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The chemical and isotopic compositions of thermal springs located along the Son–Narmada–Tapti
(SONATA) mega lineament in central India have been investigated. The issuing temperatures of the
thermal waters vary from 31◦ to 89◦C for the thermal springs and 24◦ to 25◦C for the cold springs. These
thermal springs are located on the Archean Chotanagpur Gneissic Complex (CGC) in the eastern part
of peninsular India. The thermal springs are mostly alkaline in nature with pH varying from 7.5 to 9.5.
Piper diagram suggests that the chemistry of the thermal waters is compatible with the granitic host
rocks through which the waters circulate. Mineral saturation index suggests that the thermal waters
are saturated with cristobalite and quartz at lower temperatures (less than ∼130 to 150◦C), and calcite
and forsterite at higher temperatures (∼160◦ to 250◦C). The estimated reservoir temperature based on
chemical geothermometers is in the range of 132◦–265◦C, which favours a medium enthalpy geothermal
system. Oxygen isotope fractionation of Bakreswar and Tantloi thermal springs highlights a higher reser-
voir temperature than estimated by chemical geothermometer. Positive gravity anomalies over Bakreswar
and Tantloi areas strongly suggest a basement/mantle upliftment or mafic intrusion which could account
for the heat source close to the surface. However, the large negative gravity anomaly depression around
the Surajkund and Katkamsandi thermal springs indicates presence of deep seated faults.

1. Introduction

The states of Jharkhand and West Bengal host a
number of thermal springs with issuing tempera-
tures varying between 31◦ and 89◦C. In West
Bengal, these thermal springs occur at Bakreswar

(23◦52′48′′N; 87◦22′40′′E, Birbhum district) while
in Jharkhand, they occur at Tantloi (24◦2′8′′N;
87◦17′15′′E, Dumka district), Surajkund (24◦8′58′′N;
85◦38′43.14′′E, Hazaribagh district), Katkamsandi
(24◦6′5.6′′N; 85◦12′7.57′′E, Hazaribagh district) and
Indrajurba (23◦49′59′′N; 85◦30′E, Ramgarh district).
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All these thermal springs issue through
Chotanagpur Gneissic Complex (CGC) composed
of calc-silicate, amphibolite, gabbro, pegmatite,
and dolerite except the one at Indrajurba that
flows through Gondwana sedimentary formations.
The thermal springs at Tantloi with temperatures
of 68◦–70◦C are located on ENE–WSW fault, while
the Bakreswar thermal springs are located over
NNW–SSE trending fault. The thermal springs at
Surajkund lie over E–W trending fault (figure 1).

Deb and Mukherjee (1969), Bandyopadhyay and
Nag (1989), and Majumdar et al. (2005, 2009)
studied the chemical composition of Bakreswar and
Tantloi thermal springs earlier. The geochemical
signatures of the thermal springs show temporal
variation with a few ions like Na, Cl, and SiO2

recording major deviation. In the present paper,
we report new chemical and isotope data on the
above thermal springs and discuss the evolution of
the thermal springs in the light of original gravity
data and also point out the power generation
capacity of this thermal province.

2. Geotectonic setting of the area

The Chotanagpur Gneissic Complex (CGC) of
eastern peninsular India has undergone differ-
ent tectonic activities from Precambrian onwards
(Sarkar 1982) to Cenozoic Era (Dunn 1939, 1941;
Ghosh 1948; Desikachar 1974; Shanker 1991). Deep
circulation of meteoric waters in CGC along the
fracture zones and ongoing tectonic movements
resulted in several thermal manifestations over the
period (Deb and Mukherjee 1969).
The basement rocks have four sets of vertical

to subvertical joints trending NW–SE, NE–SW,
ENE–WSW, and N–S (Nagar et al. 1996). A large
number of dolerite dykes, trending parallel to the
regional fractures, transect the granites (figure 1).
Tantloi thermal springs, controlled by a WNW–

ESE trending fault, are situated 20 km NW of
Bakreswar and issue through CGC, comprising
charnockite and porphyrytic granite gneiss.
Gondwana formations that include Talchir shale
(Pyrite content, Mukherjee 1964), boulder bed
and gritty sandstone are also exposed north of
Tantloi (Mukhopadhyay 1989; Mukhopadhyay and
Sarolkar 2012) (figure 2). Other thermal springs
at Surajkund, Katkamsandi, and Indrajurba are
also located in the same geological setting.

3. Methodologies

Representative water samples were collected from
the study area, comprising 15 thermal springs, one
cold spring, and five groundwater samples. Two F
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sets of water samples were collected. One set of
water sample was acidified with HNO3 on site and
the other set was stored at a lower temperature for
future analysis (Giggenbach and Goguel 1988). The
pH and temperature measurements were deter-
mined in the field using ORION pH meter. Water
samples were analyzed for major ion concentra-
tions. Cations and silica were analyzed using ICP-
AES. Sulphate concentration was measured with
the aid of UV spectrophotometer; alkalinity was
measured by H2SO4 titration, and chloride, by
using ion selective electrode method (table 1).
These analyses were carried out as per the standard
procedures (APHA 1977). The analyses of oxygen
and hydrogen stable isotopes were carried out at
the Department of Earth Sciences, University of
Florence, Italy.

4. Results and discussion

4.1 Hydrogeochemistry

Ground waters of the study area are near neutral
to slightly alkaline (pH = 6.9–7.8 at 25◦C) with
dissolved solids varying from 367 to 612 mg/L. EC
range from 548 to 913 μS/cm and SiO2 content
in groundwater is 18–86 mg/L. The groundwater
of the study area is of Na–HCO3 type (table 1).
The thermal springs record wide range of surface

temperatures varying from 31◦ to 89◦C. They are
near neutral to moderately alkaline (pH=
7.5–9.5 at 25◦C) in nature with TDS varying from
461–924 mg/L (table 1). SiO2 content is higher in
thermal waters (97–143 mg/L) relative to ground-
water (18–86 mg/L). Amongst the cations, Na is
predominant (92–198 mg/L), while the concentra-
tion of K and Ca is low (<4 mg/L) except samples
8 to 12. Mg content (0.01–1.2 mg/L) is very less in
the thermal springs.
All the water samples are plotted in the Piper

diagram (Piper 1944) (figure 3). It is seen from
figure 3 that the thermal springs are of Na–Cl
type except for Indrajurba thermal spring of the
Na–HCO3 type. The cold spring (sample 16) shows
typical groundwater character and is Ca–HCO3

type.

4.2 Anion variation

Water samples from the study area were plotted
in the Cl–SO4–HCO3 diagram (figure 4) to select
suitable samples for estimation of reservoir tem-
perature as suggested by Giggenbach (1988). As
seen in figure 4, most of the thermal waters of
the study area fall within the Cl field and samples
3, 4, 5, and 7 fall within the chloride/mature water
field of Giggenbach (1988). These samples may be
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Table 1. Chemical parameters of water samples from the study area (major ion concentration, TDS in mg/l, and EC in
μS/cm).

Sl. Sample δ18O δD
no.* name pH ◦C EC TDS Na+ K+ Ca++ Mg++ Cl− HCO−

3 SO−−
4 SiO−−

2 (�) (�)

1 JTaSw1 9.5 70 731 490 92.2 2.1 1.3 0.01 97.5 30 29.4 98.6 −4.1 −30.9
2 JTaSw2 9.3 68 688 461 95.4 2.4 1.5 0.15 99.0 25 35.6 101.2 −4.3 −31.3
3 WBSw1 9.4 55 739 495 112.0 2.2 1.3 0.01 128.0 35 19.8 98.6 −2.7 −24.8
4 WBSw2 9.2 65 725 486 109.0 2.3 1.2 0.01 115.0 55 18.2 92.6 −2.6 −24.3
5 WBSw3 9.3 56 769 515 115.3 2.2 1.3 0.01 122.5 65 12.8 97.9 −2.3 −24.9
6 WBSw4 7.7 42 876 587 114.1 3.3 3.6 0.19 112.5 135 17.8 101.0 −2.7 −24.1
7 WBSw5 9.3 70 749 502 110.8 2.2 1.3 0.01 117.5 60 16.7 97.0 −2.5 −33.1
8 JSSw-1 8.5 89 988 662 141.2 8.0 2.3 0.01 136.2 45 69.0 130.4 NA NA
9 JSSw-2 8.4 31 1379 924 198.8 19.2 23.2 0.90 159.0 115 152.5 128.6 NA NA

10 JSSw-3 8.3 32 1152 772 147.6 9.3 8.9 0.40 96.5 75 181.1 127.5 NA NA
11 JSSw-4 8.7 32 1106 741 149.2 11.1 9.7 0.30 135.0 71 79.2 143.0 NA NA
12 JSSw-5 8.4 47 1063 712 150.4 8.2 3.3 0.01 126.4 65 89.4 135.0 NA NA
13 JKSw-1 8.9 62 743 498 126.4 4.1 2.9 0.01 110.8 60 60.5 67.0 NA NA
14 JISw 7.9 35 770 516 119.3 2.9 8.0 1.20 54.5 215 14.1 50.6 NA NA
15 JISw1 8.1 34 752 504 117.9 2.8 7.7 1.20 49.1 195 28.0 51.4 NA NA
16 JBaCw 7.4 25 409 274 12.5 1.5 30.5 13.70 26.0 135 7.2 23.8 NA NA

17 JSGw-1 7.2 26 688 461 54.1 8.8 39.0 6.30 47.6 160 34.9 55.3 NA NA

18 JKGw 6.9 26 548 367 40.2 3.0 36.8 12.70 39.0 190 8.9 18.6 NA NA

19 JTaGw1 7.8 27 660 442 43.2 1.5 25.7 6.34 32.5 180 4.3 74.2 −4.6 −36.4

20 JTaGw2 7.1 26 569 381 44.7 0.6 21.3 3.85 60.0 115 3.7 66.0 −5.1 −38.5

21 JTaGw3 7.5 25 913 612 67.7 1.5 34.5 15.62 75.0 235 10.2 86.4 −4.6 −36.7

∗1–15: thermal spring waters; 16: cold spring water; 17–21: groundwater samples.

Figure 3. Piper trilinear diagram (Piper 1944) showing the geochemical variation of different water types from the study area.

considered as those that are not affected by any
secondary processes (i.e., mixing with the near sur-
face groundwater) during the ascent of the water
to the surface. A few samples (Nos. 6, 14, 15) plot

in the HCO3 field (figure 4) indicating process of
mixing with the near surface ground water during
their ascent to the surface. The plots of samples 9,
10, and 12 trending towards the SO4 field could
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Figure 4. Cl–SO4–HCO3 diagram (Giggenbach 1988) showing the position of water samples from the study area, symbols
are same as in figure 3. The grey ellipse shows the plots of earlier work by Majumdar et al. (2009).

Table 2. Estimated reservoir temperature of the study area thermal springs based on chemical geothermometry.

Silica geothermometry Cation geothermometry

Sample No. steam Maximum Na–K Na–K (Giggenbach Na–K–Ca (Fournier

Sl. no. name loss steam loss (Fournier 1983) et al. 1983) and Truesdell 1973)

1 JTaSw1 136.4 132.1 117.0 137.3 178.1

2 JTaSw2 137.9 133.3 121.9 142.1 103.2

3 WBSw1 136.4 132.1 109.3 129.9 176.9

4 WBSw2 132.9 129.1 111.7 132.1 175.1

5 WBSw3 136.0 131.7 107.8 128.4 176.1

7 WBSw5 135.5 131.3 109.9 130.4 176.1

8 JSSw-1 152.6 145.6 172.7 190.7 238.2

9 JSSw-2 151.7 144.9 214.0 229.5 212.3

10 JSSw-3 151.2 144.5 180.3 197.9 174.5

11 JSSw-4 158.2 150.3 192.9 209.7 193.0

12 JSSw-5 154.7 147.3 170.0 188.1 265.0

13 JKSw-1 116.0 114.7 136.3 156.0 238.9

be the result of reaction with pyrite bearing
Gondwana sediments and Rajmahal volcanics that
are exposed towards the northern part of the area
of investigation (figure 1).

4.3 Geothermometry

Estimated reservoir temperatures based on silica
concentration in thermal waters (Fournier 1973)
and cation geothermometers are given in table 2.
Giggenbach (1988) proposed Na–K–

√
Mg ternary

diagram for a more precise reservoir temperature

estimation. The reactions involving K–Na, equi-
librate at high temperatures and do not adjust
quickly to the physical environment at shal-
low depths, thus giving high values of reservoir
temperature. While reactions involving K/

√
Mg,

equilibrate at low temperatures and give very
low reservoir temperatures. Giggenbach (1988)
combined both Na–K and K/

√
Mg thermometers

and gave Na–K–
√
Mg ternary diagram for esti-

mating the reservoir temperatures. Thus for a
more accurate estimation of the reservoir tempe-
rature, thermal waters of the study area were
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Figure 5. Na–K–
√
Mg geothermometer ternary diagram of Giggenbach (1988) showing the variation in study area thermal

springs. The grey ellipse covers the plots of the previous work done by Majumdar et al. (2009).

plotted in the Na–K–
√
Mg ternary diagram

(figure 5).
Most of the thermal springs of the study area

plot in the partial equilibrium field in figure 5.
The estimated reservoir temperature for Bakreswar
(samples 3–7) varies from 120◦ to 140◦C while for
Tantloi, the temperature is about 140◦C. For the
sake of comparison, the field of thermal springs
reported earlier from Bakreswar and Tantloi
(Majumdar et al. 2009) is also shown in figure 5.
The estimated reservoir temperature for Surajkund
varies from 160◦ to 190◦C (samples 8–12, table 1)
and is much higher compared to others. All other
thermal springs plot in the immature field of
figure 5.

4.4 Mineral equilibrium and geothermometry

Mineral equilibrium was calculated with the help of
activity of the species in water samples over a range
of temperatures. This is expressed for mineral k in
terms of log (Q/K)k (Reed and Spycher 1984):

log

(
Q

K

)
k

= log
i∏
a
vi,k

i,k − log Kk (1)

where K is the equilibrium constant for mineral
k, ai,k is the activity and vi,k is the stoichio-
metric coefficient of component species i in the

equilibrium mass action expression for mineral k,
written with the mineral on the left-hand side.
For supersaturated minerals, log (Q/K)k value is
greater than zero while it is less than zero for
undersaturated minerals. Calculation of species
in water samples were performed by PHREEQC
(Parkhurst and Appelo 1999) with WATEQ4E
thermodynamic database (Ball and Nordstrom
1991) included in the PHREEQC package.
The reservoir temperature of the study area cal-

culated using Na–K–Ca geothermometer (Fournier
and Truesdell 1973) is 120◦C and 110◦–190◦C by
the Na–K–

√
Mg diagram (figure 5), while by Q/K

plot (figure 6), the temperatures estimated are
130◦–180◦C. Figure 6 indicates that the geother-
mal water is in equilibrium with calcite and quartz,
which may be a reflection of the fluids being derived
from a much deeper source where the host rock
is granite gneiss and later interacting with the
enclaves of calc-silicate rocks at lower temperature
at shallower depths. This accounts for the effects of
different rates of re-equilibration of minerals with
waters that are cooled during ascent (Reed and
Spycher 1984).

4.5 Oxygen and hydrogen isotope

Groundwaters of the Bakreswar and Tantloi area
vary in δ18O values from –3.8 to –5.1� and δD
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Figure 6. Mineral equilibrium diagram of (a) Surajkund, (b) Katkamsandi, (c) Tantloi, and (d) Bakreswar thermal springs
of the study area.

value from –29.1 to –38.5� (table 1). Thermal
waters of the area give δ18O values in the range
from –2.3 to –4.3� and δD values in the range of
–33.1 to –24.1�. The oxygen and hydrogen isotopic
compositions of the water samples were plotted in
the δ18O vs. δD diagram (figure 8). The position
of the thermal waters with respect to the Indian
meteoric water line (IMWL, IAEA 2008) shows
‘oxygen shift’ which signifies water–rock interac-
tions above 220◦C (Nuti 1991; Giggenbach and
Soto 1992; Giggenbach 1992). Bakreswar thermal
springs are clustered together except for Agnikund
(sample #7) probably due to steam separation,
resulting in oxygen and hydrogen shift (Truesdell
et al. 1977; Giggenbach 1992). Groundwater sam-
ples of the study area also show oxygen shift as in
figure 7, which strongly supports the thermal origin
of the groundwater.

4.6 Gravity anomaly

Gravity anomaly map was prepared based on the
terrain corrected Bouguer Gravity Anomaly map

of India (GSI 2006). The study area shown in
figure 8 is characterized by high positive anomalies
(30 mGal).
The gravity anomaly profiles were prepared

along two E–W sections passing through Bakreswar
and Tantloi thermal spring sites respectively, and
also one NNW–SSE profile passing through both
the thermal springs (figures 8, 9a). The E–W
profile shows a large area of positive anomaly in
Bakreswar and Tantloi geothermal fields. The pro-
file from east to west over Bakreswar shows sud-
den change in gravity anomaly reaching up to 30
mGal, and then suddenly decreases to the negative
anomaly. This behaviour of gravity anomaly occurs
due to the presence of the fault in the area trending
N–S (Telford et al. 1990; Jacoby and Smilde 2009).
The profile NNW–SSE shows sudden change in the
anomaly over Tantloi, possibly due to the presence
of the ENE–WSW trending fault. It is interesting
to note that these major faults are close to the
hydrothermal manifestations. The gravity anoma-
lies over these geothermal fields could be ascribed
to a combination of hydrothermal metamorphism
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Figure 7. Oxygen and hydrogen isotope variation diagram of Bakreswar and Tantloi water samples. Symbols are same as
in figure 3 and the grey ellipse represents data from Majumdar et al. (2005).

Figure 8. Bouguer gravity anomaly map (terrain corrected) of the study area where S: Surajkund; K: Katkamshandi; I:
Indrajurba; B: Bakreswar and T: Tantloi; F-F: SONATA mega lineament. Solid black lines indicate line along which Bouguer
gravity anomaly profiles are constructed and are shown in figure 9(a and b).

of the sediments and concomitant local basement
or mantle highs.
In the case of other geothermal sites, three grav-

ity profiles were studied, two from Katkamsandi to
Surajkund and Indrajurba and one from Surajkund

to Indrajurba (figure 8). Katkamsandi, Surajkund,
and Indrajurba thermal springs fall in the nega-
tive gravity anomaly zone with Indrajurba thermal
springs falling in the lowest negative anomaly
zone (figure 9b). A sudden change in the gravity
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Figure 9. Gravity anomaly profile around (a) Bakreswar and Tantloi geothermal field; (b) Surajkund, Katkamsandi and
Indrajurba geothermal fields. Profile tacks are shown with solid black lines in figure 8.

anomaly near Indrajurba along the Surajkund–
Indrajurba profile, may indicate a horst structure
or a mafic intrusive facilitating propagation
of thermal waters. Large variation in negative
anomaly values between Surajkund, Katkamsandi,
and Indrajurba can be related to deep seated faults
in that area (ONGC (Oil and Natural Gas Com-
mission) 1969). This geothermal province appears
to be a part of the Son–Narmada–Tapi (SONATA)
mega lineament, which runs parallel to the study
area, and is most likely to rely on the source for
the heat circulation in these thermal springs.

4.7 Spectral analysis of gravity anomaly

Energy spectrum analysis of gravity or magnetic
anomaly has been widely studied by several
researchers (Bhattacharyya 1966, 1978; Spector
and Grant 1970; Gerard and Debeglia 1975) to
decipher the subsurface structures. In addition to

the bouger gravity interpretation made and dis-
cussed in the above section, this method is applied
for the present field site to bring out quanti-
tative interpretation of the subsurface structure
to render further support to the inferences made
above. Thus the Bakreswar gravity anomaly profile
(figure 10) suggests that the basement is located
at a shallow depth of 0.6 km as shown in figure 10
as K1 and K2. The depth along the profile K2 is 1.5
km. Depth variation in both K1 and K2 sections
is 0.7 km, which suggests faults below Bakreswar
geothermal site.

5. Conclusions

Thermal springs of the study area belong to
Na–Cl type except for two thermal springs that fall
in the Na–HCO3 field while the cold spring is of
Ca–HCO3 (figure 3). The groundwater, on the other
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Figure 10. Gravity anomaly along the Bakreswar geothermal site, K1 and K2 is the length taken for spectral analysis to
estimate the depth to anomalous sources.

hand, defines an array between the cold spring
and the thermal spring indicating a large ther-
mal spring component in the ground water. This
is very well seen in the oxygen–hydrogen isotope
diagram of Bakreswar and Tantloi geothermal field
(figure 7) where the groundwater exhibits a large
oxygen shift. The temperature estimated using the
cation geothermometers yields a temperature much
higher than reported in earlier studies (Majumdar
et al. 2005, 2009). It is apparent that the ascend-
ing waters are reacting with the wall rock at
temperatures greater than 220◦C. One of the ther-
mal springs (sample 7) also shows a hydrogen shift
indicating steam loss during its ascent (Nuti 1991;
Giggenbach and Soto 1992; Giggenbach 1992,
figure 7).
The presence of high He content (1.5%) and

low Kr/Xe ratio (0.262) in thermal gases from
Bakreswar and Tantloi (Ghose and Chatterjee
1980; Ghose et al. 1989) suggests that the thermal
springs are ascending through high heat generating

granites. This is further supported by high heat
flow values reported (200 mW/m2, Shanker 1988;
Chandrasekharam 2000) in this area. The environ-
ment through which the above thermal springs are
circulating appears to be similar to Tattapani ther-
mal province in Chhattisgarh where the thermal
gases contain high He content (1.54%, Minissale
et al. 2000) with high heat flow value (280 mW/m2,
Chandrasekharam and Chandrasekhar 2010). Both
deep seated fault system (SONATA) and high heat-
generating granites appear to be the main factors
for circulating the thermal springs of this area.
In case of Surajkund, Katkamsandi, and Indra-

jurba thermal springs, the plots (figure 3) although
similar to Bakreswar and Tantloi thermal springs,
the Surajkund thermal spring registered higher
reservoir temperature (190◦C, figure 5) compared
to other thermal springs. As reported above, the
influence of pyrite present in the Talchir shales and
Rajmahal Traps is very well reflected in the shift of
the plots towards the sulphate fields as in figure 3.
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The gravity anomaly pattern gives indication of
mantle upwarp in this region supported by the
presence 100–105 Ma (McDougall and McElhinny
1970) Rajmahal Traps in north of Tantloi. Thus,
the geothermal system in the Bakreswar–Tantloi
area is controlled by both deep seated structures
and high heat-generating host granites. It has to be
seen further whether any mantle He is present in
the thermal gases to understand the involvement
of mantle in the evolution of the thermal springs in
this area. Considering the reservoir temperatures
indicated by the isotope signatures, emanation of
high He content in the thermal gases and gravity
anomaly pattern over the Bakreswar and Tantloi
thermal sites, we find that these sites are potential
areas for geothermal development as well as extrac-
tion of He from the thermal gases for commercial
purposes. Pilot plants to extract and purify He
from the thermal gases of Bakreswar and Tantloi
are already in operation (Ghose and Chatterjee
1980; Ghose et al. 1989). Exploratory drilling for
He extraction on a commercial scale combined
with installation of 5 MWe binary power plant in
Bakreswar and Tantloi sites are being undertaken
based on hydrogeochemical and geophysical char-
acteristics of the geothermal fields investigated by
various works in the study area.
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