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Abstract. We consider a dynamical system to have memory if it remembers
the current state as well as the state before that. The dynamics is defined

as follows: xn+1 = Tα(xn−1, xn) = τ (α · xn + (1 − α) · xn−1), where τ is
a one-dimensional map on I = [0,1] and 0 < α < 1 determines how much

memory is being used. Tα does not define a dynamical system since it maps
U = I × I into I. In this note we let τ to be the symmetric tent map. We

shall prove that for 0 < α < 0.46, the orbits of {xn} are described statistically
by an absolutely continuous invariant measure (acim) in two dimensions. As

α approaches 0.5 from below, that is, as we approach a balance between the
memory state and the present state, the support of the acims become thinner

until at α = 0.5, all points have period 3 or eventually possess period 3. For

0.5 < α < 0.75, we have a global attractor: for all starting points in U except
(0,0), the orbits are attracted to the fixed point (2/3,2/3). At α = 0.75, we

have slightly more complicated periodic behavior.
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1. Introduction

In nonlinear discrete chaotic dynamical systems theory we study the statistical
long term dynamics of iterated maps which depend only on the present state of
the system. In this paper we consider dynamical systems which depend both on
the present state as well as on one previous state. Such memory systems find
applications in cellular automata and in modeling natural phenomena [1, 2].

Let τ be a piecewise, expanding map on I. We refer to it as the base map.
At each step, the system remembers the current state xn as well as one previous
state xn−1, which we refer to as the memory. Our dynamical system is defined by
xn+1 = Tα(xn) = τ (α ·xn +(1−α) ·xn−1), where 0 < α < 1 is a fixed number that
specifies the ratio between the present state and the memory state. Tα does not
define a dynamical system, since it is not a map of a space into itself. Rather, it
denotes a process. To start a trajectory we need an initial point x0 and its memory,
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which we consider to be bundled into the previous state xn−1. When α is close to
0, the present state xn is weighted down, acting as a perturbation on the memory
state xn−1 which is dominant. However, when α is close to 1, the memory state
is diminished and the resulting system behaves almost like a regular dynamical
system, depending mostly on the present state.

In order to define an invariant measure for Tα, we consider the 2-dimensional
map:

Gα : [xn−1, xn] 7→ [xn, Tα(xn)] = [xn, τ (α · xn + (1 − α) · xn−1)] ,

i.e.,

Gα(x, y) = [y, τ (α · y + (1 − α) · x)] .

The trajectory of Gα is:

[x−1, x0], [x0, x1], [x1, x2], [x2, x3], [x3, x4], . . .

If Π1 is the projection on the first coordinate, we have

Tn
α,x−1

(x0) = Π1(G
n+1
α (x−1, x0)) , n = 1, 2, . . . ,

where Tα,x−1
means that the process Tα uses the initial history, x−1.

Let us assume that Gα has an ergodic invariant measure να on B([0, 1]2). The
measure να defines a marginal measure µα on the first coordinate: µα(A) = να(A×
[0, 1]). In particular, if να = gα(x, y)dxdy, i.e., an absolutely continuous measure
with density gα(x, y), then

µα =

(

∫

[0,1]

gα(x, y)dy

)

dx

is also absolutely continuous with density gα,1(x) =
∫

[0,1]
gα(x, y)dy.

Since we assume that Gα is να-ergodic, the Birkhoff Ergodic Theorem holds.
Thus, for any integrable function f and almost every pair (x, y), we have

lim
n→∞

1

n

n−1
∑

i=0

f(Gi
α(x, y)) =

∫

f(x, y)dνα(x, y) .

If the function f depends only on the first coordinate, we can rewrite this as

lim
n→∞

1

n

n−1
∑

i=0

f(Π1(G
i
α(x, y))) =

∫

f(x)dµα(x) ,

that is,

lim
n→∞

1

n

n−1
∑

i=0

f(T i
α(x0, y0)) =

∫

f(x)dµα(x) .

Since the limit is independent of the initial condition, the initial history x−1 used
by Tα is irrelevant.

This shows that the marginal measure of the Gα-invariant measure determines
the behavior of ergodic averages of trajectories of the process Tα. Thus, µα is a
good candidate for an “invariant” measure of Tα.

In Section 2, we show that for certain α, Gα is expanding in both directions and
establish the existence of an acim for the memory system defined by any piecewise
expanding map τ. In Sections 3 – 6 we study the behavior of the memory system
defined when the base map is the tent map τ. For 0 < α < 0.46, we prove the orbits
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of {xn} are described statistically by an acim. As α approaches 0.5 from below,
that is, as we approach a balance between the memory state and the present state,
the support of the acims become thinner until at α = 0.5, all points have period
3 or eventually possess period 3. In Section 7, we consider 1/2 ≤ α ≤ 3/4. We
prove that for α = 1/2 all points (except two fixed points) are eventually periodic
with period 3. For α = 3/4 we prove that all points of the line x + y = 4/3 (except
the fixed point) are of period 2 and all other points (except (0, 0)) are attracted to
this line. For 1/2 < α < 3/4, we prove the existence of a global attractor: for all
starting points in the square [0, 1 × [0, 1] except (0, 0), the orbits are attracted to
the fixed point (2/3, 2/3).

Additional pictures illustrating the behaviour of the family Gα and Maple pro-
grams used in this study can be found at

http://www.mathstat.concordia.ca/faculty/pgora/G-map/.

2. Preliminary Results

In this section we show that for certain α, Gα is expanding in both directions.(We
will ussually suppres the subscript α in the sequel.)

Let τ : I → I be a piecewise expanding map is defined on the partition P with
endpoints {a0 = 0, a1, a2, . . . , aq−1, aq = 1}. Let Ii = [ai−1, ai], i = 1, 2, . . . , q.
Then, the map Gα is defined on the partition whose boundaries are the boundaries
of the square U = I2 and the lines

Lα
i : y =

ai

α
− 1 − α

α
x , i = 0, 2, . . . , q .

Each of the lines Lα
0 and Lα

q intersects [0, 1]2 at only one point. Let Ri denote the
region in [0, 1] between the lines Lα

i−1 and Lα
i , i = 1, 2, . . . , q. The example for

P = {0, 0.25, 0.5, 0.8, 1} is shown in Figure 1 a and the example for P = {0, 0.5, 1}
is shown in Figure 1 b.

Figure 1. Examples of partitions for map G

Note that Gα is not piecewise expanding. However, we will show that G2
α is

a piecewise expanding map for small values of α. The inverse branches of G2
α
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are of the form (Gα,j ◦ Gα,k)
−1 = G−1

α,k ◦ G−1
α,j. We have D(Gα,k ◦ Gα,j)

−1 =

DG−1
α,j ◦ G−1

α,k · DG−1
α,k. That is

(2.1) DG−1
α,j ◦G−1

α,k ·DG−1
α,k =

(

−α
1−α

1
(1−α)τ′

j
(τ−1

j
(u))

1 0

)

·
(

−α
1−α

1
(1−α)τ′

k
(τ−1

k
(v))

1 0

)

,

which is equal to

(2.2)





α2

(1−α)2
+ 1

(1−α)τ′

j(τ
−1

j (u))
−α

(1−α)2τ′

k
(τ−1

k
(v))

−α
1−α

1
(1−α)τ′

k
(τ−1

k
(v))



 .

If α is chosen small enough, since τ is expanding, all the entries of the matrix can
be made smaller than one (in absolute value), so the norm is smaller than one. This
implies that G2

α is a piecewise expanding map. By [4] we have the existence of an
acim.

One can immediately make the following observation.

Remark 1. If α ≈ 0 (strong memory), then Gα(x, y) ≈ (y, τ (x)) hence G2
α(x, y) ≈

(τ (x), τ (y)), so Gα is likely to have an acim because τ has an acim and Gα is
close to the product τ × τ . On the other hand, if α ≈ 1 (weak memory), then
Gα(x, y) ≈ (y, τ (y)), which is independent of x and the orbit of any point (x, y) ∈ U
is approximately a subset of the graph of τ . In this case it is likely that there is an
SRB measure, but that it is singular with respect to the 2D Lebesgue measure.

We now show that in general Gα is not piecewise expanding. Suppose τj : Ij =
(aj, bj) → I is a monotonic branch of τ . Then Gα is piecewise monotonic on the
strips {(x, y) : aj < αy + (1 − α)x < bj}. If Gj is the branch of Gα corresponding
to Ij, then the inverse of Gα,j is given by

(2.3) G−1
α,j

(u, v) =

(

τ−1
j (v) − αu

1 − α
, u

)

Note that

(2.4) D(u,v)G
−1
α,j =

(

−α
1−α

1
(1−α)τ′

j(τ
−1

j (v))

1 0

)

.

Such a matrix has Euclidean norm
∥

∥DG−1
α,j

∥

∥

2
≥ 1. Indeed, for a square matrix

A, this norm is equal to
√

λmax(AT A), where λmax(A
T A) denotes the maximum

eigenvalue of the symmetric matrix AT A. For us, A is given by (2.4) and is of the
form

(2.5)

(

a b
1 0

)

.

Therefore, AT A is of the form

(2.6)

(

1 + a2 ab
ab b2

)

.

Note that the sum of the eigenvalues of a matrix is equal to the trace of the matrix,
which for AT A is 1 + a2 + b2. This means that both eigenvalues cannot be smaller
than 1. Therefore, λmax(A

T A) ≥ 1, and G is not a piecewise expanding map (see
[3], Remark 2.1 item 2) in the sense that all directions are contracted under the
branches of the inverse of G.
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3. τ is the symmetric tent map.

In the sequel we study the dynamical system where the base map is

τ (x) =

{

2x , for 0 ≤ x < 1/2;

2 − 2x , for 1/2 ≤ x ≤ 1.

and

Gα(x, y) = (y, τ (αy + (1 − α)x)).

Figure 2. Partition into A1 and A2 for a) α = 0.34 and b) α = 0.74

4. Case I: 0 ≤ α < 1/2.

Remark 2. For α = 0 we have

(x, y)
G−→ (y, τ (x))

G−→ (τ (x), τ (y)),

so G2 = τ × τ and preserves two-dimensional Lebesgue measure on the square
[0, 1]× [0, 1].

In the sequel we consider only α > 0.
Let A1 denote the part of the square [0, 1]×[0, 1] below the line αy+(1−α)x = 1/2

and A2 the part above this line. We now collect some simple facts.

Proposition 1. If (x, y) ∈ A1 and αy + (1 − α)x > a, a < 1/2, then the point
(w, z) = G(x, y) satisfies αz + (1 − α)w > 2αa.

Proof. We have

αz + (1 − α)w = α(2αy + 2(1 − α)x) + (1 − α)y = [2α2 − α + 1]y + 2α(1 − α)x .

It is enough to see that (2α2−α+1)/α = 2α−1+1/α > 2α and 2α(1−α)/(1−α) =
2α. �

Proposition 2. If (x, y) ∈ A1 and G(x, y) ∈ A1 as well, and αy + (1 − α)x > a,
a < 1/2, then the point (w, z) = G2(x, y) satisfies αz +(1−α)w > (4α2−2α+2)a.
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Proof. We have

(w, z) =
(

2(1 − α)x + 2αy, 4α(1− α)x + (4α2 − 2α + 2)y
)

,

and
αz + (1 − α)w = (−4α3 + 6α2 − 4α + 2)x + (4α3 − 4α2 + 4α)y

= (4α2 − 2α + 2)(1 − α)x + (4α2 − 4α + 4)αy .

It is enough to see that (4α2 − 4α + 4) > (4α2 − 2α + 2) > 1. �

Proposition 3. If (x, y) ∈ A2, then the point (w, z) = G(x, y) satisfies αz + (1 −
α)w ≥ 2α2.

Proof. We have

αz+(1−α)w = α(2−2αy−2(1−α)x)+(1−α)y = 2α+[1−2α2−α]y−2α(1−α)x .

For α ∈ (0, 1/2) the coefficient next to y is positive and that next to x is negative so
the minimum is reached at (1, 0) and is equal to 2α2. This completes the proof. �

Proposition 4. If (x, y) ∈ A2 and G(x, y) ∈ A1 then the point (w, z) = G2(x, y)
satisfies αz + (1 − α)w ≥ 2α(1 − α) ≥ 2α2.

Proof. We have

αz + (1 − α)w = −(4α2 − 2α + 2)(1 − α)x− 4α3y + 4α2 − 2α + 2 .

For α ∈ (0, 1/2) both coefficients next to x and y are negative so the minimum is
reached at (1, 1) and is equal to 2α(1− α) ≥ 2α2. This completes the proof. �

Proposition 5. Let AI denote the part of the square [0, 1] × [0, 1] above (to the
right of) the line αy + (1 − α)x = 2α2. Propositions 1-3 prove that the support of
G-invariant measures (except the point measure at (0, 0)) must lie in region AI .

Proof. Proposition 2 implies that every point of A1, except (0, 0), enters A2 after a
finite number of steps. Let us consider a point X0 ∈ A2. By Proposition 3 its image
X1 = G(X0) stays above the line αy + (1 − α)x = 2α2. Assuming that X1 ∈ A1,
by Proposition 4 the point X2 = G(X1) is also above this line. If X2 ∈ A1 the next
image X3 = G(X2) = G2(X1) is above the line αy + (1− α)x = 2α2(4α2 − 2α + 2)
(by Proposition 2). Now, if X3 ∈ A1, the next image X4 = G(X3) = G2(X2) is
also above this line. We see that further points of the trajectory move up towards
A2 and none of them can go below the line αy + (1 − α)x = 2α2. �

Remark 3. For 0.24 < α < 1/2, if (x, y) ∈ AI , then it reaches A2 in at most 6
steps.

We define some functions which we will use below. Let Gi = G|Ai
, i = 1, 2, be

the restrictions of G to regions A1 and A2, respectively. Let S(x, y) = αy+(1−α)x.
Then, A1 = {(x, y) : 0 ≤ x, y ≤ 1, S(x, y) < 1/2} and A2 = {(x, y) : 0 ≤ x, y ≤
1, S(x, y) ≥ 1/2}.

Let

D1 = DG1 =

[

0 1
2(1 − α) 2α

]

, D2 = DG1 =

[

0 1
−2(1 − α) −2α

]

.

Theorem 1. The map G admits an acim for 0 < α ≤ α1 ∼ 0.24760367

We define α1 as a root of the equation 16α4 + 16α3 − 52α2 + 48α− 9 = 0 in the
interval [0, 1]. It is explained below.
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Proof. We will prove that G2 satisfies the assumptions of Tsujii ([4]), i.e., it is piece-
wise analytic and expanding in the sense that for any vector v we have |DG2v| > |v|.
We will do this by showing that the smaller singular value s2(α) of the matrix DiDj ,
i, j ∈ {1, 2} is above 1 for 0 < α ≤ 0.24760367.

Figure 3. a) Singular values for matrices D2D1 and D1D1. The
lower curve intersects level 1 at α1 ∼ 0.24760367. b) Singular
values for matrices D2D2 and D1D2. The lower curve intersects
level 1 at ∼ 0.3709557543.

The singular values of the matrices D2D1 and D1D1 are

σ1(α) =

√

16α4 − 24α3 + 22α2 − 8α + 4 + 2
√

w1(α),

and

σ2(α) =

√

16α4 − 24α3 + 22α2 − 8α + 4 − 2
√

w1(α),

where

w1(α) = 64α8 − 192α7 + 320α6 − 328α5 + 245α4 − 120α3 + 36α2.

They are shown in Figure 3 a). The lower curve intersects level 1 at at the root
α1 of 16α4 + 16α3 − 52α2 + 48α− 9 = 0, i.e., at α1 ∼ 0.24760367.

The singular values of the matrices D2D2 and D1D2 are:

σ1(α) =

√

16α4 − 8α3 + 6α2 − 8α + 4 + 2
√

w2(α),

and

σ2(α) =

√

16α4 − 8α3 + 6α2 − 8α + 4 − 2
√

w2(α),

where

w2(α) = 64α8 − 64α7 + 64α6 − 88α5 + 69α4 − 24α3 + 4α2.

They are shown in Figure 3 b). The lower curve intersects level 1 at ∼ 0.3709557543.
This shows that at least for 0 < α ≤ α1 ∼ 0.24760367 the assumptions of [4] are
satisfied and thus, G2 and consequently also G admit an acim. �
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5. Proof of the existence of acim for α > α1

We will prove that high iterates of the map G expand all vectors. We will make
estimates of the smaller singular value σ2 of derivative matrix DGn for large n.
The general strategy is as follows: we will consider the admissible products of the
derivative matrices

∏ns

j=1 Dij
, where ij ∈ {1, 2} and the length ns depends on the

sequence, for α ∈ (αs, αt), where (αs, αt) denotes contiguous intervals. The order
of the matrices is natural, e.g., the sequence D1D2D2 corresponds to the iteration
G1G2G2. We will consider sequences of the form Dn

1 Dm
2 , n ≤ 3, m ≥ 1, since by

Proposition 2 every point (except (0, 0)) visits region A2. We will break the long
sequence into short “good” sequences for which we can bound σ2 from below by
numbers larger that 1. Since

(5.1) σ2(AB) ≥ σ2(A)σ2(B),

this will allow us to show that the σ2 of a long product grows to infinity with the
length ns. Once we have a good estimate, we proceed as follows: we choose a large
number M and find a sequence length ns such that any admissible sequence of
length ns starting with D2 has σ2 > M . Then, adding at most three matrices D1

at the beginning of the sequences and a corresponding number of matrices at the
end (to keep the length of all sequences equal to ns + 3) we will have derivative
matrices of Gns+3 for all non-transient points (we will prove that 3 is enough) and
their σ2’s greater than 1. This proves that Gns+3 on the set of non-transient points
expands all vectors and in turn that G admits an acim.

Our proofs are based on symbolic calculations using Maple 17, but they are all
finite calculations and “in principle” could be done using pen and paper.

Recall Gi = G|Ai
, i = 1, 2 are the restrictions of G to regions A1 and A2,

respectively.

Figure 4. Singular values of D1D2D2 or D2D2D2.

The following result holds for all 0 < α < 1/2.
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Proposition 6. For any matrix M we have σ2(D1M) = σ2(D2M). Also,

(5.2) σ2(D1D2D2) = σ2(D2D2D2) > 1,

for 0 < α < 1/2. More generally,

σ2(D1D
m
2 ) ≥ σ2(D2D2D2) > 1, for m = 2 + 3k, k ≥ 1, 0 < α < 1/2.

Proof. The singular values of the matrix B are square roots of the eigenvalues of the
matrix BT B, where BT is the transpose of B. Since DT

1 D1 = DT
2 D2, the first claim

follows. The graphs of the singular values of the matrices D1D2D2 and D2D2D2

are shown in Figure 4. Both singular values are above 1 for all 0 ≤ α < 1/2. The
last inequality follows from (5.1). �

Figure 5. First two images of A1 for a) α = 0.25290169942 and
b) α = 0.320169942

Proposition 7. For α > (
√

5 − 1)/4 ∼ 0.3090169942 a point in A2 originating in
A1 must stay in A2 for at least 2 steps.

Proof. Figure 5 shows the first (green) and second (red) image of A1. G−1(A2)∩A1

is bounded by magenta lines, the blue line is the partition line S(x, y) = 1/2.
The important point is v2 = G(G(v)) = (2α, 2α(1 − 2α)) for v = (0, 1). When
v2 ∈ A1, then points can return to A1 after one visit in A2. When v2 ∈ A2, then
a point coming from A1 must stay in A2 for at least 2 steps. S(v2) = 1/2 for

α = (
√

5 − 1)/4 ∼ 0.3090169942. �

Proposition 8. The following estimates of σ2(D
n
1 Dm

2 ) for various n and m were
obtained using Maple 17:

1) σ2(D1D2) > 1 at least for α ≤ 0.3709557543;
2) σ2(D1D2D2D2) > 1 at least for α ≤ 0.3938896523;
3) σ2(D1D1D2) > 1 at least for α ≤ 0.3149466135;
4) σ2(D1D1D2D2) > 1 at least for α ≤ 0.3758203590;
5) σ2(D1D1D2D2D2) > 1 at least for α ≤ 0.3506831157;
6) σ2(D1D1D1D2) > 1 at least for α ≤ 0.3058009335;
7) σ2(D1D1D1D2D2) > 1 at least for α ≤ 0.3355882883;
8) σ2(D1D1D1D2D2D2) > 1 at least for α ≤ 0.3312697596;

Theorem 2. The map G admits an acim for α1 ≤ α ≤ α2 ∼ 0.2797707433.
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We define α2 as a root of the equation 8α4 − 8α3 + 8α2 = 1/2 in [0, 1]. Again,
it is explained below in Proposition 10.

Figure 6. a) Functions cx, cy, cc in Proposition 9. b)Functions
cx + cc and cx + cy + cc in Proposition 9.

First, we prove the following:

Proposition 9. For α1 ≤ α ≤ α2, a point originating in A2 remains in A1 for at
most 3 steps.

Proof. It is enough to show that f(x, y) = S(G1(G1(G1(G2(x, y))))) ≥ 1/2. We
have

f(x, y) = cx(α)x + cy(α)y + cc(α),

where

cx(α) = 16α5 − 40α4 + 52α3 − 36α2 + 12α− 4;

cy(α) = −16α5 + 16α4 − 12α3 − 8α2 + 4α;

cc(α) = 16α4 − 24α3 + 28α2 − 8α + 4.

The functions cx, cy and cc are shown in Figure 6 a). We consider the worst
case scenario, i.e., y = 1 and x = 0 where cx > 0 and x = 1 where cx < 0. Graphs
of cx + cc and cx + cy + cc are shown in Figure 6 b). They both above 1/2 for
α > 0.24, and in particular for α1 ≤ α ≤ α2. �

Proof of Theorem 2: By Proposition 9, Proposition 6 and estimates of Propo-
sition 8 we see that, for α’s in the interval [α1 α2], all admissible “basic” sequences
of derivative matrices have σ2 larger than 1. Note that we have

(5.3) σ2(D
n
1 Dm

2 ≥ σ2(D
n
1 Dm−3

2 )σ2(D
3
2) > σ2(D

n
1 Dm−3

2 ),

for m > 3 (Proposition 6). This shows that the general strategy described at the
beginning of this section will work and proves the theorem.

Theorem 3. The map G admits an acim for α2 ≤ α ≤ α3 = 1/3.

First, we prove the following:

Proposition 10. For α2 ≤ α ≤ α3 a point coming from A2 can stay in A1 for at
most 2 steps.
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Figure 7. Functions cx, cy, cc and their sums in Proposition 10

Proof. The proof is similar to that of Proposition 9. It is enough to show that
f(x, y) = S(G1(G1(G2(x, y)))) ≥ 1/2. We have

f(x, y) = cx(α)x + cy(α)y + cc(α),

where

cx(α) = 8α4 − 16α3 + 16α2 − 8α;

cy(α) = −8α4 + 4α3 − 2α2 − 4α + 2;

cc(α) = 8α3 − 8α2 + 8α.

The functions cx, cy and cc are shown in Figure 7 a). Again, we consider the
worst case scenario, i.e., y = 1 and x = 0 where cx > 0 and x = 1 where cx < 0.
Graphs of cx + cc and cx + cy + cc are shown in Figure 7 b). They are both above
1/2 for α > α2. �

Proof of Theorem 3: Let us first consider the sequence D1D1D2. By part 3)
of Proposition 8 its σ2 is larger than 1 until α ∼ 0.3149466135. By Proposition 7
the sequence is not admissible after α ∼ 0.3090169942. All other admissible “basic”
sequences of derivative matrices have σ2 larger than 1 for α’s in the interval [α2, α3].
We used Proposition 10, Proposition 6 and estimates of Proposition 8 as well as
inequality (5.3). This shows that the general strategy described at the beginning
of this section will work and proves the theorem.

6. Proof of the existence of acim for α > α3 = 1/3

We will continue the estimates of σ2 for “basic” admissible sequences.

Proposition 11. For α > α3 = 1/3 a point coming from A2 can stay in A1 for at
most 1 step.

Proof. Figure 8 shows the region G(A2) ∩ A1 (outlined in green) and its image
(outlined in red). The blue line is the partition line S(x, y) = 1/2. The important

point is G(w) = (α/(α + 1), 1) for w =
(

α+1/2
α+1 , α

α+1

)

. When G(w) ∈ A1, points

coming from A2 can stay in A1 for two steps. When G(w) ∈ A2, a point coming
from A2 can be in A1 for only one step. S(G(w)) = 2α/(α + 1) so S(G(w)) = 1/2
for α3 = 1/3. �



12 P. GÓRA, A. BOYARSKY, Z. LI, AND H. PROPPE

Figure 8. Region G(A2) ∩ A1 and its image for a) α = 0.29 and
b) α = 0.34

Proposition 7 and Proposition 11 imply that for α > 1/3 basic admissible se-
quences are of the form D1D

m
2 with m ≥ 2.

Proposition 12. For α > α3 = 1/3 we give estimates of σ2 for basic admissible
sequences. Again, the estimates are obtained using Maple 17.

1) σ2(D1D
3
2) > 1 at least for α ≤ 0.3938896523;

2) σ2(D1D
4
2) > 1 at least for α ≤ 0.4444154417;

3) σ2(D1D
6
2) > 1 at least for α ≤ 0.4345268819;

4) σ2(D1D
7
2) > 1 at least for α ≤ 0.4645618403;

Corollary 1. Propositions 7, 11 and 12 imply that our general strategy works for
α ≤ 0.3938896523. For longer sequences we use inequality (5.3).

Proposition 13. For α > 0.3931078326, the sequence D1D2D2D2 is followed by
D1D2D2. We have

σ2(D1D
2
2D1D

3
2) > 1 for at least α ≤ 0.4160029431.

With the previous results this extends the interval of the existence of acim up to
α ∼ 0.4160029431.

Proof. Figure 9 shows the first four images of B = G(A2)∩A1 (green thick bound-
ary). The blue line is the partition line S(x, y) = 1/2. The images are consecutively
G(B) (red), G2(B) (blue), G3(B) (brown). The set G3(B)∩A2 is bounded by thick
brown lines and represents points which stay in A2 for 3 steps. Its image is bounded
by green lines. The set we are interested in is the triangle C = G(G3(B)∩A2)∩A1,
namely the points which after three steps in A2 go to A1.

Further images of the triangle C are shown in Figure 10 for a) α = 0.391 and
b) α = 0.394. The important point is G7(w) (the same point w as in the proof of
Proposition 11). When G7(w) ∈ A2, then some points of C stay in A2 longer than
twice. When G7(w) ∈ A1, all points of C stay in A2 exactly for two steps. Equation
S(G7(w)) = 1/2 is equivalent to 192α7 +192α6−336α5−144α4 +256α3−128α2 +
53α − 11 = 0 with a root α ∼ 0.3931078326. Since 0.3931078326 < 0.3938896523
for α > 0.3931078326 we replace estimate 1) of Proposition 12 with estimate of
Proposition 13 which holds up to α ∼ 0.4160029431. �
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Figure 9. Four first images of G(A2) ∩ A1, α > 0.39

Figure 10. Further images of G(G3(B)∩A2)∩A1 for a) α = 0.391
and b) α = 0.394

Proposition 14. For α > 0.3510763028 group D1D
4
2 is not admissible. For α >

0.4284630893 group D1D
3
2 is not admissible. The following estimates hold:

1) σ2(D1D
2
2D1D

2
2D1D

3
2) > 1 at least for α ≤ 0.4315221884;
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2) σ2(D1D
2
2D1D

3
2D1D

2
2D1D

3
2) > 1 at least for α ≤ 0.4584009011;

3) σ2(D1D
4
2D1D

2
2D1D

3
2) > 1 for all α < 0.5. Although the group D1D

4
2 may not

be admissible, this inequality can be used for estimates.
4) σ2(D1D

5
2D1D

2
2D1D

3
2) > 1 at least for α ≤ 0.4456891654;

5) σ2(D1D
6
2D1D

2
2D1D

3
2) > 1 at least for α ≤ 0.4624281766.

For n = 3k + i, i = 4, 5, 6, we have
(6.1)

σ2(D1D
n
2 D1D

2
2D1D

3
2) = σ2(D2D

n
2 D1D

2
2D1D

3
2) ≥ σk

2 (D3
2)σ2(D1D

i
2D1D

2
2D1D

3
2).

With the previous results this extends the interval of the existence of acim up to
α ∼ 0.4345268819 by estimate 3) of Proposition 12).

Figure 11. Further images of C1 = G(G3(B) ∩ A2) ∩ A2 (thick
brown), for a) α = 0.343 and b) α = 0.355.

Proof. First, the estimates 1)–5) show that the basic admissible sequences starting
with D1D

3
2 (followed by D1D

2
2 in view of Proposition 13) have σ2 > 1 up to

α ∼ 0.4315221884.
Now, we will show that groups D1D

4
2 and D1D

3
2 are not admissible above some

α’s. Figure 11 shows further images of C1 = G(G3(B) ∩ A2) ∩ A2 (thick brown),
where B = G(A2) ∩ A1 (thick green) shown in Figure 9. The first image G(C1)
is bounded in green. These are points which were 3 steps in A2, some of them
are in A1, some stay for the fourth step in A2. The region bounded in red is the
image G(G(C1) ∩ A2) (thick green), the points which were in A2 for 4 steps. For
α = 0.343 ( a)) some of them land in A1, for α = 0.355 ( b)) the whole image is
in A2. The important point is G5(z), where z = (0, 2α) is a vertex of B. Equation
S(G5(z)) = 1/2 is equivalent to α6 +8α5−8α4 −40α3−48α2−96α+320 = 0 with
a root α ∼ 0.3510763028.

Figure 12 shows the set G3(B)∩A2 (thick brown), the set of point which stayed
in A2 for three steps. B = G(A2) ∩ A1 as in the proof of Proposition 13 and
point w is also the same as there. The image G(G3(B) ∩ A2) is bounded in green.
The important point is G4(w). When G4(w) ∈ A1, then some points can go to
A1 after three steps in A2. When G4(w) ∈ A2, then all points which stayed 3
times in A2 stay there for at least two more steps (4 times in A2 were excluded
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Figure 12. The image of G3(B) ∩ A2 for a) α = 0.415 and b) α = 0.432.

in the previous part of the proof). The equation S(G4(w)) = 1/2 is equivalent to
24α4 + 12α3 − 36α2 + 9α + 1 = 0 with a root α ∼ 0.4284630893.

Once the the sequence D1D
3
2 is rendered inadmissible, the worst estimate is

α ∼ 0.4345268819, estimate 3) of Proposition 12. �

To further improve the range of α’s for which G has an acim we have to consider
sequences starting with sequence D1D

6
2 .

Proposition 15. Above α ∼ 0.4345268819 the sequence D1D
6
2 is followed by the

sequence D1D
2
2 or D1D

5
2. After α ∼ 0.4397492527 the only possibility is D1D

2
2.

Proof. The blue quadrangle in Figure 13 is G3(G3(B)∩A2), i.e., it is the third image
of brown quadrangle of Figure 12. These are images of points which (for our range
of α’s) were for 5 steps in A2. The green triangle O6 = G(G3(G3(B)∩A2)∩A2)∩A1

are the points which went to A1 after 6 steps in A2. Figure 13 shows the images
G(O6) (bigger red), G2(O6) (blue) and G3(O6) (partially brown, partially red). The
points in G3(O6) ∩ A1 (brown part of G3(O6)) correspond to group D1D

2
2D1D

6
2 .

Figure 13 shows also three consecutive images of T = G3(O6) ∩ A2 (small red
triangles). In particular G3(T ) is completely inside A1. These points correspond
to the group D1D

5
2D1D

6
2 . This proves the first claim of the proposition.

Figure 14 shows O6 and its images G(O6), G2(O6) and G3(O6) for parameters
α = 0.434 (part a)) and α = 0.441 (part b)). For larger α’s the image G3(O6)
is completely in A1, which means that after group D1D

6
2 there must be group

D1D
2
2 . The group D1D

5
2D1D

6
2 is no longer admissible. The important point is

G10(w), where w is the point used already in Propositions 14 and 13. The equation
S(G10(w) = 1/2 is equivalent to 1536α10 + 3840α9 − 2688α8 − 7296α7 + 4128α6 +
3840α5−3504α4 +992α3−160α2 −5α+11 = 0 with a root α ∼ 0.4397492527. �

Proposition 16. Above α ∼ 0.4546258153 the sequence D1D
6
2 becomes inadmissi-

ble. For this range of α the sequence D1D
7
2 is also inadmissible.

Proof. Figure 15 shows the quadrangle B1 = G3(G3(B) ∩ A2) ∩ A2 (thick blue),
the set of points which stay in A2 for 6 steps. The images G(B1) (brown) and
G2(B1)) (green) are also shown. Part a) is for α = 0.451 and part b) for α = 0.456.
For larger α both images are completely inside A2. This means that the sequences
D1D

6
2 and D1D

7
2 are inadmissible. The important point is G7(w) for the same
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Figure 13. Images of points which stayed for 6 steps in A2.

Figure 14. When the sequence D1D
5
2D1D

6
2 becomes inadmissible.

point w as before. The equation S(G7(w)) = 1/2 is equivalent to 192α7 + 384α6 −
432α5 − 480α4 + 480α3 − 69α + 11 = 0 with a root α ∼ 0.4546258153. �

Proposition 17. We have proved the existence of acim for alpha’s up to α ∼
0.4345268819 (Proposition 14). We have the following estimates on the σ2’s of
sequences starting with D1D

6
2:
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Figure 15. Sequence D1D
6
2 becomes inadmissible.

1) σ2(D1D
5
2D1D

6
2) > 1 at least for α ≤ 0.4487890698;

2) σ2(D1D
2
2D1D

6
2) > 1 at least for α ≤ 0.4451846371;

3) σ2(D1D
2
2D1D

2
2D1D

6
2) > 1 at least for α ≤ 0.4527916100;

4) σ2(D1D
4
2D1D

2
2D1D

6
2) > 1 for all α < 0.5. Although the group D1D

4
2 maybe

not admissible, this inequality can be used for useful estimates.
5) σ2(D1D

5
2D1D

2
2D1D

6
2) > 1 at least for α ≤ 0.4600595036;

6) σ2(D1D
6
2D1D

2
2D1D

6
2) > 1 at least for α ≤ 0.4718920017.

These estimates and previous results extend the range of the existence of acim
up to α ∼ 0.4527916100.

Proof. Estimate 1) together with Proposition 15 tell us that all sequences starting
with D1D

5
2D1D

6
2 have σ2 > 1 as long as they are admissible. All other sequences

starting with D1D
6
2 must start with D1D

2
2D1D

6
2 . Using inequality (6.1) and esti-

mates 2)–6) we see that they all have σ2 > 1 at least up to α ∼ 0.4527916100. �

Figure 16. Images of O6: a) 6 images for α = 0.446, b) 9 images
for α = 0.451.

We want to push α higher to make the sequences starting with D1D
6
2 inad-

missible. First, we will find out what comes after the sequence D1D
2
2D1D

6
2 for

α > 0.4527916100.
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Proposition 18. After α ∼ 0.4496432201 after the sequence D1D
6
2 comes the

sequence D1D
5
2D1D

2
2.

Proof. Figure 16 a) shows 6 consecutive images of triangle O6 (introduced in Propo-
sition 15), the set of points which leave A2 after staying in it for six steps, for
α = 0.446. The triangle G3(O6) is completely in A1. This corresponds to the
sequence D1D

2
2D1D

6
2 , whose necessity was proved in Proposition 15. The triangle

G6(O6) intersects the partition line so some points leave A2 at this moment, some
continue staying in A2.

Part b) of the same figure show the same 6 images of O6 and 3 next images,
for α = 0.451. Some images have full descriptions, some only numbers. For this α
triangle G6(O6) is completely inside A2 so all of its points continue staying in A2.
The triangle G9(O6) is completely in A1. This shows that for this range of α’s after
group D1D

6
2 there must be group D1D

5
2D1D

2
2 .

The important point is G13(w) (the same w as before), the left most vertex of
G6(O6). The equation S(G13(w)) = 1/2 implies 12288α13+36864α12−12288α11−
86016α10+16128α9+84480α8−43392α7−23360α6+36288α5−19456α4+2816α3+
1984α2 − 869α + 91 = 0 with a root α ∼ 0.4496432201. �

Theorem 4. The map G admits an acim for α up to at least α ∼ 0.4600595036.

Proof. In Proposition 17 we proved existence of an acim up to α ∼ 0.4527916100.
After this value, by Proposition 18 the offending sequence D1D

2
2D1D

2
2D1D

6
2 is no

longer admissible. The lowest estimate we need now is estimate 5) of Proposition
17. Thus, the existence of an acim is proved for α’s up to α ∼ 0.4600595036. �

Remark 4. For α’s above α ∼ 0.4600595036 the sequence D1D
6
2 is no longer

admissible.

The exact estimates for α > 0.4600595036 become more and more complicated.
We hope to find some more abstract way to prove that G satisfies the expanding
conditions of [4]. We performed numerical experiments estimating σ2(x0, N) =

σ2

(

∏N
k=0 DG(Gk(x0))

)

for millions of initial points x0. Instead of calculating σ2

directly, we used estimate (see, e.g., [5])

(6.2) σ2

(

N
∏

k=0

Mk

)

≥
det
(

∏N
k=0 Mk

)

∣

∣

∣

∣

∣

∣

∏N
k=0 Mk

∣

∣

∣

∣

∣

∣

F

=

∏N
k=0 det Mk

∣

∣

∣

∣

∣

∣

∏N
k=0 Mk

∣

∣

∣

∣

∣

∣

F

,

where ‖M‖F =
√

m2
1,1 + m2

1,2 + m2
2,1 + m2

2,2 is the Frobenius norm of the matrix

M . Since all Mk’s are either D1 or D2 and detD1 = detD2, the calculations of right
hand side of (6.2) are very stable. All trials showed that for α < 1/2 the quantity
σ2(x0, N) grows to infinity as N increases. This provides numerical evidence for
expanding properties of G and the existence of acim.

The Figures 17–18 show the support of acim (or conjectured acim) for α =
0.3, 0.4, 0.43, 0.46, 0.49, 0.495. The pictures were obtained by computer plotting
106 iterates long trajectory of Gα after skipping the first 1.5 · 106 iterations. The
experiments show that the obtained support is independent of the typical initial
point.

For α’s in a very narrow window around α = 0.493 (of radius approximately
10−6), the support of conjectured acim looks very different from typical, see Figure
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Figure 17. Support of acim for α = 0.3 and α = 0.4.

Figure 18. Support of acim for α = 0.43 and α = 0.46.

Figure 19. Support of conjectured acim for α = 0.49 and α = 0.495.

20. It consists of 175 clusters which under action of G move by 58 positions in the
clockwise direction. Since 3 · 58 = 174, G175 preserves every cluster. Figure 20 b
shows one of the clusters (pointed out by an arrow in part a). It shows 500 · 106

iterations of G175, after skipping 35 · 106 initial iterations. Parts of the image were



20 P. GÓRA, A. BOYARSKY, Z. LI, AND H. PROPPE

Figure 20. a: Support of conjectured acim for α = 0.493. b:
Close-up of one of the clusters in part a.

showing up extremely slowly. We observed similar behaviour for α = 0.4883 (106
clusters moving by 35 positions), α = 0.4943 (214 clusters moving by 71 positions)
and α = 0.4973 (448 clusters moving by 149 positions). Probably there are many
other windows of α with similar behaviour.

7. Deterministic Behaviour of Memory Map for 1/2 ≤ α ≤ 3/4

7.1. α = 1/2. Let α = 1/2. In particular, we have

τ (1 − x/2) = 2 − 2(1 − x/2) = x .

Assume y ≥ 1 − x or x + y ≥ 1 or (x + y)/2 ≥ 1/2. Then,

G(x, y) = (y, τ ((x + y)/2)) = (y, 2 − x − y) ,

G2(x, y) = G(y, 2 − x − y) = (2 − x − y, τ (1 − x/2)) = (2 − x − y, x) ,

G3(x, y) = G(2− x − y, x) = (x, τ(1− y/2)) = (x, y) .

(7.1)

This shows that any such point is periodic with period 3. The only fixed point in
this region is (2/3, 2/3). (Another one is (0, 0) and there is no more fixed points)

If y < 1 − x, then we have to show that any such point except (0, 0) eventually
goes to the upper triangle y ≥ 1 − x. Note that if G(x, y) = (0, 0), then (x, y) =
(0, 0). Also, G(x, 0) = (0, τ (x/2)), so we can consider only points with y > 0. Then,
as long as the second coordinate is less than 1 minus the first, we have

(x, y) 7→ (y, x + y) 7→ (x + y, x + 2y) 7→ (x + 2y, 2x + 3y) 7→ . . .

It is clear that the sum of the coordinates grows on each step at least by the value
y so eventually it goes above 1, which means that the point goes to the upper
triangle.

7.2. α = 3/4. Let α = 3/4 and let us assume that x + y = 4/3 or 3x + 3y = 4.
Then,

G(x, y) =

(

y, τ

(

3

4
y +

1

4
x

))

.

We have 3
4
y + 1

4
x = 1

4
(3y + 3x− 2x) = 1 − x/2 ≥ 1/2 so

τ

(

3

4
y +

1

4
x

)

= 2 − 1

4
(6y + 6x − 4x) = 2 − 2 + x = x .
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Thus, for such points

G(x, y) = (y, x),

so each of them is periodic with period 2, except for the fixed point (2/3, 2/3).
We will prove the following:

Theorem 5. For α = 3/4 any point, except (0, 0) is either periodic (period 2 or 1)
or eventually periodic or attracted to the line x + y = 4/3.

The line y = 2/3− x/3 (or equivalently y + x/3 = 2/3) partitions square [0, 1]×
[0, 1] into two parts on which G is defined differently: A1 below the line and A2

above it. We partition region A2 further into three parts: B1 between the lines
y = −x/2+5/6 and y = −x/2+7/6, B2 between y = −x/2+5/6 and the partition
line and B3 above the line y = −x/2 + 7/6, see Figure 21.

Figure 21. Regions for α = 3/4.

Let (x, y) ∈ A1 \ {(0, 0)}. If (x, y) = (x, 0), then G(x, 0) = (0, x/2), so we can
assume that y > 0. It is easy to calculate that

G(x, y) =

(

y,
3

2
y +

1

2
x

)

,

with the sum of second coordinate plus one third of the first coordinate equal to
5
2y + 1

6x so on each step this sum grows by at least y and eventually every such
point will move to the upper half of the square y + x/3 > 2/3.
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Consider now the region B1 inside [0, 1]× [0, 1] between the lines y = −x/2+5/6
and y = −x/2 + 7/6. It contains the line L : x + y = 4/3 of periodic points.
The derivative matrix in this region is constant and has eigenvalues −1,−1/2 and
corresponding eigenvectors v1 = [−1, 1] and v2 = [−2, 1] . Every point in B1 can be
written uniquely as [2/3, 2/3]+ tv1 + sv2 = [2/3 − t − 2s, 2/3 + t + s] for [t, s] ∈ E,
some compact neighbourhood of [0, 0]. We have

G ([2/3 − t − 2s, 2/3 + t + s]) = [2/3 + t + s, 2/3− t − s/2]

= [2/3, 2/3]− tv1 − s/2v2

and since v1 is parallel to L, this means the distance to L is divided by 2.Thus,
every point in B1 is attracted to the periodic line.

Let us consider B2 now. We will show that G(B2) ⊂ B3. Let (x, y) ∈ B2 . Then,
y < 5/6 − x/2 and G(x, y) = (w, z) = (y, 2 − (3/2)y − (1/2)x). We will show that
z > 7/6 − w/2, or

2 − 3

2
y − 1

2
x >

7

6
− 1

2
y ,

which is exactly our assumption. Thus, G(B2) ⊂ B3.

Figure 22. Images G(B2) and G(G(B2)), α = 3/4.

In Figure 22 a) we see the image G(B2) (green) and both images G(A1) and
G(A2) (grey dashed). The points outside G(A1) ∪ G(A2) are transient and unim-
portant for dynamics because they are eventually mapped into G(A1) ∪ G(A2).
Thus, the only part of B3 we will study is the image G(B2). In Figure 22 b) we
see the image G(G(B2)) (green). It consists of two parts, upper G2(B2) ∩ A2 and
lower G2(B2) ∩ A1.

In Figure 23 a) we see the image G(G2(B2) ∩ A2) (magenta) of the upper part
of G2(B2). We have G(G2(B2) ∩ A2) ⊂ G(B2) ⊂ A2 so further iterations of these
points will be similar to that of whole G(B2). In Figure 23 b) we see the image
G(G2(B2) ∩ A1) (magenta) of the lower part of G2(B2). We see that the points
of G(G2(B2) ∩ A1) are either in B1 (and then their future iterates are attracted
to the line x + y = 4/3) or they are inside G(B2) above the line y = −x/2 + 7/6
(upper red). The lowest point of G(G2(B2) ∩ A1) is (1/6, 3/4) and belongs to the
line y = −x/2 + 5/6 (lower red).

Under the action of G every point in A2 gets closer to the line x+y = 4/3 (blue).
To show that every point of G(B2) is attracted to this line, it is enough to show
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Figure 23. Images of a) the upper part and b) the lower part of G(G(B2))

that for any point (x, y) ∈ G2(B2) ∩ A1 its image (z, w) = (y, 3
2y + 1

2x) is either
in B1 or is closer to the line x + y = 4/3 than (x, y). Using the formula for the
distance of a point from a line we have to check that

|x + y − 4/3| > |z + w − 4/3|.
Since the point (x, y) is below the partition line we have |x+y−4/3| = 4/3−x−y.
Since the point (z, w) is above line y = −x/2 + 7/6 (upper red) we have |z + w −
4/3| = z +w− 4/3. Thus, our condition is equivalent to 4/3−x− y > z +w− 4/3,
or

(7.2) 4/3− x − y > y +
3

2
y +

1

2
x − 4/3, or y < −3

7
x +

16

21
.

The line y = −3
7x + 16

21 (yellow) intersects the partition line y = −1
3x + 2

3 at the

point (1, 1/3) and for x ∈ (0, 1) is above it. Thus, all points in G2(B2)∩A1 satisfy
the condition (7.2). This proves Theorem 5.

7.3. 1/2 < α < 3/4. Let 1/2 < α < 3/4. We will prove that the fixed point
x0 = (2/3, 2/3) is the global attractor attracting all points except (0, 0). The
derivative matrix at x0 is

D =

[

0 1
−2(1 − α) −2α

]

,

with eigenvalues e1 = −α +
√

α2 + 2α − 2, e2 = −α −
√

α2 + 2α − 2 which are
complex for 1/2 < α <

√
3 − 1 and real for

√
3 − 1 ≤ α < 3/4. In the interval

(1/2,
√

3− 1) their moduluses are equal to |e1| = |e2| =
√

2(1 − α) and less than 1.

In the interval [
√

3 − 1, 3/4) eigenvalue e2 has larger modulus equal |e2| = −e2 =

α +
√

α2 + 2α − 2 also less than 1. Thus, x0 is an attracting fixed point.
We will now prove a few facts. Recall that A1 denote the part of the square

[0, 1]× [0, 1] below the line αy + (1 − α)x = 1/2 and A2 the part above this line.
We extend Proposition 1 to :

Proposition 19. If (x, y) ∈ A1 and αy + (1 − α)x > a, a < 1/2, then the point
(w, z) = G(x, y) satisfies αz + (1 − α)w > 2αa, holds also for the 1/2 < α < 3/4.

Proposition 20. If (x, y) ∈ A2, then the point (w, z) = G(x, y) satisfies αz + (1−
α)w ≥ 1 − α.
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Figure 24. Trapping region T for 1/2 < α ≤∼ 0.593. Case α =
0.533 is shown.

Proof. We have

αz+(1−α)w = α(2−2αy−2(1−α)x)+(1−α)y = 2α− [2α2+α−1]y−2α(1−α)x .

The inequality

2α− [2α2 + α − 1]y − 2α(1− α)x ≥ 1 − α ,

is equivalent to

[2α2 + α − 1]y + 2α(1 − α)x ≤ 3α − 1 .

For α > 1/2 the left hand side of the inequality is an increasing function of x and
y with maximum at (1, 1) equal to 3α − 1. This completes the proof. �

Let A′
I denote the part of the square [0, 1]× [0, 1] above the line αy +(1−α)x =

1 − α. Propositions 1 and 20 prove that G(A′
I) ⊂ A′

I , i.e., the region A′
I is G-

invariant. It follows from Proposition 1 that every point of A1, except (0, 0), enters
A′

I after a finite number of steps.

Proposition 21. For every (x, y) ∈ A1∩A′
I we have G(x, y) ∈ A2 or G2(x, y) ∈ A2.

Proof. Applying Proposition 19 twice and Proposition 20 for a = 1−α, it is enough
to show that

(2α)2(1 − α) > 1/2 .

Let f(α) = α2(1 − α). It is easy to check that on interval [1/2, 3/4] function f
is concave with maximum at 2/3. We have f(1/2) = 1

4
· 1

2
= 1

8
. Also, f(3/4) =

9
16 · 1

4 = 9
64 > 1

8 . This completes the proof. �

Proposition 22. For 1/2 < α ≤ (
√

33 − 1)/8 ∼ 0.5930703309, the fixed point
X0 = (2/3, 2/3) attracts all points except (0, 0).

Proof. We will construct a trapping region T ⊂ A2, containing X0, such that
G(T ) ⊂ T . Every point whose trajectory stays in A2 is attracted to X0, since G|A2

is an affine map with an attracting point X0. We will prove that every point of
A2 eventually enters T . From Proposition 1 we know that every point except (0, 0)
eventually enters A2.

Construction of T : The trapping region T is shown in Figure 24 a). It is a polygon
with vertices p1, p1a, p2, p3, p3a, p4, p5 and p6 (red). Its image G(T ) is bounded by
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Figure 25. a)The graph of z− t and b) of y(zi)−yw for the proof
of Proposition 23

black dashed line. We will describe the choice of the vertices. Let Gi = G|Ai
,

i = 1, 2. The large quadrangles bounded by dashed grey lines are the sets G(A1)
and G(A2). We do not need to consider the points outside G(A1) ∪G(A2) as they
are transient and their images eventually go into trapping region or the region
bounded by green lines. The green quadrangle (it looks like a triangle) is the
set W = G−1

2 (A1) ∩ G(A2), the non-transient points of A2 which go in one step
to A1. Point p2 is the lowest vertex of W . Then, consecutively p6 = G−1

2 (p2),

p3a = G−1
2 (p6) and p1a = G−1

2 (p3a). For the point p5 we have p3 = G−1
2 (p5) and

p1 = G−1
2 (p3). The point p5 is chosen on the boundary of G(A2) in such a way

that its image G(p5) lies to the left of the line connecting p1 and p1a. Finally, p4 is
the intersection of the lower boundary of G(A2) and the partition line (blue). We
also have p4 = G(p2). By construction, every vertex of T goes into T . Since T is
convex, we have G(T ) ⊂ T .

The only thing we have to prove is that any point of W (non-transient points
going out of A2) eventually enters the trapping region T . In Figure 24 b) we see
that the second image G2(W ) is a thin quadrangle (looking like a triangle) adjacent
to the upper boundary of the square [0, 1]× [0, 1]. The lowest point of G2(W ) is the
point (2α(2α− 1), 8α3 − 8α + 4). Its most to the right point is (α/(α + 1), 1). We
will prove in Proposition 23 that for any point (x, y) with x ≤ xw = α/(α + 1) and
y ≥ yw = 8α3 − 8α + 4 and its third image (z, w) = G3(x, y) the difference z − x is
larger than some positive constant depending on α and w ≥ yw unless (z, w) ∈ T .
This shows that any point of G2(W ) eventually enters T , and completes the proof
of Proposition 22. �

Proposition 23. Let 1/2 < α ≤ (
√

33 − 1)/8 ∼ 0.5930703309. Let point (x, y)
satisfies x ≤ xw = α/(α + 1) and y ≥ yw = 8α3 − 8α + 4. Then, for its third
image (z, w) = G3(x, y) the difference z − x is larger then some positive constant
depending on α. If (z, w) 6∈ T , then w ≥ yw.

Proof. Let (x, y) = (t, 1 − s) satisfy the assumptions. The third iterate G3 on
such point is equal either G1 ◦ G2 ◦ G2 or G2 ◦ G2 ◦ G2. The first coordinate of
(z, w) = G3(x, y) does not depend on the whether the last map applied is G1 or
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Figure 26. a) T3 and its images, b) enlargement of T3 and G3(T3).

G2. We have z − t = ct(α)t + cs(α)s + cc(α), where

ct = −4α2 + 4α− 1 < 0 , cs = −4α2 − 2α + 2 < 0 , cc = 2α(2α − 1) > 0.

Since both ct(α) and cs(α) are negative z − t has the least value when both t and
s are maximal, i.e., t = xw and s = 1 − yw. Then,

z − t = 2(2α − 1)(8α4 + 4α3 − 4α2 − 5α + 3) > 0.

The graph of z − t is shown in Figure 25.
To prove the second claim we will consider the images of the rectangle T3 (see

Figures 25 b) and 26 ) with vertices z1 = (0, yw), z2 = (xw, yw), z3 = (xw, 1) and
z4 = (0, 1). The second image G2

2(T3) has the vertices G2(z1), G
2(z4) ∈ A1 and

G2(z2), G
2(z3) ∈ A2. Its sides intersect partition line at points zm between G2(z1)

and G2(z2) and z′m between G2(z3) and G2(z4). The image G3(z4) lies on the lower
side of the rectangle T3 and the image G3(z1) is higher. The images

G(zm) = ((8α4 − 12α3 − 6α2 + 17α − 6)/(α + 1), 1)

and G(z′m) are on the top side of the square. The image

G3(z2) =

(

2

α + 1

(

16α6 + 24α5 − 16α4 − 26α3 + 12α2 + 7α− 3
)

,

−64α6 − 64α5 + 128α4 + 40α3 − 100α2 + 36α − 2
)

.

The line L(G3(z2), G(zm)) intersects right hand side of T3 at the point zi =
(xw, 16α4−32α3+38α−27+6/α) with the second coordinate larger than yw. This
shows, that the points of G3(T3) lie either in T3 or in T . Together with the first
claim this shows that every point of T3 eventually enters T . �

We continue to prove that the fixed point (2/3, 2/3) is a global attractor for
other intervals of parameter α ∈ (1/2, 3/4).

Proposition 24. For (
√

33− 1)/8 < α ≤
√

33/12 + 1/4 ∼ 0.7287135539, the fixed
point X0 = (2/3, 2/3) attracts all points except (0, 0).

Proof. The general plan of the proof is the same as for Proposition 22. We construct
a trapping region T and show that some (fourth or fifth) image of W = G−1

2 (A1)∩
G(A2) falls into T .
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Figure 27. α = 0.63 (case ii)) a) Trapping region T (red) and its
image G(T ) (dashed black). b) Region W and its images, G4(W ) ⊂
T .

Construction of the trapping region T : T is a pentagon with the vertices: p3

which is the upper left vertex of W , p5 = G(p3), p2 = G(p5), p4 = G(p2), and
p1 = G−1

2 (p3). Since, for α in the considered interval, G(p4) ∈ T , we G(T ) ⊂ T ,
i.e., T is a trapping region. Figure 27 a) shows the trapping region T (red) and its
image G(T ) (dashed black). The green quadrangle is W = G−1

2 (A1) ∩ G(A2).
Below, we will show that fifth or fourth image of W is a subset of T . We consider

subintervals of α.
i) (∼ 0.5930703309,∼ 0.5970091680)

α = (
√

33 − 1)/8 ∼ 0.5930703309 is the largest α for which the sides of W
and G3(W ) which are on the line x = 1 intersect. For α ∈ (∼ 0.5930703309,∼
0.5970091680), W and G3(W ) still intersect (the highest vertex of G3(W ) is in W ).
(∼ 0.5970091680 is a root of 16α5 − 16α3 + 10α2 − 9α + 4 = 0.) This causes a
minimal “spill off” of G4(W ) outside T . See Figure 28. We also see there that
G5(W ) ⊂ T .

Figure 28. α = 0.594 (case i)) a) Region W and its images in
green except for G3(W ) in magenta, G5(W ) ⊂ T . b) Enlargement
of the intersection of W and G3(W ) which causes G4(W ) 6⊂ T .
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ii) (∼ 0.5970091680,∼ 0.6513878188)

For α ∈ (∼ 0.5970091680, (
√

13− 1)/4 =∼ 0.6513878188) the set W and G3(W )

no longer intersect and G4(W ) ⊂ T . See Figure 27 b). Value α = (
√

13 − 1)/4 is
the point where W stops to be a quadrangle and starts to be just a triangle.

Figure 29. α = 0.69 (case iii)) a) Trapping region T (red) and its
image G(T ) (dashed black). b) Region W and its images, G4(W ) ⊂
T .

iii)(∼ 0.6513878188,∼ 0.7287135539)

For α between ∼ 0.6513878188 and 1/4+
√

(33)/12 =∼ 0.7287135539, the region
W is a triangle and G4(W ) ⊂ T . See Figure 29. Part a) shows the trapping region
T (red) and its image G(T ) (dashed black). Part b) shows region W and its images,
G4(W ) ⊂ T . For α approaching 0.7287135539 the top vertex of G4(W ) approaches
boundary of T but stays in T as it is the image of the lowest vertex of G3(W ) which
is already in T . For α above ∼ 0.7287135539 the image G(p4) goes outside the line
L(p1, p2) and T is no longer a trapping region. �

For the next interval of parameter α we have to make a “micro” adjustment of
T adding to its construction two more vertices G(p4) and G2(p4).

Proposition 25. For ∼ 0.7287135539 < α ≤∼ 0.7360241475, the fixed point X0 =
(2/3, 2/3) attracts all points except (0, 0). ∼ 0.7360241475 is the root of 4α4−8α3+
14α2 − 13α + 4 = 0. Above this value of α sets W and G2(W ) intersect.

Proof. Again, we construct a trapping region T and show that fourth image of
W = G−1

2 (A1)∩G(A2) falls into T . The construction of T is a micro adjustment of
the construction from Proposition 24, it is almost not visible on pictures. We add
two more vertices , p1a = G(p4) and p3a = G2(p4), to the the construction and T
becomes a heptagon (seven angles figure). Since G(p3a) is inside such constructed
T , and T is convex, we have G2(T ) ⊂ (T ). See Figure 30. Part a) shows the
trapping region T (red) and its image G(T ) (dashed black). The green triangle is
the region W . G(p3a) stays inside T up to α =∼ 0.7464180853 but earlier another
problem arises. At α =∼ 0.7360241475 the image G2(W ) starts intersecting with
W and this needs another approach.

Figure 30 b) shows W and its images with G4(W ) ⊂ T . Two upper vertices of
G4(W ) are on the boundary of T since the corresponding vertices of G3(W ) are
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Figure 30. α = 0.734 a) the trapping region T (red) and its image
G(T ) (dashed black). b) shows W and its images with G4(W ) ⊂ T .

already on the boundary of T . This is better visible on the Figure 31 b) presenting
T , G3(W ) and G4(W ). Figure 31 a) shows the old trapping region of Proposition
24 and the points G(p4), G2(p4) both outside this region as well as the point
G3(p4) = G(p3a) well inside T .

Figure 31. α = 0.734 a)the old trapping region of Proposition 24
and the points G(p4), G2(p4), G3(p4). b) enlarged T , G3(W ) and
G4(W ).

Now, we will consider the last subinterval of α’s for which X0 is an almost global
attractor.

Proposition 26. For ∼ 0.7360241475 < α < 3/4, the fixed point X0 = (2/3, 2/3)
attracts all points except (0, 0).

Proof. For
√

3− 1 < α < 3/4,
√

3− 1 =∼ 0.732050808, the eigenvalues of DG2 are

real and both between −1 and −1/2. They are λ1,2 = −α ±
√

α2 + 2α − 2. The

corresponding eigenvectors are v1,2 = [(−α±
√

α2 + 2α− 2)−1, 1].
Since α’s up to ∼ 0.7360241475 were already considered, we will study only

the interval (∼ 0.7360241475, 3/4). The trapping region will be constructed using
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Figure 32. α = 0743 a) Trapping region T (red) and its image
G(T ) (dashed black). The dashed red line is an eigenline going
through X0. b) Region W and its images (green), G4(W ) ⊂ T .

the the vector v1, see Figure 32 a). Let p1 be the left upper vertex of W =
G−1

2 (A1) ∩ G2(A2) and p4 = G−1
2 (p1) its preimage on the partition line. T is the

part of A2 between the lines L1, L4 going through points p1 and p4, respectively, and
parallel to the vector v1. Thus, T is a hexagon with vertices p1, p2 = L1 ∩ {x = 1},
p3 = partitionline∩ {x = 1}, p4, p5 = L4 ∩ {x = 0} and p6 = (0, 1). T is a trapping
region, G(T ) ⊂ T , by construction since its sides are the eigenlines and eigenvalues
have absolute values less than one. Figure 32 a) shows the trapping region T (red)
and its image G(T ) (dashed black). The dashed red line is an eigenline (parallel to
v2) going through X0.

Figure 33. α = 0743 a) Lower part of G3(W ) and b) upper part of G4(W ).

In Figure 32 b) we see region W and its images (green). We see that G4(W ) ⊂ T .
It can be proven that the lowest vertex of G4(W ) touches the line L(p4, p5) first
time for α = 3/4. Lower part of G3(W ) and upper part of G4(W ) are shown more
precisely in Figure 33 a) and b), respectively. Since G3(W ) crosses the partition
line, its image G4(W ) is “broken”. �

Propositions 22, 24, 25 and 26 together prove the following:
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Theorem 6. For 1/2 < α < 3/4, the fixed point X0 = (2/3, 2/3) attracts all points
except (0, 0), so it is an almost global attractor.

�
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