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Dark acoustic metamaterials as super absorbers
for low-frequency sound

1.0 T | |
Jun Mei*, Guancong Ma'*, Min Yang', Zhiyu Yang', Weijia Wen' & Ping Sheng' f oQ)Oo 0 000 0 a6
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The attenuation of low-frequency sound has been a challenging task because the intrinsic - o
dissipation of materials is inherently weak in this regime. Here we present a thin-film acoustic -~
‘ — - . . ol © 04} -
metamaterial, comprising an elastic membrane decorated with asymmetric rigid platelets B
that aims to totally absorb low-frequency airborne sound at selective resonance frequencies <
ranging from 100-1,000 Hz. Our samples can reach almost unity absorption at frequencies 0.2 —
where the relevant sound wavelength in air is three orders of magnitude larger than the
membrane thickness. At resonances, the flapping motion of the rigid platelets leads naturally 0 | | |
to large elastic curvature energy density at their perimeter regions. As the flapping motions 500 1,000 1,500 2,000
couple only minimally to the radiation modes, the overall energy density in the membrane Frequency (HZ)
can be two-to-three orders of magnitude larger than the incident wave energy density at low https://www.nature.com/articles/ncomms1758
frequencies, forming in essence an open cavity. https://doi.org/10.1146/annurev-matsci-070616-124032
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d Effect of front and rear surface boundary conditions on
foam sound absorption

INTRODUCTION

4 Influence of edge constraints on transmission loss of
poroelastic materials including effect of finite mass
supports

O “Metamaterial” barrier
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CEFSTRAL TECHNIQUES IN THE MEASUREMENT OF ACOUSTIC REFLECTION
COEFFICIENTS, WITH APPLICATIONS TO THE DETERMINATION OF
ACOUSTIC PROPERTIES OF ELASTIC POROUS MATERIALS —
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Normal Incidence
Measurement of Reflection
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Film-faced Polyurethane Foam . ¥9¢..... RAWHé
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\= ¢

N/
74

1 mm 0.2 mm
. . . Detail of foam interior. MNote: angular fibre
Side view of Film surface. Note: 40u m
thick polyurethane film and the fact that izagg 3:ge:hg:n:?gnmembranes o/ mot appesr
most cells are partially closed by thin -
membranes.

Scanning electron micrographs of the foam sample

* 25 mm layer of foam — one side covered with flame-bonded

film, the other open.
* Many intact membranes

Noise-Con 2019, San Diego, CA 6



Reflection Impulse Response
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(Film-faced surface up)
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One-Dimensional Poroelastic %
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\Q |e dx — & X
\
(oph / cOS 8)(\/2_ v1)

External forces acting on the fluid

+ Op /10x)dx
5

component.
Equations of motion:
ap, _ oV (V,~v
Fluid: = e = Pagp + Pale - 1)“-5-{'5) + oh?(v, - v,).
a av a(v,~v
Solid: - 'a'gl = P;’é’él + pa(e - 1)"£“$‘€“z"‘)' + oh?(vy - v,).

> Based on Zwikker and Kosten, plus Rosin with complex density and air stiffness
taken from Attenborough.
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- Predicted
Open Surface Foam Film-faced Foam
XE -1 ¥E -1
2.88 I T 1 T I T l T r ¥ 268 T l T ]7 T ]’ T ‘ T
|
t 1 - {(a) E
' I
1. 20 Jl- Reflection from 4 1. 20 8
\ rear surface i Disaster!
i
2. 40 9. 40
h(n)
-0.48 |- — ~0. 40
L - 4
i iga e x -1.20 ]
theoretical(- - - -) theoretical(— — —)
- Foam impulse response: measured(——) | i Film impulse response: measured(——) 1
<5 a0 i 1 N | ) ] ; | T, -2.00 L ! L 1 . 1 1 1 L
" s.00 @.58@ 1. 80 1.50 2. 90 2.58  XE-3 9. 249 .25 2.580 3.75s 1. 30 1.28 ¥E -3
Time (s) Time (s)
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| /// i atx=l+4, v, =0;
Foam
| / atx:l, Plzpa(l_h);P1=Pah1
— x=1 £ _ v, =v;(1 —h) + vyh;
b g < Air Gap
\\\\\\\\\ Hard BCICkm atx = O, V1 =V,0, =,
X p—p1— P2 =msdv/dt
? finite deptg }ayer of film-faced
oam s t hard backi
surfac:pg;aaﬁ aiim{la;eragf d:gt;\ng. Impedance: jwz = —Cl)zms — N'/D’

The sgolution of this set of seven equations presents no difficulties in
principle, but is algebraically tedious. The complete solution is
outlined in Appendix 6.2; only the result is given here. The impedance

takes the form
JWZ = - m"—ma - N'/D'

Noise-Con 2019, San Diego, CA 11



Film-forced Foam / Thin AirGap .=
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| (b)
1. 29 l
’ [ Inverted reflection
: from rear surface
I
2. 48 T
h(n)
~-@3. 4@
-1. 280 e -
i theoretical(— — =) .
Film impulse response: measured(——)
-2. 0@ | \ ] P 1 .
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1600 Hz

1. @8 2,88 3. 280 4.@9 5. @@ ¥E 3

Frequency (Hz)

Effect of rear surface boundary condition on
Film normal incidence absorption coefficient:
model of section 6.4.3.2(-———1; model of section
6.4.3.3, air layer depth 0.00Im(— — ).
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———— membrane
o Bonded/Bonded

foam
backing

o Bonded/Unbonded

airspace

o Unbonded/Bonded

o Unbonded/Unbonded

11
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Normal Incidence Absorption .=

1.0

£ o Foam — 25 mm, 30kg/m3
o Membrane - 0.045kg/m?
o Airspaces -1 mm
frequency Chzl
Effects of Airspace at front and rear

1. Film/Foam/Backing _—

2. Film/Space/Foam/Backing

3. Film/Foam/Space/Backing _———

4. Film/Space/Foam/Space/Backing — —

Noise-Con 2019, San Diego, CA 14
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Sound absorption of elastic framed porous
materials in combination with impervious films:
effect of bonding

J.P. Parkinson?®, J.R. Pearse®*, M.D. Latimer®

“Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
®D.G. Latimer and Associates Ltd, P O Box 12-032, Christchurch, New Zealand

Received 3 May 2001; received in revised form 20 January 2002; accepted 14 February 2002

Abstract

The absorption characteristics of elastic framed absorbers in combination with impervious
films has been mvestigated. The effect of bonding the film to the absorber and the absorbers to
their rear surface was examined. The results have been modelled using established methods
for predicting the absorption of elastic framed porous materials. The absorption of a foam
with a film bonded to its top surface was most sensitive to the rear surface bonding condition.
Plain foams and foams with loose-laid surface films were less sensitive to the rear surlace
bonding condition. The results demonstrate that test data used to predict absorption performance
need to reflect the absorber mounting conditions. (€ 2002 Elsevier Science Ltd. All rights reserved.

Noise-Con 2019, San Diego, CA 15
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Table 1
Parameters used for the modelled results in Fig. 1
Thickness Tortuosity Bulk Flow Porosity Complex shear Poison’s Form

density resistivity modulus ratio factor
f (mm) kg o (kg/m?)  r (mks rayls/m, & N (N/cm?) v ¢

or Ns/m?)
24 2.85 43 22000 0.98 20+ 101 0.3 4
Resting on Floor Bonded to Backing

=
L% ]
-
M3

=a
o
=

=]

o

()

=

oo

T
_————0a -

o

n

o

.
T

Absorption coefficient
(]

(o]
Absorption coefficient
o
(93}

o

[N
o
(%

0_0 L 1 1 1 L L 1 1 U.DO 1 L
S € 8§ 8 8 8 8 8§ 8 8 2 8§ 8 8 8 B 8 8
— ~— (o] =¥ — -— o =t

Frequency (Hz) Frequency (Hz)

Fig. 1. Measured () and modelled (-) absorption of film faced foam at 24 mm thickness; foam was

1 ) ) 3 Fig. 2. Measured () and modelled (-) absorption of film faced foam at 24 mm thickness; foam was
placed on rear surface (floor of reverberation room).

bonded to rear surface (gypsum board).

Noise-Con 2019, San Diego, CA mg = 35 g/mz 16
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Adding alimp porous layer (3.2cm, 40kg/m3, 80000Rayls/m) on

_— top to improve high frequency absorption
: Limp membrane (45gsm)

o Bonded/Unbonded \ Poro-elastic layer membrane (8mm, 30kg/m?, 130000Rays!/m)
R Y

Airspace (Imm)

—=-==-0ld configuration (795 gsm) - without limp porous layer on top __—
—— New configuration (1565 gsm) - With limp porous layer on top

o ©
o o

Absorption
o
S

Frequency [HZz] 17
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Impedance Tube Testing

(J Melamine Foam (8.6 kg/m3)

> 100 mm diameter
> 25 mm thick

el /
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100 mm

|

25 mm

O Each sample fit exactly by trimming the diameter & checking the

fit with a TL measurement

O Two Facing & Two Rear Surface Boundary Conditions

» Multiple trials
» Multiple samples

Noise-Con 2019, San Diego, CA

RAY W. HERRICK=ZPP~
LABORATORIES

18




V4 A
- - = .
Surface Configurations 1\ ey RAYVHERRICKSRS

Front Surface:

e
|
2 1 i <—_> 2
:
Loose | Glued

1) Plastic film near, but not
adhered to foam

2) Plastic film glued to foam

Noise-Con 2019, San Diego, CA

Rear Surface:

A

—
.

2| 1 :;_> 2
.

Gap i Fixed

1) Small gap between foam &
rigid wall

2) Foam adhered to rigid wall

19




Absorption vs. Configuration - Test 4 T
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—— =
Absorption Coefficient
] Loose - Gap
| ——
—Sro--
2 Loose - Fixed
] ——
3
E — e - — -
<L
Glued - Gap
|
| | | | |
600 800 1000 1200 1400 1600 | ——— === -
Frequency, Hz
Glued-Fixed

| = 25mm, A= 4.5mm, A,= 1mm, m, = 50 g/m?,h = 0.99,
o = 9.5 X 103mks Rayls/m, = 1.4,

P — wave modulus = 6.5 X 10°Pa,n = 0.2
Noise-Con 2019, San Diego, CA 20
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Glued Facing + Fixed

1
—— Baseline Props
— Best-Fit Props ; .
0.8H-—- Measurement |- Frfns Y
= e
_g i/ i Foam
% 06k f ’ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (Helmholiz Cavity) |
N\ AR CNANRNR \
S Al
= [} ORI N \
e N/ A A Glued Film  [NO000 28 \
CE; Facing RRNRRR NRR N
a8 | —~a \ N\
i Y 3 X N
< o 3 Gap IR
A R ittt /O N\ QMR
ALIMMIIIHHHHINHHm
o Tube Wall
0 n L
400 8 1200 1600

ncy, [Hz]

s
(Neck Area)

Mechanical Impedance> 2m = Ry + jlwm — s/w)
Mass > m = poSL'
Stiffness > s = pocgS?/V

Total Acoustic Impedance> z=1/(1/zy +1/2y)
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Glued Facing + Fixed

1
—— Baseline Props TN
— Best-Fit Props / I,
0.8H-—- Measurement |- A A Y
= 4 :
% ; Foam
£ o6t f ’ ,,,,,,,,,,,,,,,,,,,,,,,, F A . (Helmholtz Cavity)
[0 Fi 3
[=] i
[&] )
2 A A . 0090909 Ff om0 WENEE R\ TSR : =
2 < Glued Film |
g- ;'" Facing R
3 P .,
< : “ Gap N i L O
y|{ A AL e Tr i SN N
i Tube Wall
R 400 1200 1600
ncy, [Hz]
1 T T
= = = Measurement e
—— Model + Resonator '/
----- Model Only ’

hY:] ! . Resonator Only 4

0.8

o4pF - T e ae e e

Absorption Coefficient

0.2F

460 860 12.00 — I1I600 22
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Helmholtz Resonator Effect

Glued Facing + Fixed
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1
—— Baseline Props 2
— Best-Fit Props / I,
0.8H-—- Measurement |- A A b

= s
% i Foam %
Eapl & » i/l s (Helmholtz Cavity)
5 0.6 § A
c u /
S 1 \\} Glued Film
[ o el NN - %,
< / Facing
2 - i - M
2 o
2 2N > e t0 edge gap 2 A

,,,,,,,, LANE Al A << N —a b X N

< MMMIIIHIMIMMIMIMBTINY
Tube Wall
0 n 1
400 1200
ncy, [Hz]
1 T T
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Absorption Coefficient

= = = Un-sealed Tes{

— Sealed Test

0.8

DB e

0.4

0.2

800 1200 1600
Frequency,[Hz]

Il ES
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Enhancement of the low frequency ﬁerformance of thin,

film-faced layers of foam by surface segmentation
J. Stuart Bolton! , Benoit Nennig? and Nicolas Dauchez®

1 Ray W. Herrick Laboratories, School of Mechanical Engineering, 177 S. Russell Street, Purdue University, West Lafayette IN 47007-2009, USA
=Ll 2 LISMMA EA2336, SUPMECA, 3 Rue Fernmand Hainaut, 93407 Saint-Ouen Cedex, France.
UNIVERSITY ks Compiégne 3 Université de Technologie de Compiégne, Laboratoire Roberval UMR 6253, BP 20629, 60205 Compiégne cedex, France.

bolton@purdue.edu, benoit.nennig@supmeca.fr, nicolas.dauchez@utc.fr

Periodic patch and oblique incidence effect : L, =50 mm, L, =50 mm, b=1 mm, A = 25 mm

e
\E{ Membrans

. -..!
Ly /AN, /f /A

'ﬁ- L;:; (18]
) -'. Porous Material T R T IR T o i oW BE 0 10 e e
Prospects : - -
) Normal incidence Other incidences

e Combination with double porosity material [5]
e Combination with Cuboid [6]
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Model Verification - Velocity Measurement

Microphone £I Membrane

Finite Backing

i Laser Sensor

Sound Source

Noise-Con 2019, San Diego, CA — . : ! 26



Model Verification -

Vibrational Modes
Theory

Abszolute velocity of membrane - Theary

= T

14

£
1t £ 05

=

=

0.05
y U005 005
Absolute velocity of membrane - Theory

ond 1

v ép i fplma
[}
m

o
o]
Mo

0.05

y 005 005
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Experiment

Absolute velocity of membrane - Experiment

[EE

[v/pl/[v/p|max

y -0.05 -0.05
Absolute velocity of membrane - Expenment

-l

o
o

[v/pl i /p|max

0.05

y 0.05 005
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Model Verification - D 4
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Microphone

Anechoic Termination

Bk ** Test Sample

B&K tanding
Wave Tube
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Model Optimization runove WY pecimucs  RAYW. HERRICK=JS
TL o

Transmission Loss Sound Absorption
T 1 :

i i 35 . .
o Given experimental results as e

input, Find appropriate material ~_ | Test | i)
properties (T,, p,, N ) 0.8
25 1 1 07
06
I I J £0s
g = =
Membrane Membrane 04k
Surface Tension
DEI’ISIW T=To(1+ir|) 0D3r
Ps 0.2}
0.1 i
U n 1 I
. 500 1000 1500 500 1000 1500
Tensioned Membrane Frequency [Hz] Frequency [Hz]
T =82Pa 7 = 0.0040 p, = 0.0870 X -

» Why this behavior? — Finite size, held at edge, finite stiffness.
- Volume velocity cancellation produced TL peaks

Noise-Con 2019, San Diego, CA 29
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Anechoic Transmission Loss (Green) __ s
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-== Experiment
— FE Prediction (Edge constrained)
--=- Prediction (Unconstrained case)

351

30

]
1

25

20

TL (dB)

15

Increase in TLdue 07

to edge constraint
(10dB)

10° 10° 10"

Frequency (Hz)

« Low frequency limit controlled by flow resistance
Noise-Con 2019, San Diego, CA 3 1
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®

Bulk Estimated flow Shear
Material density  Porosity Tortuosity resistivity modulus Loss
factor

(Kg/m?3) (MKS Rayls/m) (Pa)
Yellow 6.7 0.99 1.1 21000 1200 0.350
Green 9.6 0.99 1.1 31000 2800 0.275

Noise-Con 2019, San Diego, CA 32
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e Flow resistivity controls TL at low and high frequency limit
40 E 19 15 15 15 15 15 15 15 E 15 15 19 15 19 15 15 15 E
— Flow resistivity = 10000 MKS Rayls/m
------- Flow resistivity = 20000 MKS Rayls/m
351 —.=.. Flow resistivity = 30000 MKS Rayls/m 7
=== Flow resistivity = 40000 MKS Rayls/m .
,/
30 ~ - -
/,/
i S
25 — ,,/ /‘/ .
’ 7
— ’,I ,“'c
Z 201- s *
= /o", 7 o .
’ ,»"/ RO *
15~ ,:/' Il -
0 -2 ) T 3 ) T 4
10 10 10

Frequency (Hz)
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(Experiment, Green) [Density of Plexiglass: 1717 Kg/m3]

40 —r . . . . —
- Unconstrained

—— Edge constrained
—— Plane constrained
— 1055 coOnstrained

30+ i

35+

25

—

iy
.20

_1
—
15

10

Frequency(Hz)
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Effect of Releasing the Internal _ g
MECHANICAL RAY W. HERRICK‘?’

Cross- Constraint (Measurement) " N et

) 20: - Cardboard
s ] Constraint

35 b

2l | - Plexiglass
P___\/ ] Constraint

Frequency (Hz)

» Relatively heavy constraint required to realize
low frequency benefit.
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E

o Metamaterials are artificial materials engineered to have properties that may not be
found in nature. Metamaterials usually gain their properties from structure rather than
composition, using small inhomogeneities to create effective macroscopic behavior.

70 T T T
‘ —— Measured
! —— 1-D model |_|

Eo R T Voot - Mass law
o | e
w0
72}
o
c
k=]
w
8
E
w
c
o
i_

1 -

0 i I i

0 500 1000 1500 2000
Frequency (Hz)
Figure 7. Measured and predicted normal incidence transmission loss for sample

with 30 balls.

From : Meta-Material Sound Insulation by E. Wester, X. Bremaud and B. Smith,
Building Acoustics, 16 (2009)

Noise-Con 2019, San Diego, CA
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Membrane-type metamaterials: Transmission loss of multi-celled arrays

/4
Christina J. Naify,1®' Chia-Ming Chang,? Geoffrey McKnight,® Florian Scheulen,® — / A

and Steven Nutt RRICK = -
Lﬂfpm'rmem of Materials Science, 3651 Watt Way, VHE 602, University of Southern California, Los Angeles, PURDUE \ EANEGC II-&EFI“C&A GL E{ﬁyﬁv\é EE T OCRK I ES
California Q089, US54 ® )

*HRL Laboratories, 3011 Malibu Canyon Rd, Malibu, California 90265-4797, USA
(Received 22 November 2010; accepted 28 March 2011; published online 17 May 2011)

Acoustic metamaterials with negative dynamic mass density have been shown to demonstrate a
tive-fold increase in transmission loss (TL) over mass law predictions for a narrowband (100 Hz) at
low frequencies (100-1000 Hz). The present work focuses on the scale-up of this effect by
examining the behavior of multiple elements arranged in arrays. Single membranes were stretched
over rigid frame supports and masses were attached to the center of each divided cell. The TL
behavior was measured for multiple configurations with different magnitudes of mass distributed
across each of the cell membranes in the array resulting in a multipeak TL profile. To better
understand scale-up 1ssues, the effect of the frame structure compliance was evaluated, and more
compliant frames resulted in a reduction in the TL peak frequency bandwidth. In addition,
displacement measurements of frames and membranes were performed using a laser vibrometer.
Finally, the measured TL of the multi-celled structure was compared with the TL behavior
predicted by finite element analysis to understand the role of nonuniform mass distnbution and
trame compliance. © 2011 American Institute of Physics. [doi: 10.1063/1 3583656]

i —e— PE| Array - Configuration 1
Milnl|||1||n1n|‘|'||n|1nu1nnru — Composite Mass Law - 0.32 g
—=— PEI Single Cell -0.32 g

8

5

e

Transmission Loss (dB)

o

500 1000 1500 2000

Noise-Con 2019, San Diego, CA
Frequency (Hz) 38




u
Proposed Mass-Neutral Material = A
ronous W s RAEHERRERTIR

Homogenized mat.
Cellular panel

\> Mesr = Meg (f)

_ 20oC
 2p0C + 27t ()

|
I

!

I

!

I

!

I

| STL= —ZOlog]T\

' Mg : Mass per unit area
I

!

I

!

I

!

I

!

I

rame (Mat. A) STL: Sound Transmission Loss

Plate (Mat. B)

f
/L

» Cellular material with a periodic array of unit cells
» Unit cell has components with contrasting mass and moduli

» Characteristics of infinite, periodic panel are same as that
of a unit cell for normally incident sound
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Incident sound
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O A clamped plate has high STL at very low frequencies due to the
effect of boundary conditions and finite size and stiffness.
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O Each unit cell
» Overall mass constant
» Different materials for frame and plate

L A series of cases for u between 0.1 and 10000
» p,and p;varied
» Egvaried keeping £, constant so that Ef/Ep = 0 /pp

Mat. A

Mat. B

Base unit cell Cellular unit cell
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a Asum
» High STL region broadens in the low frequency regime
» Region between the first peak and dip is widening
» The dip — being shifted to the right — desirable
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Frequency [Hz]
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Mechanism Behind High STL —
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o Averaged displacement phase switches from negative to
positive value at the STL peak

o Parts of the structure move in opposite directions—similar to
observations in LRSMs—resulting in zero averaged
displacement

o “Negative mass” observed without locally resonant elements
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* Poro-elastic materials can give excellent low frequency performance when designed property

* Front and rear boundary conditions have a profound effect on the sound absorption offered by
poroelastic materials

* Those effects are predictable and measureable

* Internal constraint of poroelastic materials can increase their transmission loss, but finite weight of
required supports should be accounted for

* Metamaterials for transmission loss typically depend on the presence of constraints, geometry and
flexural stiffness for their performance

* A proposed mass-neutral “metamaterial” barrier featuring spatially-periodic internal constraints
gives low frequency advantage with respect to the mass law, but would require supplementary

material to mitigate performance loss at high frequencies
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= Noise Control # Acoustics
= Noise Control = “Constrained” Acoustics

= Constraints:

» Cost

Weight

Volume
Robustness
Manufacturability

VvV V V V V

Recyclability
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s Advanced Noise Control Materials

> MPP’s — very attractive functional attributes — multilayer barriers & absorbers
» Carbon fiber composites
> Very thin absorbents (internal degrees of freedom)
> Hybrid metamaterials 2>
» 3D printing of acoustical materials
» Multi-functional acoustic materials
— damping plus absorption
— absorption plus barrier

» Custom manufacturing of noise control materials
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" Advanced Noise Conitrol Materials

»What’s important about a noise control material?

» Cost

> Safety

> Weight

> Volume

> Recyclability
> ...

> ...

> Acoustical Performance
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