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Highlights

• This paper introduces a low complexity and low-dimensional local descriptor.
• We learn a novel data representation based on the Mercator projection.
• We achieve this using a Siamese network that directly learns from point clouds.
• We report superior performance against noise and varying mesh resolutions.
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Abstract

Point clouds provide rich geometric information about a shape and a deep neural network
can be used to learn effective and robust features. In this paper, we propose a novel local
feature descriptor, which employs a Siamese network to directly learn robust features from
the point clouds. We use a data representation based on the Mercator projection, then we
use a Siamese network to map this projection into a 32-dimensional local descriptor. To
validate the proposed method, we have compared it with seven state-of-the-art descriptor
methods. Experimental results show the superiority of the proposed method compared to
existing methods in terms of descriptiveness and robustness against noise and varying mesh
resolutions.

Keywords: 3D object recognition, Local descriptor, Siamese network, Deep neural network

1. Introduction

3D object recognition is a rapidly growing research area in computer vision. Introducing
of low-cost range sensors e.g., Microsoft Kinect has made a great interest in the point cloud
processing. A point cloud is a set of three-dimensional geometric points that represents the
external surface of the objects. 3D object recognition methods can be classified into two
broad groups: global feature-based and local feature-based methods. The global feature-
based methods [1, 2, 3, 4, 5, 6, 7, 8] use a set of features for describing the geometric
properties of the whole object while the local feature-based methods encode the geometric
properties around a point on the 3D object surface.

The local feature-based methods are popularly used because the global feature-based
methods usually need a prior segmentation of the scene and they are not robust to the
clutter and occlusion [9]. Local feature-based methods consist of six main steps: keypoint
detection, local feature description, feature matching, hypothesis generation, coarse registra-
tion and fine registration, and finally verification. The existing local feature descriptors can
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be categorized in two groups, Hand-crafted feature descriptors, and Learned feature descrip-
tors. Many Hand-crafted local descriptors have been proposed in the literature, the most
popular descriptors are Splash [10], Point signature [11], Spin image [12], Finger print [13],
3D Shape Context (3DSC) [14], Unique Shape Context (USC) [15], Point Feature Histograms
(PFH) [16], Fast Point Feature Histograms (FPFH) [17], Radius based Surface Descriptor
(RSD) [18], Signature of Histograms of OrienTations (SHOT) [19], Rotational Projection
Statistics (RoPS) [20] and Local Feature Statistics Histogram (LFSH) [21]. A comprehensive
review and performance evaluation of these techniques have been presented in [22] and [23],
respectively. Unfortunately, the challenges of real data, such as the presence of noise, occlu-
sions, clutter and transformation significantly decrease performance of such descriptors.

Advances in deep convolutional neural networks have led to works for learning local
descriptors. In some learned local descriptors, multi-view images of the same point are used
for training the network [24, 25]. These methods cannot learn the full geometric information
of the points because there are many different views for each point. A large number of images
are needed to train the network that causes high complexity; therefore, they are not suitable
for description. Works include PointNet [26] and PointNet++ [27], 3DMatch [28], Compact
Geometric Features (CGF) [29], Point Pair Feature NET (PPFNet) [30], FoldNet [31], PPF-
FoldNet [32], the method presented by Deng et. al [33] 3Dfeat-net [34] and 3D point-capsule
networks(3D-PointCapsNet) [35] operate directly on the point clouds. 3DMatch causes high
complexity because of using a 3D voxel grid as the input of the network. The network
input of CGF is a histogram that describes geometric information. PPFnet uses the point
pair features by incorporating global Context. PPF-foldnet is a developed combination
of PointNet, FoldingNet, and PPFNet and the method presented by Deng et. al [33] is an
extension of PPF-Foldnet. In most cases the learned descriptors outperform the hand-crafted
methods but some learned 3D feature descriptors are not rotation invariant [28, 30, 34] or
have high-dimensional features [28, 31, 32, 35].

In this paper, we propose a new local descriptor that directly learns from the point clouds
to provide robust and precise geometric features. Our model starts with extracting geometric
features using the Mercator projection of the neighborhood sphere. The Mercator projection
is a cylindrical projection where the surface of a sphere is mapped into a plane preserving the
angles and the shapes of small objects [36]. The Mercator map has a number of properties
that make it suitable for data representations in a point cloud. These properties include
(i) Mercator map is a conformal map projection in which any angle on Earth (a sphere
or an ellipsoid) is preserved in the image of the projection; (ii) it maintains small element
geometry, which means Mercator projection preserves the shapes of small regions. This
makes the projection suitable for using on a small patch around an interest point in a point
cloud; (iii) it can well describe the geometric properties of an interest point. In the point
cloud, it can preserve these properties between any two points.

Then, we use a Siamese network [37] as a local descriptor that trains with these Merca-
tor projections of the corresponding points where a smaller distance between two descriptors
shows a higher likelihood of the similarity. The idea is that by learning from these im-
ages, the Siamese network can encode accurate and robust features that describe geometric
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information around a point. We perform detailed comparisons with the state-of-the-art de-
scriptors on the Bologna dataset [38] and 3D match dataset [28], in terms of descriptiveness
and robustness against noise and varying mesh resolutions and demonstrate consistent gains
in these terms.

The rest of this paper is organized as follows: Section 2 describes the proposed method,
Section 3 presents the experimental results and analysis, and finally, the paper is concluded
in Section 4.

2. The proposed method

Inspired by the success of deep learning in computer vision, we choose the Siamese net-
works to extract effective and robust local features. Siamese networks were introduced in
1990 by Bromley and LeCun for hand-written Signature verification. They consist of two
sub-networks that share weights to find similarities or differences between two inputs [39].
The outputs are concatenated and given to a fully connected network. The goal of the
Siamese networks is to learn the descriptors for comparison between the inputs and make
the output features similar if input pairs are labeled as similar, and dissimilar for the input
pairs which are labeled as dissimilar, in another word, they can learn both similarity and
the features directly from the data. Siamese network can be easily trained using standard
optimization techniques on pairs of data [40]. Another advantage of the Siamese network is
that Siamese seems best suited for applications where there is only a few examples per class
of data available.

We use the Siamese network to map the proposed point representation into a 32-dimensional
local descriptor. The proposed method can directly learn from the point clouds, so it is more
descriptive and robust.

2.1. Data Representation

Given a query point p, a sphere of radius r is centered at p to determine the neighbors.
Then Mercator projection is used for mapping the sphere into a plane with considering the
Local reference frame (LRF) as previously suggested by Tombari et al. in 2010 [19].

The Mercator projection is a cylindrical projection that was proposed by G. Mercator in
1569. In this projection, the surface of a sphere is mapped into a plane such that the places
must be positioned appropriately everywhere by considering their true distance, direction,
and their relative longitude and latitude. In the point cloud, it can preserve these properties
between any two points [36]. The Mercator projection for each point is identified using two
following equations:

x = λ (1)

y = ln [tan(
φ

2
+

π

4
)] (2)

where λ is the longitude and φ is the latitude of a point in the sphere, and (x, y)
represents corresponding point in the Cartesian map. For further information about the
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(a) Original point clouds
(b) Neighbours in the global
coordinates

(c) Neighbours in the local
coordinates (d) Mercator projections

Figure 1: Mercator projections of two pairs of corresponding points.

Mercator projection please see [41, 42]. Fig. 1 shows the Mercator projections of two
pairs of corresponding points. In each row, first, the point cloud and the selected point
are shown. The selected point is shown with a green sphere. The neighboring points are
displayed in the second column. Then for better visualization, the neighboring points are
shown in the local coordinates, and finally the Mercator projection of neighboring points is
shown. Using the Mercator projection, there is only one representation for each point; so,
the problem of multiple representations of a point or ambiguity is addressed. The first two
rows show the Mercator projections of two corresponding points from Bologna dataset. As
we can see from Fig. 1 the Mercator projections of these two points are similar because they
describe geometric information around two points which are rigidly equivalent. The second
two rows show the Mercator projections of two corresponding points selected from 3Dmatch
dataset. We observe that the Mercator projections are slightly different. Sometimes it
happens because of noise, occlusion, and clutter that make some parts added to the projection
or removed from it. For these reasons we choose Siamese network for learning these cases.
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For extracting images as the input of the Siamese network, we need ranges for achieved
x and y. The variable x is in the interval [−π, π] but range of y is different for the Mercator
projection of each keypoint. As a result, the minimum and maximum of the variable y for
all neighbor points are considered as the range of y, then a histogram 60× 60 is measured.
The Mercator projections of all neighbors are defined and the number of points in each bin
counted. Then we normalize the histogram by dividing each bin by the total number of
neighbor points, it causes more robustness to noise and mesh resolution.

2.2. Network architecture and training

We define a Siamese network architecture that receives a pair of corresponding images as
input. So, branches of the Siamese network can be viewed as a descriptor module and the
top network as a similarity function.

The network architecture is detailed in Fig. 2, given two 60 × 60 images, the output is
the probability that the two input images match. The architecture of each subnetwork is as
follows: Convolution layer (8 × 2 × 2)- ReLU- Convolution layer (16 × 2 × 2)- ReLU-Max
pooling (2×2)- Convolution layer (16×2×2)- ReLU- Convolution layer (32×2×2)- ReLU-
Max pooling (2× 2)-Flatten (4608)-Dense (32)-Dropout. The output of each subnetwork is
a 32-dimensional feature which is considered as a local descriptor. The second part of the
network is defined as a similarity function that is as follows: Concatenate layer (for merging
two sublayer outputs)-Dense (16)-ReLU- Dense (4)-ReLU-Dense (1). The output of this part
of the network is the probability of images similarity. Note that linear activation function
is used for all convolutional and dense layers except the last dense layer that uses Sigmoid
as the activation function. Mean absolute error and binary cross entropy are used as metric
function and loss function, respectively.

3. Experimental results and discussion

In this section, we evaluated the performance of the proposed method on the Bologna [38]
and 3D match datasets [28]. The Bologna dataset consists of six models namely Armadillo,
Dragon, Stanford Bunny, Happy Buddha, Chinese Dragon and Thai Statue, and 45 scenes
that each scene is generated by three to five rigidly transformed models. 3Dmatch dataset
is an ensemble of SUN3D [43], 7-Scenes [44], RGB-D Scenes v.2 [45], BundleFusion [46] and
Analysis-by-Synthesis [47] datasets.

3.1. Bologna dataset

The dataset contains 45 scenes, 25 scenes are used as train set and 20 scenes as the
test set. To obtain the corresponding images, 5000 points are randomly selected from train
set. Then, their corresponding scene keypoints are determined and Mercator projections are
extracted for all of these corresponding points; so, 5000 pairs with 100% image similarity
are extracted. The pairs are split randomly into 80% train and 20% test for learning the
networks. As each sublayer figures a local descriptor, the red block is used for testing the
features. The network was trained for 10 epochs using a batch size of 32. The number of
steps per epoch was 500. Training took about 3 hours. Fig. 3 shows the history of loss and
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Figure 2: The proposed Siamese network architecture
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Figure 3: Loss and error plots on the Bologna dataset.

accuracy in the learning process. As can be seen, the model converged quickly and achieved
highly accurate results.

In this section, we compared the proposed method with several state-of-the-art hand-
crafted approaches including LFSH, 3DSC, PFH, FPFH, SHOT, RoPS, and RSD in terms of
descriptiveness and robustness against noise and varying mesh resolutions using the Bologna
dataset. All of the experiments were conducted on a computer with Intel (R) Core (TM)
i5-45705 CPU 2.90 GHz, 8GB RAM memory. We used the publicly available MATLAB
implementation of the RoPS method2. We implemented the LFSH method using the source
C++ code. The other methods are publicly available in the Point Cloud Library (PCL)3.
The proposed method was implemented in the TensorFlow framework [48].

3.1.1. Comparison of results in term of RPC

We applied the Recall versus 1-Precision Curve (RPC) to compare the descriptiveness
of the proposed method with the mentioned descriptors. The default parameters in the
PCL implementations were applied for all selected descriptors. At first, 500 key points were
randomly selected for all models in each scene; then, the corresponding scene keypoints were
determined. It should be noted that the selected keypoints and the support radius were the
same for all methods for fairness, the support radius was set as 15 mr (mesh resolution).
Then, the RPC was evaluated.

As previously reported in [38] the RPC is generated as follows: for each scene feature, the
ratio between the closest and the second closest features is calculated. The scene feature and
its closest model feature are considered as a match if this ratio is smaller than a threshold
τ . A match is considered as a correct one if the distance between the scene keypoint and
the ground-truth transformed model keypoint is sufficiently small. The precision and the
recall are the number of correct matches divided by the total number of matches and the
total number of correspondences, respectively. The PRC curve is generated by changing the
threshold τ .

2http://yulanguo.me/
3www.pointclouds.org
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Figure 4: The RPC-based evaluation of the methods.

Fig. 4 shows the RPC results on the noise-free Bologna dataset. The threshold for finding
true positive matches was set as 15 mr. The results are the average of precision and recall
for all scenes in the test set. The proposed method has attained excellent result followed by
RoPS, SHOT, LFSH, FPFH, PFH, RSD, and 3DSC. The RoPS achieved good results, SHOT
and LFSH acted reasonably but the results of other methods are not good. As expected,
PFH and FPFH had a similar performance. Note that, the highest recall value for the
proposed method is 0.99. These results demonstrate that our method effectively describes
geometric information around a point.

3.1.2. Robustness to noise

We compared the proposed method with the mentioned descriptors in term of robustness
in the different level of noises. We added Gaussian noise with the standard deviations 0.1,
0.3 and 0.5 mr to the scene data. The RPC results in the different levels of Gaussian noise
are shown in Fig. 5. As can be seen, it is clear that our proposed descriptor achieved the
best results in noise with standard deviation 0.1 mr. It is highly robust to this level of noise.
The highest recall rate is achieved by the proposed method, which is 0.93 while the second
best is by RoPS, which is 0.69. This underscores the robustness of the proposed method
with respect to noise.

Also with noise 0.3 mr, the proposed method has significantly outperformed other meth-
ods. Although the SHOT descriptor provides the best performance under high-level noise for
the small thresholds, the highest recalls for the proposed method and the SHOT method are
0.48 and 0.46, respectively which shows the superiority of our method at this level of noise.
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The superior performance of the proposed method is due to the fact that noise causes some
changes in the Mercator projection but the main behavior of local neighbors is preserved
unless the geometric structure is completely changed with noise. The Siamese network can
handle noise because it trains with images that are not completely similar but with the same
main structure.

3.1.3. Robustness to varying mesh resolution

In order to evaluate the robustness of the methods to varying mesh resolution, we sim-
plified the scene meshes with different reduction factors such as 1/8, 1/4 and 1/2. RPC
results under different reduction factors are presented in Fig. 6. As depicted, the proposed
method outperformed the other methods in the simplification with reduction factors 1/8
and 1/4 (Fig. 6a and Fig. 6b respectively). At the high level of reduction factor, i.e. 1/2,
the RoPS outperformed the other methods and the proposed method was the second best
method. The RSD was very sensitive to varying mesh resolutions but the performance of
other methods dropped by some margin. The highest recall for the proposed method with
reduction factors 1/8, 1/4 and 1/2 are 0.81, 0.61 and 0.35, respectively.

These observations can be explained based on the following two reasons. First, mesh
decimation preserves the main structure of the Mercator projection which makes the pro-
posed method efficient. Second, The Siamese network inputs are derived by a normalized
histogram which causes more robustness.

3.1.4. Pairwise Registration Results

We created 4 random transformation matrices for each model in the Bologna dataset to
generate 24 pairs of model and scene. At the beginning for each pair, we randomly selected
100 points for the model and 100 points for the scene. Then, features were extracted as
described before. The RANSAC method was applied for the coarse registration. Fig. 7
shows the coarse registration results of the proposed method for one of the pairs. As can be
observed, the transformed model is completely matched with the scene. We measured the
root mean square error (RMSE), rotation error θr, translation error dt and correct registration
rate to compare with the other methods. The RMSE, θr and dt are calculated as follow [49]:

RMSE =

√∑N
k=1 ‖ Re pk + te − qk ‖2

N
(3)

θr = arccos
trace(RGT Re

T )− 1

2

180

π
(4)

dt =‖ TGT − Te ‖ (5)

where pk and qk are two rigidly equivalent points, N is the number of points, RGT and Re

are ground truth and estimated rotation matrices, respectively. TGT is ground truth and Te

is estimated translation vectors. A pairwise registration is measured as correct if θr < 5◦ and
dt < 5 ∗mr. The correct registration rate is the number of correct registrations divided by
the total number of pairs. As listed in Table. 1, the RoPS and the proposed method attained
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Figure 5: RPC based evaluation of the descriptors with respect to different levels of Gaussian noise (a) noise
deviation 0.1 mr (b) noise deviation 0.3 mr. (c) noise deviation 0.5 mr.
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Figure 6: RPC based evaluation of the descriptors with respect to different mesh resolutions (a) reduction
factor 1/8 (b) reduction factor 1/4 (c) reduction factor 1/2.
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Figure 7: Pairwise registration result of the proposed method.

Table 1: Pairwise registration results on the Bologna dataset

The methods RMSE Translation error Rotation error Correct registration

The proposed method 0.0000 0.0000 0.0218 1
FPFH[17] 2.2498 2.2502 92.0649 0.2500
RoPS[20] 0.0000 0.0000 0.0279 1
RSD[18] 0.8852 0.8756 97.1618 0.0417
3DSC[14] 1.6754 1.6756 96.5474 0
LFSH[21] 1.7327 1.7208 77.3431 0.1667
PFH[16] 1.2975 1.2992 98.8903 0.2500
SHOT[19] 0.6092 0.6169 44.2603 0.6667

the best registration performance with 100% correct registration rate, the rotation error of
our method was better than the RoPS method. The SHOT method achieved 66% correction
registration rate but the performance of the other methods were rather low. The superior
performance of the proposed method is due to we use the Mercator projection as the data
representation. In the point cloud, this projection can preserve true distance, direction, and
their relative longitude and latitude between any two neighbor points regardless of rotation
and translation.

3.2. 3Dmatch dataset

For evaluation of the proposed method in a real data set, in the presence of noise and
occlusion, we used the 3DMatch Dataset [28]. The proposed method is compared with some
learned descriptors including 3DMatch [28], CGF [29], PPFNet [30], FoldNet [31], PPF-
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Figure 8: Loss and error plots on the 3DMatch dataset.

FoldNet [32], the method proposed by Deng et. al [33] and 3D-PointCapsNet [35]. The
experiments were conducted on a computer with Intel (R) Core (TM) i7-8700K CPU 3.70
GHz × 12, with GeForce GTX 1080 Ti/PCle/SSE2 GPU card.

First, the performance of the achieved features is measured by the fragment matching
recall, then we evaluate our method qualitatively. The dataset contains 62 scenes, the train
part contains 54 sets consist of 2D RGB-D patches and the test part contains eight scenes
split into several partially overlapping fragments. Each fragment is a 3D point cloud of
a surface, integrated from 50 depth frames. We used 3Dmatch toolbox for constructing
fragments of the training sets. 120K corresponding points are extracted and split randomly
into 80% train and 20% test and the network was trained for 10 epochs. The number of
steps per epoch was 500.Training took about 30 minutes. As training proceeds, the history
of loss and error are shown in Fig. 8. We observe from this figure that the model converged
quickly to accurate results without overfitting.

3.2.1. Comparison of results in term of fragment matching recall

The fragment matching recall is generated as follows [32]: assuming a pair of fragments
P = {pi ∈ R3} and Q = {qi ∈ R3} are aligned by the rigid transformation TGT , the inter
point pair set M is calculated as follow:

M = {{pi, qi}, g(pi) = NN(g(qi), g(P )), g(qi) = NN(g(pi), g(Q))} (6)

Where NN means nearest neighbor search and g(p) and g(P ) mean the feature for point p
and the pool of features for the points in P . Then true matches set MGT , inlier ratio rin,
and fragment matching recall R are defined as follow:

MGT = {{pi, qi}, (pi, qi) ∈M, ‖pi − TGT qi‖2 < τ1} (7)

rin =
|MGT |
|M | (8)

R =
1

|S|
|S|∑
i=1

number of (rin(Si = (Pi, Qi)) > τ2) (9)
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Table 2: Fragment matching recall results on the 3DMatch benchmark.

3DMatch [28] CGF [29] PPFNet [30] FoldNet [31] PPF-FoldNet [32] [33] 3D-PointCapsNet [35] ours

Kitchen 0.5751 0.4605 0.8972 0.5949 0.7352 0.7964 0.8518 0.9243
Home 1 0.7372 0.6154 0.5577 0.7179 0.7564 0.8077 0.8333 0.9057
Home 2 0.7067 0.5625 0.5913 0.6058 0.6250 0.6971 0.7740 0.9119
Hotel 1 0.5708 0.4469 0.5796 0.6549 0.6593 0.7257 0.7699 0.8901
Hotel 2 0.4423 0.3846 0.5769 0.4231 0.6058 0.6731 0.7308 0.8718
Hotel 3 0.6296 0.5926 0.6111 0.6111 0.8889 0.9444 0.9444 0.9630
Study 0.5616 0.4075 0.5342 0.7123 0.5753 0.6986 0.7397 0.7692
MIT lab 0.5455 0.3506 0.6364 0.5844 0.5974 0.6234 0.6494 0.8444
Average 0.5961 0.4776 0.6231 0.6130 0.6804 0.6234 0.7867 0.8850

where |S| is the number of ground-truth matching non-consecutive fragment pairs, having
at least 30% overlap with each other under ground-truth transformation.

The 3Dmatch test set consists of 8 scene sets, Red Kitchen data is from the 7-scenes [44]
dataset and the rest are from SUN3D [43] dataset. Similar to previous research, we used 2K
points per fragment and the radius is 0.3m. τ1 and τ2 are set to 0.1m and 0.05, respectively.
The fragment matching recalls are reported in Table. 2. Note that the results of [33] and
3D-PointCapsNet method are reported from the original papers and the results of other
methods are reporeted from PPF-Foldnet paper [32].

As demonstrated in the Table. 2, our method outperforms other methods in all scene sets.
The proposed method has achieved the best results followed by 3D-PointCapsNet, PPF-
FoldNet, [33], PPFNet, FoldNet, 3Dmatch and CGF methods. The method outperforms
the 3D-PointCapsNet as the second best method by the margin 9.83% on average. Our
method not only outperforms the other methods but also reduce the complexity of learning
by projecting 3D to 2D using the Mercator projection. Another benefit is achieving low-
dimensional features that causes lower data storage, complexity and error and higher speed.
The number of feature dimensions in 3Dmatch, CGF, Foldnet, and PPF-FoldNet is 512. The
features of PPFNet are 64-dimensional. Just The CGF has 32-dimensional features like ours.
Also in comparison with the hand-crafted methods, except LFSH that has 30-dimensional
features, the proposed method has the lowest number of dimensions.

We also evaluated our method qualitativly, Random Sample Consensus (RANSAC) [50]
is used for coarse registration. For each scene set, one fragment pair is selected and the
registration results of our method are displayed in Fig. 9. In each row, from left to right,
the model, scene, our result and ground-truth result are shown. From Fig. 9, it can be
seen that the proposed method can achieve the registration results close to ground-truth.
The qualitative and quantitative results show that the proposed method can achieve good
performance on unseen real data in the presence of noise and occlusion.

4. Conclusion

In this paper, we introduced a low complexity and low-dimensional local descriptor based
on the Siamese network that directly learns from the point clouds. We presented a novel
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(a) Models (b) Scenes (c) Our results (d) Ground-truth

Figure 9: Qualitative results of 3Dmatch dataset.
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data representation based on the Mercator projection. Using the Mercator projection not
only causes encoding rich and precise geometric information but also the problem of multiple
representations of a point or ambiguity is addressed because there is only one representation
for each point. Using this projection, the input of the network is 2D so the architecture
overcame many challenges brought in by 3D data. We also demonstrated the superiority
of the proposed approach to the state-of-the-art methods in terms of descriptiveness and
robustness against noise and varying mesh resolutions on the Bologna and 3Dmatch dataset.
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