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Abstract

We investigate the finite bending and the associated bending instability of an in-
compressible dielectric slab subject to a combination of applied voltage and axial
compression, using nonlinear electro-elasticity theory and its incremental version.
We first study the static finite bending deformation of the slab. We then derive the
three-dimensional equations for the onset of small-amplitude wrinkles superimposed
upon the finite bending. We use the surface impedance matrix method to build a
robust numerical procedure for solving the resulting dispersion equations and deter-
mining the wrinkled shape of the slab at the onset of buckling. Our analysis is valid
for dielectrics modeled by a general free energy function. We then present illustrative
numerical calculations for ideal neo-Hookean dielectrics. In that case, we provide an
explicit treatment of the boundary value problem of the finite bending and derive
closed-form expressions for the stresses and electric field in the body. For the incre-
mental deformations, we validate our analysis by recovering existing results in more
specialized contexts. We show that the applied voltage has a destabilizing effect on
the bending instability of the slab, while the effect of the axial load is more complex:
when the voltage is applied, changing the axial loading will influence the true electric
field in the body, and induce competitive effects between the circumferential insta-
bility due to the voltage and the axial instability due to the axial compression. We
even find circumstances where both instabilities cohabit to create two-dimensional
patterns on the inner face of the bent sector.

Keywords: finite bending, bending instability, surface impedance matrix method,
two-dimensional wrinkles
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1. Introduction

An elastic rectangular slab can be bent into a cylindrical sector under the ap-
plication of moments on the lateral faces, and the bending angle depends on the
applied moments, the dimensions and the material properties of the slab. The finite
bending deformation of incompressible soft materials is well captured by the theory
of nonlinear elasticity (Rivlin, 1949; Green and Zerna, 1954; Truesdell and Toupin,
1960; Ogden, 1997). Generally speaking, the inner surface of a bent slab is contracted
circumferentially, and the outer surface is stretched. Experimental observations indi-
cate that wrinkles and creases will appear on the compressed surface of a bent rubber
slab if the circumferential stretch of the inner surface reaches a critical value, i.e., the
so-called bending instability occurs (Gent and Cho, 1999). This phenomenon can
be predicted by the theory of incremental nonlinear elasticity (Triantafyllidis, 1980;
Destrade et al., 2009a,b; Roccabianca et al., 2010; Destrade et al., 2014).

Dielectric elastomers are novel smart materials with the ability to convert me-
chanical energy into electrical energy, and vice versa. Dielectric elastomers have at-
tracted considerable attention from academia and industry alike because, compared
with other smart materials like electroactive ceramics and shape memory alloys,
they have the advantages of fast response, high-sensitivity, low noise and large actu-
ation strain, making them ideal candidates to develop high-performance devices such
as actuators, soft robots, artificial muscles, phononic devices and energy harvesters
(Bar-Cohen, 2004; Kim and Tadokoro, 2007; Rasmussen, 2012; Brochu and Pei, 2010;
Galich and Rudykh, 2017; Getz and Shmuel, 2017; Wu et al., 2018). Generally, a
dielectric actuator is composed of a soft elastomeric material sandwiched between
two compliant electrodes (typically, by brushing on carbon grease). Application of a
voltage across the thickness of the actuator generates electrostatic forces, which lead
to a reduction in the thickness and an expansion in the area of the actuator. Based
on this mechanism, various dielectric devices have been designed to achieve giant
actuation strains (Pelrine et al., 2000; O’Halloran et al., 2008; Zhang et al., 2017).

To understand the electromechanical coupling effect and predict the nonlinear
response of dielectric elastomers subject to electromechanical loadings, a nonlinear
field theory is required. Arguably, Toupin (1956) was the first to develop a general
nonlinear theory of electro-elasticity. Much effort has been devoted to the develop-
ment of this theory in the last two decades (Ericksen, 2007; Suo et al., 2008; Liu,
2013; Dorfmann and Ogden, 2016), driven by recent applications in the real-world.
So far, several finite deformations of dielectric structures have been investigated theo-
retically, including simple shear of a dielectric slab (Dorfmann and Ogden, 2005), in-
plane homogeneous deformation of a dielectric plate (Dorfmann and Ogden, 2014a),
extension and inflation of a dielectric tube (Dorfmann and Ogden, 2006; Zhu et al.,
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2010) and a multilayer dielectric tube (Bortot, 2018), inflation of a dielectric sphere
(Li et al., 2013; Dorfmann and Ogden, 2014b) and of a multilayer dielectric sphere
(Bortot, 2017).

Figure 1: Bending deformations in dielectric devices: (a) A strain sensor consisting of a stretch-
able dielectric sandwiched between two flexible ionic conductors attached to a straight finger: the
bending of the finger stretches the sensor (Sun et al., 2014); (b) A 4-finger dielectric gripper: this
actuator induces voltage-driven bending to lift a rock (Bar-Cohen, 2002); (c) Bending variations of
the soft body and fins of a soft electronic “fish” made of dielectric elastomer and ionically conduc-
tive hydrogel: the fish can swim at a fast speed driven by periodical bending deformations (Li et
al., 2017); (d) A dielectric actuator with a significant voltage-driven bending response (Bar-Cohen,
2002).

Finite bending deformation is common in devices based on dielectric elastomers,
see examples in Figure 1, but little attention has been devoted to the theoretical
analysis of this deformation for dielectric structures. Wissman et al. (2014) studied
the pure bending of a dielectric elastomer actuator which contains inextensible but
flexible frames. They simplified the kinematics by assuming plane strain deforma-
tion and modeled the bending deformation using elastic shell theory based on the
principle of minimum potential energy. Good agreement between theoretical and
experimental results was achieved for a neo-Hookean constitutive law, but the pre-
diction is valid only for small strain deformation. Li et al. (2014) investigated the
bending deformation of a dielectric spring-roll. The allowable bending of the actua-
tor was determined by considering several failure models, including electromechanical
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instability, electrical breakdown, and tensile rupture. There also, the small strain
assumption was adopted to simplify the problem. Only recently was a theoretical
study on the finite bending of a dielectric actuator based on the three-dimensional
nonlinear electro-elasticity made available (He et al., 2017). There, the authors con-
sidered an actuator consisting of a hyperelastic layer and two pre-stretched dielectric
elastomer layers, which bends once a voltage is applied through the thickness of the
dielectric layer. That analysis was concerned with static finite bending under the
plane strain assumption but not with the associated bending instability.

In this paper, we propose a theoretical analysis of finite bending deformation
and the associated bending instability of an incompressible dielectric slab subject to
the combined action of electrical voltage and mechanical loads. We focus on how
finite bending and bending instability of a dielectric slab are influenced by tuning
the applied voltage, the structural parameters and the axial compression.

The paper is structured as follows. In Section 2, we briefly recall the general
equations of the nonlinear theory of electro-elasticity and the associated linear in-
cremental field theory (Dorfmann and Ogden, 2016). We then specialize the general
theory to the problems of the finite bending and the linearized incremental motion
superposed upon the bending of a dielectric slab modeled by any form of energy
function (Section 3). We arrange the governing incremental equations in the Stroh
form and then use the surface impedance matrix method to obtain a robust numer-
ical procedure for deriving the bending and compression thresholds for the onset of
the instability. We find the corresponding wrinkled shape of the slab when buckling
occurs. In Section 4, we present numerical calculations for an ideal neo-Hookean
dielectric slab to elucidate the influence of the applied voltage, of the structural
parameters and of the axial compression on the finite bending and the associated
buckling behavior. We show analytically that only moments are required to drive
the large bending of the slab. We find that both the applied voltage and the axial
constraint pose a destabilizing effect on the slab, while these two effects compete
with each other because compressing the slab will decrease the true electric field in
the solid. We also find under which circumstances can a two-dimensional buckling
pattern happen, where circumferential and axial wrinkles co-exist. Finally in Section
5, we draw some conclusions.

2. Basic formulation

In this section we propose a brief overview of the governing equations for finite
electro-elasticity and its associated incremental theory. Interested readers are re-
ferred to the textbook by Dorfmann and Ogden (2016) for more detailed background
on this topic.
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2.1. Finite electro-elasticity

Consider a deformable continuous electrostatic body which, at time t0, occupies
an undeformed, stress-free configuration Br, with boundary ∂Br and outward unit
normal vector N . Assume that the body is subject to a (true) electric field E, with
an associated (true) electric displacement D. A material particle in Br labeled by
its position vector X takes up the position x at time t, after a finite deformation
described by the mapping x = χ(X, t), where χ is twice continuously differentiable.
As a result, the body deforms quasi-statically into the current configuration, which
is denoted by Bt, with the boundary ∂Bt and the outward unit normal vector n.
The deformation gradient tensor is F = ∂x/∂X, with Cartesian components Fiα =
∂xi/∂Xα. The initial volume element dδ and the deformed volume element d∆ of
the solid are related by dδ = Jd∆, where J = detF is the local volume ratio.

Throughout this paper we consider incompressible dielectric elastomers, for which
the internal constraint J ≡ 1 holds at all times. According to the theory of nonlinear
electro-elasticity, by introducing an augmented free energy function Ω = Ω(F ,Dl),
which is defined in the reference configuration, the governing equations of the body
can be obtained as

T =
∂Ω

∂F
− pF−1, El =

∂Ω

∂Dl

, (1)

where T = F−1τ is the total nominal stress, with τ being the total Cauchy stress
tensor, p is a Lagrange multiplier associated with the incompressibility constraint,
which can be determined from the boundary conditions, and the nominal electric field
El = F TE and the nominal electric displacement Dl = F−1D are the Lagrangian
counterparts of E and D, respectively. The superscripts ‘-1’ and ‘T’ throughout this
paper denote the inverse and transpose of a tensor, respectively.

Specifically, for an isotropic, incompressible, electro-elastic material, Ω can be
expressed in terms of the following five invariants

I1 = trc, I2 = tr
(
c−1
)
, I4 = Dl ·Dl, I5 = Dl · cDl, I6 = Dl · c2Dl, (2)

where c = F TF is the right Cauchy-Green deformation tensor. Combined with Eq.
(1), the Cauchy stress τ = FT and the electric field E = F−TEl are found as

τ = 2Ω1b+ 2Ω2

(
I1b− b2

)
− pI + 2Ω5D ⊗D + 2Ω6 (D ⊗ bD + bD ⊗D) , (3)

E = 2
(
Ω4b

−1D + Ω5D + Ω6bD
)
, (4)

where I is identity tensor, b = FF T is the left Cauchy-Green deformation tensor
and the shorthand notation Ωm = ∂Ω/∂Im(m = 1, 2, 4, 5, 6) is adopted here and
henceforth.
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In the absence of body forces, free charges and currents, and applying the ‘quasi-
electrostatic approximation’, the equations of equilibrium read

divτ = 0, curlE = 0, divD = 0, (5)

where ‘div’ and ‘curl’ are the divergence and curl operators defined in the deformed
configuration, respectively.

In this paper, we consider an initially stress-free dielectric slab, with flexible
electrodes glued to its upper and bottom surfaces, which is bent into a circular sector
by the combined action of electric voltage and mechanical loadings. In this case, the
electric field in the body is distributed radially in the deformed configuration and
there is no exterior electric field in the surrounding vacuum. Then the fields must
satisfy the following boundary conditions on the bent surfaces,

τn = ta, E × n = 0, D · n = qe, (6)

where ta is the prescribed mechanical traction per unit area of ∂Bt, and qe is the
surface charge density on ∂Bt.

2.2. Incremental motions

We now superimpose an infinitesimal incremental deformation ẋ along with an
infinitesimal increment in the electric displacement Ḋl. Hereinafter, dotted variables
represent incremental quantities. The incremental form of the aforementioned equa-
tions can be obtained by Taylor expansions. Hence, the linearized incremental forms
of the constitutive relations in Eq. (1) read

Ṫ 0 = A0H + Γ0Ḋl0 + pH − ṗI, Ėl0 = ΓT
0H +K0Ḋl0, (7)

where Ṫ 0 = F Ṫ , Ėl0 = F−TĖl and Ḋl0 = FḊl are the ‘push forward’ versions of
Ṫ , Ėl and Ḋl, respectively, H = gradu is the displacement gradient, with u(x, t) =
ẋ(X, t) being the incremental mechanical displacement, and A0,Γ0 and K0 are,
respectively, fourth-, third- and second-order tensors, with Cartesian components
defined by

A0piqj = A0qjpi = FpαFqβ
∂2Ω

∂Fiα∂Fjβ
, Γ0piq = Γ0ipq = FpαF

−1
βq

∂2Ω

∂Fiα∂Dlβ

,

K0ij = K0ji = F−1
αi F

−1
βj

∂2Ω

∂Dlα∂Dlβ

. (8)

The above defined tensors are the so-called ‘electro-elastic moduli tensors’, which
are fully determined once the energy function Ω and biasing fields F and Dl are
prescribed.
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It is worth noting here that we have the connection

A0jilk − A0ijlk = (τjl + pδjl) δik − (τil + pδil) δjk, (9)

which can be established by using the incremental form of the symmetry condition
of the Cauchy stress FT = (TF )T.

The incremental forms of the equilibrium equations in (5) are

divṪ 0 = 0, curlĖl0 = 0, divḊl0 = 0. (10)

In addition, the incremental incompressibility constraint relation reads

divu = trH = 0. (11)

Accordingly, the incremental forms of the boundary conditions (6) are

Ṫ
T

0n = ṫA0, Ėl0 × n = 0, Ḋl0 · n = q̇e, (12)

where ṫA0 and q̇e are the incremental mechanical traction and surface charge density
per unit area of ∂Bt, respectively.

3. Finite bending and associated stability analysis

3.1. Finite bending deformation

(a). Reference configuration

F

(b). Current configuration

qj

rjV

ar

br
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j

zj

µH

1J

2J

flexible electrodes

O

3J

A

L

l
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Figure 2: Sketch of a dielectric slab with a voltage applied across its thickness subject to finite
bending.

We consider an initially undeformed dielectric slab of length L, thickness H and
width A, with two flexible electrodes (carbon grease for example) glued onto its
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top and bottom faces. We assume the electrodes to be so thin and soft that their
mechanical role can be ignored during the deformation. The width and length aspect
ratios of the slab are A/H and L/H, respectively. The slab originally occupies the
region

0 ≤ X1 ≤ H, −A
2
≤ X2 ≤

A

2
, 0 ≤ X3 ≤ L, (13)

as depicted in Figure 2(a). With the application of a voltage through the thickness
and of mechanical loads (later calculations show that only moments are needed for
the bending), the slab bends into the current region

ra ≤ r ≤ rb, −ϕ
2
≤ θ ≤ ϕ

2
, 0 ≤ z ≤ l, (14)

as depicted in Figure 2(b), through the following bending deformation (Green and
Zerna, 1954; Ogden, 1997)

r =

√
d+

2X1

ω
, θ =

ωX2

λz
, z = λzX3, (15)

where (X1, X2, X3) and (r, θ, z) are the rectangular Cartesian and cylindrical coordi-
nates in the reference and deformed configurations, with orthogonal bases (J1,J2,J3)
and (jr, jθ, jz), respectively. In Eq. (15), d and ω are constants to be determined,
λz is the axial principal stretch, which is taken to be prescribed, l, ra, rb and ϕ are
the length, inner and outer radii and the bending angle of the deformed sector,
respectively, given by

l = λzL, ra =
√
d, rb =

√
d+

2H

ω
, ϕ =

ωA

λz
. (16)

Then the deformation gradient has the following components in the J i
⊗
jα(i =

1, 2, 3 and α = r, θ, z) basis,

F =

λ
−1λ−1

z 0 0

0 λ 0

0 0 λz

 , (17)

with λ = ωr/λz being the circumferential principal stretch. Combining Eqs. (16)
and (17), we establish the following relationships,

ω =
λ2
z (λ2

b − λ2
a)

2H
, ϕ =

λz (λ2
b − λ2

a)

2

A

H
, (18)
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where λa = ωra/λz, λb = ωrb/λz are the circumferential stretches of the inner and
outer surfaces of the deformed sector, respectively.

Now assume that the nominal electric field and electric displacement in the ref-
erence configuration are transverse,

El =
[
E0 0 0

]T
, Dl =

[
D0 0 0

]T
, (19)

where E0 and D0 are the only non-zero components of the nominal electric field and
electric displacement, respectively. Then the true electric field and electric displace-
ment in the deformed configuration are

E = F−TEl =
[
Er 0 0

]T
, D = FDl =

[
Dr 0 0

]T
, (20)

where Er = λλzE0 = E0ωr and Dr = λ−1λ−1
z D0 = D0/(ωr). The Maxwell equation

(5)3 reads
∂Dr

∂r
+

1

r
Dr =

1

r

∂(rDr)

∂r
= 0, (21)

showing that D0 is a constant. Notice, however, that E0 is not a constant.
According to Equation (2), the invariants are

I1 = λ2 + λ−2λ−2
z + λ2

z, I2 = λ−2 + λ2λ2
z + λ−2

z ,

I4 = D2
0, I5 = λ−2λ−2

z D2
0, I6 = λ−4λ−4

z D2
0. (22)

From Eqs. (3) and (4), we further obtain the non-zero components of the Cauchy
stress τ and of the electric field E as

τrr = 2λ−2λ−2
z Ω1 + 2

(
λ−2 + λ−2

z

)
Ω2 + 2λ−2λ−2

z D2
0Ω5 + 4λ−4λ−4

z D2
0Ω6 − p,

τθθ = 2λ2Ω1 + 2
(
λ−2
z + λ2λ2

z

)
Ω2 − p,

τzz = 2λ2
zΩ1 + 2

(
λ−2 + λ2λ2

z

)
Ω2 − p, (23)

Er = 2
(
λ2λ2

zΩ4 + Ω5 + λ−2λ−2
z Ω6

)
Dr

= 2
(
λλzΩ4 + λ−1λ−1

z Ω5 + λ−3λ−3
z Ω6

)
D0. (24)

At this stage we note that the energy function has only three independent vari-
ables: λ, λz and D0. Introducing a reduced energy function W defined by

W (λ, λz, D0) = Ω (I1, I2, I4, I5, I6) . (25)

Eqs. (23) and (24) can be rewritten compactly as

τrr − τθθ = −λ∂W
∂λ

, (26)
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E0 = λ−1λ−1
z Er =

∂W

∂D0

. (27)

For the considered deformation, the equilibrium equation (5)1 reduces to the
radial component equation

∂τrr
∂r

+
1

r
(τrr − τθθ) = 0. (28)

Combining Eqs. (26) and (28) and using the relation dλ/λ = dr/r enables us to
rewrite the principal stress components τrr and τθθ as

τrr = W +K, (29)

τθθ = λ
∂W

∂λ
+ τrr = λ

∂W

∂λ
+W +K, (30)

where K is a constant to be determined from the boundary conditions. Here the
inner and outer surfaces at ra and rb are free of mechanical tractions, so that

τrr(ra) = τrr(rb) = 0. (31)

Then the constant K can be obtained as

K = −W (λa, λz, D0) = −W (λb, λz, D0) , (32)

and the connection between λa, λb, λz and D0 can be established as

W (λa, λz, D0)−W (λb, λz, D0) = 0. (33)

According to Eq. (5)2, the electric field can be expressed as E = −gradφ, where
φ is the electric potential, with the only non-zero radial electric field component
given by Er = −dφ/dr. We denote the electric voltage difference between the inner
and outer surfaces as V = φa − φb, which, with the help of Eqs. (18)1 and (27), can
be obtained as

V =

∫ rb

ra

λλz
∂W

∂D0

dr =
λ2
z

ω

∫ λb

λa

λ
∂W

∂D0

dλ =
2H

λ2
b − λ2

a

∫ λb

λa

λ
∂W

∂D0

dλ. (34)

Eq. (34) provides the equilibrium relation between the constants V,D0, λa, λb and
λz, once the energy function of the material is specified.

Then by solving the Eqs. (18)2, (33) and (34), λa, λb and D0 can be determined
once V, ϕ, λz and A/H are given. Eventually the inner and outer radii of the deformed
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sector ra and rb, the constant ω and the circumferential principal stretch of arbitrary
point in the sector λ can be derived as

ra =
λaλz
ω

=
λa
ϕ
A, rb =

λbλz
ω

=
λb
ϕ
A, ω =

λzϕ

A
, λ =

ωr

λz
. (35)

As a result, the configuration and the distributions of stretches of the deformed
sector are fully determined. Finally, the required applied axial force FN and the
moment Mn about the origin on the lateral faces θ = ±ωA/(2λz) can be determined
as

FN = λzL

∫ rb

ra

τθθ dr =
2HL

λ2
b − λ2

a

∫ λb

λa

τθθ dλ = µHLFN ,

Mn = λzL

∫ rb

ra

rτθθ dr =
4H2L

λz (λ2
b − λ2

a)
2

∫ λb

λa

λτθθ dλ = µH2LMn, (36)

where µ is the initial mechanical shear modulus, FN and Mn are dimensionless
measures of the axial force and moment, respectively. Note that from Eq. (28) we
have the relation τθθ = d(rτrr)/(dr), thus Eq. (36)1 reads

FN =
2HL

λ2
b − λ2

a

∫ rb

ra

τθθ dr =
2HL

λ2
b − λ2

a

[rbτrr(rb)− raτrr(ra)] , (37)

which identically equals to zero due to the boundary condition (31). Hence, only
moments are required to bend the slab.

3.2. Small-amplitude wrinkle

We now superimpose a small harmonic inhomogeneous deformation on the un-
derlying deformed configuration of the sector, to model the onset of wrinkling on the
inner curved face.

We start with the components of the incremental displacement and the incremen-
tal electric displacement in the form

ui = ui(r, θ, z), Ḋl0i = Ḋl0i(r, θ, z). (38)

Then the incremental displacement gradient reads

H =


∂ur
∂r

1
r

(
∂ur
∂θ
− uθ

)
∂ur
∂z

∂uθ
∂r

1
r

(
∂uθ
∂θ

+ ur
)
∂uθ
∂z

∂uz
∂r

1
r
∂uz
∂θ

∂uz
∂z

 , (39)
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in the jα ⊗ jβ(α, β = r, θ, z) basis, and the incompressibility condition Eq. (11) for
the incremental motion reads

divu = trH =
∂ur
∂r

+
1

r

(
∂uθ
∂θ

+ ur

)
+
∂uz
∂z

= 0. (40)

From Eq. (10)2, we introduce an incremental electric potential φ̇, and the components
of the incremental electric field are

Ėl0r = −∂φ̇
∂r
, Ėl0θ = −1

r

∂φ̇

∂θ
, Ėl0z = −∂φ̇

∂z
. (41)

Now the electro-elastic moduli tensors A0,Γ0 and K0 can be evaluated according
to Eq. (8), with non-zero components listed in Appendix A. Then the components
of the incremental stress and electric fields are expanded as (Wu et al., 2017)

Ṫ0rr = (A01111 + p)
∂ur
∂r

+ A01122
1

r

(
∂uθ
∂θ

+ ur

)
+ A01133

∂uz
∂z

+ Γ0111Ḋl0r − ṗ,

Ṫ0θθ = A01122
∂ur
∂r

+ (A02222 + p)
1

r

(
∂uθ
∂θ

+ ur

)
+ A02233

∂uz
∂z

+ Γ0221Ḋl0r − ṗ,

Ṫ0zz = A01133
∂ur
∂r

+ A02233
1

r

(
∂uθ
∂θ

+ ur

)
+ (A03333 + p)

∂uz
∂z

+ Γ0331Ḋl0r − ṗ,

Ṫ0rθ = A01212
∂uθ
∂r

+ (A01221 + p)
1

r

(
∂ur
∂θ
− uθ

)
+ Γ0122Ḋl0θ,

Ṫ0rz = A01313
∂uz
∂r

+ (A01331 + p)
∂ur
∂z

+ Γ0133Ḋl0z,

Ṫ0θr = A02121
1

r

(
∂ur
∂θ
− uθ

)
+ (A01221 + p)

∂uθ
∂r

+ Γ0122Ḋl0θ,

Ṫ0θz = A2323
1

r

∂uz
∂θ

+ (A02332 + p)
∂uθ
∂z

,

Ṫ0zr = A03131
∂ur
∂z

+ (A01331 + p)
∂uz
∂r

+ Γ0133Ḋl0z,

Ṫ0zθ = A03232
∂uθ
∂z

+ (A02332 + p)
1

r

∂uz
∂θ

, (42)

and

Ėl0r = −∂φ̇
∂r

= Γ0111
∂ur
∂r

+ Γ221
1

r

(
∂uθ
∂θ

+ ur

)
+ Γ0331

∂uz
∂z

+K011Ḋl0r,

Ėl0θ = −1

r

∂φ̇

∂θ
= Γ0122

[
1

r

(
∂ur
∂θ
− uθ

)
+
∂uθ
∂r

]
+K022Ḋl0θ,

Ėl0z = −∂φ̇
∂z

= Γ0133

(
∂ur
∂z

+
∂uz
∂r

)
+K033Ḋl0z, (43)
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according to Eq. (7).
Finally, the incremental forms of equilibrium equation (10)1 and the incremental

Maxwell equation (10)3 reduce to

∂Ṫ0rr

∂r
+

1

r

∂Ṫ0θr

∂θ
+
Ṫ0rr − Ṫ0θθ

r
+
∂Ṫ0zr

∂z
= 0,

∂Ṫ0rθ

∂r
+

1

r

∂Ṫ0θθ

∂θ
+
Ṫ0θr + Ṫ0rθ

r
+
∂Ṫ0zθ

∂z
= 0,

∂Ṫ0rz

∂r
+

1

r

∂Ṫ0θz

∂θ
+
∂Ṫ0zz

∂z
+
Ṫ0rz

r
= 0, (44)

and
∂Ḋl0r

∂r
+

1

r

(
∂Ḋl0θ

∂θ
+ Ḋl0r

)
+
∂Ḋl0z

∂z
= 0, (45)

respectively.
We assume that the sector is under end thrust at the lateral faces θ = ±ωA/(2λz)

and z = 0, l, while the two surfaces r = ra, rb remain traction-free and the applied
voltage is taken to be a constant. The boundary conditions for the incremental fields
are

uθ = Ṫ0θr = Ṫ0θz = 0 at θ = ±ωA/(2λz),
uz = Ṫ0zr = Ṫ0zθ = 0 at z = 0, λzL,

Ṫ0rr = Ṫ0rθ = Ṫ0rz = φ̇ = 0 at r = ra, rb. (46)

3.3. Stroh formulation

We seek solutions of equations in Section 3.2 in the form (Su et al., 2016b)

ur = Ur(r)cos (nθ) cos (kz) , uθ = Uθ(r)sin (nθ) cos (kz) ,

uz = Uz(r)cos (nθ) sin (kz) , φ̇ = Φ(r)cos (nθ) cos (kz) ,

Ṫ0rr = Σrr(r)cos (nθ) cos (kz) , Ṫ0rθ = Σrθ(r)sin (nθ) cos (kz) ,

Ṫ0rz = Σrz(r)cos (nθ) sin (kz) , Ḋl0r = ∆r(r)cos (nθ) cos (kz) , (47)

where n and k are the circumferential and axial wave numbers, respectively. Then
from the incremental constitutive equations (42), (43) and the incremental boundary
conditions (46)1,2, we have

n =
2λzqπ

ωA
=

4qπ

λz (λ2
b − λ2

a)

H

A
, k =

mπ

λzL
(q,m = 0, 1, 2, ...), (48)
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where the positive integers q and m give the numbers of circumferential and axial
wrinkles of the sector, respectively (Destrade et al., 2009b; Balbi et al., 2015). It
should be noticed that they cannot be zero simultaneously.

Then Eqs. (40)-(45) that govern the incremental motion of the dielectric sector
can be rearranged to yield the following first-order differential system (Destrade et
al., 2009a,b, 2014; Balbi et al., 2015)

d

dr
η(r) =

1

r
G(r)η(r), (49)

where
η(r) =

[
Ur Uθ Uz r∆r rΣrr rΣrθ rΣrz Φ

]T
=
[
U S

]T
, (50)

is the Stroh vector (with U =
[
Ur Uθ Uz r∆r

]T
and S =

[
rΣrr rΣrθ rΣrz Φ

]T
), G

is the so-called Stroh matrix, which has the following block structure

G =

[
G1 G2

G3 G4

]
, (51)

where the four 4× 4 sub-blocks G1,G2,G3 and G4 have the following components

G1 =


−1 −n −kr 0

n(γ12−τrr)
γ12

γ12−τrr
γ12

0 0
kr(γ13−τrr)

γ13
0 0 0

ξ1 −nτrr
γ12

Γ0122

K022
0 0

 , G2 =


0 0 0 0
0 1

γ12
0 − n

γ12

Γ0122

K022

0 0 1
γ13

− kr
γ13

Γ0133

K033

0 n
γ12

Γ0122

K022

kr
γ13

Γ0133

K033
ξ2

 ,

G3 =


κ11 κ12 κ13 − (Γ0111 − Γ0221)
κ12 κ22 κ23 −n (Γ0111 − Γ0221)
κ13 κ23 κ33 −kr (Γ0111 − Γ0331)

Γ0111 − Γ0221 n (Γ0111 − Γ0221) kr (Γ0111 − Γ0331) −K011

 ,

G4 =


1 −n(γ12−τrr)

γ12
−kr(γ13−τrr)

γ13
ξ1

n −γ12−τrr
γ12

0 −nτrr
γ12

Γ0122

K022

kr 0 0 0
0 0 0 0

 . (52)
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Here

γ12 = A01212 −
Γ2

0122

K022

, γ21 = A02121 −
Γ2

0122

K022

, γ23 = A02323,

γ13 = A01313 −
Γ2

0133

K033

, γ31 = A03131 −
Γ2

0133

K033

, γ32 = A03232,

ξ1 = −
(

Γ0122

K022

n2

γ12

+
Γ0133

K033

k2r2

γ13

)
τrr,

ξ2 = −
(

n2

K022

+
Γ2

0122

K2
022

n2

γ12

+
k2r2

K033

+
Γ2

0133

K2
033

k2r2

γ13

)
,

β12 =
1

2

(
A01111 + A02222 − 2A01122 − 2A01221 +

2Γ2
0122

K022

)
,

β13 =
1

2

(
A01111 + A03333 − 2A01133 − 2A01331 +

2Γ2
0133

K033

)
,

κ11 = 2(γ12 − τrr + β12) + n2

[
γ21 −

(γ12 − τrr)2

γ12

]
+ k2r2

[
γ31 −

(γ13 − τrr)2

γ13

]
,

κ12 = n

(
γ12 + γ21 + 2β12 −

τ 2
rr

γ12

)
, κ13 = kr (A01111 + A02233 − A01122 − A01133 + p) ,

κ22 = 2n2(γ12 − τrr + β12) + γ21 −
(γ12 − τrr)2

γ12

+ k2r2γ32,

κ23 = nkr (A01111 + A02233 + A02332 − A01122 − A01133 + 2p) ,

κ33 = 2k2r2 (γ13 − τrr + β13) + n2γ23. (53)

It should be noticed that to derive Eqs. (49)-(53), we made use of the connections

A01221 + p = A01212 − τrr, A01331 + p = A01313 − τrr, (54)

which result from Eqs. (8)1 and (9). The derivation of the Stroh formulation is given
in Appendix B.

Now the incremental boundary conditions (46)3 read

S(ra) = S(rb) = 0. (55)

Note that we chose to write the components of η in the order presented in Eq.
(50), because it will turn out to be the most practical for those boundary value
problems where the electric field is due to a constant voltage applied to the bent
faces of the sector. For the case where the sector is charge-controlled (Keplinger
et al., 2010; Dorfmann and Ogden, 2014a; Su et al., 2016a,b) instead of voltage-
controlled, the places of r∆ and Φ must be swapped in η for greater efficiency in
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the scheme. In other words, η and G in Eq. (49) should be replaced with η̂ and Ĝ,
respectively, where

η̂ =



Ur
Uθ
Uz
Φ
rΣrr

rΣθθ

rΣzz

r∆


=

[
Û

Ŝ

]
= Rη, Ĝ = RGR−1, R =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0


, (56)

with Û =
[
Ur Uθ Uz Φ

]T
and Ŝ =

[
rΣrr rΣrθ rΣrz r∆r

]T
. Then the traction-free

boundary conditions at the two surfaces ra, rb, Eq. (55) should be modified as

Ŝ(ra) = Ŝ(rb) = 0. (57)

As a result, the method presented in this paper can be easily extended to the
case of a charge-controlled sector. Our calculations (not presented here) show that
we then recover the same results as in the literature when the slab is reduced to a
half-space (Dorfmann and Ogden, 2010b).

3.4. The surface impedance matrix method

The inhomogeneous differential system (49) is stiff numerically, especially for
thick slabs. Over the years, several algorithms such as the compound matrix method
(Shmuel and deBotton, 2013) and the state space method (Wu et al., 2017) have
been adopted to overcome the stiffness of this equation. Here the so-called sur-
face impedance matrix method (Destrade et al., 2009a,b, 2014; Balbi et al., 2015)
is employed to build a robust and efficient numerical procedure for obtaining the
dispersion equation.

We introduce the 8 × 8 matricant M (r, ra) =

[
M 1(r, ra) M 2(r, ra)
M 3(r, ra) M 4(r, ra)

]
, which is

defined as the matrix such that

η(r) = M (r, ra)η(ra), (58)

with the obvious condition that

M (ra, ra) = I8×8. (59)

16



Use of the incremental boundary condition S(ra) = 0 gives

S(r) = za(r, ra)U (r), (60)

where za(r, ra) is the conditional impedance matrix, which is defined as

za(r, ra) = M 3(r, ra)M
−1
1 (r, ra). (61)

Substituting Eq. (60) into Eq. (49) gives

d

dr
U =

1

r
G1U +

1

r
G2z

aU ,
d

dr
(zaU) =

1

r
G3U +

1

r
G4z

aU . (62)

Elimination of U from Eq. (62) yields the following Riccati differential equation

dza

dr
=

1

r
(−zaG1 − zaG2z

a +G3 +G4z
a) , (63)

with the initial condition
za(ra, ra) = 0, (64)

which follows from Eqs. (59) and (61).
Then we integrate Eq. (63) numerically with the initial condition (64) from ra

to rb and tune the bending angle until the following target condition is satisfied

det za(rb, ra) = 0, (65)

which results from the boundary

S(rb) = za(rb, ra)U(rb) = 0. (66)

The conclusion is that, for a given voltage V , the critical bending angle ϕc can
be determined, and so can the critical value of the inner circumferential stretch λa,
which we denote by λc.

It follows from Eq. (66) that the ratios of the incremental motion on the outer
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face of the sector can be determined as

tθ =
Uθ(rb)

Ur(rb)

=
Q11Q24Q33 +Q13Q21Q34 +Q14Q23Q31 −Q11Q23Q34 −Q13Q24Q31 −Q14Q21Q33

Q12Q23Q34 +Q13Q24Q32 +Q14Q22Q33 −Q12Q24Q33 −Q13Q22Q34 −Q14Q23Q32

,

tz =
Uz(rb)

Ur(rb)

=
Q11Q22Q34 +Q12Q24Q31 +Q14Q21Q32 −Q11Q24Q32 −Q12Q21Q34 −Q14Q22Q31

Q12Q23Q34 +Q13Q24Q32 +Q14Q22Q33 −Q12Q24Q33 −Q13Q22Q34 −Q14Q23Q32

,

tΦ =
Φ(rb)

Ur(rb)

=
Q11Q23Q32 +Q12Q21Q33 +Q13Q22Q31 −Q11Q22Q33 −Q12Q23Q31 −Q13Q21Q32

Q12Q23Q34 +Q13Q24Q32 +Q14Q22Q33 −Q12Q23Q31 −Q12Q23Q31 −Q13Q21Q32

,

(67)

where the shorthand notation Qij = zaij(rb, ra)(i, j = 1, 2, 3, 4) is used.
On the other hand, we can also start at the outer surface r = rb and introduce

the 8× 8 matricant M (r, rb) =

[
M 1(r, rb) M 2(r, rb)
M 3(r, rb) M 4(r, rb)

]
such that

η(r) = M(r, rb)η(rb), (68)

with the obvious condition that

M(rb, rb) = I8×8. (69)

Following the same procedure, we can also obtain a Riccati differential equation
for the other conditional impedance matrix zb(r, rb), as

dzb

dr
=

1

r

(
−zbG1 − zbG2z

b +G3 +G4z
b
)
. (70)

The corresponding form of Eq. (62)1 is

d

dr
U =

1

r
G1U +

1

r
G2z

bU . (71)

With the critical stretch λc obtained by integrating the Riccati differential equa-
tion for the za(r, ra) conditional impedance matrix, we can now integrate simultane-
ously Eqs. (70) and (71) from rb to ra with the following initial conditions

U(rb) = U(rb)
[
1 tθ tz tΦ

]T
, zb(rb, rb) = 0, (72)

to determine the full distribution of the incremental field U in the deformed sector
and corresponding buckling pattern.
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4. Numerical results and discussion

For illustration, we now consider the so-called ideal neo-Hookean dielectric model:

W =
µ

2

(
λ2 + λ−2λ−2

z + λ−2
z − 3

)
+

1

2ε
λ−2λ−2

z D2
0, (73)

where ε is the permittivity of the solid, which is independent of the deformation.

4.1. Static deformation

In this case Eqs. (18)2, (33) and (34) reduce to

ϕ =
λz (λ2

b − λ2
a)

2

A

H
, λ2

aλ
2
bλ

2
z = D

2

0 + 1, V =
2D0

λ2
z (λ2

b − λ2
a)

ln
λb
λa
, (74)

where we are using the following non-dimensional measures of voltage and electric
vector,

V =
V

H

√
ε

µ
, D0 =

D0√
µε
. (75)

For given V , ϕ, λz and A/H, λa, λb and D0 can be determined from Eq. (74).
Then the dimensionless stresses and electric field in the solid follow from Eqs. (27),
(29), (30) and (32) as

τ rr(λ) =
τrr
µ

=
(λ2 − λ2

a) (λ2 − λ2
b)

2λ2
, τ θθ(λ) =

τθθ
µ

=
3λ4 − λ2

aλ
2
b − λ2 (λ2

a + λ2
b)

2λ2
,

(76)

Er = Er

√
ε

µ
= λ−1λ−1

z D0. (77)

4.1.1. Effect of the voltage

In Figure 3 we plot the circumferential stretches of the bent inner and outer
surfaces λa and λb versus the bending angle ϕ for different applied voltages V =
0, 0.5, 0.7, based on Eq. (74). In Figure 4, we plot the distributions of circumferential
stretch λ and stress τ θθ in the sector and the bending shapes for several given ϕ and
V . We can see from Eq. (74) that the length aspect ratio L/H does not affect the
bending deformation of the slab. Here in the calculation the axial constraint and
the initial configuration of the slab are fixed as λz = 1, A/H = 3, and the non-
dimensional measure of the radial coordinate r = (r − ra) / (rb − ra) is introduced.

It can be seen from Figure 3 that when there is no applied voltage (V = 0), the
slab bends with λa decreasing and λb increasing from 1. Hence, the inner face of the
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Figure 3: Plots of λa, λb − ϕ for dielectric slabs with λz = 1, A/H = 3 subject to voltage V =
0, 0.5, 0.7, respectively.

sector contracts circumferentially while the outer face stretches (Figure 4a), a result
which is independent of the value of ϕ. With the application of voltage, both λa and
λb of a slightly bent sector are larger than 1 and hence, every circumferential element
in the sector is stretched (Figure 4b). If the bending moments are increased, the
bending angle increases, and the inner surface eventually contracts circumferentially,
and the outer surface is stretched at all times (Figure 4c). Note that for a bent
sector, τ θθ depends on r almost linearly, the transverse stress of the inner part of the
sector is always compressive while that of the outer part is always tensile, separated
by a neutral axis corresponding to τ θθ = 0.

We learn from Eq. (37) that only mechanical moments are required to drive the
bending of the dielectric slab. The effect of the applied voltage V on the moment
Mn needed to trigger a specific bending (ϕ = 1, 2, 3) of the dielectric slab with
λz = 1, A/H = 3 is presented in Figure 5a . We can see clearly that Mn decreases
as V increases, which suggests that the application of the voltage makes the slab
easier to be bent. Theoretically, as the applied voltage increases, the dielectric slab
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Figure 4: Bending of dielectric slabs which are three times wider than thick, with no axial com-
pression (λz = 1, A/H = 3) and subject to various bending angles and voltage loadings: (a)
ϕ = 0.5, V = 0; (b) ϕ = 0.5, V = 0.7; (c) ϕ = 4, V = 0.7. The top, middle and bottom rows
correspond to the circumferential stretch, circumferential stress distributions, and bending shapes,
respectively.
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Figure 5: (a) Plots of Mn − V for several specific bending angles ϕ = 1, 2, 3 of a dielectric slab
which is three times wider than thick, and no axial compression (λz = 1, A/H = 3); (b) Nonlinear
response of a dielectric slab subject to a voltage.
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thins down, making the slab easier to be bent. As a result, the moment needed
for the bending decreases. For a dielectric slab undergoes plane strain deformation,
the maximal electric field V applied cannot exceed the value 1 (Figure 5b). As the
electric field tends to 1, the slab becomes be ultra-thin, and the moment drops to
zero (Figure 5a).

4.1.2. Effect of the axial compression

Figure 6: Plots of λa, λb − ϕ for fixed axial compressions λz = 0.8, 1, 1.4 of dielectric slabs with
V = 0, A/H = 3.

Figures 6-9 illustrate the effect of the axial constraint as measured by the stretch
λz on the finite bending of a dielectric slab with V = 0, A/H = 3. We see that
compressive (λz < 1) and tensile (λz ≥ 1) axial loads produce different effects on
the bending deformation (Figure 6). A compressive loading has a similar effect as
a voltage V on the bending: when the slab is bent slightly, every circumferential
element in the sector is stretched (Figure 7b); as the bending angle ϕ increases to a
sufficiently large value, the inner part of the sector contracts circumferentially, and
the outer part is stretched (Figure 7c). Conversely, for a pre-stretched, slightly bent
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Figure 7: Purely elastic bending of a dielectric slab which is three times wider than thick (V =
0, A/H = 3) for various bending angles and axial compression ratios: (a) ϕ = 0.5, λz = 1; (b)
ϕ = 0.5, λz = 0.7; (c) ϕ = 3, λz = 0.7. The top, middle and bottom rows show the variations
through the thickness of the circumferential stretch and of the stress distributions, and the resulting
bending shapes, respectively.

slab, every circumferential element of the solid is contracted (Figure 8b); then as ϕ
increases, λb increases, and eventually, the outer part of the solid will be stretched
again for a sufficiently large ϕ (Figure 8c). Notice that in both cases, the distribution
of circumference stress τ θθ depends almost linearly on r. We can see from Figure 9
that stretching the slab makes the solid easier to be bent.

4.2. Stability analysis

The corresponding material parameters are obtained by substituting Eq. (73)
into Eqs. (A.1)-(A.3) as

A01111 = A01212 = A01313 = µλ−2λ−2
z +D2

r , A02121 = A02222 = A02323 = µλ−2,

A03131 = A03232 = A03333 = µλ−2
z , Γ0111 = 2Γ0122 = 2Γ0133 = 2Dr,

K011 = K022 = K033 = ε−1. (78)
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Figure 8: Purely elastic bending of a dielectric slab which is three times wider than thick (V =
0, A/H = 3) for various bending angles and axial elongation ratios: (a) ϕ = 0.5, λz = 1; (b)
ϕ = 0.5, λz = 1.4; (c) ϕ = 2.5, λz = 1.4. The top, middle and bottom rows show the variations
through the thickness of the circumferential stretch and of the stress distributions, and the resulting
bending shapes, respectively.

4.2.1. Pure elastic problem

First, we consider the purely elastic slab (V = 0) under bending only (λz = 1),
a case which has been previously investigated experimentally (Gent and Cho, 1999;
Roccabianca et al., 2010) and theoretically (Triantafyllidis, 1980; Destrade et al.,
2009a,b; Roccabianca et al., 2010). Figure 10 exhibits numerical results for the
bending instability for different axial mode numbers m = 0− 5 of elastic slabs with
A/H = 1, 3 and 4, and L/H = 10, respectively. The solid buckles when the stretch
of the inner surface λa reaches the highest point of the λc−q curve. We find that the
bending instability occurs with decreasing critical stretch λc as m increases and the
buckling mode with m = 0 always occurs first, indicating that only circumferential
wrinkles occur at the onset of instability. For instance, a slab with A/H = 1, 3, 4
buckles in modes q = 2, 7, 10 and m = 0 when the circumferential stretch of the
inner surface of the sector reaches λc = 0.56091, 0.5614, 0.56135 and the bending
angle reaches ϕc = 1.43, 4.23, 5.72, respectively. Notice that the perturbation decays
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Figure 9: Plots of Mn− λz for bending angle ϕ = 1, 2, 3 of a dielectric slab with V = 0, A/H = 3.

dramatically along the radius, and that the displacement on the inner face is several
orders of magnitude larger than that on the outer face.

Figure 11 reports the critical number of circumferential wrinkles q, the critical
stretch λc and the critical bending angle ϕc as functions of the aspect ratio A/H.
For a given A/H, each mode number q corresponds a different value of the critical
stretch λc and a series of branches can be obtained by taking q = 1, 2, 3, .... However
only the highest value is meaningful, thus the other curves below the highest curve
are not presented in the λc−A/H plot. We observe that as A/H increases, the mode
number q increases, indicating that more wrinkles appear as instability occurs for a
more slender slab. The critical bending angle ϕc increases linearly as A/H increases.
For a slab with sufficiently large width aspect ratio A/H(> 4.46), the structure
can be bent into a tube without encountering any instability (Figure 11b). In the
half-space limit (A/H → 0), the critical stretch is λc = 0.5437, which corresponds
to the threshold value of surface instability of a compressed elastic slab (Biot, 1965;
Destrade et al., 2009b). When A/H is small, the critical stretch λc varies significantly
as A/H varies. While for slab with sufficiently large A/H, λc reaches a horizontal
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Figure 10: Elastic bending instability of a dielectric slab with fixed axial compression (V = 0, λz =
1) for various width aspect ratios: (a) A/H = 1; (b) A/H = 3; (c) A/H = 4 and fixed length
aspect ratio L/H = 10. The top row shows plots of the critical circumferential stretch λc versus the
number of circumferential wrinkles q for a range of axial modes m = 0− 5. The bottom row shows
the corresponding wrinkling shapes when instability occurs. The highest point of λc − q curves for
each ease is marked by cross, representing the onset of the instability. In this case the m = 0 plot
is always on top and there are no axial wrinkles, only circumferential.

asymptote λc ≈ 0.5618.

4.2.2. Effect of the voltage

We now consider the effect of the applied voltage V on the bending instability
of a dielectric slab. Figure 12 presents plots of λc versus q for a range of modes
m = 0 − 5 and the corresponding wrinkling shapes when instability occurs for di-
electric slabs with A/H = 3, L/H = 1.5 and subject to V = 0, 0.2, 0.4, 0.6, 0.7, 0.76.
Here we fix the axial deformation of the bending deformation as a 15% contraction
(λz = 0.85). For each of the cases (a)-(f) shown in Figure 12, the buckling mode is
(m, q) = (0, 7), (0, 8), (1, 1), (1, 1), (1, 0) and (1,0), respectively. The critical stretch
λc increases as V increases. For the cases where the applied voltage is small, only
circumferential wrinkles occur (m = 0, q 6= 0) when bending buckling happens, and
the mode number q increases as the voltage increases (Figures 12a, b). As the volt-
age increases further, both circumferential and axial wrinkles occur simultaneously
(m 6= 0, q 6= 0) at the onset of bending instability (Figures 12c, d) and combine to
give a 2D pattern. Finally, for dielectric slabs subject to sufficiently large voltage, a
slight bending will drive the instability of the structure and in this case, only axial
wrinkle occurs ((m 6= 0, q = 0), see Figure 12e, f). It should be mentioned that the
maximal number of axial wrinkle is one (m = 0, 1).
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Figure 11: (a) Critical circumferential mode number q and (b) stretch λc (evaluated at the inner
face of the bent sector ra) and critical bending angle ϕc versus width aspect ratio A/H of an elastic
slab (V = 0) under bending only (λz = 1) at the onset of buckling.

We extract the critical bending angle ϕc when the instability occurs and the
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Figure 12: Bending instability of compressed dielectric slabs which are 3 times wider and 1.5 times
taller than thick (A/H = 3, L/H = 1.5, λz = 0.85) and subject to increasing voltages: (a) V = 0;
(b) V = 0.2; (c) V = 0.4; (d) V = 0.6; (e) V = 0.7; (f) V = 0.76. The top rows are plots of λc
versus q for a range of modes m = 0− 5 and bottom rows are the corresponding wrinkling shapes
when instability occurs. In cases (a) and (b), circumferential wrinkles occurs and in cases (e) and
(f), axial wrinkles occurs whereas in cases (c) and (d), a two-dimensional (circumferential and axial)
pattern emerges.

critical moment Mnc needed to drive the instability for the cases presented in Figure
12, and plot them in Figure 13 as the applied voltage V changes. It can be seen
that both ϕc and Mnc decrease as V increases, indicating that the application of the
voltage makes the dielectric slab more susceptible to fail. One may expect that ϕc
and Mnc will be zero for a critical λzc, corresponding the critical value of instability
of a compressed elastic slab (Dorfmann and Ogden, 2014a; Biot, 1963).
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Figure 13: Effect of the applied voltage V on the critical values of bending angle ϕc and moment
Mnc for dielectric slabs with A/H = 3, L/H = 1.5, λz = 0.85.

4.2.3. Effect of the axial constraint

Here, we investigate the effect of the axial compression, as measured by the
axial stretch ratio λz, on the bending instability of dielectric slabs. Figure 14 dis-
plays numerical results for the bending instability of dielectric slabs with A/H =
3, L/H = 1.5 and subject to V = 0.3 and λz = 1, 0.9, 0.8, 0.75, 0.7, 0.63, respec-
tively. Figure 15 presents the corresponding ϕc and Mnc when buckling occurs.
For each of the cases (a)-(f) shown in Figure 14, the buckling mode is (m, q) =
(0, 9), (0, 8), (1, 1), (1, 1), (1, 0) and (1,0), respectively. We can see that decreasing
the axial stretch ratio has a similar effect as increasing the applied voltage V on the
bending buckling behavior of dielectric slabs, i.e., the critical stretch λc increases
as λz decreases, and circumferential wrinkles occur first and eventually only axial
wrinkles exist as λz decreases to a sufficiently small value. Note that when the axial
compression is small, the mode number q decreases as λz increases (Figures 14a,
b), which is different from the case of increasing V (Figures 12a, b). Due to the
competition mechanisms of the effects of V and λz on the bending instability of the
structure, the ϕc,Mnc − λz curves are non-monotone. On the one hand, decreasing
λz increases the thickness of the slab and thus decreases the true electric field, which
consequently increases the stability of the structure. On the other hand, decreasing
λz makes the structure be easier to fail in the axial direction and poses a destabiliz-
ing influence on the slab. As a result, ϕc and Mnc increase first and then decrease
to zero, as λz decreases (Figure 15), indicating that the voltage V plays a major
role when the structure is only slightly compressed, while the axial compression λz
presents the dominant influence when the structure is dramatically compressed.
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Figure 14: Bending instability of dielectric slabs with A/H = 3, L/H = 1.5, V = 0.3 and subject to
(a) λz = 1; (b) λz = 0.9; (c) λz = 0.8; (d) λz = 0.75; (e) λz = 0.7; (f) λz = 0.63. The top rows are
plots of λc versus q for a range of modes m = 0−5 and bottom rows are the corresponding wrinkling
shapes when instability occurs. In cases (a) and (b), circumferential wrinkles occurs and in cases
(e) and (f), axial wrinkles occurs whereas in cases (c) and (d), a two dimensional (circumferential
and axial) pattern emerges.

5. Conclusions

We presented a theoretical analysis of the finite bending deformation and the
associated bending instability of an incompressible dielectric slab subject to a com-
bined action of voltage and mechanical moments. We derived the three-dimensional
equations governing the static finite bending deformation and the associated incre-
mental deformation of the slab for a general form of energy function. In particular,
we studied explicit expressions of the radially inhomogeneous biasing fields in the
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Figure 15: Effect of the axial compression, as measured by the axial stretch ratio λz, on the critical
values of bending angle ϕc and momentMnc for dielectric slabs with A/H = 3, L/H = 1.5, V = 0.3.

slab for ideal neo-Hookean dielectric materials. We took the electric loading to be
voltage-controlled and so we chose a state vector accordingly to rewrite the incremen-
tal governing equation in the Stroh differential form. We used the surface impedance
matrix method to obtain numerically the bending threshold for the onset of the
instability and the wrinkled shape of the shell when bending instability occurs.

We first studied the effects of the applied voltage and axial compression on the
finite bending deformation. We showed that the length aspect ratios of the slab L/H
does not affect the bending deformation of the slab. The applied voltage increases
the circumferential stretch in the body so that every circumferential element in a
slightly bent slab is stretched. The moments needed to drive the specific bending
of the slab decrease as the voltage increases, indicating that the application of the
voltage makes the slab easier to bend. We found that the compressive axial constraint
has a similar effect as the applied voltage, while on the contrary, every circumferential
element in a slightly bent slab, subject to axial pre-stretch, is contracted. As the
axial stretch increases, the moments needed to drive a specific bending of the slab
decrease, indicating that the axial pre-stretch makes the slab easier to bend. In any
case, the circumferential stretch deforms linearly along the radial direction and the
transverse stress of the inner part of the sector is always compressive while that of
the outer part is always tensile.

We then investigated the combined influences of the applied voltage and axial
constraint on the instability of a dielectric slab. We obtained the critical circum-
ferential stretch on the inner surface of the deformed shell, as well as the wrinkled
shape when the bending instability occurs. We recovered the results of the purely
elastic problem to validate our analysis. Theoretically, the application of the voltage
and the axial constraint both play a destabilizing effect, i.e., make the slab more
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susceptible to wrinkling instability. The two effects compete with each other, and an
increase in the axial compressive loads leads to a decrease in the true electric field
in the body. The applied voltage plays the main role when the constraint is small,
while the constraint becomes dominant when the compression is sufficiently large.

In this article we focused on the formation of small-amplitude wrinkles in a bent
and axially compressed dielectric slab. We did not look at post-buckling behavior
or if creases might have preceded wrinkles. This is certainly the case in the in-plane
compression of an elastic half-space, where creases form much earlier (λc = 0.65)
than the wrinkles predicted by the linearised buckling analysis of Biot (λc = 0.54),
i.e. with more than 10% strain difference (Hong et al., 2009). However, recent Finite
Element simulations show that in bending, creases occur only a few percent of strain
earlier than wrinkles, and that their number and wavelength can be predicted by
the linearized analysis (Sigaeva et al., 2018). Hence we argue that our analysis is
justified as a good approximation for predicting the onset and wavelength of buckling,
although of course a fully multi-physics Finite Element Analysis is required to settle
this question. Moreover, wrinkles have indeed been observed in loaded dielectric
elastomers with free sides (e.g. Plante and Dubowsky (2006); Liu et al. (2016)). To
create creases in a dielectric membrane, one could glue one side of a slab to a rigid,
conducting substrate, as done by Wang and Zhao (2013), but the corresponding
boundary value problem is then different from the one studied here, where both
sides were free of traction.
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Appendix A. Non-zero electro-elastic moduli

Here we use the incremental theory of electro-elasticity to compute the non-zero
components of the instantaneous electro-elastic moduli with respect to the specific
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deformation gradient (17), as follows (Wu et al., 2017; Dorfmann and Ogden, 2010a)
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zΩ44 + 2λ6λ6
zΩ45 + 2λ4λ4

zΩ46 + λ4λ4
zΩ55 + 2λ2λ2

zΩ56 + Ω66

)]
,

K022 =2
(
Ω5 + λ2Ω6 + λ−2Ω4

)
, K033 = 2

(
Ω5 + λ2

zΩ6 + λ−2
z Ω4

)
. (A.3)
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Appendix B. Derivation of the Stroh formulation

First, rewriting Eq. (40) by using solutions (47) gives

U ′r = −1

r
(Ur + nUθ + krUz) . (B.1)

Next, eliminating Ḋl0θ from Eqs. (42)4 and using (43)2 and ultizing Eq. (47), yields

U ′θ =
1

r

[
n(γ12 − τrr)

γ12

Ur +
γ12 − τrr
γ12

Uθ +
1

γ12

(rΣrθ)−
n

γ12

Γ0122

K022

Φ

]
. (B.2)

Similarly, eliminating Ḋl0z from Eqs. (42)5 and using (43)3 and ultizing Eq. (47),
yields

U ′z =
1

r

[
kr(γ13 − τrr)

γ13

Ur +
1

γ13

(rΣrz)−
kr

γ13

Γ0133

K033

Φ

]
. (B.3)

Next, we substitute Eqs. (43)2,3 and (47) into Eq. (45) and using Eqs. (B.2) and
(B.3) to get the expression for (r∆r)

′, as follows

(r∆r)
′ =

1

r

[
ξ1Ur −

nτrr
γ12

Γ0122

K022

Uθ +
n

γ12

Γ0122

K022

(rΣrθ) +
kr

γ13

Γ0133

K033

(rΣrz) + ξ2Φ

]
.

(B.4)
These are the first four lines of the Stroh formulation.

Substituting Eqs. (42)1,2,6,8, (43)2,3 and (47) into Eq. (44)1 and using Eqs. (B.1)-
(B.3) results in

(rΣrr)
′ =

1

r
[κ11Ur + κ12Uθ + κ13Uz − (Γ0111 − Γ0221)r∆r + rΣrr

−n(γ12 − τrr)
γ12

rΣrθ −
kr(γ13 − τrr)

γ13

rΣrz + ξ1Φ

]
. (B.5)

Similarly, substituting Eqs. (42)1,2,4,6,9, (43)2 and (47) into Eq. (44)2 and using
Eqs. (B.1) and (B.2) gives

(rΣrθ)
′ =

1

r
[κ12Ur + κ22Uθ + κ23Uz − n(Γ0111 − Γ0221)r∆r + n(rΣrr)

−γ12 − τrr
γ12

rΣrθ −
nτrr
γ12

Γ0122

K022

Φ

]
. (B.6)

Then substituting Eqs. (42)1,3,7 and (47) into Eq. (44)3 and using Eq. (B.1), we
obtain

(rΣrz)
′ =

1

r
[κ13Ur + κ23Uθ + κ33Uz − kr(Γ0111 − Γ0331)r∆r + kr(rΣrr)] . (B.7)

38



Finally, from Eqs. (43)1 and (47) and using Eq. (B.1), we have

Φ′ =
1

r
[(Γ0111 − Γ0221)Ur + n(Γ0111 − Γ0221)Uθ + kr(Γ0111 − Γ0331)Uz −K011r∆r] .

(B.8)
Now we can write Eqs. (B.1)-(B.8) in the Stroh matrix form, as presented in Eq.

(49).
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