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ABSTRACT 
 
Drought is an insidious, complex and one of the least understood natural phenomena  

resulting from a deficiency of water resources. While droughts cannot be prevented, 

its impacts, however, can be mitigated through proper design of water storage 

infrastructure and management strategies. A comprehensive drought management plan 

necessitates the development of a framework that can help reduce the drought-related 

risk. In Australia, there are limited drought vulnerability and risk assessment models 

that must (1) include the drought monitoring index that measures the supply-demand 

balance of water resources, (2) incorporate large-scale climate drivers influencing 

amplitude of drought events in the statistical prediction models, and (3) objectively 

quantify the drought-risk on both temporal and spatial scales. The goal of this study is 

to apply statistical and geospatial tools in developing a framework for assessing 

drought-related risks in light of improving the drought mitigation strategies.   

A new, temporal and spatial-explicit analytical framework for drought-risk 

assessment is developed based on three objectives focussed in the drought-prone 

southeast Queensland (SEQ) region. (1) Evaluating and affirming the suitability of the 

Standardised Precipitation-Evapotranspiration Index (SPEI) for the characterisation of 

drought events. (2) Developing a copula-based statistical, probabilistic model for 

predicting the SPEI and the jointly distributed drought properties (i.e., durations, 

severities and intensities) conditional on the large-scale climate mode indices. (3) 

Developing a spatially descriptive drought-risk index by combining the drought 

hazard, exposure and vulnerability factors using a fuzzy logic algorithm.  

The first objective of this study demonstrates the scientific relevance of the 

SPEI as a robust drought assessment metric that incorporates the influence of water 

supply-demand balance on drought events. Subsequently, the severity (S; accumulated 

negative SPEI in a drought-identified period), intensity (I; minimum SPEI) and the 

duration (D; number of months with continuously negative SPEI representing the 

below average water resources) based on run-sum approach are enumerated to identify 

historical water deficit periods. Significant disparities in the identified D-S-I affirms 

the significance of SPEI for regional drought impact assessments. Accordingly, this 

study advocates the SPEI as a convenient metric for detecting drought onsets and 

terminations, including its ability for drought ranking and drought recurrence 

evaluations that are considered vital for water resource management. 
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The second objective models the joint behaviour of SPEI and D-S-I properties 

using copula model, conditional upon the pertinent climate mode indices (i.e., El-Niño 

Southern Oscillation indicators). The vine copula algorithm is employed to derive the 

bivariate and trivariate joint-distributions of drought variables for conditiona l 

probability-based predictions. The results yield marginal differences between the 

observed and the predicted drought properties, elucidating the effectiveness of copula  

functions in drought-risk modelling. The results have implications for drought and 

aridity management in agricultural regions where complex relationships between 

climate drivers and drought properties are likely to exacerbate the risk of a future event. 

The third objective develops a methodology using vulnerability, exposure and 

hazard indicators to provide a spatio-temporal framework for drought-risk assessment. 

The conditional joint probability of each drought indicator is estimated using the Bayes 

theorem. Various fuzzy membership functions are then applied to standardise and 

aggregate the indicators to derive drought vulnerability, exposure and hazard indices . 

The resulting indices are integrated with fuzzy GAMMA overlay operation to generate 

optimal drought-risk maps. The maps reveal varying levels of drought risk in different 

austral seasons and annually that is well represented by the drought hazard index, i.e., 

rainfall departure. The validation of the method with respect to the upper and lower 

layer soil moisture reveal significant correlations with the spatial drought-risk index. 

It is therefore prudent to state that the fuzzy logic-based analytical technique applied 

for spatio-temporal drought-risk mapping can be considered as a practical tool that can 

enable better drought management, drought mitigation and relief-planning decisions.  

The statistically and spatially relevant drought-risk assessments frameworks 

formulated in this study provides promising outcomes that are valuable for the 

mitigation of drought impacts, and therefore, sets a pathway to construct strategic 

planning procedures and management of water resources in drought-prone, arid or 

semi-arid regions.  
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INTRODUCTION 
 

 

1.1 Background 

A drought is a global, natural, and recurring climatic feature that results from a 

prolonged period of abnormally low rainfall. According to Hewitt (2014), drought 

ranks first among other natural disasters with numbers of individuals directly affected. 

It is the least understood climatic feature due to its complex nature, yet it results in on 

average 6-8 billion USD of annual damage globally (Keyantash and Dracup 2002). 

The slow development of drought poses difficulty in its detection while the drought 

preparedness and mitigation solely depends on timely information of the onset, 

progress and areal extent (Mishra and Singh 2011). Therefore, there is a pressing need 

to explore new mechanisms for investigating drought characteristics by examining 

historical events and developing robust predictive and risk evaluative frameworks for 

the spatial and temporal features. Scientific studies that develop new methods for 

drought-risk assessments can add new and valuable dimensional information for better 

preparedness, mitigation, adaptation and regional vulnerability assessment.  

 

Given the highly variable climate, severe droughts in Australia can produce 

significant reductions in agricultural productivity and farming income. The 

Millennium Drought that occurred from 1996-2010 serves as a recent reminder of the 

wide-reaching impacts that drought can have on people and environment 

(Commonwealth of Australia 2017). In fact, Australia is the driest inhabited continent 

and is known for its harsh and extreme climate with highly variable rainfall and stream-

flow conditions (Davidson 1969; Ummenhofer et al. 2009). While droughts are 

common periodic events that may be considered as a ‘normal’ feature  (Jones 2001), 

over the past, however, Australia has been deeply affected by numerous and prolonged 
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extreme droughts (CSIRO 2008a; CSIRO 2008b). Table 1.1 lists the major droughts 

that occurred in Australia. Increasing population leading to increasing in demand per 

capita, and a projected increase in the temperature and decrease in rainfall, is likely to 

make droughts become an issue that is even more relevant. According to the Australian 

Bureau of Statistics, the national population in Australia is projected to double by 2075 

(Statistics 2013). The increase in population size and warming climate can have vast 

implications on water supply, and therefore, drought studies are very important for 

identifying ways to lessen the magnitude of impacts that drought may trigger.  

 

Table 1.1: List of major droughts in Australia.  After Deo et al. (2015). 

Drought Year Descriptions 

1895 – 1903 

(Federation 
Drought)  

Felt nationwide but was mostly persistent in QLD, inland 

NSW, SA and central Australia. Sheep numbers reduced to 
half and cattle numbers declined by more than 40%.  The 
wheat yield dropped from 8 bushels/acre to 2.4 bushels/acre 
in 1902. 

  

1911 – 1916  Affected nationwide with varying severity.   

 

1918 – 1920 
 

Affected nationwide. 

1922 – 1923 and 
1926 – 1929  

Nationwide with varying severity.  

1933 – 1938  Nationwide with varying severity 
 

1939 – 1945 
(World War II 
Drought) 

Affected nationwide. 

1946 – 1949  Nationwide with varying severity. 

 
1951 – 1952  Pastoral areas were particularly affected in QLD, NT, WA. 

 

1958 – 1968  Most widespread, consistently prominent for long period. 
Affected nationwide with varying intensity.  
 

1970 – 1973  Affected WA caused by a successive decline in average 
rainfall. 
 

1976  Affected western NSW and most of VIC and SA due to lack 

of autumn-winter rains. 
 

1982 – 1983  Short-lived yet very intense. Affected mostly eastern 
Australia and particularly severe in southeastern Australia. 
A total loss of $3 billion in agricultural production alone. 



  Chapter 1 – Introduction  

 3 

The Wimmera Southern Mallee region of Victoria 
experienced 80% and 40% reduction in grain and livestock 
production, respectively. 
 

1991 – 1995  Affected northeastern NSW and much of QLD as a result of 
lowest levels of rainfall on record. The reservoirs water 

levels went critically low, the average rural population 
declined by over 10% while unemployment went up. The 
estimated loss of the economy was around $A5 billion.  
 

1996 – 2010  

(Millennium 
Drought or “Big 
Dry”)  

A prolonged period of dryness affected much of southern 

Australia. The drought condition was severe in the densely 
populated southeast and southwest and affected the Murray-
Darling Basin (MDB) severely. Southeast Australia 
experienced its lowest 13-year rainfall record since 1865. 

Agricultural production fell from 2.9% to 2.4% of GDP 
between 2002 and 2009. It was estimated that drought 
reduced national GDP by roughly 0.75% between 2006 and 
2009 while regional GDP in MDB fell by 5.7% below 

forecast that accompanied the temporary loss of 6000 jobs 
between 2007 and 2008.   
 

Other Sources: Wittwer et al. (2002), Year Book Australia, 1988, Australian 
Government and Council (2015). Acronyms – QLD: Queensland, NSW: New South 

Wales, SA: South Australia, VIC: Victoria, NT: Northern Territory, WA: Western 
Australia. Bold years are major drought events.

http://www.abs.gov.au/AUSSTATS/abs@.nsf/lookup/1301.0Feature%20Article151988
http://www.australia.gov.au/about-australia/australian-story/natural-disasters
http://www.australia.gov.au/about-australia/australian-story/natural-disasters
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1.2 Statement of the Problem 

Indisputably, the impact of droughts is devastating to health, economy, ecosystems 

and urban water supply. Droughts can contribute to decline in human health and 

increase in mental health problems such as post-traumatic stress and suicidal behaviour 

(Haines et al. 2006). In fact, the World Meteorological Organization (WMO) has 

linked drought to 680,000 deaths globally from 1970-2012 (Golnaraghi et al. 2014). 

In rural affected populations in Australia, droughts can exacerbate mental health issues 

and increase suicide rates (Alston 2012). Droughts also have severe economic 

repercussions on agriculture, tourism, employment and livelihood in Australia. For 

example, between 2002 and 2003, decreases in agricultural production due to drought 

resulted in 1% reduction in Gross Domestic Product (GDP) (ABS 2004). Carroll et al.  

(2009) predicted that an increase in drought frequency in the future is likely to have 

an estimated cost of $5.4 billion annually, reducing GDP by 1% per annum.  

 

Similarly, drought has economic repercussions on Australia’s tourism industry. 

The reduced visitor days in 2008 in the Murray River region had caused an estimated 

loss of $70 million (TRA 2010). Drought also significantly impacts on Australia’s 

ecosystem. During the Millennium Drought, there was a marked decline in water bird, 

fish and aquatic plant populations in the Murray Darling Basin (MDB) (Leblanc et al.  

2012) and loss of 57,000 ha of planted forests (van Dijk et al. 2013). Additionally, 

droughts can reduce inflows into vital urban water catchments. During the Millennium 

Drought in southeast QLD, severe water restrictions were implemented where in some 

areas the average water use declined to 129 litres per person per day, in comparison to 

a regional consumption of 375 litres under normal (non-drought) operating conditions 

(Council 2015).  

 

Challenges in drought assessment measures are restraining the translation of 

scientific insights into water resources management, strategic disaster resilience policy 

development including the design of hydrologic, and water resource systems 

(Trenberth et al. 2014; Van Loon 2015; Vogel et al. 2015). The fact that droughts are 

a major problem of interest in Australia, yet the understanding of this phenomenon is 

far from complete. Decision makers undergo multifaceted challenge in characterising 

drought properties for water resource management. Therefore, having identified 
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significant issues mentioned above, this study aimed to address the following research 

gaps to make significant contributions to this study area: 

1. Given highly variable climate and prone to climate change effects, a 

drought monitoring index based solely on precipitation (such as 

Rainfall Decile-based Drought Index; RDDI) may not reveal the 

detailed information for drought-risk assessment in Australia. This 

study, therefore, employed the SPEI to take into account both 

precipitation and reference evapotranspiration to capture impacts of 

increased temperatures on water demand, to identify onset and 

termination points of historical drought, and to estimate their 

corresponding severity, intensity and duration properties. Additionally, 

drought is a multi-scalar phenomenon where the timescale over which 

water deficits accumulate is extremely important and functionally 

separates meteorological, hydrological and agricultural droughts. There 

has been a paucity of such analysis for Australian droughts, and 

therefore, this study characterises droughts on multiple scales. This can 

enable monitoring and management of different usable water resources.  

2. Several large-scale climate drivers, such as the El-Niño Southern 

Oscillation (ENSO), influence droughts in Australia. Therefore, the 

drought-risk assessment must include models for the prediction of 

droughts conditional on climate drivers, particularly for economically 

sensitive agricultural regions. The literature search shows that the 

prediction of drought based on interacting elements is beneficial for 

understanding the simulated drought-risk, e.g., Wong et al. (2009), yet 

this practice, conditional on climatic conditions, needs further 

investigation and application to any drought-prone regions in Australia.  

3. As it is known, the nature of droughts is temporal and spatial. From a 

practical viewpoint, the need for a spatial representation of drought-risk 

in Australia is far from complete, especially in terms of identifying its 

demographic impacts and for the planning of water resources, 

agricultural expansion, water-management or water demand 

allocations requirements. The premise to develop a spatially 

representative drought-risk index using physiographic and climatic 

factors to demonstrate drought-risk analysis is yet to be applied to the 
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drought-prone regions in Australia.  Studies performed elsewhere 

integrated various physiographic and climatic factors based on certain 

assumptions that incline towards subjective assessments of droughts. 

This study has integrated the fuzzy logic theory to provide a mere 

objective assessment of drought and generate the descriptive drought-

risk maps using vulnerability, exposure and hazard indices. As such the 

subjectivity in the assessment of drought can potentially be minimised.  

 

This study attempts to fill the critical information and knowledge gaps and 

provides new scientific insights to the field of drought-risk monitoring and 

preparedness. There are three essential components of drought-risk identified in this 

study. First, the ability to monitor the episodic or gradual progression of droughts on 

various time-scales, performed using drought indices. Second, being able to provide a 

framework for the predictions of drought-risk using predictive models via joint 

distributions of predictors (e.g., climate mode indices) and predictands (e.g., drought 

indices) where the estimated level of future risk can be assessed. Finally, being able to 

represent drought-risk on a spatial map in terms of drought vulnerability, exposure and 

hazard indices on seasonal and annual scales. This is intended to help in identifying 

regions that are most prone to drought-associated risks. 
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1.3 Research Aims and Objectives 

 

The aim of this study is to develop a statistical and geospatial-based framework and 

verify its suitability for drought-risk research with three main objectives. The 

application on drought-risk management framework is expected to improve the 

modelling precision for accurate assessment and prediction of drought events using 

the available hydro-meteorological, climatic and physiographic parameters. 

Specifically, this study addresses the following three objectives:  

 

(1) To apply the Standardised Precipitation-Evapotranspiration Index 

(SPEI) for drought assessment by considering jointly the impact of precipitation 

and reference evapotranspiration on the water deficit. This objective assesses the 

relationship between SPEI and other drought-related variables where such comparison 

is expected to aid in addressing impacts of droughts on agriculture. The SPEI is also 

applied to estimate the drought return periods for a given severity and intensity 

amounts, as well as to analyse the multi-scalar properties for drought monitoring. This 

objective is addressed in Chapters 4 and 5.  

(2) To model joint distributions of SPEI and severity-intensity-duration with 

climate mode indices using multivariate copula functions to examine  the risk and 

return periods and to emulate conditional probabilistic predictions . This objective 

evaluates the potential utility of vine copula for studying multivariate associations of 

SPEI and drought properties with the synoptic scale climate mode indices that act to 

influence the severity of droughts. The vine copula is also used to develop the 

probabilistic drought prediction model using the information from climate mode 

indices. The conditional joint probabilities and joint return periods elucidates the 

importance of multivariate copula modelling for drought-risk assessment. This 

objective is addressed in Chapter 6. 

(3) To devise an appropriate drought-risk index by integrating hydro-

meteorological and physiographic factors using fuzzy logic algorithms to assess 

drought-risk temporally and spatially. This objective assesses drought-risk in both 

temporal and spatial context using multiple hazards, vulnerability and exposure 

factors. The subjectivity in the drought assessment is minimised by the incorporation 

of the fuzzy logic algorithm. This objective is addressed in Chapter 7. 
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The three objectives of this study are illustrated in Figure 1.1 below.  

 

Figure 1.1: Three main objectives of this study. 

 

 

In achieving these objectives, this study hypothesises that: “statistically and spatially 

explicit drought-risk models can provide sets of information that are useful in planning 

and developing strategies from the potential effects of extreme drought events to 

agriculture and availability of water resources”. 

 

 

Drought-
Risk

Drought 
Monitoring 

(SPEI)

[Chapters 4 & 5]

Geospatial 
Modelling 

(Fuzzy logic)

[Chapter 7]

Statistical 
Modelling 
(Copula)

[Chapter 6]
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1.4 Significance of the Study 

 

To develop robust drought management strategies, including adaptive and mitigation 

measures for drought, a framework that can combine multiple intelligent techniques 

for assessing the drought risk is extremely crucial.  

The new knowledge gained from this study can contribute to improving our 

understanding of the drought characteristics: onset, termination, duration, severity and 

intensity in the study regions. A framework for drought-risk comprising spatial maps 

of drought-risk, and joint distribution for drought characteristics with conditiona l 

return periods and drought predictions, can strongly disseminate drought-risk 

information and serve as the strong basis for policy and management strategies for 

drought mitigation and adaptation. The study also presents a novel application of the 

GIS-based fuzzy logic tool to include various physiographic and hydro-meteorologica l 

parameters that are expected to lessen the amount of subjectivity in drought 

vulnerability and risk assessments. The techniques evolved from this study can be 

made applicable to other drought-prone regions globally.  

It is especially noted that drought-risk studies through multivariate modelling 

and elucidation of its properties in respect to universal precursors (i.e., climate mode 

indices) are centrally important for agricultural water management, and decision-

making by farmers and the populations in south-east Queensland where drought is 

considered a perpetuating risky phenomenon. Therefore, this study offers new insights 

to the body of knowledge in drought-risk management.  
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1.5 Organisation of the Thesis 

 

This thesis is organised into eight chapters: 

Chapter 1 presents the introductory background to the research, identifies the research 

problems and significance of the study, and sets out the objectives.  

Chapter 2 reviews the subjects of knowledge that are relevant to this study: drought 

monitoring, drought modelling, and spatial representation of drought-risk. Discussion 

on existing drought monitoring indices, suitability of the SPEI, copula for probabilist ic 

drought predictions as well as drought vulnerability and risk assessment is done.  

Chapter 3 describes the study area, data and discusses scope and limitation of the 

study. This chapter serves as the gateway to Chapters 4-7. 

Chapter 4 presents the methodology and first set of results in response to the first 

objective of the study. Here, the SPEI is compared with other precipitation-based 

drought indices and its selection for this study is justified.  

Chapter 5 presents the methodology and second set of results in response to the first 

objective of the study. Here, the SPEI is evaluated and affirmed its suitability for 

drought monitoring and characterising purposes.  

Chapter 6 presents the methodology and third set of results in response to the second 

objective of the study. Here, the copula models are used to derive joint distributions of 

SPEI and drought properties (duration, severity and intensity) coupled with climate 

mode indices. Subsequently, the development of probabilistic prediction models is 

made using the joint distribution of multiple variables.  

Chapter 7 presents the methodology and fourth set of results in response to the third 

objective of the study. Here, geospatial representation of drought-risk is made using 

the fuzzy logic algorithm.  

Finally, Chapter 8 covers the conclusion and recommendations for future work.  

 



 

 

  

 

 

 

LITERATURE REVIEW 
 

 

Chapter 1 has presented the overview of the research problem and objectives in regards 

to the development of the drought-risk assessment framework. This second chapter 

presents a general review of the literature and then discusses research problems on 

drought monitoring, modelling and risk-assessment studies in detail. This chapter also 

establishes the niche for drought-risk management, as well as the relevant sciences and 

technologies (statistical and geospatial) tools. In brief, Chapter 2 provides the journey 

towards exploring the relationship of the three major components of this study: (1) 

characterisation of drought events using the SPEI time series; (2) statistical drought 

modelling using joint distribution of the SPEI and its properties with climate drivers  

(climate mode indices); and (3) assessment of drought-risk on temporal and geospatial 

scales.  

 

2.1 Bureau of Meteorology definitions of drought 

The Australian Bureau of Meteorology (BoM) defines meteorological drought as 

‘acute water shortage’, which is indicated by the rainfall deficiency for over three 

months (BoM 2015). The monthly-standardised metric used by BoM to identify 

drought conditions is the RDDI, which is a measure of rainfall deficiency in terms of 

serious or severe that have occurred for three months or more. The serious rainfall 

deficiency is met when the rainfall lies above the lowest five percent of recorded 

rainfall but below the lowest tenth percentile (decile range 1) for the period in question. 

A severe rainfall deficiency occurs when the rainfall is among the lowest five percent 

for the period in question. This definition of drought is solely dependent on rainfall 

due to the availability of long-term record of rainfall data across most of Australia, 
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hence does not take into account other variables such as temperature and evaporation 

that are essential for establishing climatic surface water balance. Figure 2.1 shows the 

spatial distribution of rainfall in terms of the deciles for part of the Millennium Drought 

(1/11/2001 to 31/10/2009) in southeast Australia with significant rainfall deficiency.   

 

Figure 2.1: Rainfall deciles for the period 1 November 2001 to 31 October 2009 

[Source: Australian Bureau of Meteorology].  

 

The Australian BoM currently provides seasonal climate outlook for one to 

three months ahead that are updated monthly. The outlooks are generated by the 

Predictive Climate Ocean Atmosphere Model for Australia (POAMA), which is a 

dynamical (physics based) climate model developed by the BoM and Commonwealth 

Scientific and Industrial Research Organization (CSIRO) Marine and Atmospheric 

research division. In 2014, the Australian government announced a significant 

investment in the capabilities of BoM through the purchase of a new supercomputer 

that would deliver high-quality forecasts and warning services across Australia 

through an initiative called White Paper Actions (Commonwealth of Australia 2017). 

In the Agricultural Competitiveness White Paper, the government allocated $3.3 

million to BoM to implement better seasonal forecasts for farmers by providing 

forecasts that are: (1) more localised – by increasing the modelling spatial resolution 

from current 250 km to 60km, (2) more frequent – weekly updates rather than monthly, 

and (3) more accurate. While these initiatives are useful, there remains a dire need for 

improvement and advancement on the computational aspect of dissecting drought 

file:///C:/Users/U1007881/Dropbox/Postgraduate_Research_Team/PhD_Student_Kavina_Shaanu_Dayal/PhD%20Thesis%202017/Revisions/Australian%20Bureau%20of%20Meteorology
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characteristics (e.g., duration, severity, intensity) in order to understand the 

phenomenon even better and develop more strategic mitigation plans. 

 

2.2 Drought Monitoring  

Why is it important to monitor droughts? Droughts are a normal part of the climate 

system and occur in virtually all climate regimes globally, including deserts that are 

naturally arid. According to Wilhite (2000), drought is the most costly natural disaster 

on a year-to-year basis, with impacts being extremely significant and widespread, 

affecting many people and economic sectors at any one time. The areas affected by 

droughts are typically larger than any other hazards. The slow onset of droughts allows 

time to observe changes in precipitation and status of surface and groundwater supply 

in a region over time. To help track of the drought condition, drought indicators or 

indices are often used, and these tools vary depending on region and season.  

Like other hazards, droughts can be categorised in terms of location, onset, 

duration, severity, intensity, areal extent and cessation. A range of hydro-

meteorological processes that suppress the precipitation and/or limit the surface or 

groundwater availability resulting in soil moisture deficiency can cause droughts. 

Therefore, monitoring of droughts is crucial for preparedness and proactive actions in 

mitigating the impacts. As such, the indicators and indices help identify and evaluate 

the characteristics of droughts. To monitor different aspects of the hydrologic cycle, a 

variety of indicators and indices are required.  As droughts evolve, the impacts can 

vary by region and by season, therefore, for drought early warning system, it is 

important that indicators and indices accurately reflect and represent the impacts.  

Droughts are regional in nature and their characteristics are often region-

specific, there is thus no universal definition of drought. To circumvent this, Wilhite 

and Glantz (1985) classified droughts into four categories: meteorological, 

hydrological, agricultural and socio-economic. Each category uses different indicators 

for drought monitoring metric calculation. For instance, (1) the meteorological drought 

is measured in terms of rainfall deficit in relation to the regions average amount. (2) 

The hydrological drought is measured in terms of streamflow and surface runoffs. (3) 

The agricultural drought is monitored in terms of soil moisture deficit and 

evapotranspiration, and (4) the socio-economic drought is assessed in terms of supply 
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and demand of economic goods during drought conditions. The latter three drought 

categories lag behind meteorological drought that are all linked to it. A better 

understanding of the meteorological category of drought can help understand the 

impacts of other category of events. There is a general consensus that the slow 

development of drought, often called “creeping nature of the event” poses difficulty in 

its detection. From the same standpoint, drought preparedness and mitigation plans 

solely rely on the timely information about their onset, progression and areal extent or 

coverage (Mishra and Singh 2011; Morid et al. 2006). This very important information 

is obtained from drought monitoring that is usually performed using Drought Indices, 

hereafter called DIs. This investigation tests the suitability of standardised 

precipitation-evapotranspiration index (SPEI) for the first time as the novel application 

for monitoring and assessing characteristics of drought events in south-east 

Queensland, Australia.  

 

2.2.1 Existing indices for drought monitoring 

Several drought indicators and indices have evolved over the years. Scientists, 

stakeholders and decision-makers may use indicators and/or indices for drought 

monitoring purposes. It is important to understand what is meant by the terms 

‘indicators’ and ‘indices’. According to WMO and GWP (2016), the indicators are 

“variables or parameters used to describe drought conditions. Examples include 

precipitation, temperature, streamflow, groundwater and reservoir levels, soil moisture 

and snowpack”, whereas indices are “typically computed numerical representations of 

drought severity, assessed using climatic or hydro-meteorological inputs including the 

indicators listed above”. As opposed to the indicators, DIs are generally standardised 

metrics that simplify the complex relationships and provide useful communication 

tools for diverse audiences and users. Indices are used to quantify the drought 

characteristics that enable drought early warning (Kogan 2000) and drought risk 

(Hayes et al. 2004) analysis, which in turn allows improved preparedness and 

contingency planning.  

The nature of DIs reflects different drought conditions, i.e., some reflect the 

climate dryness anomalies (precipitation-based), some correspond to delayed 

agricultural and hydrological impacts such as soil moisture deficit or reduced reservoir 
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levels, while some indices represent aggregate nature of meteorological, hydrologica l 

and agricultural droughts.  There is also a considerable number of indices that use 

remote-sensing imagery, for e.g., to detect vegetation health as an indicator of 

droughts. DIs have a wide range of applications, including drought monitoring, 

prediction, quantitative assessment, and developing management strategies under 

current climate (Karl 1983) as well as under climate change associated with global 

warming (Le Houérou 1996). 

In the early days, scientists and decision makers would use one indicator or 

index that was available to them. However, in recent decades, there has been strong 

global interest for the development of new indices comprising more than one indicator 

that are suitable for different applications (meteorological, hydrological, or 

agricultural) and scales (temporal and spatial). Despite many choices, the confusion 

can arise when trying to determine which indicator or index to use as their suitabilit y 

depends on the location, area, basin or region. In order for a DI to be useful for 

operational drought monitoring, Heim Jr (2002) made four recommendations on the 

data. They are: (1) data need to be available on near-real-time basis; (2) data need to 

be monitored on national scale; (3) complete and reliable historical data over a 

common reference period to allow conversion of the observations to meaningful forms 

that could be merged objectively with other indicators; and (4) data need to be debiased 

to remove non-climatic influences (Heim Jr 2002). Based on the literature search, some 

of the commonly used DIs, their applications, strengths and weaknesses are listed in 

Table 2.1 below. The suitability of an index to one region does not guarantee its 

suitability to another region as most of these DIs are either region specific or need 

specific. A comprehensive list of DIs and their properties are available in WMO and 

GWP (2016) and discussion on popular indices in Zargar et al. (2011), Mishra and 

Singh (2010) and Heim Jr (2002).  
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Table 2.1: Commonly used drought indices. After WMO and GWP (2016).  

Index Name Variables 

Needed 

Applications Strengths Weaknesses 

Percent of 

Normal (PN) 
 
Werick et al. 
(1994) 

P Can be used for 

identifying and monitoring 
meteorological, 
agricultural, and 
hydrological droughts. 

 A popular method that is quick and easy to 

calculate with basic mathematics.  
 

What is normal for an area is a 

calculation that some will confuse 
with mean or average precipitation.  
It is hard to compare different 
climate regimes with each other, 

especially those with defined wet and 
dry seasons. 

Standardised 
Precipitation 
Index (SPI) 
 

McKee et al. 
(1993) 

P  Can be calculated at 
various timescales that 
allows for applications 
across meteorological, 

agricultural, and 
hydrological drought 
events. Meteorological 
drought events may focus 

on SPI values of 3 months 
or less; agricultural 
drought events, values of 6 
months or less; and 

hydrological droughts, 
values of 12 months or 
longer, give or take.  The 
SPI can also be calculated 

on gridded precipitation 
data sets, which allows for 

 Using only precipitation data is the greatest 
strength of the SPI, as it makes it very easy 
to use and calculate the index.   

 

 It is applicable in all climate regimes. 
 

 It can be computed for short periods of 

record, which contain missing data, is also 
valuable for those regions that may be data 
poor or lacking long-term, cohesive data 
sets.   

 

 The program used to calculate the SPI is 
easy to use and readily available. 

 

 The ability to be calculated over multiple 
timescales  

With precipitation as the only input, 
the SPI falls short when accounting 
for the temperature component, 
which is important to the overall 

water balance and water use of a 
region.  This drawback can make it 
more difficult to compare events of 
similar SPI values but different 

temperature scenarios.  The 
flexibility of the SPI to be calculated 
on short periods of record, or on data 
that contains many missing values, 

can also lead to misuse of the output, 
as the program will provide output 
for whatever input is provided.  
 

SPI requires a long span of data, at 
least 50years.   
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a wider scope of users than 
those just working with 
station-based data. 

Standardised 
Precipitation-

Evapotranspir
ation Index 
(SPEI) 
 

Vicente-
Serrano et al. 
(2010) 

P, T With the same versatility 
observed with the SPI, the 

SPEI can be used to 
identify and monitor 
conditions associated with 
meteorological, 

agricultural, and 
hydrologic drought 
conditions.   

The inclusion of temperature data along 
with precipitation allows the SPEI to 

account for the impact of temperatures on a 
drought situation.  The output of the SPEI 
is applicable for all climate regimes, with 
the results being comparable side by side 

as the results are standardised.  With the 
use of temperature data, the SPEI is an 
ideal index when looking at the impact of 
climate change on model output under 

various future scenarios. 

The requirement of needing a serially 
complete data set for both 

temperature and precipitation may 
limit the use of the SPEI because the 
available data may not allow it to be 
used.  Being a monthly index, 

rapidly developing drought situations 
may not be identified quickly. 
 

Rainfall 

Anomaly 
Index (RAI)  
 
Van Rooy 

(1965) 

P Addresses meteorological, 

agricultural, and 
hydrological drought, as 
the RAI is flexible in that 
it can be analysed at 

various timescales. 

Ease in calculations with a single input 

(precipitation) that can be analysed on 
monthly, seasonal, and annual scales. 

The index requires no missing data, 

and a serially complete data set with 
estimates of missing values is 
needed.  Variations within the year 
need to be small compared to the 

temporal variations.  Missing data 
need to be accounted for to create a 
serially complete data set. 

Rainfall 
Decile based 

Drought Index 
(RDDI) 
 
Gibbs and 

Maher (1967) 

P With the ability to look at 
different timescales and 

time steps, deciles can be 
used in meteorological, 
agricultural, and 
hydrological drought 

situations. 

With a single variable being considered, 
the methodology is simple and flexible for 

many situations. With clearly defined 
thresholds, the current data is put into a 
historical context and drought status can be 
recognized.  Useful in both wet and dry 

situations. 

As with other indicators that only use 
precipitation, the impact of 

temperatures and other variables are 
not considered in the development of 
drought.  A long period of record 
will provide the best results because 
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 many wet and dry periods will be 
included in the distribution. 
 

Palmer 
Drought 

Severity Index 
(PDSI) 
 
Palmer (1965) 

P, T, AWC Developed mainly as a 
way to identify 

agricultural droughts, the 
PDSI has been used in 
identifying and monitoring 
meteorological and 

hydrological droughts as 
well.  With the longevity 
of the PDSI, there are 
numerous examples of 

how the index has been 
utilized over the years.   

The PDSI is used around the world and the 
code and output are widely available.  

With the legacy of the index, the scientific 
literature is full of papers related to the 
PSDI.  The use of soils data and a total 
water balance methodology makes the 

PSDI quite robust in identifying drought. 

The need for serially complete data 
will make using the PDSI 

problematic for some.  The PDSI has 
a timescale of approximately 9 
months, which leads to a lag in 
identifying drought conditions based 

upon the simplification of the soil 
moisture component within the 
calculations.  This lag may be up to 
several months, which is a drawback 

when trying to identify a rapidly 
emerging drought situation.  
Seasonal issues also exist, as the 
PDSI does not handle frozen 

precipitation or frozen soils well. 
Self-

Calibrated 
Palmer 
Drought 
Severity Index 

(sc-PDSI) 
 
Wells et al. 
(2004) 

 

P, T, AWC Can be applied to 

meteorological, 
hydrological and 
agricultural drought. 

Is specific to the station location allowing 

for more accurate comparisons between 
regions. 
 
Can be calculated on different timescales.  

 

The methodology is not significantly 

different from PDSI. It has same 
issues as PDSI in terms of time lag 
and frozen precipitation and frozen 
soils.  
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China Z Index 
(CZI) 
 
Kendall and 

Stuart (1977) 

P Similar to the SPI, in 
which both wet and dry 
events can be monitored 
over multiple timescales.  

Drought applications 
would apply to 
meteorological, 
agricultural, and 

hydrological droughts. 

Simple calculations, which can be 
computed for several time steps.  Can be 
used for both wet and dry events.  Allows 
for missing data, similar to the SPI. 

The Z-Score data does not require 
adjusting the data by fitting them to 
the Gamma or Person Type II 
distributions, and it is speculated that 

because of this, shorter timescales 
may not be represented as well 
compared to the SPI. 
 

Crop Moisture 
Index 
 
Palmer (1968) 

 
 
 

P, T Used to monitor droughts 
where agricultural impacts 
are the primary concern.  

The output is weighted, making it possible 
to compare different climate regimes. 
 
Responds quickly to rapidly changing 

conditions.  
 

It was developed specifically for the 
grain-producing region in the United 
States, therefore CMI may show a 
false sense of recovery from long-

term drought events, as 
improvements in the short term may 
be insufficient to offset long-term 
issues. 

 
Soil Moisture 

Deficit Index 
(SMDI) 
 
Narasimhan 

and Srinivasan 
(2005) 

Mod Useful for identifying and 

monitoring short-term 
drought affecting 
agriculture.  

Takes into account full profile as well as 

different depths, making it adaptable to 
different crop types.  

Calculations are based upon the 

output from SWAT model and there 
are auto-correlation concerns when 
all depths are being used.  
 

Reclamation 
Drought Index 
(RDI) 

 

P, T, S, 
RD, SF 

Used mainly to monitor 
water supply for river 
basins.  

Specific to each basin.  
 
Accounts for temperature effects on 

climate. 

Calculations are made for the 
individual basin, so comparisons are 
hard to make. 
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Weghorst 
(1996) 
 
 

 
Standardised scale allows for monitoring 
of wet and dry conditions.  

Putting together all inputs in 
operational setting may cause a delay 
in data production.  
 

Surface Water 

Supply Index 
(SWSI) 
 
Shafer and 

Dezman 
(1982) 
 

P, RD, SF, 

S 

Used to identify droughts 

associated with 
hydrological fluctuations.  

Taking account of full water resources of a 

basin provides a good indication of the 
overall hydrological health of particular 
basin or region. 
 

The index has to undergo 

recalculation when data source 
changes or inclusion of additional 
data, making it difficult to construct 
a homogeneous time series.  

 
Calculations vary between basins, 
making it difficult to compare.  
 

Effective 
Drought Index 

(EDI) 
 
Byun and 
Wilhite (1999) 

P The EDI is a good index 
for operational monitoring 

of both meteorological and 
agricultural drought 
situations because its 
calculations are updated 

daily.   

With only a single input needed for 
calculations, it is possible to calculate the 

EDI at any location where precipitation is 
recorded.  Support documentation 
explaining the processes are available for 
the program.  The EDI also is standardised 

so that outputs from all climate regimes 
can be compared.  The EDI is effective in 
identifying the beginning, ending, and 
duration of drought events. 

With only precipitation accounted 
for, the impact of temperatures on 

drought situations is not directly 
acknowledged.  With using daily 
data, it may be difficult to use the 
EDI in an operational situation as 

daily updates to input data may not 
be possible. 

Acronyms: P: Precipitation, ETo: Evapotranspiration, T: Temperature, AWC: Available Water Capacity, RD: Reservoir, S: snowpack, SF: 

streamflow, mod: modelled.
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2.2.2 Selection of indicators and indices 

Just as there is no single definition of drought, there is no single indicator or index that 

is suitable for all drought types, climate regimes and sectors affected by droughts. 

Also, the simplest indicator/index may not necessarily be the best or most applicable  

for the region. The drought analyst must feed in many factors before determining 

which indicator, index (or both) to use for the particular need or application. Some of 

the questions that the drought analyst may need to consider include: (1) is the 

indicator/index sensitive to climate, space and time in order to determine the accurate 

onset and cessation of drought? (2) does the indicator/index allow for timely detection 

of drought in order to trigger appropriate communication and coordination of drought 

mitigation or response actions? (3) are data and resultant indicator/indices reliable? 

i.e., are the data available for a long period of record in order to understand historical 

droughts? and (4) is the indicator/index easy to implement? (WMO and GWP 2016). 

For the evaluation of meteorological DIs, Keyantash and Dracup (2002) suggested 

considering six criteria: robustness, tractability, transparency, sophistication, 

extendability and dimensionality.  

 

2.2.3 Comparison of existing drought indices for quantifying drought 

events 

Several meteorological DIs and their inter-comparisons are available in published 

literature. A thorough review of meteorological-based DIs can also be found in Mishra 

and Singh (2010) and Zargar et al. (2011). In previous studies, one can notice that there 

are some limitations with all of these indices, which originate from various factors that 

make it difficult to apply them universally. Common concerns to consider are: (1) 

definition of the period of water deficit; (2) definition of the time unit of assessment 

where many DIs utilise monthly or longer periods that may not measure the short-term 

or medium-term precipitation return to normal; (3) lack of a rationale for the storing 

term for water resources to account for changes in soil moisture or factors such as 

evaporation; and (4) the type of data used in the DI calculation where most DIs only 

uses current rainfall data with no rationale on how the antecedent rainfall will change 

with time compared to the current rainfall. Table 2.2 below provides a summary of the 
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studies that have compared popular indices for drought monitoring and modelling for 

future climate change scenarios. 
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Table 2.2: Studies comparing various drought indices. 

Study Indices 

Compared 

Notes and Outcomes Recommendations  

Mpelasoka 

et al. 
(2008) 
 
Australia 

RDDI and 

SMDDI 

Indices were used to assess future drought events over 

Australia under global warming attributed to low and high 
greenhouse gas emission scenarios for 30-year periods, 
centred on 2030 and 2070.  
 

Both indices showed a general increase in drought frequency 
associated with global warming. 
 
ETo and T were important in determining the severity of 

droughts and be even more as climate changes in warmer 
conditions. 
 

SMDDI appeared to be more relevant to 

resource management as it accounts for 
‘memory’ of water status.  
 
Considering soil-moisture delays tend to 

indicate realistic severity and persistence 
for drought events, meteorological drought 
indices (i.e., RDDI) were inadequate for 
reliable assessment of drought.  

 
 

Morid et 
al. (2006) 
 

Tehran, 
Iran 

Decile Index, 
PN, SPI, CZI, 
MCZI, Z-Score 

and EDI  

The study compared the performance of seven drought 
indices for 32-years of data.  
 

SPI, CZI and Z-Score performed similarly with regards to 
drought identification and respond slowly to drought onset. 
Decile Index appeared to be very responsive to rainfall 
events of a particular year but had inconsistent spatial and 

temporal variation. 
 
MCSI and PN were not recommended for drought 
monitoring as they were found to declare ‘extreme drought’ 

conditions unreasonably frequently.  

SPI and EDI were able to detect drought 
onset, spatial and temporal variation 
consistently, thus may be recommended 

for operational drought monitoring. 
 
EDI was found to be more responsive to 
the emerging drought and overall 

performed better. 
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Dogan et 

al. (2012) 
 
Konya, 
Turkey 

PN, RDDI, Z-

Score, CZI, SPI 
and EDI 
 

The study compared drought indices under different climatic 

conditions and on 18 different timescales.  
 
Results showed median timescales were essential for future 
studies while 1-month timescale was irrelevant in arid/semi-

arid regions where rainfall deficiency was common.   
 
Drought indices for 6-, 9-, and 12-month timescales were 
found essential for long-term drought studies, while 1-month 

drought indices not to be used for comparison studies for the 
recommendation of an index.  

EDI was best correlated with other indices 

on all timescales and was preferable for 
monitoring long-term droughts in 
arid/semi-arid regions.   

 

Barua et al. 
(2010) 
 

Yarra 
River 
Catchment 
in Victoria, 

Australia. 

 
ADI, SPI, SWSI 

 
The study attempted to show the significance of Aggregated 
Drought Index (ADI) by considering significant components 
of the water cycle. The principal component analysis was 

used to consider hydro-meteorological variables that 
describe fluctuations in hydrologic cycles. The ADI was 
compared with SPI and SWSI.  
 

ADI incorporated precipitation, evapotranspiration, 
streamflow, surface reservoir storage, soil moisture content.  
 
The main advantage of ADI included its assessment of 

droughts from aggregate perspective of meteorological, 
hydrological and agricultural water shortages. 
 

 
ADI was found to be more robust than SPI 
and SWSI where ADI was able to detect 
historical droughts more clearly.  

Lloyd-

Hughes 
and 

SPI and PDSI The study compared drought indices on timescales 3, 6, 9, 

12, 18 and 24 months for the period 1901-1999.  
 

Near-equivalent performance between SPI 

and PDSI was demonstrated on timescales 
9 to 12 months.  
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Saunders 
(2002)  
 
Europe 

Trends in SPI and PDSI values indicated the proportion of 
Europe experiencing extreme and/or moderate drought 
conditions changed insignificantly during the 20th century.  

 
Overall, SPI provided better spatial 
standardization than PDSI. SPI was 
recommended for it is a simple and 

effective tool for the study of European 
droughts.  
 

Dubrovsky 
et al. 

(2009) 
 
45 stations 
in the 

Czech 
Republic 

SPI and PDSI The study applied relative SPI and PDSI to assess climate-
change impacts on drought conditions over 1961-2000 and 

2060-2099 periods.   
 
PDSI exhibited the widest spectrum of drought conditions 
across Czech, in part because it depended not just on 

precipitation (as does SPI) but also on temperature.  
 
In future climate analysis, SPI-based drought risk closely 
followed modelled changes in precipitation while PDSI 

indicated an increase in drought-risk.  

The study concluded on PDSI being more 
appropriate for use over SPI in assessing 

the potential impact of climate change on 
future droughts.  

 

Pandey et 
al. (2008) 
 
Orissa, 

India 

 

SPI and EDI, 
Decile Index, 
Departure from 
long-term mean 

and median 

 

This study has used SPATSIM for drought analysis on 
monthly (SPI, Decile Index, Departure from long-term mean 
and median) and DWRAM software for daily (EDI) bases.  
 

All SPI, EDI and annual deviation from mean showed a 
similar trend of drought severity.  

 

EDI better-represented droughts in any 
area over other DIs.  
 
Decile index was found to be not suitable. 

 

Heim Jr 

(2002) 
 

 
Munger’s, 

Kincer’s, 
Marcovitch’s, 

 
This study showed how the insights into the understanding 

of droughts have changed over past hundred years.  

 
Author complemented on newer indices 

where incorporation of evapotranspiration 
as a measure of water demand had led to a 



        Chapter 2 – Literature Review  

 26 

USA Blumenstock’s 
indices, API, 
MAI, PDSI, 
PHDI, CMI, K-

BDI, SWSI, SPI, 
VCI, DM   

landmark development, and that indices 
must address the total environmental 
moisture status. The Drought Monitor 
(DM) index has shown a considerable 

progress with comprehensive, objective 
national drought index.  

 

Keyantash 
and Dracup 

(2002) 
 
Oregon, 
USA 

 
Meteorological: 
DCPA, RD, 

PDSI, DAI, RAI, 
SPI 
 
Hydrological: 

TWD, CSA, 
PHDSI, SWSI 
 
Agricultural: 

CMI, PMAI, 
CSM, SMAI 

 
This study carried out a comprehensive evaluation of most 
prominent drought indices in meteorological, hydrological 

and agricultural categories using the weighted set of six 
criteria: robustness, tractability, transparency, sophistication, 
extendability, and dimensionality.  
 

Drought indices were ranked in terms of usefulness for the 
assessment of drought severity, for two test regions. 

 
The evaluation scores showed overall 
superior drought indices were rainfall 

deciles (RD), total water deficit (TWD) 
and computed soil moisture (CSM) for 
meteorological, hydrological and 
agricultural drought, respectively.  

 

Jain et al. 
(2015) 
 

Ken River 
Basin, 
India 

 
SPI, EDI, Z-
Score, CZI, RD, 
RDDI 

 
DIs on five timescales (1, 3, 6, 9 and 12-months) were 
compared with each other (monthly) and with EDI (daily).  
 

1-month timescale may produce erroneous estimates of 
drought duration and 9-month timescale was best correlated.  
 
 

 
RD and RDDI were not recommended due 
to their disagreement on estimates of 
drought duration and frequencies with 

other indices.  
 
EDI was found to be more suitable for the 
study region for its better correlation with 

other indices at all timescales, with highest 
at 9-month timescale.  
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2.2.4 Standardised Precipitation-Evapotranspiration Index (SPEI) 

for drought monitoring 

In the current era, it is a common knowledge that drought events, as prolonged 

climatological deficits in precipitation, continue to foster serious hydrologica l 

imbalances (Wilhite and Glantz 1985), and trigger agricultural, health and 

environmental repercussions (Wilhite et al. 2014). Objective characterisation of 

drought in terms of duration, severity, intensity (D-S-I) properties and the spatial extent 

and inter-arrival times is naturally difficult since drought exhibits a creeping nature 

with a slow emergence profile. Therefore, DIs that provide normalised comparisons of 

drought in climatologically diverse regions, are normally applied to monitor a drought 

event. As a supply-side assumption, droughts are primarily driven by precipita tion 

variability, however, many DIs neglect the importance of the variables other than 

precipitation that can act to exacerbate the drought impacts. This study explores, for 

the first time in the drought-prone zone of southeast Queensland (SEQ), the utility of 

the SPEI for drought assessments. The SPEI (Vicente-Serrano et al. 2010) has been 

adopted as a multi-scalar and a relatively new metric, utilising precipitation and 

estimated reference evapotranspiration for statistical quantification of drought 

characteristics.  

Among various exemplary drought characterisation metrics, some of the 

widely used DIs (i.e., RDDI, RAI, SPI and EDI) in many studies incorporated 

precipitation data as the only variable. The SPI is the World Meteorological 

Organisation (WMO) (Jarraud 2008) recommended drought index for monitoring 

meteorological drought. However, the requirement of precipitation data only can either 

be an advantage or a disadvantage, depending on the application region and the 

purpose. The drawback of the SPI is that it does not have the ability to take increased 

evapotranspiration into account if the temperature is likely to change due to climate 

change. In arid or semi-arid regions such as eastern Australia (Deo et al. 2009; 

McAlpine et al. 2009; Nicholls 2004), drought appears to not only exacerbated by but 

also be driven by temperature. Similar to SPI, the RDDI currently used by BoM lack 

the ability to incorporate water supply-demand balance as it also based on the 

precipitation data only.  
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The PDSI has been widely adopted for it utilises precipitation, temperature , 

soil water recharge, runoff, water loss from soil and soil water capacity (Lloyd-Hughes 

and Saunders 2002) to examine water balance whilst assessing the moisture status in 

a comprehensive (and hydrologically-relevant) manner. However, it carries some 

challenges and limitations. While the PDSI is an ideal metric for an assessment of 

hydrological drought, its high demand for input data and fundamental assumptions 

make it too complex to account for the physical and biological factors associated with 

a drought event (Felch 1978). Also, the PDSI appears to be unsuitable for many 

climatic regions (including Australia) due to its normalisations based on limited 

comparisons and unsolidified justification by physical and statistical basis (Alley 

1984; Gibbs and Maher 1967; Guttman et al. 1992; Keyantash and Dracup 2002). 

General applicability of the scaling process with a limited number of empirical factors 

becomes a constraint of PDSI to be applied outside the USA, as questioned by some 

studies (e.g., (Dai 2011)). A similar sentiment was shared by Redmond (2002), 

indicating that the creator of PDSI did not intend to apply PDSI beyond the Great 

Plains in the central USA. Moreover, studies showed that PDSI underperforms for 

climatic regions with extreme variability of rainfall and run-off, and this is especially 

true for Australia (Burke et al. 2006). To avoid abovementioned empirical 

relationships, Wells et al. (2004) developed the self-calibrated PDSI (sc-PDSI). 

Nevertheless, the necessary data requirement in the sc-PDSI was not reduced.  

This study has employed the SPEI, formulated as an improved version of the 

SPI. Unlike in the case of the SPI, the SPEI has an ability to encapsulate the 

contributory influence of temperatures on the demand for water, and therefore, it 

appears to be more suitable for the monitoring of hydrological and agricultural 

impacts. Also, unlike the case of PDSI, the SPEI is able to operate on multiple 

timescales (1-48 months), acting as an essential tool for assessment of hydrologic 

cycles and for accounting for different category of droughts (meteorological, 

hydrological and agricultural). The SPEI can replicate the sensitivity embedded in the 

PDSI for the monitoring of hydrological status in terms of the estimated evaporation 

and transpiration driven by warm temperatures, whilst assessing the multi-tempora l 

nature of drought afforded by SPI. An idealistic characteristic of the SPEI is its ability 

to capture the evaporative demand of the hydrosphere (i.e., via reference 

evapotranspiration; ETo) and the indicative aberrations in overall water resource 
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conditions. Other advantages include less data requirement, flexibility, and simple 

computation. These accord to the viewpoint of Keyantash and Dracup (2002) that a 

drought metric must be simple, clear, comprehensible and statistically robust, and also 

be independent of the climatic characteristics (i.e., standardised) to be comparable in 

the wider temporal and spatial domains across geographically diverse regions. 

However, the unavailability of ETo data for computing the SPEI can be a potential 

drawback since its estimation requires multiple input variables (e.g., humidity, solar 

radiation, and wind speed information) for the recommended FAO-56 Penman-

Monteith technique (Allen et al. 1998).  

Despite its infancy in the hydrologic research community, many case studies 

performed outside of Australia have applied the SPEI for drought assessment and 

demonstrated its statistical correlation with hydro-meteorological variables that has 

drought impacts in such diverse climatic regions. For example, the SPEI was used for 

drought variability studies (Das et al. 2016; Li et al. 2012; Paulo et al. 2012; Potop 

2011), hydrological impact assessments, agricultural drought studies, impact of 

drought on ecological systems (Barbeta et al. 2013; Cavin et al. 2013; Martin-Benito 

et al. 2013; Toromani et al. 2011; Vicente-Serrano et al. 2013) as well as in the 

monitoring of drought events (Fuchs et al. 2012). However, to date, only three studies 

have applied this index for drought studies in Australia (Dayal et al. 2018; Dayal et al.  

2017; Deo and Şahin 2015). Therefore, the successful application of SPEI elsewhere 

and its features relevant to Australia’s climate, i.e., incorporation of evapotranspiration 

as a measure of water demand, would add to new insights on understanding Australian 

droughts better and be made recommended for drought monitoring purposes.  

 

2.3 Drought Modelling  

The water demand has increased manyfold due to the growth in population and 

expansion of agricultural, energy and industrial sectors, and partly due to climate 

change and contamination of water supplies. Droughts can affect both surface and 

groundwater resources, causing further reduction in the water supply leading to crop 

failure (Riebsame et al. 1991). As such, modelling drought and its components have 

drawn the attention of meteorologists, hydrologists, ecologists, and agricultural 

scientists.  
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2.3.1 Drought forecasts and predictions  

Drought forecasting is a critical component of drought hydrology that plays a major 

role in the risk management, drought preparedness and mitigation. There has been a 

significant amount of work done on modelling various aspects of drought, such as 

estimation and prediction of its severity and duration. However, the major challenge 

has been to develop techniques to forecast drought onset and termination points for 

months or years in advance (Mishra and Singh 2011). Several studies have predicted 

drought or its properties using regression, probability, machine learning and hybrid 

models. For instance, Kumar and Panu (1997) developed a regression model to 

predict grain yield that would in turn aid in the assessment of agricultural drought 

severity as a function of time. In another study, Leilah and Al-Khateeb (2005) 

employed statistical procedures to study the relationship between wheat grain and its 

components under drought conditions of Saudi Arabia. Liu and Juárez (2001) used 

multiple linear regression techniques to predict drought onset using El-Niño Southern 

Oscillation (ENSO) indices (independent variables) and satellite-recorded Normalised 

Difference Vegetation Index (dependent variables). The multiple regression predicts 

one variable from two or more independent variables, i.e.,  

where is the dependent variable (predictand such as drought index) and , and

are independent variables (predictors such as rainfall, streamflow, and soil 

moisture) and and are constants. There are several limitations albeit regression 

models been a commonly used method. One major limitation is the assumption of 

linearity between predictor (e.g., climate mode indices) and the predictand (e.g., 

drought index) that makes it less capable for long-term forecasting. This is due to the 

highly stochastic nature of the environmental factors where the linear relationship may 

not hold true between variables. The other limitation is the difficulty in understanding 

causal mechanisms and multicollinearity, i.e., the conceptual framework of the 

regression models (Mishra and Singh 2011).  

The probabilistic models  are useful for predicting droughts due to their 

complex nature and the ability to quantify uncertainties associated with hydro-

meteorological variables. The Markov chain models have been commonly used for 

drought predictions. A Markov chain is a stochastic process with a property that at the 
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value of the process at any time , the would only depend on its value at a time 

, and not in the sequence of values , which can be written as 

(Haan 2002): 

 Prob  

= Prob  
(2.1) 

 

The Prob  is the conditional probability that gives the probabilit y 

that the process at a time will be in “state j”, given that at a time , the process 

was in “state i” (Mishra and Singh 2011). The Prob  is commonly 

termed as one-step transition probability that is basic to the structure of Markov chains.  

 The study of Gabriel and Neumann (1962) was among the first to apply 

Markov chain models for dry spell analysis.  Lohani and Loganathan (1997) used a 

non-homogenous Markov chain model based on PDSI to characterise the stochastic 

behaviour of droughts for an early warning system. This characterisation was in the 

form of a decision tree enumerating all possible sequences of drought progression, 

which was useful for drought management. Bogardi et al. (1994) described that the 

statistical properties of droughts can be obtained by conditioning monthly drought 

indices on large-scale atmospheric circulation patterns, which can predict droughts 

under the changing climate scenarios. Based on the current drought class described by 

Palmer index, Lohani et al. (1998) forecasted drought conditions for future months 

using first-order Markov chains. In a different study, Sen (1990) had used the second-

order Markov chain to predict possible critical drought durations that may result from 

any hydrologic conditions during any future periods.  

 In the recent two decades, studies have shown further usability of Markov 

chain probabilistic models. For instance, Banik et al. (2002) evaluated probabilities of 

getting a sequence of wet and dry weeks during monsoon periods in India that would 

be useful for agricultural planners and irrigation engineers. Ochola and Kerkides 

(2003) predicted the critical dry spells using the first-order Markov chain by 

incorporating the concept of conditional probability, Poisson probability distribution 

function and chi-square. Steinemann (2003) used homogenous Markov model to 

propose drought trigger preparedness plan at the basin scale based on multiple scales 
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of SPI, PDSI and PHDI. Paulo et al. (2005) used Markov chain on SPI to estimate the 

probability, recurrence time of drought classes and expected time for SPI to change 

from one class to another. In another study, Cancelliere et al. (2007) did a seasonal 

forecast of the SPI by computing transition probabilities from a current drought 

condition to one in the future based on the statistics of underlying monthly 

precipitation. While probabilistic models are appropriate for hydro-meteorologica l 

variables, as portrayed in aforementioned studies, developing prediction models that 

can use joint-distribution of the predictor and predictand can produce outcomes with 

even higher accuracy. Such models can be developed using copula statistical 

algorithms.  

 In the pioneering research on drought modelling, the focus shifted to using 

machine-learning techniques for forecasting and predicting drought events until 

recently. Artificial Neural Networks (ANN), a non-linear model, has the ability to 

learn from experience and estimate any complex functional relationship with high 

accuracy. Application of ANNs for modelling droughts has been shown in many 

studies. For instance, Morid et al. (2007) predicted quantitative values of drought 

indices using different combinations of past rainfall, EDI and SPI in preceding months, 

as well as climate mode indices such as SOI and North Atlantic Oscillation (NAO) as 

inputs for the model. Mishra et al. (2007) compared linear stochastic models with the 

recursive multistep neural network (RMSNN) and direct multistep neural network 

(DMSNN) for drought forecasting. Their study found that RMSNN was useful for 

short-term drought forecasting while DMSNN for long-term. Deo and Şahin (2015)  

predicted SPEI for eight candidate stations in eastern Australia using ANN with hydro-

meteorological parameters and climate mode indices as the inputs. In a different study, 

Dayal et al. (2017) used ANN to predict SPEI for assessing drought conditions in the 

southeast QLD region in Australia. Despite its widespread use, the ANN model has 

disadvantages of having a black box nature, has a slow response to gradient-based 

learning algorithm utilised by hidden neurons and is prone to over-fitting. 

Extreme Learning Machines (ELM) has become popular in hydrologica l 

variable forecasting. Deo and Şahin (2016) used ELM to forecast monthly mean 

streamflow that has practical implications on the hydrological cycle. In another study, 

Deo and Şahin (2015) applied ELM algorithms to predict the Effective Drought Index 

(EDI) in eastern Australia. In a different study, Deo et al. (2017) evaluated the 
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performance of three standalone models (Multivariate Adaptive Regression Spline 

(MARS), Least Square Support Vector Machine, and M5 Tree) to forecast droughts in 

eastern Australia and noted that the MARS and M5 Tree superseded the performance 

of their counterpart for different stations.  

Until recently, the scholars started embracing the hybrid models  for predicting 

droughts for improved accuracy and for a higher lead time in comparison to standalone 

models. For instance, incorporating wavelet transformation to capture useful 

information at various resolution levels and then using the decomposed sub-signals 

into the ANN model as several inputs to forecast the desired variable. Kim and Valdés 

(2003) used hybrid ANN model to forecast droughts using PDSI and recorded 

improved ability of neural networks to forecast regional droughts. Mishra et al. (2007) 

combined linear stochastic model and a nonlinear ANN to forecast droughts using SPI 

where the hybrid model performed with higher accuracy compared to standalone ANN 

model. Dayal et al. (2016) developed a hybrid model by integrating discrete wavelet 

with ANN to predict droughts using SPI and noted its outperformance against 

standalone ANN. Özger et al. (2012) developed a wavelet and fuzzy logic combination 

model for long lead time drought forecasting and obtained significant improvement 

over the standalone fuzzy logic model.  In another study, the hybrid Adaptive Neuro-

Fuzzy Inference System (ANFIS) outperformed ANN in forecasting drought based on 

SPI (Bacanli et al. 2009). In a recent study, Prasad et al. (2017) developed a hybrid 

model by integrating wavelet and iterative input selection with ANN (IIS-W-ANN) 

and M5 Tree (IIS-W-M5) models and found the former model to be a more robust 

compared to the latter and their standalone counterparts where IIS integration 

improved the model performance remarkably.  

 While data-driven models are viable for drought forecasting, they, however, 

may not be able to capture the dependence between variables. For instance, the drought 

phenomenon is paradigmatic whereby the characterisation of droughts requires joint 

analysis of duration, severity, intensity; and so on. As we already know, the 

hydrological phenomena are often multi-dimensional and hence require joint 

modelling of several random variables. Therefore, it is often of fundamental 

importance to be able to link the marginal distributions of different variables in order 

to obtain a joint relationship describing the main features of the drought events.  
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2.3.2 Univariate drought modelling 

Earlier studies on DIs focused on meteorological, hydrological and agricultural 

applications that solely depend on measurements of physical characteristics, such as 

precipitation. While DIs are essential tools for drought monitoring, Dracup et al.  

(1980) recognised that most research was basin-specific or of particular historical 

drought events, and consequently have ignored the study of drought in terms of D-S-

I. However, there was an exception of Yevjevich (1967) study that described 

hydrologic droughts by their duration, severity, areal extent, the probability of 

recurrence, onset and termination. That study was applied to annual streamflow with 

which Yevjevich (1967) developed the theory of run-sum by categorising each 

hydrologic drought event with its attributes: D-S-I.    

In terms of risk-based studies, the understanding of the characteristics of 

drought is paramount for the development of drought management plans. The 

univariate frequency analysis has been investigated separately for drought properties 

in many studies, (Cancelliere and Salas 2004; Fernández and Salas 1999; Serinaldi et 

al. 2009; Tallaksen et al. 1997). However, drought is a complex phenomenon and one 

variable cannot provide a comprehensive evaluation of drought (Shiau et al. 2007). 

Likewise, separate analysis of D-S-I cannot reveal the significant correlation between 

them. Hence, drought-risk assessment based on univariate analysis has been overcome 

by the approach of joint distribution (bivariate) of drought variables - intensity/severit y 

and/or duration/severity (Bonaccorso et al. 2003; Cancelliere and Salas 2010; 

González and Valdés 2006; Kim et al. 2003; Salas et al. 2005; Shiau and Shen 2001). 

The limitation of the bivariate analysis was its complex mathematical derivations 

needed for fitting parameters from observed data (Shiau 2006). This limitation was 

overcome by the approach of multivariate distributions using copula models.  

 

2.3.3 Use of copula in hydrology 

Before copula was introduced in hydrological studies, the most common models then 

were described by bivariate distributions, such as bivariate normal, log-normal, 

Gamma, and extreme-value distributions (Genest and Favre 2007). However, these 
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models had limitations. The variables fit different marginal distributions but the same 

parametric family of univariate distributions characterised the individual behaviour of 

the two variables. Also, the dependence between parameters was measured via 

canonical Pearson’s coefficient of linear correlation, which may not hold true or exist 

for variables attaining non-linear relationships (De Michele et al. 2005). Copula avoids 

such restrictions and advanced into hydrological studies in the early 2000s (De 

Michele and Salvadori 2003; De Michele et al. 2005; Favre et al. 2004; Salvadori and 

De Michele 2004). Copula models have existed in the various field of study, however, 

its first use in drought-risk studies was in Shiau (2006). The multivariate copula has 

been used in modelling joint probability distribution, such as in Song and Singh (2010) 

and Serinaldi et al. (2009). Despite its complex computation, previous studies have 

indicated that copulae perform well for bivariate problems. 

The theory of copula dates back to Sklar (1959) who introduced the notion and 

the name, copula and proved the theorem that now bears his name. This theorem states 

that if is a multivariate distribution function of m correlated 

random variables, with corresponding marginal distributions 

, then there exists a copula C such that:  

  (2.2) 

 

Copulae offer greater flexibility to construct a multivariate joint distribution from 

univariate marginal distributions that are well fitted to the observed data (Nelsen 1999; 

Sklar 1959).  

 Shiau (2006) investigated the bivariate joint distribution of drought severity 

and duration derived from the SPI in the southern Taiwan, using the theory of copula. 

Since then a number of studies applied copula to assess drought-risk in terms of joint 

return periods and the conditional probability of occurrence (of e.g., severity) given a 

certain threshold of another parameter (e.g., duration). For instance, Song and Singh 

(2010) derived and modelled the joint probability distribution function of drought 

duration, severity and inter-arrival time using the Plackett copula, for a case study in 

China. In fact, there are different types of copula family where each family is known 

to have different characteristics. Janga Reddy and Ganguli (2012) tested classes of four 
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X1,X2,...,Xm

FX1
x1( ),FX2

x2( ),...,FXm xm( )

FX1,X2 ,...,Xm
(x1, x2,..., xm) =C FX1

x1( ),FX2
x2( ),...,FXm xm( )éë ùû



        Chapter 2 – Literature Review  

 36 

different copulae – Archimedean, extreme value, Plackett, and elliptical families for 

modelling the bivariate joint distribution of drought characteristics and their analysis 

found Gumbel-Hougaard copula (from extreme value family) performed better 

compared to other classes of copulae. Using Gumbel-Hougaard copula, they then 

derived drought severity-duration-frequency (S-D-F) curves, where S-D-F were 

extracted from SPI, for the western Rajasthan region in India. In separate studies, Shiau 

et al. (2007), Shiau and Modarres (2009) and Shiau (2006) modelled bivariate joint 

distribution of drought duration and severity using two-dimensional copulae to 

evaluate drought frequency.  

 Droughts are regional in nature and the most appropriate copula for deriving 

joint distributions of drought properties may not be the same for every region. For 

instance, Lee et al. (2013) studied the influence of tail shapes of four copulae: Gumbel-

Hougaard, Frank, Clayton and Gaussian copula for bivariate frequency analysis of 

drought properties in Iran and Canada. Their findings showed that Clayton copula was 

not an appropriate choice for drought modelling because the dependence between two 

variables in the upper tail of Clayton copula was very weak and resembled that of the 

independence case, while Frank and Gumbel-Hougaard copula were recommended for 

application based on their better performance. Sadri and Burn (2012) studied copula-

based pooled frequency analysis of droughts in Canadian prairies using severity and 

duration properties extracted from the monthly streamflow data. They used Gumbel, 

Clayton and Frank copulae for bivariate frequency analysis and their results suggested 

that longest droughts do not necessarily correspond to the most severe one and that 

droughts occur in almost all regions, humid or arid. They also showed that copula -

based model provided shorter return periods compared to bivariate Gamma 

distribution for the same value of duration and severity. Reddy and Ganguli (2013) 

presented a spatio-temporal analysis of droughts using the 6-month SPI that showed 

an increase in the frequency of droughts in the central part of their study region, 

western Rajasthan India. The Gumbel-Hougaard copula among Frank and Plackett 

copulae best represented the joint dependence between drought variables and assessed 

conditional return periods and intensity-area-frequency (I-A-F) curves that helped in 

evaluating the drought-risk in a given region.  

 Similarly, several other studies have used copula for multivariate distributions 

in order to overcome the difficulties of representing drought frequency analysis using 
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single variables that cannot reveal the significant correlations between other drought 

properties. For example, copulae have been used for rainfall frequency analysis (De 

Michele and Salvadori 2003; Grimaldi and Serinaldi 2006; Kao and Govindaraju 2007; 

Kuhn et al. 2007; Zhang and Singh 2007), flood frequency analysis (Favre et al. 2004; 

Renard and Lang 2007; Shiau et al. 2006; Wang et al. 2010; Zhang and Singh 2006), 

and drought frequency analysis (Kao and Govindaraju 2010; Shiau and Modarres 

2009; Song and Singh 2010; Song and Singh 2010). The aforementioned studies 

described the ability of copula statistical models for assessing the risk associated with 

drought hazard, yet its application for Australian droughts has been limited to only 

three studies, Wong et al. (2008), Wong et al. (2009) and  Wong (2013).  

 

2.3.4 Role of climate mode indices on droughts 

Many climate drivers influence Australia’s weather. The large-scale global 

atmospheric circulation such as ENSO has a major effect on Australia’s rainfall. The 

ENSO phenomenon is described as large-scale interactions between the ocean and 

atmospheric circulations in the equatorial Pacific Ocean. An El-Niño occurs when the 

sea-surface temperature (SST) in the central and eastern tropical Pacific become 

substantially warmer than average, causing a shift in the atmospheric circulation. 

During El-Niño, Australian rainfall is usually reduced through winter-spring, 

particularly across eastern and northern parts of the continent. It is important to note 

that the strength of El-Niño is not directly proportional to the reduction in Australian 

rainfall amounts. Even though most major Australian droughts have been associated 

with El-Niño, however, not all widespread droughts have occurred with every El-Niño 

events. In Australia, it is usual to take persistently negative Southern Oscillation Index 

(SOI) as an indicator of an El-Niño event where such events are associated with 

droughts. The SOI is defined to be the sea-level pressure difference between Tahiti 

and Darwin. The intensity of El-Niño can also be classified based on the SST 

anomalies exceeding a pre-selected threshold in a certain region of the equatorial 

Pacific, i.e., Niño 3, Niño 3.4, Niño 4 and Niño1+2 regions. The positive SST 

departure from the normal greater than or equal to +0.5°C indicates El-Niño condition.  

 There is no single climate driver of drought in southeast Australia. Besides 

ENSO, previous works have shown several other climate drivers affect Australia n 
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climate on inter-annual to multi-decadal timescales e.g., (Hendon et al. 2007; Kiem 

and Verdon-Kidd 2010; Kiem and Franks 2004; Meneghini et al. 2007; Verdon et al.  

2004). For instance, the Federation Drought was mostly driven by ENSO, the WWII 

Drought was at large driven by Indian Ocean Dipole (IOD) but ENSO and Southern 

Annual Mode (SAM) also had some influence, and the Millennium Drought was 

mostly driven by ENSO and SAM  (Verdon‐Kidd and Kiem 2009). However, authors 

also acknowledge several challenges, where anticipating the future droughts to be 

systematically different from the past ones is one of them. Therefore, climate 

forecasting (both short and long-term) needs to account for all climate mode and their 

interactions in order to be successful. 

 

2.3.5 Copula-based drought analysis using climate mode indices 

The southeast Australian rainfall is influenced by many climate drivers where ENSO, 

SAM, IOD, as well as Inter-decadal Pacific Oscillation (IPO) are described as most 

influential (Verdon-Kidd and Kiem 2010). A handful of studies have incorporated 

climate mode indices in the copula models to assess risks associated with droughts , 

e.g., Wong et al. (2009) and Ganguli and Reddy (2013). These studies provided useful 

information on incorporating climate mode indices, they however only considered 

ENSO, and also carried out analysis for three ENSO states separately. It would be very 

useful for management of water resources if other climate mode indices were also 

conditioned upon drought properties (such as duration, severity and intensity) as well 

as on the drought-monitoring index (such as SPEI) to make probabilistic predictions 

using the information of climate mode indices alone. The two studies discussed next 

address this need, but for the precipitation forecast by applying vine copula algorithms.  

 Khedun et al. (2014) used ENSO and Pacific Decadal Oscillation (PDO) and 

assessed their seasonal correlation with precipitation for the state of Texas, USA. They 

developed the bivariate and trivariate copula-based models to examine the dependence 

structure between large-scale climate mode indices and average monthly seasonal 

precipitation. The most suitable copulae for different climatic (semi-arid, wet, and 

subtropical humid) regions were used to simulate the precipitation anomalies. Their 

analysis showed the inclusion of PDO improved simulation results and also the 

trivariate models performed better in predicting droughts due to La-Niña and negative 
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PDO conditions. A recent study by Nguyen-Huy et al. (2017) employed vine copula 

to examine the influence of ENSO and IPO Tripole Index (TPI) on Spring season 

precipitation forecasting in the agro-ecological zones in Australia’s wheat belt. They 

developed bivariate and trivariate copula models that could capture the single (ENSO) 

and dual (ENSO & TPI) predictor(s) influence on the seasonal rainfall from a total of 

ten one- and two-parameter bivariate copulae from Elliptical and Archimedean 

families. Their results ascertained the success of copula models for investigating the 

joint behaviour of seasonal precipitation with climate mode indices. As such, copula-

based probabilistic forecasting has significant implication for water resource and crop 

health management.  

 To date, copula applications have shown significant importance in hydrology. 

The need for research in order to understand and be able to provide forecasts of 

potential magnitudes of drought characteristics ahead of time is a never-ending 

endeavour. The application of vine copula for multivariate drought-risk assessment is 

yet to be tested for Australian droughts, therefore such investigation would add new 

insights on an understanding of drought characteristics and their return periods to a 

greater depth.  

 

2.4 Geospatial Representation of Drought-risk 

The impact of droughts can be mitigated through effective drought management and 

mitigation. While numerous studies have focussed on temporal modelling of drought-

risk in Australia e.g., (Dayal et al. 2016; Dayal et al. 2017; Deo et al. 2017), the spatial 

assessment in terms of mapping drought-risk has been limited. Drought-risk is a 

function of vulnerability, exposure and hazard, where vulnerability refers to the degree 

of the susceptibility of a society to the natural hazard either as the result of varying 

exposure to the extreme event or because of the variations in the ability to cope with 

the impacts (Downing and Bakker 2000; Pandey et al. 2010; Tánago et al. 2016). The 

term hazard is often confused with disaster. Hazard signifies the potential while the 

disaster is the actual event. The risk is the probability or chance that hazard poses 

(Pradhan 2011), and consequently can be reduced by developing a suitable risk 

management plan, which is important in ensuring the safety of the community and 

environment.  
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Care must be taken when using the term vulnerability as it has a different 

meaning in a different context. For instance, vulnerability and adaptation come in 

many terms viz., vulnerability, resilience, sensitivity, resilience, adaptation, adaptive 

capacity, hazard, risk, coping range, adaptation baseline, and so on (Adger et al. 2002; 

Burton et al. 2002; Parry et al. 2007). The drought vulnerability of a region basically 

depends on the degree of exposure to drought and the regions’ ability to cope with the 

impacts. The level of drought-risk of a region is subject to change over time because 

the vulnerability component is dynamic in nature, i.e., the vulnerability has temporal 

and spatial dimensions that change constantly due to changes in technology, land use, 

population density, practices and policies (Downing and Bakker 2000; Wilhite 2000). 

Hence, vulnerability manifests time and space specificity that relates to the context 

and to the perspective of the analyst who is assessing it (Adger 2006). Therefore, the 

context-specific nature of vulnerability means that there can be no single, unified, or 

general approach to conceptualising it (Thomas et al. 2016). Adger (2006) 

demonstrated that the challenges for vulnerability research are to develop robust and 

credible measures, to incorporate diverse methods that include perceptions of risk and 

vulnerability, to incorporate governance research on the mechanisms that mediate 

vulnerability and eventually promote the adaptive action and resilience.  

 

2.4.1 Vulnerability assessment 

The growing interest in the development of methodologies for policy making in the 

context of climate change is making the drought vulnerability and risk assessment an 

active area of research. The assessment of drought vulnerability and risk is a new 

paradigm for drought management, which is expected to benefit decision-makers to 

prepare for droughts, manage resources and mitigate the impacts. The climatic events 

or other static or semi-static factors such as technology, population behaviour, 

practices and policies vary albeit over longer-term scales, making the vulnerabilit y 

assessment a challenging task. Drought vulnerability is different for different 

individuals, seasons, regions and nations. Due to the complex nature of droughts, the 

vulnerability assessments become mainly subjective and vary between regions and 

hazard potential. Therefore, the continuous assessment of drought vulnerability and 

risk on spatial scale is as important as temporal and has been addressed in the literature, 
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e.g., (Downing and Bakker 2000; Ekrami et al. 2016; Hewitt 2014; Jain et al. 2015; 

Pandey et al. 2010; Tánago et al. 2016; Thomas et al. 2016; Wilhelmi and Wilhite 

2002).  

 The drought vulnerability assessment is a relative measure due to its region-

specific nature, therefore the analyst must define the critical levels (Downing and 

Bakker 2000). There are numerous factors that influence drought vulnerability in a 

region (Price et al. 2011) and their inclusion for assessment may depend on the data 

availability. The available information on drought vulnerability of the region can help 

the decision makers and water management committees to identify appropriate 

mitigation actions to lessen the impacts of future droughts. Undeniably, the drought 

vulnerability has a close correlation with man-made infrastructure and socio-economic 

conditions (Wilhelmi and Wilhite 2002). As mentioned earlier, drought vulnerabilit y 

varies between nations whereby in developing countries the livelihood and ability to 

maintain production systems are threatened, whereas in developed countries the 

economies, public enterprises, commercial infrastructures and governments are 

impacted by droughts. Therefore, the region-specific integrated physiographic , 

climatic and social factors are critical for assessment of drought vulnerability, and this 

approach is yet to be tested on Australian droughts.  

 Several studies on vulnerability assessment have been carried out in various 

disciplines, such as geography, water resources, agricultural science, climate research 

and social science sectors, e.g., (Baethgen 1997; Eakin and Conley 2002; Wilhelmi 

and Wilhite 2002). In fact, there have been studies that conceptualised the nature of 

vulnerability from a theoretical perspective, e.g., (Cutter 1996; Turner et al. 2003; 

Villa and McLEOD 2002) while others attempted to develop quantitative measures of 

vulnerability, e.g., (Cutter et al. 2003; Gogu and Dassargues 2000). As previous studies 

have shown the complexity of the hazard under analysis and the fact that vulnerabilit y 

is not a direct measurable (or observable) phenomenon, developing measures for 

quantifying vulnerability has been proven a difficult task (Downing et al. 2001; Luers 

et al. 2003).  

2.4.2 Drought vulnerability assessment  

Specific to droughts, there exists a number of studies for vulnerability assessments. 

The Wilhelmi et al. (2002) study was one of the earlier works that came up with the 
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idea of integrating various environmental factors using which they developed a 

numerical weighting scheme to evaluate the agricultural drought potential. Their 

analysis showed that the most vulnerable areas to agricultural drought were non-

irrigated cropland and rangeland on sandy soils in the state of Nebraska, USA. Later, 

Acosta-Michlik et al. (2006) measured the vulnerability to drought under climatic 

stress in India using a security diagram concept. They derived environmental stress 

using indicators of water stress generated from the WaterGap model. Dougill et al.  

(2010) employed dynamic system tools in their study to investigate food system 

vulnerability to climate change as well as land degradation with the focus on drought 

sensitivity in the Kalahari region of Botswana. Fraser et al. (2011) provided an 

overview of the vulnerability to climate change in coupled social-ecological systems.  

In another study, Zarafshani et al. (2012) assessed drought vulnerability for 

three drought intensity levels, i.e., very high, extremely high, and critical areas for the 

wheat farmers in Western Iran and concluded that farmers’ vulnerability is influenced 

mainly by economic, technical, sociocultural, infrastructural, as well as by 

psychological factors. Using Me-Bar and Valdes formula, Khoshnodifar et al. (2012) 

measured drought vulnerability for wheat farmers in Mashhad County, Iran by 

incorporating economic, social and technical indicators. Babaei et al. (2013) used 

multi-attribute decision-making methods based on a set of preferences, criteria and 

multiple indicators to develop a new, highly effective method for spatial assessment 

of drought vulnerability for Zayandeh-Rood river basin in Iran. Using an indicator-

based analysis for assessing drought vulnerability in Africa, Naumann et al. (2014) 

integrated various renewable natural capital, economic capacity, human and civic 

resources, infrastructure and technological factors to develop a drought vulnerabilit y 

indicator (DVI) that reflected different aspects of drought vulnerability level for early 

warning systems in Africa.  

 While above studies have indicated various ways to assess drought 

vulnerability, there are a few that align closely with this investigation. The summary 

of these studies is given in Table 2.3. In these studies, the authors integrated various 

physiographic and climatic factors to derive spatial drought vulnerability maps.
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Table 2.3: Summary of studies that integrated various physiographic and climatic factors to assess drought vulnerability.  

Study Indicators Used Method  Index formula 

Wilhelmi et al. (2002) 
 

Aim: derive a framework for the 
derivation of an agricultural drought 
vulnerability map through the use of 
numerical weighting scheme based on 

GIS tools. 
 
Study region: Nebraska, USA 
 

Biophysical factors: climate 
(monthly precipitation) and soils. 

Social factors: land use and 
irrigation. 

Using GIS to produce 
composite maps by 

integrating weighted 
factors. 

Not applicable 

Stone and Potgieter (2008) 
 

Aim: review issues associated with 
drought risks and vulnerability. 
Identify factors that define agricultural 
drought risk and vulnerability in 

rainfed cropping and agricultural 
systems.  
 
Study region: Australia 

 
 

Plant Available Water Capacity 
(PAWC), probability of seasonal 

crop moisture deficiency  

Use of inputs from 
specialist agronomists to 

produce maps of PAWC. 
The incorporation of 
regional shire scale 
analysis to show regional 

differences, with the 
emphasis on the summer 
crop – sorghum.  
 

Use of tactical-scale with 
the integration of PAWC, 
soil moisture recharge 
level, crop simulation 

model and climate 

Not applicable 



        Chapter 2 – Literature Review  

 44 

forecasting for drought-

risk assessment.  
Pandey et al. (2010) 

 
Aim: devise a suitable method for 
assessment of vulnerability to drought 
on the temporal and spatial scale. 

 
Study region: Ken River system in 
Madhya Pradesh, India 

Topography, land-use types, soil 

types, the relative availability of 
surface water and groundwater, 
water demand and utilization, 
rainfall departures from the mean. 

100 x 100 m grid scale 

 
Using GIS to produce 
composite maps by 
integrating weighted 

factors. 

, 

DVI: drought vulnerability 
index 
N: number of indicators; 
Wi: weights of drought 

vulnerability indicators 
(i=1,2,…N); 
k: upper limit of 
vulnerability weights (i.e. 

highest value of Wi) 
Safavi et al. (2014) 

 
Aim: to present an integrated index 
for assessment of vulnerability to 
agricultural drought using multiple 

factors.  
 
Study region: Zayandehrood River 
basin, Iran 

Land-use, slope, soil type, 

precipitation, evapotranspiration, 
temperature, surface water 
storage, groundwater levels, and 
environmental needs. 

Using GIS for integrated 

assessment of vulnerability 
to drought in time and 
space. 
 

Different layers of factors 
are integrated using 
numerical weighting 
scheme. 

Not applicable  

Yuan et al. (2015) 

 
Aim: to assess the spatial 
vulnerability to agricultural using the 
geographic information system (GIS) 

technique in order to identify the areas 
which are the most vulnerable and to 

Sensitivity index: water resources 

amount per unit area; irrigation 
water use rate; sown area rate of 
farm crops; population density. 
 

Adaptation capacity index: GDP 
per capita; net income of residents 

Using the VCI formula, 

the SI and ACI indices 
were integrated and 
marginal values for 
various levels of 

vulnerability were 
determined and classified 

 

 

 
VCI: vulnerability 

composite index; SI: 

kN

w
DVI

i


ACISIVCI 

i

n

i

iDI 
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develop the appropriate mitigation 

measure 
 
Study region: Yellow River Basin 
 

 
 

in a rural area; the rate of 

irrigation area to cultivation area; 
the rate of groundwater resources; 
effective utilisation coefficient of 
irrigated water use; land 

reclamation rate; the rate of the 
regular secondary school. 

according to the 

equidistant classification 
method. 
 
Use of fuzzy 

comprehensive evaluation 
method, multi-layer and 
multi-index fuzzy 
clustering iterative model 

to obtain optimal index 
weight factor of given 
accuracy.  
 

sensitivity index; ACI: 

adaptation capacity index; 
DIi: the value of 
assessment index, i; ωi: 
weight of assignment 

index i.  

Jain et al. (2015) 
 

Aim: propose a method for 
assessment of drought vulnerability at 
spatial and temporal scales by 
integrating relative influence of 

physiographic, hydrologic and 
climatic factors at the hydrologic 
response units (HRU) scale. 
 

Study region: Ken River system in 
Madhya Pradesh, India 
 

Physiographic: land-use, 
irrigation support, slope, elevation 

zone, distance from river reach, 
soil type, soil depth, population 
density 
 

Climatic/hydrologic: rainfall 
departure, soil moisture deficit 
index 

Using GIS to produce 
composite maps by 

integrating weighted 
factors. 

 

IDVI: integrated drought 
vulnerability index; 
Wi: weight scored by HRU 

Ekrami et al. (2016) 
 

Slope, aspect, precipitation, 
geological formation, Qanat 

Using GIS and Analytical 
Hierarchical Process 

(AHP)  technique to 

Not applicable 
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Aim: generate first agricultural 

drought vulnerability map of Iran. 
 
Study region: Taft town, Iran 
 

discharge (underground channel), 

evaporation and soil texture. 

produce composite maps 

by integrating weighted 
factors. 

Thomas et al. (2016) 
 

Aim: to develop an approach to 
measuring the vulnerability to drought 
using temporary varying factors 
responsible for drought vulnerability. 

 
Study region: Bundelkhand, India 
 
 

 

Spatial: water demand, 
topography features such as river 

basin reach and watershed slope, 
land use, soil-type. 
 
Temporal: rainfall departure from 

normal, groundwater drought 
index, soil moisture availability, 
surface water availability. 

50 x 50 m grid scale 
 

Using GIS for integrated 
assessment of vulnerability 
to drought in time and 
space. 

 
Different layers of factors 
are integrated using 
numerical weighting 

scheme. 

Not applicable 

Wu et al. (2017) 
 
Aim: to develop a model for assessing 
drought vulnerability using the 

overlay and index method, integrated 
with normalization, analytic hierarchy 
process. 
 

Study region: Guanzhong Plain, 
China 

Precipitation, evapotranspiration, 
surface water availability, depth to 
groundwater, well yield capacity, 
slope, potential water storage of 

soil, GDP from agriculture 

Normalization for 
assigning rating values, 
AHP for assigning weights 

DVI= MwMR + SAwSAR + 
GAwGAR + SwSR + PwPR + 
GwGR  

 

M: meteorology, SA: 
surface water availability, 
GA: groundwater 
availability, S: slope, P: 

potential water storage of 
soil, G: GDP from 
agriculture 
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Few studies have reported uniform weighting scheme to compute the drought 

vulnerability index using multiple factors by assigning equal importance to these 

factors. However, it is a well-known fact that various physical, climatic, hydrologic 

and social factors influence the water demand and availability differently; therefore, 

different causative factors that could potentially influence the vulnerability of an area 

to drought hazard should be viewed in accordance with their relative importance. 

Integration of such information could be of immense help for systematic planning to 

minimise adverse impacts of drought in appropriately demarcated vulnerable areas. 

For effective implementation of mitigation measures, hydrologically similar areas 

could be identified. To address the issue of equal weighting, this study adopts the 

Bayes theorem to estimate the conditional probability of each factor to the drought 

hazard in consideration. The Bayes theorem is discussed in Section 7.3.4. 

 

2.4.3 GIS-based integrated fuzzy logic 

Fuzzy logic, introduced in Zadeh (1965), is an intelligent technique widely used to 

map an input space to an output space. The fuzzy set operates over a well-defined 

range of real numbers (0, 1), reflecting the degree of membership (Pradhan 2011) 

instead of using crisp sets that only allow values of 0 or 1 (Jun et al. 2013). Therefore, 

it allows identification of different degrees of impacts instead of overly crude, binary 

understandings, such as ‘vulnerable’ or ‘non-vulnerable’. It provides a procedure for 

systematically calculating uncertain, imprecise, or incomplete information used in 

processing knowledge (Bui et al. 2012). Fuzzy logic enables the exposure and 

sensitivity levels between municipalities over time by offering a flexible and 

straightforward standardisation of spatial objects of different values favouring 

comparison (Espada Jr et al. 2013).  

 Although fuzzy logic is a traditional concept, its application in Geographic 

Information System (GIS), however, made a breakthrough in the early 21st century. 

Pradhan (2011) stated that the use of fuzzy logic in GIS: (1) allows researchers to 

evaluate complex systems in a practical way, (2) is easy to understand and implement, 

(3) allows flexibility in the combination of maps, and (4) is easily implemented in the 

GIS language. Studies that have applied fuzzy logic affirmed that its preference stems 

from its simple application, e.g., (Gorsevski and Jankowski 2010) as well as that it 



        Chapter 2 – Literature Review  

 48 

affords different fuzzy operators (i.e., AND, OR, SUM, PRODUCT, and GAMMA) 

for solving complex decision-making problems (Lee 2007).  

 Studies that applied GIS-based fuzzy logic tool have shown its suitability for 

geospatial mapping. For instance, the fuzzy logic tool was applied to assess 

groundwater vulnerability and risk to pollution e.g., (Mohammadi et al. 2009; Neshat 

et al. 2014; Pathak and Hiratsuka 2011; Rezaei et al. 2013). Other areas that embraced 

the application of fuzzy logic concept in GIS were in the environmental impact 

assessment (Bojórquez-Tapia et al. 2002), urban vulnerability to earthquake hazards 

(Rashed and Weeks 2003), land-use suitability analysis (Malczewski 2006), landslide 

susceptibility maps in Malaysia (Pradhan 2011), modelling of dynamic processes 

(Dragicevic and Marceau 2000), siting municipal solid waste landfills (Gemitzi et al.  

2007), eco-environmental vulnerability assessment for Danjiangkou reservoir in China 

(Li et al. 2009), vulnerability assessment of buildings from earthquakes (Giovinazzi 

and Lagomarsino 2004), landslide vulnerability zonation (Sharma et al. 2013), flood 

vulnerability to climate change (Kang and Lee 2012), urban multi-hazard impact 

assessment in Chile (Araya-Muñoz et al. 2017), and assessing water-harvesting zones 

in Iraq (Al-Abadi et al. 2017).  

 It is apparent that there has been no study to date that investigated the suitabilit y 

of GIS-based fuzzy logic tools for drought-risk assessment. In particular, the spatial 

assessment of drought vulnerability and risk assessment using multiple factor 

integration technique is limited to only one study (Stone and Potgieter 2008) for 

Australian droughts. Owing to the dire need for an easy to understand and implement  

a technique for Australian droughts, the incorporation of fuzzy logic tool would be a 

novel contribution to the scientific community as well as for water resource managers.   

 

2.5 Summary of Chapter 

Drought monitoring, modelling, and vulnerability and risk assessment techniques have 

been reviewed in this chapter. It has been argued that for monitoring droughts in 

Australia, a DI should not be based on a single variable (i.e., precipitation) only. To 

address the issue of a sole parameter-based DI, this chapter argued the use of SPEI to 

be more effective for monitoring and characterising Australian droughts where 

temperature impact on water resources is critical. This led to the formulation of the 
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first objective of the study. Also discussed in this chapter is the importance modelling 

drought-risk using copula models that are useful statistical models for deriving joint 

return periods and predicting droughts based on derived joint distributions between 

input and output variables. This led to the formulation of the second objective of the 

study. Finally, presented also in the chapter is the composition of a drought-risk 

assessment framework that must include descriptive geospatial representation with 

minimum subjectivity using the fuzzy logic algorithms. This led to the formulation of 

the third objective of the study.  

 



   

 

  

 

 

 

DATA AND STUDY AREA  
 

 

3.1 Introduction 

The previous chapter has reviewed the literature on continuous drought monitoring 

using the SPEI, modelling the joint behaviour of multiple variables using copula 

model, spatial representation of drought-risk and the formulation of research 

objectives for this study. In order to address those objectives, the current chapter 

outlines the general research design, including a description of the study area, data 

acquisition and pre-processing. The specific methods are detailed in the respective 

Chapters 4-7. The methods and frameworks for drought-risk assessment are developed 

for the southeast Queensland (SEQ) region. However, the developed framework can 

be applied to any study area of interest where drought is a challenging phenomenon.  

 

3.2 Data 

3.2.1 Unprocessed data 

Several gridded and point-based data has been used in the study. Gridded at 

(equivalent to 5km5km) latitude and longitude, the monthly 

meteorological variables have been obtained from the Australian Water Availabilit y 

Project (AWAP) historical runs (Raupach et al. 2009; Raupach et al. 2012). The 

AWAP data availability ranges from 1900 to present, but for this study, only the data 

from 1915 to 2016 have been considered. AWAP data are WaterDyn 26M model 

output from daily gridded meteorological fields provided by the Australian BoM. The 

WaterDyn model developed by the CSIRO uses raw daily data to model the state and 

trend of the terrestrial water balance across Australia, using model-data fusion methods 

 05.005.0 
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to combine the measurements and model prediction (Raupach et al. 2009). Basically, 

the AWAP output is composed of a reprocessed meteorological data without any 

missing values. The raw rainfall and temperature data from BoM are the measurements 

from a network of rain gauges and weather stations. The gridded rainfall datasets have 

been produced for up to 7278 rainfall stations across the continent (Gallant et al. 2013).  

The AWAP historical runs utilises the BoM Version 3 recalibrated rainfall 

products that are generated by rescaling daily rainfall at the end of each month so that 

the daily rainfall amount matched the subsequent monthly reanalysis. Rainfall data 

from each station are divided into monthly climatological averages and their anomalies 

interpolated onto a  grid using three-dimensional smoothing splines and 

the Barnes successive-correction method, respectively (Jones et al. 2009). Any 

discrepancies between the original daily rainfall amounts and the end-of-month 

reanalysis caused by the differences in interpolation methods for their different spatial 

structures have been removed in the recalibrated rainfall and replaced for the missing 

data. This problem mainly existed for the desert regions, not including the state of 

Queensland. The missing temperature values (observed for the period 1900-1910) 

have been replaced with a 30-year (1911-1940) monthly temperature climatology. The 

modelled output accuracy has been mainly subject to the limitations imposed by the 

assumptions and parameterisations in the model and limitations of parameters due to  

the sparseness of sampling networks.   

The AWAP data have been used in this study for the following reasons. First, 

they are a high-quality set of historical and ongoing real-time climate analysis for 

Australia (Jones et al. 2009). Second, the data are a gridded field with high resolution 

(5km5km), making it both spatial and temporal. Third, the original source of 

meteorological fields is BoM that remains a standard, however, AWAP modelled 

recalibrated rainfall output is discrepancy corrected between summed-daily and 

monthly values, and improved homogeneity of temperature interpolation between 

climate and epochs. Fourth, the multi-day rainfall and temperature accumulation errors 

have been corrected in the AWAP products. Finally, AWAP data has preserved the 

background climatology (Jones et al. 2009). Studies that utilised AWAP data had 

acknowledged this data for being spatially complete high-quality gridded set, such as 

Gallant et al. (2013). 

 05.005.0 
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Some of the variables have been obtained from the Scientific Information for 

Land Owners (SILO). SILO is an enhanced climate database hosted by the Science 

Delivery Division of the Department of Science, Information Technology and 

Innovation (SILO 2017). It provides daily datasets for a range of climate variables 

from 1889 (to present) on national coverage with no missing values and ready to use. 

Similar to the AWAP data, the SILO data have also been constructed from the 

observational records provided by the BoM. It processed the raw data to derive datasets 

that are both temporally and spatially complete. The SILO and AWAP data have been 

used in Chapters 4-6 of this study. 

In addition to the meteorological variables, thirteen climate mode indices have 

also been used in Chapter 6 of this study. These indices are: the Niño3 Sea-Surface 

Temperature, Niño3.4 Sea-Surface Temperature, Niño4 Sea-Surface Temperature, 

Southern Oscillation Index, Pacific Decadal Oscillation, Dipole Mode Index, El- Niño 

Modoki Index, El- Niño Modoki Index, Southern Annular Mode, Trans-Polar Index, 

Quasi-Biennial Oscillation, Western Pacific Index, Oceanic Niño Index and 

Multivariate ENSO Index.  

The data from AWAP, SILO and climate mode indices sources used in this 

study are listed in Table 3.1.
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Table 3.1: List of data used in Chapters 4-6 of this study. 

Data Symbol; Units Temporal Resolution Source 

Meteorological 

Precipitation P; m/d  

 

 

Monthly: 1960 - 2016 

 

Australian Water Availability 

Project (AWAP) 

(Raupach et al. 2012) 

 

 

Maximum Temperature Tmax; °C 

Minimum Temperature Tmin; °C 

Upper Layer Soil Moisture 

(0 – 0.2m depth)  

WRel1; fractional on [0, 1] 

Upper Layer end of month 

aggregate Soil Moisture 

(0.2m – 1.5m depth) 

WRel1End; fractional on [0, 1] 

Precipitation P; mm Daily converted to Monthly: 

1960 - 2016 

Scientific Information for 

Land Owners (SILO)  

(SILO 2017) 

Reference Evapotranspiration ETo; mm 

Climate mode indices 



  Chapter 3 – Data and Study Area  

 

 54 

Niño3 Sea-Surface 

Temperature 

Niño3 SST; °C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monthly: 1960 - 2016 

National Climate Prediction 

Centre 
 
CPC (2014) Niño3.4 Sea-Surface 

Temperature 

Niño3.4 SST; °C 

Niño4 Sea-Surface 

Temperature 

Niño4 SST; °C 

Southern Oscillation Index SOI Bureau of Meteorology  
 

Pacific Decadal Oscillation PDO Joint Institute of the Study of 
the Atmosphere and Ocean 
(JISAO) 
 

Dipole Mode Index DMI KNMI Climate Explorer 
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El- Niño Modoki Index EMI Japan Agency for Marine-

Earth Science and Technology  
 

Southern Annular Mode SAM British Antarctic Survey 
 

Trans Polar Index TPI National Climate Prediction 
Centre 

 

Quasi-Biennial Oscillation QBO National Climate Prediction 

Centre 
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Western Pacific Index WPI National Climate Prediction 

Centre 
 

Oceanic Niño Index ONI National Climate Prediction 
Centre 

 

Multivariate ENSO Index MEI National Climate Prediction 
Centre 
 

 

Table 3.2: List of geospatial data used in Chapter 7 of this study. 

Data Year 

Recorded 

Resolution / Units GCS Projection/Datum Source 

Precipitation (mm)  

Monthly data 

from 1900 to 

present  

 

 

R: 5km5km 

U: mm/day 

 

Unprojected:  

 

- Referenced to GDA94/MGA 

Zone 56 in geographic decimal 

degrees (equivalent to WGS84 for 

practical purposes) 

AWAP 

(Raupach et al. 2012) 
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Digital Elevation 

Model (DEM; m) 

 90m90m  Queensland Spatial 

Catalogue  

(Q-Spatial) 

 

Plant Available 

Water Capacity 

(PAWC; mm) 

2014 250m250m 

Units: mm 

 

GDA94 ASRIS-CSIRO National 

Soil Grids 

 

Population (per sq. 

km) 

2011 Cell size: (1000,1000) 

Angular Unit: Degree 

(0.0174532925199433) 

Linear Unit: Meter (1.0) 

 

GDA_1994_Albers 

D_GDA_1994 

Australian Bureau of 

Statistics (ABS)  

Soil type 

- Sand 

2014 Cell size: 

(0.00083333333, 

0.00083333333)  

Angular Unit: Degree 

(0.0174532925199433) 

 

Units: % 

 

GCS_WGS_1984 

D_WGS_1984 

Terrestrial Ecosystem 

Research Network 

(TERN) 

 (Soil and Landscape 

grid of Australia) 

Soil Depth (m) 
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Landscape (derived 

from DEM-S from 

SRTM): 

- Slope (%) 

2000 Cell size: 3 arc second 

(90m) 

: (0.00083333333, 

0.00083333333) 

 

Angular Unit: Degree 

(0.0174532925199433) 

 

GCS_WGS_1984 

D_WGS_1984 

Land Use 2016 Cell size: (1000,1000) 

Angular Unit: Degree 

(0.0174532925199433) 

Linear Unit: Meter (1.0) 

 

(0.00083333333, 

0.00083333333) 

PCS: 

GDA_1994_Australia_Albers 

 

Queensland Land use 

Mapping Program 

(QLUMP) available at 

Q-Spatial 
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3.2.2 Data pre-processing 

Some variables were pre-processed for the analysis. For SPEI computation, the units 

of precipitation and reference evapotranspiration needs to be in the same units. As 

such, the monthly precipitation from AWAP (initially in meters/day (m/d)) have been 

multiplied by the number of days ( N ) in the respective month followed by a 

multiplication factor of 1000 to convert into millimetres (mm), using the formula: 

  (3.1) 

 

The daily-based precipitation data from SILO have been converted to monthly 

by summing the daily values. Note that there were no missing data values from either 

AWAP or SILO sources for any of the point based study locations as the missing data 

had been recovered with standard statistical tests. 

The physiographic factors used in Chapter 7 comprised different spatial 

projections and resolutions. Part of the processing component has been the definition 

of the map datum, coordinate system, UTM zone and equivalent grid cell size. The 

maps used in this study have been defined based on the Geocentric Datum of Australia  

1994 (GDA94) with Map Grid of Australia (MGA) as the coordinate system and 56 as 

the UTM zone. The cell size for mapping is chosen to be 100m100m. 

3.2.3 Data limitations 

In Chapter 7, the percent rainfall departure was used as a drought hazard indicator 

instead of the SPEI due to the unavailability of the gridded reference potential 

evapotranspiration (ETo) data required for the computation of SPEI. While AWAP 

does provide temperature data that could be used to calculate the potential 

evapotranspiration (PET) via Thornthwaite (1948) or Hargreaves (1994) methods, the 

methods, however, are strongly discouraged. Over the past ten years or so there have 

been many articles demonstrating that PET should not be forced by temperature (T) 

alone, particularly in drought analyses (e.g., Hobbins et al. (2008); (Roderick et al.  

2007; Sheffield et al. 2012)). Roderick et al. (2007) showed that long-term changes in 

pan evaporation in Australia were driven by wind speed, not T. Hobbins et al. (2008) 

  1000;/;  daysmonthdmmonthmm NPP
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also demonstrated that a drought index driven by T-based PET yielded soil moisture  

trends that bore no relation to those driven by a PET derived from pan evaporation 

observations. Similarly, Hobbins et al. (2012) and  Hobbins (2016) showed that 

temperature was not the most significant driver of PET variability (i.e., the demand 

side of drought) over much of the continental USA. Also, Sheffield et al. (2012) 

showed that increasing global long-term trends in drought were vastly overstated using 

a T-based PET compared to a physically based one.  

The PET could also be calculated via Priestley-Taylor (Priestley and Taylor 

1972) method that uses humidity and net solar radiation where the latter measure can 

be combined with temperature to permit the derivation of a more physically-based 

estimate of PET. However, this study has disregarded the use of T-based PET that 

could have been possible otherwise (net solar radiation data available in AWAP) to 

compute the gridded SPEI over the study region in Chapter 7. To circumvent this 

limitation, this study has used percent rainfall departure that has also been successfully 

used in previous studies to generate integrated drought vulnerability index, e.g., Jain 

et al. (2015) and Thomas et al. (2016).  

There are numerous physiographic and climatic factors associated with drought 

events that could have been integrated together with ones used in this study to produce 

a more defined drought-risk index map in Chapter 7. However, due to the 

unavailability of such data for the entire study region, only those factors that were 

readily available has been utilised. While the data unavailability has been a limitation, 

the generated output maps in Chapter 7 are nevertheless, strongly representative of 

drought-risk.  

 

3.3 Location of the Study Area 

The general study area is located in the southeast Queensland (SEQ), Australia. It 

covers an area of 123,897.53 square kilometres. Rural areas make up about 85% of 

SEQ, much of which is managed by farmers. Grazing takes up major portion of the 

land use by about 51% of the land area. Other intensive agricultural activities include 

horticulture and animal production. For sustainable agriculture, some of the key 

challenges in the SEQ region include climate change, water supply, population growth 
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and economic pressures. The projected impact of climate change directly affecting 

agriculture includes more frequent and severe droughts (Pearce et al. 2007). As such, 

the agricultural production will require more water-efficient practices due to increasing 

demand for water when supply becomes less reliable under drought conditions in the 

study region.  

The study area covers six catchments: Condamine – Balonne, Moonie, Border 

Rivers, Logan, Gold Coast, and Moreton. The topography of the study area varies 

between 14.74 m below sea-level to 1360.24 m high. The higher elevations prevail on 

the Great Dividing Range (or the Eastern Highlands) that is Australia’s most 

substantial mountain range and the third longest land-based range in the world. The 

high elevated terrains have high slopes as well.   

Figure 3.1 shows the map of the study area. For Chapters 4-6, point based 

locations within the major study region have been used. These points have been 

labelled as R1 (153.05°E, 27.45°S), R2 (148.60°E, 28.05°S), R3 (152.25°E, 28.25°S) 

and R4 (143.25°E, 26.75°S) that has distinct climatological characteristics where R1 

is simply the location for the populous Brisbane city. Locations R2 and R3 are located 

in the Murray Darling basin that is an area of national significance for social, cultural, 

economic and environmental reasons and it contains nationally significant 

environmental assets that are reliant on water to maintain ecosystem health (ABS 

2012). Australia is one of the world's major agricultural producers and exporters of 

grain, beef, dairy, cotton, wool, wine and other horticulture, where the Murray Darling 

basin alone contributes about 39% of Australian production. Agriculture occupies 84% 

of the Murray Darling Basin land area with products to a value of approximately $AUS 

15 billion per annum (2005–2006) (ABS 2012). The R4 is located in the predominantly 

arid region in Queensland that mostly consist grazing/pasture activity on a broad scale. 

The study area is often declared drought-prone, hence it is important to prepare an 

appropriate drought monitoring, modelling and risk assessment study.  
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Figure 3.1: Map of the study region. Colour shading depicts digital elevation model 

(DEM) (meters). MDB refers to the Murray Darling Basin.
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3.4 Scope and Limitation of the Study 

The study has been scoped based on several considerations such as the availability of 

temporal and spatial datasets, strategic locations significantly and frequently affected 

by droughts (i.e., populous and the agriculture intensive areas), and the availability of 

essential tools and software for timely analyses (e.g., Matlab, R, ArcGIS). The 

rationale and key considerations in the way how this study has been scoped are based 

on the current challenges faced by the physical models in assessing drought-risk and 

the need for forecasting models to assess the consequences of water resource depletion 

from severe drought events, for instance, the 1996-2010 Millennium Drought. As a 

very topical and significant issue, this study aims to develop a technical framework 

using statistical and geospatial tools that can help improve the study regions’ resiliency 

from drought events.  

 

A variety of limitations that can be explored in follow up studies have been 

identified. The most obvious one is the extent of the study area. Its selection has been 

approached on the basis of providing detailed solution wherein Chapters 4-6 are 

mainly case studies. Ideally, drought vulnerability and risk assessment should be 

integrative and comprehensive as well as integrate various aspects such as social, 

economic, physical and environmental factors where obtaining such data has been 

beyond the scope of this study. This accords to many scholars who argue that 

vulnerability has a multifaceted and multi-dimensional nature (Birkmann 2006; 

Birkmann and Wisner 2006; Hufschmidt 2011; Turner et al. 2003; Vogel and O'Brien 

2004) where no single measure can fully capture its complexity (Gbetibouo and 

Ringler 2009; Luers et al. 2003).The second limitation has been the unavailability of 

other geospatial factors that covered the entire study region for Chapter 7, as discussed 

in Section 3.2.3.  

 

Furthermore, due to the complexity and difficulty to “predict” the future 

conditions of the study area and its critical interdependent land use in the future, the 

climate change factors for assessing future drought-risk in the study area have also 

been excluded from the analysis. Also, the assumptions associated with the factors in 

setting the Bayes equation have been mainly based on the existing literature; hence, 
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no actual experimentation, which could have involved actual field study, has been 

performed. 

3.5 General Methodology  

 

Figure 3.2: Flowchart describing general methodology of the study. 
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The Chapters 4-7 have self-contained and detailed methodology. Figure 3.2 gives an 

overview of the research methodology workflow for developing a framework for 

drought-risk assessment.  

3.6 Summary of Chapter 

In this chapter, the types of data used and the description of the study have been 

provided.  The data pre-processing methods are described and limitations encountered 

are acknowledged. The study area selection has also been discussed in this chapter.  

 



   

 

   

 

 

 

DROUGHT INDICES COMPARISON AND 

TREND ANALYSIS 
 

Note: 

 The results from this chapter are used in an article preparation. The following 

is the tentative reference to the article: 

 

Dayal KS., Deo RC, and Apan A., (2018) “Trend analysis of drought events based 
on SPEI: a case study”, Atmospheric Research, (In preparation).   
 

 

4.1 Introduction 

The previous chapter has listed the data types and discussed the data pre-processing 

required for the analysis presented in Chapters 4-7. The current chapter aims to 

generate and discuss the first set of results, in response to the first objective of the 

study (listed in Section 1.3). Here, the application of the SPEI for comparison with the 

popular precipitation-based DIs and assessment of changes in time series trend is 

presented. This chapter illustrates why SPEI is more relevant for the monitoring and 

characterising of drought events in the present study region.  

 

This investigation has employed the SPEI, formulated as an improved version 

of the WMO-approved SPI. Unlike in the case of the SPI, the SPEI has an ability to 

encapsulate the contributory influence of temperatures on the demand for water, and 

therefore, it appears to be more suitable for the monitoring of hydrological and 

agricultural impacts. Also, unlike the case of the PDSI, the SPEI is able to operate on 

multiple timescales (1-48 months), acting as an essential tool for assessment of the 
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hydrologic cycles and for accounting for different category of drought 

(meteorological, hydrological and agricultural). The SPEI can replicate the sensitivity 

embedded in the PDSI for monitoring of hydrological status in terms of the estimated 

evaporation and transpiration driven by warm temperatures, whilst assessing the multi-

temporal nature of drought afforded by SPI. An idealistic characteristic of the SPEI is 

its ability to capture the evaporative demand of the hydrosphere (i.e., via reference 

evapotranspiration; ETo) and the indicative aberrations in overall water resource 

conditions. SPEI holds the advantages of less data requirement, flexibility, and simple 

computation. These accord to the viewpoint of Keyantash and Dracup (2002) that a 

drought metric must be simple, clear, comprehensible and statistically robust, and also 

be independent of the climatic characteristics (i.e., standardised) to be comparable in 

the wider temporal and spatial domains across geographically diverse regions.  

 

Despite its infancy in the hydrologic research community, many case studies 

performed outside of Australia have applied SPEI for drought assessment and 

demonstrated its strong statistical correlation with hydro-meteorological variables that 

affect drought impacts in such diverse climatic regions. For example, the SPEI has 

been used for drought variability studies (Das et al. 2016; Li et al. 2012; Paulo et al.  

2012; Potop 2011), hydrological impact assessments, agricultural drought studies, 

impact of drought on ecological systems (Barbeta et al. 2013; Cavin et al. 2013; 

Martin-Benito et al. 2013; Toromani et al. 2011; Vicente-Serrano et al. 2013) as well 

as for the monitoring of drought events (Fuchs et al. 2012). To contribute to the growth 

of knowledge in the subject area, this study has performed several analysis using SPEI 

as the primary drought monitoring index.  

 

The breakdown of the first major objective outlined in Section 1.3 is done in 

two separate chapters (4 & 5), where each chapter has its own specific objectives. The 

main objectives of this chapter are to (1) compare SPEI with precipitation-based SPI, 

RDDI and RAI drought indices using statistical metrics and Wavelet Analysis and (2) 

assess any change in the trend of the SPEI time series over the period 1915-2016 using 

the Change-Point Analysis. Chapters 4 & 5 thus present the reasons for choosing SPEI 

for characterising drought events in Australia.  
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4.2 Materials and Method 

4.2.1 Hydrological data and study area 

Four case study locations in the southeast Queensland (SEQ), referred to as R1, 

R2, R3 and R4, with distinct climatological characteristics are selected for the analysis. 

Figure 4.1 plots their locations and Table 4.1 lists their geographic coordinates with 

the average annual precipitation for the base period (1971-2000). The monthly 

precipitation data (P; in millimetres), maximum temperature (Tmax; in degree Celsius) 

and FAO-56 Penman-Monteith based Reference Evapotranspiration (ETo; in 

millimetres) for any grid point, interpolated from gridded datasets on 5km 5km 

resolution, are acquired from SILO database for the period 1915–2016. The upper 

layer soil moisture (WRel1; fractional [0 1]) is acquired from AWAP.  

 

The sensitivity of potential evapotranspiration in any calculations involving the 

SPEI requires caution since previous studies have demonstrated that the potential 

evapotranspiration should not be forced by temperature data alone (e.g., (Hobbins et 

al. 2012; Roderick et al. 2007; Sheffield et al. 2012). Therefore, this study utilises the 

FAO-56 Penman-Monteith based ETo data to compute the SPEI. Note that instead of 

using the generic term ‘potential evapotranspiration’, hereafter this study refers to 

‘reference evapotranspiration’ specifically (denoted as ETo). The ETo data available 

in the SILO database has been estimated via the FAO-56 Penman-Monteith formula 

(Allen et al. 1998). The ETO values correspond to the short crop cases whereby a 

hypothetical reference with the assumed grass top height of 0.12m, a fixed surface 

resistance of 70sm-1, an albedo of 0.23, wind speed value at 2m height, radiation 

derived from cloud oktas, and the hours of sunshine using the procedure documented 

in Zajaczkowski et al. (2013) has been used. The monthly upper layer soil moisture 

(WRel1; fractional [0, 1]) and end of the month aggregated soil moisture (WRel1End; 

fractional [0, 1]) are obtained from the AWAP historical runs constructed from the 

WaterDyn hydrological model for the period 1915 to 2016 (Raupach et al. 2009; 

Raupach et al. 2012). The AWAP and SILO data are all obtained for the matching 

geographical locations for this case study (i.e., R1, R2, R3 and R4). 
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Figure 4.1: Map of point-based study locations: R1 – Subtropical, R2 – Grassland, 

R3 – Temperate, and R4 – Desert. 

 

Table 4.1 Study locations and their descriptive statistics. 

Location 

Label 

Climatic  

Regions 

Geographical  

Location 

Elevation 

above sea-
level (m)  

Annual Mean 
Precipitation (P; 

mm) 

R1 Subtropical 153.05°E, 27.45°S 61 1154.61 

R2 Grassland 148.60°E, 28.05°S 250 551.93 

R3 Temperate 152.25°E, 28.25°S 561 739.70 

R4 Desert 143.25°E, 26.75°S 211 307.82 
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4.2.2 Theoretical overview 

4.2.2.1 Standardised Precipitation-Evapotranspiration Index (SPEI) 

The point-based monthly time series, comprised of the standardised precipitation-

evapotranspiration index over 1915–2016 period based on the cumulative effects of P 

and ETo, are generated where ETo is used to depict the evaporative demand of the 

atmosphere. i.e., the evapotranspiration that would occur if sufficient water was 

available. This representation of drought aimed to incorporate the role of ETo that 

could act to moderate or exacerbate the underlying hydrological cycles in a drought 

situation (Hanson 1988). To examine drought periods within the historical data, the 

ETo is subtracted from the total P (where 
iii EToPSDB  and i = the month) to 

deduce the surplus or the deficit of water resources (i.e., the computation of Supply-

Demand Balance; SDB).  

As precipitation data generally exhibit seasonality within the case study 

regions and the distribution of these data are especially pronounced in different 

regimes, it is necessary to transform the SDB time series via an equal probabilit y 

framework to a normal distribution with a mean of zero ( 0 ) and standard deviation 

of one ( 1 ). This allows the water deficits and surpluses to be comparable in space 

and time, and the SPEI to be standardised so that it is free from seasonality and the 

data distribution effects when assessing the different drought event. To achieve this, 

the SDB time series are fitted to the three-parameter log-logistic, Gamma and Pearson 

III distributions based on the goodness-of-fit tests, i.e., Kolmogorov-Smirnov (K-S) 

statistic. With the null hypothesis that the SDB time series follows a specified 

distribution at significance level (α=0.05), the best (smallest) K-S statistic is obtained 

for log-logistic distribution, concurring with Vicente-Serrano et al. (2010). Thus the 

transformation of the SDB time series employed a probability density function of a 

three-parameter (α, β and γ) log-logistic distribution, F(x) according to Vicente-

Serrano et al. (2010):  

 1
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The SPEI is then computed as (Vicente-Serrano et al. 2010): 
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In Equation (4.2), the term )ln(2 PW   for P ≤ 0.5, and P is the exceedance 

probability of a determined SDB value, )(1 xFP   while Co = 2.515517, C1 = 

0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269 and d3 = 0.001308 are the 

empirical constants. The SPEI values corresponding to deficits or surpluses of water 

resources at six timescales (T = 1, 3, 6, 9, 12 and 24 months) are computed; where for 

instance, the SPEI9 is constructed by a sum of SDB values from eight months before 

to the current month. In all SPEI calculations, the base period is set to be 30 years (i.e., 

1971–2000), which is a common practice for drought studies in Australia (Deo et al.  

2015; Deo et al. 2009).  

 

In this chapter, only the SPEI at a 1-month timescale has been used. The multi-

scalar SPEI has been tested in the ensuing Chapter 5.  

  

4.2.2.2 Rainfall Decile-based Drought Index (RDDI) 

The RDDI is a measure of rainfall deficiency (Gibbs and Maher 1967). It is calculated 

from monthly rainfall values. While maintaining the traditional ten classes (deciles) 

and instead of sorting rainfall data into slices of 10%, this study has sorted rainfall data 

into slices of 5%, (20-quantiles) to obtain a better accuracy in detecting the drought 

signatures. First, the rainfall values of each Julian calendar month, for the base period, 

are sorted in ascending order and ranked from lowest to highest to construct a 

cumulative frequency distribution. The distribution is then split into 20 quantiles 

(slices of 5%). Using the monthly rainfall amount for each quantile obtained for the 

base period, the monthly rainfall amounts for the study period are then assigned the 

corresponding quantile. The first quantile that has the lowest rainfall values indicate 

driest months in the series while the 20th quantile indicates the wettest months. The 

other quantiles show the range from driest to wettest months. The ten classes (deciles) 

are assigned to each rainfall value as integers from 0.5 to 10 at intervals of 0.5.  

4.2.2.3 Standardised Precipitation Index (SPI) 

Developed by McKee et al. (1993), the SPI primarily defines and monitors drought 

events. To compute SPI for the desired station, a frequency distribution is constructed 

for a long-term precipitation record. It is then fitted to a theoretical probabilit y 
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distribution, i.e., Gamma distribution, and then transformed into a normal distribution 

so that the mean SPI is zero with a unit variance. The transformed distribution helped 

determine the extent of rainfall deficit, thus facilitated comparison and monitoring of 

spatial drought conditions at various temporal scales. The following equations are 

useful for calculating SPI. A Gamma distribution defined by its probability density 

function is given by: 
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The α (shape) and β (scale) parameters are calculated as: 
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where  represent the rainfall average over the base period and n is the number of 

observations, i.e., 1224 months, for each study location, and;  
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The above parameters are then used to derive the cumulative probability distribution, 

given as:  
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 (4.6) 

Since the Gamma distribution is undefined for zero rainfall amount, the cumulative 

probability, H(x), of zero and non-zero rainfall is calculated as:  

      xGqqxH  1  (4.7) 

where q is the probability of zero rainfall. For instance, if there are m  number of 

months with zero rainfall, then q is estimated as m/n and the cumulative probability is 

transformed into a standardised normal distribution that gives mean SPI and variance 

to be 0 and 1, respectively.  

  

x
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4.2.2.4 Rainfall Anomaly Index (RAI) 

The monthly RAI is computed according to Van Rooy (1965):  

 
 

(4.8) 

where xi is the monthly precipitation and  is the mean precipitation for the base 

period, 1971–2000. 

 

4.2.2.5 Wavelet Analysis (WA) 

A wavelet is a function localised in both frequency (  or bandwidth) and time ( t ) 

with zero mean (Torrence and Compo 1998). The Morlet wavelet is selected in this 

study because it comprises both real and imaginary parts in the function that enables 

it to investigate a signal’s coherence and phase angle, after Chang et al. (2017) and 

Grinsted et al. (2004). It is expressed as:  
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where 
0 and   are dimensionless frequency and time, respectively. For feature 

extraction purposes, Morlet wavelet with 60  is a recommended choice since it 

provides a good balance between time and frequency localisation (Grinsted et al.  

2004).  

4.2.2.5a The Continuous Wavelet Transform (CWT) 

The CWT has been used to apply a bandpass filter to the time series. Unlike Fourier 

transformation, the CWT has the ability to construct time-frequency localisation of a 

signal. By varying its scale ( s ), the wavelet is stretched in time so that, ts   and 

subsequently normalising it to have a unit energy. The CWT of a time series (

Nnxn ,...,1,  ) with a uniform time steps t , is defined as the convolution of nx with 

scaled and normalised wavelet (Grinsted et al. 2004) as: 
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(4.10) 

 

4.2.2.5b Cross Wavelet Transform (XWT) 

While CWT divides a continuous-time function into wavelets, the similarity between 

two series in the same period is generally hard to identify. To overcome this, the XWT 

xxRAI i 

x
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has been used. The XWT of two-time series 
nx and 

ny  is defined as 
*YXXY WWW   

(Grinsted et al. 2004) where * refers to complex conjugation and the absolute value of 

XYW is the cross-wavelet power. Detailed theoretical distribution of the XWT is given 

in Torrence and Compo (1998). 

The CWT and XWT are powerful methods for testing proposed linkages 

between the two data time series.  

 

4.2.2.6 Change-Point Analysis (CPA) 

A CPA is a powerful tool that determines whether a change has taken place in a series. 

There are numerous ways to perform a CPA on a times series. This study has used the 

approach implemented in Taylor (2000). It is capable of detecting subtle changes and 

better characterises the detected changes by providing confidence levels and 

confidence intervals. The confidence levels indicate the likelihood that a change has 

occurred while the confidence interval indicates when the change has occurred.  

The change-point analysis iteratively uses a combination of cumulative sum 

charts (CUSUM) and bootstrapping to detect the changes. In this study, the CUSUM 

charts are constructed by calculating and plotting a cumulative sum based on the data, 

viz. Taylor (2000). Suppose NXXX ,...,, 21  are N number of data points. The 

cumulative sums (CUSUM) NSSS ,...,, 10 are then calculated in three steps: 

1. Calculate the average of the data series: 
N

XXX
X N


...21 ; 

2. Set the initial condition, 00 S ; 

3. Compute S recursively,  XXSS iii  1
,     Ni ,...,2,1  

The interpretation of a CUSUM chart requires close attention to the pattern of 

iS . For the case of SPEI time series, consider a period of time where SPEI is above 

the average value. Most values adding up to the cumulative sum can produce positive 

values so the trend line is expected to rise steadily. In this case, a segment with 

increasing iS indicates a period where SPEI values are above average. Likewise, a 
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segment with a decreasing
iS indicates a period where values are below average. A 

sudden change in the direction of the time series, detected by the change in the sign of 

the gradient of
iS at a stationary point, x , is likely to indicate a sudden, abrupt shift in 

the average value of the time series. However, 
iS following a relatively straight path 

indicate a period where the average does not change. Based on this, we can detect any 

abrupt changes over the given study period.   

To be certain that a change has occurred, a confidence interval can be used for 

the obvious change by performing a bootstrap analysis. For bootstrap analysis, an 

estimator of the magnitude of change is required and in this case, it is the difference 

between the maximum and minimum cumulative sums, 
iS , i.e., 

minmax iidiff SSS  . A 

single bootstrap analysis is then performed in four steps: 

1. Generate a bootstrap sample of N values, denoted as 
00

2

0

1 ,...,, NXXX , by 

randomly reordering the original N values in the series. This is called sampling 

without replacement; 

2. Calculate CUSUM based on the bootstrap sample, denoted as 
00

2

0

1 ,...,, NSSS ; 

3. Calculate min
0S , max

0S  and diffS 0
; 

4. Determine whether the bootstrap diffS 0
is less than the original 

diffS . 

Bootstrapped samples represent a random reordering of the data that “mimic” 

the behaviour of the CUSUM if no change has occurred. With a large number of 

bootstrap samples, we can estimate by how much 
diffS would vary if no change has 

taken place, i.e., the Confidence Interval. To determine the Confidence Level, let M

be the number of bootstrap samples performed and Y  be the number of bootstraps for 

which diffS 0
<

diffS , then: 

 

M

Y
LevelConfidence 

 
(4.11) 

The corresponding exceedance probability of bootstrapped samples valuep 

is computed viz: 
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 LevelConfidencevaluep  1
 

(4.12) 

 

The valuep   is then compared against α = 0.001, 0.05 and 0.1.  

The other estimator of when the change occurred is the mean square error 

(MSE). If the point m estimated the last point before the change occurred, then the 

MSE(m) is defined as (Taylor 2000): 
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where, 
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4.3 Results and Discussion 

4.3.1 Comparison between DIs 

The comparison between SPEI and only precipitation-based DIs, i.e., SPI, RDDI and 

RAI, are carried out. Figure 4.2 and Figure 4.3 shows the area plot of monthly SPEI 

and SPI, respectively. The negative range of values refers to the water deficit periods. 

Since SPEI and SPI are the standardised indices with mean equal to zero and standard 

deviation equal to 1, the two are comparable. It is apparent that the SPEI extremes are 

more compared to SPI extremes, especially distinguishable for location R4 for the 

Millennium Drought period (1996-2010). Such difference could be explained by the 

location of R4, which is in an arid to the semi-arid region where water deficit through 

evapotranspiration is consequential. This difference can also be assessed numerically 

viz. Pearson correlation values listed in Table 4.2. The correlation of SPEI with SPI, 

RDDI and RAI are slightly less in R4, as compared to the other study regions. 

Additionally, while SPEI has a high correlation with SPI for their similar 

computational procedure, the former also has a reasonably high correlation with RDDI 

that is predominantly used by BoM in Australia. This preliminary comparison suggests 

that SPEI is a high-calibre drought index for characterising drought events.  
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Figure 4.2: Area plot of the monthly SPEI from 1915 to 2016 for (a) R1, (b) R2, (c) 
R3 and (d) R4.  

 
Figure 4.3: Area plot of the monthly SPI from 1915 to 2016 for (a) R1, (b) R2, (c) 
R3 and (d) R4.  
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Table 4.2: Pearson correlation between drought indices.  

Drought Indices Pearson Correlation 

 R1 R2 R3 R4 
SPEI vs. SPI 0.9604 0.9148 0.9367 0.8950 
SPEI vs. RDDI 0.9569 0.9375 0.9492 0.8778 

SPEI vs. RAI 0.8290 0.8450 0.9109 0.7608 
SPI vs. RDDI 0.9402 0.9400 0.9285 0.9402 
SPI vs. RAI 0.8561 0.8366 0.8914 0.8238 
RDDI vs. RAI 0.8104 0.8488 0.8941 0.7323 

 

A comparative study using wavelet analysis on DIs is the first study of its kind 

for assessment of droughts in Australia. Figure 4.4 shows the wavelet power spectrum 

for WRel1, SPEI, SPI, RDDI and RAI time series for the location R1. Similar results 

for locations R2, R3 and R4 are provided in the Appendix. The bold contour lines 

indicate 95% confidence level. The period is measured in months. Clearly, there are 

common features in the wavelet power of all time series between 128-256 months band 

for the Millennium Drought during mid-1990s to 2010. However, the significance 

level varies where RAI appears to have the smallest region during this drought period. 

While there are various smaller bands with significant wavelet spectrum for all time 

series, the SPEI, however, clearly captures the significant power spectra for the World 

War II drought between ~ 32-80 months band. Nonetheless, the CWT reveals the 

common feature between the DIs, however, it is hard to tell if there is merely any 

confidence. As such, the XWT is used to identify the common features.  
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Figure 4.4: Continuous wavelet transform (CWT) power spectrum for the time 

series of upper layer soil moisture (WRel1), SPEI, SPI, RDDI and RAI drought 

indices.  

 

Figure 4.5 shows the XWT computed between WRel1 and DIs. Note that 

WRel1 is used for comparison as it is an important indicator of the agricultural drought 

and is expected to have a high correlation with DIs. It is clearly evident that the DIs 

have a significant correlation with WRel1 for all major droughts occurred at the 

location R1. However, the significant correlation of WRel1 with SPEI is more 
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conspicuous for the World War II drought in the band range ~32-80 from the period 

1930-1960, compared to that with SPI, RDDI and RAI. The arrows pointing to the east 

implies both time series are in phase. From the significant power spectrum and phase 

relationship, particularly for the major drought events, we can speculate that there is a 

strong link between soil moisture content and DIs, where SPEI stands out to be more 

prominent. The cross-power spectrum for locations R2, R3 and R4 can be found in the 

Appendix.  The correlation assessment of SPEI with other DIs has demonstrated that 

SPEI is in fact very effective at identifying the historical drought events and thus can 

be advocated for monitoring of drought events in real-time. 
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Figure 4.5: Cross-wavelet spectrum (XWT) between the upper layer soil moisture (WRel1) and drought indices. 
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4.3.2 Trend changes in the SPEI 

In studying drought climatology, it is important to investigate whether there has been 

any change in the trend of the SPEI, which reveals the periods of water deficiency in 

its standardised form. A change-point analysis has been carried out on the monthly 

SPEI time series for the 1915-2016 period for each study location. Tables 4.3, 4.4 and 

4.5 shows the results for locations R2, R3 and R4. No significant change has been 

observed in the location R1. For the discussion purpose, only those change points are 

considered that has a confidence level of 100%. At the location R2, of the nine 

changes, there are two periods when a change has occurred with 100% confidence. 

Those are 387th and 1172nd month in the time series, corresponding to March 1947 and 

August 2012. At 95% confidence interval, the first change with 100% level of 

confidence occurred between June 1939 and August 1951, while the second change 

occurred between February 2012 and November 2013. The fact that the confidence 

interval for the first change is wider indicates that the time for this change cannot be 

as accurately pinpointed compared to the second change. In the table, we can also see 

the average SPEI values prior to and after the change has occurred, i.e., prior to the 

March 1947 change the average SPEI value was -0.27877 while after the change the 

SPEI was 0.19399. Similarly, the average SPEI values for the August 2012 change are 

0.62607 and -0.39774. The table also gives a level associated with each change that 

gives an indication of the importance of the change. For instance, the level 1 change 

denotes first change detected while level 2 changes are detected on a second pass 

through the data, and so on.  

Table 4.3: Table of significant changes in the time series of SPEI for location R2. 

 

Table of Significant Changes for SPEI
Confidence Level for Candidate Changes = 50%, Confidence Level for Inclusion in Table = 90%, Confidence Interval = 95%,

Bootstraps = 1000, Without Replacement, MSE Estimates

Row Confidence Interval Conf. Level From To Level

16 (11, 185) 96% -1.2308 -0.27877 7

387 (294, 440) 100% -0.27877 0.19399 1

476 (391, 494) 94% 0.19399 0.66059 5

506 (494, 553) 98% 0.66059 -0.019886 6

1041 (958, 1072) 95% -0.019886 -0.5149 11

1116 (1084, 1129) 93% -0.5149 0.24262 8

1136 (1129, 1137) 98% 0.24262 -1.4479 6

1141 (1141, 1143) 93% -1.4479 0.62607 4

1172 (1166, 1187) 100% 0.62607 -0.39774 3
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The question as to whether all nine changes are significant or not is cross-

checked using 1000 bootstraps without replacement and MSE. To graphically illustrate  

the results, Figure 4.6 shows the CUSUM chart with significant changes shown in the 

background for the location R2. The number of significant changes is indicated by the 

number of times the background colour has changed. It appears that the significant 

changes in the SPEI have occurred nine times at location R2, concurring with Table 

4.3. 

 

Figure 4.6: CUSUM chart of the SPEI data for location R2 with significant changes 
shown in the background.  

 

Similarly, the change with 100% level of confidence occurred at the 1023rd 

month (i.e., March 2000) as given in Table 4.4 for the location R3. There are six 

periods in total where significant change has occurred. The graphical representation of 

the change in terms of CUSUM is shown in Figure 4.7. As opposed to the locations 

R1, R2 and R3, the location R4 has twenty-six periods where a significant change in 

the SPEI trend has occurred, see Table 4.5 and corresponding CUSUM in Figure 4.8. 

Of the twenty-six, nine changes have occurred with 100% confidence. These points 

are (numerically in month/year format) 07/1916, 07/1920, 12/1921, 01/1949, 03/1973, 

04/1979, 03/2001, 02/2010 and 07/2016. Most of these changes occurred when the 

phase of ENSO changed as well. The significant difference at R4, compared to the 

locations R1, R2 and R3, could be due to its location in the arid/semi-arid region where 

meteorological parameters are highly variable.  
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Table 4.4: Table of significant changes in the time series of the SPEI for location 

R3. 

 

 

 

 

Figure 4.7: CUSUM chart of the SPEI data for location R3 with significant changes 

shown in the background. 

 

 

 

 

 

 

Table of Significant Changes for SPEI
Confidence Level for Candidate Changes = 50%, Confidence Level for Inclusion in Table = 90%, Confidence Interval = 95%,

Bootstraps = 1000, Without Replacement, MSE Estimates

Row Confidence Interval Conf. Level From To Level

916 (829, 917) 96% -0.023271 -1.2465 2

925 (923, 956) 98% -1.2465 -0.46026 3

970 (940, 1001) 98% -0.46026 0.033142 2

1003 (983, 1010) 96% 0.033142 0.75432 4

1023 (1021, 1032) 100% 0.75432 -0.48461 3

1141 (1082, 1209) 96% -0.48461 -0.059474 5
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Table 4.5: Table of significant changes in the time series of the SPEI for location 

R4. 

 

 

Table of Significant Changes for SPEI
Confidence Level for Candidate Changes = 50%, Confidence Level for Inclusion in Table = 90%, Confidence Interval = 95%,

Bootstraps = 1000, Without Replacement, MSE Estimates

Row Confidence Interval Conf. Level From To Level

19 (15, 20) 100% -0.63934 1.2351 9

28 (26, 40) 93% 1.2351 0.24884 10

47 (37, 52) 98% 0.24884 -0.58503 8

67 (65, 68) 100% -0.58503 1.1087 11

84 (82, 90) 100% 1.1087 -0.23955 6

164 (85, 172) 94% -0.23955 -0.74341 14

182 (178, 200) 90% -0.74341 0.17805 7

263 (210, 322) 98% 0.17805 -0.22256 10

409 (396, 421) 100% -0.22256 0.79671 9

434 (415, 443) 96% 0.79671 -0.017313 10

479 (465, 487) 99% -0.017313 0.77868 11

503 (499, 514) 98% 0.77868 -0.28625 8

699 (682, 713) 100% -0.28625 0.5016 9

772 (762, 774) 100% 0.5016 -0.6594 12

794 (787, 805) 94% -0.6594 0.058864 15

809 (799, 811) 94% 0.058864 -0.96257 14

820 (818, 867) 91% -0.96257 -0.067982 13

893 (865, 893) 91% -0.067982 1.5758 15

896 (896, 896) 96% 1.5758 -0.024475 19

904 (903, 904) 99% -0.024475 1.1383 18

909 (909, 912) 95% 1.1383 -0.63758 15

934 (925, 962) 96% -0.63758 0.14244 18

1035 (1008, 1058) 100% 0.14244 -0.4749 4

1142 (1139, 1144) 100% -0.4749 1.4303 5

1157 (1155, 1162) 99% 1.4303 -0.37256 7

1219 (1205, 1223) 100% -0.37256 1.0161 2
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Figure 4.8: CUSUM chart of SPEI data for location R4 with significant changes 
shown in the background. 
 

4.4 Conclusion  

The main conclusions that can be drawn from this chapter are: 

1. SPEI is able to identify extreme droughts better than the SPI;  

2. SPEI highly correlates with precipitation-based DIs, especially with SPI and 

RDDI but can additionally provide complementary information about 

hydrological effects of drought;  

3. Illustrated by the wavelet analysis, the SPEI concurs with all major drought 

events to a greater extent, significant at 95% confidence interval, compared to 

SPI, RDDI and RAI; 

4. DI cross-wavelet analysis with the upper layer soil moisture (i.e., WRel1) 

indicated SPEI to be in phase more significantly at 95% confidence interval 

compared to the SPI, RDDI and RAI.  

5. The change-point analysis represents a powerful tool that is able to detect 

changes in the SPEI trend with associated confidence levels and confidence 

intervals. The study found the location R4 (in the arid/semi-arid region) to have 

undergone 26 changes in the SPEI trend compared to locations R1, R2 and R3 

with 0, 9 and 6, respectively. The location of the study matter where inland 

from the coastline experiences more variability in the environmental 

parameters that define the SPEI. 

CUSUM Chart of SPEI - R4
40

10

-20

C
U

S
U

M

2 176 350 524 698 872 1046 1220
Time (months: 1915-2016)



   

 

  

 

 

 

INVESTIGATING DROUGHT DURATION-

SEVERITY-INTENSITY 

CHARACTERISTICS USING THE 

STANDARDISED PRECIPITATION-

EVAPOTRANSPIRATION INDEX 
 

 

 

Note: 

 The results from this chapter have been published in ASCE Journal of 

Hydrologic Engineering. The following is the reference to the article: 

 

Dayal KS., Deo RC, and Apan A., (2018) “Investigating drought duration-severity-
intensity characteristics using Standardised Precipitation-Evapotranspiration Index: a 
case study in drought-prone, southeast Queensland”, ASCE Journal of Hydrologic 
Engineering, 23(1): https://doi.org/10.1061/(ASCE)HE.1943-5584.0001593.  
  

 

 

5.1 Introduction 

Chapter 4 has provided the first set of results following the first objective of the study 

(listed in Section 1.3). There, the comparison of DIs showed SPEI surpassing SPI, 

RDDI and RAI in the detection of major droughts. Continuing with addressing the first 

objective of the study, the current chapter provides a further innovative contribution 

of the SPEI for assessment of drought properties.  

 

The aim of this chapter is to uncover potential merit of the SPEI for drought 

assessment in southeast Queensland and to deepen our understanding of drought 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001593
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characteristics, whilst searching for a robust drought tool. The novelty is to apply SPEI 

for drought analyses in the SEQ region that has been subjected to several severe and 

prolonged drought events (Deo et al. 2009; Hertzler et al. 2006; McAlpine et al. 2007; 

McAlpine et al. 2009; van Dijk et al. 2013). The purpose of the study in this chapter is 

fivefold: (1) to apply the SPEI for drought assessment by considering jointly the 

impacts of rainfall and ETo on water deficit periods, (2) to analyse the time series of 

SPEI using a run-sum theory in order to deduce the drought properties in terms of 

accumulated drought severity (S), duration (D) and intensity (I) based on the identified 

onsets and terminations of drought to accord with thresholds of SPEI in water deficit 

periods, (3) to identify the relationships between SPEI and other drought variables 

(i.e., precipitation, soil moisture, and maximum temperature data) where such 

comparisons are expected to aid in addressing the impacts of an agricultural drought 

event, (4) to apply SPEI for estimating drought return periods for a given severity, S 

or intensity, I, and (5) to analyse the multi-scalar properties of drought using timescales 

(T) = 1, 3, 6, 9, 12 and 24-monthly drought monitoring data.  

5.2 Materials and Method 

5.2.1 Hydrological data and study area 

The same point-based study locations R1, R2, R3 and R4 used in Chapter 4 are also 

used in this chapter. Figure 5.1 shows the mean monthly climatological pattern for 

precipitation, maximum temperature, supply-demand balance (i.e., ; hereafter 

called SDB) and upper layer soil moisture (WRel1) for the base period (1971-2000) for 

each study location. The precipitation and temperature data shows warmer and wetter 

summer and cooler and drier winter seasons for all locations, while the SDB and soil 

moisture reveal distinct seasonality. The precipitation and soil moisture appear to be 

in statistical congruence with each other, where a particular region receiving relatively 

high precipitation appears to exhibit a generally high soil moisture value and vice 

versa. Notably, the location denoted as R4 exhibited the lowest amount of precipitation 

and this region has also been generally the warmest, with the smallest SDB value and 

lowest soil moisture content compared to the other study regions, coinciding well with 

its location in the semi-arid zone. 

EToP 
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Figure 5.1: Monthly climatology of (a) precipitation (P; mm), (b) maximum temperature (Tmax; ˚C), (c) climatic water balance (mm), and (d) 

upper layer soil moisture (WRel1; fractional). Legend applies to all panels. 
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To generate climate statistics and check the overall distribution of climate data, 

a violin plot (which aimed to integrate a boxplot with a kernel density plot) has been 

prepared (see Figure 5.2). This figure shows the median, quartiles and the 95% 

confidence interval for the P, Tmax and WRel1 data for the period T=3 and T=12-

months (running sum for P and running mean for Tmax and WRel1). Evidently, the P 

and WRel1 data appear to mimic a unimodal pattern in their distribution with a 

relatively large number of months exhibiting high probability. In terms of the Tmax  

data, a bimodal behaviour can be noted at all case study locations on a T=3-month 

scale where the range of Tmax data appears to be relatively large for location R4, 

followed by that for locations R2, R3 and R1. However, the climatic patterns become 

more distinct on the T=12-month scale. Overall, the climatic conditions in the case 

study regions (Figure 5.1 and 4.2) highlight significant variability in their climates, 

and possibly, indicating the complexity of any observed drought events explored using 

the present SPEI data.  

 

 

Figure 5.2: Violin plots with a combination of boxplot and kernel density 

distribution for (a, b) precipitation (P), (c, d) maximum temperature (Tmax), and (e, 

f) upper layer soil moisture (WRel1) on 3-month and 12-month timescales. 
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5.2.2 Characterisation of drought properties 

In accordance with SPEI representing the normalised deficits or surpluses of water 

resources relative to a climatological base period, the drought onsets and terminations 

are then identified in a period when the SPEI declined to a value below zero (i.e., the 

standardised water deficit was below the normal value). The drought duration (D), 

severity (S), and intensity (I) characteristics are thus estimated via the commonly 

adopted run-sum approach described in Yevjevich (1967):  
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In Equations (5.1–5.3), i =1 is the start of a drought event when the SPEI drops 

below zero and its continuation as a negative value for at least three months, D = total 

duration from the onset to the termination period, n  is the number of months with 

consecutive negative values, while the intensity, I = the drought peak (i.e., minimum 

SPEI) for a given drought event. It is imperative to note that a drought event that lasted 

for less than 3-month duration, which is generally regarded as insufficient to impact 

the available water resources, has been ignored in this case study following the 

Australian BoM’s definition (i.e., a drought condition is declared when precipitation 

is below normal for consecutive three or more months) (Mpelasoka et al. 2008). 

 

Figure 5.3 illustrates the D, S and I properties of identified drought events in 

the designated region (R1) from 1991 to 1996 on a SPEI3 time series. Since the SPEI 

is a standardised metric, a value of 0 refers to the normal supply-demand balance (i.e., 

the current supply-demand balance matching the mean climatological conditions), 

whereas SPEI = -1 indicates a deficit equivalent to about 1 standard deviation below 

the normal and SPEI = 1 indicates a surplus equivalent to 1 standard deviation above 

the normal supply-demand balance. In this case study, all consecutively negative 

values of SPEI that corresponded to the significantly dry period(s) are investigated. In 

congruence with the shading shown in Figure 5.3, a drought event that commenced in 

 



D

i

iSPEIS
1

 iSPEII min



                                                                    Chapter 5 – Investigating Drought Properties using SPEI  

 92 

July 1992, for example, are seen to attain S = -12.99, D = 14 months and I = -1.52 

values, and can thus be classified as severe drought event. 
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Figure 5.3: Graphical definition of drought onset and termination, drought severity (S), drought duration (D), and peak intensity (I). The time 

series is taken for R1 from 1991 to 1996 on the 3-month timescale. 
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All drought cases that are evaluated for any dry event with a value of D ≥ 3 

months are also categorised into various classes, i.e., normal conditions (-0.99≤ SPEI 

≤0.99), moderate drought (-1.49≤ SPEI ≤-1.00), severe drought (-1.99≤ SPEI ≤-1.50) 

and an extreme drought (SPEI ≤-2.00) case as in Yu et al. (2014) and Nam et al. (2015). 

Drought events deduced from the SPEI data are therefore validated against the monthly 

precipitation, soil moisture (WRel1 and WRel1End) and RAI.  

 

In terms of understanding the practical benefit of SPEI, one could consider its 

potential utility in the context of designing hydrologic structures (e.g., dams or 

irrigations) that may require a prior knowledge of the analysis of risk in terms of 

whether a design may be appropriate for a drought event with a certain return period. 

Hence, drought events assessed with respect to their frequency of occurrence using the 

concept of a return period of an event in any observation can be designated as the 

inverse of exceedance probability, (Kim et al. 2003): 

 
 (5.4) 

In Equation (5.4), XT = magnitude (i.e., drought severity) with a return period 

(T) and X (random variable) is the drought severity of a given magnitude. If a marginal 

cumulative distribution of the severity parameter, S for a threshold level is denoted by 

, the univariate return period for a drought severity, Ts, is then (Kim et al. 2003):  

 
 (5.5) 

where Nn / ; N = total length of observed SPEI data (102 years in this case study) 

and n = total number of events, during N. Similarly, the return periods based on I and 

D are determined using Eq. 5.5. 

 

5.3 Results and Discussion 

In this section, the results generated for drought studies in the four case study regions 

(R1, R2, R3, R4) with distinct climatic conditions (Figures 5.1, 5.2) are presented and 

argued in light of the usefulness of the SPEI for an objective characterisation of 

drought. Identifying the number of drought events using a run-sum approach is a key 
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towards understanding drought duration (D) and its potential recurrence intervals. 

Using the criteria of D ≥ 3 months and the epochs with (i.e., supply-demand 

balance lower than normal by at least 1 standard deviation), the number of drought 

events have been identified at each case study region on different timescales (see Table 

A5.1 in the Appendix). 

 

The World War II (WWII) drought event, reigning over the period 1935–1947, 

was an iconic dry event in Australia that affected quite significantly a number of socio-

economic activities in the SEQ region (Verdon‐Kidd and Kiem 2009). In this case 

study, the response of SPEI for the characterisation of this episode based on 

precipitation and soil moisture data has been tested in order to better understand the 

agricultural consequences of a persisting drought. The soil moisture data is thus 

adopted for its comparison with SPEI, as this parameter is an important component of  

the regional hydrological cycle, e.g., (Yamaguchi and Shinoda 2002). Figure 5.4 

illustrates a segment of this drought event at location R2. It is apparent that for a low 

precipitation and soil moisture epoch, the SPEI is able to capture quite well the 

temporal variation in a drought situation, in accord with the notable WWII drought.  

 

In fact, the upper layer (WRel1) mean value and the upper layer end of month 

(WRel1End) fractional soil moisture, bounded by [0, 1] is in phase with the SPEI and 

precipitation data. This showed several periods with relatively low values of the SPEI 

that corresponded with values of low soil moisture (i.e., demonstrating the agricultural 

effect of the underlying dryness). Such an assessment of a drought event from an 

agricultural perspective, which utilises the role of a supply-demand balance measure 

for drought impact assessment, is impossible with solely rainfall-based DIs and is 

therefore of potential scientific value to socio-economic activities like sustainable 

agriculture, irrigation and water resource management (Vicente-Serrano et al. 2012).  

1SPEI
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Figure 5.4: Upper layer (WRel1) and upper layer end of the month (WRel1End) soil moisture plotted with SPEI and precipitation (mm) for the 

WWII drought period: 1941-1947 for study location R2.
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In Figure 5.5, the annual SPEI vs. the annual rainfall anomaly index (RAI); a 

metric that is commonly utilised for meteorological drought assessment is displayed. 

Note that, a time series of the RAI has been adopted to cross-check the epochs of 

annual precipitation below (above) normal for dry (wet) events within the historical 

period. A synchronicity between the objective drought metric (i.e., SPEI) and the 

traditional meteorological metric (i.e., RAI) is clearly evident, where the dry years 

(with significantly negative values of the RAI) are temporally in-phase with the annual 

SPEI data. In all case study regions considered, the coefficient of determination (R2) 

for the SPEI vs. RAI is more than 0.90, revealing that the objective drought index 

possesses statistically equivalent skills of the estimated deviation in rainfall from a 

normal period for the depiction of anomalously dry and wet periods. It should be 

mentioned, however, that the SPEI is a superior index due to its fundamental ability to 

incorporate the influence of ETo, a notion that is consistent with previous research 

perspectives (e.g., (Lorenzo-Lacruz et al. 2010; Vicente-Serrano et al. 2010; Vicente-

Serrano et al. 2012; Vicente-Serrano et al. 2013; Vicente‐Serrano et al. 2011)). In 

several of these works, the ability of SPEI to measure the level of exacerbation has 

been stipulated, outlining its robust skill for the assessment of hydrological and 

agricultural impacts of a persisting meteorological drought condition. A similar 

comparison of multi-scalar SPEI with multi-scalar RAI and soil moisture (WRel1) has 

been carried out in terms of Kendall’s tau (τ) values, which ranged from 0.60 to 0.92 

with RAI and from 0.50 to 0.85 with WRel1, where τ values were small on smaller 

timescales, and vice versa (see Table A5.2 in the Appendix). 
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Figure 5.5: Annual SPEI plotted against annual RAI for (a) R1, (b) R2, (c) R3 and 

(d) R4 with a coefficient of determination (R2) values. Legend applies to all panels. 

 

Drought phenomena display a high degree of serial correlation (or persistence) 

arising from precipitation as a source of the surface run-off, but its intrinsic 

relationship with the underlying soil moisture and the groundwater recharge can act to 

moderate the rainfall–runoff and hydrological processes; consequently, impacting the 

seriousness of the dry episode. The drought has a memory of several months arising 

from antecedent rainfall so it does affect the local or regional catchment hydrology. 

Concurrent or lagged correlation between SPEI and its inter-related variables (e.g., 

precipitation, temperature, soil moisture and reference evapotranspiration) can be thus 

utilised to assess a drought impact via a purely statistical sense (Chiew et al. 1998; 

McBride and Nicholls 1983). Figure 5.6 shows the monthly value of SPEI, cross-
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correlated with monthly precipitation (Column 1), upper layer soil moisture (Column 

2), upper layer end of month aggregated soil moisture (Column 3), maximum 

temperature (Column 4) and reference evapotranspiration (Column 5). Here, the row 

plots refer to the case study regions, and the lags represent the antecedent month while 

the blue line marks the threshold of 95% confidence interval. At a lag of zero, a 

statistically significant cross-correlation coefficient (at α = 0.05) exists for the SPEI 

vs. P, WRel1, WRel1End, Tmax and ETo data. The cross-correlation coefficient is also 

significant at several other lags for these five variables, indicating their overall 

importance in moderating the hydrological cycle that could impact the way an 

agricultural drought manifests itself in a given region. The cross-correlation coefficient 

of SPEI with precipitation data is significant only at lag zero and/or lag 1 since SPEI 

is estimated using precipitation data. However, with soil moisture data (WRel1 and 

WRelEnd) at all study regions, SPEI exhibited a statistically significant correlation at 

lags up to 3 months that reflects the seasonality of drought events via the memory of 

rainfall and soil moisture.
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Figure 5.6: Cross-correlation of SPEI with precipitation (P) (a, f, k, and p), upper layer soil moisture (WRel1) (b, g, l, and q), upper layer end of 

month soil moisture (WRel1End) (c, h, m, and r), maximum temperature (Tmax) (d, i, n, and s), and reference evapotranspiration (ETo) (e, j, o, 

and t). Solid lines indicate 95% confidence interval.
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Owing to their practical benefit in risk evaluation, duration-severity-intens ity 

(D-S-I) properties are key defining characteristics for droughts. As such, the statistical 

correlation between D-S-I properties can help explain their interdependence, allowing 

hydrologists to objectively assess the overall damage caused by a given drought event. 

Table 5.2 enumerates Kendall’s tau values between S and I, S and D, and D and I 

properties of identified drought events at different timescales. The effect of seasonality 

on smaller timescales is noticeable with smaller correlation values whereas the 

association between properties becomes stronger across larger timescales. While Table 

5.2 provides vital information on the bivariate relationships of D-S-I, an understanding 

of the trivariate relationships of D-S-I concurrently is a more relevant measure of the 

combined impact of drought in the sustainable management of water resources. Figure 

5.7 plots the annual drought severity, annual peak drought intensity and annual drought 

duration for T=3, 6, 9 and 12 months at R1, R2, R3 and R4, respectively.  

 

Table 5.1 Kendall’s tau between drought duration and severity (D and S), duration 

and intensity (D and I) and severity and intensity (S and I) for different timescales. 

Regions 

Timescale 

1 

Timescale 

3 

Timescale 

6 

Timescale 

9 

Timescale 

12 

Timescale 

24 

D and S 

R1 -0.52 -0.65 -0.79 -0.83 -0.83 -0.88 

R2 -0.67 -0.75 -0.82 -0.85 -0.89 -0.92 

R3 -0.55 -0.76 -0.81 -0.85 -0.88 -0.87 

R4 -0.65 -0.72 -0.82 -0.85 -0.88 -0.86 

D and I 

R1 -0.20 -0.32 -0.52 -0.62 -0.65 -0.71 

R2 -0.38 -0.46 -0.56 -0.60 -0.70 -0.72 

R3 -0.32 -0.49 -0.62 -0.65 -0.65 -0.69 

R4 -0.31 -0.47 -0.57 -0.60 -0.75 -0.74 

S and I 

R1 0.56 0.63 0.68 0.75 0.80 0.79 

R2 0.64 0.65 0.70 0.72 0.80 0.77 

R3 0.64 0.69 0.77 0.76 0.75 0.80 

R4 0.58 0.71 0.72 0.71 0.83 0.84 

 

For a generally lengthy drought event, the severity and intensity parameters 

appear to register relatively high values. For instance, consider at location R4 (Fig. 

5.7d), the case of the 1958 drought (one of the major droughts recorded by Australian 
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BoM) at T=12 months had an estimated severity metric of about -23.67 and an 

intensity metric of -2.65, and a duration period of about 12 months in accordance with 

droughts identified by the SPEI. The opposite trend is noted for a drought event with 

a shorter duration; for example, at location R4 the drought duration estimated to be 

about 3 months within the year 1979 had a severity metric of about -2.10 and an 

intensity metric of about -0.96. This relationship, however, is not likely to be perfectly 

proportional in terms of the magnitude of properties for some drought events that may 

be short-lived but very severe and intense. Therefore, a multivariate analysis of 

drought events (e.g., the use of copula-statistical models) could be a further step in 

developing a better understanding of the associations between the various drought 

properties.  

 

Figure 5.7: Annually accumulated drought duration (D), severity (S) and intensity (I) 

for: (a) R1, (b) R2, (c) R3 and (d) R4 at 3-, 6-, 9-, and 12-month timescales, 

respectively. Legend applies to all panels. 

 

In the sustainable management of water resources and for designing hydrologic 

systems (e.g., irrigation and water storage dams), an estimation of the drought return 
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period based on some certain threshold criteria can be very useful in practical 

applications. Using D-S-I properties of drought deduced from SPEI time series, the 

estimated return period of drought for given thresholds can be determined, as 

stipulated in Figure 5.8 for T=3 (first row) and T=12 (second row) months. It is evident 

in Fig 5.8a, for example, that for a given short-term drought severity of magnitude -

15.00, the estimated return period is expected to be about 70 years at R1, 10 years at 

R2 and R4 and 15 years at R3. This shows that a drought event with a severity of about 

-15.00 is likely to occur more frequently in location R2, R3 and R4 compared to the 

location R1. At T=12 months, droughts with a return period of 20 years have variable 

severity ranging from -45 to -35 in magnitudes between study regions.  

 

It is also revealed in Fig 5.8a and 5.8d that short- or long-term droughts at 

location R1 are much less severe compared to other regions that could be associated 

with its location-specific climatic conditions. On the other hand, a return period based 

on the peak drought intensity as a criterion (Fig. 5.8b and 5.8e) demonstrates that for 

an intensity of about -2.50 (i.e., extreme drought), the recurrence interval of the short-

term drought events can attain values between 5 and 25 years, while those of long-

term droughts vary from 18 to 105 years. The comparison also shows that the short-

term and long-term extreme droughts occur more often (i.e., lower recurrence interval) 

at locations R1 and R2, respectively than at R3 and R4. Taken together, it can be 

averred that the water resource availability is expected to be lower than the normal 

amount by at least 2.50 standard deviations of the climatological base period, so a 

design of hydrologic structures to withstand this event must consider the different 

recurrence intervals for the different case study sites.   

 

In the foregoing discussion, it is imperative to note that since drought duration 

is estimated in terms of integers (i.e., months), there can be many different return 

periods for the same duration, as shown in Fig. 5.8c and 5.8f for T=3 and T=12 months, 

respectively. For instance, at location R1, the drought event with an estimated duration 

of about 10 months had return periods ranging from 8-13 years. Therefore, the 

structural design for water storage media based on a certain drought duration must 

withstand the drought impacts by allowing the structures to last throughout the range 

of estimated years. Additionally, it can be noted that the less severe, less intense and 

short-lasting droughts are seen to occur more frequently as indicated by their small 
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return periods, i.e., less than 5-years in all case study regions. In general, the return 

period concept can illustrate the importance of each drought property, especially from 

the perspective of water resource management and in various decision-making tasks 

related to hydrological systems.  
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Figure 5.8: The drought return period based on severity (a, d), intensity (b, e) and duration (c, f) for 3-month (row 1) and 12-month (row 2) 

timescales. Legend applies to all panels. 
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Table 5.3 lists return periods based on the severity and intensity (for T=3 and 

T=12 months) properties of top 5 droughts (with largest magnitudes) return periods. 

Only at locations R3 and R4 the Millennium drought and the 1964-drought were most 

severe and most intense based on the short- and long-term drought assessment. The 

years of drought onset and the duration agree quite well with the worst drought 

observed in southeast Australia, including the WWII and Millennium drought events. 

Since drought characteristics vary from one climatic region to another, the most 

appropriate and suitable drought index is crucial to identify the differences, as 

demonstrated by the SPEI in this case study.  
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Table 5.2 Ranked drought events based on the severity and intensity of 3- and 12-month timescales. The top 5 events are listed here. The worst 

droughts are shown in boldface for each region. 

Drought 

Year 

Onset 

Month 

Severity 

(S)  

Intensity 

(I)  

Duration 
(D; 

Months)  

Return 

Period 

(Years)   

Drought 

Year 

Onset 

Month 

Severity 

(S)  

Intensity 

(I)  

Duration 
(D; 

Months)  

Return 

Period 

(Years)  

Based on Severity of T3  Based on Severity of T12 

R1      
 R1      

1968 4 -18.55 -2.44 13 103.06  2004 2 -56.09 -1.94 53 104.27 

1992 7 -13 -1.52 14 51.53  1917 4 -50.93 -2.84 48 52.13 

2013 9 -12.8 -2 11 34.35  2000 6 -46.09 -2.13 43 34.76 

1977 2 -12.72 -1.91 13 25.77  1977 2 -42.56 -1.93 48 26.07 

1985 12 -11.99 -2.61 10 20.61  1935 12 -34.94 -2.33 29 20.85 

R2      
 R2      

2005 9 -26.45 -2.14 27 103.23  1942 1 -83.76 -3.09 68 104.76 

1921 12 -23.26 -2.4 25 51.61  2012 12 -65.85 -2.26 49 52.38 

1918 10 -22.37 -2.26 20 34.41  1964 3 -49.34 -2.59 46 34.92 

1964 12 -20.8 -3.36 12 25.81  2005 1 -48.36 -2.27 37 26.19 

1945 10 -20.48 -2.45 16 20.65  1928 8 -42.85 -2.51 40 20.95 

R3      
 R3      

2006 1 -24.02 -2.01 21 103.06  2000 9 -114.85 -2.53 89 104.62 

2002 1 -21.63 -2.85 15 51.53  1991 2 -76.65 -1.92 63 52.31 

2004 5 -18.25 -2.64 17 34.35  2012 3 -48 -1.65 55 34.87 

1994 5 -17.82 -2 18 25.77  1935 4 -42.96 -1.77 58 26.15 

1925 10 -16.73 -2.51 15 20.61  1918 9 -37.25 -2.11 27 20.92 

R4      
 R4      



                                                                    Chapter 5 – Investigating Drought Properties using SPEI  

 108 

1964 12 -24 -4.03 20 103.17  2001 4 -102 -2.33 106 105.19 

1979 5 -23.1 -2.06 24 51.59  1957 4 -62.76 -2.65 69 52.59 

1928 2 -22.47 -2.02 24 34.39  1925 10 -62.46 -1.94 60 35.06 

1956 11 -21.94 -2.05 23 25.79  2012 12 -53.71 -1.9 45 26.3 

2012 9 -20.95 -2.39 18 20.63  1964 3 -42.32 -2.45 39 21.04 
      

 
      

Based on intensity for T3  Based on Intensity for T12 

R1      
 R1      

2002 9 -7.95 -4.03 7 4.29  1917 4 -50.93 -2.84 48 52.13 

1919 6 -10.99 -3.22 7 14.72  1968 6 -26.07 -2.69 21 14.9 

1953 5 -6 -3.17 5 3.22  1951 10 -22.07 -2.59 16 13.03 

1919 2 -4.95 -3.15 3 2.34  1935 12 -34.94 -2.33 29 20.85 

1951 4 -11.72 -3.04 9 17.18  1922 6 -33.63 -2.25 31 17.38 

R2      
 R2      

1964 12 -20.8 -3.36 12 25.81  2001 11 -37.24 -3.24 26 11.64 

1930 11 -7.26 -2.88 5 3.13  1942 1 -83.76 -3.09 68 104.76 

1984 12 -10.54 -2.82 8 5.16  1922 6 -35.7 -2.9 26 10.48 

1928 7 -14.24 -2.47 9 9.38  1918 10 -39.21 -2.73 27 13.09 

1945 10 -20.48 -2.45 16 20.65  1964 3 -49.34 -2.59 46 34.92 

R3      
 R3      

1957 10 -8.86 -2.9 5 5.73  2000 9 -114.85 -2.53 89 104.62 

1951 9 -11.97 -2.87 7 9.37  1915 2 -24.75 -2.12 21 10.46 

2002 1 -21.63 -2.85 15 51.53  1918 9 -37.25 -2.11 27 20.92 

1932 1 -5.34 -2.64 4 2.4  1951 10 -17.33 -2.06 15 7.47 

2004 5 -18.25 -2.64 17 34.35  1925 10 -24.96 -2.05 25 11.62 
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R4      
 R4      

1964 12 -24 -4.03 20 103.17  1957 4 -62.76 -2.65 69 52.59 

1986 2 -10.06 -3.45 5 5.43  1964 3 -42.32 -2.45 39 21.04 

2004 8 -11.83 -3.04 10 7.37  2001 4 -102 -2.33 106 105.19 

2002 3 -19.44 -2.96 13 17.2  1979 10 -34.93 -2.3 29 15.03 

1934 11 -8.06 -2.71 7 3.97  1943 12 -41.6 -2.11 46 17.53 
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To identify agricultural consequences (with multi-scalar effects of a drought) 

that can emanate from a meteorological drought event both on short and long periods, 

a multi-scalar index is considered more appropriate to assess the time-lagged 

associations between the meteorological (e.g., rainfall) and agricultural (i.e., soil 

moisture) parameters. Previous studies have shown how the different usable water 

sources respond to various timescales of a drought metric (e.g., (Szalai et al. 2000; 

Vicente-Serrano 2007; Vicente-Serrano et al. 2010; Vicente-Serrano and López-

Moreno 2005)). In this study, the SPEI on six different timescales with a view to 

validating the importance of this index for long-term assessment of drought have been 

analysed.  

 

Figure 5.9 shows the SPEI time series with precipitation data for T = 3, 6, 9 

and 12 months, each taken for a different study region (over the period 2004 to 2010 

spanning the partial Millennium drought). Evidently, the SPEI has been able to capture 

temporal variation in precipitation at various timescales, revealing its statistical ability 

for drought analyses at any timescale in consideration. Similar results are obtained for 

other timescales of each study region (not shown here). The multi-scalar SPEI has the 

advantage of showing that some months may not be in a drought condition on short 

timescales, whereas all years are under drought on longer timescales, as according to 

SPEI12 (Fig. 5.9d).  
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Figure 5.9: SPEI and precipitation (P) for different timescales taken for part of the 

Millennium Drought (2004-2010), for (a) 3, (b) 6, (c) 9, and (d) 12-month 

timescales, for locations R1, R2, R3 and R4, respectively. Legend applies to all 

panels. 

 

Evaluating the estimated frequency of drought in terms of its multi-scalar 

properties, via different drought classes can reveal important merits and practicality of 

a drought index. Estimation of how frequently a drought can occur in a given class is 

extremely useful for the assessment of the cumulative impact over various timescales. 

The relative frequency in different drought classes, i.e., moderate, severe and extreme, 

for different SPEI timescales are shown in Figure 5.10. Notably, the percentage of 

moderate drought events is relatively higher compared to the severe and extreme 

drought for all case study regions, although a distinct spread in the percentage of 

drought classes exist among the different timescales. For instance, in case study 
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location R1, the SPEI6 recorded the lowest percentage of extreme cases (2.12%) 

whereas SPEI1 recorded the highest number (3.35%).  

 

In contrast, at the location R4, the highest percentage of extreme drought has 

been recorded by SPEI24 (3.51%) and the lowest percentage by SPEI1 (0.82%), 

suggesting that the impact of drought on long-term water resources (including seasonal 

or annual cropping/agriculture) can be more serious than the other case study regions. 

The differences show the importance of drought assessment based on various 

timescales, which can be facilitated by the SPEI. It is thus conceived that SPEI can be 

considered as a powerful statistical metric for studying the different types of drought, 

their impacts, and in estimating their relative frequencies.   
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Figure 5.10: Drought class relative frequency for SPEI timescales (1, 3, 6, 9, 12, and 24 months) for (a) R1, (b) R2, (c) R3 and (d) R4. Legend 

applies to all panels. 
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Table 5.4 shows the highest ranked severity for each considered timescale. 

Consequently, the ranked drought events have been validated based on their 

corresponding soil moisture, precipitation, temperature and supply-demand balance. 

The drought properties according to their severity, intensity and duration are also 

shown. For the location R1, the SPEI1 captures the year 1951 drought event as a most 

severe case, with an estimated duration of 8 months and an intensity of -2.67. The 

SPEI3, however, captures the 1968 drought event, lasting for about 13 months with a 

severity of -18.55 and an intensity of -2.44 where both the SPEI1 and SPEI3 has soil 

moisture in their lower 20th percentile. Notably, the SPEI9, SPEI12 and SPEI24 data 

(i.e., long-term droughts) captured the Millennium Drought event as a severe case at 

locations R1, R3 and R4, where the soil moisture has been distributed within its lower 

(30th) percentile and supply-demand balance in deficit, which concurs well with an 

iconic drought event in Australia (Kiem 2013; Ummenhofer et al. 2009; Verdon‐Kidd 

and Kiem 2009).  

 

On a separate note, Table 5.4 also shows that the drought intensity for most 

severe events differs from the timescales into consideration. For instance, the most 

intense drought event with an estimated magnitude of -4.26 has been identified by the 

SPEI6 data within the 1918 period at location R1, whereas at location R2, the SPEI12 

data reveals the WWII drought (the year 1942) as the most intense drought period 

(magnitude -3.09). At location R3, however, the Millennium Drought event is evident 

as the most intense case, revealed by the SPEI9 data with an intensity = -2.57. 

Interestingly, of all the other case study regions, the location R4 has been exposed to 

very intense short-term drought event. In accordance with this, the 1964 drought 

exhibited an intensity of -4.03, as identified by SPEI3
 data. As also measured 

emphatically by the SPEI at many timescales in this case study, undoubtedly the 

Millennium drought is regarded as the exceptionally extreme event in Australia 

(Timbal and Fawcett 2013; van Dijk et al. 2013). In fact, Zhang et al. (2011) stated 

that the more extreme a drought event is, the more likely it is to cause societal or 

environmental damage. In accordance with the multi-scalar property of SPEI, the 

assessment of drought over short- and long-term periods is found to be particularly 

useful to yield information on various water policies. The table also reveals that the 

most severe drought does not necessarily need to be the most intense.
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Table 5.3 Top ranked most severe drought events estimated for each timescale. 

Timescales 

(months) 

Drought 

Year 

Onset 

Month 

Severity 
(S) 

Intensity 
(I) 

Duration 
(D; 

months) 
Precipitation 

(P; mm) 

Maximum 

Temperature 
(Tmax; oC) 

WRel1 

(fractional 
on [0 1]) 

WRelEnd 

(fractional 
on [0 1]) 

Climatic 

Water 

Balance 
(P-ETo; 

mm) 

Region: R1 

1 1951 7 -12.00 -2.67 8 27.51 26.06 0.12 0.14 -109.55 

3 1968 4 -18.55 -2.44 13 39.45 26.25 0.20 0.17 -85.48 

6 1918 5 -40.36 -4.26 28 48.84 25.37 0.24 0.21 -66.00 

9 2004 4 -47.38 -1.79 45 60.71 26.17 0.25 0.26 -58.14 

12 2004 2 -56.09 -1.94 53 68.98 26.32 0.27 0.27 -49.22 

24 2001 1 -138.00 -2.12 99 74.74 26.37 0.29 0.28 -45.57 

Region: R2 

1 1964 11 -15.10 -2.67 13 15.11 28.90 0.08 0.10 -143.30 

3 2005 9 -26.45 -2.14 27 27.60 28.96 0.13 0.12 -124.11 

6 1943 5 -50.80 -3.02 46 28.14 27.91 0.14 0.14 -117.82 

9 2012 11 -61.25 -2.55 46 30.53 28.74 0.13 0.14 -116.33 

12 1942 1 -83.76 -3.09 68 31.55 27.77 0.16 0.16 -110.46 

24 1926 8 -322.90 -2.32 262 34.80 28.03 0.17 0.16 -109.06 

Region: R3 

1 1991 3 -11.22 -1.65 9 15.87 23.70 0.10 0.11 -90.27 

3 2006 1 -24.02 -2.01 21 33.84 24.03 0.19 0.17 -73.51 

6 1992 10 -41.44 -2.05 38 46.52 24.37 0.22 0.21 -67.52 

9 2000 7 -109.29 -2.57 90 44.32 24.39 0.21 0.21 -68.39 

12 2000 9 -114.85 -2.53 89 46.20 24.54 0.22 0.21 -67.48 
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24 2001 3 -158.51 -2.11 117 46.42 24.07 0.23 0.23 -62.59 

Region: R4 

1 2002 3 -16.44 -2.44 11 1.65 31.24 0.03 0.02 -174.85 

3 1964 12 -24.00 -4.03 20 6.30 29.71 0.05 0.04 -160.70 

6 2012 9 -47.17 -3.97 47 15.61 31.42 0.09 0.08 -155.20 

9 2002 3 -90.45 -2.97 95 15.81 30.70 0.10 0.10 -152.38 

12 2001 4 -102.00 -2.33 106 16.10 30.58 0.10 0.10 -151.10 

24 2002 4 -131.39 -2.35 95 17.63 30.66 0.10 0.10 -149.84 
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In spite of the promising utility of the multi-scalar SPEI for a comprehensive 

drought assessment in SEQ region, this study has analysed the overall extent of 

drought events. However, the study of drought impacts certainly requires more 

extensive analyses of various impact assessment data, e.g., economic outlook, 

environmental impacts, etc. Also, the comparison of the SPEI with other existing 

drought indices could not be accommodated in this investigation, instead the precision 

of the SPEI has been validated against the major drought events recorded by Australian 

BoM. Moreover, every drought event tends to vary remarkably from another for the 

reasons of its influence by teleconnection through the large-scale climatic phenomena 

(e.g., ENSO, Indian Ocean Dipole, Southern Annular Mode, etc.). This study did not 

perform this investigation, hence creating space for a separate study to be undertaken 

in the future.  

 

As an added comparison, Taylor diagrams (Taylor 2001) providing a concise 

summary of how well patterns match each other in terms of their correlation, root mean 

squared error (RMS) difference and the ratio of their variances, is presented in Figure 

5.11 for R1. On the diagram, the red asterisk located on the abscissa is the correlation 

of the SPEI with itself, thus having a perfect coefficient of 1.00.  This diagram 

concisely summarises the increasing degree of the correspondence between SPEI and 

other drought variables (P, WRel1, WRel1End, Tmax, and ETo) at increasing SPEI 

timescales. Undoubtedly, the precipitation is seen to have the largest association with 

SPEI, as depicted by its location closer to the SPEI with a higher correlation coefficient 

value and smaller centred RMS difference (marked dashed curves) compared to other 

drought variables. Needless to say, the soil moisture (WRel1 and WRel1End) is seen 

to be the second most important variable to the precipitation in terms of higher 

correlation coefficient values. Therefore, as described earlier, the consideration of soil 

moisture in the assessment is pivotal in investigating the drought manifestation on the 

agricultural drought perspective.
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(a) T1       (b) T3 

  

   (c) T6      (d) T9 

  

   (e) T12      (f) T24 

  

 

Figure 5.11: Taylor diagram displaying comparison with monthly observation (SPEI 

– red) with precipitation (P), reference evapotranspiration (ETo), soil moisture 

(WRel1 and WRel1End), and maximum temperature (Tmax) for different timescales 

taken at location R1.   
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5.4 Conclusions 

Improved, robust and comprehensive drought monitoring metric (with the multi-

scalar ability for hydrological assessments) is essential for developing adaptation, 

mitigation and coping strategies for potentially changing drought patterns in the 

current climate-change era. For the first time, the utility of the SPEI has been explored 

to quantify drought events in the southeast Queensland, Australia. The objective index 

(SPEI) has been adopted to consider the effects of reference evapotranspiration on the 

drought severity as an essential tool that could allow the monitoring and management 

of key water resources over short- and long-term periods. Below are the primary 

findings of this case study: 

1. For all case study regions, the SPEI has successfully identified major, well-

documented, drought events in the drought-prone southeast Queensland 

region, concurring well with significant rainfall deficit periods as verified by 

rainfall anomalies and notable reductions in overall fraction of soil moisture; 

2. Based on SPEI≤0, this study has successfully detected the onset and 

termination periods of major and minor drought events. Evidently, the results 

have shown a significant difference in the number of drought events over the 

historical study period, with 96, 83, 96, and 87 at T=3 months, while 45, 37, 

39 and 32 at T=12 months in case study locations R1, R2, R3, and R4, 

respectively; 

3. Owing to the wide disparities of drought properties (D-S-I) between the four 

case study regions, the results have confirmed the practical benefit of the SPEI 

for the detailed quantification of its complex nature for different sites within 

the southeast Queensland region;  

4. The drought D-S-I properties in the present case study regions have exhibited 

a strong association between each other where the majority of drought cases 

with longer duration have also attained a higher severity and peak intensity. 

However, the drought events with a high peak intensity did not necessarily 

have high severity or long duration, because such events can be short-lived, 

yet, very acute in terms of the paucity of water resources relative to a 

climatological base period, demonstrating drought’s complex nature; 
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5. The water resource availability has been found to decrease from normal by at 

least 2.5 standard deviations (extreme droughts) more frequently at locations 

R1 and R2 on both short- and long-term drought assessments, indicating 

possible threats to agriculture and another water usage;   

6. In terms of agricultural drought implications, the SPEI has been found to 

correspond relatively well with soil moisture data; validating its utility for 

agricultural drought impact assessments. It is particularly noteworthy that the 

soil moisture status can take months to update and respond in terms of a 

drought status, according to the accumulated precipitation. Therefore, it is clear 

that the multi-scalar property of the SPEI can allow decision-makers to assess 

drought impacts over multiple timescales;  

7. The SPEI, analysed on longer timescales (i.e., 9, 12 and 24 months) on distinct 

climatic conditions, has been able to consistently detect, estimate and rank the 

severity of various drought classes that lasted for generally long periods based 

on the D-S-I properties, as exemplified by the case of the Millennium and 

WWII droughts.  

In summary, the investigation in this chapter has shown the efficacy of the SPEI as a 

robust drought metric possessing the multi-scalar ability for drought assessment that 

is useful for generating crucial information on droughts’ regional impact. The 

implications of this study meet the precise need for a robust methodology allowing 

hydrologists to assess both short- and long-term drought impacts, including an 

estimation of recurrence intervals based on severity, duration and intensity properties. 

Such information is of value to the design of hydrologic systems (e.g., dam and 

irrigation systems), and to foster the sustainable management of water resources and 

more resilient agricultural practices.  As this has been a pioneering work in case study 

regions, it has provided a sound basis for future research where multivariate joint 

relationships of drought properties (D-S-I) can be evaluated using statistical copula 

models on modelling the jointly correlated D-S-I properties. In addition, the 

comparison of SPEI with other drought indices (meteorological, hydrological and 

agricultural) on shorter timescales (1-month) could be another independent and a more 

in-depth study.  
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Note: 

The results from this chapter has been submitted to and is Under Review in the ASCE 

Journal of Hydrologic Engineering journal. The following is the tentative reference to 

the article: 

 

Dayal Kavina S., R. C. Deo and A. A. Apan, (2017) “Development of a copula -

statistical drought prediction model using the Standardised Precipitation-

Evapotranspiration Index”, ASCE Journal of Hydrologic Engineering , (Under 

Review). 

 

 

6.1 Introduction 

Chapter 5 has comprehensively discussed the suitability of SPEI for the 

characterisation of drought events. The drought properties derived in Chapter 5 are 

used in the current chapter to statistically assess the drought-risk in terms of joint return 

periods using copula models. The main contribution of this chapter is the development 

of probabilistic conditional prediction model to predict SPEI and drought properties 

(duration, severity and intensity). The conditional variables used are the climatic 
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indices (Niño4 SST, SOI and EMI). Using the bivariate and trivariate joint distribution 

function derived from copula, this chapter investigates the potential drought-risk in 

terms of joint and conditional return periods for two or three variables.  

Copula applications for modelling drought properties in Australia have been 

limited (Rauf and Zeephongsekul 2014; Wong 2013; Wong et al. 2009; Wong et al.  

2008). Copulae have been successfully applied for risk evaluation for several problems 

in hydrology and drought frequency analysis (e.g., (Ganguli and Reddy 2012; Reddy 

and Ganguli 2012; Shiau and Modarres 2009; Shiau 2006). With copula, we can derive 

joint distribution functions of climate mode indices and drought index (and properties 

D, S and I) and develop a probabilistic prediction model. The motivation for exploring 

and developing copula models for an adequate estimate of drought-risk is an 

interesting research endeavour in view of the plethora of hydrological applications.  In 

a very recent study, Nguyen-Huy et al. (2017) used vine copula model for the first time 

in Australia’s agro-ecological zones for probability-based seasonal rainfall predictions 

conditioned on SOI and IPO Tripole Mode Polar Index (TPI). That study had utilised 

vine copula for trivariate forecasting to yield a better accuracy than the bivariate model 

for the east and southeast agro-ecological zones. Importantly, the trivariate forecasting 

model was found to improve the forecasting of rainfall during the La Niña and negative 

TPI.  

Following the earlier study on drought risk monitoring (Dayal et al. 2018) i.e., 

Chapter 5 of this study, the temporal behaviour of SPEI has been investigated as an 

original contribution for identifying and modelling the drought properties by the means 

of developing bivariate and trivariate copula-based joint relationships. The specific 

objectives of the study in the current chapter, after the breakdown of the second major 

objective outlined in Section 1.3, are the following: (1) to compute SPEI, including 

the duration (D), severity (S) and intensity (I) properties of identified drought events, 

and to statistically fit the marginal distributions based on goodness-of-fit tests; (2) to 

evaluate the non-parametric correlations between SPEI (and D-S-I) in terms of an 

thirteen climatic mode indices and to screen the relevant indices for copula-statistical 

modelling; (3) to evaluate the potential utility of vine copulae and to deduce the 

optimum copula-statistical models for studying the bivariate and trivariate associations 

of SPEI and climate mode indices, D-S-I and climate model indices, and between D-

S-I properties; (4) to evaluate the utility of copula-based conditional models for 
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probabilistic prediction of SPEI and D-S-I parameters using the information of climate 

mode indices; and (5) to deduce conditional probabilities and joint return periods 

elucidating the importance of bivariate and trivariate copula models in drought-risk 

studies. It is especially noted that drought-risk studies through multivariate modelling 

and elucidation of its properties in respect to universal precursors (i.e., climate mode 

indices) are centrally important for agricultural water management, and decision-

making by farmers in south-east Queensland where drought is a considered a 

perpetuating risky phenomenon.        

 

6.2 Materials and Methods 

6.2.1 Theoretical background 

6.2.1.1 Copula Theory 

This study has adopted copulae to model the bivariate and trivariate joint behaviour of 

SPEI data and the identified drought properties with climate mode indices. The 

marginal distribution functions,  and  of any two correlated variables,  

and , is expressed by copula function, C using Sklar (1959) theorem as: 

 
 

(6.1) 

where  is the joint cumulative distribution function (CDF) of  and .  

Copulae are scale-invariant under strictly increasing transformations of  and , 

hence the  and  are transformed to [0 1]. This yields two uniformly distributed 

variables  and , where  and . In order to jointly model drought 

properties, a primal task is to construct a function  as a bivariate distribution 

function with a mapping such that . Similarly, three or more variables 

are formulated as: 

  (6.2) 

The and in any copula function,  must be monotonically increasing 

and therefore, satisfy (Sklar 1959): and . 

)(xFX )(yFY
X

Y

  ),()(),(),(, vuCyFxFCyxF YXYX 

),(, yxF YX X Y

X Y

X Y

u v )(xFu X )(yFv Y

 C

   1,01,0:
2
C

        nnnn uuCxFxFCxxF ,...,,...,,..., 1111 

u v  vuC ,

    0,0,00,  vCuC     vvCuuC  ,1,1,



                                                                                           Chapter 6 – Drought-risk Modelling using Copula  

 

 124 

A copula consists of a joint CDF by its definition, and their graphs are generally 

hard to interpret given that they are deduced as monotonically increasing functions. 

Because of this, plots of copula densities are typically used to illustrate distributions. 

Thus, if  is a continuous function, the bivariate copula density is defined as the 

double derivative of C with respect to its marginal distributions, expressed as: 

 
 

(6.3) 

where  is the respective bivariate copula density constructed using the variables X 

and Y.  

 This study uses Archimedean copula family, namely Clayton, Gumbel, and 

Frank copulae. Table 5.1 lists the mathematical expressions of bivariate Clayton, 

Gumbel and Frank copulae, where u and v are the uniform variables, and θ is the copula 

parameter.  The Archimedean family of copulae is popular in hydrological and 

agricultural applications because it includes multivariate extreme distributions that 

exhibit tail dependence and reasonable empirical fit to the hydrological data, e.g., 

(Serinaldi et al. 2009). The Archimedean symmetric one-parameter copula has the 

form: 

  (6.4) 

where φ is the unique generator of the copula and is the uniform random 

variable. The symmetric copula is restrictive to two variables only because the 

correlations between any pair of variables are identical. However, this assumption is 

unrealistic for many hydrological variables. To overcome this, an asymmetric copula 

is constructed by nesting symmetric copulae (Joe 1997), expressed:  

 
 

 

(6.5) 

In the case of three variables, the asymmetric Archimedean copula is given by: 
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where C2 describes the dependence between variables u1 and u2 and the outer copula 

C1 is a function of C2 and variable u3. This model assumes identical correlations 

between inner variables and outer variables, i.e., marginal copulae C1(u1,u3) and 

C2(u2,u3) are identical. Given the non-stationary nature of hydrological variables, any 

two pairs of variables will have different marginal copulae; therefore, a vine copula 

would be more suitable for constructing joint distributions of three or more variables.  

 

Table 6.1: Mathematical expressions for bivariate copula functions. 

Copula Generator Parameter 
Bivariate 

Copula 

Kendall’s 

tau (τ) 

Tail 

Dependence                                                                                                                                        

(lower, 

upper) 

Clayton      

Gumbel      

Frank  
-∞ < θ < ∞, 

θ≠0 
  

(0,0) 

 

Where:  and  

 

6.2.1.3 Vine Copula 

The vine copula, introduced in Joe (1996), is a graphical tool for describing 

multivariate, high-dimensional probability distributions through a cascade of bivariate 

copulae, so-called pair-copulae (Brechmann and Schepsmeier 2013). It uses the 

Markov trees to construct bivariate, pair-copulae. A vine copula decomposes a 

multivariate probability density into bivariate copulae where each pair-copula can be 

selected in an independent manner while allowing for an enormous flexibility in 

dependence modelling. The pair-copulae considers the asymmetries and tail 

dependence, as well as conditional independence to build models that are more 

parsimonious. The “statistical breakthrough” of vines was due to Aas et al. (2009) who 
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described statistical inference of vine into special classes of Canonical (C-) and D-vine 

functions. In the C-vine, the pair-copula for n variables can be constructed as (Bedford 

and Cooke 2002):  

 

 

(6.7) 

The vines arrange the pair-copulae of an n-dimensional pair-copula 

construction in linked trees. In C-vine , the dependence with respect to one 

particular variable (first root node, i.e., conditional variable) is modelled using 

bivariate copulae for each pair. Conditioned on this variable, the pairwise dependency 

with respect to a second variable is modelled to obtain a C-vine (second root 

node). For n-dimensional copula, the decomposition of multivariate density with root 

nodes is written as: 

 
 

(6.8) 

For three-dimensional copula model, this study adopts the recursive 

conditioning method, given as: 

 
 

(6.9) 

where the three-dimensional joint density is represented in terms of bivariate copulae 

and with densities and of pair-copulae, which can be 

independent of each other to achieve a wide range of dependence structures.  

The pair-copula requires construction of conditional distribution function,

 for an n-dimensional vector . For a pair-copula term in tree , the 

conditional distribution function can be established using pair-copula of previous trees 

and by sequentially applying the relationship given as (Brechmann and 

Schepsmeier 2013): 
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(6.10) 

where is an arbitrary component of and denotes -dimensional vector 

, excluding (Joe 1996).  

6.2.1.4 Conditional Prediction Model 

The construction of prediction model uses the inverse form of the conditiona l 

distribution functions (Chen et al. 2009; Liu et al. 2015). Given two random variables 

 for a case of the bivariate copula, the conditional distribution function,

, can be used to obtain based on the information of . For known probabilities, P 

on (0, 1), can be derived from the formula , where is 

the inverse of copula . The variable is then obtained by: 

  (6.11) 

where  is the inverse marginal of . Similarly, for a three-dimensional case, 

the random variable can be obtained based on the information of and . 

Following Eq. (6.11), is computed as: 

  (6.12) 

6.2.1.5 Joint Return Periods 

A common approach undertaken for the proper design of hydrologic systems (e.g., 

water storage dams and agricultural irrigation systems) is the frequency analysis of 

drought, including the estimated recurrence interval or the return period of hydrologic 

drought events (Shiau and Shen 2001). This is important to empower farmers and 

agricultural engineers in understanding the perpetuating risk of drought. The drought 

return periods, in particular, can provide useful information on the controlled use of 

water under drought conditions (Serinaldi et al. 2009). The return period of a drought 

event can be defined in terms of the mean elapsed time ( ) between the onsets of any 

two drought events (Shiau and Shen 2001).  
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The univariate return period for D, S and I, according to Shiau and Shen (2001), 

for a severity, ; duration, ; or intensity using the mean elapsed time  LE  

can be calculated as: 
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(6.13) 

The joint bivariate return period, according to Shiau (2006), can be calculated 

as either or , given as: 

 
 

(6.14) 

 
 

(6.15) 

where and are two random variables.  

Similarly, the joint trivariate return period can be defined as: 

 

 

(6.16) 

 

 

(6.17) 

In addition, drought return periods conditioned on the certain variable 

threshold is also useful for management of water resources. Shiau (2006) defined 

bivariate conditional drought return period as: 

 
 

(6.18) 

where is the conditional return period for given . The bivariate 

conditional return period of drought D, S, and I are calculated in this study where 

climate mode indices act as the conditioned variables.  
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6.2.2 Study area and data 

The case study area is a point-based location, R3, in the southeast Queensland (SEQ) 

region (Figure 6.1), Australia with the geographical coordinate (152.25°E, 28.25°S). 

This location has an elevation of 521m above sea-level and falls within the Murray-

Darling Basin, the hub for major agricultural activities. The Millennium Drought 

(1996-2010), the longest and most severe in the region, unveiled the vulnerability of 

SEQ’s water supplies. With 2.6% population growth per annum (1985-2015), SEQ is 

expected to experience a significant increase in the demand for water and the need for 

water management strategies in terms of the more efficient design of hydrologic 

systems (Seqwater 2015). The annual evaporation rate is expected to increase by 

almost 16% in the next 60 years due to the increasing concentration of greenhouse 

gases (Helfer et al. 2012). Considering the increase in evaporation rate and SEQ region 

is prone to frequent droughts, hydrologists and policy-makers must adopt statistical 

models that can provide probabilistic predictions of drought monitoring index and 

properties.   

 

Figure 6.1: Map of the study location R3. 

The monthly rainfall and reference evapotranspiration data are obtained from 

the SILO database for the period 1960 to 2016. The 13 different climate mode indices, 

i.e., Niño 3 SST, Niño 3.4 SST, Niño 4 SST, Southern Oscillation Index (SOI), Pacific 

Decadal Oscillation (PDO), Dipole Mode Index (DMI), El-Niño Modoki Index (EMI), 
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Southern Annular Mode (SAM), Trans Polar Index (TPI), Quasi-Biennial Oscillation 

(QBO), Western Pacific Index (WPI), Oceanic Niño Index (ONI), and Multivariate 

ENSO Index (MEI), were obtained from various sources, such as National Climate 

Prediction Center, British Antarctic Survey, JAMSTEC, and Bureau of Meteorology.  

6.2.2.1 Characterisation of Drought Properties  

In this chapter, the SPEI for drought analysis is employed that has been embraced 

recently for detecting drought onsets and terminations, drought ranking and recurrence 

evaluation (Dayal et al. 2018). Using total rainfall and the reference evapotranspiration 

data, the SPEI on a 3-month timescale is calculated for the present case study location. 

Since the SPEI is a standardised index, the value SPEI = 0 correspond to the mean 

(normal) with respect to the base period 1971-2000 (Deo et al. 2009), and the SPEI = 

±1 correspond to the standard deviation where the negative (positive) SPEI indicate  

dry (wet) condition. 

In accordance with the SPEI time series representing the deficits and surpluses 

of water resources relative to a well-defined base period, the drought onsets and 

terminations are then identified in periods when the SPEI declined to a value below 

zero (i.e., the standardised water deficit below the normal value). The drought duration 

D, S and I properties are thus identified from the SPEI time series via the widely 

adopted run-sum approach and enumerated using Equations (6.1-6.3). 

The study follows the rationale that a drought event that lasted for less than 3-

month duration, which is generally regarded as insufficient to impact the available 

water resources, has been ignored in this case study following the Australian BoM’s  

definition (i.e., a drought condition is declared when precipitation is below normal for 

consecutive three or more months) (Mpelasoka et al. 2008). Therefore, only the 

drought events with D ≥ 3 months are used in the analysis, following earlier studies 

(e.g., (Deo et al. 2009)).  

6.2.2.2 Copula-Statistical Model Development 

Before constructing the copula-statistical models, the significance of the correlation 

between SPEI and climate mode indices (CIs), and the D-S-I and climate mode indices 

(averaged for the corresponding duration of drought events) is evaluated. The non-

parametric Kendall’s τ and corresponding p-values at 95% confidence interval for 

SPEI, and 90% confidence interval for D, S and I drought properties are obtained in 
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order to test the hypothesis of no correlation against the alternative. That is, the p-

values < 0.05 (or 0.10) indicate a significant correlation between SPEI (or D, S and I) 

and CIs as shown in Table 6.2.  

Evidently, all CIs except the PDO, QBO, and WPI exhibited significant  

correlation with the SPEI time series data. Those CIs having smaller correlations with 

SPEI have been disregarded and consequently, the Niño 4 SST and SOI are selected 

for the drought analysis and prediction. The Niño 4 SST and SOI, with larger 

correlation values (i.e., -0.22 and 0.20, respectively), are used to assess ENSO 

independently whereby the Niño 4 SST is solely based on sea-surface temperature 

while SOI on pressure (difference between pressure at Tahiti (149.6˚W, 17.5˚S) and 

Darwin (130.9˚E, 12.4˚S)). The warm phase of ENSO, i.e., El-Niño, is known to 

influence (enhance) drought conditions in Australia e.g., (van Dijk et al. 2013; Wong 

2013; Wong et al. 2008), therefore probability-based statistical prediction of drought 

properties based on ENSO indicators are expected to provide useful information for 

water resource management.  

In the case of drought properties, the Niño 4 SST for Duration, and EMI for 

Severity and Intensity have been selected based on the indicating p-values for 

significant correlations. The Niño 4 SST has a significant correlation with the drought 

duration (0.22), while the EMI has a significant correlation with the severity (-0.20) 

and intensity (-0.20) of drought events. The joint behaviour of drought properties based 

on Niño 4 SST and EMI, which can aid in better management of agricultural systems, 

(including irrigations and dams) is likely to be beneficial for the prediction of drought 

properties, given their reasonably acceptable statistical dependencies. 

 

Table 6.2: Kendall’s tau (τ) and an associated p-value of the SPEI, and drought 

severity, duration and intensity with 13 climate mode indices. Statistically significant 

correlations are in bold italics and selected for the study are in bold red italics. 

 SPEI Severity Duration Intensity 

Climate 

mode 

indices 

τ p-value τ p-value τ p-value τ p-value 

Niño3 -0.0760 0.0029 0.0889 0.4565 -0.0795 0.5181 0.0000 1.0000 

Niño3.4 -0.1501 4.37E-09 0.0476 0.6949 -0.0331 0.7939 0.0349 0.7764 
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Niño4 -0.2247 1.57E-18 -0.1714 0.1459 0.2221 0.0675 -0.1206 0.3094 

SOI 0.2050 1.07E-15 0.0636 0.5952 -0.1046 0.3939 0.0541 0.6530 

PDO -0.0355 0.1648 -0.0095 0.9461 0.0630 0.6110 -0.0349 0.7764 

DMI -0.0986 0.0002 0.0317 0.7973 0.0331 0.7939 0.1841 0.1177 

EMI -0.2145 4.70E-17 -0.1968 0.0940 0.1723 0.1567 -0.2032 0.0836 

SAM 0.0991 0.0001 0.0635 0.5978 -0.0166 0.9015 0.1905 0.1054 

TPI 0.0881 0.0007 0.0487 0.6930 0.0070 0.9657 0.0017 1.0000 

QBO -0.0177 0.4897 0.0984 0.4088 -0.1061 0.3864 0.0032 0.9892 

WPI -0.0050 0.8451 0.0317 0.7973 -0.0762 0.5361 -0.0571 0.6359 

ONI -0.1845 5.54E-13 -0.0381 0.7558 0.0696 0.5730 -0.1079 0.3641 

MEI -0.1818 1.15E-12 -0.0857 0.4731 0.1094 0.3715 -0.0921 0.4403 

Note: Significance test of SPEI at 95% confidence interval while Severity, Duration 

and Intensity at 90% confidence interval. 

 

 

6.2.2.3 Selection of Marginal Distributions  

Since copula functions are able to join the marginal distributions of multivariate data 

to construct a joint distribution function, the foremost task is to fit an appropriate  

marginal distribution to each drought-related variable. The suitable marginal 

distribution of SPEI, Niño 4 SST and SOI for the monthly data from 1960 to 2016, as 

well as for the D, S, I, Niño 4 SST and EMI for all drought cases are determined. For 

an accurate estimation, several distributions defined by the extreme value, Gamma, 

generalized extreme value (GEV), Logistic, Log-logistic, Log-normal, Nakagami, 

normal, Rician, exponential, and Weibull equations are evaluated based on the 

maximum likelihood method. The statistical significance is determined by p-values 

based on the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) test statistics. 

This considered the null hypothesis that variables are not from the assumed distribution 

against the alternative hypothesis that they are. That is, the larger the p-value, the more 

suitable fit the distribution is to the variable. Table 6.3 lists the selected marginal 

distributions, parameters and corresponding p-values for the variables used in the 

analysis.  
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Table 6.3: Marginal distribution parameters and p-values of observed variables. 

Variable Distribution Parameters 
KS p-

value 

AD p-

value 

For Monthly Data from 1960 to 2016 

SPEI GEV 
k= -0.2312, σ= 0.9697, 
µ= -0.5228 

0.8288 0.8987 

Niño4 
SST 

Weibull a= 52.1350,  b= 28.7875 0.5337 0.4622 

SOI Logistic µ= -0.4517, σ= 5.2521 0.9528 0.8160 

For Drought Case Only 

Duration Log Logistic µ= 0.3145, σ= 1.7105 0.2338 0.2750 

Severity GEV 
k= 0.3909, σ= 2.5901, 
µ= 3.1580 

0.9695 0.9940 

Intensity GEV 
k= -0.1927, σ= 0.5662, 
µ= 1.1355 

0.9897 0.9989 

EMI GEV 
k= -0.3997, σ= 0.4466, 
µ= -0.0798 

0.3697 0.7620 

Niño4 
SST 

Weibull a= 55.9410, b= 28.8905 0.8495 0.9046 

Mathematical equations of marginal distribution, KS and AD test: 

GEV: ,   

Weibull: ,  

Logistic: ,               
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Log Logistic: , 

, 

 

 

6.2.2.4 Selection of Copulae  

For any random variable with continuous marginal, the copula requires the variable to 

be uniformly distributed. The pseudo-observation values are then produced for each 

variable, transformed on [0,1] interval. Subsequently, the BiCopSelect function from 

‘VineCopula’ library in the statistical “R” software is applied to the transformed 

variables to construct the appropriate bivariate copula functions in order to model the 

joint relationships of SPEI with CIs and drought properties with CIs. The BiCopSelect 

function investigates a rich variety of copulae and returns the most appropriate copula 

function based on the selection criteria.  

During the selection of the copulae, statistical validation is undertaken using 

AIC, BIC and log-likelihood, where the copula that yielded the minimum (largest) 

value of AIC and BIC (log-likelihood) at significance level  = 0.05 is selected. Table 

6.4 (a-c) lists the selected bivariate and trivariate copula statistics where C-vine is used 

for trivariate conditional copula selection. Note that transforming the variables on [0, 

1] interval does not affect the correlation between variables, i.e., the observed and 

copula generated Kendall’s τ values are similar.  

 
 

(6.19) 

 
 

(6.20) 

 
 

(6.21) 

The params are the parameters of the marginal distribution of X and Y variables.  
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The three different sets of copula-drought analysis are carried out: (1) bi- and 

the trivariate copula of SPEI with CIs, (2) bivariate copula of drought properties with 

CIs, and (3) bi- and trivariate copula of drought properties. Table 6.4 lists the copula 

parameters and corresponding goodness of fit measures for each set of analysis. Since 

SPEI, SOI and EMI are all standardised indices that represent drought and synoptic -

scale climate patterns where the values of these can range from being positive to 

negative, the Frank copula is found to be the most appropriate fit mainly because of its 

properties related to radial symmetry (Nelsen 1999).
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Table 6.4: Copula parameters and goodness-of-fit measures of the fitted copula models. 

(a)    For SPEI with CIs 

 Copula Par 

*Kendall’s 

tau 

Kendall's 

tau 

Upper 

TD 

Lower 

TD 
LogLik AIC BIC 

Bivariate Model 
C(uspei, unino4) Frank -2.34 -0.25 -0.25 N/A N/A 47.36 -92.72 -88.19 
C(uspei, usoi) Gumbel 1.29 0.24 0.23 0.29 N/A 51 -99.99 -95.46 

C(unino4, usoi) Frank -7.85 -0.6 -0.6 N/A N/A 331.07 -660.14 -655.61 
Trivariate Model 

C(unino4, usoi|uspei) Frank -6.79 - -0.55 N/A N/A 372.49 -738.98 -725.39 

*Kendall’s tau of observed data 

(b)   For drought properties with CIs 

  Copula Par 

*Kendall's 

tau 

Kendall's 

tau 

Upper 

TD 

Lower 

TD 
LogLik AIC BIC 

Bivariate Model 

C(u1, u2) Clayton 0.65 0.1723 0.25 N/A 0.35 2.53 -3.06 -1.48 
C(u3, u5) Frank 1.89 0.1968 0.2 N/A N/A 1.56 -1.13 0.45 
C(u4, u5) Frank 2.02 0.2032 0.22 N/A N/A 1.81 -1.62 -0.04 

Note  – u1: uniform Duration; u2: uniform Niño4 SST; u3: uniform Severity; u4: uniform Intensity; u5: uniform EMI 

*Kendall’s tau of observed data 

 

(c)     For drought properties 

  Copula Par 

*Kendall's 

tau 

Kendall's 

tau 

Upper 

TD 

Lower 

TD 
LogLik AIC BIC 

Bivariate 
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C(ud, us) Gumbel 4.36 0.81 0.77 0.83 N/A 35.81 -69.63 -68.04 

C(ud, ui) Frank 4.87 0.47 0.45 N/A N/A 8.45 -14.89 -13.31 

C(us, ui) Clayton 2.74 0.61 0.58 N/A 0.78 18.86 -35.72 -34.13 

Trivariate 

C(us,ud|ui) Frank 8.90 - 0.63 N/A N/A 47.99 -89.99 -85.24 

*Kendall’s tau of observed data. 
Note  - TD: tail-dependence; LogLik: Log-likelihood; AIC: Akaike Information Criterion; BIC: Bayesian Information Criteria.
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6.2.2.5 Dependence Modelling  

A potential avenue to validate the dependence structure of bivariate copula models is 

a Chi-plot proposed by Fisher and Switzer (1985). Chi-plot is based on two types of 

statistics: Chi-statistic, and Lambda-statistic, viz (Genest and Favre 2007): 

 
 

(6.22) 

  (6.23) 

where is the set of observations for , and , and are the 

empirical distribution functions of the uniform random variables and , and 

and .  

In accordance with Eqs. (6.22 & 6.23), is adapted to estimate the distance 

between bivariate data points  and the median of the dataset while the

corresponds to a correlation coefficient between dichotomised values of and . 

Thus, a positive means that both and are large relative to their respective 

medians, or both small whereas, a negative corresponds to and being on opposite 

sides of their respective medians. Asymptotically,  and 

under the condition of independence where a value of close to zero can indicate that 

the properties and are independent of each other, i.e., . When there is 

a positive dependence margin between the properties, the pairs of tend to be 

located above the confidence band and vice versa for negative dependent margins 

while the points enclosed within the confidence band can indicate independence of the 

bivariate pair of the drought properties.  

To further establish the statistical fitness of the bivariate joint dependence 

structure, the K-plot (also known as Lambda plot), which is a rank-based graphics tool 

for visualising the dependence structure between two associated variables (Genest and 

Boies 2003), is prepared. For any observation pair , where , the K-plot 
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is able to consider the two bivariate quantities that comprise of: firstly the ordered 

values of the empirical bivariate distribution function  and secondly, 

the quantity that shows the expected values of the order statistics from a random 

sample of size of random variable, . Under the null hypothesis of 

independence between the bivariate pairs and , this is written as (Genest and Favre 

2007):  

 
 

(6.24) 

where  and is the corresponding copula density.  

A plausible physical interpretation of the K-plot is that, if the datum points in 

the distribution lie on the diagonal, then the X and Y are independent of each other, 

whereas any deviation from this line is expected to indicate significant dependence. 

Importantly, when there is a positive dependence between bivariate properties, datum 

points are expected to lie above the diagonal, and vice versa for the negative 

dependence. Also, the degree of positive dependency between the drought-risk 

properties is likely to be strongest when the datum points  are situated on the 

curve , above the diagonal  line and the perfect negative dependence 

between X and Y exist when the points  lie on the x-axis (Schirmacher and 

Schirmacher 2008).  

The joint variables X and Y can be related in terms of their extremes (i.e., 

minimum and maximum) values, whereby the tail-dependence notion is expected to 

relate to their amount of dependence in the upper-right or lower-left quadrant tail of 

the bivariate joint distribution. The interpretation of upper (lower) tail-dependence 

parameter is that the probability of one margin exceeds a high (low) threshold under 

the condition where the other margin exceeds a high (low) (Poulin et al. 2007). The 

formulae for the upper and lower tail dependence parameters are (Joe 1997): 
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6.3 Results and Discussion 

6.3.1 Applications on SPEI and climate mode indices 

A random sample of 250 datum points is simulated to yield the Chi-plot of the SPEI 

versus the Niño 4 SST (Fig. 6.2a) and the SPEI versus the SOI data (Fig. 6.2c). There 

exists a strong positive dependence since most of the simulated datum points are 

situated outside the confidence band of 0.1. Notwithstanding this, it is important that 

for the bivariate case of Niño 4 SST and SPEI joint behaviours, almost all of the 

simulated datum points are situated outside this confidence band, and that the 

magnitude of is significantly large, indicating very strong joint dependence. In fact, 

the Chi-plot shows a bent course with the Chi-values concentrated around the zero 

mark of , confirming that the dependency is strong around the median of the 

distribution than around the tails. In contrast, the bivariate combinations of the SPEI 

and SOI data (Fig. 6.2c) shows strong dependence around the median while a weak 

dependence around the tail ends of the plot.  

Figure 6.2 (b, d) shows the K-plot for bivariate joint distributions of Niño 4 

SST and SPEI, and SOI and SPEI using the simulated sample of 250 random points. 

It is evident that the lower tailed bivariate pair of data points appear to be independent, 

as the points lie closer to the diagonal line , while the higher values indicate 

stronger negative (positive) dependence between the Niño 4 SST and SPEI (SPEI and 

SOI).  

i

i

xy 
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Figure 6.2: Chi-plots with “confidence band at  = 0.1 (dashed lines) for SPEI with 

(a) Niño 4 SST and (c) SOI. K-plots with the straight line (y = x) and a smooth curve

 for (b) Niño 4 SST and (d) SOI joint distribution.   

 

To address the limitations posed by the different marginal distributions, copula 

parameters from the selected bivariate and trivariate copula functions are applied to 

simulate margins of 2,000 random pairs of  and  that are then 

back-transformed to their original units using their respective inverse marginal 

distributions. Figures 6.3a and 6.3b show the observed versus simulated SPEI and 

Niño 4 SST, and the SPEI and SOI, respectively. The black solid lines separate the El-

Niño (SOI < -7.0) and La-Niña phases (SOI > 7.0) while everything in between 

correspond to neutral ENSO conditions. The observed values in the scatter plot clearly 

overlap the simulated samples.  

Figure 6.3c and 6.3d shows the joint probabilistic predictions, expressed via 

the conditional bivariate and the conditional trivariate copula, respectively. In order to 

address the stochastic nature of drought and uncertainty in its predictions, the copula -

statistical model is applied to generate an ensemble of 1,000 predictions that are then 

averaged to obtain a single set of predictions with the same length (or a number of 

datum points) as observed time series particularly for comparison purposes. The blue 

(red) scatters are the predicted SPEI for the random probabilities using features 

 0K

 speinino uu ,4  speisoi uu ,



                                                                                           Chapter 6 – Drought-risk Modelling using Copula  

 

 142 

available from the SOI (Niño 4 SST) as shown in Figure 6.3c based on their respective 

bivariate copula functions.  

Using the trivariate Frank copula, the SPEI data is also predicted conditioned 

on the Niño 4 SST and SOI data shown in Figure 6.3d.  Notice that observed and the 

predicted values do not form a linear relationship (which are not expected to) since the 

predictions are made for any random probability of the event. Note that in context of 

the present investigation, the simulations and predictions differ from each other. That 

is, in the simulation process, all variables are randomly generated at the same time 

using the optimal copula parameters. Conversely, the predictions are conditiona l 

where one variable is then evaluated at a certain probability based on the information 

available from the other variable(s), which in fact, may assist decision-makers in 

predicting the overall risk of the drought event. It is important to note that the copula-

statistical models are able to predict the SPEI data directly based on the information 

derived from the Niño 4 SST and the SOI data, which act as synoptic-scale precursors 

of drought events.  
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Figure 6.3: Observed vs. 2,000 random simulated SPEI samples (a, b). Scatter plot of observed versus predicted SPEI given information of Niño 

4 SST and EMI using bivariate (c) Frank (for Niño 4 SST; red) and Gumbel (for SOI; blue) copula and using trivariate (d) Frank copula given 

combined information of Niño SST and SOI.
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Table 6.5 provides a comparison of the basic statistics of the data representing 

the observed and the predicted SPEI. Importantly, these results show relatively small 

differences between the observed and the predicted SPEI statistics. The absolute 

difference in the mean value of the trivariate copula-based prediction is slightly larger 

(0.0161) compared to the bivariate copula-based predictions (0.0045 and 0.0008). 

The root mean squared error (RMSE) computed between the observed and predicted 

SPEI is also slightly larger (1.5990) in the trivariate copula-based prediction case 

compared to approximately 1.3742 and 1.3545 from the bivariate copula model 

predictions. The prediction errors of SPEI using copula-statistical model are generally 

small, suggesting that the conditional probability bivariate or trivariate copula-based 

predictions have good accuracy and are potentially suitable for application in 

prediction modelling.  
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Table 6.5: Comparison statistics for observed and predicted SPEI for bivariate and trivariate joint copula models. 

Conditional 

Variable  
Minimum 

1st 

Quartile 
Median Mean 

3rd 

Quartile 
Maximum ADmean ADmedian 

N/A -2.8490 -0.8938 -0.2018 -0.1459 0.5683 2.8930 - - 

Niño4  -2.5170 -0.7791 -0.1797 -0.1504 0.4576 2.7430 0.0045 0.0221 

SOI -2.5230 -0.7492 -0.1399 -0.1451 0.4921 2.5130 0.0008 0.0619 

[Niño4, SOI] -2.9470 -0.8326 -0.1543 -0.1620 0.4869 2.4540 0.0161 0.0475 

AD: Absolute Difference 
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 The Figures 6.4 and 6.5 show the conditional probability of the SPEI 

occurrence expressed via the joint probabilistic bivariate and trivariate copula models, 

respectively. The negative SPEI indicate the drought conditions given in terms of their 

standard deviations. In Figure 6.4a, conditional on negative SOI values, the probabilit y 

of obtaining a negative SPEI corresponding to drought conditions is higher in contrast 

to obtaining a lower probability with positive SOI values. For instance, in order to 

obtain a SPEI = -2.0 (i.e., when the normalised deficit in water resources are below 

two standard deviations relative to the comparative base period), the probability is 

found to be ~0.98 with conditional SOI = -25.0, whereas when the SOI = 25.0, the 

probability is ~0.57. Similarly, the probability of obtaining negative SPEI conditiona l 

on the Niño 4 SST data is higher with a larger Niño 4 SST value, as shown in Figure 

6.4b. For instance, in order to obtain SPEI = -1, the probability is found to be ~0.98 

(~0.88) with Niño 4 SST = 30˚C (27˚C). Similarly, Figure 6.5 shows probabilit y 

distribution of SPEI conditional on Niño 4 SST and SOI simultaneously.  
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Figure 6.4: Conditional probability distribution of SPEI given SOI and Niño 4 SST values using bivariate Gumbel (a) and Frank (b) copula. The 

Niño 4 SST’ is in degrees Celsius. 
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Figure 6.5: Conditional probability distribution of SPEI different Niño 4 SST (˚C) and SOI values using trivariate Frank copula. Legend applies 

to all panels. 
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6.3.2 Applications on drought properties and climate mode indices 

The drought properties represented as D, S and I are also modelled with climate mode 

indices using the optimal copulae developed in this study. The selected bivariate 

copula for D and Niño 4 SST is Clayton while for S and EMI, and I and EMI are Frank. 

Using copula parameters, random values for D, S and I and their corresponding CI are 

simulated and predicted, as shown in Fig. 6.6.  The comparison statistics between 

observed and predicted D, S and I are given in Table 6.6. The absolute difference in 

mean (ADmean) is the smallest for the prediction of drought intensity, followed by the 

drought duration and drought severity. Since the information of EMI is used to predict 

both the intensity and the severity, and both use bivariate Frank copula, the smaller 

ADmean for intensity could be due to the larger Frank copula parameter (θ = 2.02). The 

larger copula parameter indicates a higher dependence between the bivariate pair of 

variables. Importantly, the RMSE is also found to be the smallest for prediction of 

intensity.  
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Figure 6.6: Comparison of observed data with 2,000 random samples (a, b, c) simulated from Clayton (a, b) and Frank (c) copula. Scatter plot of 

observed versus predicted duration (d), severity (e) and intensity (f) given information of Niño 4 SST (d) and EMI (e, f).



                                                                                           Chapter 6 – Drought-risk Modelling using Copula  

 

 151 

 

 

Table 6.6: Comparison statistics for observed and predicted duration, and intensity from the bivariate copula models. 

  Minimum 
1st 

Quartile 
Median Mean 

3rd 

Quartile 
Maximum ADmean ADmedian 

Observed 3 5 6 8 10 21 - - 

Predicted 1.8380 4.0570 6.0170 6.1930 6.9100 16.7500 1.8073 0.0167 

Observed 1.9450 3.7840 6.2840 7.8760 9.6080 24.0200 - - 

Predicted 0.9066 2.2670 4.8740 5.7090 7.2210 28.1900 2.1670 1.4091 

Observed 1.0200 1.3070 1.6230 1.6830 1.9090 2.8490 - - 

Predicted 0.4731 0.9193 1.3880 1.3620 1.6560 2.6970 0.3209 0.2354 

AD: Absolute Difference
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An estimation of drought return period, which represents how often a drought 

is likely to occur (and hence, is closely linked to drought-risk on agriculture and water 

resources), is an important quantity in drought studies. Since every drought is different 

with the general notion that some events may persist as long drought episodes, an 

estimate of return period is crucial for designing hydraulic facilities (e.g., dams and 

irrigation systems). In this case study, the average inter-arrival time (i.e., EL) between 

drought events is found to be approximately 13.53 months. Figure 6.7 shows the 

isopleths of the bivariate joint return period for the ‘AND’ (a, c, e) and ‘OR’ (b, d, f) 

cases of drought properties. The contours show the return periods (in years) for given 

drought properties and CIs. Notice that the isopleth patterns for the ‘AND’ and the 

‘OR’ cases are unique because those for the various joint return periods defined by the 

‘AND’ case are bounded by horizontal (x) and vertical (y) axes, whereas there is no 

bound for isopleths for the specific return periods defined by the “OR” case.  

The return periods using two bivariate (‘AND’ and ‘OR’) cases also differ 

markedly. Take for instance; for D versus Niño 4 SST joint pair (Fig. 6.7a, b), for any 

particular value of D and the corresponding Niño 4 SST, the estimated return period 

is less than the return period. In fact, for the ‘AND’ case, the isopleths 

representing a given bivariate D and Niño 4 SST, I and EMI, and S and EMI, the joint 

pairs are situated over a much larger return period. For example, an estimated duration 

of 10 months and Niño 4 SST of 29˚C, the ‘OR’ case yields a return period of ~3 years 

(Fig. 6.7b), whereas the respective bivariate equivalent return period, i.e., ‘AND’ case, 

registers about ~20 years (Fig. 6.7a). Similarly, the bivariate return periods of severity 

and intensity with EMI for ‘AND’ and ‘OR’ cases are shown. The return period values 

using ‘AND’ case suggest that for any drought event with specific thresholds of D, S, 

I and CIs to occur simultaneously will have larger return periods as such events are 

relatively rare compared to when each variable is analysed separately using ‘OR’ case.  

ORT ANDT
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Figure 6.7: Bivariate drought return period for ‘AND’ and ‘OR’ case for the duration (a, b) using Gumbel, severity (c, d) using Frank and 

intensity (e, f) using Clayton copula. 
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 The bivariate conditional return periods of D, S and I have been calculated (Fig. 

6.8). The results show an increase in the return period as conditioned variable value 

increases. For instance, the return periods to obtain a drought event with a duration, D 

= 20 months under Niño 4 SST conditions (27˚C, 28˚C, and 29˚C) are 69.94, 85.33 

and 544.82 years, respectively (Fig. 6.8a). Similarly, the return periods for severity, S 

= 10.0 (and Intensity, I = 2.0) under EMI conditions (0, 0.2, 0.4 and 0.6) are 17.81 

(17.46), 33.90 (33.01), 94.52 (91.46) and 493.18 (475.01) years, respectively, (Fig. 

6.8b, 6.8c). This shows that as the magnitude of ENSO indicators shift towards their 

extreme values, in the direction of enhancing the drought conditions, the return period 

of drought properties increase as well, suggesting the rarity of such extreme events. 

The results thus reveal the importance of jointly modelling the drought properties to 

encapsulate the true associative behaviour of drought properties with climate mode 

indices and how they manifest to produce an overall drought-risk in agricultural 

systems.  
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Figure 6.8: Conditional return period of drought (a) duration, (b) severity and (c) intensity. 
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6.3.3 Applications on drought properties 

Many previous studies have shown the interrelation between droughts D, S and I 

properties. For agriculture and water management, estimates of return period of a given 

drought event are crucial. As such, using the marginal and joint probabilities, the 

univariate, bivariate and trivariate return periods are also calculated. Table 6.7 lists the 

marginal probabilities, univariate, bivariate and trivariate return periods. The physical 

interpretation of this plot is greatly important for understanding the pertinent drought-

risk. Take for instance a D = 10.22 months, the univariate return period is 5 years, 

whereas the joint bivariate return period with S (or I) for ‘AND’ case is 5.87 (or 17.69) 

years and for ‘OR’ case it is 4.36 (or 2.91) years. Similarly, when all three variables 

are combined, the joint return period using trivariate model for ‘AND’ (or ‘OR’) case 

is 31.25 (or 3.33) years. The dramatic difference between the bivariate (and trivariate) 

return period compared with univariate counterpart clearly outlays the significance of 

considering the joint behaviour of different properties to avoid an underestimation of 

the overall risk posed by a given drought event. Although univariate return period is 

somewhat limited in its ability to represent the joint behaviour of more than one 

drought property, it is nonetheless important for drought-risk assessment when one 

random variable (e.g., duration) is considered relevant over the others. 

The data in Table 6.7 shows that the univariate return period is less than the joint return 

period TAND and larger than TOR. The trivariate TOR is less than both univariate and 

bivariate ones. This is because adding one or more variables in the drought prediction 

model makes the exceedance probabilities  smaller than two 

bivariate  or a univariate  case. This is evident across the 

rows where the marginal probabilities appear to be decreasing from the univariate to 

the trivariate models. 

 332211 ,, xXxXxXP 

 2211 , xXxXP   11 xXP 
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Table 6.7: Univariate and copula-based joint return periods of drought duration, severity and intensity.  is the marginal probability. 

   
Univariate Model 

   
Bivariate Model 

    
Trivariate Model 

  
T F(x) Dd Ss Ii F(d,s) TAND TOR F(d,i) TAND TOR F(s,i) TAND TOR F(d,s,i) TAND TOR 

5 0.77 10.22 9.96 2.00 0.74 5.87 4.36 0.61 9.25 2.91 0.67 9.52 3.39 0.66 11.97 3.33 

10 0.89 14.54 16.27 2.26 0.87 11.91 8.62 0.79 27.69 5.41 0.81 30.95 5.96 0.80 29.49 5.51 

20 0.94 17.34 19.40 2.62 0.93 24.00 17.14 0.89 91.77 10.41 0.90 109.42 11.01 0.88 50.83 9.26 

50 0.98 20.34 23.50 2.80 0.97 60.24 42.73 0.96 501.06 25.41 0.96 629.47 26.03 0.94 90.13 19.64 

100 0.99 21.00 24.02 2.85 0.99 120.65 85.38 0.98 1906.29 50.41 0.98 2444.97 51.04 0.97 150.67 36.48 

 F
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6.4 Further Discussion 

This case study has explored and developed a probabilistic drought prediction model 

using Archimedean copulae (i.e., Clayton, Gumbel and Frank) which has never been 

applied for drought-risk modelling in the drought-prone SEQ region. It, therefore, 

represents an important advancement in terms of potential applications for agriculture, 

water management and related socio-economic sectors where drought presents a 

significant risk. The need for drought-risk assessment in a non-stationary climate has 

been emphasised in many studies, e.g., (Mpelasoka et al. 2008; Verdon-Kidd and Kiem 

2010) and in recent studies, copula models have been adopted to illustrate the 

dependence structure of drought properties under different ENSO conditions, e.g., 

(Ganguli and Reddy 2014; Wong et al. 2009). The study of Wong et al. (2009) in New 

South Wales Australia provided a strong evidence of dependence between drought 

duration, intensity and severity under different ENSO conditions using Elliptical and 

Archimedean copulae. To further the investigation, three popular in hydrology, 

Archimedean copulae have been adopted to successfully derive joint distributions of 

SPEI drought index and duration, severity and intensity properties with ENSO climate 

mode indices, prior to developing the probabilistic prediction models. The 

probabilistic prediction is considered as an essential tenet for a number of end-users 

like water resource managers and farmers to develop management strategies for 

informed decision-making (Goddard et al. 2001).  

It is imperative to mention that this is the first study to investigate series of 

climate mode indices to produce a conditional probabilistic prediction of the drought 

index SPEI and drought properties (duration, severity and intensity) in Australia. The 

SPEI is a relatively new drought index that, in addition to precipitation, uses potential 

evapotranspiration in determining drought conditions. The incorporation of potential 

evapotranspiration in the equation allows the index to capture the increased 

temperature impact on water demand (Vicente-Serrano et al. 2010) and while 

Australia’s drought is often influenced by warming and cooling phases of ENSO, the 

choice of SPEI justifies the drought-risk assessment in this case study. The application 

of copula and SPEI in recent investigations have demonstrated the significance of SPEI 

for drought-risk assessments in China (Chen et al. 2016; Fan et al. 2017) and the 
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outcomes in this case study have highlighted the suitability of SPEI and copula-based 

drought modelling for Australian droughts. Furthermore, the forecasting of seasonal 

rainfall has been considered very important for sustainable agricultural management 

in Australia, e.g., (Moeller et al. 2008; Nguyen-Huy et al. 2017; Stephens et al. 1994) 

and in the USA e.g., (Khedun et al. 2014; Mishra et al. 2015). In this case study, a 

further step has been taken where the importance of drought forecasting is addressed 

using 3-month timescale SPEI that is important for providing information to 

agricultural sectors.  

This case study has utilised the vine copulae (Brechmann and Schepsmeier 

2013) that have remained largely unexplored in the area of drought modelling and 

predictions in Australia. Unlike previous studies that have investigated joint 

relationships of drought properties only (e.g., duration with severity, duration with 

intensity, severity with intensity, or all three as trivariate), this case study has 

developed the copula-based probabilistic prediction models for SPEI and drought 

properties (D, S and I) using ENSO indicators (Niño 4 SST, SOI and EMI) as 

predictors, providing significant novelty via probabilistic prediction of droughts with 

universal indicators of atmospheric circulation that modulates the supply of water and 

regulation of solar energy at the ground surface. The results are significant for 

activities like agriculture because vine copulae allow the modelling of high-

dimensional dependency between drought and its climate variables, and application of 

vines can be extended to both bivariate and trivariate copula-based modelling. Since 

application of vines in hydrological studies is relatively new, e.g., (Gräler et al. 2013; 

Khedun et al. 2014; Nguyen-Huy et al. 2017; Vernieuwe et al. 2015), its application 

to drought modelling in Australia is a novel contribution.  

In contrast to previous studies that have produced the simulations for assessing 

dependence structure for two or more variables simultaneously (Wong et al. 2008), 

this case study successfully predicted the core variables (SPEI, D, S and I) based on 

the information available from the climate mode indices (Niño 4 SST, SOI and EMI). 

For better suitability in hydrology, the vine copula offer benefits of high-dimensiona l 

dependency between predictor and predictand have better computational tractability 

(Joe 1996) and are flexible in deducing multi-dimensional dependence structure using 

tree methods. Given the flexibility, vine copula offers a potential for multivariate 
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dependence modelling by decomposing multi-dimensional multivariate density into 

bivariate copulae, and its application in other climatic regions as well.  

The initial stages of analysis involved evaluation of correlation of SPEI and its 

properties with thirteen climate mode indices, the subsequent analysis used only Niño 

4 SST, SOI and EMI as these had statistically significant correlation and that are 

indicators of the ENSO event. For SPEI prediction, ten indices had statistically 

significant correlations with SPEI, however, only Niño 4 SST and SOI have been 

selected as they had highest correlations and are independently estimated. That is, the 

Niño 4 SST is solely based on temperature while SOI is based on pressure. The 

analysis yielded satisfactory simulation and prediction by utilising the most relevant, 

yet few climate mode indices. Using the evaluation metrics, the results captured 

emphatically the joint dependence structure between predictors and predictand and 

highlights the importance of jointly predicting drought and its properties where the 

correlation between predictors and predictand can be established. It is possible, 

however, that further investigation could incorporate other climate mode indices that 

have been found to influence Australian droughts in earlier studies (Ummenhofer et 

al. 2009; van Dijk et al. 2013; Verdon‐Kidd and Kiem 2009) for drought predictions. 

 In spite of the significant outcomes, this pilot study has shortcomings that 

create the opportunity for a follow-up work.  While only the SPEI on a 3-month 

timescale has been used and for only one case study location in the agricultural Murray 

Darling Basin region, the results may be applicable to the study location considered 

owing to the regional nature of drought, yet the methodology can be easily adapted to 

any case. Therefore, the practical application of the methodology adopted in this case 

study requires site-specific SPEI for the derivation of drought properties and selection 

of marginal distribution for predictors and predictand to be used in copula models. 

Also, to be consistent with the Australian BoM definition of drought (and associated 

drought response) (Mpelasoka et al. 2008), droughts with D≥3 months duration have 

been evaluated for modelling. The models have been successful in yielding predictions 

for drought indicator and its properties conditioned on climatic indices that modulate 

droughts in Australia. As an alternative, the copula-based probabilistic predictive 

models can be applied to flash droughts that could be in the form of heat-wave or 

precipitation deficit over the relatively short period (Mo and Lettenmaier 2016). In 

spite of the limited scope of this study, a follow-up study could implement vine 
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copulae to droughts on different timescales and for study locations with varying 

climatic conditions, short- or long-term droughts, and flash droughts for a wide variety 

of statistical prediction modelling. This would provide appropriate information to 

agriculturists and farmers for their specific cropping needs and demand for water/soil 

moisture for different crops.  

6.5 Conclusion 

A study of the joint behaviour of drought and its properties with climate mode indices 

is critical for water resource planning and drought-risk management. Drought is 

stochastic in nature where the duration, severity and peak intensity property of various 

episodes can vary from one event to another, yet these properties can be strongly 

correlated with each other, and therefore, contribute differently to the overall risk of a 

given event. These properties are also influenced by large-scale oscillations in the 

atmosphere, such as the ENSO. In this study, vine copulae have been employed as a 

new contribution to Australian drought-risk study to model the joint behaviour of SPEI 

and its drought properties (duration, severity, and intensity) with climate mode indices 

(Niño 4 SST, SOI and EMI). The Niño 4 SST, SOI and EMI are indicators of ENSO, 

which modulates drought conditions in Australia, where Niño 4 SST > 26˚C, SOI < -

7 and EMI > 0 represent El-Niño, i.e., the warm phase of ENSO that enhances the 

drought conditions.  

Archimedean copulae (i.e., Clayton, Gumbel and Frank) have been the most 

suitable models for modelling the joint behaviour of multivariable. The findings in this 

case study have demonstrated the joint dependence structure of SPEI and drought 

properties with climate mode indices while the vine copulae have illustrated the 

usefulness of the conditional probability-based drought predictions. The comparison 

between predicted and observed SPEI values have shown similarity, indicating 

satisfactory model performance. Similarly, the prediction of D, S and I using Clayton, 

and Frank copulae, conditional on Niño 4 SST and EMI, have yielded small absolute 

difference in mean values from the observed.  

Overall, this case study has demonstrated the feasibility of copula-statistical 

models in understanding the joint relationships between drought variables and climate 

mode indices in the present case study region. However, the practical relevance of 

these copula-statistical models can be further enhanced in a separate study by 
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considering many other climate mode indices on other timescales (e.g., 1-, 6-, 12-, 24-

months, seasonal, annual, decadal, etc) using multivariate copula-statistical models, 

making them more applicable to an improved assessment of the combined risk of 

drought event. This limitation has been acknowledged in Section 3.4.
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7.1 Introduction 

Chapters 4, 5, and 6 used point-based study locations for the temporal assessment of 

drought-risk. As mentioned earlier on, nature of drought is both temporal and spatial.  

As the next novel contribution of this study, the current chapter assesses drought-risk 

geospatially on the seasonal and annual basis.  

Drought-risk management involves three primary activities: (1) identification 

of the risk and the assessment of its significance, (2) development of new methods and 

utilisation of available resources to minimise or mitigate the drought-risk, and (3) 

development of new strategies to manage the drought-risk. The difficulty, however, in 

enforcing any of these perspectives, is the subjectivity in the measurement of regional 

drought vulnerability that is usually quantified as a relative measure (Downing and 

Bakker 2000). The challenges with vulnerability mapping and assessment are an 
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ongoing issue because vulnerability levels are dynamic, and they are moderated due 

to the changes in land use, population density, technology, farming practices and 

climate variability. Therefore, mitigating the regional drought impacts could involve 

some level of subjectivity in the assessment as there are no standard criteria for 

mapping drought vulnerability, hence to quantify drought-risk. However, to minimise 

the subjectivity in the vulnerability assessment, the application of fuzzy logic theory 

in Geospatial Information System (GIS) for natural hazard mapping is instrumental in 

the design of efficient tools for spatial decision making (Aksoy and Ercanoglu 2012; 

Al-Abadi et al. 2017; Espada Jr et al. 2012; Jun et al. 2013; Wu et al. 2013).  

Developing a comprehensive set of metrics for drought assessment is 

challenging due to the dynamic nature of environmental and socio-economic factors 

(Hinkel 2011). In many previous drought vulnerability assessment studies, the 

indicating variables were mainly aggregated with the deductive approach (e.g., expert 

judgement) or by normative approach (e.g., equal weighting). Consequently, the 

delivery of robust results is an issue due to subjective judgements in the former 

approach and the multi-dimensionality of variables to different stakeholders in the 

latter approach (Hinkel 2011). Assigning equal weights to factors or through expert 

judgement based on the experience leaves room for errors. To circumvent the issue of 

multi-dimensionality in the normative argument of equal weights, the Bayesian joint 

conditional probability of each indicating variable for the weighted overlay operations 

is recommended.  

 Since vulnerability assessment is a relative measure due to its region-specific  

nature, drought analysts must define the critical levels (Downing and Bakker 2000). 

There are numerous factors that influence drought vulnerability (Price et al. 2011) and 

their inclusion may depend on available data. Undeniably, drought vulnerability has a 

close correlation with man-made infrastructure and socio-economic conditions 

(Wilhelmi and Wilhite 2002). According to the literature, studies performed outside of 

Australia has included various climatic and physiographic factors to produce 

integrated maps of vulnerability, e.g., (Ekrami et al. 2016; Jain et al. 2015; Pandey et 

al. 2010; Safavi et al. 2014; Thomas et al. 2016; Wilhelmi and Wilhite 2002). 

Therefore, region-specific integrated physiographic, climatic and social factors are 

essential for the assessment of drought vulnerability.  
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Considering the need for a spatially-relevant drought-risk mapping for the 

drought-prone SEQ region, the purpose of this chapter is to apply the fuzzy logic tool 

to generate drought hazard, exposure and vulnerability indices using multiple 

physiographic and climatic factors where the indices are then overlayed to generate a 

risk map. The aim is to develop a model for assessing drought-risk that is expected to 

improve rationality and accuracy of results. The drought-risk map could be used as a 

framework for a timely implementation of mitigation measures and effective 

monitoring system.  The specific objectives of this chapter, after the breakdown of the 

third major objective outlined in Section 1.3 are to: (1) identify available spatial and 

temporal physiographic and climatic factors relevant for the region; (2) estimate 

probable weights of each factor conditional on rainfall departure using Bayesian 

theorem; (3) standardise factors using fuzzy membership functions and generate 

vulnerability, exposure and hazard indices maps; and (4) produce integrated drought -

risk map using fuzzy overlay operation available in ArcGIS 10.5.  

7.2 Theoretical Overviews 

7.2.1 Concept of vulnerability, exposure and risk 

The risk is a product (or sum) of hazard, vulnerability and/or exposure. According to 

Downing and Bakker (2000), the risk can be expressed mathematically as:  

 Risk = HazardVulnerabilityExposure (7.1) 

 Risk = Hazard + Vulnerability (7.2) 

IPCC (2012) defines hazard as "the potential occurrence of a natural or human-

induced physical event that may cause loss of life, injury, or other health impacts, as 

well as damage and loss to property, infrastructure, livelihoods, service provision, and 

environmental resources". The risk  is defined as "the likelihood over a specified time 

period of severe alterations in normal functioning of a community or a society due to 

hazardous physical events interacting with vulnerable social conditions, leading to 

widespread adverse human, material, economic, or environmental effects that require 

immediate emergency response to satisfy critical human needs and that may require 

external support for recovery" (IPCC 2012). The term vulnerability has numerous 

definitions. Since vulnerability usually bounds by context, a specific definition is 

difficult to justify. In response to the hazard-centric perception of disasters in the 
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1970s, the term vulnerability was introduced to describe the extent to which people 

suffer from calamities and socio-economic circumstances to cope with 

(Schneiderbauer and Ehrlich 2004). Geoscience Australia (2010a) conceptualised 

vulnerability as the impact a hazard has on the people, infrastructure, and the economy. 

Lastly, exposure is defined in terms of the assets such as "people, property, systems or 

other elements present in hazard zones that are thereby subject to potential losses” 

(ISDR 2009).   

7.2.2 Fuzzy logic approach 

The fuzzy logic is an approach that computes the “degree of truth” instead of absolute 

terms “true or false” (i.e., 1 or 0) Boolean logic (Zadeh 1968; Zadeh 1975). Fuzzy 

theory embraces the membership function (or the True and False) to operate over a 

range of numbers between 0 and 1, reflecting the degree of certainty of the membership 

(Pradhan 2011). It includes 0 and 1 as the extreme cases of truth but also various states 

in between, i.e., fuzzy logic permits partial membership mathematically given as: 

  (7.3) 

In Equation (7.3),  refers to the grade of membership for element  in a fuzzy 

set , and the is the universal set defined in a specific problem.  

To build a fuzzy logic-based model, a careful selection must be made for the 

appropriate membership function. In the context of the present study, the fuzzy 

membership functions transform the input raster onto a 0 to 1 scale based on a specified 

fuzzification algorithm. A value of 1 indicates full membership in a fuzzy set, while 

membership decreasing to a value of 0 indicate it is not a member of the fuzzy set. In 

this investigation, three membership algorithms, LINEAR, LARGE and SMALL are 

used.  

In the LARGE fuzzy membership, the larger inputs have membership values closer to 

1 and the function is defined by a user-specified midpoint value that is assigned a 

membership value of 0.5. The mathematical expression of the LARGE fuzzy 

membership function is given as (Tsoukalas and Uhrig 1996): 

   1,0: XxA

 xA x

A X



                                                                                    Chapter 7 – Spatio-temporal Drought-risk Modelling  

 

 167 

 
 

(7.4) 

In Equation (7.4),  is the spread and  is the midpoint. The fuzzy LARGE function 

is useful when large input values have a higher membership where the input values 

can be either an integer or floating-point positive values.  

The fuzzy SMALL defines membership function with smaller input values having a 

membership value closer to 1. The mathematical expression for the fuzzy SMALL 

function is given as: 

 
 

(7.5) 

The fuzzy SMALL function is useful when small input values have a higher 

membership. Figure 7.1 shows the geometric representation of fuzzy SMALL and 

fuzzy LARGE memberships. 

The fuzzy LINEAR membership function applies a linear function between the user-

specified minimum and maximum values. Anything below the minimum is assigned a 

value of 0 (definitely not a member) and anything above the maximum is assigned a 

value of 1 (definitely a member).  

 

Figure 7.1: Geometric representation of SMALL (left) and LARGE (large) fuzzy 

membership functions. 
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After the input variable standardisation, the fuzzy overlay operation is performed. 

There are five different fuzzy overlay types: AND, OR, PRODUCT, SUM and 

GAMMA in ArcGIS 10.5, where the user can choose the overlay type to suit the 

purpose of their study. This study has used GAMMA overlay that uses the algebraic 

product of the “increasive” fuzzy SUM and “decreasive” fuzzy PRODUCT effects, 

both raised to the power of gamma. The fuzzy GAMMA overlay operation is chosen 

to avoid bias on which risk equation (Eq. 7.1 & 7.2) to be used in the assessment 

(Espada Jr et al. 2012; Espada Jr et al. 2013) where the mathematical expression of 

fuzzy GAMMA is given as (Tangestani 2003): 

  (7.6) 

where is the calculated fuzzy membership function, γ is a parameter chosen 

between 0 and 1; is the fuzzy algebraic SUM and is the fuzzy algebraic 

PRODUCT that is mathematically expressed as: 

 
 and  (7.7) 

where is the fuzzy membership for the ith map, and i = 1, 2, …, n maps to be 

combined. In the fuzzy GAMMA operation,  is equivalent to the fuzzy algebraic 

PRODUCT and  is equivalent to fuzzy algebraic SUM. The judicious choice of 

the gamma value depends on the user in order to ensure a flexible compromise between 

the “decreasive” and “increasive” tendencies of fuzzy PRODUCT and fuzzy SUM, 

respectively. This study uses the default gamma value of 0.9, consistent with Espada 

Jr et al. (2013) that also used fuzzy GAMMA overlay for developing flood-risk maps 

for Brisbane city area.  

7.3 Materials and Method 

To produce an integrated drought-risk map for the SEQ study region, various layers 

representing spatial maps of different factors are prepared using ArcGIS software. 

Spatial maps representing vulnerability, exposure and hazard per unit area are prepared 

on a grid system of 100 x 100 m. Spatial information on the above maps is categorised 
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in sub-classes in respect of their degree of significance in vulnerability to drought to 

obtain the probable weight of a factor conditional on the hazard.  

7.3.1 Identification and significance of factors 

Drought is driven by precipitation deficiency in space and time while the severity of 

drought depends on numerous factors. Drought-risk to agriculture can be viewed as a 

product of exposure to the climatic hazard and vulnerability to cropping practices to 

drought conditions (Wilhelmi and Wilhite 2002). To assess regions with high risk for 

droughts from the integrated drought-risk map, drought vulnerability, exposure and 

hazard factors need to be identified. While there are various, yet no certain fixed 

factors, previous investigations elsewhere have shown a number of static and semi-

static physiographic and dynamic climatic factors that are closely associated with 

drought conditions. The most common yet immediate association with droughts are 

the slope, soil type, elevation, plant available water capacity (PAWC), soil depth, land 

use, and population density. The rainfall deficiency is considered as the drought 

hazard.  

Rainfall: The best and most common single measure of water availability in Australia 

is the rainfall (ABS 2012). The rainfall deficiency is the primary factor responsible for  

the occurrence of drought as it is the cause of subsequent soil moisture shortage for 

crops (Jain et al. 2015). In this investigation, the rainfall departure (RD) from normal 

(i.e., normal/base period from 1971 to 2000) is considered as the hazard index. The 

formula for calculating RD is given as: 

 
 (7.8) 

where =rainfall for the given month, season or year and = average rainfall for the 

month, season or year over the base period 1971-2010 (Deo et al. 2009).  

The year 2007 was one of the driest years, and the Spring season (September-

October-November; SON) was the driest season in 2007 during the Millennium 

Drought. In SON 2007 season, ~12.70% of the study region had RD ≤ -75%, ~12.41% 

of the study region had -75% < RD < -50%, ~13.08% of the study region had -50% < 

RD < -25%, and ~11.12% of the study region had -25% < RD < 0%. In other words, a 

total of ~49.31% of the study region has been under rainfall deficient state in the spring 
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season of the year 2007. The numerical weighting of RD subclasses was based 

according to Jain et al. (2015). Similarly, rainfall departure for autumn (March-April-

May; MAM) and summer (December-January-February; DJF) seasons of 2007, and 

annual, i.e., 2007, 2009 and 2013 drought years have been estimated and Table 7.1 

enumerates the extreme values in the study region.  

Figure 7.2 shows an example of annual (1960-2013) and seasonal (2000-2013) percent 

rainfall departure for a point location in the study region, i.e., for Brisbane (153.03°E, 

27.47°S). The seasonal rainfall departure has been mostly negatives as well during this 

Millennium drought period.   

 

Table 7.1: The maximum and minimum values of rainfall departure from the base 

period during the drought years in the present study region.  

Rainfall 

Departure 

Drought season (2007) Drought year 

 DJF MAM SON 2007 2009 2013 

Maximum 225.26% 466.34% 378.56% 19.50% 27.74% 41.08% 

Minimum -73.18% -100.00% -100.00% -41.71% -49.47% -62.51% 

(DJF=December-January-February; MAM=March-April-May; SON=September-

October-November; JJA=June-July-August. 
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Figure 7.2: Climatological conditions for the study region (Brisbane, 153.03°E, 27.47°S). 
(a) Annual rainfall departure (expressed as a percentage) over 1960–2013. 

(b) Seasonal rainfall departure (expressed as a percentage) over Millennium drought. 
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Soil: In seasonally dry and semi-arid tropics and subtropics, the low and erratic rainfall 

puts a major constraint on rain-fed agriculture. In these areas, soil moisture is crucially 

important for fullest expression of the production potential of plants over time. It is 

important, however, to note that irregular and an insufficient amount of rainfall is not 

the only cause of lack of moisture in the soil. For instance, the water-holding capacity 

of the soil depends on the soil porosity, which in turn depends on the soil texture. The 

soil texture is important because it influences the amount of water soil can hold, the 

rate of water movement through the soil and how workable the soil is for growing 

plants (FAO 2005). In the SEQ region, soil texture varies from clay, loam, silt, and 

sand. The clay soil generally holds more water while the sandy soil is well aerated but 

does not hold much water, i.e., it has high water infiltration rate. Therefore, sandy soils 

are most vulnerable to drought due to its least moisture holding capacity.  

This study utilized the sandy soil type data for the year 2014, sourced from the 

Terrestrial Ecosystem Research Network (TERN) (TERN 2009). Sand data are 

estimated in percentages by taking 20µm - 2mm mass fraction of the <2mm soil 

material determined using the pipette method. The sand digital maps are available at 

6-defined depth intervals: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-

200cm. In this study, the values for all depth levels have been averaged to obtain a 

single layer map of the sand. Figure 7.3 shows the spatial distribution of the sand 

percentages. Much of the low sand percentage is found at the higher elevation area. 

Soil depth: Soil depth refers to the thickness of the soil materials that provide 

structural support, nutrients and water for plants (Scherer et al. 2013). The greater the 

depth of the soil, the higher the capacity of the soil to store and supply moisture to 

plants for growth. Therefore, greater soil depths are considered less vulnerable to 

droughts. Shallow depths mean less water storage by the soil, hence it is more 

vulnerable to droughts. The soil depth data has been obtained from TERN for the year 

2014.The depth of soil on a geospatial map is shown in Figure 7.3.  

Slope : The slope that measures the inclination of the land surface from the horizontal 

is another important drought vulnerability factor. The water runoff is considerably 

higher on steeper terrain compared to the near ground surface. Therefore, the terrain 

areas with lesser slopes are relatively less vulnerable to droughts compared to the hilly 

plains (Jain et al. 2015). The slope data (in percentages) has been obtained from TERN 



                                                                                    Chapter 7 – Spatio-temporal Drought-risk Modelling  

 

 173 

for the year 2000. The spatial distribution of the slope percentage is shown in Figure 

7.3.  

Plant Available Water Capacity (PAWC): The PAWC refers to the difference in 

water content between field capacity and permanent wilting point of plants. The study 

of Stone and Potgieter (2008), following the work of Wilhelmi et al. (2002), provided 

a compelling argument on the importance of PAWC for the Australian droughts. In 

their study, Stone and Potgieter (2008) developed initial indications of PAWC based 

on the knowledge of local specialists, agronomists, and rural extension officers 

working “in the field”. It was found that many parts of the eastern Australia had 

relatively low levels of PAWC (e.g., 75-100mm) that, potentially, increased the 

vulnerability to drought-risk. To be consistent with the scales used in their study, 

similar effective index-scale of PAWC has been applied in this study, as shown in 

Table 7.2. The PAWC data has been obtained from the National Agricultural 

Monitoring system (NAMS; http://www.nams.gov.au). The PAWC spatial 

distribution is shown in Figure 7.3. 

Elevation: Water availability also greatly depends on the elevation of the plain. The 

digital elevation model (DEM) describes landforms and ground surface topography is 

crucial for addressing issues relating to the impacts of climate change, disaster 

management, water security and environmental management. The 3-second DEM data 

for the year 2000 has been obtained from Queensland Spatial Catalogue – QSpatial.  

The elevation concurs well with the percent slope where higher elevation has higher 

slopes and vice versa. For instance, the elevation less than 500m has a slope less than 

5%. In Figure 7.3, the high elevations are where the Great Diving Range is, while the 

area close to the coast is mostly low-elevated zone.  

Land use : The drought vulnerability can be regarded in a dynamic sense as a result of 

land use and management, including government farm practices and societal factors 

(Nelson et al. 2005). Land use is one of the most important factors influencing 

vulnerability to drought. In this study, it is considered as an exposure factor because 

of its dynamic nature. The land use data has been obtained from the Queensland Land 

use Mapping Program (QLUMP) for the year 2016, available at QSpatial data portal.  

Land use in the study region is dominated by pasture/grassland (about 63.8%) followed 

by agriculture (20.3%), production forestry (7.4%), nature conservation (4.3%), urban 

http://www.nams.gov.au/
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use (3.1%) and water body (1.1%), as shown in Figure 7.3. Among the six listed land 

use types, it is implicit that agriculture (urban use) becomes the first (second) sufferer 

due to water deficiency and drought compared to other land uses because of their 

dependency on water for survival. Therefore, agriculture subclass is given the highest 

numerical weight value because it is considered as relatively more vulnerable to 

drought. In contrast, the nature conservation encompasses rare socio-economic 

activities and is therefore assigned less weight as it is considered less sensitive to water 

shortages. The water bodies such as lakes, dams and reservoir are assigned a negative 

value of -100 for masking as these areas are considered non-vulnerable to drought.  

Population: The water demand is also affected by the population density. In the areas 

where population density is high, the water usage and demand is also high. Therefore, 

areas with larger population density are considered relatively more vulnerable to 

drought than areas with smaller population density. In this study, population density is 

categorized as an exposure factor because as the population grows, the demand for 

water mounts and pressure on finite water resources intensifies. The continuous growth 

of population density will impact water availability in any given area, hence the 

exposure to drought is likely to subsequently increase. The population density data has 

been obtained from the Australian Bureau of Statistics (ABS; (ABS 2012)) for the year 

2011. Much of the study area has less than 1,000 people to none per square grid, 

therefore the exposure to drought is less in these areas, as shown in Figure 7.3. 

Conversely, the population density is relatively high in the southeast study region that 

covers the populous Brisbane city and Gold Coast. This indicates that high population 

density and high population growth rates in the SEQ region have high chances to face 

water scarcity or water stress situations.  

7.3.2 Study area 

In contrast to the point-based study locations in Chapters 4-6, the study area in this 

chapter is the entire highlighted SEQ region.  

7.3.3 Proposed weighting scheme 

To produce vulnerability, exposure and hazard indices map, a differential weighting 

scheme based on relative importance of the factors is proposed. The weight assignment 

is based on the assumption of a relative degree of influence of a factor on overall 
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vulnerability to droughts. In the proposed scheme, the rainfall deficiency in terms of 

rainfall departure is considered most influential factor and is therefore assigned highest 

weights ranging from 0 to 25 (Table 7.2). The weight value of 25 represents very 

extreme dryness that poses the highest risk to droughts. Comparatively, other factors 

are considered moderately influential to drought vulnerability and are thus given 

weight assignment between 0 and 10, where a value of 10 corresponds to the factor 

subclass being highly vulnerable to drought. For instance, the water demand and 

availability tend to vary considerably with land use types and since agriculture and 

urban use are the primary focus of this study, they are assigned higher weights. 

Similarly, elevation, soil depth, sand soil type, plant available water capacity and slope 

are divided into subclasses and assigned weights based on their relative importance to 

drought vulnerability. The differential weights are then used to determine the joint 

conditional probability based on Bayes theorem discussed next. It is important to note 

that the weight assignment to the factor subclasses has been carried out only to estimate 

the joint conditional probability that shows the relevance of each factor conditional on 

the hazard.



                                                                                    Chapter 7 – Spatio-temporal Drought-risk Modelling  

 

 176 

Table 7.2: Numerical weights assigned to the sub-classes of drought vulnerability, drought exposure and drought hazard factors. 

Factors Assumption Classification of drought 

vulnerability factors 

Weights assigned 

Land use The classified land use after numerical weight 

assignment is directly related to the degree of 
vulnerability. The subclass with higher numerical 
weight is more vulnerable to drought, and vice versa. 

- fuzzy LARGE 

Waterbody 

Nature conservation 
Production Forestry 
Pasture/grassland 
Urban use 

Agriculture 

-100 (masking) 

2 
4 
6 
8 

10 
Soil texture 

- Sand  

Sand: directly related to the degree of vulnerability. 

The higher the percentage of sand means a higher 
degree of vulnerability.  

- fuzzy LARGE 

<50 % 

>50% 

5 

10 

Slope (%) Directly related to the degree of vulnerability. The 
higher the percentage of slope means a higher degree of 

vulnerability. 
- fuzzy LARGE 

0 – 2 
2 – 5  

5 – 8  
8 – 12  
˃ 12  

2 
4 

6 
8 
10 

Population 
density (per 
km2) 

Directly related to the degree of vulnerability. The 
higher the number of people living in a square kilometre 
grid, the higher the degree of vulnerability. 

- fuzzy LINEAR 

0 – 1000 
1000 – 2000  
2000 – 3000  

3000 – 4000  
≥ 4000  

2 
4 
6 

8 
10 

Soil depth 
(m) 

Inversely related to the degree of vulnerability. The 
greater the depth of soil, the less the degree of 
vulnerability.  

- fuzzy SMALL 

≥ 1 
< 1 to ≥ 0.8 
< 0.8 to ≥ 0.6 

< 0.6  

1 
3 
6 

9 
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Plant 
Available 
Water 
Capacity 

(PAWC; 
mm) 

Inversely related to the degree of vulnerability. The 
less amount of PAWC, the higher the degree of 
vulnerability. 

- fuzzy SMALL 

≥ 175 
150 – 175 
100 – 150  
75 – 100 

≤ 75   

-100 (masking) 
2 
4 
8 

10 

Elevation 
(m) 

Directly related to the degree of vulnerability. The 
higher the elevation, the higher the degree of 
vulnerability. 
- fuzzy LARGE 

˃ 500 
250 – 500  
0 – 250  
≤ 0  

10 
6 
3 
-100 (masking) 

Rainfall 

Departure 
(%) 

Inversely related to the degree of vulnerability. The 

smaller the rainfall departure index, the higher the 
degree of vulnerability. 
- fuzzy LINEAR › fuzzy SMALL 

˃ -10 (near normal + surplus) 

-10 to -15 (dry spell)  
-15 to -25 (mild drought)  
-25 to -35 (moderate drought)  
-35 to -50 (severe drought)  

< -50 (extreme drought) 

0 

5 
10 
15 
20 

25 
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7.3.4 Bayesian joint conditional probability  

Normative argument is often used for assigning equal weights to the indicating 

variables. In the normative argument, the indicating variables are aggregated such that 

each dimension is given equal importance in characterising the state of development. 

However, vulnerability assessment is not a simple, straightforward exercise because 

multiple stakeholders value the dimensions differently (Hinkel 2011). In the spatial 

dimension context, the development of risk maps from the indicating variables varies 

spatially. To address the multi-dimensionality issue in the normative argument of equal 

weights, the Bayesian probability is used in this study. The Bayesian joint conditiona l 

probable weights are calculated as: 

 
 and  (7.9) 

where: 

 DR is the drought-risk represented by drought hazard as a priori event 

 V and E are vulnerability and exposure indicating variables, respectively 

 i is the level of perceived drought-risk (vulnerability/exposure sub-classes) 

 Pmax is the maximum probability of an indicating variable 

 n is the number of indicating variables 

 

The weight values are used in aggregating the vulnerability and exposure 

indicating variables. Table 7.3 lists the probable importance of each factor to the 

rainfall departure hazard index. It is important to note that no matter what month, 

season or year is considered for the analysis, these probability values do not change 

and it has been confirmed by the computational analysis of all the seasons and years 

considered in this investigation.  
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Table 7.3: Probable weights applied for the vulnerability and exposure factors 

conditional on rainfall departures based on the Bayes theorem. 

Exposure Factors   Pmax Bayes Conditional Probability  

Land Use 0.3590 0.3941 

Population 0.5519 0.6059 

Total Pmax 0.9109 1.0000 

Vulnerability Factors   

DEM 0.3124 0.1634 

PAWC 0.2525 0.1321 

Sand 0.5158 0.2698 

Slope 0.3392 0.1775 

Soil Depth 0.4916 0.2572 

Total Pmax 1.9115 1.0000 

 

Subsequently, the fuzzy-standardised vulnerability and exposure factors ( ) are first 

multiplied by 100 to obtain integer values, then weighted overlay operation is 

performed where weights are the percent conditional probability values ( ). The 

output is then divided by a factor of 100 to obtain the vulnerability and exposure index 

maps ( ) on 0 to 1 scale, as per the Eq. (7.10). 

 
 (7.10) 

7.3.5 Framework for derivation of drought-risk map 

A diagram of the input-process-output model that presents the flowchart of the study 

is shown in Figure 7.4. Under the input component, drought hazard (rainfall departure), 

vulnerability (soil type, soil depth, elevation, PAWC, and slope), and exposure 

(population and land use) are assessed with corresponding details and assumptions, 

enumerated in Table 7.2. All inputs are continuous data except for land use that needed 

to be reclassified and assigned weights based on their significance and influence on 

droughts. Under process component, the inputs are standardised from original values 

into 0 to 1 scale, analysed and processed using applicable GIS operations with 

emphasis on fuzzy logic operations in ArcGIS 10.5. The standardised vulnerabilit y 

and exposure factors are then evaluated using Eq. 10. The procedure, in turn, produced 
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initial outputs representing drought-risk component indices maps (i.e., hazard, 

vulnerability and exposure indices). The analytical and processing operations using 

fuzzy GAMMA overlay led to the generation of the drought-risk map as the ultimate 

output. Figure 7.3 shows the original values of the vulnerability and exposure factors 

in the left column while the right column shows the corresponding standardised factors 

based on respective fuzzy operations. 
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Figure 7.3: Original drought vulnerability factors in absolute units (left) and 

corresponding standardised factors (right) using the fuzzy membership functions 

bounded by [0, 1]. 

 

Figure 7.4: Conceptual flowchart of a 3-layer Input-Process-Output schematic 

model for drought risk mapping adopted in the present study. 

 

 The hazard index consisted of the rainfall departure (%). Relative to the base 

period (1971 - 2000), the seasonal and annual rainfall departure are used as the sole 

hazard indices. To obtain the hazard index, the fuzzy LINEAR followed by fuzzy 

SMALL membership function is applied to the rainfall departure. The fuzzy SMALL 

transformation function is used when the smaller input values are more likely to be a 
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member of the set, as in this study the negative rainfall departure percentages 

corresponded to the drought condition, hence the hazard in consideration. The 

midpoint of the rainfall departure identified the crossover point (assigned a 

membership of 0.5) with values greater than the midpoint having a lower possibilit y 

of being a member of the fuzzy set and vice versa. Accordingly, the values closer to 1 

in the standardised rainfall departure corresponded to the high drought-risk member. 

Seasonal and annual drought hazard indices are prepared and the results for seasonal 

(2007) and annual (2007, 2009 and 2013) are presented. These years are recent drought 

years in the SEQ region. The 2007 and 2009 are part of the catastrophic Millennium 

Drought while the 2013 drought occurred after the wet La Niña season (2010-2011). 

Figure 7.5 shows the hazard indices maps for drought years 2009 and 2011. The red 

colours correspond to high-risk areas, i.e., rainfall departure below normal.  

 

Figure 7.5: Drought hazard index for two selected study years (i.e., 2009 & 2013) 

defined by the standardised rainfall departure. 

 

 The vulnerability index consisted of an integrated layer of soil depth, sand, 

PAWC, elevation, and slope. Guided by the assumptions in Table 7.2, the fuzzy 

LARGE or fuzzy SMALL membership functions are applied to the indicators. With 

fuzzy SMALL membership function, the smaller original pixel values are assigned 

with higher fuzzy membership values (closer to 1) in the function to indicate higher 

vulnerability. Conversely, the fuzzy LARGE membership function has been applied 

whereby the larger original pixel values are assigned with higher fuzzy membership 

values (closer to 1) in the function to indicate higher vulnerability. Equation (7.10) has 

been applied following the standardisation process. The resulting map is the 

vulnerability index, as shown in Figure 7.6.  
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 The exposure index consisted of integrated layer of land use and population. 

The fuzzy LARGE and fuzzy LINEAR membership functions are applied to the land 

use and population, respectively. The fuzzy LINEAR membership function is more 

appropriate to standardise population density since the availability and demand for 

water resources vary with change in population density over time, hence there is a 

direct proportionality between water demand and population density. The resulting 

exposure index is shown in Figure 7.6.  

 

Figure 7.6: The drought exposure (a) and vulnerability (b) indices.  

 

Usually, the analyst has the choice of whether to defuzzify the output of the 

fuzzy system to generate the crisp output or leave the output without modification, 

which is also appropriate. In this study, the final output has been defuzzified into five 

discrete intervals according to the perceived level of drought risk: none, low, moderate, 

high and very high. Defuzzification is a process in the fuzzy synthetic evaluation that 

calculates the crisp value (i.e., grade interval) of a fuzzy set (Sadiq et al. 2004). The 

grade intervals for this study have been obtained through geometric interval 

classification of the raster data fuzzy set. As a compromise method between equal 

interval and quantile (ESRI 2017), geometric intervals have been used to delineate 

classes based on natural groupings of fuzzy membership values. This option tries to 

find a balance between highlighting the changes in the middle and the extreme values.  

Drought-risk assessment methods are generally designed to characterise and 

understand the system’s degree of risk to drought (e.g., low, moderate, high and very 

high). In GIS, this is known as descriptive modelling that refers to the characterisation 
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of direct interactions of system components to gain insight and understand the system 

processes (Berry 1996).  

This study attempts to contribute a new knowledge by developing spatial 

analytical technique in generating descriptive drought-risk maps. Hence, it is 

suggested that this type of approach can provide useful strategic information for 

decision makers involved in drought-risk monitoring.  

7.3.6 Validation of the drought-risk index 

In order to validate the drought-risk output maps, the ideal measure would be a field 

study that can literally verify the areas subjected to a certain level of risk. Since a field 

study was beyond the scope of this study, this study has undertaken the spatial 

correlation approach using the band collection (Erdey-Heydorn 2008; GERGELY et 

al. 2016), a spatial analyst tool, that provides statistics for the multivariate analysis of 

a set of raster bands. The correlation between two layers is a measure of dependency 

between the layers, in which the correlation matrix presents the cell values from one 

raster layer as they relate to the cell values of another layer. It is the ratio of the 

covariance between the two layers (i, j) divided by the product of their standard 

deviations, given as: 

 

ji

ji

ji

Cov
Corr



,

,   (7.11) 

Seasonal and annual drought-risk maps are correlated with rainfall departures to 

estimate the dependency between them. Since rainfall departure is a core hazard 

variable in generating the drought-risk maps, and to avoid such bias, the upper (0 – 

0.2m) and lower (0.2 – 1.5m) layers of soil moisture have been used alternatively. 

Validation of drought-risk maps with soil moisture is appropriate since moisture 

content is an important indicator of the agricultural droughts and its memory 

contributes to spatial and temporal variation of the regional drought (Mpelasoka et al.  

2008). Subsequently, seasonal drought-risk maps have been correlated with the 3-

month running mean of soil moisture leading up to the following season.  
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7.4 Results and Discussion 

The resulting seasonal and annual maps of drought-risk are obtained by the application 

of fuzzy GAMMA overlay operation in ArcGIS. Figures 7.7 and 7.8 show the seasonal 

and annual drought-risk maps, respectively, while Table 7.4 enumerates the percentage 

area of the five risk classes: no risk, low risk, moderate risk, high risk and very high 

risk. The maps show that the majority of the study area is at moderate to the very high 

risk of drought. The very high-risk regions in the SON 2007 seasonal drought-risk 

maps carry much higher percentages compared to the annual drought-risk maps. This 

could be due to the JJA season rainfall offsetting the total accumulated rainfall in other 

seasons of the year 2007. In the JJA season, the rainfall departure index is in the 

positives (i.e., minimum of 34.69% and a maximum of 1508.78% in the study region). 

This is why the 2007 annual drought-risk map (Fig. 7.7d) has a smaller percentage of 

high and very high-risk regions compared to individual DJF, MAM and SON seasons.  

It is apparent that the regions’ drought-risk levels coincide well with the 

corresponding hazard indices where regions with high hazard index are also critically 

vulnerable to drought. This is possibly due to hazard index values being assigned an 

entire probability value of 1 in the GAMMA overlay operation while the vulnerabilit y 

and exposure factors have been multiplied by their probability values conditional on 

the hazard index. Overall, the results indicate that regions receiving much less rainfall 

relative to the base period consequently have greater drought-related negative impacts. 

Considering the temporally and spatially varying factors, the simple yet effective 

methodology developed in this study will help to identify regions vulnerable to 

droughts and can be greatly useful in better decision-making processes for drought 

mitigation and management. The descriptive vulnerability and drought-risk map are 

also intended for farmers who can make judicious decisions as to which crop to plant 

based on the given water availability.  
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(a) 

(b) 
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Figure 7.7: Spatial drought risk map and its classification thresholds for the serious 

drought year (2007) generated from the fuzzy Gamma overlay function. 

(a) December-January-February (DJF) summer period 

(b) March-April-May (MAM) autumn period 

(c) 

(d) 
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(c) September-October-November (SON) spring period  

(d) Annual map. Note: drought year was selected according to Figure 

1. 
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Figure 7.8: Spatial drought risk map and its classification thresholds for moderate 

drought year (2009) and non-drought year (2013) generated from the fuzzy Gamma 

overlay function. 

 

(a) 

(b) 
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Table 7.4: Percent area falling under various vulnerability classes. 

Vulnerability Class 
Discrete 

Interval 
Area (%) 

Discrete 

Interval 

Area 

(%) 

Discrete 

Interval 
Area (%) 

Seasonal DJF 2007 MAM 2007 SON 2007 

None 0.14 - 0.51 0.10 0.14 - 0.49 0.04 0.12 - 0.50 0.01 

Low 0.51 - 0.69 0.22 0.49 - 0.68 0.23 0.50 - 0.69 0.07 

Moderate 0.69 - 0.78 0.26 0.68 - 0.77 0.24 0.69 - 0.78 0.26 

High 0.78 - 0.82 0.27 0.77 - 0.83 0.32 0.78 - 0.83 0.41 

Very High 0.82 - 0.91 0.15 0.83 - 0.93 0.17 0.83 - 0.92 0.25 

Annual 2007 2009 2013 

None 0.11 - 0.35 0.01 0.13 - 0.50 0.10 0.11 - 0.50 0.24 

Low 0.35 - 0.54 0.28 0.50 - 0.68 0.21 0.50 - 0.68 0.34 

Moderate 0.54 - 0.68 0.34 0.68 - 0.77 0.26 0.68 - 0.76 0.13 

High 0.68 - 0.79 0.23 0.77 - 0.81 0.20 0.76 - 0.80 0.14 

Very High 0.79 - 0.93 0.14 0.81 - 0.90 0.24 0.80 - 0.89 0.15 
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For verification of the drought-risk maps, Table 7.5 shows the correlation 

matrix of drought-risk with rainfall departure and soil moisture. There is a high 

correlation of drought-risk with rainfall departure due to the latter being used as a 

hazard index in producing the former. To avoid the bias, the upper (0 – 0.2m depth) 

and lower (0.2 – 1.5m depth) layer soil moisture are also correlated with drought-risk 

index.  The upper layer soil moisture is well correlated with both seasonal and annual 

droughts while the lower layer soil moisture tends to show a higher correlation in JJA 

and SON seasons of 2007, as well as for 2009 and 2013 annual drought periods. For 

the case of seasonal droughts (Table 7.5a), the correlation remains high for 3-month 

running mean soil moisture values leading up to the next season. Therefore, despite 

the field study verification of the drought-risk maps not feasible in this study, the 

correlations with soil moisture reveal the effectiveness of the drought-risk output 

maps, which therefore validates the drought-risk index to be adopted for drought 

management purposes. 
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Table 7.5: Validation of drought-risk index in terms of the correlation matrix of seasonal (a) and annual (b) drought-risk index with rainfall 

departure (RD) and the upper and lower layer soil moisture (SM). 

(a) 

 DJF 2007 MAM 2007 JJA 2007 SON 2007 

 Correlation Matrix 
  

Correlation Matrix 
 

Correlation Matrix 
Correlation Matrix 

   Drought Risk  Drought Risk  Drought Risk  Drought Risk 

Soil 

Moisture 

Drought 

Risk 
1.0000 

Drought 

Risk 
1.0000 

Drought 

Risk 
1.0000 

Drought 

Risk 
1.0000 

RD (%) -0.8555 RD (%) -0.8623 RD (%) -0.8665 RD (%) -0.5543 
Upper 
SM 

DJF -0.3808  MAM -0.4486  JJA -0.6800  SON -0.2748 

Lower 

SM 
 DJF 0.0450  MAM 0.1348  JJA -0.2266  SON -0.2987 

Upper 
SM 

 JFM -0.1064  AMJ -0.3312  JAS -0.5499  OND -0.0092 

Lower 

SM 
 JFM 0.0402  AMJ 0.0901  JAS -0.2880  OND -0.2211 

Upper 
SM 

 FMA -0.0937  MJJ -0.3546  ASO -0.4437  NDJ -0.1957 

Lower 

SM 
 FMA 0.0486  MJJ 0.0071  ASO -0.2910  NDJ -0.1903 

Upper 
SM 

 MAM -0.0538  JJA -0.3515  SON -0.2394  DJF -0.3530 

Lower 

SM 
 MAM 0.0576  JJA -0.0627  SON -0.2559  DJF -0.1915 
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(b) 

2007 Layer Statistics 
Correlation 
Matrix 

Layer MIN MAX MEAN STD Drought Risk 

Drought Risk 0.1108 0.9273 0.6265 0.1328 1.0000 

RD (%) -41.71 19.5005 -11.9427 10.9399 -0.8738 

Upper layer SM 0.1346 0.4339 0.2177 0.0338 0.1039 

Lower layer SM 0.0250 0.6432 0.1762 0.0847 0.0991 
      

2009 Layer Statistics 
Correlation 
Matrix 

Layer MIN MAX MEAN STD Drought Risk 

Drought Risk 0.1254 0.9031 0.7121 0.1310 1.0000 

RD (%) -49.47 27.7423 -21.3567 13.6609 -0.8865 

Upper layer SM 0.1059 0.5883 0.1976 0.0565 -0.5520 

Lower layer SM 0.0341 0.9024 0.3090 0.1534 -0.4452 
      

2013 Layer Statistics 
Correlation 
Matrix 

Layer MIN MAX MEAN STD Drought Risk 

Drought Risk 0.1146 0.8870 0.6282 0.1511 1.0000 

RD (%) -62.51 41.0766 -12.4865 23.3613 -0.8949 

Upper layer SM 0.0864 0.5684 0.2092 0.0675 -0.7302 

Lower layer SM 0.1137 0.8815 0.3773 0.1429 -0.5785 
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Assessment of drought-risk and vulnerability in this study has largely 

reinforced the initial concept of Wilhite (2000), and several other studies on 

vulnerability assessment elsewhere (e.g., (Jain et al. 2015; Pandey et al. 2010; Thomas 

et al. 2016; Wilhelmi and Wilhite 2002)). It, however, does extend the only study 

performed in Australia (Stone and Potgieter 2008). This study has shown that drought-

risk must be viewed as a product (and sum) of exposure to the climatic hazard and the 

underlying vulnerability of economic, demographic and agricultural practices 

including physiographic features. Droughts occur in virtually all climatic regimes, i.e., 

in both high and low-precipitation areas where aridity is considered a normal feature 

(Wilhite 2009). This makes droughts to be considered as a relative phenomenon and 

therefore, the risk of drought must be addressed as a relative measure (Downing and 

Bakker 2000). In consequence, it is difficult to reach standard criteria for drought-risk 

assessment. The overlay of several factors based on regional conditions, therefore, has 

established a relative criterion that makes the drought-risk assessment feasible. A 

further refinement on the sub-classification of factors may also be required given the 

nature of the regional climate. This study has attempted to present a methodology that 

can be used to assess drought vulnerability and risk in any given area.  

The selection of vulnerability, exposure and hazard factors can be arbitrarily 

executed (Araya-Muñoz et al. 2017; Hinkel 2011; Luers et al. 2003). In this study, the 

drought associated physiographic and climatic factors had been selected based on the 

current knowledge of the drought hazard as well as on the availability of reliable and 

most recent data. It had been assumed that this would explain the regions with high 

risk of drought, however, the results could change as knowledge on the subject 

expands and more data become available. There are, however, several other factors 

that could be considered in the drought-risk analysis. For instance, Thomas et al.  

(2016) used soil moisture availability, Ekrami et al. (2016) used evaporation, and Jain 

et al. (2015) used soil moisture deficit index for their study regions. These factors had 

been a limitation to the entire study region and their inclusion could be possible if the 

analysis had been carried out for the basins where these datasets are readily available. 

Future analyses could also incorporate social factors such as diversity of local 

economies, people’s sources of income, percent of farms acquiring insurance, and so 

on. Data acquisition of the biophysical and socio-economic factors has been beyond 

the scope of this study and this limitation has been acknowledged in Section 3.4. The 
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spatial resolution of the indicators is also very important for mapping high-resolut ion 

details. The hazard indicator, i.e., rainfall departure, initially had been at a coarser 5km

5km spatial resolution compared to other factors used in the analysis. The resolution 

of the hazard index used in this study is considered as a limitation because after 

reducing the cell size to 100m 100m, the several neighbouring pixels consequently 

had similar rainfall value.  

Application of fuzzy logic tool to develop the drought-risk index is a novel 

contribution to this study. Although the fuzzy logic theory has been in existence for a 

long time, its application on geospatial analysis has just made a breakthrough in the 

recent years. Fuzzy logic is an alternative logical foundation coming from artificial 

intelligence technology with several useful implications for spatial data handling, 

where it accommodates the imprecision in information, human cognition, perception 

and thought (Karabegovic et al. 2006). Accordingly, fuzzy logic is more suitable for 

dealing with real-world problems, because most human reasoning is imprecise. The 

major advantage of this fuzzy logic theory is that it avoids the bias through subjective 

judgements and allows the natural description, in linguistic terms, of problems that 

should be solved rather than in terms of relationships between precise numerical 

values. With this advantage, the fuzzy logic theory is a widely applied technique to 

deal with the complex systems in a simple way. Therefore, fuzzy logic appears to be 

instrumental in the design of efficient tools for spatial decision making and its 

application for drought-risk assessment in this study has shown it to be excellent for 

designing efficient tools to support the spatial decision-making processes.  

In spite of the significant merits and foresight provided by the spatio-temporal 

drought-risk mapping approach, the scope of this study has been limited to the 

computational analysis only. To further validate the drought-risk output maps, the 

actual field study is thus required that creates an opportunity for future and more 

extensive independent work. It is hoped that this study will seed better insights into 

the assessment of relative vulnerability and exposure to droughts in the SEQ region 

and is likely to assist decision-makers in better planning, management and mitigation 

strategies. The fuzzy logic method has provided a good estimate of the agricultural 

drought-risk due to its high correspondence with soil moisture on the spatial and 

temporal domain, and therefore could be useful for the demarcation of areas vulnerable 

to drought to facilitate the proactive planning for coping with future drought events.  
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7.5 Conclusions 

A descriptive drought-risk assessment index has been accomplished by a new 

methodology that incorporates vulnerability, exposure and hazard factors via 

integration with the fuzzy logic analytical tool in ArcGIS. The fuzzy logic approach 

has been advantageous as it aimed to minimise the subjectivity in the drought-risk 

assessment. By choosing fuzzy GAMMA overlay, the different fuzzy overlay 

operations available in the ArcGIS has allowed great flexibility in quantifying drought-

risk expressed in truth values that range in degrees between 0 and 1. Given the 

significance of the approach and its ability for spatio-temporal risk assessment, the 

results are likely to advance the application of ArcGIS for disaster-risk reduction and 

in solving complex drought issues through adaptation strategies.  

In terms of the application, this study has found the hazard index to be the determining 

factor of the level of risk associated with droughts. Where there has been a deficiency 

in rainfall, the drought-risk in that area has been high as well.  

The methodology developed in this study can be applied to support the existing 

drought (or any disaster) risk reduction plans and policies prepared by any authorities, 

organisations, enterprises, or sectors involved in coordinating their development plans, 

resource allocation, and the implementation of their respective program of activities. 

Given that this study has presented an advanced methodology for drought-risk 

assessment, the coverage for the entire nature and extent for drought-risk has been 

limited as there could be many more hydro-meteorological, physiographic , 

environmental and social factors incorporated in the analysis, provided the availabilit y 

and reliability of the data. Therefore, some recommended future work may include the 

following: inclusion of other factors in analysing drought hazard (e.g., meteorological, 

hydrological and agricultural drought indices); review of the technical characteristics 

of climate change and how it could affect drought-risk assessment process; and 

identification and field validation of the vulnerability, exposure, hazard and drought-

risk indices, including the quantity and quality of the data to be used as inputs in the 

model. Such studies can employ the current approach to yield useful pathways for 

water resource management in a drought-prone region. 

 



   

  

 

 

CONCLUSION 
 

 

8.1 Introduction 

This study aimed to develop and evaluate the drought-risk framework using statistical 

and geospatial modelling and analysis tools. To achieve this goal, three specific 

objectives, as detailed in Section 1.3, were addressed in Chapters 4 through 7. The 

current chapter presents the summary of the findings and offers recommendations for 

future research work. 

8.2 Summary of Findings 

The study has provided novel knowledge, innovative framework and fresh insights on 

drought-related disaster-risk in urban and agricultural sectors. This has yielded new 

information in relation to the assessment of drought through the integration of 

statistical (copula models) and spatial analytical (fuzzy logic in ArcGIS) tools.  

The study from Chapter 3 served as the “gateway” for modelling of drought-

risk. It scoped the statistical and spatial analytical tools that allowed the derivation of 

drought properties (severity, intensity and duration) for every drought event recorded 

since 1915 to 2016, formulation of joint distribution functions, and transformation and 

standardisation of drought-risk indicating variables. The primary outputs were the 

characterisation of drought events using SPEI, development of the conditiona l 

probabilistic model, and generation of 100m100m gridded drought-risk maps using 

indicating variables representing a hazard, vulnerability, and exposure to droughts. 

Using the analyses in Chapters 4 & 5, the suitability of SPEI for characterising 

Australian drought events for four point-based locations (namely R1, R2, R3 and R4) 

in the SEQ region was detailed. The following were the major findings: 
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 The SPEI precisely identified the major and minor, well-documented 

droughts compared to SPI, RDDI and RAI, and was well in phase with 

the upper layer soil moisture (WRel1); 

 Comparison of SPEI with upper layer soil moisture validated the ability 

of SPEI to capture the agricultural consequences of persisting droughts. 

Here, very low values of SPEI corresponded with very low values of 

soil moisture, demonstrating the agricultural effect of underlying 

dryness;  

 Drought D-S-I properties exhibited a strong association between each 

other, where the majority of events with longer duration also attained a 

higher severity and intensity. However, droughts with high intensity did 

not necessarily have high severity or long duration as such events can 

be short-lived but very acute in terms of paucity of water resources;  

 SPEI on longer timescales consistently detected and ranked the severity 

of various drought events that lasted for generally long periods, such as 

the Millennium and WWII Droughts.  

In Chapter 6, the copula-statistical models were applied to assess drought-risk 

in terms of conditional return periods based on the multivariate joint distributions. 

Three sets of analysis were carried out: (i) SPEI vs. climate mode indices; (ii) drought 

D-S-I properties vs. climate mode indices; and (iii) D vs. S, D vs. I and S vs. I. The 

probabilistic prediction models were developed to predict SPEI and D-S-I using the 

information from climate mode indices (Niño 4 SST, SOI and EMI) given the 

appropriate copulae. The following were major findings:  

 For bivariate joint distributions, a mix of Gumbel, Clayton and Frank 

copula were found to be most appropriate to the paired datasets. For 

trivariate, only the Frank copula was found to reveal greater 

dependence between three variables in consideration, i.e., [Niño 4 SST, 

SOI | SPEI] and [S, D | I];  

 Predicted values of SPEI conditional on separate Niño 4 SST and SOI 

and coupled [Niño 4 SST, SOI] combination generated marginal errors 
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when compared with observed values, suggesting copula-based joint 

distributions to be potentially suitable for drought predictions; 

 The probability of the certain value of SPEI to occur, conditional on 

certain thresholds of Niño 4 SST and SOI, was well achieved by the 

bivariate and trivariate-based copula models. Thus, the probability of 

obtaining a negative value of SPEI (corresponding to droughts) was 

high with substantial (negative) value of Niño 4 SST (SOI);  

 Prediction models generated very small errors in visualising D, S and I 

properties using the information from Niño 4 SST and EMI;  

 Analyses also found that as the magnitude of ENSO indicators shift 

towards their extreme values, in the direction of enhancing drought 

conditions, the return period of drought properties increase as well, 

suggesting the rarity of such extreme events;   

 The study also ascertained the trivariate return period, ‘TOR’, to be less 

than both univariate and bivariate ones. This was attributable to the 

additional variables in the drought prediction model making the 

trivariate exceedance probabilities smaller than two bivariate or a 

univariate case.  

 

In Chapter 7, drought-risk on seasonal (DJF, MAM and SON for the year 2007) and 

annual (2007, 2009 and 2013) timescales using various vulnerability and exposure 

factors was assessed on spatial maps. The percent rainfall departure was considered as 

the drought hazard index, land use and population factors produced the exposure index, 

while soil depth, sand soil type, plant available water capacity, elevation and slope 

factors generated the vulnerability index. The individual factors were initially 

categorised into subclasses in order to obtain the probable influence of each factor to 

the drought-risk. The following were major findings: 

 Based on Bayes theorem, among exposure factors, the population was found to 

have higher probability conditional on drought-risk with 0.61, while land use 

had 0.39. Among vulnerability factors, the sand type had the highest 

probability (0.27) while plant available water capacity had the lowest (0.13). 
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The values suggested that population density and type of soil (i.e., sand) would 

pose greater risk to drought impacts;  

 Level of drought-risk was heavily reliant on the drought hazard index, i.e., the 

percent rainfall departure. In other words, regions with highly deficient rainfall 

had the highest level of risk to droughts;  

 The validation against soil moisture, which was an independent variable in the 

study, showed high correlation accompanying the risk magnitudes. Hence, the 

significant findings revealed this methodology to be potentially suitable for 

drought-risk assessments.  

 

This research thus proved the hypothesis that “statistically and spatially explicit 

drought-risk models can provide sets of information that are useful in planning and 

developing strategies from the potential effects of extreme drought events to 

agriculture and availability of water resources”.  

In the aspect of technical and analytical contribution, usefulness, and 

innovation, the findings from this study were equal to or exceeded all other studies 

reported in the literature due to the following reasons: 

 The reference evapotranspiration component in the revised statistical-based 

drought index, i.e., SPEI, well represented the Australian droughts in the 

analyses for identification of onset/termination points, and derivation of 

drought severity, intensity and duration based on the run-sum approach;  

 The evaluation of SPEI against one of the most important identifiers of 

agricultural droughts, i.e., the soil moisture content verified the linkage 

between the two and rendered the importance of SPEI for drought monitoring 

and quantifying purposes; 

 The application of vine copula method for multivariate joint distribution, 

(particularly the Clayton, Gumbel and Frank for bivariate and Frank copula for 

trivariate-based probabilistic drought prediction model that has never been 

applied for drought-risk modelling in the drought-prone SEQ region), rendered 

an important advancement in terms of potential applications for agriculture, 
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water management and related socio-economic sectors where droughts 

constitute significant risk;  

 Through the novel, easy-to-implement, statistical and geospatial-based 

framework, this study revolutionised the old compartmentalised methods of 

assessing drought-risk;  

 Finally, the evaluation of series of climate mode indices to produce conditional 

probabilistic prediction of drought index (SPEI) and properties (D-S-I) in 

Australia was the first major contribution of this study;   

 The nexus between the hazard, vulnerability and exposure factors for 

descriptive modelling technique with Bayesian-based conditional probability 

and GIS-enabled fuzzy logic application to drought-risk assessment was the 

second major contribution to the body of knowledge.  

 

A number of advantages can be generated from the above studies. First, the 

feasibility of integrating copula and GIS-based fuzzy logic analyses in setting up a 

comprehensive drought-risk management system. This is expected to significantly 

help in reducing the amount of damage caused by future droughts. Furthermore, for a 

highly competitive environment, especially financial resource and support for farmers, 

the analyses of drought-risk denote great promise for finding the optimum strategies. 

Second, the framework developed in this study can be applied to any study locations. 

The methodology developed is not limited to the current study region because it is 

primarily data-dependent; hence, the methodology can be used anywhere where data 

is available.  

 

8.3 Recommendations for Future Works 

The following analyses were found limited in this study, hence recommended for 

future works: 

 The unavailability of gridded reference evapotranspiration (ETo) data for 

computation of Supply-Demand Balance in generating SPEI. For Chapters 4-

6, a clustering technique could have been possible if gridded ETo data were 
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available to assess drought-risk in a broader study region. To circumvent this 

issue, potential evapotranspiration can be estimated from FAO Penman-

Monteith method using climatological records of wind speed, humidity, 

sunshine and temperature if such data are available;  

 Generation of copula-based multivariate joint distribution using a profusion 

other climate mode indices that tend to influence Australian rainfall. This study 

exclusively used ENSO indicators, however, there are several other large-scale 

drivers that influence Australian rainfall;  

 Use of even higher resolution gridded rainfall data. In this study a 5km 5km 

rainfall data from AWAP was utilised, however, an increase in data resolution 

may help in obtaining much more detailed information on drought-risk levels, 

especially on the spatially-explicit maps;  

 Integration of socio-economic and climate change factors in the spatial 

representation of drought-risk on a catchment scale; 

 Analysis of climate adaptation capacity in addition to the risk and vulnerability 

assessment of droughts;  

 The most appropriate way to validate spatial drought-risk maps requires field 

study, which was beyond the scope of this investigation. Hence, there is an 

opportunity to conduct an investigation as such in the future.  
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Appendix A 

Chapter 4 

 

 

Figure A4.1: The Continuous Wavelet Transform (CWT) for (a) WRel1, (b) SPEI, 

(c) SPI, (d) RDDI and (e) RAI for the location R2.  
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Figure A4.2: The Continuous Wavelet Transform (CWT) for (a) WRel1, (b) SPEI, 

(c) SPI, (d) RDDI and (e) RAI for the location R3.  
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Figure A4.3: The Continuous Wavelet Transform (CWT) for (a) WRel1, (b) SPEI, 

(c) SPI, (d) RDDI and (e) RAI for the location R4.  
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Figure A4.4: CUSUM chart of SPEI data for location R2 with significant changes 

shown in the background. 
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Chapter 5 

Table A5.1: Number of drought events for different timescales 

SPEI 

Timescale R1 R2 R3 R4 

1 82 83 85 91 

3 92 85 82 85 

6 66 60 56 61 

9 43 50 51 39 

12 40 40 40 36 

24 24 27 27 33 
 

Table A5.2: Kendall’s tau of SPEI vs. RAI and SPEI vs. WRel1 for different 
timescales 

  R1 R2 R3 R4 
Timescale 
(months)  

RAI WRel1 RAI WRel1 RAI WRel1 RAI WRel1 

1 0.769 0.505 0.743 0.598 0.799 0.528 0.609 0.578 

3 0.818 0.546 0.792 0.726 0.847 0.604 0.682 0.689 
6 0.841 0.594 0.826 0.765 0.844 0.638 0.717 0.701 
9 0.883 0.662 0.845 0.753 0.850 0.678 0.766 0.717 
12 0.914 0.613 0.857 0.752 0.851 0.709 0.806 0.744 

24 0.913 0.724 0.869 0.761 0.850 0.707 0.813 0.763 
 

 

Figure A5.1: Monthly SPEI for a segment of Millennium Drought for different time 

scales.  
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Chapter 6 

 

Figure A6.1: Density plots of SPEI vs Niño 4 SST and SPEI vs SOI using Frank and 

Gumbel copula, respectively.  
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Chapter 7 

 

Figure A7.1: Geometric interval of drought-risk classification for 2007. 

 

 

Figure A7.2: Geometric interval of drought-risk classification for 2009. 
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Figure A7.3: Geometric interval of drought-risk classification for 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 


