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Abstract	

The solution of marine contaminant transport problems is a significant research topic in civil 

engineering. Typically, the problem is represented as a partial differential equation described 

by the non-stationary, advection-diffusion operator. The underlying equation is approximated 

in space and time, and the state of the approximate numerical model is obtained as a solution 

of the corresponding linear algebraic system. However, for several reasons, numerical models 

do not necessarily replicate the process investigated exactly. In fact, their application and 

deployment generate modelling errors and discrepancies, a well-known and challenging 

problem to solve, which cannot be ignored in practice. 

At the same time, the rapid development of measuring devices allows easier collection of data 

of the physical process. Typically, observations are prone to be contaminated by errors too, 

those generated by noise or other physical reasons. Moreover, observations are usually quite 

sparse in time and space. The combination and compromise between a numerical model and 

observations are integrated using data assimilation techniques. The development of efficient 

methods of data assimilation techniques in terms of estimation quality and computation speed 

is the main concern of this research. 

The traditional algorithms of data assimilation such as minimax or Kalman filters are often 

used to quantify uncertainties represented by the model and observation errors. They construct 

an analysis state and propagate in time, taking into account model dynamics and observed 

information. The numerical algorithms of these filters are computationally expensive as they 

require multiplication and inversion of matrices of the size equal to the number of degrees of 

freedom of the system. Moreover, traditional filters are not scalable with respect to the number 

of discretisation nodes. 

In this research, a combination of traditional filters with domain decomposition techniques are 

investigated to assess reduction of computational costs. The application of decomposition to 

the assimilation problem facilitates the reformulation of the global problem as a set of local 

subproblems coupled by continuity or transmission conditions. To solve the decomposed 

assimilation problem, two new approaches are considered. The first one discretises the 

transmission conditions directly and yields a system of differential-algebraic equations. The 

latter is solved by using a modified version of the minimax filter. The second approach imposes 

transmission conditions into the variational formulation of the local subproblems. A set of local 
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differential problems is solved by the iterative method of Schwarz. This approach is further 

extended to Kalman and ensemble filters using their equivalence with the minimax filter. 

The efficiency of the proposed methods is examined using numerical experiments with 

different configurations including simulations with constant velocity field, periodic velocity 

field and velocity field generated by TELEMAC 2D for a tidal basin. The quality of estimates 

of the localised filters is assessed against both traditional filters and true solutions. The 

computational efficiency of the localised filters is evaluated, compared to the existing methods 

and discussed. Finally, scalability properties of the proposed algorithms are presented. 
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1 Introduction	

1.1 Mathematical	Modelling	
Mathematical models can be viewed in a broad sense as descriptions of physical processes 

using mathematical concepts and language. Consequently, the problem of modelling a physical 

system is to reconstruct or estimate a system state, its properties and behaviour at different 

instances of time and space. 

There are two possible ways to describe different natural phenomena. The first is, the a priori 

approach, which constructs a mathematical description (background model) based on the laws 

of physics. Usually, such representation results in algebraic, differential or integral equations, 

the solution of which is a system state. This is a commonly used approach for applications in 

natural sciences such as hydrodynamics or transport of pollutants in atmospheric and marine 

environments. 

An attractive benefit of this approach is that it is distinct from the natural environment and the 

problem of interest is being simulated under some ideal conditions. A major disadvantage is 

that a mathematical description of a process contains model errors, the unknown discrepancy 

between the model dynamics and actual system dynamics. Thus it can never be a perfect replica 

of reality. Quantifying the uncertainty due to model errors is a challenging problem; however, 

this is a problem that cannot be ignored in practice. 

The second modelling approach, the a posteriori one, depends on the collection of observations 

of the process in question. This approach is used if a reliable a priori model of a system is 

difficult to construct. Also, it is often used to describe processes which are not closed systems 

and external factors cannot be quantified. It is popular for applications in economy, social 

sciences and chaotic systems. 

To produce state estimates, it is possible to interpolate a collection of measured values provided 

by observations of the true state. Direct observations are free of modelling errors, and if they 

are dense enough can produce reliable results. In some applications, the state of the system can 

be measured directly with high accuracy; in others, direct measurement of the global system 

state is not feasible due to spatiotemporal gaps. Instead, the state must be inferred from 

available data. In order to fill observation gaps, it is necessary to rely on some background 

information in the form of an a priori estimate of the model state. Another limitation is that 
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observations are contaminated with errors. These may be random errors that tend to decrease 

by averaging, or systematic errors that, in contrast, do not decrease by averaging, and can be 

described only as components of a bounded set. 

One may notice that both approaches of modelling mentioned above have the potential to 

complement each other. The background model thus may extend the observations, fill in the 

observational gaps and allows one to organise, summarise, and propagate the information from 

observations. On the other hand, the observations provide information about initial and 

boundary conditions for background model and can be used for adjusting a model to reduce 

modelling errors. Methods which incorporate observed information with mathematical 

representation of a process, by taking advantage of consistency constraints with laws of time 

evolution and physical properties, are referred to as data assimilation (DA). The development 

of such methods is the main focus of this thesis. 

 

Research into the modelling of natural phenomena, up to the end of the twentieth century, may 

be viewed as the study of solutions of differential equations and predicting of model behaviour 

by deterministic solutions of these differential equations. However, model errors of 

mathematical descriptions of real-world processes can be eliminated only in a very small 

number of cases. From a theoretical point of view, the underlying physical laws are defined for 

an idealised case, but it is not always possible to have an accurate description of input 

parameters. For example, boundary or initial conditions may come from noisy measurements 

or in some cases may be not known. A mistreatment of model errors may result in inaccurate 

predictions of a system state. 

It is also common that an analytical solution to the underlying partial differential equation 

(PDE) is not possible to find. Hence, numerical methods are required to construct 

approximations to the solution of the problem, thereby introducing approximation errors. The 

quality of an approximation depends on the number of degrees of freedom. Furthermore, the 

presence of errors in numerical schemes may lead to strong oscillations in a numerical solution, 

especially for models that are not unconditionally stable. Thus, in order to predict a state with 

a high accuracy for a long time window, one may need to solve a system of a very high order 

which can be a difficult constraint for real-time applications. 

At the same time, a rapid degree of development of electronic measuring devices such as radars, 

buoys, etc., has begun to produce more observed data. Often, this data is sparse and may not 
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cover a whole domain of interest. Observed data is also prone to be contaminated by measuring 

errors that require special treatment. Incorporation of observations into mathematical models 

performed by the DA approach allows us to obtain system estimates that take advantage of 

both sources of information about the physical process. 

DA algorithms are critically important for many real-world applications. Originally its major 

application was in numerical weather forecasting (Swinbank, 2010), but later DA methods 

were successfully adopted in hydrology (Houser et al., 2012), oceanography (Martin et al., 

2015), atmospheric chemistry (Khattatov and Yudin, 2010), climate studies (Rood and 

Bosilovich, 2010) and others. More recently, DA methods were used in smart grids for wind 

and solar forecasting, and in the optimisation of power outputs of energy systems (Carpenter 

and Shaw, 2012). The reader is also encouraged to visit the web page http://www.ecmwf.int/ 

of the European Centre for Medium-Range Weather Forecasts (ECMWF) where dozens of DA 

research projects are listed. 

Over the last few decades, many DA algorithms have been proposed starting with basic nodal 

averaging, up to complicated stochastic strategies based on the Fokker-Planck equations. The 

applicability of those methods in engineering applications may be problematic, especially for 

problems that are defined over a large spatial domain and require frequent analysis outputs. 

The main problem arises from the heavy computational demands of traditional DA approaches, 

and the lack of scalability properties with respect to the problem size. The size of an 

assimilation problem is usually defined by the size of a background model. In turn, a desirable 

discretisation of a model, defined over a large-scale physical domain, leads to many degrees of 

freedom in its discrete representation. That said, the development of efficient methods of DA 

is the focus of much research in this area. 

An important concept, extensively used in numerical analysis for the reduction of the 

computational costs associated with solving PDE, is domain decomposition (DD). DD splits a 

global problem into a number of local subproblems with additional boundary conditions 

applied over an interface of decomposition, these are called transmission conditions. These 

conditions enforce continuity between local solutions and therefore provide equivalence with 

a global solution. In this thesis, DD is adapted to assimilation problems producing a family of 

DA methods referred to as localised DA (LDA) methods. 
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1.2 Aims	and	Objectives	
This thesis is concerned with two-dimensional contaminant transport processes in the marine 

environment. The background model of the process is described by a linear advection-diffusion 

PDE with a non-stationary velocity flow and by a linear equation representing observations of 

concentration. To estimate the state of the process, online methods of DA such as minimax 

filter and Kalman filter are considered. 

The significant disadvantage of traditional methods of DA is the requirement of large 

computational resources which is a strong limitation for practical use. The primary aim of this 

research is the development of computationally efficient methods of DA that can be applied in 

engineering practice. To this end, combining traditional methods of DA with DD is considered. 

This approach allows for localisation of computations of a global problem into local 

subdomains. Two different strategies of localisation are introduced here: 

1) Localisation in the form of differential algebraic equation (DAE). 

2) Interconnected localisation. 

Algorithms of both methods are developed for the minimax filter, and the interconnected 

localisation is also applied for the Kalman filter and the ensemble transform Kalman filter 

(EnTKF). Properties of both approaches are examined using numerical experiments with 

idealised and realistic configurations. 

The objectives of this research are the following: 

1) The compilation of a literature review of the current state of the art of DA theory, 

focusing on the most commonly used methods and on methods that are used in marine 

applications. 

2) The compilation of a literature review of strategies for a reduction of the computational 

complexity of PDE and ordinary differential equation (ODE) solvers. 

3) The implementation of a FEM (finite elements method) code for a linear transport 

model defined by the non-stationary, advection-diffusion equation with a non-

stationary velocity field. 

4) The implementation and comparison of traditional methods of DA: minimax filter, 

Kalman filter and EnTKF. 

5) Research and development of the DD numerical strategy for a FEM model of the 

transport equation that performs well in strongly advection-dominated flows. 
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6) Development of the localisation strategy of the minimax filter in the form of DAE using 

DD and minimax framework. 

7) Development of the interconnected localised minimax filter using DD and the Schwarz 

iterative approach. 

8) Extension of the interconnected localisation strategy to the Kalman filter and to EnTKF. 

9) Computational analysis and comparison of the localised filter with traditional filters 

and with another filter based on DD. 

10) Application of the localised filters for the numerical simulation of tracer concentration 

to a tidal basin. 

 

1.3 Structure	of	the	Thesis	
This thesis is organised as follows. 

Chapter 2 presents a literature review of the numerical methods of DA and DD. The review 

begins with the general problem statement and categorisation of assimilation strategies. Then 

the main categories of DA approaches, such as stochastic methods, statistic methods and 

optimal control methods are outlined. The advantages and disadvantages of various methods 

are discussed, along with relationships between them. Particular emphasis is devoted to the 

numerical performance of methods and variants with the lowest computational requirements. 

The second part of the chapter reviews the state of the art of DD methods. In relation to the 

transport problem, the adaptive DD methods are discussed. At the end of the chapter, the main 

findings of the review are summarised. 

Chapter 3 elaborates on the mathematical description of the DA for the linear transport 

problem. The problem defined by the advection-diffusion equation, its transformation into a 

weak representation, discretisation in space using FEM and discretisation in time using mid-

point integration rule are presented in detail. The DA methods are applied to the problem 

continuous in time and discrete in space, and to the problem discrete in time and space. The 

Kalman-Bucy and Kalman filters are derived, and an equivalence between them is established. 

The approximation of KF by the ensemble Kalman filter (EnKF) and EnTKF is also presented 

here. 

Chapter 4 expands on the minimax state estimation. First, the time-space continuous 

formulation of the minimax filter in an operator form is explained. Then, the approximation of 

the continuous minimax filter using FEM is detailed, and an efficient numerical treatment of 
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the corresponding Riccati equation is constructed. The chapter ends by establishing a relation 

between the minimax filter and the Kalman-Bucy filter, and providing performance assessment 

and comparison of the minimax and Kalman-based filters. 

Chapter 5 introduces the localisation approach by means of DD and devises the localised filter 

in the form of DAE. The performance of the method is demonstrated for several numerical 

experiments, and the results of those experiments are discussed. 

Chapter 6 constructs the interconnected localised minimax filter using the DD and Schwarz 

iterative approach. The numerical algorithm of the method based on FEM is discussed in detail. 

A numerical investigation of the proposed method and its scalability properties are presented. 

Chapter 7 extends the interconnected localised strategy for the KF and, after discussion on the 

localisation of ensembles, the interconnected localised EnTKF estimators are also devised. A 

performance study of the localised filters is presented first for the simulation with idealised 

configuration and then for the simulation of a tidal basin. 

Finally, Chapter 8 contains a discussion of the main conclusions from this research and 

provides directions for potential future research in this area. 
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2 Literature	Review	

The main aim of this review is to present the state of the art of the DA problem, its applications 

to hydrodynamic systems and possible bottlenecks. A particular emphasis was on the 

performance of DA algorithms, their scalability for practical purposes and possible strategies 

for further improvements. This review is organized into two parts: the first presents the problem 

statement and describes current developments of the assimilation methods. The second part 

focuses on DD methods and their applications for DA problems. 

The literature pertaining to assimilation methods is very rich. Although different methods were 

developed for different applications and came from different backgrounds, they can be derived 

in terms of several unifying frameworks. From a mathematical perspective, DA problem is 

naturally described by probability distributions and thus relies on a stochastic framework. It 

was developed initially as a mathematical theory to describe chaotic systems which later 

evolved into several practical methods. The stochastic framework is reviewed in more details 

in the first section. At the same time, in the engineering world, the first applications of data 

assimilation were based on simple statistical analysis of model and observation errors. Starting 

with very practical examples, modern Kalman theory, the Kalman framework or more 

generally, the statistical framework were constructed. This framework is reviewed in the 

second section. 

Developments of those two frameworks can be seen as complementary to each other. Indeed, 

in the stochastic case, the most general approach is formulated from the very beginning, and 

all efforts are directed at an efficient solver for mathematical equations or simplification of 

those equations through additional constraints. In the statistical framework, several conditions 

about a problem structure are assumed, and the main efforts were devoted to overcome those 

conditions. 

In the third section, the main disadvantages of both frameworks are reviewed, and the optimal 

control framework is presented. This framework was designed to be more robust than Kalman 

and practical at the same time. The equivalence between the frameworks is also provided. 

Finally, the second part of the review is devoted to the state of the art of DD methods which 

are an essential tool in decreasing the computational efforts required to solve PDE. This part 

further reviews combinations of DD and DA, and describes the motivation for this research. 



8 

2.1 Problem	statement	
In this work, the unified notation that bridges formulations in the DA field are adopted from 

the publication of Ide et al. (1997). In what follows, a mathematical description of a process is 

called background, and measurements of the variables of the true process are called 

observations. Assimilation procedure is a dual process in which the background fills gaps in 

the observations and on the other side the observations adjust the model to be a better 

replication of actual physical dynamics. The result of assimilation is called an analysis or 

forecast, and it is assumed to be an estimate of the true state. 

In the most general case, the background model is described by a PDE. That can be the Navier-

Stokes equations or a shallow water model which describes hydrodynamic behaviour or a 

transport model defined by advection-diffusion equations (Hervouet, 2007). Later, most 

probably, underlying PDEs would be discretised in space and time producing a system of linear 

algebraic equations. The most popular methods of space discretisation include FEM (Donea 

and Huerta, 2003), finite difference method (FDM) (Chung, 2010), finite volumes method 

(FVM) (Versteeg and Malalasekera, 1995), spectral methods (SM) (Canuto et al., 1988). For 

time discretisation typically implicit midpoint, Crank–Nicolson or Runge-Kutta schemes 

(Kress, 1998) are used. In engineering practice, it is common to use sophisticated modelling 

toolsets based on the equations mentioned above. An example of those codes include 

environmental fluid dynamics code (EFDC) (Hamrick, 1992); integrated suites of solvers for 

free surface flow, sediments transport and wave propagation such as Telemac-Mascaret 

(Desombre and Lang, 2013); and coastal circulation and storm surge models (ADCIRC) 

(Luettich et al., 1992). 

Observations of the earth systems can be made in several different ways. A traditional way is 

to rely on in situ measurements from ground-based stations, buoys, ships and aircraft (Thépaut 

and Andersson, 2010). In situ observations are generally considered to be point-wise and 

instantaneous. They provide relatively high spatiotemporal resolution in a small area of 

installation but for a global coverage an enormous amount of in situ measuring devices is 

required which is not possible. 

Complementary to in situ are satellite observations from low earth orbit satellites (LEOs) and 

geostationary satellites (GEOs). For a comprehensive review of research satellite 

classifications and their missions, readers are referred to the review by Lahoz (2010). 
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The problem of assimilating observation into a mathematical model stems from the need of 

accurate weather analysis. Lynch (2008) published a deep insight into the history of scientific 

forecasting and weather prediction. The author described the main steps of developmet of DA 

systems and methods. The most basic algorithm of DA is a simple interpolation between the 

background and observation. This approach applied to weather forecasting was initially 

implemented by Richardson (1922). Later, it was extended to a more general algorithm called 

successive correction method (SCM) Cressman (1959) where the background was updated by 

observations weighted with some predefined functions. The SCM algorithm is attractive 

because of its simplicity. However, it does not properly account uncertainties in the problem 

which in practice lead to unsatisfactory results Lorenc (1986). For therefore, the assimilation 

method must be intelligent. The analysis should be conducted in an optimal way, as the best fit 

between the background and observations which takes into account physical behaviour and 

error description of the system. For instance, this may be achieved by a minimization of a 

penalty or a cost function. 

DA methods are considered in different ways (Jazwinski, 1970): 

1) When the state of the problem at time 𝑡 is estimated by using data measured up to and 

including 𝑡, the approach is called “filtering”. 

2) When the state of the problem at time 𝑡 is estimated by using data from both past and 

future regarding 𝑡, the approach is called “smoothing”. 

3) When the state of the problem at time 𝑡 is estimated by using data only from the past 

regarding 𝑡, the approach is called “predicting”. 

In the literature, predicting and filtering methods are often combined into sequential 

assimilation while smoothing methods are recalled retrospective or non-sequential (Bouttier 

and Courtier, 1999). This differentiation is explained by the fact that sequential algorithms can 

be involved in an online DA when an analysis is performed once new observations become 

available; in contrast, a retrospective analysis is done once all data is collected. 

DA methods are also distinguished depending on a temporal structure of the background model 

and observations and can be categorised as follows: 

1) Continuous, when both background and observations are continuous in time. 

2) Continuous-discrete, when the background is continuous in time, and observations are 

discrete. 

3) Discrete, when both background and observations are time discrete. 
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It should be mentioned that typically for marine application, the underlying problem is 

continuous and defined in terms of differential equations. Thus, depending on the nature of the 

observations, it is desired to devise continuous or continuous-discrete assimilation algorithms. 

At the same time, a continuous model of the marine process can be discretised in time so that 

the discrete DA can be applied. It is not always clear which type of DA algorithm to choose, 

and the decision depends on the particular configuration of the problem. 

Another important characteristic of DA approaches is based on the underlying theoretical 

framework. Methods derived from different ideas are possible to categorize in the following 

groups: 

1) Stochastic. 

2) Statistical. 

3) Optimal control. 

In the following the main advances of each framework are reviewed. 

 

2.2 Stochastic	methods	
A common way to quantify uncertainties in a system is to represent it as a random variable. 

This variable is called a stochastic variable, and the corresponding system is called a stochastic 

system. Let {𝑢} be a random variable with a probability distribution function (PDF) 𝑝(𝑢) which 

defines the a priori or background state of a physical process and let {𝑦} be a random variable 

which defines observations of the state of the same process. Both {𝑢} and {𝑦} describe one 

physical system but from different perspectives. Thus, it is reasonable to assume they are not 

independent. Furthermore, the distribution of {𝑦} is normally given in the form of conditional 

PDF 𝑝(𝑦|𝑢) sometimes called a data distribution or likelihood function. 

From a probabilistic perspective, the background describes prior information which is not 

complete. The presence of observations provides some evidence which can be used to update 

prior information. Therefore, the problem of DA is formulated as a problem of a statistical 

inference which aims to estimate a posteriori conditional probability 𝑝(𝑢|𝑦) based on 

background distribution 𝑝(𝑢) and data distribution 𝑝(𝑦|𝑢). Probability 𝑝(𝑢|𝑦) can be found 

using the well-known Bayes formula which describes the probability law governing the process 

of a logical inference. The analysis provided by Bayes formula is also called Bayesian analysis. 

It should be mentioned that Bayesian analysis became an important branch of statistics and is 
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fundamental for many contemporary applications such as statistical decision, detection and 

estimation, pattern recognition, and machine learning. Commonly used models build on the 

Bayesian analysis and examples may be found in the book of Gelman et al. (2003). 

A combination of background processes and observations makes the Bayesian approach an 

attractive tool for DA. Lorenc (1986) demonstrated an applicability of the Bayesian analysis as 

a general framework. Indeed, even though some methods were initially derived from other 

ideas they can be equivalently formulated from the Bayes formula. A survey on existing 

Bayesian methods in DA is presented in Wikle and Berliner (2006). 

The most rigorous algorithm of DA requires direct computations of Bayes formula. To this 

end, it is necessary to know the PDF 𝑝(𝑢) of the background process. The evolution of the 

PDF is described by a deterministic Fokker-Planck (FP) equation, also known as Forward 

Kolmogorov’s or Fokker-Planck-Kolmogorov equation (Jazwinski, 1970). FP equation is a 

second order parabolic partial differential equation which is defined by the corresponding drift 

vector and diffusion tensor. It also must satisfy suitable initial and boundary conditions. 

Once the PDF 𝑝(𝑢) is found, the Bayes formula can be directly computed and the optimal 

estimate of the system can be found as a maximum likelihood value of conditional probability 

𝑝(𝑢|𝑦). Mathematically this approach is very general as a solution of FP equation provides 

complete information about the state PDF. However, it comes with severe limitations on its 

computational cost especially for multi-dimensional problems. 

The analytical solutions of FP equations can be found only for a small number of cases: if the 

drift vector is linear, and diffusion tensor is constant (Risken, 1989); if separation of variables 

is possible and time and space components of the state vector can be split (Lo and Shizgal, 

2006; Risken, 1989); in a one-dimensional case if a normalization procedure is applied (Risken, 

1989); a multi-dimensional case if the drift vector and the diffusion matrix obey certain 

potential conditions called detailed balance conditions (Risken, 1989); if diffusion is 

independent and the drift vector is derived from the potential operator of a certain form (Araujo 

and Filho, 2012; Denisov et al., 2009; Floris, 2013; Jordan et al., 1998). 

Numerical solution of multi-dimensional FP equations is also problematic especially if number 

of dimensions is higher than three. Pichler et al. (2011) provided a detailed comparative study 

of several FEM and FDM schemas applied to FP equation in four dimensions. To avoid grid 

discretisation, Kumar et al. (2009) studied the partition of unity finite element method 

(PUFEM) applied to the FP equation. Martens and von Vagner (2011) presented a Galerkin 
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method that uses Hermite polynomials for the expansion of weighting functions. The numerical 

simulations of the method were done for five- and six-dimensional systems and described in 

details in Martens (2012). 

While meshless or global Galerkin methods simplify discretisation of the space compared to 

grid methods, the number of basis functions needed still increases rapidly with the 

dimensionality. It was concluded in Khoromskij (2012), that an efficient approach to manage 

high dimensionality is to represent a model operator in a tensor product structure. Sun and 

Kumar (2014) and Sun and Kumar (2015) developed a numerical solver for the FP equation 

combining tensor decomposition approach with the Chebyshev spectral differentiation. That 

reduced the number of degrees of freedom and maintained the accuracy of the solution as 

dimensionality increased. Numerical results were provided for simulation with up to fourteen 

-dimensional state space systems. The most promising results with operator decomposition 

were published in a recent work of (Cho et al., 2016). They proposed several different classes 

of algorithms that reduce high-dimensional equations to a problem of calculation of a sequence 

of low-dimensional problems. The effectiveness of the algorithms is demonstrated for 

numerical examples involving 40-dimensional FP equations. 

The main advantage of the proposed methods of decoupling or separation of the dimensions is 

that they have linear rather than exponential scalability with respect to the number of 

dimensions. However, it should be concluded, that even for moderate size systems, the solution 

of the corresponding FP equation is problematic. 

Another approach for computation of the Bayesian formula, referred to as particle filters, is to 

approximate distributions of interest with Monte Carlo sampling instead of computing them 

directly. That is, the distributions are approximated by a large collection of 𝑁 random samples 

termed particles sampled directly from the state space. 

Since its introduction by Gordon et al. (1993), particle filters became an active research area 

and have also been applied in geosciences (van Leeuwen, 2009). Several different methods 

have been developed depending on sampling or resampling strategies such as sequential Monte 

Carlo (SMC) particle filter, sequential importance sampling (SIS) filter, bootstrap filter, 

auxiliary particle filter and many others have been proposed. A comprehensive review of 

particle filters and smoothers can be found in the exposition of Chen (2003) and references 

therein. 
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However, particle filters similar to FP solvers suffer from the “curse of dimensionality” 

problem (Chen, 2003). There were several attempts to resolve dimensionality limitation (Brun 

et al., 2002; Chitchian et al., 2012; van Leeuwen, 2010), but without significant success in the 

general case. In fact, scalability problem still remains and, as a result, reliable results of particle 

filtering can be obtained only for moderately sized systems (Rebechini and van Handel, 2015). 

 

2.3 Statistical	methods	
The more practical representation of the uncertainties in the system can be done through the 

statistical description of the corresponding errors. Typically, it is assumed that a physical 

process is described by the true state which is not known. However, what is known is a 

background model of the process and observations of the process. The difference between the 

background and true state is called the background error which represents “modelling error” 

mentioned before. In a similar fashion, the difference between the observation state and true 

state is referred to as the observation error. The problem of DA is to reconstruct or estimate the 

analysis state so that the associated analysis error is as small as possible. In the literature, these 

kinds of algorithms are often termed as estimators. 

 

2.3.1 Optimal	estimators	and	Kalman	filters	
A general insight into classical estimators can be found in Lewis et al. (2008) where the mean-

square, maximum-likelihood and recursive estimators are presented. Those are formulated for 

a general case of a random statistical variable. Their application requires knowledge of all 

statistical moments of that variable which may be a hard constraint in practice. 

For linearized and Gaussian models several operational estimators for the atmospheric 

application have been proposed in Lorenc (1981); McPherson et al. (1979); Rutherford (1972). 

In the review of Bouttier and Courtier (1999), typical assumptions used to simplify the 

statistical description of errors are discussed. The authors assume the following hypotheses 

about the error and model structure: 

1) Errors are Gaussian so only the first two statistical moments (mean and variance) are 

required to obtain a complete description of the corresponding statistical variables. 

2) Errors are unbiased which means that their expectation (mean) is zero. 

3) Errors are uncorrelated. 
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4) Background model and observation operator are linear. 

5) Analysis defined by correction to the background depends linearly on observations. 

Using those hypotheses, a statistical variable can be described only by the first two statistical 

moments: mean (average) and variance. So that, together with the linearity assumption, the 

application of least-squares method for the minimization of the analysis error allows retrieving 

of the algebraic expressions for those moments. These recursive expressions are known as the 

best linear unbiased estimator (BLUE). 

A popular method of DA called optimal interpolation (OI) can be derived from BLUE if the 

background covariance matrix involved in calculations of the BLUE analysis is chosen under 

the assumption that for each model variable, only a few observations are necessary for 

determining the analysis increment (Ghil and Malanotte-Rizzoli, 1991). This assumption leads 

to an algebraic simplification of the BLUE analysis which makes OI very attractive from the 

computational point of view. 

However, the estimation methods described so far minimize the estimation error variance based 

only on the observations at a current time step. The analysis can be extended to include the 

observations from the past if statistical time series are considered. Those ideas were initially 

studied in the monograph by Wiener (1949) for the application of antiaircraft fire control 

system. Wiener dealt with the continuous-time system and developed the so-called Wiener 

filter for the steady-state case. 

In 1960, Kalman analysed a discrete in time and space system in a similar fashion to the BLUE 

estimator. He used the same hypothesis but extended the analysis error to include data from the 

past. As a result, he devised the celebrated recursive Kalman filter (Kalman, 1960). 

In the subsequent work, Kalman and Bucy (1961) analysed the problem entirely in the 

continuous domain obtaining a formulation of the filter as a solution of the Wiener-Hopf 

equation. The heuristic argument about equivalence between the discrete and continuous filters 

was provided in Kalman (1963). Later, Smith and Roberts (1978) showed that if the definition 

of covariance of the discrete analysis error is derived from the accepted mathematical 

description for the covariance of the continuous analysis error, compatibility between the 

discrete and continuous filters is complete. In Shald (1999) the continuous Kalman filter was 

obtained as a limit of the sampling interval of the discrete Kalman filter. 

It should be noted, that both BLUE and Kalman filter are optimal with respect to the 

minimization of the analysis error and obey the similar performance. However, from the 
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observations incorporation standpoint, the BLUE estimator should be regarded as a crude 

approximation of the Kalman filter estimation for one time step (Bertino et al., 2005). 

There were many attempts to develop Kalman based algorithms for various configurations. 

Thus, it can be reformulated not only for the filtering but also for the smoothing problems 

(Fletcher, 2010). For nonlinear models, an extended Kalman filter (EKF) (Lewis et al., 2008) 

can be adopted. EKF is not optimal in general but provides an estimate which is the best linear 

estimate. 

Without any exaggeration, it is fair to say that the Kalman filter (and its numerous variants) 

has dominated the adaptive filter theory. Auger et al. (2013) have summarized the research 

efforts made over the past decades about the applications and the implementation of the 

Kalman filter algorithm in a significant number of industrial engineering and scientific fields. 

The difference between stochastic and statistic methods is that FP propagates all statistical 

moments of corresponding PDF, while Kalman filter propagates only first two statistical 

moments: mean and covariance. For a general case, when no assumptions about problem 

structure were made, the total number of operations for one step of Kalman filter was computed 

by (D’Amore et al., 2012) and is of the order 𝑂(𝑁7), where 𝑁 is the size of the background 

model. That estimate is mainly due to the need of the background covariance matrix inversion 

and it demonstrates that the Kalman filter algorithm is much more efficient than the stochastic 

methods from the computational standpoint. However, it also shows the lack of scalability and 

the fact that the computational requirements grow faster than the size of the state. That imposes 

an unacceptable computational burden especially for large-scale systems. 

For the engineering applications, many authors suggested different approximations to the 

original Kalman filter. The main idea of those methods is to decrease heavy performance 

requirements for the covariance matrix computations without a significant loss of the accuracy. 

Because those methods provide equivalent to the Kalman filter results only in the limit, they 

are considered to be sub-optimal. Nevertheless, because of the structure of the model and 

observation error distributions the full representation in typical oceanographic practice is of no 

value (Cane et al., 1996). 

An excellent review of the sub-optimal schemes (SOS) and their performance for the 

atmospheric/oceanographic DA problems was presented in Todling and Cohn (1994). The 

authors distinguished six major categories of those methods: 

1) Covariance modelling. 
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2) Dynamic simplification. 

3) Reduced resolution. 

4) Local approximation. 

5) Limiting filtering. 

6) Monte Carlo methods. 

Within each category, several approximations can be used; the division into groups is not rigid 

and some methods may include features from different categories. Briefly, those groups are 

described as follows: 

1) The covariance modelling category includes schemes that assume a given form for the 

error covariance matrix with no background dynamics taken into account. An example 

of such approach is the BLUE analysis and the OI analysis which were presented in the 

above. 

2) Dynamic simplification consists of methods that use approximate but nontrivial 

dynamics to evolve the forecast error covariance. One of the simplest methods of this 

kind is a time-invariant method called the constant gain Kalman filter. It has been used 

for the operational storm surge forecasting in Northern Sea (Heemink et al., 1995). 

3) Very similar to dynamic simplification, reduced resolution schemes apply coarser-

resolution grid for the propagation of the error covariance (Fukumori and Malanotte-

Rizzoli, 1995). 

4) Local approximation encompasses methods that attempt to evolve the error covariance 

structure only for points separated by reasonably small distances. 

5) Limiting filtering schemes compute an asymptotic error covariance. For instance, 

Verlaan and Heemink (1997) proposed to use a reduced rank approximation of the error 

covariance using a square root factorization. The eigenvalue decomposition of the 

covariance matrix allows its projection and consequently an evolution in a sub-space of 

dominant eigenmodes while the analysis evolves in the full space of the model. In a 

similar fashion, Cane et al. (1996) reduced state space of the Kalman filter by a 

truncation of a set of multivariate empirical orthogonal functions derived from a long 

model run without assimilations. Both approaches were applied in real cases and 

became popular in the oceanographic community. 

6) Monte-Carlo methods attempt to estimate the forecast error covariance matrix by 

propagating the covariance of an ensemble of states. Those schemes emerged into a 
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popular family of methods known as the Ensemble Kalman Filters and are discussed in 

more detail in the following paragraph. 

The applications of sub-optimal algorithms for storm surge forecasting, two and three-

dimensional coastal hydrodynamics, air pollution, ocean circulation models and others were 

reviewed and discussed in Bertino et al. (2005). 

 

2.3.2 Ensemble	Kalman	Filter	
Ensemble Kalman filter (EnKF) can be viewed as a combination of the classical Kalman 

filtering and Monte Carlo sampling. It uses the Gaussian assumptions about the background 

and analysis errors and follows the time evolution of the mean and covariance. However, 

instead of the covariance matrix, EnKF propagates an ensemble of states which is used to 

approximate the covariance matrix in the subspace spanned over ensemble members. The 

ensemble can be reasonably small relative to the other Monte Carlo methods because it is used 

only to parametrize the distribution, not to sample it thoroughly. At the same time, the ensemble 

should be large enough to approximately span the space of possible system states at a given 

time, because the analysis essentially determines which linear combination of the ensemble 

members constructs the best estimate of the current state, given the current observations (Hunt 

et al., 2007). 

After the first EnKF was devised by Evensen (1994) for a quasi-geostrophic model, many 

studies have been published to advance it. van Leeuwen and Evensen (1996) extended EnKF 

to the smoothing problem, Evensen (1997) demonstrated it for the strongly nonlinear problem. 

Bergemann and Sebastian (2012) derived the analogue of the well- known Kalman-Bucy filter 

for linear differential equations subject to continuous observations for the ensemble setting and 

nonlinear differential equations. The results of the first decade of EnKF developments and its 

application can be reviewed in Evensen (2003). 

The advantage of EnKF algorithm is its flexibility for applications on a complex physically 

based simulation models. However, the computation time of a data assimilation application 

using EnKF may be a challenge when the simulation has high computational demand. It is 

practical to set the ensemble size as small as possible to keep the computation time low. But, a 

naive implementation of the realistic system together with the small ensemble size may cause 

significant sampling errors in the estimation of the error covariance matrix. If the spread of the 
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ensemble systematically underestimates the true error of the process EnKF may diverge 

(Houtekamer and Mitchell, 1998). 

To overcome these problems, the ensemble covariance matrix can be empirically updated. For 

instance, the ensemble perturbations can be inflated to avoid underestimation of the error 

variance (Anderson and Anderson, 1999). The off-diagonal components of the ensemble error 

covariance matrix may be reduced according to the distance they are from the diagonal terms 

(Houtekamer and Mitchell, 1998). Many studies have shown that EnKF is usually sensitive to 

the choice of the covariance inflation and localization methods and parameters. Thus, it is 

important to optimise them (Miyoshi, 2011). 

The systematic theoretical analysis of EnKF algorithm was done in Kelly et al. (2014). The 

authors presented the well-posedness and accuracy of the method in a discrete and continuous 

time in particular with the small ensemble size limit and presence of the covariance inflation. 

A popular variant of EnKF is the so-called localised ensemble transform Kalman filter 

(LETKF) described by Hunt et al. (2007) for a discrete problem and Amezcua et al. (2014) for 

continuous. An example of operational implementation of LETKF for National Center for 

Environmental Prediction can be found in Szunyogh et al. (2007). An LETKF application for 

the DA problem in the Chesapeake Bay and its performance examination were described in 

Hoffman et al. (2012). More examples of operational EnKF implementation were described in 

Evensen (2009); Miyoshi (2011); Tamura et al. (2014). For the description of the algorithms 

of the ensemble square root filter (EnSRF), the ensemble adjustment Kalman filter (EnAKF) 

and the singular interpolated Kalman filter (SEIK) that are suitable for non-linear and high-

dimensional systems the reader is referred to the report by van Leeuwen et al. (2012) and 

referenced therein. 

 

2.3.3 Variational	methods	
The idea of the two basic statistical methods the BLUE estimator and Kalman filter is to 

minimize the mean square analysis error. The minimum is found as an analytical expression in 

a recursive form. It is also possible to directly minimize an error function known as a cost 

function by applying numerical optimisation techniques. Typically, the solution is sought 

iteratively by performing several evaluations of the cost function and its gradient. The DA 

methods which minimize the cost functional directly are called variational. 
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A variational equivalent of the BLUE estimator is the three-dimensional variational analysis 

(3D-Var) (Courtier et al., 1998). The popularity of 3D-Var stems from its conceptual simplicity 

and from the ease with which complex observation operators can be used since only the 

problem operator and its adjoint needs to be provided. Another advantage is the ability to 

enforce external weak (or penalty) constraints, by putting additional terms into the cost 

function. 

As the Kalman filter is a generalization of the BLUE estimator, in the same way the four-

dimensional variational analysis (4D-Var) is a generalization of 3D-Var for observations that 

are distributed in time. The 4D-Var cost function is similar to the 3D-Var cost function, 

provided the observation operator is generalized to include a forecast model that will allow a 

comparison between the model state and the observations at the appropriate time. The special 

property of the 4D-Var analysis is that it uses all observations simultaneously, so the algorithm 

is regarded to be smoother (Talagrand and Courtier, 1987).  

The comparison between different assimilation methods with regards to observations 

incorporated over time into the analysis is illustrated in Figure 2.1 where DA methods are split 

into four different categories: 

1) The first category contains methods that incorporate observations from the current time 

instance such as BLUE, OI and 3D-Var. 

2) Methods from the second category assimilate discrete observations from the past and 

up to the analysis time. Those include Kalman filter, its sub-optimal and distributed 

variants, EKF and ensemble filters such as EnKF and LETKF. 

3) The third category defines assimilation methods which account for continuous 

observation from the past such as FP approach and Kalman-Bucy filter. 

 
Figure 2.1 Comparison of different assimilation strategies for amount of observed data involved at analysis 

step. 
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4) The fourth category is devoted to the methods that use discrete observations from future 

and past. It includes 4d-Var and Kalman smoother. 

In the excellent review by Bouttier and Courtier (1999) the authors analysed 3D-Var, 4D-Var 

and Kalman filter estimates. When compared to the 3D-Var algorithm, 4D-Var was reported 

to have the following characteristics: 

1) It requires perfect model assumptions, and the quality of the estimate degrades if model 

errors are significant. 

2) Its implementation relies on the so-called adjoint operator which may be difficult to 

construct if the background model is complex. 

3) Assimilation step is performed only when the observations from the whole reference 

time interval are available. In real-time systems, that will delay the availability of the 

analysis, whereas sequential 3D-Var models can process observations immediately 

after they became available (see Figure 2.1). 

4) Background state is used as the initial state for the analysis, so by design 4D-Var is 

entirely consistent with the model equations and the four-dimensional distribution of 

observations until the end of assimilation interval. 

5) 4D-Var is an optimal assimilation algorithm over the referenced time interval, 

moreover because all observations participate in the analysis it provides the smooth 

estimate. 

Furthermore, Bouttier and Courtier (1999) defined relations between the 4D-Var and Kalman 

filter. The authors demonstrated that for a perfect model and the same input data, over a given 

interval the 4D-Var analysis is equivalent to the Kalman smoother analysis and at the end of 

the time interval is equal to the Kalman filter analysis at the end of the time interval. They also 

discussed fundamental differences between EKF and 4D-Var: 

1) 4D-VAR is the preferred in realistic simulations because it is computationally less 

demanding than Kalman filter or EKF. 

2) Because 4D-VAR is smoother, it proves more optimal than the (linear or extended) 

Kalman filter inside the time interval for assimilation. 

3) Unlike 4D-VAR, EKF can handle model errors if they are Gaussian. 

4) 4D-VAR can only be run for a finite time interval, especially if the background model 

is non-linear, whereas EKF can in principle be run forever. 
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5) 4D-VAR itself does not provide an estimate of the analysis covariance, a specific 

procedure to estimate the quality of the analysis must be applied, which costs as much 

as running the equivalent EKF. 

An illustrative example which explains the differences between filtering (3D-Var, Kalman 

filter) and smoothing (4D-Var) recreated from Reichle (2008) is presented in Figure 2.2. 

The underlying cost function of 4D-Var analysis can be modified to encounter an imperfect 

model assumption by imposing additional weak constraints. Several approaches for the 

implementation of the weak-constraint 4D-Var were presented (Tremolet, 2006). In Courtier 

et al. (1994) two methods were considered for the reducing 4D-Var cost. The first method is 

preconditioning which speeds up minimization. And the second one is the incremental 

approximation of 4D-Var which is more cost-effective. Talagrand (2010) described 

minimization methods that can be adopted and discussed related numerical problems for 

practical use.  

 
Figure 2.2 Filtering versus smoothing for data assimilation. Recreated from Reichle (2008). 

Figure has been removed due to Copyright restrictions 
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In operational weather forecasting, the variational methods rapidly gained popularity. First, 

3D-Var replaced OI and later 4D-Var became the industry standard. An overview of 

developments in numerical weather prediction centres is presented by Rabier (2005). 

Nowadays, the main competitor of the variational methods is ensemble filters. Several authors 

reported that ensemble data assimilation shows comparable results to the variational 

assimilation (Kalnay, 2010; Zupanski, 2009), and several studies were published to investigate 

the question. Lorenc (2003) examined the potential of various ensemble methods to replace 

variational in the numerical weather prediction. For the idealized Lorenc model a comparison 

of three methods: 4DVar using linear and adjoint models, the ensemble Kalman filter, and 

hybrid 4DEnVars, which is a variational method that uses a 4D ensemble covariance was done 

in Fairbairn et al. (2014). Overview of the operational oceanographic systems OcenView which 

used different variational and ensemble assimilation methods was presented in Martin et al. 

(2015). It is difficult to make a single choice about the best method. For different configuration 

they provide different results so that potential of hybrid method is high. 

 

2.4 Optimal	Control	Methods	
The estimation quality of the statistical methods of DA depends on the accuracy and certainty 

of the background and observation error description. Correct and precise definition of which, 

however, is generally an impossible task. For most applications, there must be concerns about 

the effects of parameter errors and variations in the accuracy of the estimation. The inaccuracy 

influence of input parameters on the estimate produced by the Kalman filter was studied, for 

instance, by Sage and White (1977), where the authors concluded that filtering errors may 

differ radically from their nominal values. 

A common way to overcome Gaussian description of the uncertainties is to assume them 

unknown but bounded (UBB) and belongs to a given set of admissible errors. The latter 

assumption is very practical as it is more realistic and makes a data assimilation algorithm 

robust with respect to fluctuations in the second moments. 
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2.4.1 Minimax	estimation	
The main concepts and theoretical results regarding the estimation of the system with the UBB 

errors can be found in Milanese (1989). Several early stage algorithms of robust estimation 

were reviewed in Tempo and Vicino (1990). 

To estimate the state of the system, one may define the worst-case mean-squared estimation 

error. The optimal state should minimize that error. An approach which looks for the estimate 

of the state as a minimum of the worst-case error is called the minimax estimator and if 

presented in the form of filter is referred to as the minimax filter. 

A number of minimax filters were found in the literature, for instance in Krener and Kang 

(2011) and (Başar and Bernhard, 1991). The filter in the observer form based on the differential 

game theory was presented in Yaesh and Shaked (1992a) for continuous time case and in Yaesh 

and Shaked (1992b) for discrete time case. (Kurzhanski and Vályi, 1997) described calculus of 

generic bounded sets and their evolution in a dynamical system. They also presented results 

for a set defined as quadratic ellipsoids and devised the minimax filter for errors bounded in 

those ellipsoids. Implicitly-linearized minimax filter for nonlinear problems was proposed in 

Tchrakian et al. (2015). Zhuk (2013) devised the minimax filter for the system with background 

described by a DAE. 

The relations between the Kalman filtering and minimax filtering or sometimes called Robust 

filtering have also been studied. Mintz (1972) derived the sufficient conditions for the Kalman 

filter to be a minimax estimator. The equivalence between the minimax filter with bounded in 

a quadratic ellipsoid errors and Kalman-Bucy filter was obtained in Krener (1980). 

 

 
Figure 2.3 Schematic of error ellipsoid evolved in time. Recreated from Kurzhanski and Valyi (1997). 

Figure has been removed due to Copyright restrictions 
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2.4.2 Solution	of	Riccati	equation	
The key ingredient and the main challenge of the continuous minimax DA approach (or 

equivalently Kalman-Bucy filter) is the solution of the so-called differential Riccati equation 

(DRE). The Riccati equation propagates error ellipsoids in time and represents an evolution of 

uncertainties in the system. Figure 2.3 recreated from (Kurzhanski and Vályi, 1997) provides 

an example of an error tubes evolution. The solution of the Riccati equation is further used for 

projection of the observation error in the feedback equation. RDE often arises in applications 

of a linear-quadratic control and is crucial for their performance. 

The Riccati equation is a matrix differential equation of the second order. It is known, that the 

general analytical solution of this equation can be obtained if at least one particular solution is 

given (Reid, 1972) which, typically, is not possible in practice. That explains the necessity of 

numerical methods for the solution of DRE. 

A straightforward numerical method is to directly discretise a time derivative and transform 

the equation into the non-linear Algebraic Riccati Equation (ARE). Dieci (1992) studied this 

approach for the symmetric, non-symmetric and stiff DRE in details. The author used backward 

differential formulas for the time discretisation and quasi-Newton iterations for the solution of 

the non-linear algebraic equation. A detailed review of iterative and Newton’s methods applied 

to ARE with emphasis on numerical properties was published in Dieci (1991). Benner et al. 

(2008) reviewed several ARE solvers with a focus on large-scale equations. 

The challenge in solving DRE is that for a stiff background model, associated Riccati equation 

may have singularities, and this is why the direct application of the standard approach may fail 

to integrate through those singularities (Schiff and Shnider, 1999). To overcome the above 

problem, the underlying DRE can be transformed applying Möbius scheme into a double size 

linear problem of the Hamilton structure. The authors explained why Möbius scheme passes 

singularities and analysed the solution with the Taylor series expansion. Frank and Zhuk (2014) 

extended that approach by adding reinitialisation procedure for the use of the symplectic 

integrators described in details in Hairer et al. (2006). 

Benner and Mena (2004) analysed different numerical strategies of the solution of DRE for 

large-scale systems. The authors concluded that performance efficient methods for the solution 

of DRE remained to be a challenging problem for applications of the linear-quadratic control. 
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2.4.3 Summary	
DA problems arise in many contemporary engineering and scientific applications. The well-

known Fokker-Planck equations provide the exact description of uncertainties of Markovian 

processes and together with the Bayesian analysis yield general solutions of DA problems. 

However, this method requires extensive computational resources and efforts and becomes 

increasingly infeasible for the marine applications where dynamical systems are described by 

the high-dimensional state and should be analysed for long-term simulations. In fact, Fokker-

Planck equations are mostly used only for theoretical purposes. 

The statistical assimilation methods were designed to achieve better computational 

performance for simplified models of uncertainty propagation. They are similar to each other 

in that they involve restriction (or an approximation) on the underlying background model, 

observations and corresponding errors structure. That allows reconstructing system 

uncertainties using only its mean and covariance and simplifies analysis step. The robustness 

of assimilation approach is improved if system errors are considered to be deterministic and 

bounded in an ellipsoid. In this case, the assimilation problem is regarded as a minimization of 

the worst-case scenario of realisation of the analysis error. The solution of the minimization 

problem is known as the minimax filter which is a deterministic equivalent of the statistical 

Kalman-Bucy filter. 

Nevertheless, as many authors reported, the traditional methods of DA suffer from the “curse 

of dimensionality” problem, are computationally expensive and not scalable. Development of 

performance efficient methods of DA in terms of quality estimation and computational 

demands is the main motivation of this research. 

 

2.5 Domain	decomposition	methods	
In practice, the demand for operationally efficient estimation algorithm escalates as the number 

of degrees of freedom of the discretised model is significantly increased (Majda et al., 2010). 

This is especially important for marine applications when the problem may be defined over the 

large domain such as a coastal zone or part of the ocean in 3D space. 

In computational science a typical way for reducing computational demands is to apply some 

sort of problem decomposition. Decomposition methods generally refer to a splitting of a 

system state into smaller portions and performing computations independently on those 
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portions. Depending on the approach applied, this allows us to better exploit parallel nature of 

modern processors and reduce numerical complexity comparing to conventional algorithms. 

The term “problem decomposition” can be used in context of several numerical strategies. The 

first strategy also known as the data decomposition is used for parallelisation of conventional 

algorithms. It is a computational approach which splits system data into chunks and assigns 

them to separate computational units. Then the same computations are performed on separate 

processors using one of the following inter processing data exchange programming paradigm: 

shared memory (the most common implementation is OpenMP) or distributed memory (the 

most common implementation is OpenMPI). Normally, data decomposition does not reduce 

numerical complexity of an algorithm and may even introduce additional overhead related with 

a data exchange, however, it improves parallelisation and scalability properties of an algorithm. 

Due to a large scale nature of the marine problems, data decomposition emerged as a popular 

strategy. Examples of the corresponding algorithms were, for instance, presented in Drake et 

al. (1993) for the parallel community climate model and in (O’Donncha et al., 2014) for the 

parallel environmental fluid dynamics code. 

The second type of problem decomposition strategies applies decomposition to mathematically 

reformulate a problem as a set of distributed but coupled lower order subproblems which are 

expected to be cheaper to compute. In the following those methods are referred to as DD 

methods. For a problem described by a PDE, DD produces a set of coupled local PDEs on 

smaller subdomains forming a partition of the original domain. A coupling between 

subproblems called continuity or transmission conditions can be defined based on physical 

properties of a process in question and is normally expressed in a form of boundary conditions 

over the interface of decomposition. This makes local subproblems completely independent 

and allows solving them separately. Similarly to data decomposition, mathematical DD allows 

parallel implementation, however it additionally reduces numerical cost of an algorithm 

comparing to a non-decomposed version. 

The domain splitting is the first step of any DD approach and is usually straightforward. It can 

be done in two possible ways: overlapping and non-overlapping decomposition. The non-

overlapping decomposition is preferred for its simplicity, but the overlapping decomposition 

may be required by the design of the method. In its turn, domains coupling is more difficult. 

There are various strategies that can be applied to different problems and particular conditions. 

For the non-stationary problems they can be categorized as follows: 
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1) Iterative methods or also called Schwarz methods. Those are derived from Schwarz’s 

idea of DD. 

2) Time fraction methods which are based on Dawson's ideas (Dawson and Dupont, 1992). 

3) Methods that are based on the solution of DAE. 

DD became a common tool in computational engineering for solving problems governed by 

PDE (Dolean et al., 2015). In this research, the application of DD to DA problems is 

investigated. 

 

2.5.1 Schwarz	iterative	Domain	Decomposition	
In the literature, the first procedure of the DD for the solution of PDE was introduced by 

Schwarz (1870). It was a technique to prove the existence of a solution to the Laplace equation 

on a domain which is a combination of a rectangle and a circle. Schwarz proposed an iterative 

method that successively solved a problem in subdomains, going alternatively from one to the 

other. That approach is known as the Schwarz alternating method. 

For a long time, the Schwarz method was used only as a theoretical concept. Nevertheless, a 

development of computational resources and the need for more efficient numerical algorithms 

attracted research interest to the Schwarz methodology. That interest became especially strong 

with the advance in parallel computing technologies. 

A breakthrough in the development of DD strategies happened at the end of 1980s after the 

publication of Lions (1988). In that work, the author extended the alternating Schwarz 

algorithm to be parallel and applied it to the solution of the boundary value problem. Lions 

decomposed problem's domain into several overlapping subdomains. Then, local subproblems 

were coupled through Dirichlet transmission conditions in an iterative manner. Starting from 

some initial value on both subproblems, he calculated in parallel improved Dirichlet data and 

used it to update the adjacent subproblem. This process was repeated several times until the 

jump of the solution between subdomains declined. In the following works Lions (1989) 

continued the study of the method, introduced a convergence proof and investigated other 

properties of the approach. 

After Lions’ pioneering work many Schwarz based methods appeared for the elliptic equations. 

Gander (2008) provided a historical overview of the DD strategies with additive and 

multiplicative formulations. Toselli and Widlund (2005) presented Dirichlet-Dirichlet, 
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Dirichlet-Neumann and Neumann-Neumann variants of the Schwarz approach together with 

various preconditioners for the resulting decomposed system. 

At the same time, Lions (1990) also showed that the convergence of the classical Schwarz 

method depends on the size of an overlap. Increasing overlapping area for a better convergence 

may be a severe limitation on the applicability of the method. To avoid this restriction, it was 

suggested to use a convex combination of the Dirichlet and Neumann conditions for passing 

data through the common interface. Lions discovered that for that combination the convergence 

does not depend on the overlap anymore. Additionally, in Gander et al. (2001) it was shown 

that the Dirichlet conditions at the artificial interfaces inhibit the information exchange between 

subdomains and therefore slow down the convergence of the algorithm. In order to improve 

the performance of the classical Schwarz method, they also replaced the Dirichlet conditions 

by the Robin conditions. This algorithm was called optimised Schwarz method, since it 

contains scalar parameters in the transmission conditions which should be optimised to get a 

better convergence. 

Unlike the classical Schwarz methods, the optimised ones are possible for both overlapping 

and non-overlapping decomposition. Even more, usually it requires fewer iterations, and it was 

demonstrated that for some problems using a particular form of the Robin conditions the 

method converges after a finite number of iterations. For instance, Gander et al. (2003) 

demonstrated the convergence of the Laplace and Helmholtz equations in two iterations. 

For the non-stationary problems, Schwarz waveform relaxation was applied to the parallel in 

time solution (Gander et al., 1999). Later, different convergence studies were presented: for 

linear advection-diffusion-reaction problems (Gander and Halpern, 2007), for its semi-linear 

counterpart with overlapping decomposition (Descombes et al., 2011) and non-overlapping 

decomposition (Caetano et al., 2010). The decomposition of the both space and time domains 

was suggested and analysed by Giladi and Keller (2002) and Gander and Stuart (1998). 

Although many techniques have been developed to study the convergence of the classical and 

optimised Schwarz methods, the problem with nonlinear equations for multi-dimensional space 

and general shape multi-subdomains is still open (Tran, 2011). 
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2.5.2 Adaptive	Domain	Decomposition	
The particular interest of this research is a solution of the transport phenomena in the marine 

environment described by the linear advection-diffusion equation. Thus, a proper choice of the 

decomposition strategy is essential for the performance of the method. 

Depending on the nature of the problem, the Schwarz methods applied to advection-diffusion 

problems can be grouped into two categories (Quarteroni and Valli, 1999). The Dirichlet-

Neumann techniques provide a good approximation when the diffusive part is dominant, but 

may produce discrepancies if the advective part becomes more relevant. The natural interface 

conditions techniques provide a good approximation when the advection part is dominant, 

enforcing boundary conditions over the interface taking into account the hyperbolic nature of 

the problem, but may produce discrepancies when the diffusive part of the problem is 

dominant. Based on the physical properties of the underlying transport problem it is reasonable 

to consider the second group of methods which is known in the literature as the adaptive 

Dirichlet-Neumann DD. 

One of the first works that can be viewed in the framework of adaptive methods was presented 

by Gastaldi and Gastaldi (1993). The authors described DD method applied to the two-

dimensional non-stationary advection equation which is of the hyperbolic type. Decomposition 

of the domain was introduced with respect to the inflow/outflow areas of problem’s velocity 

field over the interface. Following that, the family of coupled problems is reformulated in terms 

of functional equations as a boundary mapping of Dirichlet inflow data into outflow portion 

which essentially leads to the Steklov-Poincare operator. Those equations were suggested to 

be solved in an iterative way. The authors further demonstrated the contraction property of the 

Steklov-Poincare operator that proved the convergence of the iterative algorithm for both 

continuous and discrete problems. They also showed the equivalence of the iterative algorithm 

and iteration-by-subdomain strategy (Schwarz approach). In the following paper (Gastaldi, 

1994), numerical experiments demonstrated the efficiency of the proposed method. It should 

be noted, at that stage, the authors did not provide a specific name for their approach. 

The terminology of the adaptive methods was introduced in Carlenzoli and Quarteroni (1995). 

It was a parallel study to the previous one in which, however, the authors aimed to build a 

decomposition strategy for the advection-diffusion problem with the advection dominant part. 

In that work, the one-dimensional stationary advection-diffusion problem was analysed by 

partitioning in two non-overlapping subdomains. The study of the convergence of the classical 

Dirichlet-Neumann and Neumann-Neumann methods revealed that the convergence rate 
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deteriorates for the advection dominated problem, i.e., problem with the high Peclet number. 

Moreover, the convergence was shown to depend on the partition point and value of the Peclet 

number. The authors concluded that the boundary conditions over the interface introduced by 

the classical scheme were inconsistent with the hyperbolic limit of the problem. 

To improve convergence, they described a decomposition which took into account the direction 

of the characteristic lines. To this end, the interface of the decomposition was split into inflow 

and outflow zones with the relaxed Dirichlet or Robin conditions on the inflow and relaxed 

Neumann conditions on the outflow. The derived strategies were called adaptive Dirichlet-

Neumann (ADN) and adaptive Robin-Neumann (ARN) decomposition respectively. Again, the 

set of coupled local problems was solved in an iterative way. 

The proofs of the convergence of both strategies were done for a simple geometry problem. 

The authors also estimated the admissible intervals for the relaxation parameters and concluded 

that ARN is more stable than ADN for a problem with small diffusion, but performs poorly 

when diffusion is significant, whereas the AND keeps its properties of convergence. 

The numerical aspects of ADN and ARN were further investigated in Carlenzoli and 

Quarteroni (1995) where those methods were applied to the incompressible Navier-Stokes 

equations with high Peclet number. The authors also discussed common numerical problems 

such as the so-called cross point situation when one point of the grid belongs to more than two 

subdomains; when the advection vector field forms different angles of incidence with the 

interface; the choice of relaxation parameter. 

Trotta (1996) extended adaptive methods by introducing the damped version of the ADN and 

ARN algorithms. He investigated the influence of damping on convergence and stability. 

However, most of the explanations were heuristic and based on the results of numerical 

simulations without proper mathematical justifications. 

Study of the parallel version of the adaptive methods with applications to non-stationary 

problems can be found in Ciccoli (1996). In the paper, the author presented the multiplicative 

and additive versions of the algorithms. He provided the continuous analysis of the damped 

methods and demonstrated that the damping introduces discontinuity between subdomains. 

The level of the discontinuity was further shown to be acceptable with the approximation error 

for a small diffusion coefficient. At the same time, the author stated that the damping improved 

the convergence rate which was illustrated by numerical experiments. Additionally, the 
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sensitivity of the convergence on the mesh size of the decomposition and diffusion coefficient 

was considered as well. 

Rigorous theoretical study of the adaptive decomposition strategies was published by Gastaldi 

et al. (1996) and Gastaldi et al. (1998). Using the methodology of the Fourier transform the 

authors studied different configurations of algorithms for one and two-dimensional problems. 

The main conclusion of the works was that for a finite-dimensional problem (discrete case) 

both ADN and ARN enjoy good convergence rates for a reasonable choice of the initial guess. 

The convergence was additionally improved for small diffusion if damped versions (d-ADN, 

d-ARN) were applied. 

 

2.5.3 Time	fraction	Domain	Decomposition	
The iterative DD methods can be directly applied to the elliptic problems. The dynamic 

problems additionally require implicit semi-discretisation in time, yielding an elliptic problem 

at each time step. Then, the Schwarz methods are applied to reconstruct boundary data on the 

interface. However, the Schwarz methods work in space coordinates only and ignore the 

dynamic nature of the problem. 

Dawson and Dupont (1992) proposed the algorithm that takes the advantage of the information 

gained in the previous time steps. This method is known as the explicit/implicit domain 

decomposition (EIDD). Based on an implicit discretisation in time, it makes use of the results 

of the previous time steps to predict the values on the interface at the current time step. Such 

an approach reduces the computation and communication costs because it is non-iterative. 

Instead, it raises the question of the accuracy and stability as it uses lagged results from the 

previous time steps, i.e., an explicit treatment, in contrast to spatial iterations that predict the 

interface values. 

The analysis revealed that EIDD methods are only conditionally stable while Schwarz methods 

could maintain the good stability condition of implicit temporal discretisation schemes. In order 

to improve the stability, different stabilization techniques can be used. Detailed review and 

discussion of the stabilization mechanisms were done in Zhuang and Sun (2002). As a further 

improvement, Liao et al. (2009) presented a new class of corrected explicit-implicit DD 

(CEIDD) methods. 

There are other time fraction methods not of EIDD type that experience good stability 

conditions. For instance, explicit predictor implicit corrector (EPIC) methods (Jun and Mai, 
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2006), hybrid predictor-corrector methods (Lapin and Pieska, 2002) or methods proposed by 

Dryja and Tu (2007). 

It should be noted though, that time fraction methods are much less studied and applied in 

practice than the Schwarz one. Moreover, their convergence and stability properties depend on 

the size of the time discretisation increment. That means that benefits of introducing DD may 

be outweighed by the need of the decreasing of the time step or loss of stability. At the same 

time, the Schwarz methods are stable and for the optimised or adaptive variants, the 

convergence depends on the physical properties of the model and is independent of time-space 

discretisation. 

 

2.5.4 DAE	based	Domain	Decomposition	
For the elliptic problems an alternative approach to Schwarz is the so-called Tearing and 

Interconnecting (TI) methods such as FETI, or FETI-DP (Farhat et al., 1999). The main idea 

of the TI methods is to represent the interface continuity of the solution between subdomains 

(transmission conditions) through an additional algebraic constraint; later, Lagrange 

multipliers enforce the algebraic constraint. 

There were a few attempts to adapt the same approach for the dynamic problems. However, in 

this case, the algebraic constraint should be incorporated into the differential equation that leads 

to a system of DAE. DAE problems can be solved only in particular cases and do not have a 

general attractive solver (Hairer and Wanner, 1996). 

Nakshatrala et al. (2008) manipulated the Schur complement of the algebraic operator to solve 

DAE. Zheng et al. (2008) proposed to use the explicit Runge-Kutta-Chebyshev (RKC) 

projection method (Zheng and Petzold, 2006) for the solution of the governing DAE system 

derived for Navier-Stokes problem. The authors analysed the stability of the method and 

showed that it performs best for moderately stiff diffusion-dominated problems. For the 

convection-dominated system, it was suggested to use a semi-Lagrangian formulation with the 

RKC method to form a finite element semi-Lagrangian explicit RKC method. 

 

2.6 Combination	of	domain	decomposition	and	data	assimilation	

Several approaches of problem decomposition have been used in a development of efficient 

DA solvers. Due to the large scale nature of marine problems, data decomposition emerged as 
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a popular strategy exploiting parallel computational resources advantageous. A parallel version 

of the Kalman filter was described in Lyster et al. (1997) for the problem of tracer transport in 

the atmosphere. The authors suggested two algorithms of data decomposition. The first 

algorithm, referred to as the operator decomposition, partitions state vector and columns of 

covariance matrix and distributes them among processors. The second algorithm distributes a 

whole column of covariance matrix among processors and acts as a model matrix on a vector, 

but not a matrix. This approach is called covariance decomposition. 

Parallelization of ensemble filters using operator decomposition was, for instance presented in 

Keppenne (2000) where a parallel variant of multivariate ensemble Kalman filter (MvEnKF) 

was described for a spectral shallow water model. Parallel sequential ensemble Kalman filter 

for atmospheric data assimilation was developed in Houtekamer and Mitchell (2001). 

Development of decomposition methods for DA problems produced another type of DD 

method called discrete decomposition that are commonly applied to filters. It is similar to data 

decomposition in that it is applied on a discrete level by splitting system vectors and matrices 

and similar to continuous DD in that it reformulates conventional filters as a set of coupled 

distributed lower order filters which are cheaper to compute and maintain similar level of 

accuracy. Discrete and domain decomposition of DA problem additionally requires restriction 

of error functions and corresponding error descriptions. 

Early evidence of discrete DD approach can be found in van der Vooren (1990) in which the 

authors applied decomposition with a multi-level algorithm for the coordination of analysis 

steps between local Kalman filters while the propagation step was not modified. The approach 

was tested for a one-dimensional shallow water model. It was reported that the proposed filter 

was computed faster than conventional Kalman filters with a similar level of accuracy. In the 

literature those methods were referred to as distributed Kalman filters. Several variants of 

decomposition or distribution of Kalman filters have been developed. Those approaches are 

built on a discrete level and ignore the continuous nature of the background problem defined 

as a PDE. Also, they implement algebraic transformations for problem distributions which 

require a specific problem structure and may suffer from scalability issues (Wang et al., 2015). 

For a comprehensive literature review of those methods, readers are referred to the 

bibliographic survey by (Mahmoud and Khalid, 2013). 

Discrete decomposition became a common tool also for ensemble filters. To achieve better 

computational efficiency of ensemble filters compared to Kalman filters, the size of an 
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ensemble is normally taken to be small. Since an ensemble is used to approximate correlations 

between state components, small amount of ensemble members may produce difficulties in 

estimation of correlations between distant observations points. As a consequence, the analyses 

may diverge from the actual system state (Houtekamer and Mitchell, 1998). On the other hand, 

an ensemble defines a subspace which approximates system uncertainties. If the size of an 

ensemble is small, the forecast errors may grow in directions not accounted by the subspace 

(Hunt et al., 2007). 

In the literature (Brusdal et al., 2003; Ott et al., 2002; Penduff et al., 2002), it is suggested that 

the problem may be overcome by the analysis localisation procedure which is analogue to 

discrete decomposition methods. The idea of localization is to split the system into smaller 

subsystems and compute analyses on each subsystem locally. This allows an approximation of 

the global uncertainty space in a piecewise manner by a set of low-order ensembles. 

Ott et al. (2004) presented and studied an algorithm of local ensemble Kalman filter (LEKF) 

for atmospheric data assimilation. The authors suggested that for each analysis point only 

observations inside a circle with a certain radius, referred to as an influence radius, are included 

in the analysis, assuming observations from outside of the circle have no impact on analysis. It 

was concluded that since global analysis is replaced by a number of smaller size analyses, 

LEKF demands lower computational cost compared to the full size EnKF at the same time 

providing similar accuracy estimates. 

Hunt et al. (2007) presented a local version of the ensemble transform Kalman filter (LETKF) 

by splitting observations into separate batches that have uncorrelated errors. Since the 

localization may produce discontinuities between local analyses, the authors suggested 

reducing the impact of observations close to the boundary of the local domains by artificially 

increasing its error variance. An implementation of LETKF for a Global Forecast System is 

described in details in Szunyogh et al. (2007). An alternative approach that address the problem 

of smoothness is introduced in Janjic et al. (2011) where, for each local domain, Schur product 

localization of analysis error covariance matrix is used. 

An attractive property of the domain localisation of ensemble filters is that local analysis is 

performed independently and thus can be easily computed in parallel. Development of the 

parallel data assimilation framework PDAF that supports combination of several versions of 

local ensemble filters with existing numerical models is done in Nerger and Hiller (2013). Nino 

et al. (2016) presented a parallel implementation of LEKF based on Cholesky decomposition 
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for the Atmospheric General Circulation Model. Nevertheless, it should be stressed that the 

approaches presented in Hunt et al. (2007), Ott et al. (2004) and others are concerned only with 

the analysis step and ignore the background propagation step which results in lack of scalability 

of those algorithms. 

There are examples of application of DD to optimal control problems. Benamou (1999) 

presented an approach for the solution of the quadratic control system governed by the wave 

equation. The authors applied DD to the optimality system composed of direct and adjoint state 

equations and recast it as a set of local optimality systems which are further suggested to solve 

using synthesis method. Another example is given in Heinkenschloss and Herty (2007) where 

LQ optimal control problem is considered for a parabolic PDE. In this case, DD is applied to 

the optimality system using Schur complement formulation obtained after applying suitable 

reordering of rows and columns of a space discretised problem. In both cases it was reported 

that the application of DD resulted in significant computational improvements. These examples 

inspired further development of DD methodology for combining it with the minimax filter that 

is constructed using LQ control theory. 

Combining DD and filtering is less investigated then other decomposition strategies. Fujimoto 

and Kawahara (2001) presented an algorithm of domain decomposition based on Schwarz 

alternating approach for a shallow water model and Kalman filter. The authors reported good 

convergence using splitting in two subdomains while usage of higher number of subdomains 

resulted in divergence of the algorithm. In a recent publication by Battistelli et al. (2015), the 

DD has been applied for a consensus Kalman filter and investigated for a process described by 

a diffusion equation. In contrast to distributed Kalman filters DD applies decomposition to a 

continuous space domain. The resulting localised problem is resolved using an approach based 

on splitting the time intervals into substeps and propagating both state estimate and state 

covariance over those substeps. The stability and convergence properties of the consensus 

Kalman filter are analysed in detail in Battistelli et al., (2016). It should be noted that this 

algorithm demonstrates significant computational reduction comparing to global Kalman filter 

as well as good scalability properties. A version of this approach adapted to the contaminant 

transport problem will be later used in the thesis for a comparison with the methods proposed 

herein. 

There are methods of problem decomposition that have been used in combination with offline 

assimilation methods. Several strategies of data decomposition for an implementation of a 

parallel 4d-var algorithm are described in Rantakokko (1997). In (D’Amore et al., 2013) and 
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(D’Amore et al., 2014) the authors constructed localised version of 3D-Var method by applying 

state decomposition on a discrete level. To this end, a cost function was split between 

subdomain and a coupling between subdomains required by a decomposition strategy was 

enforced through an additional constraint in each local cost function. The assimilation method 

obtained was applied to Mediterranean Forecasting System and significant improvements of 

computational time comparing to the conventional 3D-Var were reported. 

 

2.7 Discussion	
The development of performance efficient methods of DA in terms of quality estimation and 

computational demands is an active research area. Modern methods used in the operational DA 

represent a trade-off between computational cost and efficiency. To reduce the computational 

requirements, especially for large scale problems such as those occurring in marine modeling, 

many strategies may be applied. For instance, instead of the traditional Kalman filter, it is 

common in engineering practice to use various sub-optimal schemes of the Kalman filter. The 

computational cost of variational DA methods such as 3D-Var or 4D-Var and computational 

cost of ensemble filters may be controlled by limiting the amount of minimization iterations 

performed or by restricting an ensemble size correspondingly. 

More recently, several problem decomposition approaches were developed to overcome 

computational burden of conventional DA methods. Data decomposition applied to 

conventional filters allows performing computations in parallel more efficiently but it does not 

decrease numerical complexity of the underlying method.  

Discrete decomposition approaches such as distributed Kalman filters or localised ensemble 

Kalman filters depend on a particular structure of underlying system matrices and in a general 

case may lose their advantageous. Discrete decomposition is also limited to grid methods such 

as FEM of FD where system vector components are geometrically associated to a point. If, for 

instance, discrete system is obtained using approximation by functions with global support as 

in case of spectral methods, discrete decomposition is not possible. Finally, those methods are 

specifically designed for decomposition of an analysis equation and cannot be applied to a 

background propagation, therefore additional decomposition of background model is essential. 

Although many efforts have been dedicated to overcoming computational burden of DA 

problems, the problem remains open. 
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At the same time, DD technique emerged as a popular tool for computational price reduction. 

It was successfully applied to the solution of many PDE reducing numerical cost of an 

algorithm and providing nearly linear scalability of performance. In the literature, application 

of DD to the solution of DA problems in particular for transport problems is not developed 

enough. This provides the second motivation of this research: to construct efficient and scalable 

DA strategies for contaminant transport problems based on combinations of conventional 

filters with DD. 
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3 Data	Assimilation	methods	

This chapter presents a framework that is used as a foundation for a development of DA 

methods combined with DD. While the intention of this development is to make the framework 

as general as possible, it will be adopted in particular for settings that described physical 

processes of pollutant transport in the marine environment. 

The main components of this framework include linear PDEs that describe an underlying 

processes and traditional Kalman and minimax filters. Those filters are demonstrated for a 

problem continuous in time and space problem which permits a combination with DD that 

could be further introduced on a continuous level. A transformation or discretisation of 

continuous filters into discrete filters is provided is this chapter as well and is used later in the 

thesis for a development of several localised filters. Space discretisation is performed using 

Galerkin approximations. The later makes the framework suitable for various numerical 

methods, in particular, FEM with bilinear basis function is used in this work. 

 

3.1 Abstract	assimilation	problem	

From a philosophical point of view, a DA problem can be considered as a differential game 

involving two opposing parties. The first party is nature, which drives a physical process 

referred to as the true process, and state, which is denoted by 𝑢:(𝑡, 𝑥). The second party is an 

engineer who aims to construct an analysis state 𝑢<(𝑡, 𝑥) that would be as close to the true state 

as possible. 

In order to compute the best estimate, an engineer should rely on some prior information 

regarding the problem and nature behaviour. Typically this information includes: 

1) The time interval [𝑡>; 𝑡@] over which the estimation should be performed. 

2) The domain Ω which is a predefined area of the space where the physical process is 

happening. 

3) The background model that is described by the dynamic system (parabolic or 

hyperbolic) of PDE: 
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 𝜕𝑢(𝑡, 𝑥)
𝜕𝑡 	= 𝐿G𝑢(𝑡, 𝑥)H + 𝑒J(𝐿, 𝑡, 𝑥) (3.1) 

where 𝑢(𝑡, 𝑥) describes the state of the system at time 𝑡 ∈ [𝑡>; 𝑡@] and space 𝑥 ∈ Ω; 𝐿 is 

the known model operator, 𝑒J(𝐿, 𝑡, 𝑥) is the model error presented as an additive term and may 

depend on the model operator. It should be mentioned that if 𝑒J(𝐿, 𝑡, 𝑥) = 0 then the 

underlying equation is deterministic and its solution is referred to as a background and denoted 

by 𝑢L(𝑡, 𝑥). 

4) The initial and boundary conditions that are applied at the initial moment 𝑡> and over 

the boundaries of the domain Ω. 

5) Observations: the engineer can empirically measure data related to the state of the 

system. The observations are typically presented in the following way 

 𝑦(𝑡, 𝑥) = 𝐻𝑢(𝑡, 𝑥) + 𝑒N(𝑡, 𝑥) (3.2) 

where 𝑦(𝑡, 𝑥) is the observation variable, 𝑒N(𝑡, 𝑥) is the error of the observation process 

and 𝐻 is a linear observation operator defined by the given kernel function ℎ(𝑧) as 

follows 

 𝐻𝑢(𝑡, 𝑥) = Qℎ(𝑦 − 𝑥)𝑢(𝑡, 𝑦)𝑑𝑦
T

 (3.3) 

The main challenge for an engineer is to find an optimal combination of a model and 

observations taking into account model and observation errors controlled by nature which are 

not deterministic. The policy of nature is not known but an engineer may collect statistical 

information about those errors such as average, variance and statistical moments. In the limit 

of a large number of the realisations, it is expected that statistics would converge to the actual 

probability distributions that depend only on the physical process responsible for the errors. 

There are several strategies of the formal description of the model and observation errors. The 

stochastic approach which is known to provide the most general approach for uncertainty 

quantification is addressed in the next section. 

Reliable methods of data assimilation are devised if several conditions of problem 

specifications are met. The first group of those conditions is related to the model configuration; 

the analysis is greatly simplified if the model is assumed to be linear. Second, the continuous 
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problem may be discretised first, and then an assimilation algorithm is applied to its discrete 

counterpart. 

The second group of conditions is related to the description of the errors. The Gaussian function 

is an example of a structure-specific distribution that is widely used in practice. If a PDF is 

Gaussian, its shape is defined only by the first two statistical moments: mean and variance. The 

following section presents data assimilation methods that assume the Gaussian structure of the 

underlying process and optimise its mean and variance. The analysis is presented for both 

discrete and continuous cases. 

 

3.1.1 Problems	continuous	in	time	and	space	
This research concerns the physical process of transport of a pollutant in the marine 

environment. Let the problem be defined on a spatiotemporal domain ([𝑡>; 𝑡@] × Ω) where Ω ⊂

ℝX is a bounded domain with Lipschitz boundary. The differential operator 𝐿 that describes the 

transport phenomena is the advection-diffusion operator defined as (Donea and Huerta, 2003) 

 
𝐿: 𝐻@([𝑡>; 𝑡@] × Ω) → 𝐿X([𝑡>; 𝑡@] × Ω) 

𝑢 ↦ 𝐿𝑢 = 𝜖Δ𝑢 − ∇ ⋅ (𝜇𝑢) 
(3.4) 

where 𝜖 ≥ 0 is a constant diffusion coefficient and vector 𝜇 = [𝜇@, 𝜇X]b is a vector of velocity 

field. Hence, the background PDE (3.1) is rewritten in the form of the linear dynamic equation 

 

⎩
⎨

⎧
𝜕𝑢(𝑡, 𝑥)
𝜕𝑡 = 𝜖Δ𝑢(𝑡, 𝑥) − ∇ ⋅ G𝜇(𝑡, 𝑥)𝑢(𝑡, 𝑥)H + 𝑒J(𝑡, 𝑥)

𝑢(0, 𝑥) = 𝑢>(𝑥)+𝑒>(𝑥)
𝑢(𝑡, 𝑥) = 0,											𝑥 ∈ ∂Ω

			 (3.5) 

where 𝑢>(𝑥) is the initial condition reflecting the initial concentration. The homogeneous 

boundary condition for 𝑢 reflects the following assumption: the domain Ω is chosen to be large 

enough in order to guarantee that no concentration is entering the domain. 

Observations of the state are also described by the following linear equation 

 𝑦(𝑡, 𝑥) = Qℎ(𝑧 − 𝑥)𝑢(𝑡, 𝑦)𝑑𝑧
T

+ 𝑒N(𝑡, 𝑥) (3.6) 

where ℎ(𝑧) is a given function, which in this work is chosen as Dirac’s delta function leading 

to the so-called direct observations equation. 
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For the description of uncertainties in the system (3.5)-(3.6), Kalman (1960) suggested to 

accept the following assumptions: 

1) The model, observation and initial errors 𝑒J(𝑡, 𝑥), 𝑒N(𝑡, 𝑥),	𝑒>(𝑥) are considered to be 

normal. That is, their probability distributions are described by the multidimensional 

Gaussian function: 

 𝑝(𝑒(𝑡, 𝑥)) =
1

h2𝜋𝑄(𝑡, 𝑡, 𝑥, 𝑥)
exp n−

G𝑒(𝑡, 𝑥) − 𝑒(𝑡, 𝑥)H
X

2𝑄(𝑡, 𝑡, 𝑥, 𝑥)
o (3.7) 

where 𝑒(𝑡, 𝑥) is mean or average or expected value of a stochastic variable 𝑒(𝑡, 𝑥) and 

its covariance is given by 

 

covG𝑒(𝑡@, 𝑥@), 𝑒(𝑡X, 𝑥X)H

= G𝑒(𝑡@, 𝑥@) − 𝑒(𝑡@, 𝑥@)H(𝑒(𝑡X, 𝑥X) − 𝑒(𝑡X, 𝑥X))

= 𝑄(𝑡@, 𝑡X, 𝑥@, 𝑥X)𝛿(𝑡@ − 𝑡X) 

(3.8) 

where 𝑄(𝑡@, 𝑡X, 𝑥@, 𝑥X) is a positive continuous function and 𝛿(⋅) is Dirac’s delta 

function. 

In a shorter form the fact that variable 𝑒 is Gaussian distributed is denoted as follows: 

 𝑝(𝑒) = 𝑁(𝜇, 𝑄) or 𝑒~𝑁(𝜇,𝑄) (3.9) 

2) The model, observation and initial errors 𝑒J(𝑡, 𝑥), 𝑒N(𝑡, 𝑥),	𝑒>(𝑥) are unbiased, i.e., 

have zero expectations and their covariance are defined by positive functions 𝑄(𝑡, 𝑥), 

𝑅(𝑡, 𝑥), 𝑄>(𝑥) respectively. Hence 

 

𝑒J(𝑡, 𝑥) ∼ 𝑁G0,𝑄(𝑡, 𝑡, 𝑥, 𝑥)H;	 

𝑒N(𝑡, 𝑥) ∼ 𝑁G0, 𝑅(𝑡, 𝑡, 𝑥, 𝑥)H;	 

𝑒>(𝑥) ∼ 𝑁(0,𝑄>(𝑥, 𝑥)); 

(3.10) 

3) 𝑒J(𝑡, 𝑥), 𝑒N(𝑡, 𝑥),	𝑒>(𝑥) are considered to be mutually uncorrelated: 

 cov(𝑒J, 𝑒N) = 0; cov(𝑒J, 𝑒>) = 0; 	cov(𝑒N, 𝑒>) = 0 (3.11) 

If a stochastic variable satisfies the above conditions, it is called white Gaussian noise. The 

benefit of imposing those conditions to reconstruct PDFs of the model or observation errors 
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that are white Gaussian noise is that one needs to reconstruct only first two statistical moments 

of the underlying distribution: mean and covariance. 

The problem defined by (3.5)-(3.6) together with the error description (3.10) is continuous in 

both time and space. In the following, the corresponding problem of its state estimation is 

referred as a time-space continuous DA problem. 

 

3.1.2 Variational	formulation	of	the	problem	
Considering the difficulty of finding an analytical solution for the PDE, the problem (3.5)-(3.6) 

is reformulated to be feasible for numerical approximations (Evans, 1998). A common 

approach is to look for the weak solution of the underlying differential equation (3.5) following 

the Galerkin method. For this reason, the fixed-in-time test function 𝑣(𝑥) is introduced, chosen 

from the Sobolev space 𝐻@(Ω). The PDE (3.5) is then multiplied by that test function and the 

problem becomes reformulated as a variational problem: 

 xy𝑣,
𝜕𝑢
𝜕𝑡z =

(𝑣, 𝜖Δ𝑢) − G𝑣, ∇ ⋅ (𝜇𝑢)H + (𝑣, 𝑒J)

G𝑣, 𝑢(0, 𝑥)H = G𝑣, 𝑢>(𝑥)H + G𝑣, 𝑒>(𝑥)H
			 (3.12) 

where (⋅,⋅) defines the scalar product in 𝐿X(Ω): 

 (𝑣, 𝑢) = Q𝑣𝑢𝑑𝑥
T

 (3.13) 

The solution of the problem (3.12) is called a weak solution. Due to the properties of the linear 

advection-diffusion operator, the weak solution of (3.12) satisfies the original continuous 

problem (3.6) in a weak sense (Evans, 1998). 

The variational formulation (3.12) is further transformed by the application of the divergence 

theorem (Evans, 1998) to the integrals of (3.12). In that case, the diffusive term is transformed 

as 

 

(𝑣, 𝜖Δ𝑢) = 𝜖Q𝑣(𝑥)Δ𝑢(𝑡, 𝑥)𝑑𝑥
T

 

= −Q𝜖∇{𝑣(𝑡, 𝑥)∇𝑢(𝑡, 𝑥)𝑑𝑥
T

+Q 𝜖𝑣(𝑥)
𝜕𝑢(𝑡, 𝑥)
𝜕𝑛 𝑑𝑥

}T
 

= −𝜖(∇𝑣, ∇𝑢) + 𝜖 y𝑣,
𝜕𝑢
𝜕𝑛z}T

 

(3.14) 
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where 𝑛(𝑥) is the outward normal vector to the surface at point 𝑥. 

Moreover, applying the divergence theorem to the advective term yields 

 

(𝑣, 𝜇 ⋅ ∇𝑢) = Q 𝑣(𝑥) ~∇ ⋅ G𝜇(𝑡, 𝑥)𝑢(𝑡, 𝑥)H�𝑑𝑥
T

 

= −QG∇𝑣(𝑡, 𝑥)H ⋅ 𝜇(𝑡, 𝑥)𝑢(𝑡, 𝑥)𝑑𝑥
T

+Q G𝜇(𝑡, 𝑥) ⋅ 𝑛(𝑥)H𝑣(𝑥)𝑢(𝑡, 𝑥)𝑑𝑥
}T

 

= −(𝜇 ⋅ ∇𝑣, 𝑢) + G(𝜇 ⋅ 𝑛)𝑣, 𝑢H}T 

(3.15) 

Substituting (3.14) and (3.15) into the equation (3.12) returns 

 

⎩
⎪
⎨

⎪
⎧y𝑣,

𝜕𝑢
𝜕𝑡z = −𝜖(∇𝑣, ∇𝑢) + (𝜇 ⋅ ∇𝑣, 𝑢)

																					+𝜖 y𝑣,
𝜕𝑢
𝜕𝑛z}T

− G(𝜇 ⋅ 𝑛)𝑣, 𝑢H}T + (𝑣, 𝑒J)

G𝑣, 𝑢(0, 𝑥)H = G𝑣, 𝑢>(𝑥)H + G𝑣, 𝑒>(𝑥)H

			 (3.16) 

The usage of the divergence theorem permits the incorporation of the boundary conditions into 

the variational formulation (3.16) through the boundary integrals. Those integrals require 

boundary information about the function 𝑢(𝑡, 𝑥), known as Dirichlet data, and information 

about the normal derivative of 𝑢(𝑡, 𝑥), known as Neumann data. If the Dirichlet and Neumann 

data is imposed through the boundary integrals, it is said that the boundary conditions are 

satisfied in a weak sense. 

The variational formulation of the observation equation is straightforward and is written in the 

following way 

 (𝑣, 𝑦) = (𝑣, 𝐻𝑢) + (𝑣, 𝑒N) (3.17) 

 

3.1.3 Problems	continuous	in	time	and	discrete	in	space	
The discrete projection of the continuous weak solution is obtained as a truncation of the 

corresponding infinite expansion of the function. Let 𝜙�(𝑥) ∈ 𝐻@(Ω), 𝑖 = 1,… ,∞ be a 

complete system of a basis function in the space 𝐻@(Ω). Then there exists a set of coefficients 

𝐮�(𝑡), such that 
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 𝑢(𝑡, 𝑥) =�𝐮�(𝑡)𝜙�(𝑥)
�

��@

 (3.18) 

By taking 𝑢�(𝑡, 𝑥) to be the sum of only the first 𝑁 terms in (3.18), one gets a finite dimensional 

approximation of 𝑢(𝑡, 𝑥) that has the desired property of separated time and space variables. 

This approach is known as the semi-discrete Galerkin approximation. 

Different choices of the basis functions define different methods with different approximation 

properties. In this work, a Finite Element Method (FEM) with bilinear basis functions is 

considered. The domain Ω is approximated by rectangular finite elements and the vertices 

𝑥�, 𝑖 = 1,… , 𝑁�� of the elements form the FEM grid. At each node of the grid, the basis 

function 𝜙�(𝑥) is defined as a tensor product of one-dimensional piecewise linear functions 

that are called hat functions or Currant functions, so that the following interpolation condition 

holds: 

 𝜙�(𝑥�) = 𝛿��	𝑖, 𝑗 = 1,… , 𝑁�� (3.19) 

The FEM approximation of the continuous function 𝑢(𝑡, 𝑥) is then written as follows 

 𝑢(𝑡, 𝑥) ≈ 𝑢�(𝑡, 𝑥) = �𝐮�(𝑡)𝜙�(𝑥)
���

��@

= 𝝓b(𝑥)𝐮(𝑡) (3.20) 

where 𝝓(𝑥) = �𝜙@(𝑥),… , 𝜙���(𝑥)�
b
 is a vector of FEM basis functions and 𝐮(𝑡) =

�𝐮@(𝑡),… , 𝐮���(𝑡)�
b
 is a vector of unknown coefficients of the expansion. 

The stochastic function 𝑒(𝑡, 𝑥) is approximated similarly to (3.20) 

 𝑒(𝑡, 𝑥) ≈ 𝑒�(𝑡, 𝑥) = �𝐞�(𝑡)𝜙�(𝑥)
���

��@

= 𝝓b(𝑥)𝐞(𝑡) (3.21) 

where 𝐞(𝑡) = �𝐞@(𝑡),… , 𝐞���(𝑡)�
b
 is a vector of expansion coefficients and because of the 

property of the FEM basis function (3.19) it follows that 

 𝐞�(𝑡) = 𝑒(𝑡, 𝑥�)	𝑖 = 1,… , 𝑁�� (3.22) 

Inserting the given FEM approximations (3.20) and (3.21) into the variational representation 

(3.12) and taking 𝑁 test functions 𝑣(𝑥) = 𝜙�(𝑥), 𝑖 = 1, … ,𝑁 denoted in vector form 𝝓(𝑥), the 
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space-discrete background model for the vector of coefficients 𝐮(𝑡) is obtained in the form of 

ordinary differential equations (ODE): 

 

Q 𝝓(𝑥)𝝓b(𝑥)
𝑑𝐮(𝑡)
𝑑𝑡 𝑑𝑥

T

= −Q𝜖∇b𝝓(𝑥)∇𝝓b(𝑥)𝐮(𝑡)𝑑𝑥
T

+Q∇b𝝓(𝑥)𝜇(𝑡, 𝑥)𝝓b(𝑥)𝐮(𝑡)𝑑𝑥
T

+Q 𝜖𝝓(𝑥)
𝑑𝝓b(𝑥)
𝑑𝑛(𝑥) 𝐮

(𝑡)𝑑𝑥
�T

−Q 𝜇b(𝑡, 𝑥)𝑛(𝑥)𝝓(𝑥)𝝓b(𝑥)𝐮(𝑡)𝑑𝑥
�T

+Q𝝓(𝑥)𝝓b(𝑥)𝐞J(𝑡)𝑑𝑥
T

 

(3.23) 

with the initial conditions 

 Q𝝓(𝑥)𝝓b(𝑥)𝒖(0)𝑑𝑥
T

= Q𝝓(𝑥)𝝓b(𝑥)𝒖>𝑑𝑥
T

+Q𝝓(𝑥)𝝓b(𝑥)𝒆>𝑑𝑥
T

 (3.24) 

The boundary integrals in (3.23) are split into zones 𝜕Ω� and 𝜕Ω� where proper boundary 

conditions are defined. Thus, the boundary integrals computed using known boundary data 

form a vector 𝐟�(𝑡) 

 
𝐟�(𝑡) = Q 𝜖𝝓(𝑥)

𝑑𝝓b(𝑥)
𝑑𝑛(𝑥) 𝐮�

(𝑡)𝑑𝑥
�T�

− Q 𝜇b(𝑡, 𝑥)𝑛(𝑥)𝝓(𝑥)𝝓b(𝑥)𝐮�(𝑡)𝑑𝑥
�T�

 
(3.25) 

If the boundary data is not prescribed, corresponding integrals contribute to the matrix 𝐒��T(𝑡) 

 𝐒�}T(𝑡) = Q 𝜖𝝓(𝑥)
𝑑𝝓b(𝑥)
𝑑𝑛(𝑥) 𝑑𝑥�T�

− Q 𝜇b(𝑡, 𝑥)𝑛(𝑥)𝝓(𝑥)𝝓b(𝑥)𝑑𝑥
�T�

 (3.26) 

Introducing the matrix notations 

 𝐌 = Q𝝓(𝑥)𝝓b(𝑥)𝑑𝑥
T

 (3.27) 

 𝐒�T(𝑡) = −Q𝜖∇b𝝓(𝑥)∇𝝓b(𝑥)𝑑𝑥
T

+Q∇b𝝓(𝑥)𝜇(𝑡, 𝑥)𝝓b(𝑥)𝑑𝑥
T

 (3.28) 
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And denoting 𝐒�(𝑡) = 𝐒�T(𝑡) + 𝐒��T(𝑡) the ODE system (3.23)-(3.24) can be rewritten as 

 x𝐌
𝑑𝐮(𝑡)
𝑑𝑡 = 𝐒�(𝑡)𝐮(𝑡) + 𝐟�(𝑡) + 𝐌𝐞J(𝑡)

𝐌𝐮(0) = 𝐌𝐮> +𝐌𝐞>
				 (3.29) 

The set of functions 𝜙�(𝑥) is linearly independent, meaning that the mass matrix 𝐌 is 

invertible. This quality allows for the stiffness matrix and source vector to be denoted as 𝐒(𝑡) =

𝐌¡@𝐒�(𝑡) and 𝐟(𝑡) = 𝐌¡@𝐟�(𝑡). In the new notations, the system (3.29) becomes 

 x
𝑑𝐮(𝑡)
𝑑𝑡 	= 𝐒(𝑡)𝐮(𝑡) + 𝐟(𝑡) + 𝐞J(𝑡)

𝐮(0) 	= 	𝐮> + 𝐞>
 (3.30) 

Here 𝐒 is the stiffness matrix that corresponds to the model operator 𝐿 and vector 𝐟(t) reflects 

the fact that the boundary conditions are imposed in a weak sense. 

Discretisation of the observation equation (3.6) is done in a similar fashion 

 

Q𝝓(𝑥)𝝓b(𝑥)𝐲(𝑡)𝑑𝑥
T

= Q 𝝓(𝑥)Q𝝓b(𝑥)𝐇¥𝝓(𝑧)𝝓b(𝑧)𝐮(𝑡)𝑑𝑧
T

𝑑𝑥
T

+Q𝝓(𝑥)𝝓b(𝑥)𝐞N(𝑡)𝑑𝑥
T

 

(3.31) 

where matrix 𝐇¥ is a discretised observation kernel function 

 𝐇¥ = ¦ℎG𝑥� − 𝑧�H§�,��@
���  (3.32) 

Accounting for the notation of the mass matrix and denoting the discrete observation operator 

as 𝐇 = 𝐇¥𝐌 yields the observation equation in the discrete form 

 𝐲(𝑡) = 𝐇𝐮(𝑡) + 𝐞N(𝑡) (3.33) 

The statistics of the space discretised errors 𝐞J(𝑡), 𝐞N(𝑡) and 𝐞> are retrieved from the 

expression (3.22). Indeed, normality of the continuous model error 𝑒J(𝑡, 𝑥) and (3.22) imply 

normal distribution of the components 𝐞J,�(𝑡) and, as a result, normal distribution of the vector 

of the model error 𝐞J(𝑡) itself. Moreover, this also implies a zero average of the error vector 

𝐞J(𝑡) = 0. 



47 

The covariance matrix of the model error is computed from the definition of the covariance 

and the relation (3.22) 

 
𝐐(𝑡) = 𝐞J(𝑡)𝐞Jb (𝑡) = ~𝐞J,�(𝑡)𝐞J,�(𝑡)�

��
 

= ~𝑒J(𝑡, 𝑥�)𝑒JG𝑡, 𝑥�H�
��
= ~𝑄G𝑡, 𝑡, 𝑥�, 𝑥�H�

��
 

(3.34) 

The PDF for 𝐞J(𝑡) that is equivalent to the continuous one (3.7) is written as follows 

 

𝑝G𝐞J(𝑡)H =
1

h(2𝜋)©|𝐐(𝑡)|
 

× exp y−
1
2
G𝐞J(𝑡) − 𝐞J(𝑡)H

b
𝐐¡@(𝑡)(𝐞J(𝑡) − 𝐞J(𝑡))z 

(3.35) 

Using the same arguments as above, the space discrete observation and initial errors 𝐞N(𝑡) and 

𝐞> are normally distributed with a zero average. The covariance of the discrete observation and 

initial errors are obtained as 

 𝐑(𝑡) = ~𝑅G𝑡, 𝑡, 𝑥�, 𝑥�H�
��
and	𝐐> = ~𝑄>G𝑥�, 𝑥�H�

��
 (3.36) 

The latter also demonstrates that if the continuous error satisfies the Gaussian white noise 

assumptions, then its space-discretised counterpart satisfies those assumptions as well. 

Finally, the time continuous and space discrete DA problem is formulated as a state estimation 

problem of the system described by the linear ODE 

 x
𝑑𝐮(𝑡)
𝑑𝑡 	= 𝐒(𝑡)𝐮(𝑡) + 𝐟(𝑡) + 𝐞J(𝑡)

𝐮(0) 	= 	𝐮> + 𝐞>
 (3.37) 

with available observations in a linear form 

 𝐲(𝑡) = 𝐇𝐮(𝑡) + 𝐞N(𝑡) (3.38) 

The errors are described by the following statistics: 

 𝐞J(𝑡) ∼ 𝑁(0,𝐐(𝑡));	𝐞N ∼ 𝑁(0,𝐑(𝑡));	𝐞> ∼ 𝑁(0,𝐐>); (3.39) 
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3.1.4 Problems	discrete	in	time	and	space	
In order to solve the differential equation (3.37), implicit midpoint rule is adopted (Iserles, 

1996). This is done by integrating (3.37) over the time interval [𝑡>, 𝑡], so that 

 𝐮(𝑡) − 𝐮(𝑡>) = Q 𝐒(𝑡)𝐮(𝑡)
:

:®
𝑑𝑡 + Q 𝐟(𝑡)

:

:®
𝑑𝑡 + Q 𝐞J(𝑡)

:

:®
𝑑𝑡 (3.40) 

The computation of the integral terms in (3.40) is done by the midpoint quadrature 

 Q 𝑔(𝑡)
L

<
𝑑𝑡 ≈ (𝑏 − 𝑎)𝑔 y

𝑎 + 𝑏
2 z (3.41) 

And 𝐮 ~<±L
X
� is approximated as 

 𝐮 y
𝑎 + 𝑏
2 z ≈

𝐮(𝑎) + 𝐮(𝑏)
2  (3.42) 

Applying (3.41) and (3.42) to (3.40) yields the discrete in time and space equation for 𝐮(𝑡) 

 
𝐮(𝑡) − 𝐮(𝑡>) = (𝑡 − 𝑡>)𝐒 y

𝑡 + 𝑡>
2 z

𝐮(𝑡>) + 𝐮(𝑡)
2

+ (𝑡 − 𝑡>)𝐟 y
𝑡 + 𝑡>
2 z +Q 𝐞J(𝜏)

:

:®
𝑑𝜏 

(3.43) 

Rearranging the terms in the last formula gives 

 

³𝐈 −
𝑡 − 𝑡>
2 𝐒 y

𝑡 + 𝑡>
2 zµ𝐮(𝑡)

= −³𝐈 −
𝑡 − 𝑡>
2 𝐒 y

𝑡 + 𝑡>
2 zµ𝐮(𝑡>) + 2𝐮(𝑡>)

+ (𝑡 − 𝑡>)𝐟 y
𝑡 + 𝑡>
2 z +Q 𝐞J(𝜏)

:

:®
𝑑𝜏 

(3.44) 

Moving the multiplier from left side to right side, the recurrent expression for the system state 

is obtained 

 

𝐮(𝑡) = 2³¶𝐈 −
𝑡 − 𝑡>
2 𝐒 y

𝑡 + 𝑡>
2 z·

¡@
− 𝐈µ𝐮(𝑡>)

+ (𝑡 − 𝑡>) ¶𝐈 −
𝑡 − 𝑡>
2 𝐒 y

𝑡 + 𝑡>
2 z·

¡@
𝐟 y
𝑡 + 𝑡>
2 z

+ ¶𝐈 −
𝑡 − 𝑡>
2 𝐒 y

𝑡 + 𝑡>
2 z·

¡@
Q 𝐞J(𝜏)
:

:®
𝑑𝜏 

(3.45) 
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The time variable is now uniformly discretised with the interval 𝑇 such that 𝑡> = 𝑛𝑇; 𝑡 =

(𝑛 + 1)𝑇; 	𝑇 = 𝑡 − 𝑡>. The time discretisation permits the derivation of the following 

notations: 

for the state vector 

 𝐮> = 𝐮(0);	𝐮� = 𝐮(𝑛𝑇);	𝐮�±@ = 𝐮G(𝑛 + 1)𝑇H (3.46) 

for the model matrix 

 𝐒� = 2³¶𝐈 −
𝑇
2 𝐒y𝑛𝑇 +

𝑇
2z·

¡@

− 𝐈µ (3.47) 

for the source vector 

 𝐟� = 𝑇 ³𝐈 −
𝑇
2 𝐒 y𝑛𝑇 +

𝑇
2zµ

¡@

𝐟 y𝑛𝑇 +
𝑇
2z (3.48) 

and for the model error vector 

 𝐞J,� = ³𝐈 −
𝑇
2 𝐒 y𝑛𝑇 +

𝑇
2zµ

¡@

Q 𝐞J(𝑛𝑇 + 𝜏)
b

>
𝑑𝜏 (3.49) 

Using (3.46)-(3.49), the time and space discretised background model (3.45) is written in the 

form of the algebraic recurrence relation 

 ¹
𝐮�±@ = 𝐒�𝐮� + 𝐟� + 𝐞J,�
𝐮> = 𝐮> + 𝐞>

 (3.50) 

While there are many possible choices for the numerical approximation of definite integrals of 

(3.40), the midpoint rule (3.41) was chosen for this research as its application for the integration 

of deterministic ODE systems is known to have good stability properties even for stiff systems 

and provides a second order of accuracy (Levy, 2010). 

In a similar fashion, the observations equation (3.38) is integrated in time, but, for consistency 

of the time discretisation, applying the left rectangles rule for computation of the time integrals 

 𝑇𝐲(𝑛𝑇) = 𝑇𝐇𝐮(𝑛𝑇) +Q 𝐞N(𝑛𝑇 + 𝑡)𝑑𝑡
b

>
 (3.51) 

With respect to the notations (3.46), the discrete in space and time observations equation is 

written 
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 𝐲� = 𝐇𝐮� + 𝐞N,� (3.52) 

where 

 𝐞N,� = Q 𝐞N(𝑛𝑇 + 𝑡)𝑑𝑡
b

>
 (3.53) 

The next step is to analyse the error statistics. From the relation (3.49) and the properties of 

normal distribution, it is evident that 𝐞J,�, 𝐞N,� and 𝐞> are normally distributed with zero mean. 

The model error covariance 𝐐��  is found from its definition 

 

𝐐�� = 𝐞J,�𝐞bJ,� 

= ³𝐈 −
𝑇
2 𝐒
(𝑛𝑇)µ

¡@

Q Q 𝐞J(𝑛𝑇 + 𝜏)𝐞bJ(𝑛𝑇 + 𝜎)	𝑑𝜏
b

>
𝑑𝜎

b

>
 

× ³𝐈 −
𝑇
2 𝐒
(𝑛𝑇)µ

¡@b

 

(3.54) 

Since 

 𝐞J(𝑛𝑇 + 𝜏)𝐞Jb (𝑛𝑡 + 𝜎) = 𝐐(𝑛𝑇 + 𝜏)𝛿(𝜏 − 𝜎) (3.55) 

then 

 Q Q 𝐐(𝑛𝑇 + 𝜏)𝛿(𝜏 − 𝜎)𝑑𝜏
b

>
𝑑𝜎

b

>
= Q 𝐐(𝑛𝑇 + 𝜎)

b

>
𝑑𝜎 (3.56) 

Again, applying the midpoint rule (3.41) for the latter integral 

 Q 𝐐(𝑛𝑇 + 𝜎)
b

>
𝑑𝜎 = 𝑇𝐐y𝑛𝑇 +

𝑇
2z (3.57) 

and inserting it into the expression for the model error covariance (3.54) one gets 

 

𝐐�� = ³𝐈 −
𝑇
2 𝐒
(𝑛𝑇)µ

¡@

𝑇𝐐y𝑛𝑇 +
𝑇
2z 

× ³𝐈 −
𝑇
2 𝐒
(𝑛𝑇)µ

¡@b

 

(3.58) 

That formulation is further simplified by denoting 
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 𝐐¥�±>.¼ = 𝐐 y𝑛𝑇 +
𝑇
2z (3.59) 

Since ½b
X
𝐒(𝑛𝑇)½ ≤ 1 for a sufficiently small 𝑇, covariance matrix (3.58) is rewritten using the 

matrix Neumann series 

 (𝐈 − 𝐗)¡@ = 𝐈 + 𝐗 + 𝐗X +⋯ , provided	‖𝐗‖ ≤ 1 (3.60) 

in the following way 

 

𝐐�� = ³𝐈 +
𝑇
2 𝐒
(𝑛𝑇) +

𝑇
4

X

𝐒X(𝑛𝑇)

+⋯µ𝑇𝐐¥�±>.¼ ³𝐈 +
𝑇
2 𝐒
(𝑛𝑇) +

𝑇
4

X

𝐒X(𝑛𝑇) + ⋯µ
b

 

(3.61) 

 
𝐐�� = 𝑇𝐐¥�±>.¼ +

𝑇X

2 𝐐¥�±>.¼𝐒b(𝑛𝑇) +
𝑇X

2 𝐒(𝑛𝑇)𝐐¥�±>.¼

+
𝑇7

4 𝐒(𝑛𝑇)𝐐¥�±>.¼𝐒b(𝑛𝑇) +⋯ 

(3.62) 

The approximation of the background model (3.50) is of the second order accuracy, which 

implies it is enough to provide the second order of accuracy for the time discretisation of the 

covariance matrix. This means that all terms in (3.61) that contain 𝑇 to the power of two or 

higher can be neglected. From this argument, it follows that 

 𝐐�� = 𝑇𝐐¥�±>.¼ = 𝑇𝐐y𝑛𝑇 +
𝑇
2z (3.63) 

The temporal discretisation of the model error covariance (3.63) should be regarded as an 

approximation of a continuous function by a piecewise constant function. 

From the definition of the observations error covariance, it can be shown that 

 

𝐑�� = 𝐞N,�, 𝐞N,�b  

=
1
𝑇X
Q Q 𝐞N(𝑛𝑇 + 𝑡), 𝐞Nb(𝑛𝑇 + 𝜎)𝑑𝑡

b

>
𝑑𝜎

b

>
 

(3.64) 

Using the fact that the time continuous observations error covariance is given as 

 𝐞N(𝑡), 𝐞Nb(𝜎) = 𝐑(𝑡)𝛿(𝑡 − 𝜏) (3.65) 

and applying the left rectangle integration rule, it is found that 
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𝐑�� =
1
𝑇X
Q Q 𝐑(𝑛𝑇 + 𝑡)𝛿(𝑡 − 𝜏)𝑑𝑡

b

>
𝑑𝜎

b

>
 

=
1
𝑇X
Q 𝐑(𝑛𝑇 + 𝜏)𝑑𝜎
b

>
≈
1
𝑇 𝐑y𝑛𝑇 +

𝑇
2z 

(3.66) 

In the end, a DA problem is formulated as a state estimation problem of the recurrent algebraic 

equation, also known as a difference equation 

 ¹
𝐮�±@ = 𝐒�𝐮� + 𝐟� + 𝐞J,�
𝐮> = 𝐮> + 𝐞>

 (3.67) 

with observations in the algebraic form 

 𝐲� = 𝐇𝐮� + 𝐞N,� (3.68) 

and the error statics 

 𝐞J,�(𝑡) ∼ 𝑁(0,𝐐�);	𝐞N,� ∼ 𝑁(0,𝐑�);	𝐞> ∼ 𝑁(0,𝐐>); (3.69) 

that can be equivalently formulated with regard to the continuous error description 

 
𝐞J,�(𝑡) ∼ 𝑁 ³0, 𝑇𝐐 y𝑛𝑇 +

𝑇
2zµ ;	𝐞N ∼ 𝑁 ³0,

1
𝑇 𝐑 y𝑛𝑇 +

𝑇
2zµ ;	 

𝐞> ∼ 𝑁(0,𝐐>); 

(3.70) 

 

3.2 Kalman	based	filters	
From the error description (3.69) and the equation of the background model evolution (3.67), 

the stochastic background state transition is written in the form of the Gaussian conditional 

probability 

 𝑝(𝐮�|𝐮�¡@)~𝑁(𝐒�¡@𝐮�¡@ + 𝐟�,𝐐�) (3.71) 

Considering the fact that the model error 𝐞J,� is white noise, the stochastic processes {𝐮�} 

defined by (3.67) is Markovian and has the initial distribution 

 𝑝(𝐮>)~𝑁(𝐮>, 𝐐>) (3.72) 

Similarly, the observations equation (3.68) is written as the conditional probability 
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 𝑝(𝒚�|𝐮�)~𝑁(𝐇𝐮�,𝐑>) (3.73) 

The aim is to infer the probability distribution of the observations (3.73) into the background 

probability (3.71) and get the analysis probability 	𝑝(𝐮�|𝐘�), where 𝐘� = [𝐲@, … , 𝐲�]. This can 

be done using Bayes’ formula, written for a time discrete system 

 𝑝(𝐮�|𝐘�) =
𝑝(𝐲�|𝐮�)𝑝(𝐮�|𝐘�¡@)

∫ 𝑝(𝐲�|𝐮�)𝑝(𝐮�|𝐘�¡@)𝑑𝐮�
 (3.74) 

Using the transition probability (3.71) and a marginal rule: 

 𝑝(𝐮�|𝐘�¡@) = ∫ 𝑝(𝐮�|𝐮�¡@)𝑝(𝐮�¡@|𝐘�¡@)𝑑𝐮� (3.75) 

Results in 

 𝑝(𝐮�|𝐘�) =
𝑝(𝐲�|𝐮�)∫ 𝑝(𝐮�|𝐮�¡@)𝑝(𝐮�¡@|𝐘�¡@)𝑑𝐮�¡@

∫ 𝑝(𝐲�|𝐮�)G∫ 𝑝(𝐮�|𝐮�¡@)𝑝(𝐮�¡@|𝐘�¡@)𝑑𝐮�¡@H𝑑𝐮�
 (3.76) 

From (3.76) and properties of the Gaussian functions, it is concluded that 

 𝑝(𝒖�|𝐘�)~𝑁(𝛍, 𝐏) (3.77) 

Where 𝛍 and 𝐏 are the mean and covariance of {𝐮�}, which may be derived from (3.76). The 

following section presents an approach for computation of 𝛍 and 𝐏 based on algebraic analysis 

of the error variances that is known as the Kalman filter. 

 

3.2.1 Discrete	Kalman	filter	
The idea of the Kalman filter is to recursively evolve the mean and covariance of the analysis 

state from a time step 𝑛 to a time step 𝑛 + 1 starting with the initial mean 𝐮> and the initial 

covariance 𝐐>. At each time step, the analysis is constructed such that it incorporates all 

available observations from the past while maintaining a minimal variance. 

Let 𝐮�:  be the true state of the system presented by the model with observations discretised in 

time and space (3.67)-(3.69). Assume that at the time step 𝑛, analysis mean 𝐮�
< and covariance 

of the analysis error, given by 

 𝐏�< = (𝐮�< − 𝐮�: )(𝐮�< − 𝐮�: )b (3.78) 
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are known. The first step of the Kalman algorithm is to perform the background propagation 

of the analysis 

 𝐮�±@L = 𝐒�𝐮�< + 𝐟� + 𝐞J,� (3.79) 

Taking the mean of the left and right sides together with the assumption of unbiased errors 

yields the background mean 

 𝐮�±@
L = 𝐒�𝐮�

< + 𝐟� (3.80) 

To compute the background error covariance 

 𝐏�±@L = G𝐮�±@L − 𝐮�±@
: HG𝐮�±@L − 𝐮�±@

: H
b
 (3.81) 

expression (3.79) is inserted into the last formula 

 𝐏�±@L = G𝐒�𝐮�< + 𝐞J,� − 𝐒�𝐮�
: HG𝐒�𝐮�< + 𝐞J,� − 𝐒�𝐮�±@

: H
b
 (3.82) 

Multiplying the terms in brackets and regrouping them returns 

 
𝐏�±@L = 𝑺�(𝐮�< − 𝐮�: )(𝐮�< − 𝐮�: )b𝑺�b + 𝐞J,�(𝐮�< − 𝐮�: )b𝑺�b  

+𝑺�(𝐮�< − 𝐮�: )𝐞J,�b + 𝐞J,�𝐞J,�b  
(3.83) 

Due to the fact that the error and state variables are mutually uncorrelated, their cross products 

vanish so that 

 𝐏�±@L = 𝑺�(𝐮�< − 𝐮�: )(𝐮�< − 𝐮�: )b𝑺�b + 𝐞J,�𝐞J,�b 		 (3.84) 

Taking into account the description of the model error (3.69) and analysis error (3.78) the 

background covariance evolution in time step 𝑛 + 1 is written in the form of Lyapunov 

equation 

 𝐏�±@L = 𝐒�𝐏�<𝐒�b + 𝐐�		 (3.85) 

with a given initial condition 𝐏�< = 𝐐>. 

It should be further noted that the superscript 𝑏 in 𝐮�±@L  and 𝐏�±@L  denotes the fact that those 

are the values before an observation is made at time 𝑡�±@, while 𝐮�±@<  and 𝐏�±@<  denote values 

after observations at time instance 𝑡�±@ are incorporated into the analysis. The second step of 



55 

the algorithm is to update the background mean and covariance by taking into account 

information from the observations. 

Let 𝐝�±@ define the difference between the actual observations of the state and the expected 

background state 

 𝐝�±@ = 𝐲�±@ − 𝐇𝐮�±@L  (3.86) 

The analysis state 	is found as the correction of the background state by the vector 𝐝�±@ that is 

weighted by a matrix parameter 𝐊: 

 𝐮�±@< = 𝐮�±@L + 𝐊𝐝�±@ (3.87) 

In order to get the optimal choice for 𝐊, the covariance of the analysis error is computed 

 𝐏�±@< = (𝐮�±@< − 𝐮�±@: )(𝐮�±@< − 𝐮�±@: )b (3.88) 

Taking into account the expression for the analysis state (3.87) and the observation difference 

(3.86) the analysis error is rewritten as 

 𝐮�±@< − 𝐮�±@: = 𝐮�±@L + 𝐊G𝐲� − 𝐇𝐮�±@L H − 𝐮�±@:  (3.89) 

Inserting the observation equation (3.68) and regrouping the terms, one gets 

 𝐮�±@< − 𝐮�±@: = −𝐮�±@: + 𝐮�±@L + 𝐊𝐇𝐮�: − 𝐊𝐇𝐮�±@L + 𝐊𝐞N,�±@ (3.90) 

 𝐮�±@< − 𝐮�±@: = −(𝐈 − 𝐊𝐇)G𝐮�±@: − 𝐮�±@L H + 𝐊𝐞N,�±@ (3.91) 

The analysis error covariance is then computed from the last equality 

 
𝐏�±@< = (𝐈 − 𝐊𝐇)G𝐮�±@: − 𝐮�±@L HG𝐮�±@: − 𝐮�±@L Hb(𝐈 − 𝐊𝐇)b 

+𝐊𝐞N,�±@𝐞N,�±@b 𝐊b 
(3.92) 

The covariance 𝐏�±@<  is further transformed using (3.81) and (3.69) 

 𝐏�±@< = (𝐈 − 𝐊𝐇)𝐏�±@L (𝐈 − 𝐊𝐇){ + 𝐑�±@ (3.93) 

By rearranging terms, it is shown that 
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 𝐏�±@< = 𝐏�±@L − 𝐊𝐇𝐏�±@L − 𝐏�±@L (𝐊𝐇)b + 𝐊G𝐇𝐏�±@L 𝐇b + 𝐑�±@H𝐊b (3.94) 

Since it is desired that the analysis state is as close as possible to the true state, the value of the 

analysis error covariance is optimised by the proper choice of parameter 𝐊. To this end, the 

optimal choice of 𝐊 is found as a solution of the optimality equation 

 𝛿𝐏�±@<

𝛿𝐊 = 0 (3.95) 

or 

 𝛿G𝐏�±@L − 𝐊𝐇𝐏�±@L − 𝐏�±@L (𝐊𝐇)b + 𝐊G𝐇𝐏�±@L 𝐇b + 𝐑�±@H𝐊bH
𝛿𝐊 = 0 (3.96) 

It is easy to check, that the following expression of 𝐊 

 𝐊 = 𝐏�±@L 𝐇bG𝐇𝐏�±@L 𝐇b + 𝐑�±@H
¡@

 (3.97) 

verifies the optimality equation (3.96). 

The optimum value for 𝐊 in terms of minimization of the analysis error covariance given by 

(3.97) is known as the Kalman gain. Once it is computed, the analysis mean is found from 

(3.87) as 

 𝐮�±@
< = 𝐮�±@

L + 𝐊(𝐲�±@ − 𝐇𝐮�±@
L ) (3.98) 

Finally, substituting Kalman gain (3.97) into (3.93) produces the expression for the optimal 

analysis error covariance 

 
𝐏�±@< = 𝐏�±@L − 𝐊𝐇𝐏�±@L − 𝐏�±@L 𝐇b𝐊 + 𝐏�±@L 𝐇b𝐊 

= (𝐈 − 𝐊𝐇)𝐏�±@L  
(3.99) 

 

3.2.2 The	Kalman	filter	algorithm	
The algorithm of the Kalman filter for the solution of the problem (3.67)-(3.69) starts with the 

initial conditions for the covariance and mean 

 𝐏>< = 𝐐>; 	𝐮> = 𝐮> (3.100) 

The background update (prediction) of the error covariance and estimate are found as 
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 𝐏�±@L = 𝐒�𝐏�<𝐒�b + 𝐐� (3.101) 

 𝐮�±@L = 𝐒�𝐮�< + 𝐟� (3.102) 

The observation update (correction) of the error covariance and estimate are therefore 

computed from 

 𝐊�±@ = 𝐏�±@L 𝐇bG𝐇𝐏�±@L 𝐇b + 𝐑�±@H
¡@

 (3.103) 

 𝐏�±@< = (𝐈 − 𝐊�±@𝐇)𝐏�±@L  (3.104) 

 𝐮�±@< = 𝐮�±@L + 𝐊�±@G𝐲�±@ − 𝐇𝐮�±@L H (3.105) 

If at a time point 𝑡©  there are no observations available, only the background update step is 

performed. 

In practical implementation of the filter, equation (3.104) may be used in the equivalent 

stabilized form: 

 𝐏�±@< = (𝐈 − 𝐊�±@𝐇)𝐏�±@L (𝐈 − 𝐊�±@𝐇)b + 𝐊�±@𝐑�±@𝐊�±@b  (3.106) 

The advantage of this symmetric representation is that it guarantees positive semidefiniteness 

of 𝐏�±@<  in the presence of the round off errors that usually accrue in computer simulations 

(Lewis et al., 2008). 

The background and observation updates of the estimate can be combined into one equation 

 𝐮�±@< = (𝐒� − 𝐊�±@𝐇)𝐮�< + 𝐟� + 𝐊�±@𝐲�±@ (3.107) 

Another common equivalent formulation of the observation update step of the filter is defined 

in (Lewis et al., 2008) as 

 𝐏�±@< = ÍG𝐏�±@L H¡@ + 𝐇b𝐑�±@¡@ 𝐇Î
¡@

 (3.108) 

 𝐮�±@< = 𝐮�±@L + 𝐟� + 𝐏�±@< 𝐇b𝐑�±@¡@ G𝐲�±@ − 𝐇𝐮�±@L H (3.109) 
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The computation of the analysis covariance by (3.108) requires fewer operations of the matrix 

multiplication then (3.103)-(3.104), although, it contains the additional operation of the matrix 

inversion. 

 

3.2.3 Continuous	Kalman	filter	
The time continuous and space-discrete problem (3.37)-(3.39) is discretised in time uniformly 

with a time interval of length 𝑇, and the time and space discrete formulation is derived in (3.67)-

(3.70). The solution of the latter problem was deducted based on the estimated state variance 

optimisation and was written in a recurrence form known as the Kalman filter. That raises the 

question whether or not Kalman filtering can be reformulated in the time continuous manner. 

The algebraic structure of the fully discrete system indeed simplifies the analysis in contrast to 

a differential one. For this reason, the ideas of the discrete Kalman filter cannot be directly 

applied to the continuous case. On the other hand, time discretisation of the continuous problem 

was done in terms of the approximation of the corresponding time integrals (see section 3.1.4). 

Thus, as the discretisation interval 𝑇 goes to zero, the discrete model converges to the 

continuous one. Following on from that argument, the continuous Kalman filter may be derived 

from the time limit of the discrete counterpart. 

In order to do that, the equations of the error covariance (3.103)-(3.104) to be manipulated are 

written, accounting for the error description (3.70), as 

 𝐊�±@ = 𝐏�±@L 𝐇b y𝐇𝐏�±@L 𝐇b +
𝐑(𝑛𝑇 + 𝑇/2)

𝑇 z
¡@

 (3.110) 

 𝐏�±@< = (𝐈 − 𝐊�±@𝐇)𝐏�±@L  (3.111) 

Dividing both parts by the size of the time interval 𝑇 yields 

 
1
𝑇𝐊�±@ = 𝐏�±@L 𝐇bG𝐇𝐏�±@L 𝐇b𝑇 + 𝐑(𝑛𝑇 + 𝑇/2)H

¡@
 (3.112) 

The behaviour of the discrete Kalman gain 𝐊�±@ as 𝑇 tends to zero is now examined: 

 lim
b→�

1
𝑇 𝐊�±@ = 𝐏�±@L 𝐇b𝐑¡@(𝑛𝑇 + 𝑇/2) (3.113) 

This implies that 
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 lim
b→�

𝐊�±@ = 0 (3.114) 

which suggests that the discrete Kalman gain tends to zero when the sampling period becomes 

small. It is important to handle this fact properly when designing discrete Kalman filters for 

continuous-time systems. From (3.111), it also means that  

 𝐏�±@< = 𝐏�±@L  (3.115) 

as 𝑇 goes to zero. 

Inserting the expression (3.111) for 𝐏�< into the background covariance (3.101) produces 

 𝐏�±@L = 𝐒�(𝐈 − 𝐊�𝐇)𝐏�L𝐒�b + 𝐐(𝑛𝑇 + 𝑇/2)𝑇 (3.116) 

 𝐏�±@L = 𝐒�𝐏�L𝐒�b − 𝐒�𝐊�𝐇𝐏�L𝐒�b + 𝐐(𝑛𝑇 + 𝑇/2)𝑇 (3.117) 

The first term of the right-hand side is transformed as follows 

 

𝐒�𝐏�L𝐒�b = (𝐒� − 𝐈 + 𝐈)𝐏�L(𝐒�b − 𝐈 + 𝐈) = 

= ~(𝐒� − 𝐈)𝐏�L + 𝐏�L�(𝐒�b − 𝐈 + 𝐈) 

= (𝐒� − 𝐈)𝐏�L(𝐒�b − 𝐈) + (𝐒� − 𝐈)𝐏�L + 𝐏�L(𝐒�b − 𝐈) + 𝐏�L  

(3.118) 

Substituting it back into (3.117) and moving 𝐏�L to the left side yields 

 
𝐏�±@L − 𝐏�L = (𝐒� − 𝐈)𝐏�L(𝐒�b − 𝐈) + (𝐒� − 𝐈)𝐏�L 

+𝐏�L(𝐒�b − 𝐈) − 𝐒�𝐊�𝐇𝐏�L𝐒�b + 𝐐(𝑛𝑇 + 𝑇/2)𝑇 
(3.119) 

The last equality is divided by 𝑇 as 𝑇 → 0 

 
lim
b→>

𝐏�±@L − 𝐏�L

𝑇 = lim
b→>

1
𝑇 ~
(𝐒� − 𝐈)𝐏�L(𝐒�b − 𝐈) + (𝐒� − 𝐈)𝐏�L

+ 𝐏�L(𝐒�b − 𝐈) − 𝐒�𝐊�𝐇𝐏�L𝐒�b + 𝐐(𝑛𝑇 + 𝑇/2)𝑇� 
(3.120) 

The limit on the left-hand side defines a time derivative of the matrix 𝐏(𝑡). To compute the 

limits on the right-hand side, the discrete model matrix 𝐒� given by (3.47) is expanded using 

Neumann series (3.60) so that 
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𝐒� − 𝐈 = 2³𝐈 +

𝑇
2 𝐒
(𝑛𝑇) +

𝑇
4

X

𝐒X(𝑛𝑇) +⋯µ − 𝐈 − 𝐈

= 𝑇𝐒(𝑛𝑇) +
𝑇
2

X

𝐒X(𝑛𝑇) + ⋯ 

(3.121) 

From the expression (3.121) the following limits are computed 

 lim
b→>

(𝐒� − 𝐈)
𝑇 = lim

b→>
y𝐒(𝑛𝑇) +

𝑇
2 𝐒

X(𝑛𝑇) +⋯z = 𝐒(𝑡) (3.122) 

 

lim
b→>

(𝐒� − 𝐈)𝐏�L(𝐒�b − 𝐈)
𝑇

= lim
b→>

y𝐒(𝑛𝑇) +
𝑇
2 𝐒

X(𝑛𝑇) +⋯z𝐏�L ³𝑇𝐒(𝑛𝑇)

+
𝑇
2

X

𝐒X(𝑛𝑇) + ⋯µ = 𝐒(𝑡)𝐏�L0 = 0 

(3.123) 

Assuming that 𝑡 = 𝑛𝑇 and accounting for (3.113) and (3.122)-(3.123) in (3.120) produces the 

continuous equation for the estimation error covariance 

 𝐏̇(𝑡) = 𝐒(𝑡)𝐏(𝑡) + 𝐏(𝑡)𝐒b(𝑡) + 𝐐(𝑡) − 𝐏(𝑡)𝐇𝐑¡@𝐇b𝐏(𝑡) (3.124) 

Here 𝐏(𝑡) denotes error covariance of the time continuous estimate. Due to (3.115) the 

continuous covariance is not separated into the background and analysis parts as in the discrete 

case. 

In a similar fashion, the discrete equation for the estimate is written as 

 𝐮�±@ − 𝐮�
𝑇 		=

𝐒� − 𝐈
𝑇 𝐮� +

𝐟�
𝑇 +

𝐊�±@
𝑇

(𝐲� − 𝐇𝐮�) (3.125) 

Taking the limit of 𝑇 as it approaches zero and using limits (3.113), (3.121) and (3.122) returns 

the ODE referred to as the feedback equation for the time continuous state estimate 

 x
𝑑𝐮(𝑡)
𝑑𝑡 = 𝐒(𝑡)𝐮(𝑡) + 𝐟(𝑡) + 𝐏(𝑡)𝐇𝐑¡@(𝑡)G𝐲(𝑡) − 𝐇𝐮(𝑡)H

𝐮(0) 	= 	𝐮> + 𝐞>
 (3.126) 

where the covariance 𝐏(𝑡) is the solution of the matrix differential Riccati equation 

 x
𝑑𝐏(𝑡)
𝑑𝑡 = 𝐒(𝑡)𝐏(𝑡) + 𝐏(𝑡)𝐒b(𝑡) + 𝐐(𝑡) − 𝐏(𝑡)𝐇𝐑¡@𝐇b𝐏(𝑡)

𝐏(0) = 𝐐>
 (3.127) 
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The set of the equations (3.126)-(3.127) defining the time continuous Kalman filter are also 

called the Kalman-Bucy filter. 

To solve the Kalman-Bucy filter, it again is discretised in time. The discretised Riccati equation 

is in the form similar to (3.119), but without additional term that according to (3.123) vanishes 

as 𝑇 goes to zero. On a discrete level, however, and correspondingly in a practical 

implementation, they result in different estimates from the Kalman and the Kalman-Bucy 

filters. 

Another conceptual difference between discrete and continuous filters applied to the time 

continuous DA problem is that in the case of Kalman filter the problem is discretised first and 

then optimised, while in Kalman-Bucy case, the problem is optimised first and then the 

continuous optimal estimate is discretised to be computed. Consequently, it is expected that 

the Kalman-Bucy filter produces better quality estimates than its discrete counterpart. 

Finally, for the linear system (3.37), the Riccati equation (3.127) is the simplified FP equation, 

i.e., FP equation without a quadratic term and reflects the Bayesian assimilation of the observed 

data (Jazwinski, 1970). 

 

3.3 Ensemble	Kalman	filters	
The Kalman-Bucy and Kalman filters provide a significant computational advantage compared 

to the FP method. Conversely, the FP analysis is a more general approach in contrast to the 

Kalman filters, which have several design limitations. First of all, they are defined for linear 

problems. In the case of a nonlinear problem, the algorithm is instead applied to the linearized 

version of the background equation, an approach known as the EKF (Lewis et al., 2008). It 

performs well for moderately nonlinear systems, but because a nonlinear transition model does 

not maintain the Gaussian structure of the background distribution (3.77), the resulting estimate 

loses its optimality. 

A second disadvantage is the sequential nature of the Kalman algorithms. For both the Kalman-

Bucy and the Kalman filters, the estimate is obtained after a fixed amount of operations are 

performed. In a practical implementations of DA for marine applications where computational 

demands are usually very high, it is desired to have a more robust algorithm that can balance 

the computational speed and the quality of the estimate in an optimal way. 
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Over the last few years, ensemble Kalman Filters (EnKF) (Evensen, 2009) have become 

popular methods in the DA community. The classical Kalman filter computes Bayes’ inference 

(3.76) of the background state and observations in an algebraic way resulting in (3.103)-

(3.105). In contrast, the EnKF provides a Monte Carlo implementation of the Bayesian update 

(3.76). 

EnKF represents the distribution of the system state using an ensemble 

 𝐔� = [𝐮�@ ,𝐮�X ,… , 𝐮�Ô] (3.128) 

which is comprised of model states sampled around the average, and replaces the covariance 

matrix by the sample covariance computed from the ensemble. The main advantage of the 

EnKF algorithm is that the uncertainties of the system are quantified in the space spanned over 

ensemble members and advancing the PDF in time is achieved by advancing each member of 

the ensemble. 

In more detail, the algorithm starts with the selection of the initial ensemble 

 𝐔>< = 𝐔> = [𝐮>,@ + 𝐞>@, 𝐮>,X + 𝐞>X,… , 𝐮>,Ô + 𝐞>Ô] (3.129) 

where 𝐞>�  is a random realization of the initial condition error. 

The background model then updates the ensemble and its average 

 𝐔�±@L = 𝐒�𝐔�< + 𝐟� (3.130) 

 𝐔�±@
L

=
1
𝐾�𝐮�±@

L,Ö
Ô

×�@

 (3.131) 

The observation equation updates observation ensemble and observation average 

 𝐘�±@L = 𝐇𝐔�±@L  (3.132) 

 𝐘�±@
L

=
1
𝐾�𝐇𝐮�±@

L,Ö 	
Ô

Ö�@

 (3.133) 

Next, the perturbation matrices of the ensembles are computed 

 𝐔¥�±@ = 𝐔�±@ − 𝐔�±@
L

𝟏@×Ô (3.134) 
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 𝐘¥�±@ = 𝐘�±@ − 𝐘�±@
L

𝟏@×Ô  (3.135) 

The simplest formulation of EnKF is obtained if the covariance matrix is computed as 

 𝐂�±@ =
𝐔¥�±@𝐔¥�±@b

𝐾 − 1  (3.136) 

Based on that, the ensemble propagation is achieved by applying Kalman update (3.105) for 

each member of the ensemble with the ensemble covariance matrix 

 
𝐔�±@< = 𝐔�±@L + 𝐂�±@𝐇�±@b (𝐇�±@𝐂�±@𝐇�±@b + 𝐑)¡@G𝐃�±@

− 𝐇�±@𝐔�±@L H 
(3.137) 

where 𝐃 = 𝐲�±@𝟏@×Ô	 is the matrix of the actual observations. 

From the central limit theorem, it is known that the ensemble covariance (3.136) converges to 

the actual error covariance as fast as 1/√𝐾 (Kelly et al., 2014). That means the EnKF estimate 

is equivalent to the Kalman filter estimate in the limit of the ensemble size. However, the finite 

size ensemble tends to underestimate the covariance of the ensemble comparing to the 

covariance computed by the standard Kalman Filter. As a result, the influence of the 

observations on the state estimate decreases and for a long integration window may lead to the 

desynchronization between the estimate and the true state. 

An ensemble method that deals with the covariance inflation problem and has attracted a 

substantial amount of attention is ensemble transform Kalman Filter (EnTKF) (Hunt et al., 

2007). In this case, covariance is computed similarly as in the square-root filter 

 𝐏�±@< = ¶(𝐾 − 1)𝐈
1
𝜌 + 𝐘

¥�±@b 𝐑�±@¡@ 𝐘¥�±@·
¡@

 (3.138) 

 𝐖 = [(𝐾 − 1)𝐏�±@< ]
@
X (3.139) 

where 𝜌 denotes an inflation parameter chosen empirically and the 1/2 power in the second 

expression denotes the square root of a symmetric matrix. 

Finally, the ensemble propagation equation becomes 

 
𝐔�±@< = 𝐔�±@

L
𝟏@×Ô

+ 𝐔¥�±@ ~𝐖+ 𝐏�±@< 𝐘¥�±@b 𝐑�±@¡@ ~𝐲N − 𝐲�±@
L � 𝟏@×Ô� 

(3.140) 
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The main idea of the ensemble Kalman filtering is to quantify the uncertainty in the space 

derived by ensemble members. If the size 𝐾 of the ensemble is much smaller then 𝑀 the size 

of the model space, the calculations of the covariance matrix and state estimate are performed 

with significant computational advantage. On the other hand, approximation of the model space 

by the much smaller ensemble space may lead to the loss of accuracy. During the analysis step, 

an optimal estimate is constructed based on the available observations as the linear combination 

of the ensemble members, so that, the ensemble space should be large enough to approximately 

span all possible states of the system. 

In order to improve the robustness of the EnTKF, a localisation procedure is applied. The idea 

of the localisation is to split the global space of uncertainties into a number of local spaces and 

conduct analysis for each of them separately. In doing this, the ensemble members in different 

regions would have to span only over the space of local states and, as a result, the global state 

space is approximated in a piecewise manner. In other words, localisation allows for the 

reduction of the size of the ensemble even further, while maintaining the same level of the 

accuracy. 

Hunt et al. (2007) presented a localisation procedure for batch processing of observations. The 

authors suggest partitioning of available observations into separate batches while adhering to 

the following restrictions: 

1) All of the observations in a given batch must be used in the same subset of the local 

analyses. 

2) Observations in different batches must have uncorrelated errors so that each batch 

corresponds to a block in a block-diagonal decomposition of the observation error 

covariance matrix. For efficiency reasons, one should make the batches as large as 

possible while still meeting the restriction of the first condition. 

Another benefit of localisation is that computations of each local covariance are independent 

of each other and thus can be organised in parallel. 

 

3.4 Summary	
This chapter presents in detail a basic framework for solving contaminant transport problem 

based on Galerkin FEM approximations that would be used later for combining DA with DD. 

In more details three of the most common forms of the contaminant transport problem are 
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derived. Beginning with the continuous formulation described by the PDE, two main 

approximations were explained: the spatial discretisation performed by the FEM method and 

the temporal discretisation obtained by the midpoint integration rule. 

Based on the background model representation, several conventional filters are introduced: for 

a time continuous problem, the Kalman-Bucy filter is devised and for a discrete problem, 

algorithms of the Kalman and EnKF filters were obtained. The equivalence between different 

filters is presented as well.  
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4 Development	of	a	minimax	filter	

The statistical methods of DA rely on exact descriptions of model uncertainties. Those methods 

require the Gaussian white noise assumption about the error structure and perform optimisation 

of the parameters of the corresponding Gaussian distribution. The quality of the estimation 

produced by those filters is sensitive to the accuracy of the definition of the input parameters, 

and if the probability law is arbitrary or unknown little can be said about the system state 

estimate (Jazwinski, 1970). 

The accuracy of the error description can be relaxed if those errors are considered to be 

unknown but bounded. The latter attribute is a natural assumption as it reflects the fact that the 

energy of the system is limited. Once the set of all possible error realisations is known, the state 

estimate can be found as the realisation that minimizes the error of the worst-case scenario. 

This approach of DA is known as minimax filtering. 

In this chapter, a minimax filter is developed in a feedback form following an approach 

presented by Zhuk (2013) with two extensions. The first extension is that model errors are 

assumed to have linear constraints defined by a 𝐿�-type norm, while typically those errors are 

considered to have quadratic constraints governed by a 𝐿X-type norm. The 𝐿� constraints are 

easier to define then the 𝐿X constraints and thus more desired in practice. The second extension 

is that the filter is defined for a continuous DA problem in an operator form and later discretised 

using Galerkin and FEM approximations. This will be used in the following chapters for a 

derivation of a localised version of a minimax filter. Another benefit of this extension is that it 

follows the paradigm “optimise and discretise” in contrast to “discretise and optimise”. 

 

4.1 Filter	derivation	

The background model for the continuous DA problem for the concentration transport process 

is defined on the spatiotemporal domain ([𝑡>; 𝑡@] × Ω) and is given by the advection-diffusion 

equation with constant diffusion coefficient 𝜖 and velocity flow field 𝜇 = [𝜇@, 𝜇X]b  

 

⎩
⎨

⎧
𝜕𝑢(𝑡, 𝑥)
𝜕𝑡 = 𝜖Δ𝑢(𝑡, 𝑥) − ∇ ⋅ G𝜇(𝑡, 𝑥)𝑢(𝑡, 𝑥)H + 𝑒J(𝑡, 𝑥)

𝑢(0, 𝑥) = 𝑢>(𝑥)+𝑒>(𝑥)
𝑢(𝑡, 𝑥) = 0, 𝑥 ∈ ∂Ω

 (4.1) 
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The observation equation is written as 

 𝑦(𝑡, 𝑥) = 𝐻𝑢(𝑡, 𝑥) + 𝑒N(𝑡, 𝑥) (4.2) 

where 𝐻 is a linear operator 

 𝐻𝑢(𝑡, 𝑥) = Qℎ(𝑧 − 𝑥)𝑢(𝑡, 𝑧)𝑑𝑧
T

 (4.3) 

In the following, DA problem (4.1)-(4.3) is solved using deterministic treatment of errors. 

4.1.1 Representation	of	errors	

The fact that the model error 𝑒J(𝑡, 𝑥) and initial condition error 𝑒>(𝑥) are uncertain but 

bounded can be reflected by assuming that they are taken from the given convex bounded set 

 ℒJ� = {𝑒>(𝑥), 𝑒J(𝑡, 𝑥): |𝑒>(𝑥)| ≤ 𝑞à>(𝑥), |𝑒J(𝑥)| ≤ 𝑞à(𝑡, 𝑥)} (4.4) 

where 𝑞à>(𝑥) and 𝑞à(𝑡, 𝑥) are given weighting functions such that 

 0 < 𝑞 < 𝑞à(𝑡, 𝑥) < 𝑞 < +∞ (4.5) 

 0 < 𝑞> < 𝑞à>(𝑥) < 𝑞> < +∞ (4.6) 

and 𝑞, 𝑞, 𝑞>, 𝑞> are known real numbers. 

The functions 𝑞(𝑡, 𝑥) and 𝑞>(𝑥) should be considered as design parameters that quantify a level 

of confidence in the initial condition and state equation. The function 𝑞à>(𝑥) specifies zones of 

Ω where knowledge of the initial condition 𝑢>(𝑥) is either more precise or less. The time-

varying function 𝑞à(𝑡, 𝑥) defines zones of Ω where the background equation (4.1) holds almost 

exactly if |𝑒J| ≈ 0 in that zone or only up to a significant error if |𝑒J| ≫ 0. Statistically this 

corresponds to the uniform distribution of the elements from the set ℒJ�, i.e., any combination 

of (𝑒>; 𝑒) ∈ ℒJ� has equal probability to appear in (4.1). 

It is also assumed that the observation error 𝑒N(𝑡, 𝑥) is white noise with bounded second 

moments where 𝑒N(𝑡, 𝑥) is an element of the following convex bounded set 

 ℒN� = ã𝑒N(𝑡, 𝑥): 𝑒N(𝑡, 𝑥) = 0, 𝑒NX(𝑡, 𝑥)𝑟̃(𝑡, 𝑥) ≤ 1æ (4.7) 

and 𝑟̃(𝑡, 𝑥) is a given function such that 
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 0 < 𝑟 < 𝑟̃(𝑡, 𝑥) < 𝑟 < +∞ (4.8) 

for known 𝑟 and 𝑟.  

In a similar fashion, the function 𝑟̃(𝑡, 𝑥) introduces asymptotical flexibility into the description 

of the observation uncertainties. Note that equation (4.7) does not imply any restrictions on the 

structure of the distribution of 𝑒N(𝑡, 𝑥). 

The bounded set (4.4) is further transformed into a set of quadratic constraints and it is 

straightforward to verify that 

 𝑒>X(𝑥)
1

𝑞à>X(𝑥)
	≤ 1;	𝑒JX (𝑥)

1
𝑞àX(𝑡, 𝑥) ≤ 1 (4.9) 

Integrating the first expression over time interval [𝑡>; 𝑡@] and the second expression over spatio-

temporal domain ([𝑡>; 𝑡@] × Ω) yields 

 Q
𝑒>X(𝑥)
𝑞à>X(𝑥)T

𝑑𝑥	 ≤ 𝐴(Ω) (4.10) 

 Q Q
𝑒JX (𝑡, 𝑥)
𝑞àX(𝑡, 𝑥) 𝑑𝑥T

𝑑𝑡
:è

:®
≤ (𝑡@ − 𝑡>)𝐴(Ω) (4.11) 

where 𝐴(Ω) = ∫ 𝑑ΩT  is the area of the spatial domain Ω. 

Denoting 𝑇 = 𝑡@ − 𝑡> and combining the last two inequalities returns 

 Q
𝑒>X(𝑥)
𝑞à>X(𝑥)T

𝑑𝑥 + Q Q
𝑒JX (𝑡, 𝑥)
𝑞àX(𝑡, 𝑥) 𝑑𝑥T

𝑑𝑡
:è

:®
≤ (𝑇 + 1)𝐴(Ω) (4.12) 

With the introduction of the new weighting functions 

 𝑞>(𝑥) =
1

𝛾b𝑞à>X(𝑥)
	 , 𝑞(𝑥) =

1
𝛾b𝑞àX(𝑥)

	 (4.13) 

where 𝛾b = (𝑇 + 1)𝐴(Ω), the set (4.4) is rewritten in the form of quadratic ellipsoid: 

 

ℒJX = ê𝑒>(𝑥), 𝑒J(𝑡, 𝑥):Q 𝑒>X(𝑥)𝑞>(𝑥)
T

𝑑𝑥

+Q Q𝑒JX (𝑡, 𝑥)𝑞(𝑡, 𝑥)𝑑𝑥
T

𝑑𝑡
:è

:®
≤ 1ë 

(4.14) 

Applying a similar transformation to the observation set (4.7), one gets a quadratic ellipsoid 

for the observation error: 
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 ℒNX = ê𝑒N(𝑡, 𝑥): 𝑒N(𝑡, 𝑥) = 0,Q Q𝑒NX(𝑡, 𝑥)𝑟(𝑡, 𝑥)𝑑𝑥
T

𝑑𝑡
:è

:®
≤ 1ë (4.15) 

where the new weighting function is defined as 

 𝑟(𝑡, 𝑥) =
𝑟̃(𝑡, 𝑥)
𝛾b

	 (4.16) 

The bounded set ℒJ� is derived by the 𝐿�-type norm, and the set ℒJX  is derived by the 𝐿X-type 

norm. The latter fact explains the usage of the superscripts ∞ and 2 in the notations of the error 

ellipsoids. It also gives an interesting geometrical interpretation: due to the nature of 𝐿�-type 

norm and 𝐿X-type norm, the shape of the ℒJ� set is rectangular and the shape of the ℒJX  is 

ellipsoidal. The level set of 𝐿�-type norm in the 2-dimensional Euclidean space: 

 𝐿 = ã𝑙 = 	 (𝑙@, 𝑙X)b: max� |𝑙�| ≤ 1æ (4.17) 

is a rectangle, and the level set of 𝐿X-type norm is a circle (ellipsoid), i.e., 

 𝐿 = í𝑙 = 	 (𝑙@, 𝑙X)b:� 𝑙�X
X

��@

≤ 1î (4.18) 

Following this logic, the sets ℒJ� and ℒN� would be referred as the 𝐿� model and observation 

rectangles and the sets ℒJX  and ℒNX as the 𝐿X model and observation ellipsoids. Approximating 

ℒJ� and ℒN� by ℒJX  and ℒNX should be regarded as approximating a rectangle by an ellipsoid that 

contains it and the discrepancy introduced by that approximation is reflected by 𝛾b. 

A hybrid treatment of the system uncertainties implies that the model error is considered to be 

deterministic while the observation error is stochastic and the constraints are imposed on its 

statistical moments. Additionally, it is possible to consider the observation error to be a 

deterministic and unknown but bounded variable. In that case, the ℒN� and ℒNX sets would be 

written in an identical way to the ℒJ� and ℒJX  sets, but without the term corresponding to the 

initial error. If both model and observation error are deterministic, they are bounded either by 

a general rectangle (ℰJ�) or an ellipsoid (ℰJX ): 

 
ℰJ� = ¹𝑒>(𝑥), 𝑒J(𝑡, 𝑥), 𝑒J(𝑡, 𝑥): |𝑒>(𝑥)| ≤ 𝑞à>(𝑥),

|𝑒J(𝑥)| ≤ 	 𝑞à(𝑡, 𝑥), |𝑒N(𝑡, 𝑥)| ≤
1

𝑟̃(𝑡, 𝑥)
ð 

(4.19) 
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ℰJX = ê𝑒>(𝑥), 𝑒J(𝑡, 𝑥), 𝑒N(𝑡, 𝑥):Q 𝑒>X(𝑥)𝑞>(𝑥)
T

𝑑𝑥

+ Q Q𝑒JX (𝑡, 𝑥)𝑞(𝑡, 𝑥)𝑑𝑥
T

𝑑𝑡
:è

:®

+ Q Q𝑒NX(𝑡, 𝑥)𝑟(𝑡, 𝑥)𝑑𝑥
T

𝑑𝑡
:è

:®
≤ 1ë 

(4.20) 

In this case, observation and model errors do not possess independence of each other. For 

instance, the increase or decrease of the model error parameters also allows for, 

mathematically, the increase or decrease of the observation errors. Thus, in this research the 

hybrid description (4.14)-(4.15) is taken. 

The main advantage of the representation of the uncertainties in the form of (4.4)-(4.7), (4.14)-

(4.15) or (4.19)-(4.20) comparing to the entirely probabilistic or Gaussian description is that it 

does not require precise knowledge about stochastic variables, but only defines its possible 

boundaries in an asymptotic way which in practice is more reliable. 

 

4.1.2 Optimal	control	problem	

Since the bounded set ℒJ� is deterministic, by applying the background propagation model (4.1) 

to all possible combinations (𝑒>, 𝑒J) ∈ ℒJ� one obtains a set of trajectories or solutions ℛ. It 

follows that the background maps the sets ℒJ� onto ℛ. The observation equation (4.2) then 

selects all of the trajectories from ℛ that are compatible with the observed data 𝑦(𝑡) up to the 

observation error described as an element 𝑒N(𝑡) ∈ ℒN�. A section of ℛ, taken at time instant 𝑡@, 

ℛ(𝑡@) is called a reachability set. ℛ(𝑡@) is comprised of all functions 𝑣 such that 𝑢(𝑡@, 𝑥) =

𝑣(𝑥) where 𝑢(𝑡, 𝑥) satisfies (4.1) for some (𝑒>, 𝑒J) ∈ ℒJ�, and 𝑢 verifies (4.2) for the given 

observed data 𝑦(𝑡), 𝑡 ∈ (𝑡>, 𝑡@) and some 𝑒N(𝑡, 𝑥) ∈ ℒN�. The reachability set ℛ(𝑡@) contains 

full information about all of the possible states of the model (4.1) which are compatible with 

the uncertainties treatment ℒJ�, ℒN� and data 𝑦(𝑡), 𝑡 ∈ (0, 𝑡@). 

The question is then how to select an analysis state 𝑢<(𝑡@) that should be considered to be the 

best with respect to some criteria estimate of the system (4.1)-(4.2) from the set of admissible 

states ℛ(𝑡@). One way of doing this is to construct the minimax centre of the reachability set 

ℛ(𝑡@). The minimax centre of ℛ(𝑡@) is called a component of ℛ(𝑡@) which minimizes the 
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largest distance to other components of ℛ(𝑡@). In other words 𝑢<(𝑡@) should satisfy the 

following 

 sup
ô(:è)∈ℛ(:è)

ℓG𝑢<(𝑡@) − 𝑢(𝑡@)H ≤ sup
ôö(:è),ô(:è)∈ℛ(:è)

ℓG𝑢à(𝑡@) − 𝑢(𝑡@)H (4.21) 

where ℓ denotes the distance between elements in ℛ(𝑡@) and is given in the form of the linear 

functional 

 ℓ(𝑢) = Q 𝑙(𝑥)𝑢(𝑡@, 𝑥)𝑑𝑥
T

 (4.22) 

The estimation error represented by the left-hand side of the inequality (4.21) is given by the 

diameter of the reachability set ℛ(𝑡@). 

Mathematically, the estimation problem is described as the optimal control problem to find 

𝑢<(𝑡@), which minimizes the convex cost function (4.21) for a given realization of observations 

(4.2) and differential constraints (4.1). 

In the study by Zhuk (2009) it has been shown that to find the solution of this control problem 

one needs to solve Euler-Lagrange equations, which, in particular, implies that, to compute 

𝑢<(𝑡X) for 𝑡X > 𝑡@, one needs to solve Euler-Lagrange equation for 𝑡 ∈ (𝑡>, 𝑡X) as 𝑢<(𝑡X) 

cannot be expressed as a function of 𝑢<(𝑡@) and observations 𝑦(𝑡), 𝑡 ∈ (𝑡@, 𝑡X]. In other words, 

the estimate 𝑢<(𝑡) does not possess the Markovian property. The reason for this is as follows: 

ℒJ� is a level set of the 𝐿�(Ω)-norm, and the dual norm of the latter is given by 𝐿@(Ω)-norm. 

Hence, ℒJ� does not coincide with its dual set. This is obvious in the case of two-dimensional 

Euclidean space where ℒJ� corresponds to a rectangle and its dual will be a rhombus. On the 

other hand, 𝐿X-norm coincides with its dual norm and this property of the norm is necessary 

and sufficient to get a Markovian estimate (see for instance (Zhuk, 2009)). 

The lack of the Markovian property of the estimate for 𝐿� uncertainties does not allow for the 

construction of a filter in a feedback form. At the same time, recalculation of the Euler-

Lagrange equations over the whole interval [𝑡>, 𝑡] when each new observations 𝑦(𝑡) became 

available introduces significant redundancy in contrast to the desired feedback representation. 

The 𝐿X type description of the uncertainties allows the construction of a suboptimal Markovian 

estimate, provided (𝑒>, 𝑒J) ∈ ℒJX  and 𝑒N ∈ ℒNX	. In that case, the estimate 𝑢<(𝑡) of 𝑢(𝑡) with 

minimal mean-squared estimation error 
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sup
(ø®,øù)∈ℒùú ,øû∈ℒûú	

ℓG𝑢<(𝑡@) − 𝑢(𝑡@)H

≤ sup
(ø®,øù)∈ℒùú ,øû∈ℒûú

ℓG𝑣(𝑦) − 𝑢(𝑡@)H 
(4.23) 

where 𝑣(𝑦) is the functional of observations, admits the following representation 

 ℓ(𝑢<) = Q 𝑟(𝑡, 𝑥)(𝐻𝑝)(𝑡, 𝑥)𝑦(𝑡, 𝑥)𝑑𝑥𝑑𝑡
Tü

 (4.24) 

provided 𝑝 and 𝑧 solve the following Hamiltonian system of equations: 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧
𝜕𝑤
𝜕𝑡 = −𝐿∗𝑤 + 𝐻∗𝑟𝐻𝑝				in	[𝑡>, 𝑡@] × Ω

𝑤(𝑡@, 𝑥) = 𝑙(𝑥)				on	Ω
𝑤(𝑡, 𝑥) = 0				on	[𝑡>, 𝑡@] × 𝜕Ω
𝜕𝑝
𝜕𝑡 = 𝐿𝑝 + 𝑞𝑤				in	[𝑡>, 𝑡@] × Ω

𝑝(𝑡>, 𝑥) = 𝑞>(𝑥)𝑤(0, 𝑥)				on	Ω
𝑝(𝑡, 𝑥) = 0				on	[𝑡>, 𝑡@] × 𝜕Ω

 (4.25) 

where 𝐿∗ and 𝐻∗ are the adjoint of 𝐿 and 𝐻. 

The relation between 𝑤 and 𝑝 is expressed by the linear mapping 𝑃: 𝐿X(Ω) → 𝐿X(Ω)	such that 

 𝑝(𝑡, 𝑥) = 	 (𝑃𝑤)(𝑡, 𝑥) = Q 𝑘(𝑡, 𝑥, 𝑧)𝑤(𝑧)𝑑𝑧
T

 (4.26) 

Operator 𝑃 represents a bounded integral operator and 𝑘(𝑡, 𝑥, 𝑧) is its kernel function 

continuous in time. 

Inserting (4.26) into the equation for 𝑝 in (4.25) produces 

 n
𝜕
𝜕𝑡
(𝑃𝑤)o (𝑡, 𝑥) = (𝐿𝑃𝑤)(𝑡, 𝑥) + 𝑞𝑤 (4.27) 

and respectively 

 ny
𝜕
𝜕𝑡 𝑃z𝑤

o (𝑡, 𝑥) + n𝑃 y
𝜕
𝜕𝑡 𝑤z

o (𝑡, 𝑥) = (𝐿𝑃𝑤)(𝑡, 𝑥) + 𝑞𝑤 (4.28) 

The term }
}:
𝑤 is obtained from the first equation of the Hamiltonian system so that 
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ny

𝜕
𝜕𝑡 𝑃z𝑤

o (𝑡, 𝑥) + G(−𝑃𝐿∗ + 𝑃𝐻∗𝑟𝐻𝑃)𝑤H(𝑡, 𝑥)

= (𝐿𝑃𝑤)(𝑡, 𝑥) + 𝑞𝑤(𝑡, 𝑥) 

(4.29) 

 
y
𝜕
𝜕𝑡 𝑃z𝑤

(𝑡, 𝑥) = (𝐿𝑃)𝑤(𝑡, 𝑥) + (𝑃𝐿∗)𝑤(𝑡, 𝑥) + 𝑞𝑤(𝑡, 𝑥)

− (𝑃𝐻∗𝑟𝐻𝑃)𝑤(𝑡, 𝑥) 
(4.30) 

Equation (4.30) is known as the operator Riccati equation for the operator 𝑃, which is referred 

to in the following as the Riccati operator. Equation (4.30) can be further represented for the 

kernel function 𝑘(𝑡, 𝑥, 𝑧) as follows 

 ê
𝑘̇ = 𝐿"𝑘 + 𝐿#𝑘 + 𝑞¡@(𝑡, 𝑥)𝛿(𝑧 − 𝑥) − 𝑃G𝐻∗𝑟(𝐻𝑘)H
𝑘(0, 𝑥, 𝑧) = 𝑞>¡@(𝑥)𝛿(𝑧 − 𝑥)	on	Ω

 (4.31) 

where 𝐿"𝑘 denotes the result of an application of 𝐿 to 𝑘 with respect to the variable 𝑥 and δ is 

the Dirak delta function. To distinguish equation (4.31) from (4.30), (4.31) is referred to as the 

kernel Riccati equation. 

Accounting for (4.26) and (4.30), the estimate or analysis 𝑢<(𝑡) is represented as a filter 

 x
𝑢̇ = 𝐿𝑢 + 𝑃𝐻∗𝑟(𝑦 − 𝐻𝑢)	in	[𝑡>, 𝑡@] × Ω
𝑢 = 0	on	[𝑡>, 𝑡@] × 𝜕Ω
𝑢(0) = 0	on	Ω

 (4.32) 

For any linear continuous functional 𝑙: 𝐿X(Ω) → 𝑅 the estimate 𝑢<(𝑡) computed from (4.32) 

satisfies 

 

sup
(ø®,øù)∈ℒùú ,øû∈ℒûú

GℓG𝑢<(𝑡@)H − ℓ(𝑢(𝑡@))H
X

≤ sup
(ø®,øù)∈ℒùú ,øû∈ℒûú

~𝑣(𝑦) − ℓG𝑢<(𝑡@)H�
X

= Q 𝑙(𝑥)(𝑃𝑙)(𝑡, 𝑥)𝑑𝑥
T

	 

(4.33) 

for any continuous function 𝑣: 𝐿X(Ω) → 𝑅. In other words, for any 𝑙 ∈ 𝐿X(Ω) the worst-case 

mean-squared error of ℓ(𝑢<) (the left-hand side of (4.33)) is minimal in the class of all 

continuous functionals of measurement 𝑣(𝑦). Equations (4.31)-(4.32) represent a so-called 

minimax filter and its solution 𝑢<(𝑡@) will be referred to as a minimax estimate. 
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4.1.3 Discretisation	of	a	continuous	minimax	filter	

Continuing the solution method introduced in section 4.1.2, the error ellipsoids (4.14)-(4.15) 

and minimax filter equations (4.31)-(4.32) are discretised in space using a FEM approximation 

approach. Assuming that a set of nodes 𝑥�, 𝑖 = 1, … ,𝑁�� comprises a FEM discretisation grid, 

a vector of the nodal basis function 

 𝝓(𝑥) = [𝜙�(𝑥); 	𝑖 = 1,… , 𝑁��]b (4.34) 

is defined at each node 𝑥�, such that 

 𝜙�G𝑥�H = 𝛿�� (4.35) 

This definition is used to approximate a continuous function 𝑢(𝑡, 𝑥): 

 
𝑢(𝑡, 𝑥) ≈�𝑢(𝑡, 𝑥�)

���

��@

𝜙�(𝑥) = �𝐮�(𝑡)𝜙�(𝑥)
���

��@

	

														= 𝝓b(𝑥)𝐮(𝑡) = 𝐮b(𝑡)𝝓(𝑥) 

(4.36) 

If the function 𝑢(𝑡, 𝑥) is known, owing to the interpolation property of FEM basis functions 

(4.35), coefficients of the expansion 𝐮�(𝑡) are easily computed using 𝐮�(𝑡) = 𝑢(𝑡, 𝑥�). A two 

variable function 𝑘(𝑡, 𝑥, 𝑧) is approximated in both spatial directions 𝑥 and 𝑧 and is written as 

 

𝑘(𝑡, 𝑥, 𝑧) ≈ �� 𝑘(𝑡, 𝑥, 𝑧)𝜙�(𝑥)𝜙�(𝑧)
���

��@

���

��@

= ��𝐊��(𝑡)𝜙�(𝑥)𝜙�(𝑧)
���

��@

���

��@

= 𝝓b(𝑥)𝐊(𝑡)𝝓(𝑧) 

(4.37) 

where 𝐾 is kernel matrix. A particular case of the discretisation is considered for Dirac delta 

function 𝛿(𝑥). Defining 𝑓(𝑥, 𝑧) = 𝑔(𝑥, 𝑧)𝛿(𝑥 − 𝑧), applying the definition of the Dirac delta 

function and FEM approximation (4.36) gives 

 Q𝑔(𝑥, 𝑧)𝛿(𝑥 − 𝑧)𝑑𝑥
T

= 𝑔(𝑧, 𝑧) ≈ 𝝓b(𝑧)𝐆(𝑡)𝝓(𝑧) (4.38) 

where 𝐆(𝑡) = ¦𝑔G𝑧�, 𝑧�H§�,��@
��� . On the other hand, recalling that 𝐌 = ∫ 𝝓(𝑥)𝝓b(𝑥)𝑑𝑥T  is a 

mass matrix: 
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Q𝑔(𝑥, 𝑧)𝛿(𝑥 − 𝑧)𝑑𝑥
T

≈ Q𝝓b(𝑧)𝐆(𝑡)𝝓(𝑥)𝝓b(𝑥)𝐃𝝓(𝑧)𝑑𝑥
T

= 𝝓b(𝑧)𝐆𝐌𝐃(𝑡)𝝓(𝑧) 
(4.39) 

Although the entries 𝐃�� = 𝜹(𝑥� − 𝑧�) of the matrix 𝐃 cannot be defined in the classical 

meaning, combining (4.38) and (4.39) results in 

 𝐌𝐃 = 𝐈, 𝐃 = 𝐌¡@ (4.40) 

which means that the Dirac delta function in a FEM discretised space is equivalent to the 

inverted mass matrix. 

Using the expansion (4.36), the model error is discretised as 

 𝑒J(𝑡, 𝑥) ≈ 𝝓b(𝑥)𝐞J(𝑡) (4.41) 

Here each component of the model error vector 𝐞J(𝑡) = [𝐞J,�(𝑡) = 𝑒J(𝑡, 𝑥�)] describes 

uncertainties of the associated component of the discrete analysis vector 𝐮J< (𝑡). Taking that 

discretisation into account, the integral of the weighted quadratic model error is approximated 

by 

 
Q𝑒JX (𝑡, 𝑥)𝑞(𝑡, 𝑥)𝑑𝑥
T

= Q 𝑒J(𝑡, 𝑥)Q𝑞(𝑡, 𝑧)𝛿(𝑥 − 𝑧)𝑒J(𝑡, 𝑧)
T

𝑑𝑥
T

	

	≈ Q 𝐞Jb (𝑡)𝝓(𝑥)Q𝝓b(𝑥)
T

𝐐¥(𝑡)𝐌¡@𝝓(𝑧)𝝓b(𝑧)𝐞J(𝑡)𝑑𝑥
T

 
(4.42) 

where  

 𝐐¥(𝑡) = diag{𝑞(𝑡, 𝑧�)}��@
���  (4.43) 

Substituting the definition of the mass matrix into (4.42) generates an approximation of the 

error integral as 

 Q𝑒X(𝑡, 𝑥)𝑞(𝑡, 𝑥)𝑑𝑥
T

≈ 𝐞Jb (𝑡)𝐌𝐐¥(𝑡)𝐞J(𝑡) (4.44) 

Applying the same approximation as in (4.41)-(4.44) to the initial error and observation error, 

the ellipsoids ℒJX  and ℒNX discretised by the FEM basis functions are obtained 

 𝕃JX = ê𝐞>, 𝐞J(𝑡): 𝐞>b𝐌𝐐¥>𝐞> + Q 𝐞Jb (𝑡)𝐌𝐐¥(𝑡)𝐞J(𝑡)𝑑𝑡
:è

:®
≤ 1ë (4.45) 
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 𝕃NX = ê𝐞N(𝑡):Q 𝐞Nb(𝑡)𝐌𝐑¥(𝑡)𝐞N(𝑡)𝑑𝑡
:è

:®
≤ 1ë (4.46) 

where matrices 𝐐¥> and 𝐑¥(𝑡) are defined as 

 𝐐¥>(𝑡) = diag{𝑞>(𝑧�)}��@� , 𝐑¥(𝑡) = diag{𝑟(𝑡, 𝑧�)}��@�  (4.47) 

The structure of the feedback equation (4.32) is similar to the structure of the background 

equation (4.1) except that it is deterministic and does not contain any stochastic terms. The 

notation of the stiffness matrices 𝐒, 𝐒� and observation matrices 𝐇, 𝐇¥ that are used here are 

equivalent to the notation derived in Section 3.2.3, so that only the discretisation of the 

variational equivalent of the source term 𝑠 = 𝑃𝐻∗𝑟¡@(𝑦 − 𝐻𝑢) is presented in detail. 

Since 𝑒N = 𝑦 − 𝐻𝑢, using the definition of the observation operator (4.3) and definition of the 

Riccati operator (4.26), the source term is written as 

 𝑠(𝑡, 𝑥) = 𝑃𝐻∗𝑟¡@𝑒N = Q 𝑘(𝑡, 𝑥, 𝑧)Qℎ(𝑧 − 𝜁)
T

𝑟(𝜁)𝑒N(𝑡, 𝜁)𝑑𝑧
T

 (4.48) 

Applying the FEM expansions (4.36)-(4.37) in the (4.48), one obtains the following 

approximation 

 
𝑠(𝑡, 𝑥) ≈ 𝝓b(𝑥)𝐬(𝑡)

= Q 𝝓b(𝑥)𝐊(𝑡)𝝓(𝑧)Q𝝓b(𝑧)𝐇¥b𝝓(𝜁)𝝓b(𝜁)𝐑¥(𝑡)𝐞N(𝑡)𝑑𝜁
T

𝑑𝑧
T

 
(4.49) 

Reordering the integration and using the definition of the mass matrix results in 

 

𝝓b(𝑥)𝐬(𝑡)

= 𝝓b(𝑥)𝐊(𝑡)Q𝝓(𝑧)𝝓b(𝑧)𝑑𝑧
T

𝐇¥b Q𝝓(𝜁)𝝓b(𝜁)𝑑𝜁
T

𝐑¥(𝑡)𝐞N(𝑡)

= 𝝓b(𝑥)𝐊(𝑡)𝐌𝐇¥𝐌𝐑¥(𝑡)𝐞N(𝑡) 

(4.50) 

The discretised variational equivalent of the source term is computed if the discrete observation 

equation (see Section 3.2.3) is substituted into (4.50) 

 G𝝓(𝑥),𝝓b(𝑥)𝐬(𝑡)H = 𝐌𝐊(𝑡)(𝐇¥𝐌)b𝐌𝐑¥(𝑡)(𝐲(𝑡) − 𝐇¥𝐌𝐮(𝑡)) (4.51) 

In order to construct a FEM discretisation of the operator Riccati equation (4.31), it should be 

reformulated in a variational way. This is done by multiplying equation (4.31) on the left and 
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on the right by the test functions 𝑣"(𝑥), 𝑣#(𝑧) ∈ 𝐿X(Ω). Thus, the weak solution of the Riccati 

equation is computed as a solution of the variational equivalent 

 

ny𝑣" ,
𝜕𝑘
𝜕𝑡z , 𝑣#

o = G(𝑣" , 𝐿"𝑘), 𝑣#H + G(𝑣" , 𝐿#𝑘), 𝑣#H

+ ~G𝑣" , 𝑞¡@𝛿(𝑧 − 𝑥)H, 𝑣#�

− y~𝑣" , 𝑃G𝐻∗𝑟𝛿(𝑧 − 𝑥)(𝐻𝑘)H� , 𝑣#z 

(4.52) 

where the operator 𝐿"/𝐿# is an advection-diffusion operator defined in 𝑥/𝑧 direction 

 𝐿"𝑘(𝑡, 𝑥, 𝑧) = � -𝜖
𝜕X𝑘(𝑡, 𝑥, 𝑧)

𝜕𝑧�X
− 𝜇�

𝜕𝑘(𝑡, 𝑥, 𝑧)
𝜕𝑧�

.
X

��@

 (4.53) 

or represented in vector form 

 𝐿"𝑘(𝑡, 𝑥, 𝑧) = 𝜖Δ"𝑘(𝑡, 𝑥, 𝑧) − ∇" ⋅ G𝜇(𝑡, 𝑥)𝑘(𝑡, 𝑥, 𝑧)H (4.54) 

The variational equation (4.52) is also supplemented with the initial conditions 

 G(𝑣" ,𝑘(0, 𝑥, 𝑧)), 𝑣#H = ~G𝑣" , 𝑞>¡@(𝑥)𝛿(𝑧 − 𝑥)H, 𝑣#� (4.55) 

Taking the test functions 𝑣"(𝑥) and 𝑣#(𝑧) as vector FEM basis functions 𝝓(𝑥) and 𝝓(𝑧) and 

inserting the approximation of the kernel (4.37) into the variational formulation (4.52) yields 

the matrix differential Riccati equation, presented for convenience as 

 𝐷 = 𝐴" + 𝐴# + 𝐵 + 𝐶 (4.56) 

where components of the equation are discretised as follows: 

The term 𝐷 is denoted as 

 
𝐷 = Q Q 𝝓(𝑥)𝝓b(𝑥)

∂𝐊(𝑡)
𝜕𝑡 𝝓(𝑧)𝝓b(𝑧)𝑑𝑥

T
𝑑𝑧

T

= Q 𝝓(𝑥)𝝓b(𝑥)𝑑𝑥
∂𝐊(𝑡)
𝜕𝑡

Q𝝓(𝑧)𝝓b(𝑧)𝑑𝑥
T

𝑑𝑧
T

 
(4.57) 

Recalling notation of the mass matrix, one obtains 

 𝐷 = 𝐌	𝐊̇(𝑡)𝐌b	 (4.58) 

The term 𝐴" is given by 
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𝐴" = Q Q𝝓(𝑥)¦𝜖Δ"𝝓b(𝑥)𝐊(𝑡)𝝓(𝑧)

TT

− ∇"bG𝜇(𝑡, 𝑥)𝝓b(𝑥)H𝐊(𝑡)𝝓(𝑧)§𝝓b(𝑧) 𝑑𝑥𝑑𝑧 
(4.59) 

and separating variables in (4.59) results in 

 
𝐴" = Q𝜖𝝓(𝑥)Δ"𝝓b(𝑥)𝑑𝑥

T
	𝐊(𝑡)Q𝝓(𝑧)𝝓b(𝑧)𝑑𝑧

T

−Q𝝓(𝑥)∇"bG𝜇(𝑡, 𝑥)𝝓b(𝑥)H𝑑𝑥
T

𝐊(𝑡)Q𝝓(𝑧)𝝓b(𝑧)𝑑𝑧
T

 
(4.60) 

The diffusion and advection terms are then transformed according to the divergence theorem 

(Evans, 1998) 

 

Q𝜖𝝓(𝑥)Δ"𝝓b(𝑥)𝑑𝑥
T

= −Q𝜖∇b𝝓(𝑥)∇𝝓b(𝑥)𝑑𝑥
𝛀

+Q 𝜖
𝜕𝝓(𝑥)
𝑛(𝑥) 𝝓

b(𝑥)𝑑𝑥
}T

 
(4.61) 

 

Q𝝓(𝑥)∇"bG𝜇(𝑡, 𝑥)𝝓b(𝑥)H𝑑𝑥
T

= −Q∇"b𝝓(𝑥)𝜇(𝑡, 𝑥)𝝓b(𝑥)𝑑x
T

+ Q 𝜇b(𝑡, 𝑥)𝑛(𝑥)𝝓(𝑥)𝝓b(𝑥)𝑑𝑥
}T

 

(4.62) 

Because the boundary conditions in the background model (4.1) are defined exactly, it is 

consistent to assume homogeneous boundary conditions for the kernel function 𝑘(𝑡, 𝑥, 𝑦). After 

(4.61)-(4.62) are inserted into (4.60), the boundary integrals vanish and 𝐴" becomes 

 
𝐴" = −³Q𝜖∇b𝝓(𝑥)∇𝝓b(𝑥)𝑑𝑥

𝛀

−Q∇"b𝝓(𝑥)𝜇(𝑡, 𝑥)𝝓b(𝑥)𝑑x
T

µ𝐊(𝑡)Q𝝓(𝑧)𝝓b(𝑧)𝑑𝑧
T

 
(4.63) 

Introducing the mass and stiffness matrix, 𝐴" can be written 

 𝐴" = 𝐒�(𝑡)𝐊(𝑡)𝐌b(𝑡) (4.64) 

The term 𝐴# is computed in a similar way as 𝐴" and is given by 
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 𝐴# = 𝐌𝐊(𝑡)𝐒�b(𝑡) (4.65) 

Discretisation of the free term 𝐵 is done using the representation of the discrete Dirac delta 

function (4.40) 

 

𝐵 = Q Q𝝓(𝑥)𝝓b(𝑥)𝐐¥¡@(𝑡)𝐌¡𝟏𝝓(𝑧)𝝓b(𝑧)
T

𝑑𝑥𝑑𝑧
T

=Q𝝓(𝑥)𝝓b(𝑥)𝑑𝑥
T

𝐐¥¡@(𝑡)𝐌¡𝟏 Q𝝓(𝑧)𝝓b(𝑧)𝑑𝑧
T

= 𝐌𝐐¥¡@(𝑡) 

(4.66) 

The quadratic term 𝐶 is defined as 

 𝐶 = Q Q𝝓(𝑥)𝑓(𝑥, 𝑧)𝝓(𝑧)
T

𝑑𝑥𝑑𝑧
T

 (4.67) 

where 𝑓(𝑥, 𝑧) is written in an expanded form 

 

𝑓(𝑥, 𝑦) = 𝑃G𝐻∗𝑟(𝐻𝑘)H

= Q 𝑘(𝑡, 𝑥,𝛼)(𝐻∗𝑟𝐻𝑘)(𝑡,𝛼, 𝑧)𝑑𝑧
T

= Q 𝑘(𝑡, 𝑥,𝛼)𝐻∗𝑟(𝑡,𝛼)Qℎ(𝜉 − 𝛼)𝑘(𝑡, 𝜉, 𝑧)𝑑𝜉
T

𝑑𝛼
T

= Q 𝑘(𝑡, 𝑥,𝛼)Q ℎ(𝛼 − 𝜁)
TT

× 𝑟(𝑡, 𝜁)Qℎ(𝜉 − 𝜁)𝑘(𝑡, 𝜉, 𝑧)𝑑𝜉
T

𝑑𝜉 𝑑𝛼 

(4.68) 

To compute 𝑓(𝑥, 𝑦), the FEM expansion is applied to (4.68) 

 
𝑓(𝑥, 𝑦) ≈ 𝝓(𝑥)𝐊(𝑡)Q𝝓(𝛼)𝝓b(𝛼)𝑑𝛼

T
𝐇¥ Q𝝓(𝜁)𝝓b(𝜁)𝑑𝜁

T
𝐑¥(𝑡)𝐇¥

× Q𝝓(𝜉)𝝓b(𝜉)𝑑𝜉
T

𝐊(𝑡)𝝓(𝑧) 
(4.69) 

and presented in a matrix form as 

 𝑓(𝑥, 𝑦) ≈ 𝝓(𝑥)𝐊(𝑡)(𝐇¥𝐌)b𝐌𝐑¥(𝑡)𝐇¥𝐌𝐊(𝑡)𝝓(𝑧) (4.70) 

Inserting (4.70) into (4.67) allows the determination of the quadratic term 𝐶 
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 𝐶 = 𝐌𝐊(𝑡)(𝐇¥𝐌)b𝐌𝐑¥(𝑡)𝐇¥𝐌𝐊(𝑡)𝐌 (4.71) 

Finally, the discretised Riccati matrix differential equation is obtained by substituting 

discretised terms (4.58), (4.64), (4.65), (4.66) and (4.71) into (4.56) 

 
𝐌𝐊̇(𝑡)𝐌 = 𝐒�(𝑡)𝐊(𝑡)𝐌+𝐌𝐊(𝑡)𝐒�b(𝑡) +𝐌𝐐¥¡@(𝑡)

−𝐌𝐊(𝑡)(𝐇¥𝐌)b𝐌𝐑¥(𝑡)𝐇¥𝐌𝐊(𝑡)𝐌 
(4.72) 

The last equation is further transformed by multiplying on the left and on the right by (𝐌b)¡@ 

and 𝐌¡@ 

 
𝐊̇ = 𝐌¡@𝐒�(𝑡)𝐊 + 𝐊~𝐌¡@𝐒�(𝑡)�

b
+ 𝐐¥¡@(𝑡)𝐌¡@

− 𝐊(𝑡)(𝐇¥𝐌)b𝐌𝐑¥(𝑡)𝐇¥𝐌𝐊(𝑡) 
(4.73) 

Discretisation of the initial conditions (4.55) is done in a similar fashion to the discretisation 

of the free term (4.66) and produces 

 𝐌𝐊̇(0)𝐌 = 𝐌𝐐¥>¡@ (4.74) 

 𝐊̇(0) = 𝐐¥>¡@𝐌¡@ (4.75) 

As a result, the discrete kernel Riccati equation is given by equations (4.73) and (4.75). 

 

4.1.4 Algorithm	of	time	continuous	minimax	filter	

Denoting 𝐒(𝑡) = 𝐌¡@𝐒�(𝑡), 𝐇 = 𝐇¥𝐌, 𝐐> = 𝐌𝐐¥>, 𝐐(𝑡) = 𝐌𝐐¥(𝑡) and 𝐑(𝑡) = 𝐌𝐑¥(𝑡), the 

algorithm of the space discrete minimax filter for the model, initial conditions and observation 

errors bounded by the ellipsoidal sets is written as follows: 

 𝕃JX = ê𝐞>, 𝐞J(𝑡): 𝐞>b𝐐>𝐞> + Q 𝐞Jb (𝑡)𝐐(𝑡)𝐞J(𝑡)𝑑𝑡
:è

:®
≤ 1ë (4.76) 

 𝕃NX = ê𝐞N(𝑡):Q 𝐞Nb(𝑡)𝐑(𝑡)𝐞N(𝑡)𝑑𝑡
:è

:®
≤ 1ë (4.77) 

The solution of the FEM discretised DA problem (4.1)-(4.2) is found as the solution of the 

feedback equation 
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 x
𝑑𝐮(𝑡)
𝑑𝑡 	= 𝐒(𝑡)𝐮(𝑡) + 𝐟(𝑡) + 𝐊(𝑡)𝐇b𝐑(𝑡)(𝐲(𝑡) − 𝐇𝐮(𝑡))

𝐮(0) 	= 	𝐮>
 (4.78) 

where 𝐊(𝑡) is the solution of the Riccati equation 

 x
𝑑𝐊(𝑡)
𝑑𝑡 = 𝐒(𝑡)𝐊 + 𝐊𝐒b(𝑡) + 𝐐¡@(𝑡) − 𝐊(𝑡)𝐇b𝐑(𝑡)𝐇𝐊(𝑡)

𝐊(𝑡>) = 𝐐>¡@
 (4.79) 

The Riccati equation is a quadratic equation that balances model errors and observation errors 

based on the dynamics of the system. It has the following logical interpretation, the increase in 

the level of the uncertainty represented by the Riccati matrix is driven by three factors: (i) 

model dynamics, (ii) model error and (iii) observation error. The model dynamics does not 

change the amount of the uncertainty, but instead redistributes it over the domain. The model 

errors represented by the positive linear term in the Riccati equation increases the amount of 

the uncertainty, while the observation errors represented as the inverted multiplier of the 

quadratic term decreases the uncertainty. If the level of the observation discrepancies is low, 

then the quadratic term is high and neutralizes the model error fast, which leads to a fast 

convergence of the estimate. For the large observation error and correspondingly small 

quadratic term the model error may prevail, thereby increasing the matrix 𝐊. However, because 

the rate of growth of the quadratic term is much faster than the rate of growth of the linear term, 

matrix 𝐊 will grow only to some certain level and then will get balanced. 

The error of the minimax analysis is given by the inequality (4.33) written in a discrete case as 

 sup
(𝐞®,𝐞ù)∈𝕃ùú ,𝐞û∈𝕃ûú

~𝒍𝐌G𝐮<(𝑡@) − 𝐮(𝑡@)H�
X
≤ 𝒍𝐌𝐊(𝑡@)𝐌𝒍 (4.80) 

for an vector 𝒍 which is a FEM projection of an arbitrary element 𝑙. 

One may notice the similar expressions of the time continuous minimax filter (4.78)-(4.79) and 

Kalman-Bucy filter. Both are found as a solution of the Riccati equation with a proper choice 

of the weighting matrices. 

From the design point of view, the choice of the weighting matrices is done based on 

information about the system being modelled. Particularly, the error description meaning plays 

the same role as the covariances of the Kalman-Bucy filter. If the weights are the inverses of 

the covariances, then the Kalman-Bucy and minimax estimates are identical. 
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The heuristic argument of the filter equivalence is the following. The minimax estimate is the 

centre of the reachability set which has the property to provide the minimal distance to other 

elements in the set. The Kalman-Bucy filter is based on the minimization of the analysis 

variance while variance is a measure of a distance between elements of a statistical space. Since 

the reachability set of the minimax filter and the analysis set of the Kalman-Bucy filter are 

driven by the same process and they begin from the same centres, the propagation of those sets 

should coincide. 

 

4.1.5 Solution	of	the	Riccati	equation	

The solution of the feedback equation (3.30) is straightforward and obtained by the application 

of the mid-point time integration method. The solution of the Riccati equation (4.79) is more 

difficult. First of all, the equation is quadratic; this implies that a non-linear equation should be 

solved if implicit methods are used for time integration. Moreover, one of the properties of the 

Riccati equation is the existence of singularities that are dependent on the initial conditions. 

Direct integration by traditional time integration methods such as Runge-Kutta methods fail to 

compute those singularities (Schiff and Shnider, 1999).  

A common way to overcome the singularity burden is by applying the Möbius Transformation. 

That transformation maps the original nonlinear problem into the double sized linear 

Hamiltonian problem that can be effectively solved by symplectic methods. For some matrix 

𝐀(𝑡) and invertible matrix 𝐁(𝑡), substitute  

 𝐊(𝑡) = 𝐀(𝑡)𝐁¡@(𝑡) (4.81) 

into equation (4.79), then 

 

𝑑𝐀(𝑡)
𝑑𝑡 𝐁¡@(𝑡) − 𝐀(𝑡)𝐁¡@(𝑡)

𝑑𝐁(𝑡)
𝑑𝑡 𝐁¡@(𝑡)

= 𝐒(𝑡)𝐀(𝑡)𝐁¡@(𝑡) + 𝐀(𝑡)𝐁¡@(𝑡)𝐒b(𝑡) + 𝐐¡@(𝑡)

− 𝐀(𝑡)𝐁¡@(𝑡)𝐇b𝐑(𝑡)𝐇𝐀(𝑡)𝐁¡@(𝑡) 

(4.82) 

Multiplying (4.82) by 𝐁(𝑡) and regrouping the terms with 𝐀(𝑡)𝐁¡@(𝑡) multiplier produces 

 

𝑑𝐀(𝑡)
𝑑𝑡 − 𝐀(𝑡)𝐁¡@(𝑡)

𝑑𝐁(𝑡)
𝑑𝑡

= 𝐒(𝑡)𝐀(𝑡) + 𝐐¡@(𝑡)𝐁(𝑡)

+ 𝐀(𝑡)𝐁¡@(𝑡)G𝐒b(𝑡)𝐁(𝑡) − 𝐇b𝐑(𝑡)𝐇𝐀(𝑡)H 

(4.83) 
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It is easy to show that if 𝐀(𝑡) and 𝐁(𝑡) solve the equations 

 8

𝑑𝐀(𝑡)
𝑑𝑡 = 𝐒(𝑡)𝐀(𝑡) + 𝐐¡@(𝑡)𝐁(𝑡)

𝑑𝐁(𝑡)
𝑑𝑡 = 𝐒b(𝑡)𝐁(𝑡) − 𝐇b𝐑(𝑡)𝐇𝐀(𝑡)

 (4.84) 

then they verify (4.83). 

If the system in (4.83) is written in the form 

 
𝑑
𝑑𝑡 y

𝐀(𝑡)
𝐁(𝑡)z = y 𝐒(𝑡) 𝐐¡@(𝑡)

𝐇b𝐑(𝑡)𝐇 𝐒b(𝑡)
z y𝐀

(𝑡)
𝐁(𝑡)z (4.85) 

it is known as a Hamiltonian system, which has the following initial conditions 

 y𝐀(𝑡>)𝐁(𝑡>)
z = y𝐐>

¡@

𝐈
z (4.86) 

To solve the linear problem in (4.85)-(4.86), suppose the time interval [𝑡>; 𝑡@] is uniformly 

discretised into 𝐿 subintervals of the length Δ𝑡 = (𝑡@ − 𝑡>)/𝐿. Discretising using the mid-point 

rule, the Hamiltonian system is presented at time step 𝑛 + 1 as 

 y𝐀�±@𝐁�±@
z = 9

𝐈 −
Δ𝑡
2 𝐒�±>.¼

Δ𝑡
2 𝐐�±>.¼

¡@

Δ𝑡
2 𝐅�±>.¼ 𝐈 −

Δ𝑡
2 𝐒�±>.¼

b
;

¡@

y𝐀�𝐁�
z − y𝐀�𝐁�

z (4.87) 

where 𝐒�±>.¼ = 𝐒(𝑡> + (𝑛 + 0.5)Δ𝑡), 𝐐�±>.¼ = 𝐐(𝑡> + (𝑛 + 0.5)Δ𝑡) and 𝐅�±>.¼ = 𝐇b𝐑(𝑡> +

(𝑛 + 0.5)Δ𝑡)𝐇. 

Once, the 𝐀�±@ and 𝐁�±@ are found, the Riccati matrix is constructed according to (4.81) as 

 𝐊�±@ = 𝐀<±@𝐁�±@¡@ 	 (4.88) 

The stability properties of the recurrent expression (4.87) are further improved if the re-

initialisation mechanism is employed (Frank and Zhuk, 2014). That requires the reassignment 

of matrices 𝐀<±@ and 𝐁<±@ after the Riccati matrix computation step (4.88) is performed 

 ¹𝐀<±@ ← 𝐀<±@𝐁�±@¡@ = 𝐊�±@
𝐁�±@ ← 𝐁�±@𝐁�±@¡@ = 𝐈

 (4.89) 

While this procedure does not change the Riccati matrix 𝐊�±@ mathematically, it has the effect 

of improving its numerical performance. Substituting (4.89) into (4.87), the final expression 

for the solution of the Hamiltonian system is obtained 
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 y𝐀�±@𝐁�±@
z = 9

𝐈 −
Δ𝑡
2 𝐒�±>.¼

Δ𝑡
2 𝐐�±>.¼

¡@

Δ𝑡
2 𝐅�±>.¼ 𝐈 −

Δ𝑡
2 𝐒�±>.¼

b
;

¡@

~𝐊�𝐈 � − ~
𝐊�
𝐈 � (4.90) 

 

4.2 Comparison	of	conventional	filters	

In this section the minimax filter is compared versus conventional filters such as Kalman filter 

and EnTKF with different ensemble size. The comparison is done from two perspectives: 

estimation quality and numerical complexity. 

 

4.2.1 Estimation	quality	

The quality of estimates of the filters is illustrated here with a set of numerical examples with 

an idealised configuration that serves illustrative purposes. In this experiment, a two-

dimensional transport problem is described by the advection-diffusion equations (4.1) on a 

rectangular domain of the size [0,1] × [0,4] metres. That domain is further discretised by 900 

bilinear finite elements (60 elements over the x-axis and 15 elements over the y-axis) which 

produce the FEM grid comprised of 976 nodes (61 nodes over the x-axis and 16 nodes over the 

y-axis). The underlying flow field is defined by the constant vector-function 𝜇 = [0.2; 	0] 𝑚/𝑠 

that translates initial concentration of a contaminant spill over the 𝑥-axis and a constant 

diffusion coefficient 𝜖 = 10¡¼	𝑚X/𝑠. The time step is taken to be 0.1 𝑠 and the length of the 

simulation is set to be 200 time steps allowing the concentration to completely transition from 

the right to the left of the domain. 

The resulting FEM model is quite imprecise in that it diverges from the analytical solution 

which is available in this case. This has been constructed intentionally in order to illustrate that 

the filters can improve the quality of the numerical solutions by using observed data and 

without knowing the initial conditions. 

In order to introduce the analytical solution and observations of that problem, define the 

following two-dimensional Gaussian function: 

 𝑢<(𝑡, 𝑥, 𝑦) =
1

𝜎X2𝜋		𝑒
¡@X~

"¡"®¡J@
A �

ú

𝑒¡
@
X~
B¡B®¡JC

A �
ú

 (4.91) 
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where 𝜎, 𝑚" and 𝑚B are the diffusion and advection of the initial concentration 𝑢<(0, 𝑥, 𝑦); 𝑥> 

and 𝑦> define its center. Let 𝑢<(𝑡, 𝑥, 𝑦) be the function as in (4.91) with parameters  

 𝜎 = 	0.1 + 2𝑡𝜖 = 0.1 + 2𝑡10¡¼ (4.92) 

 𝑚" = 𝑡	𝜇" = 0.2𝑡, 𝑚B = 𝑡	𝜇B = 0 (4.93) 

 𝑥> = 0.5, 𝑦> = 0.5 (4.94) 

It is not difficult to check that the function 𝑢<(𝑡, 𝑥, 𝑦) satisfies the original advection-diffusion 

equation (4.1) with the idealised flow field 𝜇. In what follows, this serves as a ground-truth, 

and, in particular, the observations are sampled by restricting 𝑢<(𝑡, 𝑥, 𝑦) onto the nodes of the 

FEM grid at each time step. The observations are corrupted by the observation noise. To 

guarantee boundedness of the observation noise, it is assumed to be uniformly distributed 

within the interval [−1; 1], so the largest value of its component is approximately 10% of the 

contaminant concentration largest value. 

According to (4.13) and (4.16), the error ellipsoids are defined by the functions 𝑞>, 𝑞 and 𝑟 that 

are chosen to be constant in time and space and by the ellipsoidal approximation error factor 

𝛾b = (20 + 1) ⋅ 4 = 84. Hence,  

 𝐐¥ =
2
𝛾b
𝐈, 𝐐¥> =

0.1
𝛾b

𝐈, 𝐑¥ =
3
𝛾b
𝐈 (4.95) 

and correspondingly 

 𝐐(𝑡) = 𝐌𝐐¥, 𝐐> = 𝐌𝐐¥>, 𝐑 = 𝐌𝐑¥ (4.96) 

These choices reflect the moderate level of trust in the FEM model and the absence of the initial 

conditions. The weighting matrix 𝐑 is taken as the reciprocal of the variance of the [−1; 1]-

uniformly distributed random variable. It should be noted that the described model of the 

observations noise is a robust version of the conventional statistical noise description. In what 

follows, the described experiment configuration is referred to as the test experiment 

configuration. 

The estimates generated by the minimax filters 𝑢J���J<"  are compared against other solutions 

by applying the following error metrics: 

• Spatial norm:  
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 𝑛Ö(𝑢)(𝑡) = 	 ‖𝑢(𝑡)‖ (4.97) 

• Spatial error:  

 𝑒Ö(𝑢)(𝑡) =
‖𝑢(𝑡) − 𝑢<(𝑡)‖

‖𝑢<(𝑡)‖
 (4.98) 

• Estimation error:  

 𝑒ø(𝑢) =
∑ ‖𝑢(𝑡> + 𝑘Δ𝑡) − 𝑢<(𝑡> + 𝑘Δ𝑡)‖G
©�>

∑ ‖𝑢<(𝑡> + 𝑘Δ𝑡)‖G
©�>

 (4.99) 

where ‖ ⋅ ‖ denotes Euclidean norm in a discrete space, i.e., ‖𝐮‖ = H𝐮@X +⋯+ 𝐮���
X  and 

𝑢<(𝑡) is known analytical solution. 

The effect of the assimilation of observations into the model produced by the minimax filter is 

demonstrated in Figure 4.1 and Figure 4.2. They plot the spatial norm and spatial error of the 

FEM solution 𝐮IJK with known initial conditions, which shows the quality of the model and 

as Figure 4.2 suggests the spatial error generated by the FEM increases in time. The spatial 

error of the observations plotted in Figure 4.2 does not increase in time, however it is relatively 

high (approximately 43%) due to the presence of the noise. At the same time, the minimax 

filter does not know the initial conditions, but it takes the advantage of the available error 

description to combine the model and observations. As a result, it constructs an estimate, spatial 

norm of which is close to the spatial norm of 𝐮IJK and according to Figure 4.2 the minimax 

 
Figure 4.1 The spatial norm of the FEM solution, 

observations and minimax estimate plotted over time. 

 
Figure 4.2 The spatial error of the FEM solution, 
observations and minimax estimate plotted over 

time. 
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spatial error is much smaller than the spatial error of the observations and is not increasing in 

time as the spatial error of the model. Improvements in terms of the error reduction provided 

by the minimax filter are further confirmed by the lower level of the estimation error: 

𝑒ø(𝐮IJK) = 16.3%, 𝑒ø(𝐮MN×) = 43.6%, 𝑒ø(𝐮KO<OKPQ) = 15%. 

Figure 4.3 and Figure 4.4 depict comparison between estimates obtained from minimax filter 

𝐮KO<OKPQ, Kalman filter 𝐮RPSKP<  and EnTKF 𝐮J<×JKNSJ with the ensemble size equal to 1000. 

As it can be seen from those images all three filters provide similar results and estimation error 

is slightly in favour of the minimax filter 𝑒ø(𝐮KO<OKPQ) = 15%, the next one is the Kalman 

filter 𝑒ø(𝐮RPSKP<) = 15.6% and then EnTKF 𝑒ø(𝐮J<×JKNSJ) = 16.5%. Since the minimax 

filter is equivalent to the Kalman-Bucy filter with respect to the parameters interpretation, no 

comparison between the two is presented. 

 
Figure 4.3 The spatial norm of the EnTKF with 
ensemble 1000, Kalman and minimax estimates 

plotted over time. 

 
Figure 4.4 The spatial error of the EnTKF with 
ensemble 1000, Kalman and minimax estimates 

plotted over time. 
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The quality of estimate of EnTKF is also demonstrated for three different configurations of the 

ensemble size: 200, 500 and 1000. Figure 4.5 and Figure 4.6 plot spatial norm and spatial error 

of those filters. As expected, the increase of the ensemble size improves the quality of the 

estimate. It should be also noted, that the EnTKF estimates converge to the Kalman filter 

estimates not only with the increase of the ensemble size but also with time. The time 

convergence is explained by the fact that the velocity flow is taken to be constant for this 

particular experiment which leads to a time-constant model matrix that together with a constant 

error matrices provide a stationary solution for the covariance equation. Regardless of the 

ensemble size, the ensemble filters approach to that stationary solution but with the speed 

dependent on the ensemble size. In the case of a non-stationary velocity field, the EnTKF 

estimate may not converge to the Kalman estimate with time, which is a significant 

disadvantage. 

 

4.2.2 Computational	costs	

In general, the filtering algorithms at each time instance can be split into two steps. During the 

first step, the model matrices such as stiffness matrix, mass matrix, source vector, etc. are 

computed using FEM. This is the common part of all filtering algorithms used in this 

experiment. Moreover, usually the first step is much faster comparing to the second step. The 

second step performs manipulations with the model matrices and is particular for each 

 
Figure 4.5 The spatial norm of the EnTKF estimates 
generated for different ensemble size: 200, 500, 1000 

and plotted over time. 

 
Figure 4.6 The spatial error of the EnTKF estimates 

generated for different ensemble size: 200, 500, 
1000 and plotted over time. 
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algorithm. In the following analysis, only the cost of the second step is calculated to compare 

different filtering approaches. 

The most time-consuming activities of the filtering algorithms are the matrix multiplication 

and matrix inversion. The basic algorithm of the matrix multiplication requires 𝒪(𝑁��7) 

operations where 𝑁�� is the number of the nodes of the FEM grid. Another common alternative 

is the more advanced Strassen’s algorithm. That algorithm takes the advantage of the 

multiplication of matrices of the size 2 × 2 which requires only 7 multiplications in contrast to 

the usual 8. Applying this recursively gives an algorithm with the numerical cost 

𝒪G𝑁��SMUú VH ≈ 𝒪G𝑁��X.W>VH. Even though Strassen’s algorithm works faster, it is not 

necessary the best choice in practice. For instance, in this work for matrix operations the 

numerical library called OpenBLAS is employed. It contains a set of matrix routines that are 

implemented to support multiprocessor architecture of the modern computers. Because of the 

complexity of Strassen’s algorithm, it uses basic matrix multiplication that is parallelised more 

efficiently. For this reason, the cost of the filter algorithms is computed for the basic matrix 

multiplication. Since the matrix inversion depends on the matrix multiplication itself, its cost 

is 𝒪(𝑁��7) as well. It should be noted that matrix summation, or matrix by vector 

multiplication require 𝒪(𝑁��X) operations and vector operations usually require 𝒪(𝑁��) 

operations which allows omitting them in the present analysis. 

Let us denote by 𝒞Y� = 𝒪(𝑀X𝑁) a unit of numerical complexity representing the amount of 

operations required for multiplication of matrices of the size 𝑀 ×𝑁. Then, inversion of dense 

matrix of the size 𝑁 × 𝑁 has complexity 𝒞��. An application of FEM approximations to the 

underlying PDE generates sparse stiffness and mass matrices which allows resolving free run 

models, i.e., models with known initial conditions and without observations filtering, using 

𝒪(𝑁��X) operations. In contrast resolution of filters requires solving covariance matrix 

equations which leads to inversions and multiplications of dense matrices. 

Complexity of filters can be expressed in terms of the introduced complexity units. To compute 

the estimate by the minimax filter, one needs to solve the feedback and Riccati equations 

(4.78)-(4.79). The feedback equation solved by the midpoint integration rule is not equivalent 

to the free run of the model due to a presence of a Riccati matrix in the innovation term. In fact, 

it requires 2𝒞������  operations for the matrix multiplication and matrix inversion. The solution 

of the Riccati equation given by the expression (4.87) requires 8𝒞������  operations for the 

doubled size matrix inversion of the midpoint method, 2𝒞������  operations for the 
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multiplication by the matrix 𝐊© and 2𝒞������  for the matrix inversion and multiplication of 

the Möbius transformation (4.88). The total cost of the Riccati equation computation is 

12𝒞������  and the total cost of the minimax estimation is 14𝒞������ . 

The total number of operations for the Kalman filter is 7𝒞������ , which includes 1 matrix 

multiplication during background estimate propagation, 2 units of complexity for 2 operations 

of the matrix multiplication during the background covariance update and 4 units of complexity 

for 2 operations of the matrix multiplication and 2 operations of the matrix inversion during 

the observation covariance update. 

The complexity of the EnTKF filter depends on the size of the ensemble 𝐾. It consists of three 

components: the background propagation needs 𝒞������  operations for the matrix 

multiplication and 𝒞���Ô  for propagating each ensemble member; the covariance propagation 

that requires 𝒞���Ô + 𝒞Ô���  operations for the matrix multiplication and 2𝒞ÔÔ  operations for 

the matrix inversion and the eigen decomposition of the covariance matrix; and the ensemble 

propagation that is performed in 𝒞���Ô + 2𝒞Ô��� + 𝒞ÔÔ  operations involved in matrix 

multiplication. In total, the cost of EnTKF algorithm is 𝒞������ + 3𝒞���Ô + 3𝒞Ô��� + 3𝒞ÔÔ . 

It should be noted, that the EnTKF cost is the cheapest option, provided ensemble size 𝐾 ≪

	𝑁��, however, if the size of the ensemble 𝐾 reaches or exceeds 𝑁�� the EnTKF become slower 

than Kalman or minimax filters. 

Table 4.1 Numerical and practical performance of various filters. Results of the CPU time measurements are 

averaged over 4 runs. 

Minimax Kalman 
EnTKF 

𝐾 = 100 𝐾 = 200 𝐾 = 500 

14𝒞������  7𝒞������  𝒞������ + 3𝒞���Ô + 3𝒞Ô��� + 3𝒞ÔÔ  

244	𝑠 157	𝑠 71.1	𝑠 83	𝑠 136	𝑠 

Numerical computational costs of different filters built on top of the FEM model are 

summarised in Table 4.1. These results are further confirmed by the CPU execution time (total 

time across all cores) averaged over 4 runs of the corresponding methods for a test experiment 

configuration which are also presented in Table 4.1. The simulations were performed using 

Intel Core i7 processor containing 4 cores with 2.2 GHz clock speed each and 16 GB RAM. 

For a matrix data structures and manipulation Armadillo library (Sanderson and Curtin, 2016) 
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was used. For general matrix operations, it was linked to the OpenBLAS library which 

implements shared memory parallelisation (Xianyi et al., 2016) and for solving sparse linear 

systems it was linked to the SuperLU library (Li et al., 1999). 

 

4.3 Discussion	

The attractive benefit of the minimax filter is the flexibility of treatment of the uncertainties in 

the system. In contrast to the statistical methods, a minimax framework does not require an 

exact description but only needs a set of admissible realisations of those uncertainties. 

Moreover, it is shown that mathematically minimax is equivalent to the Kalman-Bucy filter. 

From a computational point of view, the estimation quality of the minimax algorithm is similar 

to the estimate provided by the Kalman algorithm, while the computational cost is at least two 

times higher. It should be noted, however, that the cost of both methods is significantly higher 

than the free run model. Another problem is that the computational demands of those algorithm 

grow faster then the size of the underlying system, i.e., the minimax and Kalman filters are not 

scalable. 

EnTKF allows for a reduction in the cost of estimation if the ensemble size is smaller than the 

size of the system, but this reduction comes with a decline in the quality of the estimate. Also, 

the ensemble size defines the size of the subspace in which uncertainties of the system are 

approximated. Thus, the choice of the ensemble size depends on the system size implying that 

the EnTKF algorithms are also not scalable. 

To conclude, EnTKF is more flexible in terms of balancing computational time and estimation 

error comparing to the Kalman filter and minimax filter. Kalman filter performs faster than the 

minimax filter resulting in a similar estimation error. At the same time, due to its deterministic 

nature, the minimax filter provides a more robust error treatment, a desired property in 

engineering practice. The biggest disadvantage of the conventional filters is the lack of the 

scalability with respect to a number of finite elements. 
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5 Minimax	filter	in	the	form	of	DAE	

The applicability of the traditional filters is problematic if the number of the degrees of freedom 

of the discretised model is large. According to the literature (Todling and Cohn, 1994), this 

problem may be tackled by introducing various sub-optimal approximations for the underlying 

uncertainty model that require less computational effort but reduce the quality of the estimate 

(see Section 2.3.1). More recently, with differing levels of success, there were several attempts 

to apply decomposition to the traditional filters (see Section 2.6). 

In this chapter, a new approach that aims to localise computations on smaller subdomains of 

the original domain is presented. More specifically, the original problem for a large domain is 

decomposed into subproblems assigned to related subdomains fulfilled by transmission 

conditions. The set of subproblems is then discretised and recast as a DAE. To solve that DAE, 

the minimax filter is reformulated to incorporate algebraic constraints that are produced by the 

discretisation of the transmission conditions into the model. This approach is similar to discrete 

decomposition and particularly to distributed filters in that it acts on a discrete level. At the 

same, the resulting minimax DAE filter is equivalent to the traditional minimax filter while 

distributed filters are only approximations of traditional filters. Another distinction of the 

proposed method is a treatment of transmission conditions. Since transmission conditions are 

normally enforced through boundary conditions (Quarteroni and Valli, 1999) their design 

depends on physical properties of an underlying problem. While here, transmission conditions 

are presented as additional algebraic constraints of an optimisation problem which makes the 

approach more robust with respect to a problem nature. For instance, minimax DAE filter can 

be applied for both advection dominated and diffusion dominated transport problems. 

The main results contained in this chapter are published in a paper by the author as Ragnoli et 

al. (2014). However, there are some differences between the contents of this chapter and that 

paper: i) sections 5.1.1 - 5.2.2 of this chapter elaborate on the development of the DAE minimax 

filter in more detail than the corresponding sections of that paper; ii) for consistency with other 

chapters of the thesis, Experiment 1 from that paper was replaced in this chapter by an 

experiment with the test experiment configuration; iii) Section 5.3.3 herein contains analysis 

of the computational performance of the algorithm. It should also be noted that although that 

paper was co-authored with others, the mathematical formulation of the algorithm, code 

development and numerical simulations were performed by the author of this thesis. 
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5.1.1 Global	and	Localised	Problems	

The definition of the approach starts with the background model for the concentration transport 

process, then the DA problem is formulated on a continuous level in terms of a minimax 

framework. For a given spatiotemporal domain ([𝑡>; 𝑡@] × Ω), the process is described by the 

differential equation 

 

⎩
⎨

⎧
𝜕𝑢(𝑡, 𝑥)
𝜕𝑡 = 𝐿𝑢(𝑡, 𝑥) + 𝑒J(𝑡, 𝑥)

𝑢(0, 𝑥) = 𝑢>(𝑥)+𝑒>(𝑥)
𝑢(𝑡, 𝑥) = 0, 𝑥 ∈ ∂Ω

 (5.1) 

where operator 𝐿 is an advection-diffusion operator with a constant diffusion coefficient 𝜖 and 

velocity field 𝜇 

 
𝐿: 𝐻@([𝑡>; 𝑡@] × Ω) → 𝐿X([𝑡>; 𝑡@] × Ω) 

𝑢 ↦ 𝐿𝑢 = 𝜖Δ𝑢 − ∇ ⋅ (𝜇𝑢) (5.2) 

The observation equation is written as 

 𝑦(𝑡, 𝑥) = 𝐻𝑢(𝑡, 𝑥) + 𝑒N(𝑡, 𝑥) (5.3) 

where 𝐻 is linear operator 

 𝐻𝑢(𝑡, 𝑥) = Qℎ(𝑧 − 𝑥)𝑢(𝑡, 𝑧)𝑑𝑧
T

 (5.4) 

The model error 𝑒J(𝑡, 𝑥), the initial condition error 𝑒>(𝑥) and observation error 𝑒N(𝑡, 𝑥) are 

uncertain but bounded. 

It is assumed that the deterministic problem from (4.1) is well-posed and has a unique solution 

𝑢\ for any initial condition 𝑢>. In the following the domain Ω, the problem (5.1)-(5.2) and the 

observation equation (5.3)-(5.4) are referred to as the global domain, global problem and global 

observation equation correspondingly. 

To construct a numerical solution for the global problem, DD is applied. Assume a geometrical 

decomposition of the global domain Ω into 𝑁 non-overlapping subdomains Ω@, … , Ω�. The 

common boundary between two adjacent subdomains, Ω� and Ω�, is denoted by Γ�,� = 𝜕Ω� ∩

𝜕Ω� and the set of common boundaries in the 𝑖th subdomain is designated by Γ� =∪� Γ��, where 



94 

𝑗 goes over the adjacent subdomain of Ω�, and the union of all possible Γ�,� is denoted by Γ =

∪�� Γ�� and is referred to as the interface of the decomposition. 

A function 𝑓(𝑥) defined on the global domain Ω can be decomposed using its representation 

by the characteristic functions of the decomposition 𝜒�, 𝑖 = 1,… ,𝑁 as follows: 

 𝑓(𝑥) =� 𝑓�(𝑥)𝜒�(𝑥)
�

��@

 (5.5) 

where 

 𝜒�(𝑥) = í
1 𝑥 ∈ Ω�
0.5 𝑥 ∈ Γ��
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.6) 

and 𝑓�(𝑥) is the restrictions of 𝑓(𝑥) into local subdomains Ω� such that 𝑓�(𝑥) = 𝑓(𝑥) for 𝑥 ∈

Ω�, 𝑖 = 1,… , 𝑁. In such a way, decomposition of the global functions 𝑢(𝑡, 𝑥), 𝑢>(𝑥), 𝑒J(𝑡, 𝑥) 

and 𝑒>(𝑥) is defined by introducing a set of local functions 𝑢�(𝑡, 𝑥), 𝑢�>(𝑥), 𝑒J,�(𝑡, 𝑥) and 

𝑒>,�(𝑥). 

The local solutions 𝑢�(𝑡, 𝑥) for 𝑖 = 1, … ,𝑁 are found from the local subproblems 

 

⎩
⎨

⎧
𝜕𝑢�
𝜕𝑡 = 𝐿�𝑢� + 𝑒J,�, in	Ω�
𝑢�(𝑡, 𝑥) = 0, on	 ∂Ω ∩ ∂ΩO
𝑢�(0, 𝑥) = 𝑢�>(𝑥) + 𝑒>,�(𝑥)

 (5.7) 

where the operator 𝐿� denotes the restriction of the operator 𝐿 on the subdomain Ω� with the 

appropriate boundary condition provided 𝜕Ω� ∩ 𝜕Ω ≠ ∅. 

It can be seen from the formulation of (5.7) that the local problems and their corresponding 

solutions are independent of each other. This is only possible if the concentration spill does not 

cross the interface of the decomposition, which implies that the velocity flow is orthogonal to 

the interface. Otherwise, the subproblems are coupled and they should exchange information 

with each order. The exchange of information is organised through an additional equation 

known as the transmission conditions 

 𝐵(𝑢@,… , 𝑢�) = 0 (5.8) 

which synchronises computations of the local subproblems and forces continuity between local 

solutions (Toselli and Widlund, 2005). Equation (5.8) is valid for deterministic problems and 
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since the local problems (5.7) contain uncertainties, it is expected that equation (5.8) will hold 

approximately up to some error 𝑒<(𝑡, 𝑥), which is known as the algebraic error that is defined 

on the interface Γ and is expected to be very small. Equation (5.8) can be reformulated as 

 𝐵(𝑢@, … , 𝑢�) = 𝑒< (5.9) 

Since the only requirement that is imposed on 𝐵 is the consistency of a generated solution, 

there are different possible choices of the operator 𝐵. One of the most common choices, which 

is used in this work, is comprised of the local trace operators 

 𝐵�,�: Ω� ↦ Γ�,� , 𝑖 = 1,… ,𝑀, 𝑗 = 1, … , 𝑁 (5.10) 

that assigns to 𝑢� ∈ 𝐻@(ΩO) its value over the boundary Γ�,�, provided Γ�,� ≠ ∅ and 𝑀 is the 

number of boundary segments. If Γ�,� = ∅ for some 𝑗, the trace is taken to be empty, i.e., 𝐵�,� =

0. The operator 𝐵 then verifies if the traces from the adjacent subdomains are equal with respect 

to the algebraic error 

 𝐵�,�𝑢�(𝑡, 𝑥) + 𝐵�,�𝑢�(𝑡, 𝑥) = 𝑒<(𝑡, 𝑥) (5.11) 

or 

 𝑢�(𝑡, 𝑥) − 𝑢�(𝑡, 𝑥) = 𝑒<(𝑥)	for	𝑥 ∈ Γ�,� (5.12) 

for all segments of the interface Γ. 

Taking into account (5.7) and (5.11), the global problem is reconstructed via a set of local 

problems on each subdomain  

 
𝜕
𝜕𝑡e

𝑢@
𝑢X
⋮
𝑢�

g = e

𝐿@ 0 ⋯ 0
0 𝐿X ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐿�

ge

𝑢@
𝑢X
⋮
𝑢�

g +e

𝑒J,@
𝑒J,X
⋮

𝑒J,�

g (5.13) 

with transmission conditions that enforces the continuity of the solution across the interface, 

which are also known as the Dirichlet transmission conditions 

 𝐵𝑢 = i
𝐵@,@ ⋯ 𝐵@,�
⋮ ⋱ ⋮

𝐵Y,@ ⋯ 𝐵Y,�
jn

𝑢@
⋮
𝑢�
o = 𝑒< (5.14) 

with initial conditions 



96 

 n
𝑢@
⋮
𝑢�
o = i

𝑢@>
⋮
𝑢@>
j + n

𝑒>,@
⋮
𝑒>,�

o (5.15) 

and with boundary conditions 

 n
𝑢@
⋮
𝑢�
o = n

0
⋮
0
o	
on	 ∂Ω ∩ ∂Ω@

⋮
on	 ∂Ω ∩ ∂Ωk

			 (5.16) 

Similarly, the observation equation is formulated on the local subdomains using (5.5) as 

 n
𝑦@
⋮
𝑦�
o = n

𝐻@𝑢@
⋮

𝐻�𝑢�
o + n

𝑒N,@
⋮

𝑒N,�
o (5.17) 

where local observation operator 𝐻� is the following restriction of the global observation 

operator 𝐻 

 𝐻�𝑢�(𝑡, 𝑥) = Qℎ�(𝑧 − 𝑥)𝑢�(𝑡, 𝑧)𝑑𝑧
T

 (5.18) 

Problem (5.13)-(5.18) is hereby referred to as the localised problem. The solution of that 

problem is called the localised solution, which is comprised of the local solutions 𝑢� by using 

(5.5). The equivalence between the global and localised problems in particular the existence 

and uniqueness of the solution of the localised problem is described by the following theorem: 

Theorem 1. If 𝑢\ is a solution of the global problem then it is a solution of the localised 

problem. Moreover, if 𝑢\ is unique, it is a unique solution for both the global and decomposed 

problem. 

Proof: Let 𝑢\� denote the restriction of 𝑢\ to the subdomain Ω�. It is obvious that 𝐵𝑢\ = 0. 

Thus, it remains to be proven that 𝑢\� is a solution of the 𝑖-th local problem. Since 	𝑢\� 	|lm =

𝑢\ 	|lm, where Γ� is the interface of subdomain Ω� (the common boundaries with other 

subdomains), it follows that 𝑢\� solves the 𝑖-th local problem. The uniqueness is an obvious 

consequence.■ 

It should be noted that the Dirichlet transmission conditions (5.12) is the most basic way of 

data transmission. While mathematically it provides continuity of the solution across 

subdomains, it does not guarantee continuity of the solution’s derivatives which may be a 

desired property in numerical simulations. To this end, it is possible to use operators that 

transmit more data such as Neumann or Robin type operators which, furthermore, can be used 
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in combination with overlapping decomposition. There are only two requirements regarding a 

the design of transmission operator: (i) it should provide equivalence between localised and 

global problems; (ii) it should be time independent. Otherwise, regardless of the choice of 

transmission operator, its discretisation produces a matrix similar to (5.14) that will be used as 

an optimisation constraint for a development of minimax DAE filter. 

 

5.1.2 Finite	Elements	approximation	

The discretisation of the local problem as well as of the global problem, is obtained here 

through the FEM approximation. Each local subdomain Ω� is approximated by polygonal finite 

elements and the 𝑖-th local solution 𝑢� is approximated by piecewise linear basis functions 

defined in the nodes of the corresponding element. Therefore, the 𝑖-th local solution in a 

discrete space is represented by the vector of coefficients of the FEM expansion: 

 𝐮�(𝑡) = Í𝐮�,@(𝑡),… , 𝐮�,���m (𝑡)Î
b
 (5.19) 

where 𝑁���  is the number of nodes in the 𝑖-th FEM grid. 

To find the vector of coefficients 𝐮�(𝑡), the FEM representation of 𝑢� is substituted into the 

weak formulation of the local problem (5.7) that also incorporates boundary conditions (5.16) 

(through the boundary integral, see Section 3.2.2) and generates a reduced model for the 

coefficients: 

 x
𝑑𝐮�
𝑑𝑡 = 𝐒�(𝑡)𝐮�(𝑡) + 𝐞J,�(𝑡)

𝐮�(0) = 𝐮�> + 𝐞>,�
 (5.20) 

where 𝐒�(𝑡) is the stiffness matrix corresponding to the discretisation of the local advection-

diffusion operator (see Section 3.2.3) and 𝐮�>, 𝐞J(𝑡), 𝐞N are vectors of projection coefficients 

of the initial conditions, model error and initial error. 

The local observation equation is given by 

 𝐲�(𝑡) = 𝐇�𝐮�(𝑡) + 𝐞N,�(𝑡) (5.21) 

where 𝐇� is discretised by the FEM local observation operator (5.18) (see Section 3.2.3). 𝐲� 

and 𝐞�,N are vectors of projection coefficients of the observations and observation error 

functions respectively. 
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The discretised version of the trace operator (5.10) is given by the matrix 𝐁��  of size 

𝑁��� × 𝑁��
lno , where 𝑁��

lmp is the amount of FEM nodes on the common boundary Γ��. The 

elements of the matrix 𝐁��  are taken from the set {−1,0,1} so the product 𝐁��𝐮� returns a vector 

of components of 𝐮� that are defined in the nodes that belong to Γ�� and the following equality 

holds 

 𝐁�,�𝐮�(𝑡) + 𝐁�,�𝐮�(𝑡) = 𝐞<|lm,p(𝑡) (5.22) 

In other words, matrices 𝐁��  and 𝐁�� are taken such that solutions on adjacent sub-domains 

coincide at the nodes of the common part of the FEM grid up to a given error: 

 𝐮�,©(𝑡) − 𝐮�,J(𝑡) = 𝐞<,�(𝑡) (5.23) 

Here, subscript 𝑘 in the index of a node in subdomain Ω� which coincides with 𝑚-th node in 

the domain Ω� and subscript 𝑛 is the index of the same node in the numbering of interface 

nodes. 

Comprising the set of the stiffness matrices of the 𝑁 local problems (5.20) discretised by FEM 

results in the localised stiffness matrix 

 𝐒 = e

𝐒@ 0 ⋯ 0
0 𝐒X ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐒�

g (5.24) 

Using the set of vectors 𝐮�, 𝑁 solutions of the local problems (5.20) are comprised into the 

vector of the localised solution 

 𝐮 = [𝐮@, 𝐮X, … , 𝐮�]b (5.25) 

From the set of vectors 𝐮�>, 𝑁 initial conditions of the local problems (5.20) are comprised into 

a vector of the localised initial condition 

 𝐮𝟎 = [𝐮@>, 𝐮X>, … , 𝐮�> ]b (5.26) 

and the set of vectors 𝐞�,J and 𝐞�,> are condensed into a vector of the localised model error and 

the localised initial error 

 𝐞J = �𝐞@,J, 𝐞X,J, … , 𝐞�,J�
b
 (5.27) 
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 𝐞> = �𝐞@,>, 𝐞X,>, … , 𝐞�,>�
b
 (5.28) 

Finally, the discrete localised background model is obtained from 

 x
𝑑𝐮(𝑡)
𝑑𝑡 = 𝐒(𝑡)𝐮(𝑡) + 𝐞J(𝑡)

𝐮(0) = 𝐮> + 𝐞>
 (5.29) 

with the transmission conditions given in the form of an algebraic constraint 

 𝐁𝐮 = i
𝐁@,@ ⋯ 𝐁@,�
⋮ ⋱ ⋮

𝐁Y ,@ ⋯ 𝐁Y ,�
jn

𝐮@
⋮
𝐮�
o = 𝐞< (5.30) 

In a similar fashion, the localised observation equation is written 

 𝐲(𝑡) = 𝐇𝐮(𝑡) + 𝐞N(𝑡) (5.31) 

where 𝐇 is localised observations operator and 𝐲(𝑡) and 𝐞N(𝑡) are localised observations and 

observation error vectors such that 

 𝐇 = n
𝐇@ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐇�

o (5.32) 

 𝐲 = [𝒚@, 𝐲X, … , 𝐲�]b (5.33) 

 𝐞N = �𝐞N,@, 𝐞N,X, … , 𝐞N,��
b
 (5.34) 

The problem (5.29)-(5.31) is referred to as the discrete localised problem. By Theorem 1, the 

unique solvability of the discretised global problem implies the unique solvability of the 

corresponding discrete localised problem represented by (5.29)-(5.31). 

 

5.2 Minimax	filter	for	localised	problem	
From (5.20) it is necessary that the local solution 𝐮� depends on the local model error 𝐞J,�. At 

the same time, the algebraic error 𝐞𝒂 measures the difference between coefficients of 𝐮� in the 

shared nodes on common boundaries between subdomains. This implies that the realisation of 

the model error influences the realisation of the algebraic error meaning that the errors 𝐞J and 

𝐞𝒂 are correlated. 
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Let’s define 

 𝐞 = ~
𝐞J
𝐞< � ,𝐅 = ~𝐈𝟎� , 𝐂 = ~𝐒𝐁� (5.35) 

where  

 
𝐞J ∈ ℂ([t>, t@], ℝ���), 𝐞< ∈ ℂ ~[t>, t@], ℝ���

t �	

𝐞 ∈ ℂ([t>, t@], ℝ���±���
t ) 

(5.36) 

 𝐒 ∈ ℂ([t>, t@], ℝ���×���), 𝐁 ∈ ℂ ~[t>, t@], ℝ���
t ×����	

𝐅, 𝐂 ∈ ℂ([t>, t@], ℝG���±���
t H×G���±���

t H) 

(5.37) 

and 𝑁�� denotes the sum of the FEM nodes from each subdomain and 𝑁��l  is the amount of 

FEM nodes on the interface of decomposition. 

The background model (5.29)-(5.30) is then rewritten in the form of a DAE 

 x
𝑑
𝑑𝑡
(𝐅𝐮) = 𝐂𝐮 + 𝐞

𝐅𝐮(𝑡>) = 𝐮> + 𝐞>
 (5.38) 

and the error of the initial conditions, 𝐞>, and the general error, 𝐞, are assumed to be inside the 

following ellipsoid 

 𝕃J = ê𝐞: 𝐞>b𝐐>b𝐞> + Q 𝐞b(𝑡)𝐐(𝑡)𝐞(𝑡)𝑑𝑡
:è

:®
≤ 1			ë (5.39) 

with weighting matrices 𝐐> and 𝐐 symmetric and positive-definite matrices 

 𝐐> = 𝐐>b > 0; 	𝐐(𝑡) = 𝐐b(𝑡) > 0 (5.40) 

such that 

 𝐐>¡@,𝐐> ∈ ℂ([t>, t@], ℝ���×���) (5.41) 

 𝐐¡@,𝐐 ∈ ℂ([t>, t@], ℝG���±���
t H×G���±���

t H) (5.42) 

For the observation equation 

 𝐲(𝑡) = 𝐇𝐮(𝑡) + 𝐞N(𝑡) (5.43) 

the localised observation error 𝐞N is the realization of a random process such that 
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 𝕃N = ê𝐞N(𝑡) = 0,Q 𝐞N(𝑡)b𝐑(𝑡)𝐞N(𝑡)𝑑𝑡
:è

:®
≤ 1ë (5.44) 

where weighting matrix 𝐑(𝑡) is taken to be 

 𝐑(𝑡) = 𝐑b(𝑡) > 0, 𝐑¡@, 𝐑 ∈ ℂ([t>, t@], ℝ���×���) (5.45) 

Solving the discrete localised problem (5.29)-(5.31) is equivalent to finding an estimate of the 

solution to the system of DAE (5.38) and (5.43) with the system uncertainties described by the 

quadratic ellipsoidal sets (5.39) and (5.44). Since (5.38) also contains algebraic equations (the 

discretised transmission conditions), the minimax filter cannot be applied directly. Instead, the 

minimax framework is adopted for the estimation of the system (5.38) and (5.43). 

 

5.2.1 Derivation	of	the	filter	

From the Kalman duality principle, introduced in (Zhuk, 2013), for linear functionals ℓ and 𝑣 

defined as 

 ℓ(𝐮) = 𝑙b𝐅𝐮(𝑡@) = 𝑙Öb𝐮(𝑡@), 𝑙 ∈ ℝ���±���t , 𝑙Ö ∈ ℝ���  (5.46) 

 𝑣(𝐲) = Q 𝐯(𝑡)𝐲(𝑡)𝑑𝑡
:è

:®
,			𝐯(𝑡) ∈ ℝ���  (5.47) 

the estimate 𝐮<(𝑡) of 𝐮(𝑡) with the minimal mean-squared estimation error 

 sup
(𝐞®,𝐞)∈𝕃ù,𝐞û∈𝕃û

ℓ(𝐮<(𝑡@) − 𝐮(𝑡@)) ≤ sup
(𝐞®,𝐞)∈𝕃ù,𝐞û∈𝕃û

ℓ(𝑣(𝐲) − 𝐮(𝑡@)) (5.48) 

admits the following representation 

 ℓ(𝐮<) = Q 𝐑𝐇(𝑡)𝐩(𝑡)𝐲(𝑡)𝑑𝑡
Tü

 (5.49) 

provided 𝐩 and 𝐳 such that 

 𝐩 ∈ ℂ([t>, t@], ℝ���), 𝐳 ∈ ℂ ~[t>, t@], ℝ���±���
t � (5.50) 

solve the following dual and direct equations 
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 x
𝑑
𝑑𝑡
(𝐅b𝐳) = −𝐂b𝐳 +𝐇b𝐑𝐇𝐩

𝐅b𝐳(𝑡@) = 𝐅b𝑙
 (5.51) 

 x
𝑑
𝑑𝑡 (𝐅𝐩) = 𝐂𝐩	 + 	𝐐¡@𝐳

𝐅𝐩(𝑡>) = 𝐐>¡@𝐳(𝑡>)
 (5.52) 

The vector 𝐳 and the matrix 𝐐¡@ are split according to the blocks 𝐒 and 𝐁 of matrix 𝐂 

 𝐳 = ~
𝐳Ö
𝐳L� ,𝐐

¡@ = y
𝐐@ 𝐐X
𝐐Xb 𝐐x

z (5.53) 

such that 

 𝐐@ ∈ ℂ([t>, t@], ℝ���×���), 𝐐X ∈ ℂ ~[t>, t@], ℝ���×���
t �	

𝐐x ∈ ℂ([t>, t@], ℝ���
t ×���

t ) 

(5.54) 

Let introduce the following definitions 

 𝐌 = 𝐒 −	𝐐X𝐐x¡@𝐁 (5.55) 

 𝐍 = 𝐁b𝐐x¡@𝐁+ 𝐇b𝐑𝐇 (5.56) 

 𝐋 = 𝐐@ − 𝐐X𝐐x¡@𝐐Xb (5.57) 

where 𝐋 is the Schur complement of the matrix 𝐐x (Toselli and Widlund, 2005) and 𝐐x¡@ =

(𝐐x¡@)b is invertible since 𝐐 is positive definite matrix. Using, (5.55)-(5.57) the following 

Lemma can be proved. 

Lemma 1: The problem in (5.51)-(5.52) is equivalent to the following ODE boundary-value 

problem: 

 ¹𝐳̇Ö = −𝐌b𝐳Ö + 𝐍𝐩, 𝐳Ö(𝑡@) = 𝑙Ö
𝐩̇ = 𝐌𝐩 + 𝐋𝐳Ö, 𝐩(𝑡>) = 𝐐>¡@𝐳Ö(𝑡>)

 (5.58) 

Proof: Considering the splitting of vector 𝐳 and matrix 𝐐¡@ defined by (5.53), the system of 

equations (5.51) and (5.52) are then rewritten as follows 

 x
𝐳Ö̇ 	= 	−𝐒b𝐳Ö − 𝐁b𝐳L + 𝐇b𝐑𝐇𝐩
0 = 𝐁𝐩 +𝐐Xb𝐳Ö + 𝐐x𝐳L
𝐳Ö(𝑡@) = 𝑙Ö

 (5.59) 
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 ¹
𝐩̇ = 𝐒𝐩 +𝐐@𝐳Ö + 𝐐X𝐳L
𝐩(𝑡>) = 𝐐>¡@𝐳Ö(𝑡>)

 (5.60) 

From the algebraic part of system (5.59), 𝐳L is derived as 

 𝐳L = −𝐐x¡@(𝐁𝐩 +𝐐Xb𝐳Ö) (5.61) 

Inserting the expression of 𝐳L (5.61) into (5.59) and (5.60) and regrouping the terms, the 

flowing equations for 𝐳Ö and p are obtained 

 ¹𝐳Ö̇ 	= 	 (𝐁
b𝐐x¡@𝐐Xb − 𝐒b)𝐳Ö − (𝐁b𝐐x¡@𝐁+ 𝐇b𝐑𝐇)	𝐩

𝐩̇ = (𝐐@ − 𝐐X𝐐x¡@𝐐Xb)𝐳Ö + (𝐒 − 𝐐X𝐐x¡@𝐁)𝐩
 (5.62) 

Taking into account the notation (5.55)-(5.57) in the formulation of (5.62) completes the proof. 

■ 

The solution of the system (5.58) is obtained using the standard argument from LQ control 

(Reid, 1972). Let matrix 𝐊 defines the relationship between 𝐳Ö and 𝐩 

 𝐩 = 𝐊𝐳Ö (5.63) 

Inserting (5.63) into the second equation of (5.58) and differentiating it results in 

 𝐊̇𝐳Ö = 𝐌𝐊𝐳Ö − 𝐊𝐳Ö̇ + 𝐋𝐳Ö (5.64) 

and inserting the first equation of (5.58) into (5.63) leads to the following equation 

 𝐊̇𝐳Ö = 𝐌𝐊𝐳Ö + 𝐊𝐌b𝐳Ö − 𝐊𝐍𝐊𝐳Ö + 𝐋𝐳Ö (5.65) 

with the initial condition 

 𝐊(𝑡>)𝐳Ö(𝑡>) = 𝐐>¡@𝐳Ö(𝑡>) (5.66) 

Matrix 𝐊(𝑡), therefore, needs to satisfy the following matrix differential Riccati equation 

 ¹𝐊̇ = 𝐌𝐊 + 𝐊𝐌b − 𝐊𝐍𝐊+ 𝐋
𝐊(𝑡>) = 𝐐>¡@

 (5.67) 

Now assuming that 𝐊(𝑡) solves (5.67) and using (5.63) it is easy to see that 𝐳Ö solves the 

following equation 

 ¹𝐳Ö̇ 	= 	−𝐌
b𝐳Ö + 𝐍𝐊𝐳Ö

𝐳Ö(𝑡@) = 𝑙Ö
 (5.68) 
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and so 

 ℓ(𝐮<) = Q 𝐑𝐇(𝑡)𝐊𝐳Ö𝐲(𝑡)𝑑𝑡
:è

:®
 (5.69) 

Since (5.69) holds true for any 𝑙, it follows that 𝐮< is the minimax estimate of the state vector 

of the DAE (5.38) and can be found from the feedback equation defined as follows (Zhuk, 

2013) 

 ¹𝐮̇ 	=
(𝐌 − 𝐊𝐍)𝐮 + 𝐊𝐇b𝐑𝐲(𝑡)

𝐮(𝑡>) = 𝐮>
 (5.70) 

The set of equations (5.67)-(5.70) defines a minimax filter for the DAE (5.38)-(5.43). 

 

5.2.2 The	algorithms	with	activation	and	deactivation	

The proposed minimax filter (5.38)-(5.43) can be used in two different settings:  

A. For a known initial condition with no observations. In this case the observation matrix 

𝐇 is set to be zero, meaning that the second term in the (5.56) of the Riccati equation 

(5.67) and the term 𝐊b𝐇b𝐑𝐲(𝑡) in the feedback equation (5.70) are both zero. The 

inverse of 𝐐> in (5.67) controls the norm of the error related with the initial conditions. 

If the initial conditions are known exactly, matrix 𝐐> approaches to infinity, so its 

inverse is the zero matrix. In this setting the algorithm can be considered as the DD 

solver in which exchange of information between the adjacent subdomains is carried 

out by the minimax filter. 

B. For an unknown initial condition, but with available noisy observations. The 

observation matrix 𝐇 becomes non trivial and the level of noise is described by the 

matrix 𝐑. Hence, the feedback equation (5.70) has a nonzero term 𝐊b𝐇b𝐑𝐲(𝑡) with 

zero initial conditions. 

Furthermore, application of DD to the transport equation allows for more robust organisation 

of computations then in the traditional filter. Assuming the location of concentration spill is 

detected, the actual calculation takes place only over those subdomains where the concentration 

is above zero. In particular, the subdomain gets activated/deactivate once the concentration 

reaches/leaves the boundaries of that subdomain. Depending on a geometrical decomposition, 

this enables the exclusion of non-active subdomains from the computations and may decrease 

the size of both the Riccati equation (5.67) and the feedback equation (5.70). 
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Require: 

    T 

    globalProblem 

// number of time steps 

// description of the global physical problem 

    subProblems = DecomposeProblem(globalProblem) 

    for t = 1 to T do 

        actProblems = GetActiveSubproblem(subProblems) 

        for subproblem in actProblems do 

            DiscretiseSubproblemByFem(subproblem, t) 

            ConstructDAE(subproblem, daeProblem, t) 

            If HasObservations(subproblem) then 

                InitObservations(subproblem, t) 

            endif 

        endfor 

            ComputeFilterMatrices(daeProblem, t) 

            SolveRiccatiEquation(daeProblem, t) 

            SolveFeedbackEquation(daeProblem, t) 

    Endfor 

 

 

 

 

// as in (5.20)-(5.21) 

// produce (5.29)-(5.31) 

 

 

 

 

 

// solve (5.67) 

// solve (5.70) 

 

Figure 5.1 Algorithm of the DAE minimax filter. 

The algorithms of the minimax filter for DAE problem with activation/deactivation are 

described in Figure 5.1. 

 

5.3 Numerical	experiments	
The feasibility of solving the localised problem (5.13)-(5.18) via (5.67)-(5.70) is addressed 

here by performing a set of numerical experiments that benchmark solutions of the localised 

problem versus solutions of the global problem. The set of numerical experiments is conducted 

using FEM approximations for both the global problem and the localised problem. 

To investigate properties of the filter, two experiments have been performed. Experiment 1 

represents the test experiment configuration that employs a trivial underlying flow. Simulations 

of Experiment 1 are carried out in both settings A and B. Experiment 2 is carried out for Setting 

B and employs a complex underlying flow that is generated using the Environmental Fluid 
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Dynamics Code (EFDC), a complex hydrodynamic model that is used in marine and coastal 

applications (Hamrick, 1992). 

In both experiments, the matrix 𝐐 that defines the control ellipsoid (5.39) is constructed to 

minimise the algebraic error 𝐞< and to constrain the model error 𝐞J. In order to do so, 𝐐 is 

assumed to be block-decomposed due to the differential and algebraic parts of equation (5.38).  

Hence, it takes the form 

 𝐐 = y𝐐@ 0
0 𝐐x

z (5.71) 

where 

 𝐐@ =
𝑐J
𝛾b
𝐌, 𝐐x = 𝑐<𝐈 (5.72) 

and 𝛾b = 84, 𝑐J = 2. Algebraic constant 𝑐< > 0 is taken to be 10, 100 or 1000 reflecting 

different levels of confidence in the continuity equation (5.30). 

It is assumed that the initial conditions are non zero only in the first subdomain and are 

generated by a standard linear spline (4.91). Moreover, observations are present only in the 

first subdomain and only the first subdomain is activated at the beginning of both experiments. 

 
Figure 5.2. Configuration of Experiment 1. 

 
Figure 5.3. Configuration of Experiment 2. 
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5.3.1 Experiment	1	

In this experiment a set of numerical simulations is performed adopting the test experiment 

configuration (see Section 4.2.1) for a DA problem (4.1). The global domain is further 

decomposed into four equal size subdomains [0,1] × [0,1] metres along horizontal axis as in 

Figure 5.2. The underlying problem is defined by the constant velocity flow 𝜇 = [0.2; 	0]b 𝑚/𝑠 

and the constant diffusion coefficient 𝜖 = 10¡¼	𝑚X/𝑠. The timestep is taken to be 0.1 𝑠 and 

the length of the simulation is set to be 200 time steps. It is also assumed that the analytical 

solution of this problem is given by the Gaussian function 𝑢<(𝑡, 𝑥, 𝑦) defined in (4.91) with the 

parameters (4.92)-(4.94). 

Setting A is used to demonstrate correctness of the proposed DD approach with Dirichlet 

transmission conditions. For this setting, the initial conditions are known and given by 

𝑢<(0, 𝑥, 𝑦). The solutions of the DAE filter (5.67), (5.70) 𝐮{PJ are compared to the solution 

𝐮IJK of the free run of the global problem discretised by 900 bilinear finite elements. Each 

local problem is discretised with 900 finite elements and with 𝑐< = 1000. Results are first 

shown in Figure 5.4, in which the spatial norm of the DAE and FEM solutions 𝐮{PJ and 𝐮IJK 

are plotted over time. Figure 5.5 shows the similarity of the spatial errors of 𝐮{PJ and 𝐮IJK. 

The minimax estimation error at each time step is controlled by the Riccati matrix via 

 
Figure 5.4 The spatial norm of the FEM solution, 

DAE estimate, DAE minimax estimates and minimax 
estimate plotted over time for the problem from 

Experiment 1. 

 
Figure 5.5 The spatial error of the FEM solution, 

DAE estimate, DAE minimax estimate and minimax 
estimates plotted over time for the problem from 

Experiment 1. 
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 𝑙bG𝐮|}~J(𝑡) −	𝐮KO<OKPQ(𝑡)H ≤ [𝑙b𝐊(𝑡)𝑙]
@
X (5.73) 

where 𝑙 is an arbitrary vector. Selecting l = 𝑙� to be an eigenvector that corresponds to the 

largest eigenvalue 𝜆 of the matrix 𝐊(𝑡) results in the following error estimate: 

 𝑙�
bG𝐮|}~J(𝑡) −	𝐮KO<OKPQ(𝑡)H ≤ √𝜆 (5.74) 

Figure 5.6 tracks the maximum eigenvalue of the Riccati matrix that bounds the minimax 

estimation error in (5.74). Since the velocity field in this experiment is constant in time, the 

maximum Riccati eigenvalue is computed for 5000 time steps to demonstrate its convergence 

to some value and as a result to prove that estimation error is bounded in time. 

In Figure 5.7 the norm of the algebraic constraint 𝐁𝐮{PJ is tracked over time. As it can be seen 

in the graph, this norm is decreasing over time proving convergence property of the DAE 

minimax filter. This is explained by the fact that, Riccati equation incorporates algebraic 

constraint into the model and over time the influence of the algebraic constraint on an estimate 

increases. 

The same experiment was made for other configurations as reported in Table 5.1 where the 

estimation error and the norm of algebraic constraint are presented. From the Table 5.1 it can 

be observed that the increase in the algebraic constraint 𝑐< corresponds to the decrease in the 

norm of 𝐁𝐮{PJ and to the decrease of the estimation error 𝑒ø. 

 
Figure 5.6 The largest eigenvalue of the Riccati 

matrix of the problem from Experiment 1A plotted 
over time. 

 
Figure 5.7 The spatial norm of the algebraic 

constraint of the problem from Experiment 1A 
plotted over time. 
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Table 5.1 Comparison of metrics for different values of algebraic constant 𝑐< 

𝑐< ‖𝐁𝐮{PJ‖ 𝑒ø 

1 26.6153 26.78 % 

10 4.2693 16.23 % 

100 1.3715 16.18 % 

1000 0.4352 16.17 % 

For Setting B, the underlying flow field and domain splitting are the same as above. The initial 

conditions are not known, but the global domain is completely observed. Observations are 

generated numerically by adding to 𝑢<(𝑡, 𝑥, 𝑦) noise sampled from the uniformly distributed 

interval [−1, 1]. The spatial norm and spatial error of the estimate 𝐮{PJ	KO<OKPQ  obtained from 

the DAE minimax filter are provided in Figure 5.4 and Figure 5.5 correspondingly which also 

show the speed of convergence of 𝐮{PJ	KO<OKPQ  to the traditional minimax estimate 𝐮KO<OKPQ 

and analytical solution. Similarity of the quality of the DAE minimax estimate 𝐮KO<OKPQ to the 

estimation quality of traditional minimax filter is further confirmed be the following estimation 

errors: 𝑒ø(𝐮{PJ	KO<OKPQ) = 16.8	% and 𝑒ø(𝐮KO<OKPQ) = 15	%. 

It should be noted that, while in Experiment 1A there were no observations, the algebraic part 

of DAE (5.52) could be considered as the observation equation. Since the pair (𝐒,𝐁) is not 

observable (there can be different initial conditions for the corresponding FEM model, leading 

to solutions that are in the null-space of 𝐁), it follows that the algebraic part of DAE does not 

lead to a decrease in the eigenvalues of the Riccati matrix representing the level of the 

uncertainty in the system. On the other hand, by adding actual observations a decrease of the 

maximal eigenvalue of the Riccati matrix is observed. 

 

5.3.2 Experiment	2		

For the second test, the underlying flow field was generated by EFDC. The global domain is 

decomposed into four subdomains as in Figure 5.3 discretised by 1225 finite elements each. 

Due to the complex behaviour of the underlying flow, the analytical solution for this 

experiment is not known. So that, the initial conditions for Setting A are defined by the linear 

spline with parameters as in (4.94) and FEM solution of the corresponding free-run model 𝐮�øJ 

is considered as a ground truth, i.e., 𝐮|}~J = 𝐮IJK. For Setting B, observations are generated 
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by restricting 𝐮IJK on the first subdomain (see Figure 5.3), sampling it every five time-steps 

and adding to it noise sampled from the uniformly distributed interval [−0.1,0.1] so that its 

largest value is approximately 10% of contaminant concentration largest value. 

In comparison to Experiment 1, the underlying flow field is not stationary and changes its 

direction over time and space. That makes the concentrations to cross the boundaries between 

the subdomains several times. This is indeed shown in Figure 5.8 and Figure 5.9 where velocity 

flow field is depicted at two distinct instances of time: (i) at time step 80 in Figure 5.8 and (ii) 

at time step 420 in Figure 5.9. 

Results of the simulations are shown in Figure 5.10 and Figure 5.11 where spatial norms and 

spatial errors of DAE estimate for Setting A 𝐮{PJ and DAE minimax estimate for Setting B 

𝐮{PJ	KO<OKPQ  are plotted over time. As it can be seen, even for a complicated velocity field 

 
Figure 5.8 EFDC generated velocity field and DAE 

minimax estimate plotted at time step 80. 

 
Figure 5.9 EFDC generated velocity field and DAE 

minimax estimate plotted at time step 430. 

 
Figure 5.10 The spatial norm of the FEM solution, 
DAE estimate and DAE minimax estimates plotted 

over time for the problem from Experiment 2. 

 
Figure 5.11 The spatial error of the DAE estimate 

and DAE minimax estimate plotted over time for the 
problem from Experiment 2. 
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minimax filter for DD provides similar results to the FEM solution. Comparing to Experiment 

1, this experiment employs a denser FEM grind which results in a better convergence of 𝐮{PJ 

to 𝐮IJK. This is justified by the estimation error 𝑒ø(𝐮{PJ) = 4.27% provided 𝐮|}~J = 𝐮IJK. 

Figure 5.8 and Figure 5.9 also demonstrate how DAE minimax filter recreates the true state for 

Setting B from noisy observations. The convergence of the DAE minimax estimate for Setting 

B 𝐮{PJ	KO<OKPQ  to the FEM solution that is used for observation sampling is further shown in 

Figure 5.10 and Figure 5.11 after approximately 300 time steps. 

For the simple fluid flow taken in the Experiment 1 the corresponding stiffness matrix is 

stationary and stable in a Lyapunov sense. In the present experiment, the fluid flow is non-

stationary and exhibits a complex behaviour that together with the FEM approximation error 

amounts to the non-stationary stiffness matrix with positive eigenvalues. This artificial 

instability is resolved by the stabilizing effect brought by the minimax filter that injects the 

stabilizing feed-back into the state equation. 

 

5.3.3 Computational	performance	

Computational performance of the DAE minimax filter is different to the computational 

performance of the traditional minimax filter in two ways. The application of DD provides 

computational benefits since it reformulates underlying mass and stiffness matrices into a block 

structured matrices. This reduces the number of operations involved in their multiplications or 

inversions and as a result, speeds up computations of the feedback equation. On the other hand, 

the application of DD also provides computational overhead. The decomposition interface 

nodes are included several times in the state vector of the DAE in adjacent local subproblems. 

As a result, the size of the discrete systems (5.67), (5.70) of the DAE minimax filter is increased 

compared to the size of the system of the traditional minimax filter; this produces the 

computational overhead. 

Assuming the total number of FEM nodes is 𝑁��
�øJ, the complexity of the traditional minimax 

filter is given as 14𝒞�����ù�����ù
 (see Section 4.2.2). Let 𝑁��l  describes the number of FEM nodes 

over the interface of decomposition, then the size of the DAE minimax filter is 𝑁�� = 𝑁��
�øJ +

𝑁��l  and its computational complexity is 13𝒞������  or 13𝒞�����ù±���t ,���
��ù±���

t . These 

estimates suggest that the optimal number of subdomains should be chosen such that it balances 

the benefits and overhead introduced by the DAE minimax filter. 
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The theoretical considerations are further tested on two numerical simulations. Simulation 1 is 

performed using global domain of the size [0,6] × [0,1] metres and is decomposed in three 

different ways: with 2, 3 and 6 subdomains. Simulation 2 is performed using global domain of 

the size [0,8] × [0,1] metres and is also decomposed in three different ways: with 2, 4 and 8 

subdomains. The remaining configurations are similar to those as in the Experiment 1.B. 

Table 5.2 Comparison of CPU time measurements for experiments with different number of subdomains 

Simulation 1 Simulation 2 

Traditional 

minimax 
DAE minimax 

Traditional 

minimax 
DAE minimax 

Time 
number of 

subdomains 
Time Time 

number of 

subdomains 
Time 

789	𝑠 

2 761	𝑠 

1910	𝑠 

2 1811	𝑠 

3 786	𝑠 4 1857	𝑠 

6 873	𝑠 8 2064	𝑠 

Measurements of execution CPU time of those simulations are presented in Table 5.2. Those 

results demonstrate that indeed for a small number of subdomains in the DAE minimax filter, 

the benefits related to a block structure of mass and stiffness matrices are more significant than 

the overhead driven by the increase of the number of interface nodes 𝑁��l  and the corresponding 

increase of state vector. In this case, the DAE minimax filter with 2 and 3 subdomains in 

Simulation 1 and the DAE minimax filter with 2 and 4 subdomains in Simulation 2 are 

computed faster than the corresponding traditional minimax filters. If the number of subdomain 

is increasing, the associated overhead becomes more significant than the associated benefits. 

In Table 5.2 this is shown for the DAE minimax filter with 6 subdomains in Simulation 1 and 

for the DAE minimax filter with 8 subdomains in Simulation 2. 

 

5.4 Discussion	and	conclusions	

This chapter presented an approach for DA problems that combines both DD and minimax 

filters. The original problem was reformulated into DAE and solved using the Kalman duality 

principle and the minimax framework. 
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The proposed approach follows the standard idea of decomposition, but, enforces transmission 

conditions on a discrete level as an optimisation constraint in an algebraic form. This allows 

for independent choice of boundary conditions between subdomains so that the approach can 

be easily applied for complicated physical processes including heterogeneous problems. 

Of note is that the application of DD did not reduce the complexity of the presented method in 

comparison to the traditional minimax filter as expected. While the localised stiffness and 

observation matrices (5.24) and (5.32) possess a block-matrix structure (due to DD), the 

presence of the algebraic constraint inside terms (5.55) and (5.56), and correspondingly inside 

the Riccati equation (5.67), blends the matrix components which leads to a general form of the 

Riccati matrix. As a result, the full size Riccati and feedback equations (5.67) and (5.70) are 

solved.  

The decomposition influences the computational performance of the DAE minimax algorithm 

in two ways: on the one hand, it decreases the computational cost associated with the 

computation of local matrices, but on the other it increases the computational cost associated 

with the solution of the Riccati equation. The numerical experiments demonstrate that for a 

small number of subdomains, the execution CPU time of the presented approach is smaller than 

for the traditional minimax approach. When the number of subdomains exceeds a certain 

threshold, the execution CPU time of the DAE minimax filter is higher than for the traditional 

minimax filter. As Table 5.2 suggests, for Simulation 1 and Simulation 2 the optimal number 

of subdomains is 2. However, it is possible that for simulations with larger numbers of FEM 

nodes, the optimal number of subdomains would be higher. 

For the simulations used in this chapter, the algorithm of the DAE minimax filter is 

implemented in a sequential way and performed using a single processor machine with 4 cores. 

An additional advantage of the presented algorithm in contrast to the traditional algorithm is 

that computations of local matrices can be naturally organised in parallel on a multi-processor 

computer. For instance, each subdomain can be assigned to a separate computation node. This 

will not change the execution CPU time but will decrease the execution wall-clock time 

compared to the non-parallel implementation. 

The application of DD for transport phenomena has a potential for the activation or deactivation 

of subproblems that are, or are not, involved in the computations for the current time step. This 

may reduce the computational cost of the method. Activation/deactivation may be implemented 

as the addition/elimination of the corresponding blocks in the matrices of the Riccati equation 
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(5.67) which destroys the optimality properties of the minimax framework and breaks the 

equivalence with the traditional minimax filter. While numerical simulations with subdomain 

activation show good results for free run model, for DAE minimax subproblem deactivation 

leads to the deterioration of the estimates. More stable deactivation procedure requires 

additional investigation. 
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6 Interconnected	localised	minimax	filter	

To address the problem of the high computational demands of the traditional minimax filter in 

the previous chapter, the approach which combines DD with the minimax filtering was 

developed in the form of DAE. In that case, the transmission of data between subdomains was 

represented by a set of trace operators, discretised and enforced through the additional algebraic 

constraint which produced the DAE. 

In this chapter, another approach of DD is used in combination with the minimax filter. In this 

case, the transmission conditions are enforced as additional boundary conditions over common 

boundaries between subdomains. Comparing to the DAE problem, the localised problem is 

continuous and can be solved using the Schwarz iterative approach. As a result, the estimation 

problem is transformed from one general filter into a number of small local filters that are 

interconnected. 

The choice of the Schwarz DD techniques that is suitable for the solution of advection-diffusion 

problems depends on the nature of the problem, in particular, on the configuration of boundary 

conditions. It is possible to distinguish two groups of Schwarz DD methods (Quarteroni and 

Valli, 1999; Toselli and Widlund, 2005): (i) the Dirichlet-Neumann techniques provide a good 

approximation when the diffusive part is dominant, but may produce discrepancies when the 

advective part becomes more relevant; (ii) the natural boundary conditions techniques provide 

a good approximation when the advection part is dominant, enforcing boundary conditions 

over the interface taking into account the hyperbolic nature of the problem, but may produce 

discrepancies when the diffusive part of the problem is dominant. Since this work deals with 

advection-dominated flows, it is reasonable to adopt the second approach, which is also known 

in the literature as adaptive Dirichlet-Neumann (ADN) DD (Gastaldi et al., 1998). 

Some of the results of this chapter were published by the author in Ragnoli et al. (2015), 

however, this chapter contains several significant extensions relative to that paper: i) in this 

chapter problem errors are defined in terms of ℒ� ellipsoids in contrast to ℒX ellipsoids used 

in that paper (see Section 6.1.1); ii) the localised filter is defined for a continuous in time and 

space problem (see Section 6.1.1); iii) the FEM approximation of the localised filter are 

presented in a much more detailed way (see Section 6.1.2); iv) variants of the filter with the 

reinitialisation procedure and pseudo-observations are introduced in Section 6.1.4 and Section 



116 

6.1.5; v) an additional set of numerical simulation with non-stationary velocity flow is added 

(see Section 6.2.2); vi) last but not least, this chapter provides an investigation of the 

computational performance of the localised minimax filter in Section 6.2.3. The main 

contribution of the author of this thesis to that paper are the mathematical formulation of the 

localised filters, code development and numerical simulations. 

 

6.1 Global	and	Localised	Problems	

The global problem is the continuous DA problem defined on a spatiotemporal domain 

([𝑡>; 𝑡@] × Ω) with a background model 

 

⎩
⎨

⎧
𝜕𝑢(𝑡, 𝑥)
𝜕𝑡 = 𝐿𝑢(𝑡, 𝑥) + 𝑒J(𝑡, 𝑥)

𝑢(0, 𝑥) = 𝑢>(𝑥)+𝑒>(𝑥)
𝑢(𝑡, 𝑥) = 0, 𝑥 ∈ ∂Ω

 (6.1) 

where 

 
𝐿: 𝐻@([𝑡>; 𝑡@] × Ω) → 𝐿X([𝑡>; 𝑡@] × Ω) 

𝑢 ↦ 𝐿𝑢 = 𝜖Δ𝑢 − ∇ ⋅ (𝜇𝑢), 𝜖 = 𝑐𝑜𝑛𝑠𝑡 
(6.2) 

The observation equation is written as 

 𝑦(𝑡, 𝑥) = 𝐻𝑢(𝑡, 𝑥) + 𝑒N(𝑡, 𝑥) (6.3) 

where 𝐻 is the linear operator 

 𝐻𝑢(𝑡, 𝑥) = Qℎ(𝑧 − 𝑥)𝑢(𝑡, 𝑧)𝑑𝑧
T

 (6.4) 

The model error 𝑒J(𝑡, 𝑥) and the initial condition error 𝑒>(𝑥) are uncertain but bounded inside 

the 𝐿�-ellipsoid 

 ℒJ� = {𝑒>(𝑥), 𝑒J(𝑡, 𝑥): |𝑒>(𝑥)| ≤ 𝑞à>(𝑥), |𝑒J(𝑥)| ≤ 𝑞à(𝑡, 𝑥)} (6.5) 

The observation error 𝑒N(𝑡, 𝑥) is assumed to be a white noise with bounded second moments 

taken as an elements of the following convex bounded set 

 ℒN� = ã𝑒N(𝑡, 𝑥): 𝑒N(𝑡, 𝑥) = 0, 𝑒NX(𝑡, 𝑥)𝑟̃(𝑡, 𝑥) ≤ 1æ (6.6) 

The weighting functions 𝑞à>(𝑥), 𝑞à(𝑡, 𝑥) and 𝑟̃(𝑡, 𝑥) are positive and bounded. 
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In the following, the continuous global problem (4.1)-(4.7) is localised by splitting it into 

subproblems using the ADN DD approach. It should be noted that not only the background and 

observation equations but also the error ellipsoids are restricted onto local subdomain. Since 

𝐿�-ellipsoid imposes pointwise restrictions on its elements, it is in a good agreement with the 

geometrical decomposition of the domain of interest. After that, the minimax filters are 

formulated for each subproblem independently and exchange information through the inherited 

mechanism from ADN method. Finally, the set of local filters is computed using iterative 

methods. 

 

6.1.1 Interconnected	localised	minimax	filters	

Let the domain Ω be divided into 𝑁 non-overlapping subdomains Ω@, … ,Ω�. Besides the 

common boundary between subdomains Γ�,� and decomposition interface Γ (see Section 5.1.1), 

the inflow and outflow parts of the Γ�,� and 𝜕Ω� are defined as follows 

 Γ�,��� = ¦𝑥 ∈ Γ�,�: 𝜇(𝑥) ⋅ 𝑛(𝑥) < 	0§ (6.7) 

 Γ�,�Nô: = ¦𝑥 ∈ Γ�,�: 𝜇(𝑥) ⋅ 𝑛(𝑥) > 	0§ (6.8) 

 𝜕Ω��� = {𝑥 ∈ 𝜕Ω�: 𝜇(𝑥) ⋅ 𝑛(𝑥) < 0} (6.9) 

 𝜕Ω�Nô: = {𝑥 ∈ 𝜕Ω�: 𝜇(𝑥) ⋅ 𝑛(𝑥) > 0} (6.10) 

 Γ��� = ¦Γ�,���:Γ�,��� ≠ ∅§ (6.11) 

 Γ�Nô: = ¦Γ�,�Nô::Γ�,�Nô: ≠ ∅§ (6.12) 

where 𝑛(𝑥) is the outward normal vector at the point 𝑥. 

The continuous background model (4.1) is equivalent to a set of local backgrounds 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝜕𝑢�
𝜕𝑡 	= 	𝐿�𝑢� + 𝑒�
𝑢�(𝑡, 𝑥) = 0, on	𝜕Ω ∩ 𝜕Ω�
𝑢�(𝑡, 𝑥) = 𝑢�(𝑡, 𝑥), on	Γ�,��� ∈ Γ���

𝜕𝑢�(𝑡, 𝑥)
𝜕𝑛 =

𝜕𝑢�(𝑡, 𝑥)
𝜕𝑛 , on	Γ�,�Nô: ∈ Γ�Nô:

𝑢�(0, 𝑥) = 𝑢>,�(𝑥) + 𝑒>,�(𝑥)

 (6.13) 

where the local operator 𝐿� is the restriction of the original operator 𝐿 on Ω�, and 𝑒�, 𝑢>,� and 

𝑒>,� are the restrictions of 𝑒, 𝑢> and 𝑒> onto Ω� (see Section 5.1.1). The localised model and 

initial conditions errors 𝑒>,� and 𝑒� belong to 

 
ℒJ,�� = ¦𝑒>,�(𝑥), 𝑒J,�(𝑡, 𝑥):	�𝑒>,�(𝑥)� ≤ 𝑞à>,�(𝑥),

�𝑒J,�(𝑡, 𝑥)� ≤ 𝑞à�(𝑡, 𝑥)	on	Ω�§ 
(6.14) 

the restriction of ℒJ� onto Ω�. The restriction of the observation equation is obvious and defined 

as 

 
𝑦�(𝑡, 𝑥) = 𝐻�𝑢�(𝑡, 𝑥) + 𝑒N,�(𝑡, 𝑥),	

𝐻�𝑢�(𝑡, 𝑥) = Q ℎ(𝑥 − 𝑦)𝑢�(𝑥, 𝑡)𝑑𝑥
Tm

 
(6.15) 

where the local observation error 𝑒N,� belongs to the local 𝐿� observations ellipsoid 

 ℒN,�� = ã𝑒N,�(𝑥), 𝑒N,�X (𝑡, 𝑥)𝑟̃�(𝑡, 𝑥) ≤ 1	on	Ω�æ (6.16) 

The functions 𝑞à>,�, 𝑞à� and 𝑟̃� are corresponding restrictions of 𝑞à>, 𝑞à and 𝑟̃. 

Equations (6.13)-(6.16) define the 𝑖-th local problem and a set of 𝑁 local problems (6.13)-

(6.16) define the localised problem. The choice of the boundary conditions on the interface 

boundaries Γ���	 and Γ�Nô: guarantees the continuity of the solution of the localised problem 

across the interface Γ. Boundary conditions on external boundaries 𝜕Ω∩ 𝜕Ω� are inherited 

from the global problem which implies the equivalence between the localised and global 

solutions. 

The localised problem described above is an application of the DD technique known as the 

ADN method (Gastaldi et al., 1998). Since advection-dominated flows are considered, a further 

modification of the formulation (6.13) is possible. For the pure advection problems, the outflow 

boundary conditions on Γ�,�Nô: are not required as it follows from the physical properties of the 

flow 𝜇(𝑡, 𝑥). This suggests the hyperbolic nature of the background model can be incorporated 
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into (6.13) by imposing the homogeneous Neumann condition, which leads to a damped ADN 

(d-ADN) decomposition. The latter is known to work well for advection-dominated problems 

(Ciccoli, 1996). The actual computational scheme is then carried out by solving for 𝑢� over Ω� 

and iterating until convergence, a so called iterative Schwarz approach (Quarteroni and Valli, 

1999). More specifically, it starts with a set of initial solutions {𝑢�>}, and compute {𝑢�©±@} from 

{𝑢�©}, 𝑛 ≥ 0 by solving numerically the following problem: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕𝑢�

©±@

𝜕𝑡 = 𝐿�𝑢�©±@ + 𝑒J,�

𝑢�©±@(𝑡, 𝑥) = 0, on	𝜕Ω�� ∩ 𝜕Ω���

𝑢�©±@(𝑡, 𝑥) = 𝑢�©(𝑡, 𝑥), on	Γ�,��� ∈ Γ���

𝜕𝑢�©±@(𝑡, 𝑥)
𝜕𝑛 = 0, on	Γ�,�Nô: ∈ Γ�Nô:

𝑢�©±@(0, 𝑥) = 𝑢>,�(𝑥) + 𝑒>,�(𝑥)

 (6.17) 

The heuristic purpose of the Schwarz iterations defined in (6.17) is to enforce the continuity of 

the solution of the problem (6.17) along the interfaces. Once this is achieved, the iterative 

process can be stopped. While this work does not study the rate of the convergence of the 

iterative Schwarz d-ADN method, it should be noted that if the direction of the flow is constant, 

only one iteration of the Schwarz method is required. In the general case, it can be shown that 

the sequence ¦𝑢�©§ converges weakly in 𝐻@(Ω@) × …×𝐻@(Ω�) to the unique solution of the 

localised problem, provided the latter exists (Gastaldi et al., 1998). 

The minimax estimate (analysis) 𝑢�
<,©±@ of 𝑢�©±@, the solution of the 𝑘-th Schwarz iteration for 

𝑖-th local problem (sometimes referred to as the (𝑘 + 1, 𝑖)-filter), is introduced given 

observations 𝑦�, data from the previous Schwarz iteration 𝑢�©, and assuming that 𝑒>,� , 𝑒J,� ∈

ℒJ,�X , and 𝑒N,� ∈ ℒN,�X . 

To construct minimax filters for each subproblem, the local error ellipsoids ℒJ,��  and ℒN,��  are 

approximated by 𝐿X-ellipsoids (see Section 4.1.1). As a result, denoting 𝑇 = 𝑡@ − 𝑡>, the model 

error and initial conditions error are bounded in 
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ℒJ,�X = ê𝑒>,�(𝑥), 𝑒J,�(𝑡, 𝑥):Q 𝑒>,�X (𝑥)𝑞à>,�¡X(𝑥)𝑑Ω�
Tm

+Q 𝑒J,�X (𝑡, 𝑥)𝑞à�¡X(𝑡, 𝑥)𝑑Ω�𝑑𝑡
[:®;:è]×Tm

≤ (𝑇 + 1)𝐴(Ω�)ë 

(6.18) 

which obviously contains ℒJ,�� . It needs to be stressed that the union of the “small” ellipsoids 

ℒJ,�X , approximating ℒJ,��  is contained in the large ellipsoid ℒJX  approximating the entire ℒJ�. 

Similarly, ℒN� is approximated by 

 ℒN,�� = ê𝑒N:Q 𝑒N,�X (𝑡, 𝑥)𝑟̃�(𝑡, 𝑥)𝑑𝑥𝑑𝑡
[:®;:è]×Tm

≤ (1 + 𝑇)𝐴(Ω�)ë (6.19) 

Ellipsoids (6.18)-(6.19) can be equivalently rewritten as 

 

ℒJ,�X = ê𝑒>,�(𝑥), 𝑒J,�(𝑡, 𝑥):Q 𝑒>,�X (𝑥)𝑞>,�(𝑥)𝑑𝑥
Tm

+Q 𝑒J,�X (𝑡, 𝑥)𝑞J,�(𝑡, 𝑥)𝑑𝑥𝑑𝑡
Tm×(>,b)

≤ 1ë 
(6.20) 

 ℒN,�� = ê𝑒N,�: Q 𝑒N,�X (𝑡, 𝑥)𝑟�(𝑡, 𝑥)𝑑𝑥𝑑𝑡
Tm×(>,b)

≤ 1ë (6.21) 

where 

 𝑞>,� =
1

𝛾b,�𝑞à>,�X
, 𝑞J,� =

1
𝛾b,�𝑞àJ,�X , 𝑟� =

𝑟̃�
𝛾b,�

 (6.22) 

 𝛾b,� = (1 + 𝑇)𝐴(Ω�) (6.23) 

and factor 𝛾b,� reflects the error of approximating ℒJ,��  and ℒN,��  by ℒJ,�X  and ℒN,�X . 

Each local solution 𝑢�©±@ of the 𝑖-th local problem (6.13), (6.15) with the errors described by 

(6.19) and (6.20) is the sum of a “mean” local solution 𝑎��±@ and noisy part 𝑏�, i.e.,  

 𝑢�©±@ = 𝑎�©±@ + 𝑏� (6.24) 

provided 𝑎�©±@ solves 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕𝑎�

©±@

𝜕𝑡 = 𝐿�𝑎�©±@

𝑎�©±@(𝑡, 𝑥) = 0, on	𝜕Ω�� ∩ 𝜕Ω���

𝑎�©±@(𝑡, 𝑥) = 𝑎�©(𝑡, 𝑥) + 𝑏�(𝑡, 𝑥), on	Γ�,��� ∈ Γ���

𝜕𝑎�©±@(𝑡, 𝑥)
𝜕𝑛 = 0, on	Γ�,�Nô: ∈ Γ�Nô:

𝑎�©±@(0, 𝑥) = 𝑢>,�(𝑥)

 (6.25) 

and 𝑏� solves 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝜕𝑏�
𝜕𝑡 = 𝐿�𝑏� + 𝑒�

𝑏�(𝑡, 𝑥) = 0, on	𝜕Ω�� ∩ 𝜕Ω���

𝑏�(𝑡, 𝑥) = 0, on	Γ�,��� ∈ Γ���

𝜕𝑏�(𝑡, 𝑥)
𝜕𝑛 = 0, on	Γ�,�Nô: ∈ Γ�Nô:

𝑏�(0, 𝑥) = 𝑒>,�(𝑥)

 (6.26) 

From (6.25) it is concluded that 𝑎�©±@ depends linearly on 𝑏� and 𝑎�© , where Ω� is adjacent to 

Ω�. Hence the minimax estimate of 𝑎�©±@ is given by 𝑎�
<,©±@, the solution of (6.25) which 

corresponds to 𝑎�©±@ = 𝑢�
<,© on Γ�,��� ∈ Γ���, where 𝑢�

<,©  denotes the (𝑘, 𝑗)-filter obtained on the 

𝑘-th iteration of the Schwarz iterative procedure. Since 𝑢�©±@ = 𝑎�©±@ + 𝑏�, it follows that 

 𝑦� = 𝐻�𝑢�©±@ + 𝑒N,� = 𝐻�𝑎�©±@ + 𝐻�𝑏� + 𝑒N,� (6.27) 

so the noisy part 𝑏�©±@ can be estimated from the shifted local measurements 𝑦à� = 𝑦� −

𝐻�𝑎�
<,©±@. Although the noisy part 𝑏�©±@ is independent of the corresponding noisy parts 𝑏�©±@, 

its minimax estimate 𝑏�
<,©±@ does depend on observations 𝑦à� which, in turn, depend on 𝑎�

<,© , so 

𝑏�
<,©±@ changes over the course of the Schwarz iterative procedure. That said, the minimax 

estimate 𝑢�
<,©±@ can be computed as the sum of 𝑎�

<,©±@ and 𝑏�
<,©±@ as 

 ℓ�G𝑢�
<,©±@H = ℓ�G𝑎�

<,©±@H + ℓ�G𝑏�
<,©±@H (6.28) 

where, analogously to Section 4.1.2, the minimax estimate 𝑏�
<,©±@ is represented as follows 

 ℓ�G𝑏�
<,©±@H = Q 𝑟�(𝑡, 𝑥)(𝐻�𝑝�)(𝑡, 𝑥)𝑦à�(𝑡, 𝑥)𝑑𝑥𝑑𝑡

Tü,m
 (6.29) 

provided 𝑤� and 𝑝� solve the following Hamiltonian system of equations: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝜕𝑤�
𝜕𝑡 = −𝐿�∗𝑤� + 𝐻�∗𝑟�(𝑡, 𝑥)𝐻�𝑝�
𝑤�(𝑇, 𝑥) = 𝑙�(𝑥), on	Ω�
𝑤�(𝑡, 𝑥) = 0, on	𝜕Ω�� ∩ 𝜕Ω���

𝑤�(𝑡, 𝑥) = 0, on	Γ�,��� ∈ Γ���

𝜕𝑤�(𝑡, 𝑥)
𝜕𝑛 = 0, on	Γ�,�Nô: ∈ Γ�Nô:

𝜕𝑝�
𝜕𝑡 = −𝐿�𝑝� + 𝑞�𝑤�
𝑝�(0, 𝑥) = 𝑞>,�(𝑥)𝑤�(0, 𝑥), on	Ω�
𝑝�(𝑡, 𝑥) = 0, on	𝜕Ω�� ∩ 𝜕Ω���

𝑝�(𝑡, 𝑥) = 0, on	Γ�,��� ∈ Γ���

𝜕𝑝�(𝑡, 𝑥)
𝜕𝑛 = 0, on	Γ�,�Nô: ∈ Γ�Nô:

 (6.30) 

where 𝑙� stands for the restriction of 𝑙 onto Ω�. 

The relation between 𝑤� and 𝑝� is expressed by the local linear mapping 𝑃�: 𝐿X(Ω�) →

𝐿X(Ω�)	such that 

 𝑝�(𝑡, 𝑥) = 	 (𝑃�𝑤�)(𝑡, 𝑥) = Q 𝑘�(𝑡, 𝑥, 𝑧)𝑤�(𝑧)𝑑𝛾
T

 (6.31) 

Substituting (4.26) into the Hamiltonian system (6.30) the local kernel function 𝑘�(𝑡, 𝑥, 𝑧) 

referred to as the local Riccati kernel is found from the following local operator Riccati 

equation (see Section 4.1.2): 

 ê
𝑘�̇ = 𝐿",�𝑘� + 𝐿#,�𝑘� + 𝑞�¡@(𝑡, 𝑥)𝛿(𝑧 − 𝑥) − 𝑃�G𝐻�∗𝑟�(𝐻�𝑘�)H
𝑘�(0, 𝑥, 𝑧) = 𝑞>,�¡@(𝑥)𝛿(𝑧 − 𝑥)	on	Ω

 (6.32) 

The minimax estimate 𝑏�
<,©±@ is then found from ODE: 

 x
𝑏�̇ = 𝐿�𝑏� + 𝑃�𝐻�∗𝑟�(𝑦à� − 𝐻�𝑏�)
𝑏�(𝑡, 𝑥) = 0				on	[𝑡>, 𝑡@] × 𝜕Ω
𝑏�(0, 𝑥) = 0				on	Ω

 (6.33) 

Since the estimate 𝑢�
<,©±@ is found as the sum of estimates 𝑎�

<,©±@ and 𝑏�
<,©±@, the equations 

(6.25) (with modified boundary condition) and (4.32) can be added resulting in a feedback 

equation for the estimate 𝑢�
<,©±@ 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝑢̇�

©±@ = 𝐿�𝑢�©±@ + 𝑃�𝐻�∗𝑟�G𝑦� − 𝐻�𝑢�©±@H
𝑢�©±@(𝑡, 𝑥) = 0				on	𝜕Ω�� ∩ 𝜕Ω���

𝑢�©±@(𝑡, 𝑥) = 𝑢�©,				on	Γ�,��� ∈ Γ���

𝜕𝑢�©±@(𝑡, 𝑥)
𝜕𝑛 = 0,				on	Γ�,�Nô: ∈ Γ�Nô:

𝑢�©±@(0) = 0				on	Ω

 (6.34) 

with the local worst-case mean-squared estimation error given by 

 

sup
Gø®,m,øù,mH∈ℒù,m

ú ,øû,m∈ℒû,m
ú
ℓ� ~𝑢�

<,©±@(𝑡@)� − ℓ�G𝑢�(𝑡@)H
X

= Q 𝑙�(𝑥)(𝑃�𝑙�)(𝑡@, 𝑥)𝑑𝑥
T

 
(6.35) 

The set of equations (6.34), (4.26) and (4.31) defines localised minimax filter. In order to solve 

localised minimax filter, the Schwarz iterative procedure should be employed.  

 

6.1.2 Finite	Element	Approximation	for	the	(𝒌 + 𝟏, 𝒊)	-	filter	

The discretisation of the localised problem and localised minimax filter is obtained similarly 

to the global problem (see section 3.2.3) and traditional minimax filter (see section 4.1.3). 

However, since the d-ADN method requires comprehensive treatment of the boundary 

conditions, the FEM discretisation of the 𝑖-th subproblem on 𝑘-th Schwarz iteration is 

developed in details. 

The FEM discretisation of the local problem consists of: 

(i) reformulating the problem (6.17) in the weak form, 

(ii) applying the Galerkin projection method to construct 

 𝐮�©±@ = ³𝐮�,@©±@(𝑡),… , 𝐮�,���m
©±@ (𝑡)µ

b

 (6.36) 

the FEM approximation of the local solution 𝑢�©±@ 

 𝑢�©±@ ≈�𝐮�,Ö©±@(𝑡)
���
m

Ö�@

𝜙Ö(𝑥) (6.37) 

in the so-called FEM space, spanned over basis function 𝜙Ö(𝑥), 𝑠 = 1,… ,𝑁��� . Note that 𝑥 =

(𝑥@, 𝑥X) is a point in a two-dimensional space, and 𝜙Ö(𝑥) is a two dimensional function. 
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A weak formulation of the problem (6.17) is obtained by multiplying (6.17) by a test function 

𝑣 ∈ 𝐻>@(Ω�); integrating it over the spatial domain Ω� and applying the divergence theorem in 

order to enforce the boundary conditions (in the weak sense). As a result, the solution of the 

problem (6.17) is found as a solution of the following i-th local weak problem: 

 Q 𝑢̇�©±@𝑣𝑑𝑥
Tm

=	 (6.38) 

 −Q 𝜖 ³
𝜕𝑢�©±@

𝜕𝑥@
𝜕𝑣
𝜕𝑥@ +

𝜕𝑢�©±@

𝜕𝑥X
𝜕𝑣
𝜕𝑥Xµ 𝑑𝑥Tm

	 (6.39) 

 +Q 𝑢�©±@ y𝜇@
𝜕𝑣
𝜕𝑥@ + 𝜇X

𝜕𝑣
𝜕𝑥Xz 𝑑𝑥Tm

 (6.40) 

 +Q 𝜖
𝜕𝑢�©±@

𝜕𝑛 𝑣𝑑𝑥
}T∩}Tm

 (6.41) 

 +Q 𝜖
𝜕𝑢�©±@

𝜕𝑛 𝑣𝑑𝑥
lm,p
m�∈lm

m�
 (6.42) 

 +Q 𝜖
𝜕𝑢�©±@

𝜕𝑛 𝑣𝑑𝑥
lm,p
û��∈lm

û��
 (6.43) 

 −Q (𝜇@𝑛@ + 𝜇X𝑛X)𝑢�©±@𝑣𝑑𝑥
}T∩}Tm

 (6.44) 

 −Q (𝜇@𝑛@ + 𝜇X𝑛X)𝑢�©𝑣𝑑𝑥
lm,p
m�∈lm

m�
 (6.45) 

 −Q (𝜇@𝑛@ + 𝜇X𝑛X)𝑢�©±@𝑣𝑑𝑥
lm,p
û��∈lm

û��
 (6.46) 

where 𝑑Ω and 𝑑Γ denote the differentials for the integrals over the subdomains and parts of 

their boundaries. In d-ADN the decomposition integral (6.43) vanishes. 

The FEM discretisation of (6.17) proceeds by means of polygonal finite elements ΛJ , 𝑚 =

1, . . , 𝑁ø�� , i.e., the domain Ω� is divided into a finite number of polygons ΛJ  with vertices 𝑥�, 

𝑟 = 1. . 𝑁��� , Ω ≈∪ ΛJ. The vertices 𝑥� form the FEM grid, and at each node 𝑥� of this grid, 

the corresponding piece-wise linear basis function 𝜙Ö	 (“hat function”) is defined that satisfies 

 𝜙Ö(𝑥�) = 𝛿Ö� (6.47) 
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where 𝛿Ö� is the Kronecker delta. The vertices of the FEM grid that are involved in the 

computation of the boundary integrals (6.41)-(6.46) are grouped in the following 

inflow/outflow subsets of indices 

 𝐷��/Nô: = {𝑟: 𝑥� ∈ Γ�,�
��/Nô:} (6.48) 

 𝑁�� = {𝑟:∃𝑚	that	𝜕ΛJ ∩ Γ�,��� ≠ ∅	and	𝑥� ∈ ΛJ} (6.49) 

 𝐼 = {𝑟: 𝑥� ∉ 𝐷��/Nô: ∪𝑁��} (6.50) 

To find the coefficients 𝐮�Ö©±@ the representation (6.37) is substituted into (6.38)-(6.46) which 

leads to the FEM model for the coefficients: 

 x𝐌�
𝑑𝐮�©±@(𝑡)

𝑑𝑡 	= 𝐒��(𝑡)𝐮�©±@(𝑡) + 𝐟��G𝑡; 𝐮�©H + 𝐌�𝐞�

𝐮�©±@(0) = 	𝐮�> + 𝐞>,�
 (6.51) 

where 𝐮�> is the FEM approximation of the restriction of 𝑢> onto Ω�, 𝐞J,� and 𝐞>,� are the vectors 

of coefficients of the spatial FEM discretisation of the model and initial errors,  

 𝐌� = êQ 𝜙Ö𝜙�𝑑𝑥
Tm

ë
Ö,��@

���
m

 (6.52) 

is the local mass matrix, 𝐒�(𝑡) is the local stiffness matrix defined by 

 𝐒��(𝑡) = 𝐒�T(𝑡) + 𝐒�
�m�(𝑡) + 𝐒�

�û��(𝑡) (6.53) 

where 

 𝐒�T(𝑡) =

⎝

⎜⎜
⎛
𝐒�m��m�
T 𝐒�û���m�

T 𝐒�m�/l�m�
T 𝐒��m�

T

𝐒�m��û��
T 𝐒�û���û��

T 𝐒�m�/l�û��
T 𝐒��û��

T

𝐒�m��m�/l
T 𝐒�û���m�/l

T 𝐒�m�/l�m�/l
T 𝐒��m�/l

T

𝐒�m��
T 𝐒�û���

T 𝐒�m�/l�
T 𝐒��T ⎠

⎟⎟
⎞

 (6.54) 

and 
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𝐒�,�T = ê−Q 𝜖 y
𝜕𝜙Ö
𝜕𝑥@

𝜕𝜙�
𝜕𝑥@ +

𝜕𝜙Ö
𝜕𝑥X

𝜕𝜙�
𝜕𝑥Xz 𝑑𝑥Tm

+Q 𝜙Ö y𝜇@
𝜕𝜙�
𝜕𝑥@ + 𝜇X

𝜕𝜙�
𝜕𝑥Xz 𝑑𝑥Tm

+Q 𝜖
𝜕𝜙Ö
𝜕𝑛 𝜙�𝑑𝑥

}T∩}Tm
ë
Ö∈�,�∈�

 

(6.55) 

with 𝑋 and 𝑌 corresponding to the subsets of the indices of the basis functions, e.g., 𝑋 = 𝐷�� 

and 𝑌 = 𝐷Nô:. In fact, 𝐒�T absorbs the integrals (6.39), (6.40) and (6.41). 𝐒�
�m�(𝑡) is defined as 

follows 

 𝐒�
�m�(𝑡) =

⎝

⎜
⎛
𝐒�m��m�
�m� 0 𝐒�m�/l�m�

�m� 0
0 0 0 0

𝐒�m��m�/l
�m� 0 𝐒�m�/l�m�/l

�m� 0
0 0 0 0⎠

⎟
⎞

 (6.56) 

with  

 𝐒�,�
�m� 	= 	 íQ 𝜖

𝜕𝜙Ö
𝜕𝑛 𝜙�𝑑𝑥lm,p

m�∈lm
m�

î
Ö∈�,�∈�

 (6.57) 

Clearly, 𝐒�
�m�(𝑡) absorbs (6.42). (6.46) is absorbed by 𝐒�

�û��(𝑡) given by 

 𝐒�
�û��(𝑡) = e

0 0 0 0
0 −𝐒�û�� ,�û��

�û�� 0 0
0 0 0 0
0 0 0 0

g (6.58) 

where  

 𝐒�û�� ,�û��
�û�� = íQ (𝜇@𝑛@ + 𝜇X𝑛X)𝜙Ö𝜙�𝑑𝑥

lm,p
û��∈lm

û��
î
Ö∈�û�� ,�∈�û��

 (6.59) 

The local source vector absorbs the integrals (6.45) and (6.44) (the latter equals 0 as the global 

problem has homogeneous Dirichlet boundary condition). It is defined by 

 𝐟��G𝑡; 𝐮��H = Í𝐒�m�,�m�
�m� (𝑡)𝐮�

�,�û�� , 0�û�� , 0�m�/l, 0�Î
b
= 𝐒�

�m�(𝑡)𝐮�� (6.60) 
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where 𝐒�
�m� is defined by substituting “out” by “in” in the definition of 𝐒�

�û�� . 𝐮�
�,�û��  denotes 

the sub-vectors of 𝐮�� with components 𝐮�Ö�  such that 𝑠 ∈ 𝐷��� ∩ 𝐷Nô:
�  (here 𝐷���  denotes 𝐷�� of 

Ω�). 𝐮�
�û��  is defined analogously. 

The block-structure of the stiffness matrix suggests the following vector splittings 

 𝐮��±@ = Í𝐮�
�m�, 𝐮�

�û�� , 𝐮�
�m�/l, 𝐮��Î

b
, 𝐮�

�m� = Í𝐮�
�m�, 𝐮�

�m�/lÎ
b
 (6.61) 

Discretisation of the local observation equation (6.15) and local error ellipsoids (6.20)-(6.21) 

is analogous to their global counterparts (see Section 3.2.3 and Section 4.1.3). Introducing the 

following notations 

 𝐇¥� = {ℎ�(𝑥Ö − 𝑧�)}Ö,��@
���
m

, 𝐇� = 𝐇¥�𝐌� (6.62) 

 𝐐¥>,�(𝑡) = 𝑑𝑖𝑎𝑔¦𝑞>,�(𝑥Ö)§Ö�@
���
m

, 𝐐>,� = 𝐌�𝐐¥>,� (6.63) 

 𝐐¥�(𝑡) = 𝑑𝑖𝑎𝑔{𝑞�(𝑥Ö)}Ö�@
���
m
, 𝐐� = 𝐌�𝐐¥� (6.64) 

 𝐑¥�(𝑡) = 𝑑𝑖𝑎𝑔{𝑟�(𝑥Ö)}Ö�@
���
m
, 𝐑� = 𝐌�𝐑¥� (6.65) 

 𝐒� = 𝐌�
¡@𝐒��, 𝐟� = 𝐌�

¡@𝐟�� (6.66) 

the FEM discretised local observation equation is written as 

 𝐲� = 𝐇�𝐮� + 𝐞N,� (6.67) 

where 𝐲� = y𝑦�(𝑥@, 𝑡),… , 𝑦� ~𝑥���m �z
b
, and the discretised local model and observation errors 

𝐿X-ellipsoids are written as 

 𝕃J,�X = ê𝐞>,� , 𝐞J,�(𝑡): 𝐞>,�b 𝐐>,�𝐞>,� + Q 𝐞J,�b (𝑡)𝐐�(𝑡)𝐞J,�(𝑡)𝑑𝑡
:è

:®
≤ 1ë (6.68) 

 𝕃N,�X = ê𝐞N,�(𝑡):Q 𝐞N,�b (𝑡)𝐑�(𝑡)𝐞N,�(𝑡)𝑑𝑡
:è

:®
≤ 1ë (6.69) 

Finally, the discrete local minimax estimate 𝐮�
<,©±@ of 𝐮�©±@, the solution of the problem (6.51), 

(6.67)-(6.69) is found as the solution of the discrete local feedback equation 
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 x
𝑑𝐮�©±@

𝑑𝑡 	= 𝐒�𝐮�©±@(𝑡) + 𝐟�G𝑡; 𝐮�©H + 𝐊�𝐇�b𝐑�G𝐲� − 𝐇�𝐮�©±@H

𝐮�©±@(0) = 𝐮�>
 (6.70) 

where 𝐊� is the solution of the discrete local Riccati equation 

 x
𝑑𝐊�
𝑑𝑡 = 𝐒�𝐊� + 𝐊�𝐒�b + 𝐐�¡@ − 𝐊�𝐇�b𝐑�𝐇�𝐊�
𝐊�(𝑡>) = 𝐐>,�¡@

 (6.71) 

The equations (6.70)-(6.71) define (𝑘 + 1, 𝑖)-minimax filter in a discrete form and represent 

the FEM approximation of the (𝑘 + 1, 𝑖)-filter. A set of 𝑁 local filters (6.70)-(6.71) are referred 

to as the discrete localised minimax filter. 

The feedback equation (6.70) has two “correctors”: the first one 𝐊�𝐇�b𝐑�G𝐲� − 𝐇�𝐮�©±@H steers 

the (𝑘 + 1, 𝑖)-filter towards the observed data and requires the solution of the corresponding 

Riccati equation (6.71); and the second one, 𝐟�G𝑡; 𝐮�©H enforces the continuity across the 

interfaces between subdomains and requires data from adjacent subproblem. The solution the 

system of 𝑁 equations (6.70) is obtained using Schwarz iterative approach. 

 

6.1.3 Error	estimates	of	the	localised	filter	

Discretisation of the integral error estimate (6.35) is straightforward and is written as 

 
sup

G𝐞®,m,𝐞ù,mH∈𝕃ù,m
ú ,𝐞û,m∈𝕃û,m

ú
G𝒍�b𝐌�(𝐮�

<,©±@(𝑡@) − 𝐮�(𝑡@))H
X

≤ 𝒍�b𝐌�𝐊�(𝑡@)𝐌�𝒍� 
(6.72) 

where 𝒍� is FEM discretisation of arbitrary function 𝑙�(𝑥). Denoting the analysis error as 

 𝐞� = 𝐮�
<,©±@(𝑡@) − 𝐮�(𝑡@) (6.73) 

the integral error estimate of the local minimax filter is written 

 𝒍�b𝐌�𝐞� ≤ (𝒍�b𝐌�𝐊�(𝑡@)𝐌�𝒍�)
@
X (6.74) 

Here (6.74) is called an integral error estimate as the right-hand side of (6.72) is an 

approximation of the integral 

 Q 𝑙�(𝑥)(𝑃�𝑙�)(𝑡, 𝑥)𝑑𝑥
T

≈ 𝒍�b𝐌�𝐊�(𝑡@)𝐌�𝒍� (6.75) 
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and does not depend on the FEM discretisation up to the error level of the FEM approximation. 

A straightforward way to obtain a pointwise estimate is to take a vector 𝒍� as 𝒍� = 𝐌�
¡@𝒍�Ö where 

𝒍�Ö = (0,… ,1,… ,0) is a vector with only one non-zero component corresponding to the point 

𝑥Ö of the FEM grid. Then 

 𝒍�Ö
b𝐌�

¡@𝐌�𝐞� ≤ 𝒍�Ö
b𝐌�

¡@𝐌�𝐊�𝐌�𝐌�
¡@𝒍�Ö (6.76) 

 𝒍�Ö
b𝐞� ≤ 𝒍�Ö

b𝐊�𝒍�Ö (6.77) 

As a result, a pointwise estimate of 𝑠-th error component is obtained 

 𝐞�,Ö ≤ 𝐊�,ÖÖ (6.78) 

At the same time, from the initial condition of the Riccati equation (6.71) and the expression 

(6.63) it follows that 

 𝐊�(𝑡>) = 𝐐¥>,�¡@𝐌�
¡@ (6.79) 

The computation of components of the mass matrix 𝐌� depends on the size of the finite 

elements. Since the size of subdomain is fixed, the increase in the number of elements (or 

equivalently number of FEM nodes 𝑁��� ) per subdomain reduces the size of those finite 

elements. That leads to the decay of values of the mass matrix components and, consequently, 

to the increase of the components of the inverted mass matrix 𝐌�
¡@ as 𝑁���  increases. At the 

same time, the diagonal matrix 𝐐¥>,�¡@ represents values of a function computed at FEM nodes 

and is constant with respect to 𝑁���  due to the properties of the FEM. That said, from (6.79) it 

is concluded that components of the matrix 𝐊�(𝑡>) increase as 𝑁���  increases. According to 

(6.64), the free term 𝐐�¡@ of the Riccati equation (6.71) has the same influence on 𝐊�(𝑡) and in 

particular on 𝐊�(𝑡@). That mean, the estimate (6.78) is meaningless since 

 𝐞�,Ö ≤ 𝐊�,ÖÖ → ∞,				provided	𝑁��� → ∞ (6.80) 

To overcome this, one should use a different error estimate, namely 

 𝒍�Ö
b𝐞� ≤ G𝒍�Ö

b𝐊�(𝑡@)𝐌�𝒍�ÖH
@
X (6.81) 

The rationale behind this is that 𝐊�(𝑡@)𝐌� is a discrete version of the operator in (4.26). Since 

that operator represents a mapping between two regular functions its components are bounded 
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for any 𝑁��� . Even though (6.81) is not derived here directly, as the proposed framework is 

optimal for the integral estimates like (6.74), the validity of (6.81) is confirmed by the 

numerical experiments. 

 

6.1.4 Localised minimax filter with	reinitialisation	

The minimax estimate 𝐮�
<,©±@ computed from (6.70)-(6.71) depends on the size of the time 

interval 𝑇 and the size of the subdomain 𝐴(Ω�) that, according to (6.23), are included in a 

constant 𝛾b,�. Through (6.63)-(6.65), 𝛾b,� is used in the computations of the ellipsoid matrices 

𝐐>,�, 𝐐�, and 𝐑� and reflects the quality of the approximation of 𝐿�-ellipsoids ℒJ,��  and ℒN,��  by 

the 𝐿X-ellipsoids ℒJ,�X  and ℒN,�X . To examine the influence of 𝛾b,� assume the uniform rescaling 

of the discrete error ellipsoids 𝕃J,�X  and 𝕃N,�X  by a positive constant 𝛼. The local minimax filter 

is then written as 

 x
𝑑𝐮�©±@

𝑑𝑡 	= 𝐒�𝐮�©±@(𝑡) + 𝐟�G𝑡; 𝐮�©H + 𝛼𝐊�𝐇�b𝐑�G𝐲� − 𝐇�𝐮�©±@H

𝐮�©±@(0) = 𝐮�>
 (6.82) 

 8

𝑑𝐊�
𝑑𝑡 = 𝐒�𝐊� + 𝐊�𝐒�b +

1
𝛼𝐐�

¡@ − 𝛼𝐊�𝐇�b𝐑�𝐇�𝐊�

𝐊�(𝑡>) =
1
𝛼𝐐>,�

¡@
 (6.83) 

Introducing substitution 𝛼𝐊� = 𝐊¥�, (6.82)-(6.83) becomes 

 x
𝑑𝐮�©±@

𝑑𝑡 	= 𝐒�𝐮�©±@(𝑡) + 𝐟�G𝑡; 𝐮�©H + 𝐊¥�𝐇�b𝐑�G𝐲� − 𝐇�𝐮�©±@H

𝐮�©±@(0) = 𝐮�>
 (6.84) 

 x
𝑑𝐊¥�
𝑑𝑡 = 𝐒�𝐊¥� + 𝐊¥�𝐒�b + 𝐐�¡@ − 𝐊¥�𝐇�b𝐑�𝐇�𝐊¥�
𝐊¥�(𝑡>) = 𝐐>,�¡@

 (6.85) 

(6.84)-(6.85) demonstrates that the estimate 𝐮�
<,©±@ is invariant to the suggested rescaling, but 

that the error estimate (6.74) is not. For large values of 𝛾b,� which is possible when 𝑇 ≫ 1 

or/and 𝐴(Ω�) ≫ 1 the worst-case estimation error may be quite large. As it follows from (6.74), 

the larger Riccati matrix 𝐊� corresponds to larger estimation error; on the other hand, small 

𝛾b,� neutralize the impact of the source term in the Riccati equation (6.71) and amplifies the 

contribution of the quadratic term. Hence, it is desired to keep the factor 𝛾b,� small. 



131 

It should be stressed that for a global minimax filter, the constant 𝛾b depends on the size of the 

problem domain Ω which is fixed; however, for a localised minimax filter, due to 

decomposition of Ω, 𝛾b,� can be decreased by taking small local subdomains Ω�. In addition, 

thanks to the Markovian property of 𝐮�
<,©±@, the size of the estimation horizon 𝑇 can be taken 

as small as required. To this end, a procedure of time decomposition referred to as the 

reinitialisation procedure may be applied as follows: 

1) For the time interval [𝑡>, 𝑡@], chose any 𝑇 = 𝜀 > 0, 𝑡>∗ = 𝑡> and 𝑡@∗ = 𝑡> + 𝜀. 

2) Compute 𝐮�
<,©±@ over (𝑡>∗, 𝑡@∗) by using (6.70)-(6.71) where 𝛾b,� = (𝜀 + 1)𝐴(Ω�). 

3) Reinitialise the filter by taking 𝑡>∗ = 𝑡@∗, 𝑡@∗ = 𝑡> + 𝜀 and compute 𝐮�
<,©±@ over the new 

interval (𝑡>∗, 𝑡@∗) using (6.70)-(6.71) starting the Riccati equation from (1 + 𝜀)𝐊�(𝑡>∗) 

where 𝐊�(𝑡>∗) is the endpoint Riccati matrix from the previous time interval. 

4) Repeat step 3) until 𝑡@∗ reaches 𝑡@. 

A constant 𝛾b,� that represents the quality of the approximation of ℒJ,��  and ℒN,��  ellipsoids by 

ℒJ,�X  and ℒN,�X  ellipsoids, even though does not influence the estimate, is crucial for the 

estimation error that may explode for a large time window or large problem domain. It turns 

out that the proposed reinitialisation procedure together with the problem decomposition 

facilitates the mitigation of the error to approximate ℒJ,��  and ℒN,��  by ℒJ,�X  and ℒN,�X  and 

significantly reduce the estimation error of the localised minimax filter. 

 

6.1.5 Algorithm for the localised minimax filter with	pseudo-observations	

The interconnections between the discrete local filters 𝐮�
<,©±@ are implemented by means of the 

source terms 𝐟�G𝑡; 𝐮�
<,©H. As a result, the information from the interface (1D set in this case) is 

spread around in the domain and affects the nodes of the local estimate 𝐮�
<,©±@ which are not 

necessarily close to the mentioned interface. This, in turn, allows for pushing the information 

brought by observations 𝐲� on the domain Ω� to the internal FEM nodes of the adjacent 

domains. 
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Require: 

    T 

    globalProblem 

    errorLevel 

    GetInterfaceError() 

// number of time steps 

// description of the global physical problem 

// acceptable level of the Schwarz iteration error 

// computes the difference between estimates on the interface 

node obtained from adjacent subdomains 

    subProblems = DecomposeProblem(globalProblem) 

    for t = 1 to T do 

        actProblems = GetActiveSubproblem(subProblems) 

        for subproblem in actProblems do 

            DiscretiseSubproblemByFem(subproblem, t) 

            UpdateBoundaryData(subproblem, actProblems, t) 

            If HasObservations(subproblem) then 

                InitObservations(subproblem, t) 

            else 

                InitPseudoObservations(subproblem, t) 

            endif 

            ReinitRiccatiEquation(subproblem, t) 

            SolveRiccatiEquation(subproblem, t) 

            SolveFeedbackEquation(subproblem, t) 

        endfor 

 

        error = GetInterfaceError(subproblem, t) 

        while error > errorLevel do 

            for subproblem in actProblems do 

                UpdateBoundaryData(subproblem, actProblems, t) 

                SolveFeedbackEquation(subproblem, t) 

            endfor 

            error = GetInterfaceError(subproblems, t) 

        endwhile 

    endfor 

 

 

 

 

// as in (6.51) 

// using (6.60) 

 

 

 

 

 

 

// as in (6.71) 

// as in (6.70) 

 

 

 

 

 

// using (6.60) 

// as in (6.70) 

 

Figure 6.1 Algorithm for the localised minimax filter method. 
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On the other hand, the impact of observations on a local estimate depends on the structure of 

the local observation matrix 𝐇�. If the global observations 𝐲(𝑡, 𝑥) are localised at a specific 

region of the global domain Ω (e.g., an observation kernel function ℎ(𝑡, 𝑥) has compact support 

within a subdomain of Ω), it is possible that ℎ(𝑡, 𝑥) vanishes over a number of subdomains Ω� 

which results in the zero local observation matrix 𝐇� = 0. This, in turn, may impact the 

uncertainty propagation associated with the local filters. As it follows from (6.70), the so-called 

innovation term 𝐊�𝐇�b𝐑�G𝐲� − 𝐇�𝐮�©±@H disappears if 𝐇� = 0, so the impact of model errors 

from Ω� is, in fact, neglected as the proposed procedure cannot communicate the corresponding 

information to the Riccati matrices on the adjacent subdomains. In this case, the local 

estimation error represented by means of the discrete Riccati operator 𝐊� may be 

underestimated. 

A possible solution used in this work is to introduce "pseudo" observations. The Dirichlet data 

that comes from the adjacent subdomains can be treated as "pseudo" observations, and the local 

minimax filter is written for those observations. In this way, the impact of the model errors 

from adjacent domains can impact the estimate 𝐮�
<,©±@. 

Finally, it should be mentioned, that the independence of the local feedback and Riccati 

equations allow for the activation/deactivation of the corresponding subdomains (see Section 

5.2.2). The algorithm of the localised minimax filter with reinitialisation procedure, pseudo-

observations and activation/deactivation is summarised by algorithm presented in Figure 6.1. 

 

6.2 Numerical	Experiments	

The efficacy of the interconnected minimax filters is illustrated here with a set of numerical 

examples. First, time discretised representation of (6.70) is constructed using mid-point 

integration rule 

 

	𝐮�,�±@©±@ = −𝐮�,�©±@

+ y𝐈 −
Δ𝑡
2 𝐒�,�±>.¼ +

Δ𝑡
2 𝐆𝐇�z

¡@

× �2𝐮�,�©±@ 	+ 𝐟�,�±>.¼G𝐮�,�±>.¼© H + Δ𝑡𝐆𝐲�,�±>.¼�	

				𝐮�,>©±@ = 𝐮>,�																																																																																			

(6.86) 

where 
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 𝐆 =
1
2
G𝐊�,� + 𝐊�,�±@H𝐇�b𝐑�,�±>.¼ (6.87) 

The subscript 𝑛 denotes the index of the points of the uniform time discretisation with the step 

Δ𝑡. The subscript 𝑛 + 0.5 means that the corresponding matrix or vector is evaluated in the 

middle of the time interval [𝑡�, 𝑡�±@]. 

For the discretisation of the matrix Riccati Equation (6.71), a non-standard numerical 

integration technique is applied (see Section 4.1.5). First, the Möbius transformation maps the 

equation onto its Hamiltonian representation that is further solved by the symplectic midpoint 

method with reinitialisation at each time step. The discrete in time system of linear Hamiltonian 

equations that corresponds to (6.71) is written: 

 y𝐔�±@𝐕�±@
z = 2e

𝐼 −
Δ𝑡
2 𝐒�,�±>.¼

Δ𝑡
2 𝐐�

¡@

Δ𝑡
2 𝐇�

b𝐑�,�±>.¼𝐇� 𝐼 −
Δ𝑡
2 𝐒�,�±>.¼

b
g

¡@

~𝐊�,�
I
� − ~𝐊�,�

I
� (6.88) 

and the 𝑖-th local Riccati matrix is then found as 	

 
𝐊�,�±@ = 𝐔�±@𝐕�±@¡@ 	,				𝑛 > 0 

𝐊�,> = 𝐐>,�¡@																							 
(6.89) 

To obtain the estimate of a solution of the DA problem (4.1)-(4.7) in two spatial dimensions 

and with the linear advection-dominated background, the fully discrete interconnected 

localised minimax filter (6.86)-(6.89) is iterated according to the Figure 6.1 in a set of two 

idealised experiments: one with a stationary flow field and another one with a non-stationary 

periodic flow field. In both experiments, the localised filters are compared against the ground-

truth analytical solution and also compared to the global (non-localised) minimax filter, i.e., 

the standard minimax filter which approximates ℒJ� and ℒN� by ℒJX  and ℒNX, and does not use 

DD and reinitialization. This latter comparison illustrates the following points: 

1) 𝐿X non-decomposed filter does overestimate uncertainty which makes it problematic in 

practical use. 

2) Interconnected localised minimax filters provide quite accurate uncertainty estimates 

in the considered examples 

3) Significant reduction of the computational cost in the case of the localised filters. 

4) Good scalability properties of the localised minimax filter. 
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6.2.1 Experiment	1	

In this experiment a set of numerical simulations is performed adopting the test experiment 

configuration (see Section 4.2.1) for a DA problem. This problem is solved using the free-run 

FEM model, global minimax filter and localised minimax filter. To construct a localised filter, 

DD is applied by decomposing the global domain into 4 subdomains over the 𝑥-axis (see Figure 

6.2) of the equal size [0,1] × [0,1] metres and discretised by 225 finite elements each. The 

underlying flow field is defined by the constant vector-function 𝜇 = [0.2; 	0]b 𝑚/𝑠 and the 

constant diffusion coefficient 𝜖 = 10¡¼	𝑚X/𝑠. The timestep is taken to be 0.1 𝑠 and the length 

of the simulation is set to be 200 time steps allowing the concentration to completely transition 

from the right to the left of the domain. 

Observations of the concentration in this experiment are produced using the Gaussian function 

𝑢<(𝑡, 𝑥, 𝑦) defined in (4.91) with the parameters (4.92)-(4.94). Since the function 𝑢<(𝑡, 𝑥, 𝑦)	 

satisfies the original advection-diffusion equation (4.1) with the idealised stationary flow field 

𝜇 defined as above, it is considered to be a ground truth. The observations of the concentration 

are sampled by restricting 𝑢<(𝑡, 𝑥, 𝑦) onto the nodes in subdomains Ω�, 𝑖 ∈ 𝐼NLÖ = {1, … ,4} as 

demonstrated on Figure 6.2. The observations are corrupted by the observation noise with 

values uniformly distributed within the interval [−1; 1]. 

To describe uncertainties in the system, the ellipsoids are taken as defined by the functions 𝑞>, 

𝑞 and 𝑟, constant in time and space. Ellipsoid matrices of the local filter at 𝑖-th subdomain are 

chosen as follows: 

 𝐐¥� =
2
𝛾b,�

𝐈, 𝐐¥>,� =
0.1
𝛾b,�

𝐈, 𝐑¥� =
3
𝛾b,�

𝐈 (6.90) 

where 𝛾b,� = (1 + Δ𝑡)𝐴(Ω�) = (1 + 0.1)1 = 1.1 reflects the quality of the approximation of 

𝐿�-ellipsoids by 𝐿X-ellipsoids using DD and reinitialisation and 

 𝐐� = 𝐌�𝐐¥�, 𝐐>,� = 𝐌�𝐐¥>,� , 𝐑� = 𝐌�𝐑¥� (6.91) 

 
Figure 6.2 Configuration of the DD, initial conditions and observations for the Experiment 1. 
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The model error matrix 𝐐¥� is chosen to reflect the level of trust in the FEM model, in a similar 

fashion, 𝐐¥>,� account for the absence of initial conditions. The weighting matrix 𝐑¥� represents 

the variance of the [−1; 1]-uniformly distributed random variable. 

The performance of the localised estimate 𝐮SM�PSO×J{ is compared against the estimate 𝐮USMNPS 

of the so-called global filter which has been obtained by approximating the original 𝐿�-

ellipsoids by the 𝐿X-ellipsoids but without decomposition and reinitialisation. To compute the 

global filter equations (6.70)-(6.71) are used with Ω� = Ω and the ellipsoids' matrices 𝐐, 𝐐> 

and 𝐑 defined as in (6.91)-(6.90), but to maintain the consistency between descriptions of the 

global and local model errors, and of the observation errors, the parameter 𝛾b,� is replaced by 

its global equivalent 

 𝛾b = (𝑇 + 1)𝐴(Ω) = (𝑇 + 1)𝑁𝐴(ΩO) = 88 (6.92) 

where factor 𝑁 = 4 reflects the fact that 𝐴(Ω) = 4𝐴(Ω�) and the size of time integration 

horizon is set to be 𝑇 = 20. 

In Figure 6.3 and Figure 6.4 the spatial norm and the spatial error of the localised filters are 

compared against the global filter estimate and non-decomposed (mono-domain) free-run FEM 

solution 𝐮IJK of the problem with the exact initial condition 𝑢<(0, 𝑥, 𝑦). Figure 6.3 shows that 

the spatial norm of the ground-truth is estimated correctly by 𝐮IJK. The localised filter estimate 

𝐮SM�PSO×J{ tend to estimate the norm correctly as well, furthermore it converges to the estimate 

of the global filter. Figure 6.4 further shows that, as it was expected, the 𝐮SM�PSO×J{ quickly 

 
Figure 6.3 The spatial norm of the FEM solution, 
localised minimax estimate and global minimax 

estimate plotted over time. 

 
Figure 6.4 The spatial error of the FEM solution, 
localised minimax estimate and global minimax 

estimate plotted over time. 
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reconstruct the initially unknown solution by accounting available observations and produces 

very similar estimate to 𝐮USMNPS. The respective estimation errors are 𝑒ø(𝐮IJK) = 16.3%, 

𝑒ø(𝐮SM�PSO×J{) = 15.6% and 𝑒øG𝐮USMNPSH = 15%. 

 

6.2.2 Experiment	2	

In this experiment a two-dimensional rectangular domain [0,3] × [0,3] metres has been 

discretised by 2025 bilinear finite elements. DD is applied by decomposing the domain into 9 

equal size subdomains [0,1] × [0,1] 𝑚 each over the 𝑥 and the 𝑦-axis (see Figure 6.5) and 

discretised by 225 finite elements. The underlying flow field 𝜇 is defined by the time dependent 

periodic functions: 

 𝜇"(𝑡, 𝑥, 𝑦) = sin(𝜋 − 𝑡/10) ∗ 0.12 (6.93) 

 𝜇B(𝑡, 𝑥, 𝑦) = sin(𝜋/2 − 𝑡/5) ∗ 0.24 (6.94) 

The size of the time step is taken to be Δ𝑡 = 0.1 and the length of the simulation is set to be 

2000 time steps allowing for the spill to make three loops following the trajectory depicted in 

Figure 6.5 (one loop requires 630 time steps). 

 
Figure 6.5 Configuration of the Experiment 2. 

 
Figure 6.6 The spatial error of the localised minimax 
filter estimate and the global minimax filter estimate 

plotted over time. 
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As in the first experiment, the analytical solution 𝑢<(𝑡, 𝑥, 𝑦) is defined in the form of the 

Gaussian function (4.91) with the following parameters: 

 𝜎 = 0.1 + 0.01𝑡, 𝑥> = 0.25;	𝑦> = 1.5 (6.95) 

 𝑚" = 𝑡	𝜇" = sin y𝜋 −
𝑡
10z ∗ 0.12 𝑡 

(6.96) 

 𝑚B = 𝑡	𝜇B = sin y
𝜋
2 −

𝑡
5z ∗ 0.24 𝑡 

(6.97) 

The observations are generated by restricting the function 𝑢<(𝑡, 𝑥, 𝑦) onto the nodes in 

subdomains Ω�, 𝑖 ∈ 𝐼NLÖ = {3,4}. This is achieved by setting ℎ(𝑧 − 𝑥) = 𝛿(𝑧 − 𝑥) for 𝑦 ∈ Ω�, 

and 0 for 𝑧 ∉ Ω�, i ∈ 𝐼NLÖ. As a result, the observation matrix 𝐇� is a diagonal matrix with 

diagonal components equal to 1 for the observed nodes and 0 otherwise. The observation noise 

 
Figure 6.7 Observations at the time step 25. Relative 

error 84.4%. 

 
Figure 6.8 Estimate by localised filters at the time 

step 25. Relative error 10.8%. 

 
Figure 6.9 Observations at the time step 180. Relative 

error 68.3%. 

 
Figure 6.10 Estimate by localised filters at the time 

step 180. Relative error 10.3%. 
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is taken to be uniformly distributed over the interval [−0.5; 0.5]. The sensors' locations are 

shown in Figure 6.5. 

The parameters of the local filter at 𝑖-th subdomain are chosen as follows: 

 𝐐¥� =
5
𝛾b,�

, 𝐐¥>,� =
1.2
𝛾b,�

, 𝐑¥� =
12
𝛾b,�

 (6.98) 

and 𝛾b,� = 1.1. The choice of matrices (6.98) describes a moderate level of trust in the FEM 

model over the subdomain Ω�, low confidence in the initial condition for the filter and a high 

trust to the observations.  

 
Figure 6.11 The estimate of the localised filter, 

global filter and analytical solution computed at the 
point x=1.4, y=1.4 plotted over time steps [135,185]. 

 
Figure 6.12 Components of the localised and global 
Riccati operator corresponding to the point x=1.4, 

y=1.4 plotted over time steps [0,300]. 

 
Figure 6.13 The estimate, ellipsoid of the estimate 

and analytical solution computed at the point x=1.4, 
y=1.4 plotted over time steps [135,185]. 

 
Figure 6.14 Components of the Riccati operator 

corresponding to the point x=1.4, y=1.4 computed by 
localised filter with reinitialisation intervals 0.1 and 

1 plotted over time steps [0,300]. 
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Figure 6.13 shows the estimated value at the spatial point 𝑥 = 1.4, 𝑦 = 1.4 and demonstrates 

that the ground-truth is contained inside the ellipsoid. Examples of the observed fields are 

shown in Figure 6.7 and Figure 6.9, and the corresponding estimates generated by the localised 

filters are shown in Figure 6.8 and Figure 6.10. These figures show that even though the spill 

is not fully observed by the sensors, the local filters manage to reconstruct it with a reasonable 

precision level. 

Similarly to Experiment 1, the localised filter estimate 𝐮SM�PSO×J{ is compared versus the global 

filter estimate 𝐮USMNPS, configured using (6.98) and 𝛾b = (𝑇 + 1)𝐴(Ω) = 1809. Figure 6.6 

presents the spatial errors of the localised filters and the global filter. As one would expect, 

because of the nonstationary (in time) periodic behaviour of the underlying velocity field 𝜇, 

there are intervals where the errors are decreasing when the spill is entering the observable area 

and increasing when spill is leaving the observable area. At the same time, it is concluded, that 

in general both errors are not increasing over time and obey periodic behaviour. The respective 

estimation errors are in favour of the localised filter: 𝑒ø(𝐮SM�PSO×J{) = 16% and 𝑒ø(𝐮USMNPS) =

19%. 

Figure 6.11-Figure 6.12 also suggests that even though the estimates are close to each other, 

the global filter overestimates the uncertainty in the system. Indeed, the uncertainty 

overestimation is demonstrated in Figure 6.12 where diagonal components of the Riccati 

operator 𝐊�𝐌� and 𝐊𝐌 are plotted. Those components are computed at the spatial point 𝑥 =

1.4, 𝑦 = 1.4 and represent the uncertainty estimate provided by each of the filters via (6.81). It 

can be seen that the localised filter's ellipsoid is much tighter than that of the global filter. 

 
 Figure 6.15 Components of the Riccati operator corresponding to the point x=1.4, y=1.4 computed by 

localised filter with 225 and 900 FEM elements per subdomain plotted over time steps [5,300]. 



141 

A comparison analysis of the impact of the reinitialisation procedure on the estimation error is 

in Figure 6.14. The components of 𝐊�𝐌� are obtained from the localised filter with the 

reinitialisation interval 𝜀 equal to the time step of numerical integration Δ𝑡 = 0.1 are compared 

against the same components of 𝐊�𝐌�, corresponding to the reinitialization interval of length 

𝜀 = 1. It is shown that the decrease of the reinitialisation interval leads to the decrease of the 

Riccati matrix components which, in turn, reduces the estimation error. 

Finally, components of 𝐊�𝐌� corresponding to the point 𝑥 = 1.4, 𝑦 = 1.4 computed with 

different FEM resolutions (225 elements and 900 elements per subdomain) are depicted in  

Figure 6.15. As expected, the increase of FEM degrees of freedom, does not increase the 

components of 𝐊�𝐌� and the corresponding pointwise estimation error. 

 

6.2.3 Computational	Performance	

The computational performance of the global minimax filter for a system with 𝑁�� degrees of 

freedom is given by 

 𝑐�(𝑁��) = 14𝒞������  (6.99) 

where a unit of complexity 𝒞������  represents the amount of operations required for dense 

matrix multiplication or inversion and is given as 𝒪(𝑁��7 ) (see Section 4.3.2). Assume that the 

global domain is decomposed into 𝑁 subdomains, each of them containing 𝑁���  FEM nodes. 

Using the rough approximation of 𝑁�� by the 𝑁 ⋅ 𝑁���  a unit of complexity 𝒞������  can be 

expressed in terms of 𝑁���  as 

 𝒞������ = 𝑁7𝒞���m ���
m  (6.100) 

so that 

 𝑐�(𝑁��) = 14𝑁7𝒞���m ���
m  (6.101) 

Complexity of i-th local minimax filter is 14𝒞���m ���
m . However, to estimate the computational 

performance of the localised minimax filter, Schwarz iterations should be taken into account. 

Assume 𝑝 Schwarz iterations were performed, which implies that the equation (6.86) was 

computed 𝑝 times. Since the velocity flow depends on time but does not depend on a Schwarz 
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iteration, the inflow/outflow zones of the subdomain boundaries are fixed for all iterations. It 

means that in (6.86) only the source vector 𝐟�,©±>.¼G𝐮�,©±>.¼� H is updated during each iteration, 

while much more expensive computations of the local model matrix ~𝐈 − �:
X
𝐒�,�±>.¼ +

�:
X
𝐆𝐇��

¡@
 should be performed only once at each time step for each subproblem. Therefore, 

only 2𝑁𝒞���m ���
m  operations are required for the equation (6.86)-(6.87), and 12𝑁𝒞���m ���

m  for 

the equation (6.88)-(6.89). The total amount of arithmetic operations for the algorithm of the 

localised minimax filter for one time step is estimated as 

 𝑐�(𝑁) = 14𝑁𝒞���m ���
m  (6.102) 

From the estimates (6.101) and (6.102) it is concluded that the localised minimax filter provides 

significant complexity reduction comparing to the traditional minimax filter. 

A further way of detailing the estimation of the total number of operations (6.102) is to count 

the number of nodes on the interface as 𝑁��l = 𝑘𝑁, where 𝑘 is the average number of the 

interface nodes per subdomain and 𝑁��l  is the total number of the interface nodes. Since 𝑁𝑁���  

includes interface nodes twice (from adjacent subdomains) it is equal to 𝑁�� + 𝑁��l , and 𝑁���  

can be expressed as 

 𝑁��� =
𝑁�� + 𝑁��l

𝑁 =
𝑁�� + 𝑘𝑁

𝑁  (6.103) 

Using (6.103), (6.102) is updated to 

 𝑐�(𝑁) =
14
𝑁X 𝒞���±©�,���±©�𝒪((𝑁�� + 𝑘𝑁)

7) (6.104) 

If only one domain is used for the localised filter, i.e., 𝑁 = 1 and 𝑘 = 0, (6.104) implies that 

𝑐�(𝑁) becomes equal to 𝑐�. On the other hand, when 𝑁 → ∞, then 𝑐�(𝑁) → ∞. Using (6.104) 

and taking 𝑐� (𝑁) = 0 

 
14
𝑁x (3𝑘(𝑁�� + 𝑘𝑁)

X𝑁X − (𝑁�� + 𝑘𝑁)72𝑁) = 0 (6.105) 

 3𝑘𝑁 − 2(𝑁�� + 𝑘𝑁) = 0 (6.106) 

an optimal choice of 𝑁 is found as 
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 𝑁 =
2𝑁��
𝑘  (6.107) 

From Figure 6.16 where the graph of (6.104) is plotted, it can be inferred that an optimal 𝑁 is 

achieved at the expense of having relatively small subdomains (in terms of number of FEM 

elements contained). That is further proved by the expression for the optimal 𝑁 given in 

(6.107). This implies that, for a fixed number of FEM elements, the localised minimax filtering 

strategy has an immediate impact in diminishing the computational costs till the size of the 

subdomains becomes relatively small. When that happens is that the effect of DD levels off 

and, if the number of subdomain goes beyond the certain threshold, the computational 

performance does not improve further. 

This is demonstrated for an experiment with a global domain of the size [0,1] × [0,20] metres 

and discretised by 4500 bilinear finite elements. Velocity flow, initial conditions and 

uncertainty ellipsoids in this experiment are configured identically as in the Experiment 1. 

Figure 6.17, plots computational time of localised minimax filters obtained by applying DD 

with various number of subdomain from the interval [1,20]. As expected, the smallest 

computational time achieved in the neighbourhood of 𝑁 = 19 subdomains, without any further 

significant benefit when 𝑁 increases. 

Another important benefit of the localised strategy with DD is that it is nearly linearly scalable 

with regards to the number of finite elements. The increase of finite elements in a global filter 

leads to the cubical increase of the complexity as suggested by (6.99). While in the case of the 

 
Figure 6.16 Theoretical complexity of the localised 

filter plotted over a number of fixed-size 
subdomains. 

 
Figure 6.17 Logarithm of computational CPU time of 

the localised filter measured for the problem 
decomposed with a varying number of equal-size 

subdomains. 
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localised filter, additional finite elements can be arranged into additional subdomains the size 

of which is fixed. As the complexity estimation (6.102) states, that would produce a linear 

increase of the computational costs. This is indeed shown in Figure 6.18, where the 

computational CPU time for problems with a different amount of finite elements and a fixed 

number of finite elements per subdomains is plotted over time. 

 

6.3 Discussion	and	conclusions	

In this chapter, the problem of efficient coupling of the contaminant transport model in the 

advection-dominated flows with measurements is investigated. The traditional minimax filter, 

despite its benefits, has several significant disadvantages for a practical usage. First, it is an 𝐿X-

type filter. It has been designed for 𝐿X-type model errors and measurement noises, and, hence, 

it does not apply directly to the case of 𝐿�-noises that are more desired in practice. A 

straightforward way to apply the traditional minimax filter in this case is to approximate a 𝐿�-

ellipsoid by a 𝐿X-ellipsoid; this is very much like approximating a rectangle by the minimal 

ellipsoid which contains it. This approximation is quite crude, especially if the size of the 

computational domain or/and the estimation horizon are large. Second, the minimax filter is 

very demanding computationally. The need of the effective solvers for the Riccati equations 

requires approximately 12 times more arithmetic operations for the minimax filter then for a 

background model solver in a general case of Galerkin approximation and even more if FEM 

approximations are used. Moreover, minimax filter is not scalable, and it costs escalates if the 

 
Figure 6.18 Computational CPU time of the localised filter measured for the problems with a different 

number of fixed-size subdomains. 
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amount of degrees of freedom increases. This problem is especially important for large scale 

systems like those that occur in marine modelling. 

To resolve the aforementioned issues, a new DA algorithm in the form of the localised 

interconnected minimax filters is proposed. Specifically, the computational domain of the 

problem is geometrically decomposed into smaller subdomains. Then the underlying PDE and 

observation equation are restricted to the introduced subdomains by means of a suitable DD 

technique to maintain the continuity of the solutions across the interfaces between the 

subdomains. 

The ellipsoidal approximation issue is resolved as a consequence of the spatial and temporal 

decomposition. The spatial decomposition results in a splitting of a 𝐿�-ellipsoid (large 

rectangle) into a number of small rectangles and then each small rectangle is approximated by 

a small ellipsoid (𝐿X-ellipsoid) that contains corresponding rectangle. The error of 

approximating 𝐿�-ellipsoid by 𝐿X-ellipsoid on a small sub-domain can be made quite small so 

the union of small 𝐿X-ellipsoids which contains a large rectangle is smaller than a large 𝐿X-

ellipsoid. The temporal decomposition, known as the reinitialisation procedure splits filtering 

time interval into subintervals of much smaller size and reinitialise error propagation for each 

subinterval. In fact, the spatial and temporal decomposition significantly mitigate an ellipsoidal 

approximation error. 

Another consequence of the spatial decomposition is a reduction of the computational costs of 

the localised filter, since computing 𝑁 estimates on small subdomains is cheaper than 

computing estimate on a large domain as required by the traditional minimax filter. 

The efficiency of the approach is demonstrated on a set of numerical examples. These 

experiments are characterised by idealised simulations of concentration being transported 

either by a constant flow field or a non-stationary periodic flow field. The benchmark for 

estimation is given by a correspondent known analytical solution and traditional minimax filter 

estimate. Even though the localised filter is not equivalent to the global filter, the results of the 

numerical simulations demonstrate good convergence between the localised and global filters. 

Finally, the proposed algorithm of the interconnected localised minimax filter is Markovian 

(the current estimate depends on the previous one and the current observation), computationally 

efficient and scalable. It delivers both integral and pointwise estimates which converge to the 

corresponding continuous quantities over each local subdomain. 
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7 Interconnected	localisation	of	Kalman	filters	

Chapter 5 and Chapter 6 presented two different DA approaches based on combining minimax 

filtering and DD. In both cases, the original continuous DA problem is transformed into a 

localised DA problem, which is resolved using different methods resulting in two distinct 

localised filters that are based on the minimax framework. To distinguish between the filters, 

the filter that is devised in Chapter 5 is called DAE minimax filter, and the filter constructed in 

Chapter 6 is called the interconnected minimax filter. 

The DAE minimax filter is constructed on a discrete level using results from LQ control theory 

and a deterministic nature of DA problems defined in terms of minimax framework. This makes 

an extension of the minimax DAE filter for Kalman filters problematic. The interconnected 

minimax filter uses Schwarz iterative DD which is applied to the continuous problem. The 

minimax filter is applied only to the local problems, making the approach robust with respect 

to the estimator being used. Thus, the interconnected localised filtering approach is further 

extended in this chapter. Using the equivalence between the minimax filter and the Kalman-

Bucy filter (see Section 4.1.4) and then the equivalences between the Kalman-Bucy filter and 

Kalman filter (see Section 3.2.3), the interconnected localised Kalman filter is derived. Using 

the approximation of Kalman filter by ensemble filters, in particular EnTKF (see Section 3.3), 

the two algorithms of the localised interconnected EnTKF are derived. 

 

7.1 Decomposed	Kalman	

The equivalence of the minimax filter and the Kalman-Bucy filter (see Section 4.2) implies the 

equivalence between the corresponding estimation problems with deterministic error 

represented by quadratic ellipsoids, and statistical error represented using the Gaussian 

distribution. Since the interconnected localised minimax filter is comprised of minimax filters 

defined on local subdomains, the continuous local problems with local errors defined in local 

ellipsoids (see Section 6.1.1) are equivalently represented by the local problems with 

statistically defined local errors. Applying a FEM approximation to that continuous DA 

problem (see Section 3.2.3) and discretising it in time (see Section 3.2.4), one obtains a 

localised problem discrete in time and space for the state estimate 𝐮�,�©  on the 𝑘-th Schwarz 

iteration as follows 
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 ê
𝐮�,�±@©±@ = 𝐒�,�𝐮�,�©±@ + 𝐟�,�(𝐮�,�© ) + 𝐞�,�J

𝐮>,�©±@ = 𝐮�> + 𝐞�>
 (7.1) 

 𝐲�,� = 𝐇�𝐮�,�©±@ + 𝐞�,�N  (7.2) 

 𝐞>,� ∼ 𝑁(0,𝐐�>);	𝐞J,�,� ∼ 𝑁G0,𝐐�,�H;	𝐞N,� ∼ 𝑁G0,𝐑�,�H; (7.3) 

where the subscript 𝑖 is an index of the subproblem and the subscript 𝑛 is the time step index. 

Matrix 𝐒�,� is the model matrix, 𝐇� is the observation matrix, 𝐟�,� is the source vector, which 

depends on the estimate from the adjacent subproblem, and 𝐮>,� is vector of initial conditions 

that are defined on 𝑖-th subproblem at time step 𝑛. Equations (7.3) reflect the fact that the local 

errors 𝐞�,�N , 𝐞�,�J  and 𝐞�,�N  are normally distributed statistical variables with zero mean and 

corresponding covariance matrices 𝐐�>, 𝐐�,� and 𝐑�,�. 

The local estimate 𝐮�,�
<,© of 𝐮�,�©  on 𝑖-th subdomain is found as a solution of the following local 

Kalman filter with the background update 

 𝐏�,�±@L = 𝐒�,�𝐏�,�< 𝐒�,�
b + 𝐐�,� (7.4) 

 𝐮�,�±@
L,©±@ = 𝐒�,�𝐮�,�< + 𝐟�,�(𝐮�,�© ) (7.5) 

the observation update 

 𝐏�,�±@< = ÍG𝐏�,�±@L H¡@ + 𝐇�b𝐑�±@¡@ 𝐇�Î
¡@

 (7.6) 

 𝐮�,�±@< = 𝐮�,�±@L + 𝐏�,�±@< 𝐇�b𝐑�,�±@¡@ G𝐲�,�±@ − 𝐇�𝐮�,�±@
L,©±@H (7.7) 

and the initial conditions 

 𝐏�,>< = 𝐐�>; 	𝐮�,>< = 𝐮> (7.8) 

 
Figure 7.1 Configuration of numerical experiment with four completely observed subdomains. 
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The set of 𝑁 local Kalman filter (7.4)-(7.8) is referred to in the following as the interconnected 

localised Kalman filter. It should be stressed that in the limit as the time discretisation interval 

approaches zero, the localised Kalman filter is equivalent to the localised Kalman-Bucy filter. 

The quality of the estimate 𝐮�,�<  computed by the localised Kalman filter is examined here by 

performing an experiment that was designed following the test experiment configuration. The 

experiment adopts constant flow field 𝜇 = [0.2;0]b	𝑚/𝑠 and the global domain of the size 

[0,1] × [0,4] metres decomposed into four equal-size subdomains as in Figure 7.1 covered by 

noisy observations (for a detailed configuration of the experiment, see Section 4.3.1). The 

results of the simulations are depicted in Figure 7.2 and Figure 7.3 where spatial norms of the 

FEM solution 𝑛Ö(𝐮IJK), localised Kalman filter 𝑛Ö(𝐮SM�PSO×J{) and and global Kalman filter 

𝑛Ö(𝐮USMNPS) and corresponding spatial errors 𝑒Ö(𝐮IJK), 𝑒Ö(𝐮SM�PSO×J{) and 𝑒Ö(𝐮USMNPS) are 

compared. It can be seen from those images that the localised Kalman filter provides a very 

similar quality of the estimate to the traditional Kalman filter. The same is concluded from the 

estimation errors of both filters: 

 𝑒ø(𝐮SM�PSO×J{) = 16.5% and 𝑒øG𝐮USMNPSH = 15.6% (7.9) 

The localised Kalman filter also inherits the same scalability properties as the localised 

minimax filter. 

 

 
Figure 7.2 The spatial norm of the FEM solution, 

localised Kalman filter estimate and global Kalman 
filter estimate plotted over time. 

 
Figure 7.3 The spatial error of the FEM solution, 

localised Kalman filter estimate and global Kalman 
filter estimate plotted over time. 
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7.2 Localised	ensemble	filters	

The interconnected localised ensemble filter is obtained by replacing the local Kalman 

estimator (7.4)-(7.8) by the local ensemble estimator, in particular by EnTKF. To this end, one 

needs to define 𝐔�,� which are the restrictions of the ensemble of system states 𝐔� on the 𝑖-th 

subdomain, and 𝐔>,�, the local initial ensemble. Time propagation of 𝐔�,� is then split in two 

steps: 

i) Computation of the background 𝐔�,�L  and  

ii) Computation of the analysis or estimate 𝐔�,�<  of 𝐔�,�. 

Let 𝐅�,� denote the source ensemble that is derived from the source vector-function 𝐟�,�(𝐮�,�© ) 

of the background model (7.1). The local background ensemble 𝐔�,�<  is propagated to the next 

time step 𝑛 + 1 using the background model as follows 

 𝐔�,�±@L = 𝐒�,�𝐔�,�< + 𝐅�,� (7.10) 

Then, the local observation ensemble 𝐘�,�±@L  and the local perturbation matrices 𝐔¥�,�±@ and 

𝐘¥�,�±@ are propagated using 𝐔�±@L  

 𝐘�,�±@L = 𝐇�𝐔�,�±@L  (7.11) 

 𝐔¥�,�±@ = 𝐔�,�±@L − 𝐔�,�±@
L

𝟏@×Ô  (7.12) 

 𝐘¥�,�±@ = 𝐘�,�±@L − 𝐘�,�±@
L

𝟏@×Ô  (7.13) 

The local covariance matrix of the local EnTKF is given by 

 𝐏�,�±@< = 𝐶�(𝐘�,�±@) (7.14) 

where the matrix function 𝐶� is defined by 

 𝐶�(𝐘�,�±@) = ¶(𝐾 − 1)𝐈
1
𝜌 + 𝐘

¥�,�±@b 𝐑�,�±@¡@ 𝐘¥�,�±@·
¡@

 (7.15) 

The local analysis ensemble 𝐔�,�±@<  is given by the function 𝐴� 

 𝐔�,�±@< = 𝐴�(𝐔�,�±@L , 𝐏�,�±@< ) (7.16) 

which is defined as 
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𝐴� = 𝐔�,�±@
L

𝟏@×Ô

+ 𝐔¥�,�±@ ~𝐖�

+ 𝐏�,�±@< 𝐘¥�,�±@b 𝐑�,�±@¡@ ~𝐲�N − 𝐘�,�±@
L

�𝟏@×Ô� 

(7.17) 

where 

 𝐖� = �(𝐾 − 1)𝐏�,�±@< �
@
X (7.18) 

To complete the algorithm of the localised EnTKF (7.10)-(7.18), a proper choice of 𝐅�,� is 

needed. 

The source ensemble 𝐅�,� should accommodate 𝐮�,�, data from the 𝑗-th adjacent subproblem 

represented by the vector of discretised boundary conditions 𝐟�,�(𝐮�,�). Since 𝐮�,� is not known, 

a straight-forward way is to compute it as a solution of the deterministic counterpart of the 

background model (7.1) and then use the solution 𝐮�,� for the propagation of each ensemble 

member. In this case, the algorithm of the localised EnTKF is as follows 

 𝐮�,�±@
L,©±@ = 𝐒�,�𝐮�,�< + 𝐟�,�G𝐮�,�±@

L,© H (7.19) 

 𝐔�,�±@L = 𝐒�,�𝐔�,�< + 𝐟�,�G𝐮�,�±@L H𝟏@×Ô  (7.20) 

 𝐏�,�±@< = 𝐶�G𝐘�,�±@H (7.21) 

 𝐔�,�±@< = 𝐴�G𝐔�,�±@L , 𝐏�,�±@< H (7.22) 

where equation (7.19), for the background state 𝐮�,�±@L , is solved using the Schwarz iterative 

approach and the background ensemble is propagated using 𝐮�,�±@L  via (7.20). 

The disadvantage of the filter (7.19)-(7.22) is that the term 𝐟�,�G𝐮�,�±@L H in (7.20) ensures 

continuity only between deterministic local solutions, even though, each ensemble member of 

𝐔�,�±@L  also contains noise. As a result, ensemble propagation (7.19)- (7.20) produces jumps 

between the adjacent local ensembles that may lead to the underestimation of the uncertainty. 

The above issue can be overcome if instead of the background state 𝐮�,�±@L , each member of 

the ensemble 𝐔�,�±@L  is propagated by taking data from an adjacent ensemble. The resulting 

localised EnTKF is then formulated as follows 



151 

 𝐔�,�±@
L,©±@ = 𝐒�,�𝐔�,�< + 𝐟�,�G𝐔�,�±@

L,© H (7.23) 

 𝐏�,�±@< = 𝐶�G𝐘�,�±@H (7.24) 

 𝐔�,�±@< = 𝐴�G𝐔�,�±@L , 𝐏�,�±@< H (7.25) 

The algorithm of the localised EnTKF (7.23)-(7.25) ensures stochastic transmission conditions 

between the local ensembles. However, this algorithm requires an iterative solution of the 

background equation (7.23) for each member of the ensemble, which makes it more 

computationally demanding than (7.19)-(7.22). From here, the algorithm (7.19)-(7.22) is 

referred to as the interconnected localised EnTKF with the deterministic transmission (DT) and 

the algorithm (7.23)-(7.25) is now called the interconnected localised EnTKF with the 

stochastic transmission (ST). 

A set of numerical experiments was performed using the test experiment configuration to 

compare the quality of the estimates between the two algorithms of the localised EnTKF filters: 

EnTKF DT and EnTKF ST. The configuration of the experiments uses the constant flow field 

𝜇 = [0.2; 0]b and the global domain of size [0,1] × [0,4] metres decomposed into four equal 

size completely observed subdomains and initial spatial distribution of a pollutant tracer as in 

Figure 7.1 (for a detailed description of the test experiment configuration see Section 4.3.1). 

 
Figure 7.4 The spatial norm of the FEM solution, 

localised EnTKF DT and EnTKF ST estimates with 
100 ensemble members and global EnKTF estimate 

with 500 ensemble members plotted over time. 

 
Figure 7.5 The spatial error of the FEM solution, 

localised EnTKF DT and EnTKF ST estimates with 
100 ensemble members and global EnKTF estimate 

with 500 ensemble members plotted over time. 
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The results of the simulations are depicted in Figure 7.4-Figure 7.7, where the spatial norm and 

the spatial error of the localised EnTKF DT estimate 𝐮SM�PSO×J{¡{ and localised EnTKF ST 

estimate 𝐮SM�PSO×J{¢{ are demonstrated for ensembles containing 100 and 500 members. Figure 

7.4 and Figure 7.5 show that if the ensemble size is 100, the localised EnTKF ST provides 

better quality estimates than the localised EnTKF DT. The better estimates from the EnTKF 

ST is also confirmed by the corresponding estimation errors: 𝑒ø(𝐮SM�PSO×J{¡{) = 47.8% and 

𝑒ø(𝐮SM�PSO×J{¢{) = 37.2%. Such large errors are explained by a small number of ensemble 

members for the given integration window. Initially both estimates are very similar, but after 

approximately 30 time steps, they begin to diverge. This occurs after 30 time steps, because, at 

this point, the concentration plume reaches the second subdomain and starts to spill into it. The 

spillage implies that the source term (7.20) starts to play an important role in the 

communication between subdomains. Since the localised EnTKF DT underestimates the 

uncertainty over the interface of decomposition, using EnTKF DT results in a reduction of the 

quality of the estimate. However, if the number of ensemble members is increasing, the effect 

of the uncertainty underestimation is negligible. This is illustrated in Figure 7.6 and Figure 7.7, 

where estimates were obtained for the ensemble with 500 members. These estimates 

demonstrate much better convergence and an improvements of the estimation errors 

𝑒ø(𝐮SM�PSO×J{¡{) = 16.8% and 𝑒ø(𝐮SM�PSO×J{¢{) = 15.1%, which are in a much narrower range. 

Establishing the relation between the localised and the traditional EnTKF is more difficult than 

in the case of the Kalman filter or minimax filter. The purpose of the ensemble filtering is to 

quantify the uncertainty within the space that is derived by ensemble members. If the localised 

 
Figure 7.6 The spatial norm of the FEM solution, 

localised EnTKF DT, localised EnTKF ST and global 
EnKTF estimates with 500 ensemble members 

plotted over time. 

 
Figure 7.7 The spatial error of the FEM solution, 
localised EnTKF DT, localised EnTKF ST and  

global EnKTF estimates with 500 ensemble 
members plotted over time. 
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version of the EnTKF is used, a space of uncertainties is approximated in a piecewise fashion 

where local ensembles approximate the corresponding part of uncertainties and communicate 

with each other through appropriate boundary conditions, which are represented by the source 

vector. Instead of the global ensemble space of the size 𝐾, this approximation of uncertainties 

allows for the use of local ensembles that cover a smaller subdomain with a smaller amount of 

members, or 𝐾� ≤ 𝐾. 

Figure 7.4 and Figure 7.5 also present a comparison between the traditional EnTKF 𝐮USMNPS 

with the ensemble size 500 and the localised EnTKF 𝐮SM�PSO×J{¡{ and 𝐮SM�PSO×J{¢{ using four 

local ensembles of size 125. The results demonstrate that a piecewise approximation of the 

system of uncertainties provides better results than a traditional approximation. The same is 

inferred by the estimation errors: 𝑒ø(𝐮SM�PSO×J{¡{) = 47.8%, 𝑒ø(𝐮SM�PSO×J{¢{) = 37.2% and 

𝑒øG𝐮USMNPSH = 48.4%. A further increase of the ensemble size of the localised filters to 500 

members results in significantly better estimates from the localised EnTKF, as it can be seen 

from Figure 7.6 and Figure 7.7, than in the estimation obtained from the traditional EnTKF 

with an ensemble size of 500. 

Finally, it should be noted that the idea of performing the analysis in smaller domains is not 

new. (Hunt et al., 2007) suggest to propagate the global ensemble, but to partition available 

observations into separate batches that have uncorrelated errors, perform a local analysis and 

update ensemble locally as well: 

 𝐔�±@L = 𝐒�𝐔�< + 𝐟� (7.26) 

 𝐏�,�±@< = 𝐶�G𝐘�,�±@H (7.27) 

 𝐔�,�±@< = 𝐴�G𝐔�,�±@L , 𝐏�,�±@< H (7.28) 

This approach does not allow for the splitting of the batch of observation with correlated errors 

because of the absence of the transmission mechanism between local ensembles. In contrast, 

the localised EnTKF DT or localised EnTKF ST inherit subdomain communication 

mechanisms from d-ADN. Another advantage of the localisation method presented here is that 

the background ensemble propagation is also localised in contrast to (7.26) meaning that the 

algorithm can be completely parallelised. 
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7.3 Comparison	of	localised	filters	

To compute the computational costs of the interconnected localised Kalman and EnTKF filters, 

assume that in total, 𝑁�� FEM nodes are split into 𝑁 subdomains with 𝑁���  nodes each, and 𝑝 

iterations of the Schwarz approach are needed to solve the background problem. One time step 

of the localised Kalman filter (7.4)-(7.8) requires 7𝑁𝒞���m ���
m  arithmetic operations, where 

𝑁𝒞���m ���
m  operations are used for the estimate computation (7.5), (7.7) and 6𝑁𝒞���m ���

m  

operations are needed for the covariance analysis (7.4), (7.6). 

The algorithm of the interconnected localised EnTKF DT requires 𝑁𝒞���m ���
m  operations for the 

solution of the background problem (7.19), 𝑁𝒞���m Ô operations are used for (7.20), 

𝑁 ~𝒞���m Ô + 𝒞Ô���m + 2𝒞ÔÔ� operations are used for the covariance propagation (7.21) and 

𝑁 ~𝒞���m Ô + 2𝒞Ô���m + 𝒞ÔÔ� operations are used for the ensemble update (7.22). For the 

localised EnTKF ST, the background propagation is performed in 𝑁𝒞���m ���
m  for the model 

matrix computation and 𝑝𝑁𝒞���m Ô for matrix multiplication. The total complexity of the 

localised filters presented in this research is given in the following table: 

Table 7.1 Computational complexity of traditional and localised filter. 

 Minimax filter Kalman filter 

Global 14𝒞������  7𝒞������  

Localised 14𝑁𝒞���m ���
m  7𝑁𝒞���m ���

m  

 EnTKF 

Global 𝒞������ + 3𝒞���Ô + 3𝒞Ô��� + 3𝒞ÔÔ  

Localised DT 𝑁 ~𝒞���m ���
m + 3𝒞���m Ô + 3𝒞Ô���m + 3𝒞ÔÔ� 

Localised ST 𝑁 ~𝒞���m ���
m + (2 + 𝑝)𝒞���m Ô + 3𝒞Ô���m + 3𝒞ÔÔ� 

The theoretical results in Table 7.1 are justified by the results from numerical experiments 

conducted using the test experiment configuration (see Section 4.3.1) with a decomposition of 

the global domain into four equal size completely observed subdomains and initial spatial 
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distribution of a pollutant tracer as in Figure 7.1. Consolidated results of those experiments are 

provided in Table 7.2 and Table 7.3 where the execution time and the estimation errors are 

presented for the following simulations: (i) global minimax, Kalman and EnTKF filters 

(Section 4.2.1); (ii) localised minimax filter (Section 6.2.1); (iii) localised Kalman filter 

(Section 7.1), and (iv) localised ensemble filters (Section 7.2). 

Table 7.2 Execution CPU time and estimation errors of the global and localised minimax and Kalman filters. 

Results of the time measurements are averaged over 4 runs. 

 Minimax filter Kalman filter 

 Execution time Estimation error Execution time Estimation error 

Global 244	𝑠 15.0	% 157	𝑠 15.6	% 

Localised 39.1	𝑠 15.6	% 18.6	𝑠 16.5	% 

Table 7.3 Execution CPU time and estimation errors of the global and localised EnTKF filters with 100 and 500 

ensemble members. Results of the time measurements are averaged over 4 runs. 

 
EnTKF, K = 100 EnTKF, K = 500 

Execution time Estimation error Execution time Estimation error 

Global 71.1	𝑠 89.7	% 136	𝑠 48.4	% 

Localised DT 11.7	𝑠 47.8	% 98	𝑠 16.8	% 

Localised ST 20.8	𝑠 37.2	% 143	𝑠 15.1	% 

As expected, the results in Table 7.2 demonstrate that the localised filters based on d-ADN DD 

provide significant computational advantages comparing to the traditional global algorithms 

while maintaining the same quality of estimation. The results given in Table 7.3 also confirm 

theoretical complexities of localised EnTKF filters. These results further demonstrate that the 

complexity of the localised ensemble filters is in a balance between number of subdomains 𝑁 

and the size of an ensemble 𝐾. 

The difference between ensemble filters and minimax or Kalman filters for decomposition is 

the method of approximation of the uncertainties. In minimax or Kalman filter, the uncertainty 

space represented by the Riccati matrix (or covariance matrix for Kalman filter) is strictly 



156 

defined over the degrees of freedom that are associated with the spatial domain. The 

geometrical decomposition of the global spatial domain produces smaller spatial subdomains, 

which result in smaller covariance matrices. In the case of the localised EnTKF, the ensemble 

of states approximates the uncertainty space. So that, the application of decomposition to the 

spatial domain splits the global ensemble into local fractions, but the size of each fraction 

remains the same. For this reason, as demonstrated in Table 7.3, the localised EnTKF DT and 

ST algorithms are cheaper than EnTKF for a small ensemble size since the background 

propagation dominates the computational price. For larger ensembles, the analysis step 

becomes more demanding, and the total execution time is higher for localised EnTKF than for 

the global EnTKF because for localised filter analysis is performed on each subdomain (see 

Table 7.3). However, since the spatial subdomains of the localised problems are smaller than 

the original domain, the local ensemble size can be decreased, as it should represent a smaller 

size uncertainty space. The level of the decrease is not obvious as it is not directly associated 

with the decomposition applied, but, for instance, the localised EnTKF DT and EnTKF ST 

using 100 ensemble members provide a smaller estimation error then EnTKF using 500 

ensemble members (see Figure 7.4 and Figure 7.5). It should also be noted that, although the 

localised EnTKF ST provides a better quality of the estimate than the localised EnTKF DT, it 

is also more computationally expensive. Thus, it may be reasonable to use the localised EnTKF 

DT with a higher amount of ensemble members than the localised EnTKF ST. 

Computational performance of the localised filters is further demonstrated using the following 

numerical experiment. Consider a global domain of the size [0,1] × [0,𝑁] discretised into 

225𝑁 FEM elements where 𝑁 is an integer variable such that 𝑁 ∈ {1,2,… ,20}. The experiment 

adopts the constant flow field 𝜇 = [0.2; 0]b𝑚/𝑠, the constant diffusion coefficient 𝜖 =

10¡¼	𝑚X/𝑠 and is performed for 2000 time steps of 0.1	𝑠 each. The global domain is 

decomposed into 𝑁 equal-size subdomain over the horizontal axis and discretised by 225 FEM 

elements. The initial conditions of the problem are not known, but each subdomain is observed 

by noisy observations. To solve this DA problem, the following localised filters are used: 

minimax localised filter, Kalman localised filter, EnKTF DT with 100 ensemble members and 

EnTKF ST with 100 ensemble members. 
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Figure 7.8 plots the execution CPU time of the corresponding filters for different values of 𝑁. 

The figure demonstrates that the linear increase of the number of subdomains 𝑁 results in the 

linear increase of the execution time. This result demonstrates that as suggested by the 

computational complexities given in Table 7.1 the localised filters are nearly scalable with 

respect to an increasing number of finite elements organised in additional subdomains. 

Theoretical complexity estimates given in Table 7.1 are further confirmed by the slopes of lines 

from Figure 7.8. Those slopes represent an increase of computational time for each additional 

subdomain and have the following values: 𝑠(𝐮KO<OKPQ) = 35.3, 𝑠(𝐮RPSKP<) = 21.9, 

𝑠(𝐮J<|RI¡{) = 13.4 and 𝑠(𝐮J<|RI¢{) = 25.6. As expected, the minimax filter produces the 

steepest slope while EnTKF DT provides the flattest slope. 

The interconnected localisation approach provides potential for even greater reduction of 

execution time. This indeed can be achieved since computations on each subdomain are 

independent of each other and can be organised in parallel on a supercomputer, i.e., each 

subdomain is assigned to a separate computational node and resolved in parallel. The near 

linear scalability of the algorithms suggests that parallel scalability should be achieved as well. 

 

7.4 Comparison	with	consensus	Kalman	filter	

In this section, interconnected localised filters and in particular interconnected localised 

Kalman filter are compared to the consensus Kalman filter that was recently proposed in 

Battistelli et al. (2015) and later analysed in more details in Battistelli et al. (2016). The 

 
Figure 7.8 Computational time of the minimax, Kalman, EnKTF DT with 100 ensemble members and 

EnTKF with 100 ensemble members localised filters measured for the problems with a different number of 
fixed-size subdomains. 
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consensus Kalman filter also uses DD for reducing computational costs and recasts the 

localised problem using approach similar to Schwarz iterative approach. To be specific, it 

constructs “consensus” between adjacent subdomains by exchanging local state and covariance 

data across the decomposition interface. 

It is not straightforward to apply the algorithm of the consensus Kalman filter presented in 

Battistelli et al., (2015) and Battistelli et al., (2016) to the contaminant transport problem, and 

significant modification are required. The main modifications are the following: 

1) Instead of the diffusion problem operator, the advection-diffusion operator is 

considered. This also requires an adjustment of the FEM approximation schema. 

2) To satisfy the hyperbolic nature of the contaminant transport problem, the original 

Robin transmission condition is replaced by the d-ADN transmission condition. 

3) Boundary conditions are incorporated through boundary integrals and corresponding 

source terms. 

4) Additionally, the mid-point rule is used for a time discretisation instead of the backward 

Euler rule. This is done to allow for a consistent comparison with the localised filters. 

The adapted version of the consensus Kalman filter algorithm for the contaminant transport 

problem is defined for a time interval [𝑡�, 𝑡�±@] and a decomposition of a global domain into 

𝑁 subdomains in the following steps: 

i) initialisation: 

 𝐮�,�L = 𝐮�,�< , 𝐏�,�L = 𝐏�,�<  (7.29) 

ii) consensus construction: split time interval [𝑡�, 𝑡�±@] into 𝐿 subintervals [𝑡� +

𝑙𝛿, 𝑡� + (𝑙 + 1)𝛿], where 𝛿 = (𝑡�±@ − 𝑡�)/𝐿 and 𝑙 = [0,… , 𝐿 − 1]. For each 

subinterval propagate background state and covariance for each subdomain 𝑖 =

1,… , 𝑁 by exchanging boundary data 

 𝐮�,�±(�±@)¤
L = 𝐒�,�±�¤𝐮�,�±�¤< + 𝐒�,�±�¤

�m� 𝐮�,�±�¤L  (7.30) 

 
𝐏�,�±(�±@)¤
L = 𝐒�,�±�¤𝐏�,�±�¤L 𝐒�,�±�¤b + 𝐐�,�±�¤

+ 𝐒�,�±�¤
�m� 𝐏�,�±�¤L G𝐒�,�±�¤

�m� H
b
	

(7.31) 

Here, the sub-index 𝑛 + 𝑙𝛿 denotes that the corresponding matrix or vector are computed at a 

time instance 𝑡� + 𝑙𝛿. While matrices 𝐒�,�±�¤  and 𝐐�,�±�¤  are equivalent to those as in the 
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interconnected localised Kalman filter, the matrix 𝐒�,�±�¤
�m�  represents discretisation of a 

boundary integral for a Dirichlet condition over the inflow zone (see Section 6.1.2). The matrix 

𝐏�,�±�¤L  represents the covariance of boundary nodes taken from adjacent subdomains. It is 

computed in a manner similar to the vector of boundary values 𝐮�,�±�¤L . 

iii) the observation update: 

 𝐏�,�±@< = ÍG𝐏�,�±@L H¡@ + 𝐇�b𝐑�±@¡@ 𝐇�Î
¡@

 (7.32) 

 𝐮�,�±@< = 𝐮�,�±@L + 𝐏�,�±@< 𝐇�b𝐑�,�±@¡@ G𝐲�,�±@ − 𝐇�𝐮�,�±@
L,©±@H (7.33) 

The initial conditions of the algorithm are given as 

 𝐏�,>< = 𝐐�>; 	𝐮�,>< = 𝐮> (7.34) 

Comparing the consensus and interconnected localised Kalman filter algorithms one may 

notice that they share an identical observation update step but differ in the background 

propagation step. Specifically, the two main differences are the following: 

1) To coordinate local solutions across the decomposition interface, the consensus Kalman 

filter performs iterations in the temporal dimension by splitting each time step into a 

fixed number of substeps. In contrast, the localised filter performs iterations in the 

Schwarz dimension. It should be noted that this difference results in different 

convergence properties of those filters. For example, for a constant velocity field, the 

Schwarz approach converges in a fixed number of iterations while consensus approach 

converges only if the size of substep approaches zero. 

2) In addition to the exchange of local state estimates between adjacent subdomains, the 

consensus Kalman filter also exchanges local covariances through the decomposition 

interface. This is done by introducing an extra term in the background covariance 

propagation equation (7.31) that incorporates boundary covariances obtained from 

adjacent subdomains. 
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To compare quality of estimates of the interconnected localised Kalman filter 𝐮SM�PSO×J{ and 

consensus Kalman filter 𝐮�M<×J<×~×  a numerical simulation with the test experiment 

configuration is performed. For consistency, the interconnected localised Kalman filter was 

executed using 1 Schwarz iteration and the consensus Kalman filter was done with 1 consensus 

iteration. The results of this simulation are demonstrated in Figure 7.9 and Figure 7.10 where 

the spatial norms and spatial errors of the corresponding filters are presented. It can be seen 

that both estimates are very similar. This is further confirmed by the estimations errors: 

𝑒ø(𝐮SM�PSO×J{) = 16.5% and 𝑒ø(𝐮�M<×J<×~×) = 17.3%. The slightly higher estimation error of 

the consensus filter is due to its incorporation of transmission conditions from the previous 

iteration, i.e., from the previous time substep. Increasing number of consensus iterations would 

increase number of time points where computations are performed and thus would improve 

quality of estimates. However, the question of convergence of the consensus filter and localised 

filter requires additional investigations. 

To compare the computational efficiency of the filters, assume that only one iteration of both 

filters is performed. In this case, the consensus filter performs two extra matrix multiplications 

in (7.31) associated with the exchange of covariances between subdomains comparing to the 

interconnected localised filter. For instance, the execution time of the experiment considered 

here is 18.6	𝑠. for the localised filter and 19.7	𝑠. for the consensus filter. Each extra iteration 

of the consensus filter is done at a different time instance and requires recomputing FEM 

matrices, background state and covariance propagation (7.30)-(7.31). Iterations of the localised 

filter are done in the Schwarz dimension using the same matrices computed during the first 

 
Figure 7.9 The spatial norm of the FEM solution, 

interconnected localised Kalman filter and consensus 
Kalman filter estimates plotted over time. 

 
Figure 7.10 The spatial error of the FEM solution, 

interconnected localised Kalman filter and 
consensus Kalman filter estimates plotted over time. 
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iteration. That means each additional iteration of the consensus filter requires an extra matrix 

inversion and two matrix multiplications comparing to the localised filter. For instance, 

execution time of the interconnected localised filter with 2 Schwarz iterations is 20.4	𝑠. while 

execution time of the consensus Kalman filter with 2 consensus iterations is 29.2	𝑠. That means 

that from the computational point of view, the consensus Kalman filter is more expensive then 

the interconnected localised Kalman filter. 

The results of this comparison can be extrapolated to other localised filters using results from 

Table 7.2 and Table 7.3. It is concluded that the consensus Kalman filter is faster than the 

interconnected localised minimax filter for a small number of iterations but provides less 

accurate results. The accuracy of the consensus filter may be improved by increasing number 

of consensus iterations however that may be computationally more demanding that the 

interconnected localised minimax filter. Interconnected localised EnTKF are cheaper than the 

consensus filter for small number of ensemble members but are less accurate. 

 

7.5 Tidal	basin	numerical	experiment	

To assess the performance of the interconnected localised filter, numerical experiments for a 

DA problem of a tracer transport with a realistic velocity flow field are presented in this section. 

For this purpose, a simulation of a tidal basin is considered. A tidal basin is a physical model 

designed to generate tidally induced water circulation and tracer transport that can represent 

physical features of a natural prototype (Olbert et al., 2013). It is comprised of two main parts: 

1) the weir that is used to generate tides, and 2) the working area. An advantage of tidal basin 

is that it can be constructed in laboratory conditions and experiments may be performed in a 

fully controlled environment where domain setup and forcing are user-defined. Therefore, a 

tidal basin facilitates a coherent comparison between laboratory and numerical outputs. This 

experiment deals only with the numerical simulation of the tidal basin while laboratory 

simulations are left for future work. 

A transport of tracer in a marine environment is typically modelled by an advection-diffusion 

equation with turbulent diffusion. In this experiment, DA is used to predict tracer concentration 

using linear advection-diffusion PDE without turbulent diffusivity as a background model and 

incorporating observations into that background model. To solve a DA problem, two 

interconnected localised filters are selected: (i) the localised minimax filter and (ii) the localised 

EnTKF DT filter. These choices are explained by the fact that the localised minimax filter is 
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the most general in terms of error treatment while the localised EnTKF DT has the lowest 

computational requirements provided a low level of the ensemble size. 

The velocity flow field and transport of concentration are predicted using two-dimensional 

depth-integrated numerical model TELEMAC 2D (Desombre and Lang, 2013). It is applied to 

a physical model of a single entrance symmetrical square harbour placed in the working area 

of the tidal basin. The schematics and dimensions of the working area of the tidal basin are 

presented in Figure 7.11, and the dimensions of the harbour are presented in Figure 7.12. The 

initial water elevation ℎ>(𝑥) in the working area is 0.3𝑚. The water movement is induced by 

the weir placed on the south edge of working area as in Figure 7.11 producing tides. In 

TELEMAC 2D that is represented by the forcing boundary conditions applied to the bottom 

boundary of the working area (see Figure 7.11) and given in the form of harmonic function: 

 ℎ(𝑡, 𝑥) = ℎ>(𝑥) + ℎ¥ sin(
2𝜋
𝑇 ) 

(7.35) 

where the amplitude ℎ¥ = 0.05𝑚 and the cycle 𝑇 = 2𝑠. 

The TELEMAC solver is configured to discretise the basin by 3200 linear finite elements in 

space and 1000 time steps of the length 0.01𝑠 each. In addition, it is also assumed that a tracer 

is released in the harbour with the initial concentration 1	𝑘𝑔/𝑚7 inside the harbour and 0 

otherwise. TELEMAC is set up to generate tracer concentration 𝐮|JSJKP� using turbulent 

diffusion with diffusion coefficient 0.01	𝑚X/𝑠. 

 
Figure 7.11 Schematic illustration and dimensions of the 

working area in the tidal basin. 

 

 
 

Figure 7.12 Schematic illustration and 
dimensions of the harbour of the tidal basin. 
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Results of TELEMAC simulations are demonstrated in Figure 7.13 and Figure 7.14 where 

concentration of the tracer 𝐮|JSJKP� is depicted. Figure 7.13 shows 𝐮|JSJKP� at the time step 200 

when the first tide reached the harbour and fresh water is entering the gate, leading to a decrease 

of the tracer concentration around the gate. Figure 7.14 demonstrates 𝐮|JSJKP� at the time step 

850 after the tide that was reflected from the top wall of the harbour is leaving the gate 

propagating tracer concentration outside. 

The DA problem considered in this paragraph is to model a tracer evolution without a turbulent 

diffusion by using the linear advection-diffusion equation and noisy observations sampled from 

𝐮|JSJKP�. The underlying flow field in this case is taken from the TELEMAC simulation and 

𝐮|JSJKP� is considered to be a ground-truth solution of this problem. 

To model tracer concentration, TELEMAC uses a non-conservative advection-diffusion 

equation (Hervouet, 2007). To replicate the TELEMAC model, the background equation 

describing tracer concentration 𝑢 of the DA problem is taken in the following form: 

 	𝜕𝑢
𝜕𝑡 = 𝜖Δ𝑢 − (∇ ⋅ 𝜇)𝑢 (7.36) 

where 𝜖 ≥ 0 is a constant diffusion coefficient and vector 𝜇 = [𝜇@, 𝜇X]b is a vector of 

TELEMAC generated velocity field. Since the advection term of equation (7.36) is different 

from the advection term in the conservative advection-diffusion equation (3.4) its treatment 

requires additional explanation.  

A weak representation of the advection term (∇ ⋅ 𝜇)𝑢 is obtained using a test function 𝑣 as: 

 
Figure 7.13 Tracer concentration predicted by 

TELEMAC at time step 200 when the first tide is 
entering the harbour. 

 
Figure 7.14 Tracer concentration predicted by 
TELEMAC at time step 850 when the tide is 

leaving the harbour. 
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(𝜇 ⋅ ∇𝑢, 𝑣) = Q𝜇 ⋅ 𝑣∇𝑢𝑑𝑥
T

 

= −Q(∇ ⋅ 𝜇𝑣)𝑢𝑑𝑥
T

+Q (𝜇 ⋅ 𝑛)𝑢𝑣𝑑𝑥
�T

 

= −Q(∇ ⋅ 𝜇)𝑢𝑣𝑑𝑥
T

−Q𝜇 ⋅ 𝑢∇𝑣𝑑𝑥
T

+ Q (𝜇 ⋅ 𝑛)𝑢𝑣𝑑𝑥
�T

 

(7.37) 

Imposing inflow Dirichlet boundary data 𝑢|�T onto the boundary integral, (7.37) becomes 

 
(𝜇 ⋅ ∇𝑢, 𝑣) = −Q (∇ ⋅ 𝜇)𝑢𝑣𝑑𝑥

T
−Q𝜇 ⋅ 𝑢∇𝑣𝑑𝑥

T

+Q (𝜇 ⋅ 𝑛)𝑢|�T𝑣𝑑𝑥
�Tm�	

+ Q (𝜇 ⋅ 𝑛)𝑢𝑣𝑑𝑥
�Tû��	

 
(7.38) 

The last equation requires computation of the term ∫ (∇ ⋅ 𝜇)𝑢𝑣𝑑𝑥T , which is problematic 

because of the derivative of the numerically generated velocity field. However, ∫ (∇ ⋅ 𝜇)𝑢𝑣𝑑𝑥T  

can be expressed from (7.37) as 

 
Q(∇ ⋅ 𝜇)𝑢𝑣𝑑𝑥
T

 

= −Q𝜇 ⋅ 𝑣∇𝑢𝑑𝑥
T

−Q𝜇 ⋅ 𝑢∇𝑣𝑑𝑥
T

+ Q (𝜇 ⋅ 𝑛)𝑢𝑣𝑑𝑥
�T

 

(7.39) 

Inserting (7.39) into (7.37) results in 

 
(𝜇 ⋅ ∇𝑢, 𝑣) = Q𝜇 ⋅ 𝑣∇𝑢𝑑𝑥

T
− Q (𝜇 ⋅ 𝑛)𝑢𝑣𝑑𝑥

�Tm�	

+ Q (𝜇 ⋅ 𝑛)𝑢|�T𝑣𝑑𝑥
�Tm�	

 
(7.40) 

The advection term ∫ 𝜇 ⋅ 𝑣∇𝑢𝑑𝑥T  is symmetric to the term ∫ 𝜇 ⋅ 𝑢∇𝑣𝑑𝑥T  that represents 

advection of the conservative equation (3.15) and thus is computed similarly. The time 

derivative term, diffusion term and boundary terms of the weak formulation of equation (7.36) 

are computed identically to the corresponding terms in (3.4) and (3.16) (see Section 3.1.3 and 

Section 6.1.2). 

To solve this DA problem by the interconnected localised filters, the tidal basin is decomposed 

into five subdomains as it can be seen in Figure 7.11. Each subdomain is discretised in space 

by bilinear finite elements as follows: domain 𝑑1 by 480 elements, domains 𝑑2 and 𝑑4 by 192 
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elements each, domain 𝑑3 (the harbour) by 256 elements and domain 𝑑5 by 400 elements. 

The observations 𝐮MN× are generated by restricting 𝐮|JSJKP� to the third subdomain 𝑑3 and 

adding uniformly distributed random noise selected from the interval [−0.1; 0.1]. 

The parameters of the localised minimax filter are configured as follows 

 𝐐¥� =
1
𝛾b,�

, 𝐐¥>,� =
10
𝛾b,�

, 𝐑¥� =
300
𝛾b,�

 (7.41) 

where 𝛾b,� = (1 + Δ𝑡)𝐴(Ω�), 𝐐¥� reflects a moderate level of trust in the model, 𝐐¥>,� describes 

unknown initial conditions and 𝐑¥� is the reciprocal of the variance of the uniformly distributed 

on the interval [−0.1; 0.1] variable. 

 
Figure 7.15 The spatial norm of the TELEMAC 

solution, FEM solution, localised minimax estimate 
and global minimax estimate plotted over time. 

 
Figure 7.16 The spatial error of the FEM solution, 
localised minimax estimate and global minimax 

estimate plotted over time. 

 
Figure 7.17 The observation, TELEMAC solution, FEM solution, localised minimax estimate and global 

minimax estimate taken in the point x=2.5, y=1.5 and plotted over time. 
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The results of estimation of the solution of the DA problem are shown in Figure 7.15 and Figure 

7.16 where the spatial norm and the spatial error of the estimate 𝐮SM�PSO×J{ obtained from the 

localised minimax filter is compared versus TELEMAC solution 𝐮|JSJKP�, free run FEM model 

with known initial condition 𝐮IJK and the traditional minimax estimate 𝐮USMNPS. It can be seen 

that initially, when the tracer is in the observed area, the corresponding spatial errors are low. 

But when part of the tracer leaves the harbour into the unobserved area, the spatial errors start 

to grow. In general, spatial errors of the localised and global filters are growing with intervals 

of errors decrease corresponding to the time when a tide is leaving the working area providing 

better updates from the observed data. It should be noted that the spatial errors of the localised 

filter exhibits more complex behaviour due to a DD and errors associated with its convergence. 

A comparison of the estimation errors of the FEM solution 𝐮IJK and d-ADN FEM solution 

𝐮{¦¡k, 𝑒ø(𝐮IJK) = 5.8% and 𝑒ø(𝐮{¦¡k) = 9.6% suggests the significance of the 

discrepancies introduced by the decomposition method. At the same time, Figure 7.15 and 

Figure 7.16 demonstrate that global and localised estimates are similar. This is further 

confirmed by the corresponding estimation errors 𝑒ø(𝐮SM�PSO×J{) = 6.8% and 𝑒øG𝐮USMNPSH =

5.7%. Finally, the localised minimax code executed in 432𝑠 while the traditional filter code 

ran for 7156𝑠. 

The results of simulations are further presented for a point taken in the middle of the harbour 

entrance (𝑥 = 2.5𝑚, 𝑦 = 1.5𝑚) in Figure 7.17. The figure compares localised and global 

estimates with FEM and TELEMAC solutions and also with numerically generated noisy 

observations. Initially, the concentration is increasing due to diffusion and then it increases or 

 
Figure 7.18 The observation, TELEMAC solution, FEM solution, localised minimax estimate and global 

minimax estimate taken in the point x=2.5, y=1.375 and plotted over time. 
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decreases depending if the tide is entering or leaving the harbour while the general trend is the 

increase of tracer concentration. It can also be seen that the localised minimax estimate is 

accurate and converges to the global minimax estimate. 

Another estimate is plotted in Figure 7.18 for the point taken immediately outside of the 

harbour entrance (𝑥 = 2.5𝑚, 𝑦 = 1.375𝑚) which is in the domain 𝑑1 and is not observed. In 

this case, the local subproblem does not contain any observations, but, as shown in Figure 7.18, 

communication between subdomains results in improvement of the estimate when the tide 

leaves the harbour and propagates estimated data from the harbour. When the concentration in 

 
Figure 7.19 The spatial norm of the TELEMAC 

solution, FEM solution, localised EnTKF DT 
estimate and global EnTKF estimate plotted over 

time. 

 
Figure 7.20 The spatial error of the FEM solution, 
localised EnTKF DT estimate and global EnTKF 

estimate plotted over time. 

 
Figure 7.21 The observation, TELEMAC solution, FEM solution, localised EnTKF DT estimate and global 

EnTKF estimate taken in the point x=2.5, y=1.5 and plotted over time. 
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this point is influenced by the tide that comes from the not observed e.g. not filtered area and 

moves into the harbour, the quality of estimate decreases. 

The tidal basin simulation was also conducted using the localised EnTKF DT with the 

ensemble size 100. A comparison of the spatial norm and spatial error of the localised EnTKF 

DT 𝐮SM�PSO×J{ with the traditional EnTKF estimate 𝐮USMNPS as well as FEM and TELEMAC 

solutions 𝐮IJK and 𝐮|JSJKP� is presented in Figure 7.19 and Figure 7.20. The estimates of the 

tracer concentration in the point taken in the middle of the harbour entrance are shown in Figure 

7.21. As it is expected, the convergence of the localised EnTKF DT is slower than of the 

convergence of the localised minimax filter which explains high level of discrepancies at the 

initial stage of estimation (see Figure 7.21). Also the estimation quality is lower as well, the 

corresponding estimation error are 𝑒ø(𝐮SM�PSO×J{) = 20.1% and 𝑒øG𝐮USMNPSH = 17.8%. At the 

same time, the localised EnTKF DT code took only 153𝑠 to execute which is the 

computationally most efficient estimator presented here. For comparison, global EnTKF code 

war running for 2038𝑠. Figure 7.20 and the estimation norm of the traditional EnTKF also 

shows that the quality of the estimate of EnTKF is better that for a traditional minimax filter. 

This happens because the EnTKF method is constructed for a background model without model 

errors while the minimax filter considers modelling errors. 

 

7.6 Discussion	and	conclusions	

In this chapter, the interconnected localisation strategy was further extended for Kalman filter 

and EnTKF. Using the equivalence properties between minimax and Kalman filters, the 

interconnected localised Kalman filter is constructed in a straightforward way. Localisation of 

EnTKF is more complicated than localisation of Kalman filter due to its mechanism of the 

uncertainty propagation. Depending on the treatment of the transmission conditions, two 

different algorithms were suggested: (i) the localised EnTKF DT with the deterministic 

transmission and (ii) the localised EnTKF ST with the stochastic transmission. It was explained 

and demonstrated that the localised EnTKF ST provides better quality estimates, but the 

localised EnTKF DT is less computationally demanding for the same ensemble size. 

A comparison of the theoretical computational complexity of the various interconnected 

localised filters was also presented. That comparison demonstrates significant computational 

benefits of the localised methods and their nearly linear scalability properties with respect to a 
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number of degrees of freedom. The theoretical comparison is further justified by the numerical 

experiments with idealised configuration. It is concluded that the localised minimax filter is 

faster than the traditional filters, but slower than other localised filters. The fastest 

computations can be achieved if the localised EnTKF DT with a small ensemble size is used. 

Furthermore, the benefits of the localised filters are explained and demonstrated with a 

numerical simulation that compares it with the so-called consensus Kalman filter (Battistelli et 

al., 2016, 2015) which also uses DD for computational costs reduction. 

Finally, the performance of the interconnected localised minimax filter and interconnected 

EnTKF DT was assessed for the tidal basin simulation with complex velocity flows. The 

numerical experiments demonstrate the computational efficacy of the proposed approaches. 
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8 Summary	and	Conclusions	

8.1 Summary	and	discussion	

Assimilation of available observations into a model described by the PDE is an important 

engineering problem. While a mathematical solution of the problem is known and can be 

obtained from the solution of the corresponding FP equation, its application in practice is often 

limited due to high computational requirements. It is common to use linear assimilation 

methods such as the Kalman filter or its more robust deterministic equivalent: the minimax 

filter. A disadvantage of those methods is that they are not scalable, and computational costs 

escalate for large-scale problems that typically occur in marine modelling applications. As 

demonstrated in the literature review, over the last few decades, there were many attempts to 

construct more efficient assimilation methods. This problem, however, still remains active. 

This thesis is mainly concerned with the construction of performance efficient DA methods. 

To this end, it is suggested to localise computations by coupling traditional DA methods with 

DD. The application of DD techniques for the solution of PDE has several advantages: the 

computational cost can be optimally managed, different geometric forms of subdomains can 

be exploited, various patterns of the physical solution can be captured using different numerical 

schemes in corresponding subdomains and the resulting subproblems can be solved 

independently. Here, the applicability of DD is extended to the assimilation problem. 

In this thesis, the process of contaminant transport is considered. Starting with the time-space 

continuous formulation of the problem given by the linear advection-diffusion equation, it is 

reformulated in a weak sense. The weak problem is solved using Galerkin approximations. 

Specifically, a FEM approach with bilinear basis functions is employed. Discretisation in time 

is performed using the mid-point rule which is chosen due to its stability properties. According 

to those representations, the corresponding DA problems are equivalently introduced together 

with their optimal estimation methods. For a problem continuous in time and discrete in space, 

the Kalman-Bucy filter is devised. For a problem discrete in time and space, an algorithm of 

the Kalman filter is obtained which is further approximated by the EnKF. 

The usage of Kalman filters relies on the exact description of the model uncertainties which 

are assumed to be Gaussian white noise. The quality of the estimation produced by those filters 

is sensitive to the accuracy of the definition of the input parameters. At the same time, an 
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accurate statistical description of the model and observation errors often is not available in 

practical situations. To increase the robustness of an estimation method, instead of a statistical 

description of errors, it is assumed that modeling errors are unknown, but bounded. The latter 

attribute is a natural assumption as it reflects the fact that the energy of the system is limited. 

Once the set of all possible error realisations is known, the state estimate is found using a 

minimax filter which finds the realisation that minimizes the error of the worst-case scenario. 

In this work, a minimax filter is developed in a feedback form as an extension of the approach 

presented by Zhuk (2013). The first extension is that model errors are assumed to have linear 

constraints defined by 𝐿�-type norm. Measurement errors are assumed to be a realization of a 

random process, so the seconds moments of those errors are assumed to be unknown but 

pointwise bounded so that, in fact, it belongs to the 𝐿� ellipsoid produced by the nonnegative 

definite operator. The 𝐿� ellispsoids are approximated by the 𝐿X ellipsoids which is 

geometrically interpreted as approximating a rectangle by a circle that contains it. For 𝐿X 

ellipsoids, the estimation problem is given as an LQ control problem and its solution is 

provided by the minimax filter which represents the solution of the corresponding optimality 

system. The second extension is that the filter is defined for a continuous DA problem in an 

operator form and later discretised using Galerkin and FEM approximations following the 

“optimise and discretise” paradigm. An application of FEM produces discrete feedback and 

matrix DRE. Benner and Mena (2004) analysed several of the most common approaches for 

DRE solution. For the problem considered in this research, symplectic mid-point schema 

(Hairer et al., 2006) with Möbius transformation (Benner and Mena, 2004) and reinitialisation 

(Frank and Zhuk, 2014) was chosen because of its capability to integrate through singularities 

of DRE. Following the introduction of the traditional filters, the mathematical equivalence 

between the Kalman-Bucy filter and the minimax filter is explained suggesting a chain of 

equivalences between the minimax filter, Kalman filter and EnTKF. 

For the implementation of the code of traditional filters, matrix operations are performed using 

data decomposition approach provided by the OpenBLAS library which implements shared 

memory parallelisation. Nevertheless, performed numerical simulations demonstrate that the 

traditional filters require significant computational cost and are not scalable as suggested by 

the theoretical complexity estimates. 

To construct more efficient methods of DA, two strategies of coupling filters and DD are 

presented in this research. The first strategy follows the standard idea of decomposition applied 

to the underlying background problem which produces a set of additional equations enforcing 
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continuity of the solution across the interface of decomposition known as transmission 

conditions. Thus, the original PDE is reformulated as a DAE and is discretised in space using 

FEM approximations, although any other spatial discretisation techniques may be used. Since 

obtaining solutions to DAE systems in a general case is very problematic (Hairer and Wanner, 

1996), it is suggested to consider discrete transmission conditions as an additional set of 

observations with a very small error. The state of a DAE is then estimated using minimax 

estimation approach where transmission conditions are treated as an algebraic optimisation 

constraint. The latter is accomplished by applying methods of LQ control theory, in specific 

the generalised Kalman duality principle proposed in Zhuk (2013). As a result, the DAE 

minimax filter is devised. 

The results of numerical simulations demonstrate that the DAE minimax filter provides similar 

quality of estimates to the traditional minimax filter. However, it should be explained that from 

a computational point of view the approach does not provide significant benefits. While the 

localised stiffness and observation matrices of the DAE minimax filter possess a block matrix 

structure (due to DD), the presence of the algebraic constraint in the Riccati equation blends 

the matrix components and leads to a general form of the Riccati matrix. Thus, the full-size 

Riccati and feedback equations should be solved which require the same amount of operations 

as solving traditional minimax filters. 

The computational costs of the DAE minimax filter may be decreased if the structure and 

patterns of the transmission matrix and Riccati equation are studied. The transmission matrix 

has non-zero components only for boundary nodes, thus if FEM nodes are renumbered that 

may lead to the Riccati equation which obeys a certain block structure that may be cheaper to 

solve than the original one. 

An attractive property of the localisation of the minimax filter by means of DAE is that the 

approach does not depend on physical properties of the modelled process over the 

decomposition interface. Since the discrete transmission conditions are treated as an algebraic 

constraint of an optimisation problem it can be chosen independently from the problem 

operator provided its continuous equivalent satisfies continuity of a decomposed problem. 

Although it should be noted that the choice of transmission conditions may effect estimation 

quality of the method. For example, the choice of the Dirichlet transmission conditions that are 

used in this work does not depend on flow patterns of the underlying transport process and can 

be used for both advection and diffusion dominated flows. Also, it may be replaced by the 

Robin transmission conditions in a straightforward way, which in the case of FEM 
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approximation would guarantee not only continuity of the solution but also continuity of its 

first derivative. Additionally, matrix patterns produced by different transmission conditions 

may have an impact on the computational performance of the algorithm. 

The DAE minimax filter can be solely used for the solution of the decomposed problem. In a 

general case, it is more expensive than classical decomposition solvers such as the Schwarz 

iterative approach, due to the need for the Riccati equation computation. However, if the 

stiffness matrix of the underlying problem is stationary, the solution of the Riccati equation 

approaches to the solution of the stationary Riccati equation also known as the algebraic Riccati 

equation (equation without time-derivative term). The resulting method for the solution of the 

decomposed problem would require only one solution of the algebraic Riccati equation which 

is cheaper than the Schwarz approach. That may have a potential application for the solution 

of the problems, where the model operator is independent of time, and the system dynamics is 

driven by the boundary conditions or source terms that do not impact the stiffness matrix. 

The idea to apply LQ control to recast local subdomain that is used by the DAE minimax filter 

is similar to the virtual controls approach. Several variants of this approach are described in 

Discacciati et al. (2012) where they are used to solve heterogeneous problems, for instance, 

problem of advection/advection-diffusion coupling, by combining DD and control theory. In 

that regard, the DAE minimax filter can be seen as a combination of the virtual controls 

approach and minimax framework. Application of DA to heterogeneous problems is another 

potential application for the DAE minimax filter since the traditional filters cannot be applied 

to heterogeneous problems directly. 

Another resemblance to the DAE minimax filter approach can be founded in (D’Amore et al., 

2013) and (D’Amore et al., 2014) where DD-oceanVar approach is designed. DD-oceanVar 

also uses DD with the transmission conditions enforced as an additional constraint of an 

optimisation problem, i.e., an extra term of a cost function. Although the authors reported 

improvement in a computational time of the DD-oceanVar approach in comparison to no DD 

method, it should be stressed that in their work the 3d-Var estimator is used. Since 3d-Var 

analysis takes into account observations only from a current time step its estimation quality is 

lower than the one that is obtained using minimax/Kalman filters (Bouttier and Courtier, 1999). 

The second strategy of coupling filters and DD presented in this thesis is the interconnected 

localisation of the minimax filters. This strategy employs DD to the assimilation problem with 

pointwise bounded errors controlled by 𝐿� ellipsoids. Usage of 𝐿� ellipsoids allows for 
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decomposing not only of operators of the background problem but also error ellipsoids. Thus, 

the global problem is reformulated as a set of independent local subproblems which are 

interconnected by transmission conditions enforced through local boundary conditions. After 

the localisation of the problem is done, the minimax filter is applied to each subproblem. To 

resolve this set of local filters, each of them is discretised in space and time using FEM and 

mid-point methods and computed using the Schwarz iterative approach. 

In contrast to the DAE minimax approach, in this case, the choice of the transmission 

conditions should satisfy physical properties of the underlying problem, in particular, 

configuration of boundary conditions. For this need, an adaptive method called d-ADN is used 

since it satisfies the hyperbolic limit of the advection-dominated problem and assigns Dirichlet 

or Neumann conditions according to inflow/outflow zones of the corresponding local boundary 

(Gastaldi et al., 1998). 

Numerical experiments performed in this work demonstrate that the interconnected localised 

and global versions of the minimax filter provide very similar quality of estimates. Those 

experiments further reveal a crucial role of the decomposition method on the estimation quality 

of the interconnected localised minimax filter. It is known that the d-AND method performs 

well for advection dominated flows which are characterised by a high value of the Péclet 

number. However, the Péclet number is averaged over a spatial domain measure and may not 

reflect the full complexity of a flow field well. For instance, during the initial period of the 

numerical tidal basin simulation, the flow in the harbour is produced by diffusion only while 

the tide, generated on the south boundary, is propagating into the working area and generates 

a high Péclet number. This inconsistency results in discrepancies caused by the incorrect 

treatment of the boundary conditions in the d-AND method between the harbour and working 

area. It is known that the damped adaptive Robin-Neumann (d-ARN) DD method (Gastaldi et 

al., 1998) is less sensitive to the Péclet number, but usually requires more Schwarz iterations 

for convergence. Other factors that influence the convergence of DD methods are damping 

(Ciccoli, 1996) and relaxation (Marini and Quarteroni, 1989) of boundary conditions over the 

interface of decomposition. An optimal choice of parameters of those factors and their 

influence on the convergence of the localised minimax filters requires additional investigation. 

It should be also explained that in the case when the flow is advection dominated in some areas 

or instances of time and is diffusion dominated in another areas or instances of time it is 

possible to construct hybrid transmission conditions that are changing depending on the Péclet 

number. For decomposition interface segments with a high value of the Péclet number, the 
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adaptive boundary conditions are used such as d-ADN or ARN, but if the Péclet number over 

a segment is low, then Dirichlet or Robin conditions should be applied. 

The interconnection mechanism of the localised minimax filter provides communication 

between local estimates using boundary conditions of local subproblems. Those boundary 

conditions are imposed on the weak representation through boundary integrals which further 

produce source terms of feedback equations. Those source terms provide spreading of 

uncertainties between subproblems. However, since the local uncertainty equations 

(represented by the Riccati equation or error covariance propagation) are independent, the 

connection between local uncertainties through source terms is weak. To improve the 

uncertainty propagation, a strategy with pseudo filters is suggested. This strategy employs 

additional local filters with pseudo-observations defined over decomposition interface 

boundaries on subdomains without actual observations. Parameters of those pseudo filters are 

configured to represent uncertainty transmission between adjacent subproblems. 

The approximation of 𝐿� ellipsoids by 𝐿X ellipsoids that is used for the minimax filter 

derivation can be geometrically illustrated as approximating a circle by the smallest rectangle 

which contains it. The quality of the ellipsoidal approximation depends on a domain size and 

length of the estimation window 𝑇. For the global minimax filter this approximation can be 

rather crude especially for a large domain size and long integration window. The localised 

minimax filter constructed here mitigates ellipsoidal approximation error in two ways. First, 

because of decomposition, ellipsoidal approximation is performed on smaller subdomains. So 

that, the “small” ellipsoids 𝐿�� (circles) approximate the “small” ellipsoids 𝐿�X (rectangles) and 

the union of the ellipsoids 𝐿�X is contained in the large ellipsoid 𝐿X approximating the entire 𝐿�. 

Increasing the amount of subdomains that decompose the global domain, results in reduction 

of the ellipsoidal approximation error. In addition, the reinitialisation procedure is introduced 

for mitigating the impact of the estimation window 𝑇 on ellipsoidal approximation error. This 

is achieved thanks to the Markovian property of the minimax estimate that allows the size of 

the estimation horizon to be taken as small as the size of the time integration step. As 

demonstrated in the numerical experiments, the proposed reinitialisation procedure together 

with the error decomposition facilitate the mitigation of the ellipsoidal approximation error and 

significantly reduce the error estimates of the localised minimax filter comparing to the global 

minimax filter. 

The computational demands of the interconnected localised minimax filter and global minimax 

filter are compared by estimating a number of operations required for a one timestep integration 
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of the corresponding filter. It is shown that the localisation significantly reduces computational 

requirement in contrast to a global filter. Those estimates further suggest that the localised 

algorithm possesses scalability properties with regard to the number of finite elements. 

Theoretical considerations are indeed confirmed by the numerical experiments. The main 

computational reduction introduced by the localisation approach is related to the treatment of 

the Riccati equation. While the global minimax filter is solving the global Riccati equation, the 

interconnected localised filter is solving a set of smaller size Riccati equations. It should be 

noted that the same solver is used for both global and local DREs, specifically the symplectic 

mid-point rule with Möbius transformation and reinitialisation. 

The resolution of local optimality systems using local DRE as used in this work is not the only 

possible option. For an application in optimal control, Benamou (1999) applied DD to the 

optimality system which resulted in a set of local optimality systems. But instead of using the 

Riccati equation, those local systems were reformulated using synthesis techniques and 

feedback law computations. Similarly, Heinkenschloss and Herty (2007) performed reordering 

of rows and columns to apply Schur complement formulation. The drawback of both 

approaches is a presence of the final conditions which are inherited from a backward equation 

of the optimality system. The latter makes those approaches unattractive for online DA 

problems since the corresponding systems should be recomputed every time an estimation 

window is increased. 

The interconnected localisation strategy is further extended for Kalman filter and EnTKF. 

Using the equivalence properties between the minimax filter and the Kalman filter obtained 

here for the mid-point discretisation of the DA problem, the interconnected localised Kalman 

filter is constructed in a straightforward way. As expected, computational demands of the 

interconnected localised Kalman filter are decreased by an order compared to the global 

Kalman filter and the localised filter possess a scalability property. Numerical simulations of 

the interconnected localised Kalman filter were successfully performed for a decomposition 

with up to twenty subdomains in contrast to the algorithm combining DD and Kalman filter 

presented by Fujimoto and Kawahara (2001) where convergence was reported for a 

decomposition into two subdomains only. 

Although the Kalman filter is defined on a spatially-temporally discrete domain, a continuous 

level information regarding the underlying PDE is used to construct the interconnected 

localised version of the Kalman filter. It means that the current approach cannot be applied to 

a DA problem defined on a discrete level. At the same time, distributed Kalman filters are using 
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discrete decomposition in combination with the traditional Kalman filter. Various methods 

have been proposed in the field of distributed Kalman filtering, but many of them still suffer 

from scalability issues or require a specific problem structure (Wang et al., 2015). Recently, 

Battistelli et al. (2015) presented an approach which uses continuous decomposition of the 

underlying PDE with FEM and discrete level transmission conditions enforced using an 

iterative approach that splits time steps into substeps and computes a consensus at each of them. 

The interconnected localised Kalman filter is compared to this method known as the consensus 

Kalman filter using the test experiment configuration. It is shown that for a small number of 

iterations, the localised approach provides slightly lower estimation error and is 

computationally cheaper. Furthermore, it is demonstrated that each additional iteration of the 

consensus Kalman filter is significantly more expensive that an additional iteration of the 

interconnected localised Kalman filter since it requires additional matrix operations on local 

subdomains to construct consensus. The results of this comparison are further extrapolated to 

other interconnected localised methods. 

Localisation of ensemble filters can be achieved by associating a local region of a certain 

influence radius with each grid point (Ott et al., 2004) or by splitting observations into separate 

batches that have uncorrelated errors (Hunt et al., 2007). By contrast, in this work localisation 

is done by decomposing the original DA problem into a set of local subproblems in the same 

way as it was performed for the minimax and Kalman filters and applying ensemble filter on 

each subproblem following the equivalence between ensemble filters and the Kalman filter. In 

particular, this localisation is obtained for EnTKF filter and it can be easily extended for other 

variants of ensemble filters. Depending on the treatment of the transmission conditions, two 

different algorithms were proposed: (i) the localised EnTKF DT with deterministic 

transmission, and (ii) the localised EnTKF ST with stochastic transmission. It is explained and 

demonstrated that the localised EnTKF ST provides better quality estimates, while the localised 

EnTKF DT limits the amount of transmitted data which reduces the quality of estimates on the 

one side but decreases computational demands on the other. 

Establishing the relationship between the localised and the traditional EnTKF is more difficult 

than in the case of the Kalman filter or minimax filter. The computational complexity of EnTKF 

filter considered here depends not only on the size of a state vector but also on the number of 

ensemble members. The idea of ensemble filtering is to quantify the uncertainty within the 

space that is derived by ensemble members. If the interconnected localised version of the 

EnTKF is used, a space of uncertainties is approximated in a piecewise manner where local 
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ensembles approximate the corresponding part of global uncertainties and communicate with 

each other through appropriate boundary conditions. Instead of the global ensemble space of 

size 𝐾, this approximation of uncertainties permits using local ensembles that cover a smaller 

subdomain with a smaller number of members 𝐾� < 𝐾. This raises a question for further 

investigation: how much more can we decrease the amount of local ensemble members for a 

given increase in the number of subdomains? 

A comparison of the theoretical computational complexity of the various interconnected 

localised and traditional filters is also presented. That comparison demonstrates significant 

computational benefits of the localised methods and their nearly linear scalability properties 

with respect to a number of degrees of freedom. The theoretical comparison is further justified 

by the numerical experiments with idealised configuration. In practice, EnTKF and ensemble 

filters, in general, are preferred to the minimax/Kalman filters due to lower computational 

demands which are easy to control by changing ensemble size. However, it is concluded that 

the localised minimax filter is faster than the traditional filters including EnTKF with relatively 

small number of ensembles, but slower than other localised filters. Quickest computations can 

be achieved if the localised EnTKF DT with a small ensemble size is used. Finally, the 

performance of the interconnected localised minimax filter and interconnected localised 

EnTKF DT filter was assessed for the numerical simulation with complex velocity flows of a 

tidal basin. The numerical experiments demonstrate the computational efficiency of the 

proposed approaches. 

In this research, the Schwarz iterative algorithm, that is at the core of the devised localised 

filters is implemented in an alternating manner. It should be noted that it can be easily extended 

to a parallel version. Indeed, computations on each subdomain are independent of each other 

and for implementation on a supercomputer can be executed inside different computational 

nodes in parallel. The near linear scalability of the algorithms suggests that parallel scalability 

should be achieved as well. This makes the approach of interconnected localisation an 

attractive tool for engineering applications. 

For numerical simulations, a 2D FEM model was developed for the solution of the linear non-

stationary advection-diffusion PDE. The solution of the PDE is obtained using Galerkin 

approximations that adopt basis functions defined in an abstract space. In this work, basis 

functions are constructed using bilinear finite elements, however other types of FEM basis 

functions are also possible as well as other Galerkin approximation such as Spectral Methods 

with higher order non-local polynomial basis functions. Moreover, the proposed localised 
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filters can be extended to 3D advection-diffusion problems. Indeed, the divergence theorem 

that provides means for a cross domain communication can be also applied in 3D problems. 

Thus, the numerical schema can be easily extended to the 3D equation with the appropriate 

choice of 3D basis functions. This would result in a modified approach for local mass matrix, 

stiffness matrix and boundary vector computation while other parts of the localised filters 

algorithms would remain the same. 

Since the localised filters follow standard practices of the Galerkin method, the existing codes 

can be harnessed if they provide mass and stiffness matrices and implement boundary 

conditions through the force terms. The localised filters can be also built on top of existing 

codes if they implement the Schwarz iterative approach for the solution of the background 

problem. Although in this case, the complexity estimates related to the solution of the feedback 

equation may change. 

To summarise, the major novel elements of this research are (i) development of the DAE 

localised minimax filter with transmission conditions given in the form of an algebraic 

constraint; (ii) development of the minimax filter variant for 𝐿� errors’ ellipsoids; (iii) 

development of the interconnected localised minimax filter based on a damped version of ADN 

DD and Schwarz approach; and (iv) using cross filters equivalences, development of the 

interconnected localised Kalman filter and two variants of the interconnected localised EnTK 

filters with deterministic and stochastic transmission conditions. 

 

8.2 Conclusions	

The main conclusions of this research relate to the interconnected localisation methods of DA. 

The three main conclusions are: 

• The interconnected localisation strategy that applies DD to the time-space continuous 

assimilation problem with non-Gaussian error description was introduced here in order 

to decrease computational demands of the assimilation problem. The application of the 

interconnected localisation strategy to the traditional minimax filter resulted in the 

interconnected localised minimax filter that has much lower computational demands, 

and yet a similar quality of estimation compared with the original minimax filter. For 

instance, a tidal basin simulation took 7156𝑠 to run using a global minimax filter; the 
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same scenario only took 432𝑠 to run when an interconnected localised minimax filter 

was implemented. 

• Using the equivalence between the minimax filter and the Kalman filter obtained here 

for the mid-point time approximations, the interconnected localised Kalman filter is 

introduced. Using the equivalence between the Kalman filter and EnTKF, two different 

algorithms of the interconnected localised EnTKF filter are devised: (i) the localised 

EnTKF DT with deterministic transmission and (ii) the localised EnTKF ST with 

stochastic transmission. Performance of the new filters was studied on a set of 

numerical experiments and significant computational advantages were reported. Again 

comparing simulations of a tidal basin, a model using global EnTKF took 2038𝑠 to run, 

whereas a model incorporating an interconnected localised EnTKF DT run the same 

scenario in only 153𝑠. 

• The interconnected localised minimax, Kalman and EnTKF filters are nearly linearly 

scalable due to the inherent nature of the DD approach. Scalability is indeed achieved 

if the additional degrees of freedom are organised into a separate fixed-size subdomain. 

Since the subdomains are independent, and continuity between them is enforced by the 

Schwarz iterative approach, the increase in the number of the fixed-size subdomain 

results in a linear increase in computational costs. 

Several other significant conclusions are also drawn from this research: 

• The robustness of the minimax filter is improved by assuming pointwise bounded errors 

controlled by 𝐿� ellipsoids instead of 𝐿X ellipsoids. It was demonstrated that the 

ellipsoidal approximation errors generated are mitigated by the localisation strategy and 

time reinitialisation procedure proposed here. 

• The localisation of the minimax filter can be achieved in the form of DAE. In this case, 

the transmission conditions are discretised by a FEM and written as an additional 

algebraic constraint enforced by the minimax filter. The localised stiffness and 

observation matrices of the DAE minimax filter possess block matrix structure (due to 

DD), but the presence of the algebraic constraint in the Riccati equation blends the 

matrix components and leads to a general form of the Riccati matrix. Thus, the full-size 

Riccati and feedback equations should be solved. From a computational point of view, 

the approach has an equivalent performance to the traditional minimax filter. 

• The DAE minimax filter does not depend on physical properties of the modelled 

process over the interface of decomposition and thus can be easily applied to 
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heterogeneous problems. The approach can also incorporate constraints that are given 

in an algebraic form. 

• A 2D FEM model was developed for the solution of the linear non-stationary transport 

phenomena described by the advection-diffusion PDE and observations contaminated 

with noise. The model supports a number of assimilation methods (traditional and 

localised) which were tested for different configurations such as constant and periodic 

velocity flows or tidal basin simulations. The structure of the implemented code is 

presented in Appendix A. 

• The approaches presented herein are robust with respect to the spatial and temporal 

discretisation methods. Since the FEM approximation is used here, discretisation of 

local filters by any other Galerkin approximations may be obtained in a straightforward 

way. Discretisation by FDM is more complicated as it uses a different mechanism of 

boundary condition implementation. 

 

8.3 Recommendations	for	future	work	

Ideas for further improvements and future extensions of the results undertaken in this thesis are 

suggested: 

• Conduct performance comparisons of the interconnected localised filter with different 

adaptive transmission conditions such as: ADN, adaptive Robin-Neumann (ARN), 

adaptive conditions with/without dumping and relaxation. 

• Expand the interconnected localisation idea to other DD approaches. For instance, time 

fraction methods such as explicit predictor implicit corrector methods (Jun and Mai, 

2006) or corrected explicit-implicit DD methods (Liao et al., 2009) could be considered. 

• Investigate possible computational advantages from leveraging sparse structure of the 

underlying FEM matrices and/or using specialised scalable numerical linear algebra 

techniques such as multigrid methods. 

• Implement a parallel version of the interconnected localised filters on HPC cluster or 

supercomputer. Analyse computational properties and scalability of the parallel version 

of the localised filters. 

• Investigate optimal amount of ensemble members of interconnected localised EnTKF 

for a given number of subdomains. 
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• Extend the interconnected localised DA to non-linear problems. For example, EnTKF 

is naturally designed for non-linear problems. Also, a variant of Kalman filter called 

Extended Kalman filter can be used with non-linear problems as well. 

• Apply the interconnected localisation approach to other assimilation methods; for 

instance, using equivalence properties between 4d-Var and Kalman filter. 

• Investigate structure and patterns of the transmission matrix and corresponding Riccati 

equation of the DAE minimax filter for a potential computational cost reduction. 

• Investigate performance of the DAE minimax filter based on a stationary solution of 

the corresponding Riccati equation applied to resolving a decomposed problem where 

the model operator is independent of time, and the system dynamics is driven by the 

boundary conditions and/or source term that does not influence the stiffness matrix. 

• Although NUI Galway has a tidal basin facility, it lacks concentration measuring 

devices, so only numerical simulations of the tidal basin were conducted in this 

research. However, the images of concentration can be recorded with a camera. The 

numerical simulations can incorporate those images using a non-direct observation 

operator, i.e., where observations provide only qualitative information such as whether 

the concentration at a current point is zero or not. This approach is known in the 

literature as image assimilation (Titaud et al., 2008). 
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Appendix	A.	Main	data	types	of	the	FEM	model	

 

Figure A.0.1 FEM model data types. 

Figure A.0.1 presents the main data types and relations between them that are used in the FEM 

code. The object DiscreteSubProblem contains information about a FEM discretisation of a 

local subdomain including list of FEM grid nodes (xNodes and yNodes), list of boundary nodes 

(boundaryNodInd), list of finite elements (elements), mass matrix (mass), stiffness matrix 

(stiffness), boundary stiffness matrix (boundStiff), vector of initial conditions (init), list of 

solutions at each time step (solution), integration time object (intTime) vectors of a velocity 

flow (mu1 and mu2), diffusion coefficient (diff) and others. 
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The main data type is object DecomposedProblem. It contains a list of FEM discretised local 

problems (subProblems), connections between them represented by a list of Connection 

objects (connections) and indices that are mapping nodes from a local numbering to a global 

 

Figure A.0.2 Main functional components of the FEM model. 
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numbering (globNodIndex and connectionIndex). Each Connection object describes a 

discretised physical connection between local subproblems and has two references to 

DiscreteSubProblem objects (lhs and rhs) and two lists of nodes for each subdomain that are 

taken from the common boundary (lind and rind). The DecomposedProblem object also 

contains the Problem object (physicalProbelm) with configurations of physical problem and 

is used for initialisation (ConstructEqualRectangles() and ConstructTidalBasin()) and 

discretisation (DiscretizeTime() and DiscretizeSpace()) of a model. 

The main functional objects are depicted in Figure A.0.2. For the configuration of the 

DecomposedProblem, the ModelConfig is used. This object contains methods for reading and 

writing problem configuration from a file (ReadProblemDecompositionFromFile() and 

WriteProblemDecompositionIntoFile()), reading EFDC and TELEMAC data 

(EFDCLoadTransportKoefs() and TELEMACInitializerMultiDomain()). The implementation 

of FEM was done in BaseFunctionalSpace and BilinearFunctionalSpace objects where 

methods for computation and assembling of FEM matrices are placed. The FilterHandler 

object, together with the ObservationHadnler object provide an implementation of filtering 

algorithms. The core component of the presented model is the Solver object equipped with 

various subroutines that use other objects for initialisation, discretisation and computation of 

assimilation problems using both traditional (SolveSD…()) and localised (SolveDD…()) filters. 
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