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INTRODUCTION

❑Effect of front and rear surface boundary conditions on 

foam sound absorption

❑ Influence of edge constraints on transmission loss of 

poroelastic materials including effect of finite mass 

supports

❑ “Metamaterial” barrier
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Normal Incidence 

Measurement of Reflection
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Film-faced Polyurethane Foam

Scanning electron micrographs of the foam sample

• 25 mm layer of foam – one side covered with flame-bonded 
film, the other open.

• Many intact membranes
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Reflection Impulse Response

(Film-faced surface up) (Foam-open surface up)
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One-Dimensional Poroelastic 

Material Theory

Equations of motion:

Fluid:

Solid:

➢ Based on Zwikker and Kosten, plus Rosin with complex density and air stiffness 

taken from Attenborough.
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Boundary Conditions

Open foam surface Foam surface sealed with an 

impervious membrane

Foam fixed to a hard backing
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Reflection Impulse Response 

- Predicted

Film-faced FoamOpen Surface Foam

𝜌1 = 30 Τ𝑘𝑔 𝑚3 𝑙 = 25 𝑚𝑚,𝜑 = 0.9, 𝐸0 = 4 × 105𝑃𝑎, 𝜂 = 0.265,
𝜀 = 6.025, 𝜎 = 130 × 103 Τ𝑚𝑘𝑠 𝑅𝑎𝑦𝑙𝑠 𝑚 , 𝜐 = 0.39,𝑚𝑠 = 0.045 Τ𝑘𝑔 𝑚2

Reflection from 
rear surface Disaster!
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at 𝑥 = 𝑙 + Δ,

at 𝑥 = 𝑙,

at 𝑥 = 0,

𝑣𝑎 = 0;

𝑃1 = 𝑃𝑎 1 − ℎ , 𝑃1 = 𝑃𝑎h, 

𝑣𝑎 = 𝑣1 1 − ℎ + 𝑣2ℎ;

𝑣1 = 𝑣, 𝑣2 = 𝑣, 
𝑝 − 𝑝1 − 𝑝2 = 𝑚𝑠 Τ𝑑𝑣 𝑑𝑡

Impedance: 𝑗𝜔𝑧 = −𝜔2𝑚𝑠 − Τ𝑁′ 𝐷′
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Film-forced Foam / Thin Air Gap

350 Hz
1600 Hz

Inverted reflection 

from rear surface
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membrane

foam

backing

airspace

o Bonded/Bonded

o Bonded/Unbonded

o Unbonded/Bonded

o Unbonded/Unbonded
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1. Film/Foam/Backing   

2. Film/Space/Foam/Backing

3. Film/Foam/Space/Backing

4. Film/Space/Foam/Space/Backing

o Foam – 25 mm, 30kg/m3

o Membrane     – 0.045 kg/m2

o Airspaces        – 1 mm

Effects of Airspace at front and rear

Normal Incidence Absorption

Noise-Con 2019, San Diego, CA 14



Noise-Con 2019, San Diego, CA 15



Resting on Floor Bonded to Backing

𝑚𝑠 = 35 Τ𝑔 𝑚2Noise-Con 2019, San Diego, CA 16
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o Bonded/Unbonded

Adding a limp porous layer (3.2cm, 40kg/m3, 80000Rayls/m) on 

top to improve high frequency absorption

Normal Incidence Absorption

Airspace (1mm)

Limp membrane (45gsm)

Poro-elastic layer membrane (8mm, 30kg/m3, 130000Raysl/m)

above 0.5 from 280 Hz to 10 kHz

280 Hz

0.5



❑Melamine Foam (8.6 kg/m3)

➢ 100 mm diameter
➢ 25 mm thick

❑ Each sample fit exactly by trimming the diameter & checking the 
fit with a TL measurement

❑ Two Facing & Two Rear Surface Boundary Conditions

➢ Multiple trials
➢ Multiple samples

Impedance Tube Testing
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Front Surface:

1 2

Loose Glued

1) Plastic film near, but not 

adhered to foam

2) Plastic film glued to foam

Rear Surface:

1 2

Gap Fixed

1) Small gap between foam & 

rigid wall

2) Foam adhered to rigid wall

Surface Configurations
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Absorption Coefficient
Loose - Gap

Glued - Gap

Loose - Fixed

Glued-Fixed

Absorption vs. Configuration - Test

𝑙 = 25𝑚𝑚, ∆1= 4.5𝑚𝑚, ∆2= 1𝑚𝑚,𝑚𝑠 = 50 Τ𝑔 𝑚2 , ℎ = 0.99,
𝜎 = 9.5 × 103𝑚𝑘𝑠 Τ𝑅𝑎𝑦𝑙𝑠 𝑚 , 𝜀 = 1.4,
𝑃 − 𝑤𝑎𝑣𝑒 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 = 6.5 × 105𝑃𝑎, 𝜂 = 0.2
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?

Mechanical Impedance

Mass

Stiffness

Total Acoustic Impedance
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Helmholtz Resonator Effect

?

Combined Foam + Helmholtz 

Resonator System is Similar to 

Measured System
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?

Measured Glued 

Facing + Fixed 

with Edge Sealed

But is it really due to edge gaps?
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Tensioned Membranes

Model Verification – Velocity Measurement
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Model Verification –

Vibrational Modes

Theory Experiment

1st

2nd
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Model Verification –

Experiment Set-up
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Model Verification –

Model Optimization

o Given experimental results as 

input, Find appropriate material 

properties (To , ρs , η )

➢ Why this behavior? – Finite size, held at edge, finite stiffness.
- Volume velocity cancellation produced TL peaks
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Glass Fiber Material Inside 

of Sample Holder
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Anechoic Transmission Loss (Green)
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Poroelastic Material Properties 

Used in Calculations 

Material

Bulk 

density

(Kg/m3)

Porosity Tortuosity

Estimated flow 

resistivity

(MKS Rayls/m)

Shear 

modulus

(Pa)

Loss 

factor

Yellow 

Green 

6.7

9.6

0.99

0.99

1.1

1.1

21000

31000

1200

2800

0.350

0.275
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Variation of Flow Resistivity
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Flow resistivity = 10000 MKS Rayls/m

Flow resistivity = 20000 MKS Rayls/m

Flow resistivity = 30000 MKS Rayls/m

Flow resistivity = 40000 MKS Rayls/m

• Flow resistivity controls TL at low and high frequency limit

Noise-Con 2019, San Diego, CA 33



Internal Constraint to Enhance 

the Sound Transmission Loss 
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Sound Transmission Loss 

(Experiment, Green) [Density of Plexiglass: 1717 Kg/m3]
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Effect of Releasing the Internal 

Cross- Constraint (Measurement)

Cardboard

Constraint

Plexiglass

Constraint
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➢ Relatively heavy constraint required to realize 
low frequency benefit.
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From  :  Meta-Material Sound Insulation by E. Wester, X. Bremaud and B. Smith, 
Building Acoustics, 16 (2009)

o Metamaterials are artificial materials engineered to have properties that may not be 
found in nature. Metamaterials usually gain their properties from structure rather than 
composition, using small inhomogeneities to create effective macroscopic behavior.

Metamaterials 
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Proposed Mass-Neutral Material

Plate (Mat. B)

Frame (Mat. A)

≡

Homogenized mat.

Cellular panel

Unit cell
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➢ Cellular material with a periodic array of unit cells

➢ Unit cell has components with contrasting mass and moduli

➢ Characteristics of infinite, periodic panel are same as that 
of a unit cell for normally incident sound 
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Low Frequency Enhancement

❑ A clamped plate has high STL at very low frequencies due to the 
effect of boundary conditions and finite size and stiffness.
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Material-Based Mass Apportioning

❑ Each unit cell
➢ Overall mass constant
➢ Different materials for frame and plate

❑ A series of cases for μ between 0.1 and 10000
➢ ρp and ρf varied

➢ Ef varied keeping Ep constant so that

Base unit cell

Mat. B

Mat. A

Cellular unit cell

 =f p f pE E
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❑ As µ↑

➢ High STL region broadens in the low frequency regime

➢ Region between the first peak and dip is widening

➢ The dip – being shifted to the right – desirable

❑ µ →O(100)→saturates

Ep = 2 GPa
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Mechanism Behind High STL

o Averaged displacement phase  switches from negative to 
positive value at the STL peak

o Parts of the structure move in opposite directions—similar to 
observations in LRSMs—resulting in zero averaged 
displacement 

o “Negative mass” observed without locally resonant elements
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▪ Hybrid 

Metamaterial
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▪ Hybrid 

Metamaterial
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Normalizing layer

Cellular 

metamaterial

High performance 

fibrous layer



CONCLUSIONS

• Poro-elastic  materials can give excellent low frequency performance when designed property

• Front and rear boundary conditions have a profound effect on the sound absorption offered by 

poroelastic materials

• Those effects are predictable and measureable

• Internal constraint of poroelastic materials can increase their transmission loss, but finite weight of 

required supports should be accounted for

• Metamaterials for transmission loss typically depend on the presence of constraints, geometry and 

flexural stiffness for their performance

• A proposed mass-neutral “metamaterial” barrier featuring spatially-periodic internal constraints 

gives low frequency advantage with respect to the mass law, but would require supplementary 

material to mitigate performance loss at high frequencies
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▪ Noise Control  ≠ Acoustics

▪ Noise Control  = “Constrained” Acoustics

▪ Constraints:

➢ Cost

➢ Weight

➢ Volume

➢ Robustness

➢ Manufacturability

➢ Recyclability

ASA November 2018, Victoria, BC, Canada 48
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▪Advanced Noise Control Materials

➢MPP’s – very attractive functional attributes – multilayer barriers & absorbers

➢Carbon fiber composites

➢Very thin absorbents (internal degrees of freedom)

➢Hybrid metamaterials  →

➢3D printing of acoustical materials

➢Multi-functional acoustic materials 

– damping plus absorption

– absorption plus barrier

➢Custom manufacturing of noise control materials
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4. Noise Control 

Methods



▪Advanced Noise Control Materials

➢What’s important about a noise control material?

➢Cost 

➢Safety

➢Weight

➢ Volume

➢ Recyclability

➢ …

➢ …

➢ Acoustical Performance
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4. Noise Control 

Methods
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