trend for earlier AAO of disease. While the primary mitochondrial gene list was not significantly 
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associated with AAO of disease, the secondary gene list was correlated with AAO. Contrary to expectation, 

the cumulative burden of common variants within the 1463 genes comprising the PRS for PD risk, were 

positively correlated with AAO of PD. After meta-analysing all 11 cohorts, we found that each 1SD increase 

in PRS, led to a 0.62 year increase in the AAO of disease (summary effect = 0.618, 95%CI (0.325-0.911),|2 

=61.33%, p-value=3.56E-05, Figure 3).  As the forest plots demonstrate, although there was a relatively 

high heterogeneity across studies, the directionality and magnitude of effect on AAO were in concordance 

with the meta-analysis with the exception of the Oslo cohort. This finding could suggest that firstly, 

disease causation and progression are genetically separable processes in PD and that secondly the role of 

mitochondrial dysfunction in PD is likely to be highly complex with multiple distinct mitochondrial 

processes likely to be involved at different disease stages. 

 

MR suggests potential causal association of fourteen novel mitochondria function genes with PD risk  

 

Given the robust evidence for the involvement of mitochondrial function in sporadic PD, next we used 

two sample MR analysis to identify specific genes likely to be important in PD risk. Since we wanted to 

identify novel associations, we excluded genes already linked to PD through the most recent GWAS meta-

analysis6. This resulted in the exclusion of 31 genes linked to mitochondrial function and in linkage 

disequilibrium with the top PD risk variants. Analysis of the remaining 1432 genes (generated by 

combining the primary and secondary gene lists) resulted in the identification of fourteen novel genes 

linked to mitochondrial function and causally associated with PD risk (Table 3). Of the fourteen genes, the 

expression of 5 genes (CLN8, MPI, LGALS3, CAPRIN2 and MUC1) was positively associated with PD risk in 

blood. Similarly, in brain PD risk was associated with increased expression of ATG14, E2F1, and EP300 in 

brain. However, negative associations in brain and blood expression were observed for MRPS34 and 

PTPN1 and LMBRD1 respectively. Finally, elevated methylation of FASN in the brain was found to be 

positively associated with PD risk but elevated methylation of CRY2 was found to be inversely correlated.  

 

Six of the fourteen novel PD risk genes we identified (CLN8, EP300, LMBRD1, MPI, MRPS34 and MUC1) 

are already associated with a monogenic disorder (Table 3). We noted that neurological abnormalities 

were a feature of the condition in five of the six cases with Combined Oxidative Phosphorylation 

Deficiency 32 due to biallelic mutations in MRPS34 being perhaps of particular interest. In common with 

PD, this condition is associated with abnormalities of movement, including dystonia and choreoathetoid 

movements. Mutations causing this condition result in decreased levels of MRPS34 protein causing 
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destabilisation of the small mitochondrial ribosome subunit and suggesting the involvement of 

mitochondrial processes distinct from mitophagy and mitochondrial homeostasis in PD. In this context, it 

is noteworthy that MRPL43, another nuclear gene encoding for a component of the large mitochondrial 

ribosome subunit is also highlighted by the MR analysis. Thus, this analysis not only enabled us to identify 

specific genes of interest, but also pointed to the role of multiple mitochondrial processes in PD distinct 

from mitophagy. 

 

  

Exploring the expression of the novel mitochondria risk genes provides additional support for their role 

in PD 

 

We leveraged publicly available cell-specific and tissue-specific gene expression data to investigate the 14 

mitochondria genes implicated in PD through MR. First, we used enrichment-weighted cell-type 

enrichment (EWCE) to determine whether the expression of mitochondrial PD-associated genes (as 

identified through MR and described above, n= 14) was enriched within a specific cell-type class or their 

subtypes. No significant enrichment of these genes was found in any of the tested neuronal and glial cell-

type classes (Supplementary Table 6, Supplementary Figure 1). Next, we used co-expression network 

analysis to identify possible functional interactions between the 14 novel mitochondrial genes identified 

through MR and genes implicated in monogenic forms of PD. We found that five of the 14 genes assessed, 

CLN8, FASN, MPI, MRPL43 and MRPS3, were highly co-expressed with at least one gene already implicated 

in monogenic PD in multiple brain regions (>3 brain regions, Supplementary Table 7). Interestingly, in the 

case of CLN8, MRPL43 and MRPS4, our novel genes were co-expressed with a monogenic PD gene already 

implicated in mitochondrial function such as PARK7. Furthermore, with the exception of CLN8, (FASN, 

MPI, MRPL43 and MRPS3), the novel mitochondrial gene was assigned to a co-expression module 

enriched for neuronal markers (Table 4, Supplementary Table 8). 
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DISCUSSION  

 

We first demonstrate that a proportion of  the “missing heritability” of sporadic PD can be explained by 

additive common genetic variation within genes implicated in mitochondrial disease and function, even 

after exclusion of genes previously linked to PD through linkage disequilibrium with the top risk variants 

4–6,29–33. In fact, using PRS, which efficiently incorporates information from sub-significant hits, we showed 

that cumulative small effect variants within only 196 genes linked to monogenic mitochondrial disease 

significantly associated with increased PD risk (with odds ratios of 1.12 per standard deviation increase in 

PRS from the population mean). These findings are important for two main reasons. Firstly, given that risk 

profiling performed in the recent PD meta-analysis did not identify a significant association with 

mitochondrial function 4–6,29–33 17. Secondly, since the primary gene list consisted solely of the 196 genes 

mutated in monogenic mitochondrial disorders, this analysis highlights the increasingly close relationship 

between Mendelian and complex disease7.  

 

In order to maximise the utility of this study, we used MR which identified 14 specific mitochondrial genes 

of interest with putative functional consequences in PD risk. We found that although a number of the 

genes we identified are clearly linked to known PD-related pathways, such as lysosomal dysfunction in the 

case of CLN8 and LMBRD1 or autophagy in the case of ATG14, others appeared to point towards new 

processes. In particular, this analysis highlighted the mitochondrial ribosome through the identification of 

the genes, MRPL43 and MRPS34, encoding components of the large and small mitochondrial ribosome 

subunits respectively. Interestingly, biallelic mutations in MRPS34 are known to cause a form of Leigh 

syndrome, characterised by neurodegeneration in infancy with dystonia and choreoathetoid movements 

due to basal ganglia dysfunction. Furthermore, we note that a recent study that utilized whole exome 

sequencing (WES) data from two PD cohorts to investigate rare variation in nuclear genes associated with 

distinct mitochondrial processes, not only provided support for the involvement of mitochondrial function 

in sporadic PD, but also identified the  gene, MRPL43,  which encodes a component of the large 

mitochondrial ribosomal subunit34. Interestingly, MRPL43 and MRPS34 were amongst five genes which 

were also highly co-expressed in human brain with genes already known to cause monogenic forms of PD. 

Whereas MRPL43 and MRPS34 were highly co-expressed with PARK7 in modules enriched for neuronal 

markers, FASN and MPI were co-expressed with ATP13A2, and CLN8 was located in modules containing 

FBXO7 and enriched for oligodendrocyte markers. While this form of analysis does not provide 
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information at the single cell level, it points to the possibility of pathway interactions between these gene 

sets. However, most importantly it implicates entirely distinct mitochondrial processes in PD risk.  

 

Finally, and perhaps most remarkably using our mitochondrial gene lists we observe clear differences 

between disease causation and AAO in PD. Although PRS of the primary mitochondrial gene list was not 

significantly associated with AAO, the PRS of the secondary mitochondrial gene list was positively 

correlated (p value =3.6E-05), indicating association with later age at onset.  However, given these findings 

it seems plausible that some mitochondrial processes may contribute to PD risk. Thus, this analysis is 

consistent with the findings of the most recent and largest AAO PD GWAS, which reported that not all the 

well-established risk loci are associated with AAO and suggested a different mechanisms for PD causation 

and AAO 35.  

 

Although in this study we have comprehensively analyzed the largest PD datasets currently available with 

very specific and inclusive mitochondrial function gene lists, there are a number of limitations to our 

analyses.  Firstly, there was a relative amount of heterogeneity in age at PD diagnosis within the AAO 

GWAS studies used. This was due to certain cohorts AAO being self-reported and other cohorts specifically 

recruiting younger onset cases. Nonetheless, the highly significant p-value we obtain for the association 

mitochondrial genes and AAO of PD (p-value=3.56E-05) and the recognized importance of mitochondrial 

function in aging would suggest that this finding is likely to be robust. Furthermore, it is important to 

recognize that our understanding of mitochondrial biology is far from complete and this is made evident 

by the fact that many individuals with probable genetic forms of mitochondrial disease remain 

undiagnosed. Finally, the statistical tools we have used in these analyses are currently limited. For 

example, MR ultimately relies on the availability of sufficient quantities of high quality eQTL data. 

However, as there is a future focus to; increase data-set sample size, report and characterize phenotypes 

such as AAO more accurately and continue to increase the number of identified mitochondrial disease 

and function genes, we will be able to further explore the role of specific mitochondrial processes in more 

detail and identify their distinct contribution to disease causation and progression.  
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In summary, in this study we provide robust evidence for the involvement of mitochondrial processes in 

sporadic PD, as opposed to its defined and well-established role in the monogenic forms of the disease. 

In relation to the 14 novel mitochondrial function genes that we have identified, our data suggests that it 

is not only mitochondrial quality control and homeostasis which contributes to PD risk but other key 

mitochondrial processes, such as the function of mitochondrial ribosomes, mirroring the biological 

complexity of mitochondrial disorders.  Thus, this study opens the way for the identification of novel drug 

targets in PD causation and progression. 

 

METHODS 

 

Samples and quality control of IPDGC datasets 

 

All genotyping data was obtained from IPDGC datasets, consisting of 41,321 individuals (18,869 cases and 

22,452 controls) of European ancestry. Detailed demographic and clinical characteristics are given in 

Supplementary Table 1 and are explained in further detail in along with detailed quality control (QC) 

methods6,35. For sample QC, in short, individuals with low call rate (<95%), discordance between genetic 

and reported sex,  heterozygosity outliers (F statistic cut-off of > -0.15 and < 0.15) and ancestry outliers 

(+/- 6 standard deviations from means of eigenvectors 1 and 2 of the 1000 Genomes phase 3 CEU and TSI 

populations from principal components 36) were excluded. Further, for genotype QC, variants with a 

missingness rate of > 5%, minor allele frequency < 0.01, exhibiting Hardy-Weinberg Equilibrium (HWE) < 

1E-5 and palindromic SNPs were excluded. Remaining samples were imputed using the Haplotype 

Reference Consortium (HRC) on the University of Michigan imputation server under default settings with 

Eagle v2.3 phasing based on reference panel HRC r1.1 201637,38. 

 

Curation of genes implicated in mitochondrial disorders and associated with mitochondrial function 

 

Gene lists were built to encompass different levels of evidence for involvement of the respective protein 

products in disease phenotypes that relate to mitochondrial function. The list of genes implicated in 

genetic mitochondrial disorders (“primary” gene list, n=196) has the most stringent criteria of evidence 

that the respective genes is related to mitochondrial dysfunction. It consists of 102 nuclear genes listed in 

MITOMAP (downloaded 2015) and 94 sourced from literature review as containing mutations that cause 

with mitochondrial disease.  
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The list of genes implicated in mitochondrial function (“secondary” gene list, n  = 1487) was constructed 

using the OMIM API to identify all genes for which the word “mitochondria” (or derivatives) appeared in 

the free-text description, and by combining this information with MitoCarta v2.0 genes with no OMIM 

phenotype. This therefore gathered a list of plausible biological candidate genes, i.e. genes that are 

functionally implicated in mitochondrial function and morphology for which we may lack genetic evidence 

for mitochondrial disease association. 

 

Next, to identify novel PD-associated genes, the 349 genes identified to be in LD with the PD risk variants 

of interest in the most recent PD meta-analysis (Nalls et al 2018) were removed from both lists (removed 

genes listed in Supplementary Table 2). The final “primary” and “secondary” gene lists are given in 

Supplementary Table 3 and Supplementary Table 4 and following the removal the PD-associated genes 

were n= 178 and n=1328 respectively. 

 

Cohort-level heritability estimates and meta analysis   

 

Genome-wide complex trait analysis (GCTA) was used to calculate heritability estimates for the four 

largest IPDGC cohorts (UK_GWAS, SPAIN3, NIA, and DUTCH) using non-imputed genotyping data for all 

variants within both mitochondria gene lists using the same workflow as 39. GCTA is a statistical method 

that estimates phenotypic variance of complex traits explained by genome-wide SNPs, including those not 

associated with the trait in a GWAS. Genetic relationship matrices were calculated for each dataset to 

identify the genetic relationship between pairs of individuals. Genetic relationship matrices were then 

input into restricted maximum likelihood analyses to produce estimates of the proportion of phenotypic 

variance explained by the SNPs within each subset of data. Principal components (PCs) were generated 

for each data-set using PLINK (version 1.9). In order to adjust for factors accounting to possible population 

substructure, the top twenty generated eigenvectors from the PC analysis, age, sex and prevalence were 

used as basic covariates. Disease prevalence standardized for age and gender based on epidemiological 

reports was specified at 0.00239–43. Summary statistics from these estimates were produced for all four 

datasets and were included in the meta-analyses. Random-effects meta-analysis using the residual 

maximum likelihood method, was performed using R (version 3.5.1) package metafor to calculate p-values 

and generate forest plots44.  
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Risk profiles versus disease status and age at onset 

 

Previous risk profiling methods have calculated polygenic risk scores (PRS) using only variants that exhibit 

genome-wide significant associated with disease risk. However, in the most recent PD meta analysis, it is 

shown that using variants at thresholds below genome-wide significance improves genetic predictions of 

disease risk (6,39).  Mirroring this workflow, but instead using only variants within gene regions outlined in 

both the primary and secondary gene lists, the R package PRsice2 was used to carry out PRS profiling in 

the standard weighted allele dose manner. In addition, PRsice2 performs permutation testing and p-value 

aware LD pruning to facilitate identifying the best p-value threshold for variant inclusion to construct the 

PRS. External summary statistics utilized in this phase of analysis included data from leave-one-out meta-

analyses (LOOMAs) that exclude the study in which the PRS was being tested, avoiding 

overfitting/circularity to some degree. LD clumping was implemented under default settings (window size 

= 250kb, r2 > 0.1) and for each dataset 10,000 permutations of phenotype-swapping were used to 

generate empirical p-value estimates for each GWAS derived p-value threshold ranging from 5E-08 to 0.5, 

at a minimum increment of 5E-08. Each permutation test in each dataset provided a Nagelkerke’s pseudo 

r2 after adjustment for an estimated prevalence of 0.005 and study-specific PCs 1-5, age and sex as 

covariates. GWAS derived p-value threshold with the highest pseudo r2 was selected for further analysis. 

Summary statistics were meta-analyzed using random effects (REML) per study-specific dataset using 

PRSice2 45. For the age at onset risk profiling, the same workflow was followed, however instead, age at 

onset was used as a continuous variable, as previously reported35 

 

Mendelian randomization to explore possible causal effect of mitochondria function genes  

MR uses genetic variants to identify if an observed association between a risk factor and an outcome is 

consistent with causal effect  46. This method has been implemented in several recent genetic studies to 

identify association between expression quantitative trait loci  (QTL), to more accurately nominate 

candidate genes within risk loci. Therefore, for this study, in the aim of identifying whether changes in 

expression of mitochondria function genes are potentially causally related to PD risk, two-sample MR was 

implemented. Both mitochondria gene lists were combined and all genes already associated with PD (i.e. 

that have been identified to be in LD with PD risk loci in the last meta-analysis) were removed, leaving 

1432 unique mitochondria function gene regions.   
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We utilized four large-scale  methylation and expression datasets  through the  summary-data-based 

Mendelian randomization (SMR) (http://cnsgenomics.com/software/smr) resource. Summary statistics 

were compared to PD outcome summary statistics for the mitochondria variants of interest (extracted 

from  4–6,29–33)  to identify possible association using the R package TwoSampleMR.   

Tissues were selected based on their relevance to the pathobiology of PD, which ultimately consisted of 

tissues from 10 brain regions , whole blood, skeletal muscle, and nerve, (a full list of the tissues utilised 

can be found in Supplementary Table 5). For the methylation QTLs “middle age” data was used, which 

was the the oldest available time point.  For each mitochondria function variant of interest (considered 

here the instrumental variable), wald ratios were generated for each variable that tagged a cis-QTL 

(probes within each gene and meeting a QTL p-value of at least 5E-08 in the original QTL study) and for a 

methylation or expression probe with a nearby gene. Using the default SMR protocols, linkage pruning, 

and clumping were implemented. Finally, for each dataset p-values were adjusted by false discovery rate 

to account for multiple testing. 

 

Co-expression network analysis  

 

Co-expression network analysis was used to determine whether mitochondrial genes associated with PD 

using the SMR analysis are co-expressed with genes associated with monogenic forms of PD in human 

brain. This analysis was performed by using GTEx V6 gene expression data (The GTEx Consortium et al. 

2015; Carithers et al. 2015) to generate co-expression networks for each of the 13 brain tissues included 

within the GTEx study. The raw FPKM (Fragments Per Kilobase of transcript per Million mapped reads) 

values were corrected for known batch effects, age at death, sex and post-mortem interval, as well as 

unknown effects. The unknown effects were detected with the Surrogate Variable Analysis (SVA) R 

Package (Leek and Storey 2007) and correction was performed using ComBat (Johnson, Li, and Rabinovic 

2007). The resulting residuals were used to create a signed network using the 

blockwiseConsensusModules R function from the WGCNA R package (Langfelder and Horvath 2008) for 

each of the 13 tissues. Next, the modules obtained in each of the 13 networks were assigned to cell types 

using the userListEnrichment R function implemented in the WGCNA R package, which measures 

enrichment between module-assigned genes and defined brain-related lists using a hypergeometric test. 

The same approach was used to annotate modules with Gene Ontology, REACTOME (Fabregat et al. 2018) 

and KEGG (Kanehisa et al. 2016) terms. 
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Expression-weighted cell-type enrichment (EWCE): evaluating enrichment of mitochondrial genes 

associated with PD risk 

 

Expression-weighted cell-type enrichment (EWCE) (https://github.com/NathanSkene/EWCE) (EWCE) was 

used to determine whether mitochondrial genes associated with PD using the MR analysis have higher 

expression within a particular cell type than expected by chance. The input for the analysis was  1) 

neuronal and glial clusters of the central nervous system (CNS) identified in the Linnarsson single-cell RNA 

sequencing dataset (amounting to a subset of 114 of the original 265 clusters identified) 

(http://mousebrain.org/) and 2) our list of mitochondrial genes highlighted through the MR analysis (see 

Supplementary Table 6 for the full list of Linnarsson CNS neuronal clusters used). 

 

For each gene in the Linnarsson dataset, cell-type specificity was estimated (the proportion of a gene’s 

total expression in one cell type compared to all cell types) using the ‘generate.celltype.data’ function of 

the EWCE package. EWCE with the target list was run with 100,000 bootstrap replicates, which were 

sampled from a background list of genes that excluded all genes without a 1:1 mouse: human ortholog.  

In addition, transcript length and GC-content biases were controlled for by selecting bootstrap lists with 

comparable properties to the target list. The analysis was performed using major cell-type classes (e.g. 

“telencephalon inhibitory interneurons”, “telencephalon projecting excitatory neurons”, etc.) and 

subtypes of these classes (e.g. TEINH6 [“Interneuron-selective interneurons, cortex/hippocampus”], 

TEINH7 [“Interneuron-selective interneurons, hippocampus”], etc.). Data are displayed as standard 

deviations from the mean, and any values < 0, which reflect a depletion of expression, are displayed as 0. 

P-values were corrected for multiple testing using the Benjamini-Hochberg method over all cell types and 

gene lists displayed.  

 

OMIM data  

 

Phenotype relationships and clinical synopses of all OMIM genes were downloaded from 

http://api.omim.org on the 29th of May 2018. OMIM genes were filtered to exclude provisional, non-

disease and susceptibility phenotypes retaining 2,898 unique genes that were confidently associated to 

4,034 Mendelian diseases. The phenotypic information relating to all genes associated with mitochondrial 

disorders was collated. 
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Figure 1. Workflow of mitochondrial-function specific PD analysis  

 

Figure 2. Forest plots of PRS for Parkinson’s Disease across cohorts.  

Random effect meta analysis results are shown as red diamonds and fixed effects are shown as blue, with 

the centerline of each diamond representing the summary PRS for that dataset.  

Figure 3. Forest plots of PRS for the age at onset of Parkinson’s Disease across cohorts.   

Random effect meta analysis results are shown as red diamonds and fixed effects are shown as blue, with 

the centerline of each diamond representing the summary PRS for that dataset.  

 

TABLES 

Table 1. Cohort level heritability analysis for the primary and secondary mitochondrial gene lists  

 Primary Secondary 

 Heritability estimate  SE of heritabilty estimate 
Heritability 

estimate  

SE of heritabilty 

estimate 

UK_GWAS 0.00321 0.00277 0.00563 0.00688 

SPAIN3 0.00027 0.00314 0.00629 0.00932 

NIA 0.00945 0.00540 0.03616 0.01365 

DUTCH 0.00000 0.00530 0.03562 0.01681 

 

 

Table 2. Summary of random-effects meta-analysis for the primary and secondary mitochondrial gene 

lists  

 

  

Heritability 

Estimate from 

random-effects 

Lower 95% 

confidence 

interval 

Upper 95% 

confidence 

interval 

P-value 

from 

random 

effects 

Heterogeneity of 

variance from 

random effects (%) 

Heterogeneity P-

value 

All SNPs 0.2313 0.1233 0.3393 2.72E-05 0.0100 3.00E-03 

Primary 0.0026 -0.0011 0.0062 1.66E-01 0.0000 4.85E-01 

Secondary 0.0167 0.0007 0.0328 4.10E-02 0.0001 9.63E-02 

Table 3. Significant functional associations of mitochondrial function genes via two-sample Mendelian 

randomization  
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Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  
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Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUPPLEMENTARY  

 

Table S1. Demographic and clinical characteristics for all IPDGC genotyping data  

 

Table S2.  Mitochondrial genes identified to be in LD with the PD risk variants of interest in the most recent 

PD meta-analysis  that were removed from our list to identify novel association 

  

Table S3. Primary mitochondria gene list (hg/19) 

 

Table S4. Secondary mitochondria gene list (hg/19) 

 

Table S5. Tissues and data-sets included in Mendelian Randomisation analysis  

 

Table S6. List of the CNS cell clusters used for enrichment-weighted cell-type enrichment (EWCE) and 

results of EWCE analysis for all genes identified by two-sample Mendelian randomization  
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Table S7 Coexpression of genes identified using two-sample Mendelian randomization with genes known 

to cause familial forms of PD 

 

Table S8. Results of co-expression network analysis for all genes identified by two-sample Mendelian 

randomization  

 

Figure S1. Results of enrichment-weighted cell-type enrichment analysis for all genes identified by via 

two-sample Mendelian randomization  
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