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Abstract—Recent high profile developments of autonomous
learning thermostats by companies such as Nest Labs and
Honeywell have brought to the fore the possibility of ever greater
numbers of intelligent devices permeating our homes and working
environments into the future. However, the specific learning
approaches and methodologies utilised by these devices have
never been made public. In fact little information is known as to
the specifics of how these devices operate and learn about their
environments or the users who use them. This paper proposes a
suitable learning architecture for such an intelligent thermostat
in the hope that it will benefit further investigation by the
research community. Our architecture comprises a number of
different learning methods each of which contributes to create a
complete autonomous thermostat capable of controlling a HVAC
system. A novel state action space formalism is proposed to
enable a Reinforcement Learning agent to successfully control the
HVAC system by optimising both occupant comfort and energy
costs. Our results show that the learning thermostat can achieve
cost savings of 10% over a programmable thermostat, whilst
maintaining high occupant comfort standards.

I. INTRODUCTION

Thermostats for controlling Heating, Ventilation and Air
Conditioning (HVAC) systems in the home and office can
largely be broken into two main categories: programmable and
manual. Programmable thermostats allow the user to schedule
heating and cooling to achieve patterns that work best for
one’s schedule. A thermal set-point is specified by a user and
it governs the temperature and humidity levels that must be
reached when the controller is active. Manual thermostats are
non-programmable and require an external operator (human)
to turn on and off the functions of heating and cooling as
required. Manual thermostats are usually cheaper than their
programmable counterparts.

Recently there has been a surge in the development of
intelligent thermostats which boost the ability to autonomously
control HVAC systems. These include offers from companies
such as Nest Labs [1] and Honeywell [2]. They often only re-
quire the user to enter temperature set-points, while the sched-
ule is learned automatically, with the objective of minimizing
energy consumption while still allowing for occupant comfort.
The unit attempts to learn a user’s preference over time based
on their manual adjustments and produce a schedule which is
deemed optimal for the observed patterns of occupancy. The
principal characteristics of these units is that they promote
some notion of self-learning and automation; however, the user
can usually override the learned schedule with a pre-fixed one.

In order to learn and effectively make decisions these
systems rely on observations from sensory inputs about their
environment. Commonly they use: temperature/humidity and
motion sensors; an internal clock/calendar to track date/time;
and external data sources such as the local weather conditions.
Over time the goal of the learning thermostat is to refine its
knowledge, update its understanding of the environment and
make optimal decisions in accordance with its defined objec-
tive functions of maintaining occupant comfort and minimising
cost.

To date, the specific learning approaches employed by com-
panies such as Nest and Honeywell have never been publicly
released and are guarded as trade secrets. In addition, there
has been little activity from the research community to devise
suitable open architectures for solving such problems. There-
fore, this paper proposes a suitable learning architecture which
utilises a number of learning methods capable of learning an
optimal or near optimal control policy over time. The solution
comprises a Bayesian Learning approach to accurately predict
room occupancy over time and a Reinforcement Learning (Q-
learning) method to learn a control policy for the thermostat
unit itself. The reinforcement learning agent samples the output
from the room occupancy prediction module to enable a better
control solution.

In summary the principal contributions of this work are

• A learning architecture which can support occupancy
prediction and HVAC control, concurrently optimising
both user comfort and energy costs

• A novel state action space formalism for the individ-
ual learning approach which enables a multi-criteria
optimisation solution.

The rest of this paper is structured as follows: Background
Research provides an overview of relevant and related work in
this field, including work specific to the learning approaches
used and other applied learning work. Markov Decision
Processes & Learning Methods describes the concepts and
learning approaches used in this work. HVAC Control details
specifics relating to how to apply these methods to the real
world problem. Initial Results details our preliminary findings,
leading finally to Conclusions & Future Work.



II. BACKGROUND RESEARCH

A standard HVAC system can be considered to comprise
two principal components, a heating/cooling element and a
fan for circulating the air. In order to operate the system,
the user generally specifies a setpoint value on the thermostat
interface denoting the room conditions they require. Using the
output from a temperature sensor the thermostat monitors the
changing room conditions as a result of turning on the HVAC.
Once the room temperature has reached the target setpoint the
system is switched off. In more optimised systems the fan
speeds can be adjusted to enable further optimisations over
this simple scenario.

To autonomously control HVAC systems, a number of
methods are required to enable the features depicted on modern
controllers such as the Nest. Firstly a learning method must
learn when to turn on and off heating and cooling, we refer to
this as the thermostat control policy for which we employ a
reinforcement learning method known as Q-learning. The goal
of the learning process is to control the HVAC system i.e. turn
it on and off, to ensure that the user’s setpoint is maintained
at the lowest possible cost. In addition as an aid to this
control policy, Bayesian inference is utilised to predict room
occupancy allowing for greater cost savings where unoccupied
rooms need no longer be heated. An accurate prediction
method is necessary in order to preemptively heat and cool
rooms prior to being occupied. Occupancy sensors can only
tell you when they detect whether or not a room is occupied,
not when it is going to be occupied, thus only heating and
cooling based on occupancy detection will likely result in a
low comfort rating from users who will have to wait until the
room reaches the set point temperature. The combination of
these techniques provides an overall architecture capable of
providing a solution to the problem. One of the key value
propositions is the ability of each component to build up
knowledge whilst operating directly with the environment,
without prior experience.

Whilst there has been substantial activity in the commercial
space with numerous patents filed in this area for both automat-
ing the control of HVAC systems entirely or partially through
varying components of these systems, there has been little
activity in the research community. To the best of the authors’
knowledge this paper is the first application of Reinforcement
Learning to this problem domain.

In the 1990s manufacturers such as Mitsubishi [3] devel-
oped advanced fuzzy rule bases for controlling air conditioning
systems in buildings which greatly outperformed the ubiqui-
tous bang-bang controllers. The fuzzy rule systems allowed
for intermediary control states where the air conditioning
system could alternate between different fan speeds, humidity
and temperature based on the environmental observations to
reduce energy consumption and improve occupant comfort.
Fuzzy systems rely on user defined rules which are collectively
termed the fuzzy rule base. The output of the rules are
combined to produce a smooth control response which creates
smaller deviations around the temperature set points. Patents
[4] [5] [6] [7] describe a variety of fuzzy logic control methods
ranging from the determination of thermal set-points in a
HVAC system to methods for controlling HVAC to maximise
occupant comfort in the automotive sector.

More recently, a patent filed by Nest [8] on 19 October
2012 describes a thermostat which uses machine learning and
offers a taxonomy of learning approaches over which its claims
are held. However the disclosure does not present a description
of how these methods are applied or even which methods are
used in their implementation. On the Web there have been a
number of hardware teardowns of the Nest thermostat, but to
date little is known about the software controling the device.

In a user trial on a number of homes in the US and UK
by Scott et. al. [9] (entitled PreHeat) RFID tags were added to
the house keys of each occupant. Their home heating solution
used occupancy sensing and prediction to better estimate when
to heat the homes. Their proposed method utilised a binary
vector space and made predictions based on the K nearest
days of when the home is likely to be occupied. Their results
demonstrated substantial savings over a pre-scheduled heating
solution for heating and cooling rooms in a house. In addition
the time the house was occupied when the home was cool
was halved by the system. Whilst [9] does improve schedules
through better occupancy analysis it does not automate the
heating and cooling i.e. it will not control a HVAC system
through environmental sensing, instead it will improve the
schedules which control HVAC.

In a more general context, approaches from learning theory
have been successfully applied to automated control problems
across a range of domains. Dutreilh et. al. [10] devised a
Q-learning approach for allocating resources to applications
in the cloud. Gerald Tesauro created TD-Gammon [11], a
reinforcement learning artificially intelligent agent capable of
playing backgammon to international level. Other notable suc-
cesses include workflow scheduling [12], traffic light control
[13] and application scaling [14] in computational clouds. The
important novelty common to these works is not so much their
extension to learning theory but more so their application of
learning theory to solve a real world problem.

III. MARKOV DECISION PROCESSES & LEARNING
METHODS

A. Markov Decision Processes

Markov Decision Processes (MDPs) are a particular mathe-
matical framework suited to modelling decision making under
uncertainty. A MDP can typically be represented as a four
tuple consisting of states, actions, transition probabilities and
rewards.

• S, represents the environmental state space;

• A, represents the total action space;

• p(.|s, a), defines a probability distribution governing
state transitions st+1 ∼ p(.|st, at);

• q(.|s, a), defines a probability distribution governing
the rewards received R(st, at) ∼ q(.|st, at);

S is the set of all possible states represents the agent’s
observable world. The agent learning experience can be broken
up into discrete time periods. At the end of each time period t
the agent occupies state st ∈ S. The agent chooses an action
at ∈ A(st), where A(st) is the set of all possible actions
within state st. The execution of the chosen action, results in



a state transition to st+1 and an immediate numerical reward
R(st, at). The state transition probability p(st+1|st, at) gov-
erns the likelihood that the agent will transition to state st+1

as a result of choosing at in st. The numerical reward received
upon arrival at the next state is governed by q(st+1|st, at) and
is indicative as to the benefit of choosing at whilst in st.

The solution of a MDP results in the output of a policy π,
denoting a mapping from states to actions, guiding the agent’s
decisions over the entire learning period.

In the specific case where a complete environmental model
is known, i.e. (S, A, p, q) are fully observable, the problem
reduces to a planning problem [15] and can be solved using
traditional dynamic programming techniques such as value
iteration. However if there is no complete model available,
which is often common with real world problems, then one
must either attempt to approximate the missing model (Model
Based Reinforcement Learning) or directly estimate the value
function or policy (Model Free Reinforcement Learning).
Model based methods use statistical techniques in order to
approximate the missing model [16], whereas model free learn-
ers attempt to directly approximate a control policy through
environmental interactions.

In this work we choose to utilise a model free learning
method known as Q-learning. The approach has been widely
applied to real-world problems, which allows for stricter
comparisons with previous work and is capable of finding an
optimal or near optimal control policy in a reasonable time.

B. Reinforcement Learning

Modeling the HVAC control problem as a MDP enables us
to design a solution which can effectively handle environmen-
tal uncertainty. However as with most real world learning prob-
lems, we have no prior knowledge of the complete environ-
mental model, the distribution of rewards or transition proba-
bilities. Therefore, solutions from Dynamic Programming such
as Value Iteration or Policy Iteration cannot be used to generate
an optimal policy π for these problems. As an alternative to
Dynamic Programming, model free Reinforcement Learning
methods such as Q-learning [17] can be used to generate
optimal policies in the absence of a complete environmental
model.

Q-learning belongs to a collection of algorithms called
Temporal Difference (TD) methods. Not requiring a complete
model of the environment, TD methods possess a significant
advantage and have the capability of being able to make
predictions incrementally and in an online fashion. We choose
to use Q-learning for this research, not for its demonstrated
efficacy within the domain but more for its wide applicability
to applied domains published previously [18] [19] [20].

The update rule for Q-learning is defined as

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (1)

and calculated each time a state is reached which is nonter-
minal. Approximations of Qπ(s, a) which are indicative as to
the benefit of taking action a while in state s, are calculated
after each time interval. Actions are chosen based on π, the
policy being followed. A number of action selection policies
can be used to decide what action to select whilst occupying

a particular state, examples include ϵ-greedy, softmax and
unbiased sampling [21]. The goal of these selection strategies
is often to carefully balance exploration and exploitation to
yield the best possible results in the shortest possible time
frame. Over time the actions selected should converge to the
optimal where the agents consistently choose actions which
present it with the greatest amount of cumulative reward over
the course of the interaction. In the case of ϵ-greedy, the goal
is to choose the best action most of the time except for a
certain amount of time governed by ϵ when the agent chooses
an exploratory action. Let A′(s) ⊆ A(s), be the set of all
non-greedy actions. The probability of selection for each non-
greedy action is reduced to ϵ

|A′(s)| , resulting in a probability
of 1− ϵ for the greedy strategy.

Estimated action values for each state action pair Qπ(s, a)
can be represented in tabular form or as part of a generalised
function approximator. The goal of the learning agent is to
maximize its returns in the long run, often forgoing short term
gains in place of long term benefits. By introducing a discount
factor γ, (0 < γ < 1), an agent’s degree of myopia can be
controlled. A value close to 1 for γ assigns a greater weight to
future rewards, while a value close to 0 considers only the most
recent rewards. Reinforcement learning based approaches are
capable of reasoning over multiple actions, choosing only those
which yield the greatest cumulative reward over the entire
duration of the episode. The steps involved in Q-learning are
depicted by Algorithm 1.

Algorithm 1 Reinforcement Learning Algorithm (Q-learning)
Initialize Q(s, a) arbitrarily

Repeat (for each episode)
Initialize s
repeat

Choose a from s using policy derived from Q (ϵ-greedy)
Take action a and observe r, s’
Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
s← s′;

until s is terminal

Q-learning can often require significant experience within
a given environment in order to learn a good policy. This is
largely determined by the size of the state and action space.
In particular, tabular Q-learning methods require continuous
updating of the value estimates through repeatedly revisiting
the states and choosing actions in the environment. As the size
of the state action space grows, this problem can become more
pronounced (often referred to as the curse of dimensionality),
where each additional state or action variable added, increases
the problem size exponentially. For the purposes of this work
we utilise tabular Q-learning methods but convergence times
could be improved by utilising techniques such as parallel
learning [22] or function approximation.

C. Bayesian Inference

The final part of the problem requires a solution for
occupancy prediction in order to make better judgements as to
when one is required to heat and cool the space under control.

For this work we employ a Bayesian inference technique
in order to make predictions. Bayes theorem is a mathematical



framework which allows for the integration of one’s observa-
tions into one’s beliefs. The posterior probability P ′(X = x|e),
denoting the probability that a random variable X has a value
equal to x given experience e can be computed via

P (Y |X) =
P (X|Y )P (Y )

P (X)
(2)

which requires one conditional probability P (X|Y ) and two
unconditional probabilities (P (Y ), P (X)) to compute a single
conditional posterior probability P (Y |X) [23].

Bayesian learning algorithms generally combine Bayesian
inference (Bayes rule) and agent learning to build up proba-
bilistic knowledge about a given domain. Statistical inference
methods can prove particularly useful when attempting to
approximate the likelihood of an event occurring given past
experiences. By providing an estimated occupancy model our
overall solution is capable of reducing the energy consumption
by only heating and cooling when necessary.

IV. HVAC CONTROL

This section discusses the specifics of applying each tech-
nology to the domain. We present a novel state action space
formalism for Q-learning which enables it to effectively control
heating and cooling in an online manner. In addition we
describe a method to predict occupancy using a modified Bayes
rule and corresponding update function.

A. Occupancy Prediction

The specific inference rule applied for occupancy pre-
diction was originally defined by David Spiegelhalter [24]
and further extended by Prashant Doshi [25]. It employs a
modified Bayes rule, where all that is required to compute
the posterior probability is an initial prior probability and
subsequent environmental experience. The approach involves
maintaining an experience counter Expc for each observation
and updating the distribution according to equations (3) and
(4). These equations define the update rules for approximating
the likelihood of occupancy based on past experience 1

P ′(s = s′|a, s = s) =
P (s = s′|a, s = s)× Expc+ 1

Expc′
(3)

where equation 4 ensures that the probability distribution over
the total number of possibilities sums up to 1. y represents the
set of all possible next states achievable from s minus s′ the
actual next state resulting from action selection a.

P ′(s = y|a, s = s) =
P (s = y|a, s = s)× Expc

Expc′
(4)

From an implementation perspective the approach requires
an occupancy sensor to provide it with the necessary evaluative
feedback in order to update the model over time. Every minute
the learning agent queries the sensor which returns a boolean
result (true or false) depending on whether or not the room
was occupied at that time. Based on the response a binomial

1Expc′ is the incremented counter, Expc′ = Expc+ 1

distribution is updated accordingly using equations (3) and
(4). This simple solution is surprisingly efficient at making
predictions and doesn’t require large amounts of environmental
experience.

B. HVAC control using Q-learning

The HVAC system employs Q-learning by framing the
environment as a MDP. In order to accurately solve the
problem we must first define the set of states S and actions A
i.e. the agent’s observable world and the actions it can take in
it:

• rt : is the room temperature (source: temperature
sensor, unit: ◦C);

• tto : is the time to occupancy (source: occupancy
predictor, unit: minutes);

• ot : is the outside temperature (source: weather station,
unit: ◦C);

The second thing we define is the action space A which
consists of the following four choices:

• Heaton : turns on heating;

• Heatoff : turns off heating;

• Coolon : turns on cooling;

• Cooloff : turns off cooling;

The idea is to try to keep the number of states and
actions low so that the problem remains within the bounds
of tractability. However even though there are only three state
variables, each state variable can take on a wide range of values
quickly creating a relatively large state space. For instance
the indoor temperature could range from the low teens to the
mid to high twenties (12◦C to 27◦C). The outside temperature
could vary from region to region, but in places such as North
America it would not be uncommon to experience highs of
40◦C in the Summer and lows of −20◦C in the depths of
Winter. In addition the time to occupancy tto (minutes) at
any particular moment may be a number of hours away,
substantially increasing the size of the state space.

HVAC controller actions are executed at discrete time
intervals known as epoches. For instance an epoch of 5 minutes
assumes that a controlling action for the HVAC system may
be executed at either 10:00 or 10:05, but not at 10:02. The
granularity is a configurable parameter and can be adjusted to
ensure an optimal configuration such as at minutely intervals.
At the end of each epoch the learning agent observes the
current state of the environment and chooses whether or not
to execute an automated HVAC action (turn on or off).

The transition probabilities T i.e. the likelihood of transi-
tioning between states after executing particular actions is not
known apriori so this problem cannot be solved using Dynamic
Programming methods such as Policy or Value iteration. In
addition we do not attempt to estimate T , instead Q-learning
observes the consequences of T and adjusts accordingly.

The rewards achievable by the learning agent are dis-
tributed in accordance with certain scenarios that arise and
are scalar in value. A setpoint variable sp specifies the user



defined objective temperature setting. Rewards are calculated
as follows:

1) (Room.occupied = false) & (Action = Heaton) &
(rt > sp || rt < sp); R = −1

2) (Room.occupied = true) & (Action = Heaton) & (rt
> sp || rt < sp); R = −3

3) (Room.occupied = false) & (Action = Heaton) &
(rt = sp); R = −1

4) (Room.occupied = true) & (Action = Heaton) & (rt
= sp); R = −1

5) (Room.occupied = false) & (Action = Heatoff ) &
(rt < sp || sp > rt); R = 0

6) (Action = Heatoff ) & (rt = sp); R = 0
7) (Room.occupied = true) & (Action = Heatoff ) &

(rt < sp || sp > rt); R = −3

We assume a threshold around the setpoint of plus or minus
1◦C. So if the user specifies a setpoint temperature of 23◦C,
the variable sp will range from 22◦C − 24◦C. Each scenario
listed above determines the rewards achievable as a result of
choosing an action a within a particular state s. We haven’t
included cooling as part of the scenario, but the same rules
will govern its action selection also. Scenarios 1,3,4 result in a
reward of −1. This cost is representative of the cost that would
be incurred for operating the heating control of the HVAC
unit per time step. This could easily be extended to include
real time energy pricing costs if necessary. For Scenarios 2
and 7 a fixed penalty is applied resulting in a reward of −3.
The penalty chosen does not need to be specifically −3 but
it must be greater than the unit cost of the HVAC operation
i.e. (−1). For Scenarios 2 and 7, irregardless of the action
chosen i.e. Heaton,Heatoff the penalty is applied because
the setpoint temperature specified by the user has not been
met and the room is presently occupied. Scenarios 5 and 6
result in a reward of 0, i.e. no cost is incurred as the heating
is turned off and either the room is not occupied (Scenario 5)
or the setpoint has already been met (Scenario 6).

V. INITIAL RESULTS

This section describes our initial results with the au-
tonomous thermostat controller. For the purposes of this
research we conducted evaluations via simulation only. We
present results for both occupancy prediction and thermostat
control, demonstrating empirically the efficacy of the solutions
as possible approaches for solving the problem.

A. Occupancy prediction

We evaluated our occupancy prediction method by creating
an occupancy model, which simulates when the room is
occupied. We assume an occupancy sensor is always available,
however we vary the accuracy of this sensor using a Gaussian
distribution of mean zero and standard deviation one. For a
Gaussian or normal distribution, 70% of the time a random
variable X takes on a value x which will fall within one
standard deviation either side of the mean. 95% of the time the
value will fall within two standard deviations and 99% of the
time it will fall within three standard deviations of the mean.
Thus we can vary the accuracy of the sensor by introducing
statistical noise and returning either a false positive or negative
depending on the actual result. This is to replicate scenarios

which may cause false positives such as a cat/dog moving
or false negatives such as if a person is in the sensor blind
spot. We argue that a prediction approach should be capable of
handling such sensing errors which would arise under normal
operating conditions.

The goal of the Bayesian learner is to approximate the
user’s patterns of occupancy as closely as possible based
solely on the learners observations. To do this, the learner
continuously updates its beliefs, represented probabilistically,
over time. In order to evaluate the approach we employ the
Kullback-Liebler (KL) divergence to determine the difference
between the binomial distribution of the learner and the true
values as learning progresses. The KL divergence, sometimes
referred to as information gain or relative entropy gives a
measure of the distance between two probability distributions.
For two probability distributions P and Q, the KL divergence
is

DKL(P ∥ Q) =
∑
i

ln
P (i)

Q(i)
P (i) (5)

Note that the KL divergence is not a true metric and is not
symmetrical, meaning that the KL divergence from P to Q is
not equal to the KL divergence from Q to P. If P and Q are
identical then DKL = 0.
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Fig. 1. Occupancy prediction evaluation with varying sensing error and model
change

Figure 1 displays how predictions progress over time under
three separate settings. The average KL divergence between
the learned occupancy model and the true model is plotted for
each setting. Note that the true model is not strictly ground
truth occupancy, as it incorporates the variance in sensing for
a more realistic comparison. It’s worth noting that in a given
week the learner will only sample each time period once, this
means that over the course of a month the learner will have
four bouts of experience to train its model. By grouping days
into categories such as “working week” or “weekends”, the
learning time for occupancy prediction could be dramatically
reduced as the information learned over a number of days
could be aggregated. However we choose to treat each day as
an independent event in order to present a clearer evaluation of
the time it takes to learn an occupancy model. Figure 1 plots
the course of the model learning process over 150 days. The
first two curves detail the affect of the sensing error on the
learning process, whilst the third demonstrates sensing error
and model shift. Model shift is intended to represent a scenario
where the underlying occupancy pattern changes entirely, i.e.



a user suddenly begins to work nights instead of days and their
pattern of occupancy changes to reflect this.

When the sensor is only 70% accurate, the initial difference
between the two distributions is less than when the sensor
is 95% accurate. The reason for this is because the initial
equiprobable binomial distribution is not too dissimilar to the
true model as the true model has greater variance due to
the sensing errors. For this reason when the accuracy of the
sensor is switched to 95% the initial divergence is much higher
as distributions differ by greater amounts. However, with the
greater accuracy in sensing the learner is capable of better
approximations of the true model, improving upon the 70%
curve after approximately 40 days. It’s clear that in both cases
only a small amount of experience is required to make a good
approximation of the underlying model. After 20 days the
learner has built up a good predictive model of occupancy
in both cases.

The last curve plots the effect of model shift on the
approach. How a learning approach recovers from a shift
in its underlying model is an important feature of online
learning methods. Offline methods usually have to be retrained
once such an event occurs but online methods should show
adaptability to this type of behaviour. Model shifts are always
challenging from a learning perspective because the agent
has already significant past experience pointing to something
which is no longer valid and how it adjusts its estimates
determines its efficacy in the domain. If the agent simply
disregards all the previous estimates in favour of the most
recent, a temporary change could easily skew the predictive
power of your solution.

After 70 days the occupancy behaviour of the user changes
causing a jump in divergence. The key thing here is to note
the recovery, i.e. within the space of 50 days the learner
has returned to making good approximations of this new
underlying model. The approach generally demonstrates good
approximations without any prior knowledge, however the
accuracy of the solution will always be constrained by the
quality of the sensing devices, through which predictions are
attained.

The output of occupancy prediction is a multinomial dis-
tribution governing the probability of occupancy for specific
times over the course of a given day. This distribution is
utilised by the RL agent (Q-learning) to control heating and
cooling where the distribution is sampled in order to approxi-
mate a value for “time to occupancy”.

B. Autonomous Thermostat Control via Q-learning

1) Simulation environment: In order to ensure the re-
peatability of our experiments we simulate the heating of a
room by defining a heat transfer rate, an input heating rate
and calculating the temperature changes for each time step.
Equation 6 describes the calculation of the heat transfer rate
in Watts,

Heattransfer = uV alue× surfaceArea× (rt− ot) (6)

where rt − ot is the difference in temperature between the
internal temperature and the external outside temperature.
The u-value2 is given in units of W/m2K. By dividing the

2Can also be known as the r-value in some countries

thickness in (m) of the materials (plaster, slab, screed, etc )
by their manufacturer stated resistivity values one can compute
an approximate u-value for the building/room. It is generally
given as 1/totalResistance. By measuring the total surface
area of the room (m2) one can work out the heat transfer rate
i.e. the amount of heat energy in Watts leaving the room at
any given moment.

To model the effects with respect to temperature changes
we simulate using the following configuration. The specific
heat of air is the amount of energy (Joules) required to raise
the temperature of 1Kg of air by 1◦K and works out to be
approximately 718J/KgK given atmospheric pressure of 1
atm and air density of 1.3Kg/m3. For simulation purposes
we assume a resistive heater is heating the room and it’s 100%
efficient, meaning that if it’s rated 1kW it is outputting 1kW
of heat energy into the room.

We modelled the effects of heating on a perfectly uniform
cubed shaped room which has a surface area of 54m2. We as-
sume the ceiling, walls and floor are insulated with each having
u-values of 0.4, 0.6, 0.5 respectively. If the outside temperature
ot at time t is 10◦C and the inside room temperature rt is
20◦C, then the temperature difference between inside and out
is 10◦C. Using equation 6 one can compute the heat transfer
for each component i.e. the heat escaping through the ceiling
would be given by 0.4 × 9 × 10 = 36W . Obviously rooms
are often not entirely uniform but for simulation purposes
it’s a reasonable assumption. By aggregating the heat transfer
of each component (ceiling, walls, floor) at time t we can
determine the total heat transfer in Watts. We then subtract
this value from the heat input to determine the net heat gain
into the room. Say the simulated room has a heat transfer
rate of 300W , then 1 minute of heating by a 1kW heater
into this room would result in a temperature increase of
(700×60)/718/(1.3×27) = 1.67◦C, where 27m3 is the room
volume. This approach allows us to model the temperature
changes in a repeatable and reproducible manner. Whilst we
do not observe all room parameters such as the heat generated
by individuals occupying the room or windows/doors being
left open, the state space is sufficiently informative enough to
ensure a good measure of control is possible.

In order to get a measure of the outside temperature ot for
our simulations, we utilised data supplied from the weather
station situated at the National University of Ireland, Galway.
The University provided us with five months of environmental
data dating from 1 January 2013 to 31 May 2013. The data was
sampled every minute and consists of temperature, humidity,
wind speed and atmospheric pressure. For experimental pur-
poses we focus solely on room heating as the temperatures
within Ireland are relatively moderate and cooling systems are
generally not required in many environments such as the home.
However from both a learning and control viewpoint the same
principles will still apply.

The goal of this research is to produce a control solution
which can effectively combine both occupant comfort with
energy cost savings. For comparative purposes we focus on
comparing the costs for the “Always On” and “Programmable
Control” methods, ignoring the “Manual Control” method as
it’s not a realistic comparison with our proposed solution as
from a cost perspective it cannot be optimised any further.
From a comfort analysis we focus on comparing the affect



of different learning rates on Q-learning and show how occu-
pant comfort can be improved by adjusting the configuration
settings on the learning approach.

2) Online Q-learning vs HVAC “Always On”: Figure 2
plots a comparison between an online Q-learning approach
and an “Always on” solution. Online learning with respect to
Q-learning means that the agent is arbitrarily initialised in the
beginning and has no prior knowledge of the domain. The
“Always on” method means that the HVAC system operates
24/7. Many users operate their HVAC systems in this way, as
they often cannot understand how to program their thermostat
properly or if they are sick/elderly. Figure 2 plots the monetary
costs of both solutions over the period from 1 January 2013
to 31 May 2013. From a cost perspective, it’s clear that the
online Q-learning method combined with occupancy prediction
is capable of operating the heating of the room at more than
half of what the “Always on” solution costs. The total costs
for heating the room for the period under consideration were
e152.55 vs e344.15. The results demonstrate the significant
savings that are achievable using adaptive control via Q-
learning and occupancy prediction when compared to “Always
on”.
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Fig. 2. Online Q-learning vs “Always on” control

However one of the significant advantages of constantly
running your HVAC system is that you can always be sure of
the comfort of the environment where the set point tempera-
ture is always maintained. The goal of the learning solution
proposed by this paper is achieve significant cost reduction
whilst concurrently optimising the comfort levels of the end
user, so we need to make sure that this occurs.

3) Offline Q-learning Comfort Analysis: Offline learning
involves an agent learning a good initial policy through simula-
tion (offline) which can then be used when operating in the real
world (online). It is commonly used to improve results over
solely learning online. Since we interact with a simulator for
our results we can utilise this method to demonstrate occupant
comfort however online methods will still work, just more
slowly.

Figure 3 plots the average amount of time in minutes
when the temperature conditions were outside the setpoint
temperature of 23◦C with a threshold setting of plus or minus
1◦C. The results are carried out over multiple consecutive
learning trials where the agent has no knowledge in the
beginning, but carries forward its knowledge between trials.

The graph considers two separate learning rates α with values
of 0.1 and 0.5. The learning rate determines the amount by
which the reinforcement learning agent backs up its value
function estimates considering the new information presented
to it. The higher the learning rate the shorter the amount of
time it takes to learn a good policy, however too high a learning
rate can lead to suboptimal policies where the approach takes
too big of a step to correct the observed error in the estimate.
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Fig. 3. Length of time in minutes when the setpoint temperature is not
achieved but the room is occupied

It’s clear that after only a short number of learning trials
the amount of time the comfort settings are not optimal has
reduced to less than 40 minutes over the course of an entire
day. Our results show that of these 40 minutes, 83% of these
occur when the temperature is within 1◦C of the threshold
parameter. This means that whilst the environment is not
optimal, the occupants would only experience mild discomfort.
As the number of learning trials progresses this time reduces
further. If the policy eventually turns to a completely greedy
strategy over time then this should in theory drop to 0.
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Fig. 4. Q-learning vs “Programmable Control”

4) Offline Q-learning vs HVAC “Programmable Control”:
Continuing on from the previous section next we analyse
the benefits of offline learning via simulation compared to
a programmed schedule for operating the HVAC system.
A number of other approaches could be utilised instead of
offline training, i.e. function approximation would allow for
generalisation over states and actions not yet visited over ones
that have been if one were not able to perform offline training.
In addition, parallel learning methods have also been proposed



to achieve same where multiple independent thermostats could
communicate in parallel in order to learn good policies. If one
can simulate the environment, offline learning is a common
technique where one can avoid the initial poor performance
by yielding a good initial policy.

Figure 4 details the performance of offline learning against
the programmed schedule. The schedule was designed by the
facilities manager in the Schneider Electric Galway offices in
accordance with how the building is currently operated. In
the building, the HVAC systems are turned on at 7AM in
the morning and go off at 8PM that evening. We simulated
the occupancy so that on average, people begin at 8 : 30AM
and finish at 6 : 30PM . Figure 4 shows that the performance
of the learning solution from a cost perspective out performs
the programmed schedule with only two learning trials, i.e. it
was trained offline for a single run and then applied to the
problem. Overall there was a 10% improvement in costs as
a result of employing learning over programmable schedules.
Given enough learning experience figure 3 shows that the
optimal setpoint temperatures can be achieved also proving
that a combination of cost savings and occupant comfort can
be achieved through this approach.

VI. CONCLUSIONS & FUTURE WORK

This paper has demonstrated a reinforcement learning
method combined with occupancy prediction capable of op-
timising the heating and cooling of a space autonomously
with no prior information. Due to the limitations of our data
set, our results focussed on heating only and demonstrated
cost savings against two common strategies for controlling
HVAC. In addition through offline learning via a simulator
we demonstrated improved comfort and cost savings for the
approaches in question.

In summary, if one carefully programs a thermostat and
one’s occupancy pattern is pretty regular, it’s questionable
how much energy savings can be achieved by a device such
as a learning thermostat. The strategy is already optimal
from a cost perspective. Thus we compared the approach
against an “Always on” control method and “Programmable
Control” method demonstrating cost reductions of 55% and
10% respectively in our simulated environments.

For future work the proposed state action space formalism
could be extended further to give greater observation over the
environment. In addition, methods from supervised learning
such linear function approximation could be applied to gener-
alise over the states and actions not yet visited based on those
that have, reducing the time it takes to converge an optimal
policy.
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