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Abstract—A mishap in anti-cancer drug distribution is critical
in breast cancer patients due to poor prediction model to identify
the treatment regime in ER+ve and ER-ve (Estrogen Receptor
(ER)) patients. The traditional method for the prediction depends
on the change in expression across the normal-disease pair.
However, it certainly misses the multidimensional aspect and un-
derlying cause of relapse, such as various mutations, drug dosage
side effects, methylation, etc. In this paper, we have developed
a multi-layer neural network model to classify multidimensional
genomics data into their similar annotation group. Further, we
used this multi-layer cancer genomics perceptron for annotating
differentially expressed genes (DEGs) to predict relapse based
on ER status in breast cancer. This approach provides multi-
variate identification of genes, not just by differential expression,
but, cause-effect of disease status due to drug overdosage and
genomics-driven drug balancing method. The multi-layered neu-
ral network model, where each layer defines the relationship of
similar databases with multidimensional knowledge. We illustrate
that the use of multilayer knowledge graph with gene expression
data for training the deep convolution neural network stratify the
patient relapse and drug dosage along with underlying molecular
properties.

Index Terms—Deep learning, Knowledge Graph, Breast cancer,
Neural Network

I. INTRODUCTION

Multidimensional sparse functional annotation databases

in genomics with hundreds of variables such as gene,

protein, mutation, pathways, and drugs are available. Usually,

these databases are available with more than one choice of

selection for each type of information and incomplete or

redundant information. In these settings prediction of disease

or its effects with one dimension such as gene expression

are challenging to detect with predictive information. The

genomics data is multi-dimensional and databases usually

spread across multiple databases. Due to this, a particular type

of data (e.g., Mutations) can have multiple sources and hence

the integration of this data with gene expression for prediction

becomes a challenging task. However as explained in [1]

and Figure 1 each layer represents broadly drug, mutations,

disease, pathway and side effects associated with human

genes. All these layers are knowledge graphs abbreviated

as (KG-1 to KG-5). Moreover, as explained in Figure 1

each layer contains a combination of 5 layers treated as sub

knowledge graphs. In this paper, we used gene expression

data in combination with 5-hidden layers and 5*5 hidden

sub-layers for prediction of ER+ve and ER-ve breast cancer

patients. It’s clear from Figure 1 that GE data along with

sub-layers added in propagation hence neural network(NN)

worked as a classifier. One of the key issues with genomics

data and knowledge graph is incomplete or redundant data.

The drug and mutations databases sparsely integrated across

various platforms. Hence vector representation and controlling

the dimensionality of each layer of data propagation obtain

different outcomes [2]. For example, a known breast cancer

gene BRCA2 due to its higher frequency of mutation

and expression layer can be essential for ER+ve and ER-ve.

However, in the second hidden layer (KG 2), while annotating

BRCA2 with CNV as shown in Figure 1, it annotated with

more copies of CNV for ER+ve group. This way multi hidden

layer propagation provides a well-connected prediction. This

type of prediction will lead to better biomarker discovery

than traditional gene expression (GE only) based biomarker

predictor in breast cancer [3]. Further, usually genomic

features stated as (GE1-GE5) usually being used as an

annotation to understand the mechanism of disease after

the prediction using gene expression and survival data.

Due to lack of connection between gene expression data

and annotation databases, the models trained only on gene

expression data usually provides expression biased predictors

(biomarkers), and it always misses some key genes involved

in disease progression [4]. Comparison of neural network

based multi-layer predictors provide biomarkers with better

survival than just gene expression-based biomarkers. Another

issue is that the current methods and algorithms for predicting

biomarkers for breast cancer uses the Random forest, Elastic

net, SVM and NaÃ¯ve Bayes Model. Due to varying sample

size, nature of experiments, the platform of gene expression

data and their training and testing performance usually

have significant variance. Since ER+ve and ER-ve breast

cancer separated due to some pathway alteration during the

cancer progression and data split from a single source is

one of the reasons for the increased bias and variance in

trained classifiers. Hence intrinsic noise in the class with

some instances with the same attributes may have different

classes(ER+ve and ER-ve). This misclassification results in

higher training error. Increase in all these high factors lead to

increase in mean error in training data as mentioned in the

equation below:
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E(MSE) =noise2[Gene Expression P latfrom]+

Bias2[Similarity in ER status]+

V araince[Late Annotation]

(1)
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--- --- --- ---
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Fig. 1. Semantic linking of knowledge graph

In this paper, as shown in Figure 1, we have designed

convolution knowledge graph neural network (CGCNN). The

Input data for CKGNN is gene expression matrix where

training matrix consists of expression value for each patient

against 22,173 human genes. The training input data (GE

matrix) will propagate through 5 hidden (GE-1 to GE-5)

layers. Moreover, Within each layer, it will also add features

from sub-layers of each layer. In the end, in pooling mode,

it will provide a list of genes with prediction score to stratify

ER+ve and ER-ve patients. Model and results discussed in

upcoming sections.

II. CONVOLUTION NN-LAYERS AND KNOWLEDGE

GRAPH(KG)

Knowledge Graph(KG) is essential representation technique

derived from graph-structured databases. However, its ap-

plication in healthcare domain still seems to be far from

reality. In this paper, we have represented a model for cancer

genomics multi-dimensional data to extract novel biomarkers

using knowledge graphs. One of the critical issues involved in

biomarker discovery is entity resolution, where related entities

are distributed in distinct databases either by similar or distinct

identifiers or by the underlined domain related entity. The

extraction from distinct knowledge bases contains clear infor-

mation forms an intermediate knowledge discovery extraction

graph. We have extended this process by single knowledge ex-

traction graph for gynecological cancers (OV,UCS,UCSC)
and we refer to the task of removing noise, inferring missing

information, and determining which candidate facts should

include into a knowledge graph as knowledge graph identi-

fication. Cancer genomics data is an admixture of multidi-

mensional datasets, and RDF representation of these data sets

provides a unique relationship among these multidimensional

entities. The example represents a unique relationship among

disjoint datasets of Gene Expression (GE), Copy Number

Variation(CNV) and Somatic Mutation datasets. All these

datasets have sparsely distributed concerning various concepts.

The traditional method of finding relationships among two

domain related datasets is to derive linking properties, such as

owl:sameAs. These techniques stand true when a person with

domain knowledge can find parameters to link. However, there

is a requirement of artificial intelligence to link these relations

scientifically. There are two fundamental reasons behind that;

1. The data which is available in the form of knowledge graph

is distributed among various repositories for each instance. 2.

The data is continuously generating for knowledge enrichment

in cancer genomics. This process of knowledge discovery and

knowledge enrichment having three significant issues namely

Entity Resolution, Node Labelling and Link Prediction and

Ranking of the result. The advantage of knowledge graph

for genomics data is for data integration to enrich functional

annotation and data completeness. Completeness indeed is the

core of knowledge graphs [7]. On the other hand rapidly

growing RDF data in genomics, such as bio2rdf [24] and

EBI-RDF 1 increase the demand of managing, mapping and

integrating graph data more efficiently. One of best advantage

with RDF representation of data (knowledge graphs) is that

it can be queried using SPARQL [8]. As shown in Figure 1,

five layers of knowledge graphs have been used as five hidden

layers. All these layers have semantically linked with another

layer. However, it is essential to have appropriate semantics

for each layer. The conceptual interlinking of knowledge graph

shown in Figure 2. Figure 2 explains the usability of KG-1 to

KG-5 (Figure 1). For example, BRCA1 gene used for input

with gene expression values. As with each layer it adds CNV

from COSMIC, pathway from KEGG, side effect from SIDER,

ER status from TCGA-clinical and Methylated status from

TCGA. It activated new link and relation among the entities

across knowledge graphs from the same pair of gene and drug.

Newly discovered links reveal the importance of having these

KG hidden layers in the neural network.

The knowledge graph creation and its implementation with

neural networks linked in further sections. Here Convolution

of knowledge graphs helping to learn a function that can

be applied for classification and regression of unknown links

using hidden layers where two nodes of KG may not be in

correspondence before KG creation [5]. Convolution Neural

networks are known for sparse connectivity which exploits

spatially-local correlation and local connectivity pattern be-

tween neurons of adjacent layers. Hence inputs of hidden units

in the layer are from a subset of units sublayer, units that have

spatially adjacent receptive fields. Convolution neural network

is well-known for speech, text and image processing [6]. We

have extended the well established CNN by combining it with

Knowledge graphs for prediction of relapse in breast cancer

with ER status and GE. We have also contributed RDF datasets

1https://www.ebi.ac.uk/rdf/
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Fig. 2. The prediction model using graph neural network using multi-layer
knowledge graph

such as TCGA-OV, UCS, UCEC and CESC (Methylation,

CNV and Gene expression in our previous work) [26], [27]

A. Knowledge Graph Creation

As formulated in [9], we created a master knowledge graph

for different knowledge graphs with various categories based

on entity similarity measure. In the paper, we are dealing with

heterogeneous and multi-dimensional cancer genomics data.

Definition of such KG explains directed graph G = (V,E).
As mentioned in Figure 3, the algorithm is taking Subject(S)
as input from the M and mapping the subject against the

subject of KG. In this process of mapping Predicate (P) and

Object (O) may remain constant. As from Figure 3, lets

assume that we are mapping Layer-2 1 with M. Layer-2

has COSMIC and TCGA as databases. These databases have

various types and genomic variants. These types and variants

define the dimensionality of the knowledge graph. For instance

as in Figure 3, we have selected gene expression (GE), Copy

Number Variation (CNV) and DNA methylation (DM) selected

as the first layer of mapping for M from KG. The first

column of M has all Gene Symbols (GS), and these gene

symbols can easily map with gene symbols of COSMIC GE.

Since both the data COSMIC GE and M GE shares similar

dimension, it is essential to define the priority annotation. To

Solve this issue, we have extended the dimension towards

COSMIC database. The another challenge here is mapping

of single probe again multiple genes. Relation ship of many

to many between genes and probes with added conjecture such

as COSMIC GE and M increases learning depth. Here, gene

with maximum mapping of probes are selected for learning. At

KG layer genes can have high GE when comparing GE to GE,

despite that if they have less mapped probes was not taken in

account. This mapping method repeated with and across the

KG layers. Once the choice becomes complex, then Algo-

rithm Combined Score (C) have been used to select the best

annotation for all the G from M. Enriched annotation M with

Layer-2

Layer-1 Similarity within concept in entities from distinct databases CNV_COSMIC 
and CNV_TCGA

Similarity across concept in entities from distinct concepts

KG-0.1_COSMIC_CNV KG-0.2_TCGA_CNV KG-0.3_CNVD_CNV

KG-1_CNV KG-2_GE KG-3_Methylation

end

S1
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Site S2

OP

Start

URI,
Chr

Cancer
_tissue
_type

end

S3

OP

Start

URI,
Chr

CNV_ge
ne_Sym

bol

end

S4

O1P1

S5

O1P1

S6

O1P1

Expressed Genes
GENE_Symbol

Chr, Start,end, 
Gene Symbol

Methylation CG 
value, beta 
value

Fig. 3. prediction model using graph neural network using multi-layer
knowledge graph

multi-layer, multidimensional annotation and Combined Score

(C).

Definition 1: (RDF Knowledge Graph for Convolution
NN Hidden layers). A knowledge graph is a directed graph

G = (V,E,R, l), where V denotes vertices; E denotes the

number of edges. R defines the predicates where r ∈ R and

l ⊂ R.

Definition 2: (RDF Knowledge Graph for Convolution
NN Hidden sublayers). A sub knowledge graph is a directed

graph g = (v, e,R, l), where v denotes vertices; e denotes

the number of edges. R defines the predicates where r ∈ R,

l ⊂ R, v ⊂ V , e ⊂ E. g ∈ G.

It is essential to understand the importance of these KG

layers and the model learning using them. Since these five

layers of KG have their own five sub-layers as shown in Figure

1, the formal definition of the KG Layer and Sub-layer is

explained in Definition 1 & 2.
As explained in algorithm 1, once we have built the knowl-

edge graph and sub knowledge graphs, the output will be gene

expression matrix along with the annotation from five KGs as

explained in Figure 1. The formal description for mapping

of M demonstrated in Algorithm 1. As shown in Algorithm

1 each gene from M is beging extracted and then assigned

all five leayers (L1 to L5) of as mentioned in Figure 1. Then

annotations from each layer was check again the duplicate and

unique entries to remove redundancey. The algorithm 1 uses

entity matching concept of [21].

Once we have built the knowledge graph, the next thing

is to combine the genes with KG, and since similar genes

can have multiple annotations, it is essential to prioritize the

annotation in the training data to get better classifiers. To

achieve this, we demonstrate below, the ranking mechanism

of annotation works based on the Combined Score which is

average of the Path Score and the Association Score(). As

we can see from the algorithm 1 that the knowledge graph

building will start selecting any of the layers from one of
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Algorithm 1 Knowldge graph creation for CNN

Input: A Matrix M(a, b), a set of RDF Graphs G =
(Vi, Ei,Ri) � a = number of columns and b = no of rows

Output: A Matrix M′ (M,Vi)

1: procedure KG CREATION(M,Gi) �
Function to build knowledge graph with input expression

matrix and RDF Graphs

2: for b = 0 → b = n do � total no of rows

3: r ← b[n]
4: r = b[0] + r � total no of Gene from matrix

5: for Vi = 0 → Vi = b do � total no of rows

6: if r ∈ Gi(Vi) then � find genes in Graph

7: for i = 0 → n do Gi = G � Assign KG-1

8: M ← MTGV

9: M′ ← MTGE

10: M ← M′R
11: G-1 ← MT +MTMT

12: Gi ←[
G M′ r

]
13: for Gi=0 to Gi=n do KG CREATION()

14: end for
15: end for
16: end if
17: end for
18: end for
19: end procedure

five layers and Gene expression data with gene names in the

first column and expression values in all other columns. After

this step, the gene names mapped against the gene names of

annotation databases of each layer and a new column added

to the gene expression matrix. A similar method applied to

each layer of KG within their databases, and the corresponding

column added in gene expression matrix. Since these datasets

are in a silo and can help in knowledge enrichment as well as

in knowledge validation, it is essential to have the ranking to

select an appropriate and most relevant annotation as input for

a better learning curve. We have used Combined Score which

is calculated using Path Score and Association Score().

Definition 3: A GCNN knowledge graph is a directed graph

G = (V,E,R, l), where V denotes vertices; E denotes

the number of edges and G defines the Knowledge graph

annotations. The path score can be calculated as averaged

path length from V to G where average calculated by shortest

path(V ,G) and longest path(V ,G).

Definition 4: (Association Score()). A knowledge graph is a

directed graph G = (V,E,R, l), where V denotes vertices; E
denotes the number of edges. G defines the Knowledge graph

annotations then association can be calculated as

φ =
(supp(R ∗G)− supp(R) ∗ supp(G))√

1− supp(R) ∗ (G)
(2)

Definition 5: (Combined Score). For a given input if more

than once choice is available then preference over these

choices can be defined using combined Score f : P × A ←

[0, 1], heer Pi and Ai are group of preferences score for

instances from a layer and adjacent labels scores from another

layer.Later, Pi and Ai was combined and relabeled based on

following cases: f(Pi, Ai) = f(x) =

{
1, x ≤ ai, pi

0, otherwise

Algorithm 2 Rank Annotation()

Input: A Matrix M′(a, b) Output: A Matrix

M′ (M,Vi, Score)

Initialize Matrix

/// Select matrix with annotated KG

1: for i = 0 → i = 4 do
2: for gi ∈ M, do
3: Path Score(P)

4: Association Score(A)

5:

6: gi ← P
7: gi ← A
8: end for
9: Combined Score(C, P, A)

10: C ∈ M
11: M′(a, b, gi, C) M′ ∈ M
12: end for

Once we obtained the gene expression matrix M along with

annotations from algorithm 1, then we calculated the combined

score using Path association and Path Length as mentioned

in Definition 3, 4 and 5. Moreover, lastly, as per Algorithm

3, we calculated the Combined Score for all annotations and

added them back to M. This way M is now having gene

expression with five layers of annotation (hidden layers) and

their combined score which is the input for learning graph

convolution neural network, as shown in next section.

B. Deep Learning and Mathematical annotation for Relapse
Prediction

Convolution Neural Network(CNN) is a method to extract

features from an image using moving window called receptor.

The adaptation of moving window receptor for knowladge

graphs the instances of databases are arranged as filed of

image pixel to generate an arranged spatial order. Spatial

order will similarly as in the case of a pixel to identify

the best receptor from a given layer for a querying entity.

Extracted entities can be mapped to each receptor R. Now

in databases, it is difficult to find an orderly behavior within

the mappings. To overcome this issue, we have constructed

KG of databases, where we have annotated a matrix M with

an RDF graph G along with GE and combined Score(C).

In case of pixel convolution, neural network works either

from left to right or right to left. In this implementation,

we added the annotation with a combined score which is

sorted from maximum to minimum and vice-versa. Once the

Genes(G) from M are sorted based on Combined Score(C),

we then built a co-expression correlation network. By using

this correlation network, we built a neighborhood path among

the entities of the graph. Then each graph is assigned a
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hidden layer with every step of learning. To achieve this we

built GCNN ROOT NODE() function in algorithm 3 which

is partially adapted from [5].

Algorithm 3 GCNN ROOT NODE()

Input: For a Given Graph Gi(V, E , label to graph �, CNN

kernel ∫ , features W and receptor size R)

1: G(Vsort) = Top W elements of V according to Com-

bined Score(L)

2: i = 1, j = 1
3: while j ≥ W do
4: if i ≤ mod (Vsort) then

F = DEFINE FILTER(Vsort(i))
5: else
6: F = DEFINE FILTER(Mi(Gi))
7: apply F to each input tunnel

8: i = i+ s, j = j + 1
9: apply F to each sub input tunnel G

10: i = i+ si, j = j + 1
11: end if
12: Return M
13: end while

Once we have determined the unique mappings and order

of nodes through correlation path from one KG to another

KG, it works as a receptor in case of the neural network.

Now it is essential that each layer based on length of the

path between two entities weighted with Combined Score(C).

This embedding of path essentially identifies the shortest and

longest path between a gene(G) from M and annotation from

KG. Once the length of the path has been determined, the

embedding is performed based on overall path length score

determined by Association Score() from Definition 5. The

formal method to do this is mentioned in algorithm 4. As

mentioned in Algorithm 4 each node of Gi with receptor size

R was embedded with other KGs.

Algorithm 4 EMBED KG ER()

Input: Gi(V,E), vertex of GiV, receptor size R
Output: Set of embedded filed E for vertex V

1: E = V
2: T = (V,Mi)
3: while E ≤ K, E ≥ L do and

4: T > 0, T ⊂ Mi

5: T =
⋃

v∈T Ei(V,Mi)
6: E = (E

⋃
L) ∩ (E

⋃Mi)
7: Mi ≥ 0
8: end while
9: Return E

The earlier methods of breast cancer prediction in genomics

were solely based on GE where they take use of higher and

lower expression genes then stratify the risk group based on

survival days and ER status. These methods were used to find

out top variables from predictors and the annotation of these

variables was a manual process. We use extracted annotation

data for instance pathways , genomic locations for training

each hidden layer to achieve higher performance and to find

better biomarkers. Since annotations are noisy depends on the

therapeutic level of databases it is essential to filter them. The

algorithm to filter this annotation demonstrated in Algorithm

5.

Algorithm 5 DEFINE FILTER()

Input: For a Given Graph GiV, E , label to graph L, receptor

size R, Combined Score C

1: E = DEFINE FILTER(v,R)
2: Giclus = KG Cluster(V,Mi, C,L)
3: Return E

Algorithm 5 primarily selectes the entities from algorithm

4 based on highest combined score (C) per gene and ignores

rest of the annotations. At last, it yields filtered M. This new

filtered M can be formally defined by DEFINITION 6.
Definition 6: For a Given matrix M output of neuron of

row x, column y in the lth convolution layer and kth feature

pattern for t hidden layers defined as:

Olkx,y =

∫ i=4

i=0

Mitanh(

f−1∑
t=0

kh∑
r=0

kw∑
c=0

W l.kO
l

r,c − 1

.r(x+r,x+c) +Bias(l, k))

(3)

As per the definition above at each propagation layer

addition to the learned parameter after propagating through

each hidden layer was defined to obtain similarity between

annotated entities as

Olkx,y =

∫ i=4

i=0

Mitanh(

f−1∑
t=0

kh∑
r=0

kw∑
c=0

W l.kr,c.Ol − 1

.r(x+r,x+c) +Bias(l, k))

(4)

The Definition 6 can be applied to each propagation layer

while learning. Learning at each propagation layer can be

defined by the following formula [20]:

gθ(Λ) =

K−1∑
k=0

θkΛ
k (5)

Now the learning algorithm of GCNN can be formally

defined as a partition of the neural network as clusters in

Algorithm 6. It is essential to Cluster the M during learning

since most of the learning algorithms are injective. Hence re-

usability of the previous layer becomes extremely difficult

during leaning which causes the drop during the learning

process. To lineate this drop, partition of M based on receptor

R reduces the propagation loss. CNN with the cluster is

formally defined in Algorithm 6.

The training algorithm is demonstrated below. It is abbre-

viated as Graph Convolution Neural Network (GCNN). Tra-

ditionally CNN is being used for image processing. However,
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Algorithm 6 KG Cluster()

Input: Matrix M, Gi(V,E), receptor size R, label l and

Combined Score (C)

Output: Matrix with receptor field M(R) ∪R ∈ V

1: Gi → f : R → R
2: for ( doGi , i = 0 to i = 4)

3: if C(Gi)> Ci+1 then
4: M = Mi+1

5: else
6: M = Mi

7: end if
8: ∀CGi then

9: Gi = (Gi −R)/
√
V

10: Gi → R
11: end for
12: Return Gi|M|

we have replaced the hidden layers with 5 KGs, and each

layer added in backpropagation. While training this we will

have gene expression values, survival days, ER status, and

annotation from KG-1 to KG-5 along with combined score to

identify the most optimal annotation for each gene as discussed

in the previous section. Output for each neuron and each layer

extended from Liu et al [19].

III. RESULT PREAMBLE: BREAST CANCER AND GCNN

Breast cancer defined as hormone receptor called as ER+ve,

ER-ve, and HER2±. The stratification of patients based on

ER± helps to design the chemotherapy drug dosage in the

patients. We have applied GCNN() in breast cancer patients

with ER± status. It is critical to understand the role genes

which are driving the tumor progression based on ER status

[22] to understand the sensitivity of the therapy. In this paper,

we have integrated KG with gene expression and ER status

and predicted the relapse in the patients based on top 20

gene (Table III) ranked using Gini. The Performance of the

Genes predicted from GCNN is being compared with RF (Ran-

dom Forest-15000 Trees), SVM (Support Vector Machine),

NN(Neural Network n=1000). Further these markers have been

compared in terms of Cox-proportion hazard ratio (H.R.) -

Defined lethality of gene and Mean Survival time with the

top 20 genes from the Algorithms RF, NN, SVM, GCNN and

four benchmark papers Aziz et al., Naderi et al., Bieche et

al., Peters et al. . Since, the Genes retrieved from GCNN is

performing best-concerning accuracy measured as Area Under

the Curve (A.U.C. in %) along with significant P-value < 0.05,

the detailed results discussed in further sections.

IV. RESULT AND DISCUSSION

A. Prognostic Validation of Top Variable : Performance Anal-
ysis

Firstly, we trained the GCNN on TCGA-BRCA data and

further validated with GSE47561. The results from Training

and validation can be seen in Table I. The AUC has been

calculated using Sensitivity and Specificity from Confusion

Matrix generated from these algorithms. As we can see from

Table I, GCNN has 94% and 91.9% AUC for training and

validation, respectively, which is outperforming NN, RF, and

SVM. Top 20 variables from training is mentioned in Table

III.

TABLE I
GCNN TRAINING AND VALIDATION

Algorithm Training TCGA-BRCA Validation-GSE47561
- AUC P-value AUC P-value

NN 86[CI 78-87.2] 0.04 81 [CI 82-89.1] 0.06
RF 78 [CI 89.4-79.4] 0.02 84[CI 78.2-87.4] 0.01

SVM 70[CI 68.54-74.36] 0.01 85 [CI 82.25-89.3] 0.021
GCNN 94 [CI 92.8-96.1] 0.031 91.9 [CI 89.23-94.8] 0.044

Once we have trained and validated the model, further,

we have tested the performance of top 20 variables (Genes)

as mentioned under GCNN Table III retrieved from GCNN

training set. The performance of the model has been tested

on six independent datasets, as mentioned in Table II. The

performance of Top 20 gene signatures from GCNN compared

with NN, RF, and SVM as mentioned in Table III. The

performance of GCNN is above 90% and better than all the

data sets accept GSE25055 where the performance of GCNN

is almost similar to NN.
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Fig. 4. Cox-Proportion Model for GCNN Genes

B. Diagnostic Validation: Comparison of Genes with other
predictors and Survival Analysis)

Once we have tested the performance of the gene progosti-

cally through AUC, it is essential to see the diagnostic aspect

of the gene apart from algorithmic performance to see if these
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TABLE II
GCNN PERFORMANCE TABLE-TESTING. (∗CONFIDENCE INTERVAL [CI])

Algorithm GSE20685 GSE25055 GSE22219 GSE12276 GSE7390 GSE24450

- AUC P-value AUC P-value AUC P-value AUC P-value AUC P-value AUC P-value

NN
91.9

0.64
78

0.01
66

0.012
81

0.021
69

0.81
77

0.04
[88.2-94.1]∗ [64.8-81.3]∗ [50.2-70.0]∗ [77.4-84.25]∗ [64-73.2]∗ [68.7-81.7]∗

RF
85

0.032
59

0.07
89

0.03
88

0.2
91

0.3
66

0.05
[83.7-91.3]∗ [71.6-63.2]∗ [78.9-89.5]∗ [86.5-89.9]∗ [81.8-91.4]∗ [61.8-70.2]∗

SVM
90.6

0.041
77

0.041
73

0.04
77

0.061
84

0.032
71

0.021
[86.9.2-93.01]∗ [71.4-77.9]∗ [67.5-74.6]∗ [76-83.9]∗ [82-89.1]∗ [61.3-77.8]∗

GCNN
91.7

0.0231
94.5

0.44
94.5

0.001
91

0.011
92.4

0.05
92.4

0.029
[90.01-97.3]∗ [91-95.1]∗ [93.2-94.8]∗ [84.9-92.5]∗ [87-95.1]]∗ [90.1-98.1]∗

TABLE III
COMPARISON OF GENES WITHIN ALGORITHMS AND OTHER PREDICTOR (H.R.=HAZARD RATIO, MST=MEDIAN SURVIVAL TIME)

Algo. GCNN SVM RF CNN Aziz [18] Naderi [15] Bieche [16] Peters [17]

Genes

ABCC5
DPP3
AP2S1
CDH11
TSPAN5
TSPAN1
SEC23B
ARL4C

RASGRP1
OPTN

RAB11A
MLPH

ADCY3
ENPP1
GNB2
GNG4

SH3GLB1
COPE

NFKB2
F3

UBD
CEBPG
AGR2

SLC19A2
IFI44

CXCL13
TACC2
DNPH1

ST6GALNAC2
TXNIP
CENPF

TMEM135
SLC1A4
UBE2Z
C8orf33

SLC12A2
SLC25A1
SLCO2A1

SLPI
SNAI2

SMARCA1
GRAMD3

CDH3
PDCD6

GNE
ZNF587B
TOM1L1

LOC100507577
ABCC5
DPP3

ATP9A
CDH11
TSPAN5
TSPAN1

PPIF
ARL4C

RASGRP1
OPTN

NAMPT
AKAP9
LHFP

MPHOSPH6

DNPH1
ST6GALNAC2

TXNIP
CENPF
FRMD6

SPG7
DUSP21
BRCA1
CD44

CCL19
CXCL11
CX3CL1

BIK
SDC1
SDC2
SDC4

CXCL12
SDF2

NECAB3
SECTM1

MRPL52
TRIP13
ITPRIP

SLC38A9
FRMD6
SORCS2
ELTDI

NOTCH2
CPXCR1
OR10H5

PDC
DUOX2
GFRA4
LASS6

OSBPL9
C12orf66

SPG7
DUSP21
BRCA1

DUFD1
ASPM
SPAG5
FADD

BAALC
C10orf3

FLJ20641
BM039

MGC34923
KIAA0703
PSMD14

OMD
A23P30055

EBP
DCN
EXO1

SHMT2
MELK

FLJ14627
THC1964466

SHOX2

AR
AREG

ARHC/RhoC
BCL2

BRCA1
BRCA2
CAV1

CCND1
CCNE1
CD44
CDH1
CGA
CGB
CP

CXCL12
CXCR4

DNMT3B
EGFR/ERBB1

ERBB2
ERBB3

TRIM44
SIRT2
C5AR1
PLK1

UBE2D2
NEU4

ADCY9
PAPSS2

HSS00095627
PNPLA2

LOC401021
ST3GAL4
CAMK1
VPS33A
MS4A6A
NOXA1
VPREB3

LOC253039
ITGB6

UNC93B1

H.R. 4.42[CI 0.98-19.4] 0.51[CI 0.17-1.52] 1.9[CI 0.37-3.24] 0.37[CI 0.1-1.34] 2.32[CI 0.78-6.93] 4.08[CI 0.53-31.39] 0.57[CI 0.19-1.7] 2.35[CI 0.72-7.63]
MST-Months 37 47 35 30 22 49 45 32
P-value 0.035 0.22 0.88 0.11 0.12 0.14 0.31 0.14

genes play any significant role into the patients stratified using

GCNN. To Achieve this, we have Cox-Proportion Model to

find the Hazard Ratio (H.R.) of these retrieved from GCNN

and other algorithms. We have also tested GCNN genes with

few published benchmarks. We have used KM-Plotter [23] for

survival analysis.

All the H.R. has retrieved through GSE9195 data . The

top 20 genes from each algorithm retrieved and benchmarked

with H.R., MST, P-values are shown in Table III. As we can

see GCNN genes have highest HR ration means a higher

expression of this gene can affect the RPS (Relpase free

survival) within significant p-value. However, survival time is

better than all the algorithms and couple of benchmark datasets

(85 days-approx). The survival curve for GCNN gene shown

in Figure 4

As shown in Figure 4 GCNN genes have a confidence

interval CI [0.98-19.4] shows the lethality of GCNN genes

with only significant p-value-0.035 (criteria of significance p-

value <0.05 ) in comparison with other predictor.

C. Empirical validation

We have empirically validated the model as mentioned in

Figure 5. The residual learning method using convolution adds

the feedback and improves the known usage of knowledge

graph hence improves the performance. Here as mentioned in

Weight=KG-1

Weight=KG-5

Expression 
Matrix=M

22000 *22000  

22000 *22000  

22000 *22000  20 *20 conv, 5  

Un-annotated Layer 5-layer plain
5 –layer residual network
with adaptive KG  graph

F1(X)

F1(X) Fn(X)

Pool, /n

20 *20 conv, 1  

20 *20 conv, 2  

20 *20 conv, 3  

20 *20 conv, 4  

20 *20 conv, 5  

GCNN

Pool, +1

Pool, +1

Pool, +1

Pool, +1

F(X)= 100

Avg Pool

Pool, +1*5

20 *20 conv, 5  

20 *20 conv, 10  

Pool, +1*5

20 *20 conv, 55  

Pool, +1*5
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Pool, +1*5
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F(X)= 28100
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16255  

Pool, 16255 4
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6.9814864e+16 

Pool, 6.9814864e+16 5

20 *20 conv, 
1.6585917e+84  

Avg Pool

F(X)= 
3.3171833e+85

Fig. 5. Layered pooling and knowledge enrichment

Figure 5, with traditional methods we can get maximum 100

annotations for 20 predictors. However using 5 -layer plain

method with RF, NN we can get 28100 annotations. However,
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with GCNN using 5-layer residual network with adaptive KG,

we can get 3.3171833e+85 annotations for 20 genes. This way

the 5 hidden layers designed as KG improves the prediction

probability exponentially and hence improves the prediction.

V. PREDICTION RESULTS AND ER STATUS

The genes retrieved from GCNN as shown in Table III.

ER +ve breast cancer are essential types where cancer cell

grows in response to the hormone estrogen. In the patients

more towards ER -ve hormone therapy are more likely to work.

ER -ve where no receptors are present the hormone therapy

will not work. As mentioned in [25] that identifying the ER

status is a daunting task. Our approach has been being able

to predict the ER status in breast cancer patients. This way it

will help in treatment planning in breast cancer. This approach

can be used to build a general prediction model by reusing the

features from our earlier compendium [28].

VI. CONCLUSION

In this paper, we have demonstrated 20 Gene signature to

predict chances of relapse in Breast cancer (BRCA patients)

using GCNN (Graph Convolution Neural network). Moreover,

tested prognostic and diagnostic aspect of the gene against

other existing algorithm and biomarkers and proved that

GCNN genes are performing better. These genes can be used

for drug dosage balancing in BRCA Patients apart from ER

prediction.
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