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Existing Theories

Boundary Value Problem

Beranek and Work1

London2

Mulholland, Price, and Parbrook3

Heckl5

Fahy6

Alternative approaches

Mulholland, Parbrook, and Cummings4

Hamada and Tachibana7

Multiple-reflection

Transfer matrix

Different media

Locally reacting

Different panel impedance leads to,

Limp panel

Constant resistance

Limp panel

+

Constant resistance

Stiff panel

+
Hysteretic resistance

Stiff panel
+

Can be extended to many applications

3
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Existing Theories
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◼ Beranek and Work’s equation for a double-limp-panel system without resistance (𝑍 = 𝑗𝜔𝑚) 1,

𝑝0/𝑝5 = cos 𝑘𝑑 −
𝜔𝑚1

𝜌𝑐
sin 𝑘𝑑 + 𝑗 sin 𝑘𝑑 +

𝜔 𝑚1 +𝑚2

𝜌𝑐
cos 𝑘𝑑 −

𝜔2𝑚1𝑚2

𝜌2𝑐2
sin 𝑘𝑑

• Normal incidence

• Different panels

• The total sound pressure ratio can be transferred to transmission coefficient3.

• This limp panel impedance can be substituted into other models, i.e. London’s model.

air properties

panel surface mass
panel distance
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◼ London’s expression of transmission coefficient for identical panels2,

𝑇 =
𝑝𝑡
𝑝𝑖

= 1/ 1 +
𝑍𝑤 cos 𝜃

𝜌𝑐
+
𝑍𝑤
2 cos2 𝜃

4𝜌2𝑐2
1 − 𝑒−𝑗 2𝑘𝑑 cos 𝜃

◼ A generalized version of London’s model8,

𝑇 2 = 1/ 1 +
𝑍1 + 𝑍2
2𝜌𝑐

cos 𝜃 +
𝑍1𝑍2 cos

2 𝜃

4𝜌2𝑐2
1 − 𝑒−2𝑗𝑘𝑑 cos 𝜃

2

• Oblique incidence

• Different panels

panel impedance
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◼ Mulholland et al. derived multiple-reflection theory4,

𝑇 2 =
𝑥2

1 − 1 − 𝑥 2𝑒−𝑗2𝑘𝑑 cos 𝜃

2

◼ A generalized version derived from9,

𝑇 2 =
𝑥1𝑥2

1 − 1 − 𝑥1 1 − 𝑥2 𝑒−𝑗2𝑘𝑑 cos 𝜃

2

• Equivalent to Beranek and Work’s and London’s model4

𝜙𝑖

𝜙𝑖𝑥1

𝜙𝑖𝑥1𝑥2𝑒
−𝑗𝑘𝑑 cos 𝜃

𝜙𝑖𝑥1(1 − 𝑥2)

𝜙𝑖𝑥1(1 − 𝑥1)(1 − 𝑥2)

𝜙𝑖𝑥1𝑥2(1 − 𝑥1)(1 − 𝑥2)𝑒
−3𝑗𝑘𝑑 cos 𝜃

𝜃
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◼ Mulholland et al. extended Beranek and Work’s method3,

𝑇 =
2𝜌2𝑐2 cos 𝜃1

𝑍𝑓 cos 𝜃1 + 𝜌1𝑐1 cos 𝜃2

coshΦ

sinh 𝑗𝑘2𝑑 cos 𝜃2 +Φ

𝜌1𝑐1
𝜌1𝑐1 + 𝑗𝜔𝑚2 cos 𝜃1

Φ = arccoth[
𝑗𝜔𝑚2 cos 𝜃1 + 𝜌1𝑐1

𝜌2𝑐2

cos 𝜃2
cos 𝜃1

]

𝑍𝑓 =
𝜌2𝑐2 coth(𝑗𝑘2𝑑 cos 𝜃2 +Φ) + 𝑗𝜔𝑚1 cos 𝜃2

cos 𝜃2

• Oblique incidence

• Different media and panels

medium outside

medium between panels

incident angle

refracting angle 

between panels

𝜃1 𝜃2

𝑝𝑖

𝑝𝑡

𝜌1, 𝑐1 𝜌1, 𝑐1𝜌2, 𝑐2
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double-limp-panel

𝑚1 = 7 kg/m2 𝑚2 = 7 kg/m2 𝑑 = 0.23 m
double-limp-panel at 𝜃𝑖 = 𝜋/4

𝑚1 = 7 kg/m2 𝑚2 = 7 kg/m2 𝑑 = 0.23 m

• Governed by mass law – 40 dB/dec

• Minima of transmission loss go to zero

• Resonances shift to higher frequencies at oblique incidence
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double-limp-panel

𝑚1 = 28 kg/m2 𝑚2 = 7 kg/m2 𝑑 = 0.23 m
double-limp-panel at 𝜃𝑖 = 𝜋/4

𝑚1 = 28 kg/m2 𝑚2 = 7 kg/m2 𝑑 = 0.23 m

• Governed by mass law – 40 dB/dec

• Minima of transmission loss do not go to zero

• Resonances shift to higher frequencies at oblique incidence
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double-limp-panel

𝑚1 = 15 kg/m2 𝑚2 = 15 kg/m2 𝑑 = 0.23 m
double-limp-panel at 𝜃𝑖 = 𝜋/24

𝑚1 = 15 kg/m2 𝑚2 = 15 kg/m2 𝑑 = 0.23 m

With hydrogen between panels and air outside

𝜌2 = 0.08988 kg/m3 𝑐2 = 1270 m/s

• Higher sound speed shifts resonances to higher frequencies
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◼ Fahy’s expression of transmission coefficient6,

𝑇 = −
2𝑗𝜌2𝑐2 sec2 𝜃 sin(𝑘𝑑 cos 𝜃)

𝑧1
′𝑧2

′ sin2(𝑘𝑑 cos 𝜃) + 𝜌2𝑐2 sec2 𝜃

𝑧′ = 𝑗𝜔𝑚 + 𝑟 + 𝜌𝑐 sec 𝜃 [1 − 𝑗 cot(𝑘𝑑 cos 𝜃)]

◼ London’s panel impedance2

𝑍𝑤 =
2𝑟

cos 𝜃
+ 𝑗𝜔𝑚(1 −

𝑓2

𝑓𝑐
2 sin

4 𝜃)

panel impedance

limp panel + constant resistance

critical frequency

stiff panel + constant resistance 
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double-limp-panel

𝑚 = 15 kg/m2 𝑟 = 1000 kg/m2s 𝑑 = 0.23 m
double-limp-panel at 𝜃𝑖 = 𝜋/4

𝑚 = 15 kg/m2 𝑟 = 1000 kg/m2s 𝑑 = 0.23 m

With Fahy’s model and panel impedance

• Resistance in formulations means that minima do not go to zero
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double-stiff-panel

𝑚 = 5 kg/m2 𝑟 = 500 kg/m2s 𝑑 = 0.6 m
𝑓𝑐 = 1062 Hz

double-stiff-panel at 𝜃𝑖 = 𝜋/6
𝑚 = 5 kg/m2 𝑟 = 500 kg/m2s 𝑑 = 0.6 m
𝑓𝑐 = 1062 Hz

With London’s model and panel impedance

• Minimum at coincidence frequency at oblique incidence

• Mass law no longer applies at frequencies higher than coincidence frequency

coincidence
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◼ Heckl’s model with locally-reacting material between panels5,

𝑇 2 = 1/ 1 − 𝜔2
𝑚1

′ +𝑚2
′

2𝑠
+ 𝑗𝜔

𝑚1
′ +𝑚2

′

2𝑍
1 − 𝜔2

𝑚1
′𝑚2

′

𝑠 𝑚1
′ +𝑚2

′ +
𝑍2

𝑠 𝑚1
′ +𝑚2

′

2

𝑚′ = 𝑚[1 − 𝑘4𝐷/𝜔2𝑚 sin4 𝜃]

𝐷 = 𝐷′(1 + 𝑗𝜂)

stiffness per unit 

area in between

stiff panel + hysteretic resistance 

𝑍 = 𝜌𝑐/ cos 𝜃

loss factor
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double-stiff-panel at 𝜃𝑖 = 50°
𝑚1 = 8 kg/m2 𝐷1 = 20000 kg ⋅ m2/s2 𝜂1 = 0.0015
𝑚2 = 16 kg/m2 𝐷2 = 10000 kg ⋅ m2/s2 𝜂2 = 0.001
𝑑 = 0.6 m 𝑠 = 1 × 107 kg/s2m2

With Heckl’s model

double-stiff-panel

𝑚1 = 8 kg/m2 𝐷1 = 20000 kg ⋅ m2/s2 𝜂1 = 0.0015
𝑚2 = 16 kg/m2 𝐷2 = 10000 kg ⋅ m2/s2 𝜂2 = 0.001
𝑑 = 0.6 m 𝑠 = 1 × 107 kg/s2m2

• No wave propagation between panels, so inter-panel resonances are absent

mass-spring-mass mass-spring-mass

coincidence
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◼ Hamada and Tachibana’s transfer matrix method7,

𝐅𝜽 =
𝐴𝜃 𝐵𝜃
𝐶𝜃 𝐷𝜃

= 𝐅1𝜃𝐅𝐴𝜃𝐅2𝜃

The matrices for panels,

𝐅𝑖𝜃 =
1 𝑍𝑖𝜃
0 1

The matrix for the air gap,

𝐅𝐴𝜃 =
cos(𝑘𝑑 cos 𝜃)

𝑗𝜌𝑐

cos 𝜃
sin(𝑘𝑑 cos 𝜃)

𝑗 cos 𝜃

𝜌𝑐
sin(𝑘𝑑 cos 𝜃) cos(𝑘𝑑 cos 𝜃)

panel impedance
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◼ The stiffness + hysteretic damping impedance introduced by Cremer10,

𝑍𝑤 =
𝜂𝐷

𝜔
𝑘4 sin4 𝜃 + 𝑗(𝑚𝜔 −

𝐷

𝜔
𝑘4 sin4 𝜃)

Substitute into generalized London’s model,

1

𝑇

2

= 1 + 𝛼 ℜ𝑍1 + ℜ𝑍2 + 𝛼2 1 − cos 2𝛽 ℜ𝑍1ℜ𝑍2 − ℑ𝑍1ℑ𝑍2 − sin 2𝛽 (ℜ𝑍1ℑ𝑍2 +ℜ𝑍2ℑ𝑍1)
2

+ 𝛼 ℑ𝑍1 + ℑ𝑍2 + 𝛼2[ 1 − cos 2𝛽 ℜ𝑍1ℑ𝑍2 + ℜ𝑍2ℑ𝑍1 + sin 2𝛽 ℜ𝑍1ℜ𝑍2 − ℑ𝑍1ℑ𝑍2 ] 2

with 𝛼 = cos 𝜃 /2𝜌𝑐, 𝛽 = 𝑘𝑑 cos 𝜃

ℑ𝑍𝑤ℜ𝑍𝑤

loss factor
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◼ when cos 2𝛽 = −1 (maxima of transmission loss)

𝑝𝑖
𝑝𝑡

2

≈ 4𝛼4
𝜂1𝐷1𝑘𝑥

4

𝜔

2

+ 𝜔𝑚1 −
𝐷1𝑘𝑥

4

𝜔

2
𝜂2𝐷2𝑘𝑥

4

𝜔

2

+ 𝜔𝑚2 −
𝐷2𝑘𝑥

4

𝜔

2

= Ο(𝜔12)

𝑘𝑥 = 𝑘 sin 𝜃

corresponding to 𝑑/𝜆 = 1/4, 3/4, 5/4, etc. at normal incidence

◼ when cos 2𝛽 = 1 (minima of transmission loss)

𝑝𝑖
𝑝𝑡

2

= 1 +
𝛼𝑘𝑥

4

𝜔
𝜂1𝐷1 + 𝜂2𝐷2

2

+ 𝛼2 𝜔 𝑚1 +𝑚2 −
𝑘𝑥
4

𝜔
𝐷1 + 𝐷2

2

= Ο(𝜔6)

corresponding to 𝑑/𝜆 = 1/2, 1, 3/2, etc. at normal incidence

120 dB/dec

60 dB/dec
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at 𝜃𝑖 = 𝜋/6

𝑚1 = 15 kg/m2 𝐷1 = 9000 kg ⋅ m2/s2 𝜂1 = 0.003
𝑚2 = 30 kg/m2 𝐷2 = 12000 kg ⋅ m2/s2 𝜂2 = 0.001
𝑑 = 0.01 m 𝑓𝑐1 = 751 Hz 𝑓𝑐2 = 920 Hz

𝑚1 = 20 kg/m2 𝐷1 = 10000 kg ⋅ m2/s2 𝜂1 = 0.002
𝑚2 = 20 kg/m2 𝐷2 = 10000 kg ⋅ m2/s2 𝜂2 = 0.002
𝑑 = 0.01 m 𝑓𝑐1 = 𝑓𝑐2 = 823 Hz

at 𝜃𝑖 = 𝜋/6
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𝑚1 = 20 kg/m2 𝐷1 = 20000 kg ⋅ m2/s2 𝜂1 = 0.1
𝑚2 = 20 kg/m2 𝐷2 = 20000 kg ⋅ m2/s2 𝜂2 = 0.1
𝑑 = 0.01 m

at 𝜃𝑖 = 𝜋/6
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𝑚1 = 20 kg/m2 𝐷1 = 20000 kg ⋅ m2/s2 𝜂1 = 0.01
𝑚2 = 20 kg/m2 𝐷2 = 20000 kg ⋅ m2/s2 𝜂2 = 0.01
𝑑 = 0.01 m

at 𝜃𝑖 = 𝜋/6
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𝑚1 = 20 kg/m2 𝐷1 = 20000 kg ⋅ m2/s2 𝜂1 = 0.001
𝑚2 = 20 kg/m2 𝐷2 = 20000 kg ⋅ m2/s2 𝜂2 = 0.001
𝑑 = 0.01 m

at 𝜃𝑖 = 𝜋/6
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𝑚1 = 20 kg/m2 𝐷1 = 20000 kg ⋅ m2/s2 𝜂1 = 1 × 10−4

𝑚2 = 20 kg/m2 𝐷2 = 20000 kg ⋅ m2/s2 𝜂2 = 1 × 10−4

𝑑 = 0.01 m

at 𝜃𝑖 = 𝜋/6

The 60 dB/dec line shifts

toward high frequencies

as loss factor decreases
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◼ The resistance in system will suppress the dips in transmission loss

𝑚 = 20 kg/m2 𝐷 = 10000 kg ⋅ m2/s2 𝜂1 = 0
𝑑 = 0.01 m

at 𝜃𝑖 = 𝜋/6

So we are primarily interested in the

maximum transmission loss behavior

R
ig

id
 p

o
ro

u
s
 

m
a
te

ria
l

𝑓𝑏 = 19629.8 Hz

resistance brought by imaginary

part of wavenumber
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◼ A layer of porous material described with,

◼ Effective density and wavenumber calculated with JCA-Limp model11, 12

Flow Resistivity Porosity Tortuosity VCL TCL Solid Density

1.5 × 105 rayls/m 0.97 1.5 20 μm 40 μm 2000 kg/m3

𝑚 = 20 kg/m2 𝐷 = 10000 kg ⋅ m2/s2 𝜂1 = 0
𝑑 = 0.01 m

at 𝜃𝑖 = 𝜋/6

• The increase rate is now greater than 120 dB/dec
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◼ Kang et al. proposed an approach of calculating average transmission loss12

𝜏 𝜔 =
0׬
𝜋/2

𝐺 𝜃 𝑇 𝜔, 𝜃 2 sin 𝜃 cos 𝜃 𝑑𝜃

0׬
𝜋/2

𝐺 𝜃 sin 𝜃 cos 𝜃 𝑑𝜃

◼ A distribution function for incident energy versus incidence angle is applied

𝐺 𝜃 = 𝑒−𝜁𝜃
2

◼ The average transmission loss

TL(𝜔) = 10 log10
1

𝜏 𝜔
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◼ With 𝜁 = 1.5, the average transmission loss of the double panel system with porous material

inside in the previous case was calculated,

Critical frequency

• A drop of transmission loss occurs at 

critical frequency 𝑓𝑐 = 823 Hz
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◼ Classic models were reviewed

◼ Asymptotic behavior of double-stiff-panel systems at oblique incidence were studied

• The peaks of the transmission loss increases at 120 dB/dec

• The minima of the transmission loss increases at 60 dB/dec

• The minima shift to higher frequencies as hysteretic damping decreases

◼ Porous lining between panels will suppress the resonance pattern of double panels

and change the transmission loss increase rate

◼ Average transmission loss was obtained with Gaussian distribution applied
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