ARAN - Access to Research at NUI Galway

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published
version when available.

Title Genus two zhu theory for vertex operator algebras

Author(s) | Tuite, Michael P.; Gilroy, Thomas

Publication

Date 2016-10-27

Publication | Gilroy, Thomas, & Tuite, Michael P. (2016). Genus two zhu
Information | theory for vertex operator algebras.

Link to
publisher's | https://arxiv.org/abs/1511.07664
version

Item record | http://hdl.handle.net/10379/15103

Downloaded 2020-10-17T02:01:517

Some rights reserved. For more information, please see the item record link above.



https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Genus Two Zhu Theory for
Vertex Operator Algebras

Thomas Gilroy*
School of Mathematics and Statistics,
University College Dublin,
Dublin 4, Ireland

Michael P. Tuite
School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway,
University Road, Galway, Ireland

October 27, 2016

Abstract

We consider correlation functions for a vertex operator algebra on a genus two
Riemann surface formed by sewing two tori together. We describe a generalisa-
tion of genus one Zhu recursion where we express an arbitrary genus two n—point
correlation function in terms of (n — 1)—point functions. We consider several ap-
plications including the correlation functions for the Heisenberg vertex operator
algebra and its modules, Virasoro correlation functions and genus two Ward
identities. We derive novel differential equations in terms of a differential opera-
tor on the genus two Siegel upper half plane for holomorphic 1-differentials, the
normalised bidifferential of the second kind, the projective connection and the
Heisenberg partition function. We prove that the holomorphic mapping from
the sewing parameter domain to the Siegel upper half plane is injective but not
surjective. We also demonstrate that genus two differential equations arising
from Virasoro singular vectors have holomorphic coefficients.

1 Introduction

The connection between Vertex Operator Algebras (VOAs) and elliptic functions and
modular forms has been a fundamental aspect of the theory since its inception in the
work of Borcherds [I] and Frenkel, Lepowsky and Meurmann [2]. This phenomenon
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is manifested through n—point correlation trace functions. Zhu recursion expresses a
genus one correlation n-point function in terms of (n—1)-point functions using a formal
recursive identity involving Weierstrass elliptic functions [3]. Zhu recursion implies
genus one trace functions satisfy modular differential equations if the VOA is Cy—
cofinite [3]. Such differential equations imply convergence and modular properties for
trace functions. Zhu recursion is also an important calculation tool e.g. all correlation
functions for the Heisenberg VOA and its modules can be computed exactly [4].

The expression of genus one correlation functions in terms of elliptic and modular
functions is also fundamental in conformal field theory [5, 6]. The importance of
extending these ideas to a general genus Riemann surface was also recognised early
on in physics e.g. [7, [§]. There are also natural mathematical reasons to extend
this connection to Riemann surfaces of higher genus. In particular, we would like
to understand how the elliptic functions and modular forms of genus one Zhu theory
generalise at higher genus and develop a scheme to study the convergence and modular
properties of genus two partition functions via genus two differential equations.

In recent work, correlation functions for VOAs and super-VOAs on a genus two
Riemann surface have been defined, and in some cases computed [9, 10, 11}, 12], [13],
based on explicit sewing procedures [14] [15] [16]. The present paper deals with cor-
relation functions for VOAs on a genus two Riemann genus two surface formed by
sewing two tori together. In particular, we describe a new formal Zhu recursion for-
mula expressing any genus two n—point function in terms of (n — 1)—point functions.
We consider a number of applications paralleling the genus one case.

In Sect. [2| we review the relevant parts of the complex analytic theory of Riemann
surfaces. We begin with definitions of elliptic functions and modular forms. We then
discuss aspects of general genus g Riemann surfaces including a modular invariant
differential operator on the Siegel upper half plane and introduce a general genus ana-
logue of the Serre derivative exploited in later sections. We conclude with a discussion
on the construction of a genus two Riemann surface by sewing together two tori.

In Sect. [3] we review relevant definitions and results regarding vertex operator
algebras and we review Zhu recursion for genus one correlation functions. The sewing
procedure of Sect. [2] informs the definition of genus two VOA correlation functions in
terms of infinite formal sums of appropriate genus one correlation functions [9, [10] [11].

Sect. [4] contains the new genus two formal Zhu recursion identity relating genus two
n—point correlation functions to (n — 1)—point functions. This is achieved by applying
genus one Zhu reduction to the genus one component parts leading to a system of
recursive identities which are solved to obtain genus two Zhu recursion. The expansion
in (n—1)-point functions uses a family of new generalised genus two Weierstrass formal
functions analogous to the elliptic Weierstrass functions appearing in genus one Zhu
recursion. Unlike the genus one case, the generalised Weierstrass functions depend
on the conformal weight N of the vector being reduced but are otherwise universal.
Another novel feature of genus two Zhu recursion is that a genus two 1-point function
of a weight N vector is expressed in terms of 2 coefficient functions for N = 1 and
2N — 1 coefficient functions for N > 2. This agrees with the dimension of the space
of genus two holomorphic N—differentials according to the Riemann-Roch theorem.



In Sect. |5 we consider genus two Zhu recursion in the case where we reduce on
a vector of weight N = 1. We prove the holomorphy of the coefficient functions in
terms of holomorphic 1-differentials and the generalised Weierstrass functions in terms
of the normalised bidifferential form of the second kind. We calculate the genus two
Heisenberg n-point correlation functions for a pair of Heisenberg modules. This agrees
with results of [10] obtained by combinatorial methods.

Sect. [6] we consider genus two Zhu recursion for a vector of weight N = 2. We
prove that the coefficient terms for the genus two 1-point function are holomorphic
2—differentials. We show that the genus two Virasoro 1-point function is given by a
certain derivative of the partition function with respect to the sewing parameters. We
also derive the genus two n—point correlation functions for n Virasoro vectors and a
genus two Ward Identity where the new derivative again plays a role.

In Sect. [7] we relate the differential operator of Sect. [6] to the modular invariant
differential operator of Sect.[2, We obtain a closed holomorphic formula for the N = 2
generalised Weierstrass function. This completes the proof of the holomorphy of all
coefficient terms appearing in the genus two Ward identities and Virasoro n-point func-
tions of Sect. [6] As an important consequence, this implies that differential equations
arising from Virasoso singular vectors therefore have holomorphic coefficients. These
developments are further explored in [31],32]. We also prove that the holomorphic map
from the sewing domain to the Siegel upper half plane is injective but not surjective.
Finally, we describe novel holomorphic differential equations for 1-differentials, the
normalised 2-bidifferential, the projective connection and the genus two Heisenberg
partition function.

2 Review of Riemann Surfaces

We begin with some basic notations and definitions that will be used throughout
the paper. Z,R and C denote the integers, reals and complex numbers respectively.
H = {r € C|¥(r) > 0} is the complex upper-half plane. We use the conventions
that ¢ = €™ for 7 € H and ¢, = e*. For derivatives we use the shorthand notation

o)

2.1 Elliptic functions and modular forms

We define some elliptic functions and modular forms [23] 24].

Definition 2.1. The FEisenstein series for an integer k > 2 is given by

0 for k£ odd,

= == ’B 2 n
Ei(7) = Ex(q) _k_;“ + =] ;Jk_l(n)q , for k even.

where 7 € H (¢ = €*™7), o3_1(n) = 3y, d*~" and k" Bernoulli number By.



If £ > 4 then Ej(7) is a modular form of weight k£ on SL(2,7Z), while Ey(7) is a
quasi-modular form. We also define elliptic functions z € C

Definition 2.2. For integer £ > 1

(_1>k_18k_1P1(2,7'), P(z,7)=-— Z Ek(T)zk_l.

Pe(z7) = Gy 2

In particular Py(z,7) = p(z,7) + Ea(7) for Weierstrass function p(z,7) with periods
2mi and 2miT. Pi(z,7) is related to the quasi-periodic Weierstrass o—function with
Py (z 4+ 2mit,7) = Pi(z,7) — L.

2.2 Genus g Riemann surfaces

We review some relevant aspects of Riemann surface theory e.g. [25] 26l 27]. Consider
a compact Riemann surface S of genus ¢ with canonical homology cycle basis o, 5
fori=1,...,g. There exists g holomorphic 1-differentials v; normalized by

%i Vi = 271'2(513 (1)

These differentials can also be defined via the unique holomorphic bidifferential (1, 1)-
form w(x,y) for x # y, known as the normalised bidifferential of the second kind. 1t is
defined by the following properties

w(z,y) = (

1
e + regular terms) dxdy, (2)

for any local coordinates x,y, with normalization

for i =1,...,g. Using the Riemann bilinear relations, one finds that

vi(x) = fiw(x,~), (4)

with normalisation . We also define the period matriz €2 by
1

271 Bi

Q.

ij

Vj, (5)

for 4,7 = 1,...,¢ where Q;; = Qj; and () > 0 i.e. Q € Hy, the Siegel upper half
plane. Under a change of homology basis

o[ 2]l ©



for [& B] € Sp(2¢,Z), the row vector v(x) = [11(x),...,v,(z)] transforms to
B(r) = v, 7)

for M = CQ) 4+ D where the period matrix transforms to

Q = (AQ+ B)(CQ+ D), (8)
and w transforms to
- 1 0log det M
o(z,y) =w(z,y) — 5 Z (vi(2)vj(y) + vi(x)vi(y)) a0 9)
1<i<j<g v

We also define the genus g projective connection s(x) by

s(z) = 6 lim (w(m,y)— dady > (10)

Yy (z —y)?

Under a conformal map z — ¢(z) one find{]|

s(x) = s(¢(x)) + {d(x), x}da?, (11)
/// /1 2
for the Schwarzian derivative {¢(z), z} = q;,(l, (%) . s(x) is called a projective
form since it transforms as a 2-differential under a Mébius map ¢(z) = “”b for which
{¢(z),z} = 0. From (9), s(z) transforms under the modular group Sp(297 Z) to
S(z) = s(x) — 6V, logdet M, (12)

where V, is the differential operator
0
Vo= Y wuila)y(z)so— (13)
oY,

1<i<j<g

The subscript indicates the dependence on z € S. The operator V, will play an
important role later on in this paper for genus g = 2.

Proposition 2.1.

afzab o NiaNib L= j7
0825 NigNj, + NipNjo 1 # J,

where N = M~ = (CQ+ D)~'. V, is Sp(29,Z) invariant.

'The conventional factor of 6 in the definition of s(z) is introduced to simplify (LI).



Proof. Using the Sp(2g, Z) relations ATC = CT A and A" D —C* B = I, we note that

N = AT - CTQ.
Consider
9 0 g
0 8(149 + B OMpg
M - T a~_ Qa :
o, 995 Z " o0,
b=1
But
Agid 2 ) = '7
O (AQ+ By = [ =
oY Agibgi + Agjdai, 1 F# 7,
with a similar formula for 3 Mbd This implies that for i = j

Qs

~ 90, o MacMyq = ((AT - CTQ)M> . 0id = 0ic0id-

a

Similarly, for ¢ # j we have

O

o N oMy = 880 + 8;0054.
aQ” actVibd — 5165jd+5]661d

Thus follows. This immediately implies that Vxﬁab = v,(x)vp(x) so that V, is
Sp(2g, Z) invariant. O

Note that a Sp(2g,7Z) modular derivative can also be naturally defined generaliz-
ing the Serre derivative for SL(2,Z) modular forms as follows. Let Fj(Q2) denote a
meromorphic Sp(2g, ) Siegel modular form of weight £ i.e. Fi(£2) is meromorphic on
H, where for all v = (4 B) € Sp(2¢,7Z)

Py (Q) = det(CQ + D)FF(Q).

For projective connection s(z) we define the projective differential 2—form

Gi(z,9Q) = (vx + %s(x)) Fu(9). (15)

From and Proposition we have
Lemma 2.1. Gi(z, ) transforms under Sp(2g,Z) like a weight k Siegel modular form.

This result extends to a Siegel modular form Fy for a subgroup of Sp(2¢g,Z) with a
multiplier system.

is a genus two version of the Serre modular derivative gyi2(¢) = (g0, +
kE5(q)) fr(q) for an SL(2,Z) modular form fi(q) of weight & for which gxi2(q) is a
modular form of weight k£ + 2. Equivalently, employing the standard z—coordinate on
the torus, gpio(q)dz? transforms like a modular form of weight k under SL(2,7Z).
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2.3 Genus two surfaces formed from sewn tori

We now review a general method due to Yamada [14] and discussed in detail in [15]
for calculating w(z,y), v;(z) and €;; for 4, j = 1,2 on the genus two Riemann surface
formed by sewing together two tori S, for a = 1,2. We sometimes refer to §; and S,
as the left and right torus respectively.

Consider an oriented torus S, = C/A, with lattice A, = 2mi(Z7, ® Z) for 7, € Hj.
For local coordinate z, € C/A, the closed disc |z,| < r, is contained in S, provided
rq < 3D(q,) where

D(ga) = | min A

is the minimal lattice distance. We introduce a complex sewing parameter ¢ where
le] < rire < $D(q1)D(go) and excise the disc {zq, |24 < |€|/ra} centered at z, = 0 to
form a punctured torus

Sa = S\ {%a; |2a| < el/ra}, (16)
where we here (and below) we use the convention
I=2 2=1 (17)

Defining the annulus A, = {z4,|€|/ra < |24 < 1o} we identify A; with A, via the
sewing relation

Z1R9 = €. (18)

The genus two Riemann surface S is parameterized by the sewing domai
1
Diew = {(7’1,7‘2,6) € Hy xH; xC : |¢] < ZD(Ql)D((]Q)} . (19)

We next introduce the infinite dimensional matrices
(—1)FHLe+0/2 (k41 —1)!
VEl (k—DIl-1)

Ay, As play an important role for the Heisenberg VOA on a genus two Riemann surface.
Let 1 denote the infinite identity matrix and define

(1 — A1Ay) ™ =D (A1 Ay)",

n>0

1
log det(1 — A1 Ay) = Trlog(l — AjAy) = — ) ~Tr((A142)").

n>1

Aa = Aa<k,l,7'a,€) = 'Ek+l(7_a)- (20)

Theorem 2.1 ([15]). For all (11,72, €) € Dyew the matriz (1 — A1 As)~! is convergent
and det(1 — A; As) is non-vanishing and holomorphic.

2The sewing domain Dge,, is notated by D, in [15] [10]
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The bidifferential form w(x,y), the holomorphic 1-differentials v;(x) and the period
matrix {);; are given in terms of the matrices A, and holomorphic one differentials on
the punctured torus S, defined by

a(z; k) = VEF Py (2, 70)da, (21)

for # € 8,. Letting a(z), a”(z) denote the infinite row and column vector indexed by
k > 1 we find

Theorem 2.2 ([15]). The genus two bidifferential form w(x,y) and the holomorphic
1-differentials v, (z)for a = 1,2 are given by

P, - a dzd A& ﬂ_AaAd “ta” ’ ) §a7
w@,y):{?@ y. 7o)dedy + alw) Aa )l (), ay €

—a(x)(1 — AzA.)ta" (y), reS,yes,
) = { ATt D0 2
“ —M2(a(z) (1 — AgAq)"1)(1), z €S,

where (1) refers to the (1)-entry of a vector.

Theorem 2.3 ([15]). The sewing formalism determines a holomorphic map

FY: Dy — Hy,
(7—177-276) — 9(7-177-276)7

where = Q(1y, T2, €) is given by

27Ti911 = 27Ti7'1 + 6(142(]1 — AlAQ)il)(l, 1),
2miflyy = 2miTy + (A (1 — AAD) (1, 1),
27Ti912 = —6(]]_ — AlAQ)il(l, 1),

where (1,1) refers to the (1,1)-entry of a matriz. F* is equivariant with respect to
the action of I' ~ (SL(2,Z) x SL(2,7)) x Zy which preserves Dsey -

Late we will show below in Theorems|7.1|and that F*% is injective but not surjective.

3 Vertex Operator Algebras on Genus One and
Two Riemann Surfaces

3.1 Vertex operator algebras

We review aspects of vertex operator algebras e.g. [II, 2, 17, 18, 19, 20, 21]. A Vertex
Operator Algebra (VOA) is a quadruple (V,Y,1,w) consisting of a Z-graded complex
vector space V' = @, ., Vin) where dimV{,y < oo for each n € Z, a linear map
Y : V — End(V)[[z, 27!]] for a formal parameter z and pair of distinguished vectors:

8



the vacuum 1 € V(g and the conformal vector w € V(). For each v € V, the image
under the map Y is the vertex operator

Y(v,2) = Zv(n)z’"’l, (22)

neZ

with modes v(n) € End(V), where Y (v,2)1 = v 4+ O(z). Vertex operators satisfy
locality i.e. for all u,v € V there exists an integer k > 0 such that

(21 — 22)" [V (u, 21),Y (v, 25)] = 0. (23)

The vertex operator of the conformal vector w is

Y(w,2) = Z L(n)z"""2,

ne’l

where the modes L(n) satisfy the Virasoro algebra with central charge ¢

m3 —m

[L(m), L(n)] = (m —m)L(m + ) + "

Om,—ncldy. (24)
We define the homogeneous space of weight k to be

Vi = {v € VIL(O)v = kv},
and we write wt(v) = k for v € V(). Finally, we have a translation condition

Y(L(—1)u,z) = 0,Y (u, z). (25)

For a given VOA V| we define the adjoint vertex operator (with respect to A) by

Vi z) =3 uln)" =y (exp (%L(l)) (—g) " u, é) . (26)

neL

associated with the formal M&bius map z — A/z [17]. For u quasiprimary (i.e.
L(1)v = 0) of weight wt(u) then

uf(n) = (—=1)"1 WA= Wy (2 wi(u) — n — 2).
A bilinear form (, ) : V x V — C is called invariant if [17, 22]

(Y (u, 2)a,b) = (a, Y (u, 2)b)  for all a,b,u € V. (27)
The adjoint vertex operator and (, ) depend on A. In particular

(a,b)|azy = A (a, b). (28)



(, ) is necessarily symmetric [I7]. In terms of modes, we have

(u(n)a, by = {a,u’(n)b). (29)
Choosing v = w and n = 1 implies (L(0)a,b) = (a, L(0)b). Thus (a,b) = 0 when
wt(a) # wt(b).

A VOA is of strong CFT-type if Vo) = C1 and V is simple and self-dual (V" is
isomorphic to the dual module V' as a V-module). [22] guarantees that V' of strong
CFT-type has a unique invariant non-degenerate bilinear form up to normalization.
These results motivate the following definition

Definition 3.1. The Li-Zamolodchikov (Li-Z) metric on V of strong CET—type is the
unique invariant bilinear form (, ) normalized by (1,1) = 1.

3.2 VOAs on a genus one Riemann surface

Given a VOA (V)Y,1,w), we can find an isomorphic VOA (V,Y[,], 1, w) introduced by
Zhu [3], called the square bracket VOA. Both VOAs have the same underlying vector
space V| vacuum vector 1 and central charge. The operators Y[, | are defined by the
coordinate change

Yv,z] = Zv[n]z_”_l =Y (qf(o)v, g.—1).

nez
The new conformal vector is & = w—51, with vertex operator Y@, 2] = 3, , L[n]z"""2.
L[0] provides an alternative Z-grading on V and we write wt[v] = k if L[0]Jv = kv

where wt[v] = wt(v) for primary v (L(n)v = 0 for all n > 0). We can similarly define
a square bracket Li-Z metric (, )sq. The subscript sq will be omitted where there is
no ambiguity.

The genus one partition function for V is defined by the formal trace function
Z‘(})(T) — Try (qL(O)fc/24) 7

and the genus one n-point correlation function is the formal expression
2y (o, 2155 on, 23 7) = Try (V@001 0.) - Y (02 V00,2, )67 0.
In particular, the genus one 1-point function for v € V' is
2y (0;7) = Try (o(v)g"O/") |

where, for v homogeneous, o(v) := v(wt(v) — 1) : Vi) = Vi Every n-point function
is expressible in terms of 1-point functions [4]

Z\(/l)(Uh 2153 Un,y 2n; T)
= Z‘(/l)(Y[vl, 21] . Yo, 2,]1;7) (30)
= Z‘(/l)(Y[vl, 21— 2n) o Y[0n, Zn1 — Zn)On; T). (31)

We will make repeated use of Zhu recursion which recursively relates formal n-point
correlation functions to (n — 1)-point functions [3]
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Theorem 3.1. [Zhu Recursion] Genus one n-point correlation functions obey

(1) . . .
Zy (V1,215 Uy 20y T)

=Ty (O(Ul)Y(quz(O)U% Qz) - - - Y(qZLn(O)Um an)qL(O)_C/24)
+ Z Z Piii(z1 — 2, T)Z‘(/U(vQ, 295+ 017k, 2k VR, 20 T, (32)

k=2 j>0
for Weierstrass Py(z,7) of Definition 2.3

One of core ideas in Zhu theory is that the universal coefficients in the formal recursion
formula are analytic Weierstrass functions. This ultimately implies convergence
and modular properties for genus one partition and n—point functions for suitable
VOAs [3]. The main aim of this paper is to find a genus two version of Theorem [3.1]
Theorem [3.1| has many important applications e.g. o(w) = L(0) — ¢/24 implies

2y (@5;7) = 49,2y (7). (33)
For n primary vectors vy, ...,v, € V one finds the genus one Ward Identity
Z(l)(c’v v . . .
v , Ly 1,1’1,...,1}”,1'”,7_)

= (qaq + Z (Pi(x — 2, T)0y, + Wt P2 — 4, 7'))) Z‘(/l)(vl, 2153 Uny 20 T)-

k=1

(34)
We also have that the Virasoro n-point function

Z‘(/l)(a),xl; c W0, T T)
={q0,+ ) (Pi(xy— xk,7)0s + 2P2(x1 — xy, 7'))) Z‘(/l)(fu, Toj ... 0, Tp;T)
k=2
P4(a:1—xk,T)Z‘(})(@,xQ;...;m;...;@,xn;T), (35)
k=2

where the caret indicates that the insertion of w at xz; is omitted. Theorem gives
identities between formal series, while the differential equations from the Ward Iden-
tities allow us to prove convergence in many cases [3].

Remark 3.1. The above definitions can be naturally extended to define Z](Vll)(. ..) for
a graded V-module M where the trace is taken over M.

Remark 3.2. Modular differential equations for the genus one partition function can

be obtained from and for any Virasoro singular vectors.
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3.3 VOAs on a genus two Riemann surface

We next review the definition of the formally defined genus two partition function and
n-point correlation functions for a VOA [10]. We assume that V" is of strong CFT—type
and hence a non-degenerate Li-Z metric exists. For a V-basis {u(®} we define the dual
basis {u(*} with respect to the Li-Z metric where

<u(a)ﬁ(b)>5q = 0,p.
The genus two partition function for V is defined by

27 (1 mane) = > 2y (wim) 2 (W 1), (36)

ueV

where the formal sum is taken over the V—basis and u is the dual of v with respect to
(,)sq with A= ein (20), i.e. we define the adjoint by

Vil = o (S2i) (- 5) e

The genus two n-point _correlation function for ai,...,ar and by, ..., bg formally in-
serted at xq,...,z; € & and yy,...,yr € So, respectively, by

Zx(f)(al,l‘n-- 'aLaxL’blayH---QvayRQTlaT%E)
=> " ZP V], ). Yiag,xrluim) 20 (Vibrysl - Y by, yl@ m), (37)
ueV

where the sum as in .
Remark 3.3. (36| and are independent of the choice of V-basis.

Remark 3.4. As with Remark [B.1] the above definitions can be extended to define
Zz(\/sz a, () for a pair of V-—modules M;, M, where the left and right-hand genus
one contributions in or are replaced by trace functions over M; and Mo,
respectively.

Remark 3.5. is equivalent to the original definition of [I0] where the the €
dependence is made explicit:

Z( ) (11, T, € Z Z Z (u;m)Z )(U,;Tg),

r>0 ueV]y)

and the internal sum is taken over any Vj,—basis and u is the dual of u with respect
to the Li-Z metric and adjoint operators defined by the mapping z — 1/z. Definition
has the benefit of streamlining later analysis. Similar remarks apply to (37]).
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4 Zhu Reduction for Genus Two n-Point Correla-
tion Functions

4.1 Genus two n-point correlation functions

In this section we derive a formal genus two Zhu reduction expression for all n-point
correlation functions. Let v € V' be inserted at = € Sy, ay,...,a;, € V be inserted at
r1,...,x; € 8t and by,...,bg € V be inserted at yq,...,yr € Sa. We consider the
corresponding genus two n-point function

ZX(/2)(U L5 Ay wl‘bra Yr;T1, T2, 6)

=" 2P (¥ [v,2]Y [a, m:]u; 70) 2y (Y [br, 4, )T 7). (38)

ueV

with the following notational abbreviations:

a;, ;= ai,xi;...; 0T, Yla;,, x| =Y|ay, x1]...Y]ap, 1),

b'r‘? Yr = bla Yy 3 bR7yR7 Y[b’r‘$ y’r'] = Y[bhyl] cee Y[bR7yR]'

There is a similar expression for z € S, with the Y'[v, z] vertex operator inserted on
the right hand side of (38). Zhu recursion (Theorem [3.1]) implies

ZD (Y [v, 2] Y [y, @]u; 1)
= Trv (o(0)Y (a5, g2,)Y (a5 " go)a /)

L
+ ZZP1+j(x — Il,Tl)Z‘(/l)(. cvldlan xg o)

I=1 j>0
+ Z Py, Tl)Z‘(/l)(Y[al, x|v[m]u; 1), (39)
m>0

L LT,
where Y(qﬁl(o)al, Gz) =Y Y (gh® )al,qzl) . Y(qu(O)aL,qu) and g, = €2,

To streamline notation, we make a number of definitions. We will often suppress
the explicit dependence on v, a;, x;, by, Yy, and 7y, 75, € when there is no ambiguity. Let
O, for a € {1,2} be defined by

0, = 01(1}' ag, ﬂ3z\br, yr;7_177_276)

- Z TrV ( Y(qL(O)al’ qwz)Y<Qé(0)ua QO)qlL(O)ic/QAl) Z\(/l) (Y[bra yr]ﬂ; 7_2)7

ueV
02 = 02(7); ap, wl‘br’ Yr;T1, T2, 6)

= > 2P (¥ las @iui ) Try (o) (a5 Vs 4,,)Y (05T )z ) (40)

ueV

where gy = 1 using the translation property (31).
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We define a number of infinite matrices and row and column vectors indexed by

m,n > 1 as follows. Let A, for a € {1,2} be the matrix with components

m+n-—1

Aa(m,n) = Ag(m, i 7, €) = e<m+">/2<—1>"+1<
n

)Em-l-n(Ta)'

Note that
Ay = SAS7,
for A, of for S a diagonal matrix with components
S(m,n) = vV/mbmn.
Let R(z) for z € S, be the row vector with components
R(w;m) = €% Py (2, 7).
Let X, for a € {1,2} be the column vector with components

X1(m) = Xy(m;v; ay 1|bry Yr; 71, T2, €)

= ™23 2P [ay, iJolmlu; 1) 20 (Y [br, y, ] ),
ueV
Xo(m) = Xo(m;v; ayy x1|byy Yr; 71, T2, €)

= 2N 2P [an, m]u; 1) 20 (Y by gl o[m] s 7).

ueV

Lastly, define genus two contraction terms for j > 0 given by

Z‘(})(”' [ al’xl“” ZZ al’xl )ZX(/I)(Y[brayr]ﬂ;ﬁ)a
ueV

20ty ) = 30 20 (¥ [as @i m) 20 olilbey 7).
ueV

Thus applying genus 1 Zhu reduction to using — we find

Z‘(/?) (Ua T, ap, ml|br9 y'r') - Ol -+ R(Z‘)Xl

L
+ Z Z Pryj(x — Tl)Z\(/Q)(- vlla, @)
=1 j>0
+ Pi(w,m1) Y Z (Y [ag, 2]v[0]us 1) Z3 (Y [by, o ] 1),

ueV

and similarly for v inserted on the right hand side of with x € gg.
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4.2 A recursive identity for X,

We next develop a recursive formula for X, of (45) which can be formally solved to
obtain a closed expression for n-point functions in terms of n — 1 point functions
with universal coefficients. Assume that v is quasiprimary of weight wt[v] = N (we

consider quasiprimary descendants later). Let (, ) denote the square bracket Li-Z
metric of with A = e. Then using we find

v[mlu = Z (w,v[m|u) w = Z(v*[m]w, uyw

weV weV

= (=1)Nem K2 " (o[ K — m]w, u) w,

weV
where the w sum is taken over any V' -basis and where

K =2(N-1). (48)

Since Yo (WK —m|w,u) W = v[K — m|w we thus find
Xy(m) = (=1)Nem 2N Z0(Y [ay, @w; 1) Z (Y [br, Yo u[K — m]w; 7). (49)

weV

Provided m > K + 1 then genus one Zhu recursion applies to the right hand side of
leading to a recursive identity for X;(m). However, provided K > 2 (i.e. N > 2)

then the first K components of X; are not subject to this recursive formula. Zhu
recursion implies that for s > 1 [3]

Z\(/l) (Y[bra yr]’U[—S]@‘ TQ)
= o1, Try (0(0)Y (aEbr, ay,)Y (a5, a0)as ")

£Y (g ( - 1)Es+j<a> (¥ Tbrs ol )

>0 J
S (T T ) 200 Y Bl )
j s+j\Yr, T2) Ly " - .. V(]10r, Ypr ...w,TQ .
r=1 j>0

But Proposition 4.3.1 of [3] implies
Z‘(})(Y[ T”y”']v 'U} 7—2 ZZ(I) bT7yT]"'w7T2)7
so that using
22D (Y [br, yp o[~ 5]T; 72)
= 61,2 Try (0(v)Y (a1 by, ,,)Y (a5 W, 0)ay )

+ 3 Aa(s, ) P2 (Y [byy yp 0[] 72)

j>1
EY SR 2 YR ), (50)
r=1 j>0

15



where Py ,(z) = (_j—l!)j]P’l(:U), for z € S, and j > 0, is the column vector with compo-
nents

m-4+j5—1

: ) (Povss (i 72) — B30 () (51)

Pyyj(z;m) = €2 (

Substituting into (49) with s = m — K we therefore find that for m > K + 1

Xy (m) =(—1)"e 1/25m K102+ (1) (A2Xs) (m — K)

ZZ VP (eim — K)ZP (ol g o). (52)

r=1 j>0

Thus for m > K + 1, we can recursively relate X;(m) to the m — K component of
an infinite vector involving Xy. In order to describe this index translation by K =
2N — 2 > 0 we define infinite matrices I' and A with components

L(m,n) = 0m—ntx, A(M,n)=0pmnik. (53)

We also define the projection matrix

qoreo |t 0 54
) .

where 1x_; denotes the K — 1 dimensional identity matrix (with 1_; = 0).

Lemma 4.1. The matrices I', A, 11 obey the identities
I =II=TII, TA=A"T=0, ATA=1. (55)
We define column vectors @, with one non-zero component
Qu(m) = €/%61,,0,, a=1,2.
(suppressing dependence on v, a;, x;, by, Y, etc.) and column vectors G, given by

ZZ P (2) 2P vlla ),

l1]>0

ZZ D7 Py () 23 olilbe s ). (56)

r=1 j>0

Then we can rewrite form>K-+1 as
X, (m) = (—1)N<A (O + Gy +A2X2)>(m). (57)
with a similar formula for X,(m) in terms of Oy, X; and G;.

16



For N > 1 the remaining components of X;(m) for 1 < m < K are described as
follows. We first note from that for 1l <m < K — 1

Xa(m) =(=1)"Xa(K —m) = (-1)" (TXq) (m), (58)

for a = 1,2 (recalling the convention 1 = 2 and 2 = 1). Define the projection on to
the first K — 1 components of X, by

X = IIX,, (59)

(where XIT = 0 if K = 0). Using Lemma |4.1{ we may rewrite as

X = (-DVTXg = (-D)VTXE (60)
49)) also implies
p
Xy (K) = (-1 Y 2P (Y [a, i]u; 70) 24 (Y [by, 4, ]0[0]T; 7). (61)
ueV

By Proposition 4.3.1 of [3] this can be re-expressed as

X(K) = =(=)" Y 2 (s o0)be, g ), (62)
and similarly
Xo(K) = —(=D)N Y 22 (.vl0)a, s .). (63)

Introducing an infinite vector XX = (X (m)) with one non-zero component
Xf(m) = dmrXa(K), (64)
we therefore find altogether that

Proposition 4.1. Let v be a quasi-primary vector with wt[v]| = N. Then X, obeys
the recursive identity

Xy =(—1)"TXE + X5 + (=1 A(Os + Ga + AaXs). (65)
We next describe how to formally solve the recursive identity . Let
Xt = ATX,.
Decompose X, as

X, = X+ XE + AX (66)

17



Since ATT = 0 and ATA = 1 it follows from and that

Xy =(-1)" (0g + Gz + AzXq)
:(—1)N <@5+G5+Aa (Xg +X§) +KEX$> ) (67)
where we define N
A, = ALA. (68)

Iterating we find
Xy =(-1)" (07 + Gz + Az (XI + X))
+ Kz (00 + Ga + A (X +X5) + KX1)

Thus we may formally solve for X1 in terms of the formal matrix inverse
~ ~ \ —1 ~ ~ \ N
(11 - AaAa> = <AEAG) , (69)
n>0
for a = 1,2. We therefore find
Proposition 4.2. Let v be a quasi-primary vector with wtjv] = N. Then X, =
XI 4+ XE + AXL where
SUNSURN |
Xt = (D)"Y (1-Keha)  (Or+ o+ Ag (X + X))

-1 -

+ (11 . T\EKG) Aa (04 + Gy + Ay (XI 4 XE)) . (70)

4.3 Genus two Zhu recursion

We now return to the original genus two n-point function . Substituting X; from
Proposition 4.2| we obtain

2P (v, ; ar, 1 by, yy)

=01 + R(z) (X' + XT)

+ (—=1)N.2Q(z) (02 + Ga + Ay (XY + XI))

+ MQ(2)As (01 + Gy + A, (X + XE))

L
+ Z (Z Prij(z — TI)Z\(/2)(' olfla s

I=1 >0
—PI(ZE,Tl)Z‘(/Z)(...;U[O]CLZ,JZl;...)), (71)

where MQ(x) is an infinite row vector defined by
~ L ~
NO(z) = R(z)A (11 - AEAa> . forzedS, (72)

18



The pre-superscript N is introduced to emphasise the dependence of this expression
on N through A (recalling also that A, = A A).

We next identify various contributing terms to . Using , and we
can describe the O,, X! coefficients in terms of the following:

Definition 4.1. Let “F,(z) for N > 1 and a = 1,2 be given by

1 + 61/2<N@(«I)Ka> (1)7 for T € S\ay

NFal(z) = _ 73
@) (—1)N61/2<NQ(:1:)> 1), forzed, (73)

and let YF(z), for x € S,, be an infinite row vector given by
NETL () = (R(x) + NQ(z) (KaAa + AJ)) IL. (74)

Note that F"(x) = 0 and otherwise YF'(x;m) =0 for m > K = 2N — 2.
The XX terms of contribute

(R(ac) + NQ(x)K2A1> XK =

R
mn(—1)N T <€K/2PK+1(35) + ( Q(z AgAl) ) Z Z 5[0l Y-,
(DN Q) AXE = —my (MQ(2)A) (5) Y 2P (. ol0)ar, @),

using and and where Ty = 1—40;y for N > 1. There are further contributions

to the multipliers of the contraction terms Z‘(,Q)(. —vljlag xp .. and Z‘(/Q)(. s v[]oe, Y -

for 5 > 0 arising from the G, terms and the last summation term in . These
can be described as follows:

Definition 4.2. Define “P,(z,y) = “Pi(z, y; 71, 72, €) for N > 1 by
NPy(2,y) =Pi(z — y, ) — Pi(z,70) — YQ(2)AaPi(y) — 7n ("Q(z)Aq) (K),
for z,y € ga and
VPi(e,y) =(~1)* [ YQU@)P(y) + mve /2 Presa (o) + v (YQ@)Raa) (K)]
foratega, yES\aWhere v =1—05; and K = 2N — 2.

Definition 4.3. For j > 0 define “Py;(x,y) = %8; (MPi(z,y)), ie

Piij(z—y)+ (—1)H9. N@(m)T\EIP’H]—(y), for z,y € §a,

, Cw (75
(—D)NHH NQ(2) Py (y), forzeS,, ye s, (75)

MPrij(r,y) = {

19
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We refer to VP, ;(z,y) as Genus Two Generalised Weierstrass Functions. Applying
these definitions to we obtain our main theorem:

Theorem 4.1. [Quasi-Primary Genus Two Zhu Recursion] The genus two n-point
function for a quasi-primary vector v of weight wt [v] = N inserted at v € S and

general vectors ai,...,ar and by, ..., bg inserted at x1,...,x;, € St and yi,...,Yr €
So, respectively, obeys the formal recursive identity

ZX(/Z)(Uax;ala wl|brayr) :Nf1<x) Ol(v;ala ml|b'ray'r)
+ N‘/—:?(x) 02<U;al7 wl|br,y1')
+ N‘FH(‘r> Xll_[(v;a'l’ wl|b7"yr>

L
+ NP ) 2P llag @)

=1 j>0
R

3> Py 27l s (76)
r=1 j>0

for O, of and X of and . There is a similar expression for v inserted

onz € Ss.

Remark 4.1. There is a clear analogy between the structure of and original
genus one Zhu recursion (32)) with elliptic Weierstrass functions replaced by genus two
generalised Weierstrass functions.

Remark 4.2. The formal coefficient function “F(x) depends on N = wtfv] > 1
and the insertion parameter x but is otherwise universal. In particular, these terms
determine the x dependence of the genus two 1-point function Z‘(/2 ) (v,2). This is in
contrast to genus one 1-point functions which are independent of the torus insertion
parameter. Likewise the formal generalised Weierstrass functions depend on N and
insertion points but are otherwise universal.

Remark 4.3. We show in Section 4 that “F,(x)dz" and “F™(z;m)dz™, for m =
1,...,K —1 = 2N — 3, provide a basis of holomorphic N—differentials in the cases
N = 1,2. Since F1(x) = 0 there are two such terms for N = 1 whereas for N > 2
there are 2N — 1 such terms. This counting agrees with the dimension of the space
of genus two holomorphic N—differentials following the Riemann-Roch theorem [25].
We also show in Sections 4 and 5 that ~Py;(x,y) is holomorphic for x # y on the
sewing domain in the cases N = 1,2. The case N = 2 is particularly significant since
this leads to genus two Ward identities with analytic coefficients explored further in
Sections 6 and 7.

Remark 4.4. Following Remark there is a corresponding formal genus two Zhu
reduction formula to for any pair of V-modules M;, My involving precisely the
same universal “F(z) and MPy(z,-) terms.
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We may also discuss Zhu reduction for a level ¢ descendant v’ = (_i!l)iL[—l]iv of a
quasiprimary vector v inserted at x € ;. Using translation we find
Z(z) i b _ (_1>i8iZ(2) . b
Vv (U y L3 alaml| ray'r) - i' [ Ve (Uaxa a'lvml| rayr)' (77)
The right hand side of can be more explicitly expressed in the following way.
Define for ¢ > 0,5 > 0 the derivative functions

Npi,lJrj (-Ta ?J) = (5113;,3;82 (Npl (13?/))

=Dy .
W@; Q(z)AzP14;(y), for x,y € S,
0L NQ(z)Py4(y), for z € S.. y €S

Pryivi(r —y) +
(=) N+

(i +7)!

(78)

Since Yv', z] = %—PiaiY[v, z] it follows that
it i+7\ .
i il = ("7 )uli (79)

for all 7 > 0. Hence we find:

Corollary 4.1. [General Genus Two Zhu Recursion] The genus two n-point func-

tion for a level i > 0 descendant %L[—l]"v of a quasi-primary vector v of weight
wt [v] = N inserted at x € S; and general vectors ay,...,ar and by, ..., bg inserted at
T1,...,xp €Sy and yy,...,yr € So, respectively, obeys the recursive identity

—1)¢ .
A ((Z_—!>L[—1]Zv,x;al,mllbmyr> =

—1)¢ .

(’L—')a; (Nf1<x>) Ol(v; ag, wl|bra y'r)
—1) .

+ %0; ("Fa(z)) Os(v;ar, )by, yr)

—1)* .
+ Qa‘; (NFH@;)) le(v; a, wl|br9 yr)

1

L
+ Z Z NPi,1+j(x, xl)Z‘(/z)(. csvli+ dla xg )

I=1 j>0
R
2 . .
+ Z Z NPi,Hj(x, yT)Z‘(/)(. csvli by, (80)
r=1 j>0

for O, of and X of and . A sitmilar expression holds for (_T}VL[—l]iv

imserted at © € Ss.
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5 Holomorphic Weight One Genus Two Zhu Re-
duction

5.1 Identifying the F,(z) and P;(x,y) coefficients

In this section we specialize Theorem to the case where v is a quasi-primary of
weight wt[v] = N = 1. This implies that I'; A, IT of are given by

r=1=0 A=1.

We can relate the F,(z) coefficients in the genus two Zhu reduction formula
to the holomorphic 1-differentials v,(x) and the genus two generalised Weierstrass
function 'P;(z,y) to the normalised differential of the second kind w(z,y) described

in Theorem [2.2] as follows.
Recall the 1-differentials a(x) of and use and to find

a(x) = R(z)S dx.
Hence it follows from that
'Q(x)dx = a(z) (1 — AzA,) " S71,
for z € S, (recalling that A = 1). Thus Theorem [2.2 and imply

Proposition 5.1. The N = 1 genus two Zhu reduction coefficient ‘F, for a = 1,2 is
given by

Vo(z) = Fu(z)dz, (81)

for normalised holomorphic 1-differentials vy,vs so that F,(x) is holomorphic for
x €8y and for (11,72, €) € Dyey-

In a similar we can we can identify the generalised Weierstrass term Py(x,y) of
([4.3) with w(z,y) as expressed in Theorem [2.2] to find

1P2(:an) dl’dy = W(ZE,y>. (82)
On integrating, this implies that

Proposition 5.2. The N = 1 genus two generalised Weierstrass function "Py(x,y) is
given by the meromorphic 1-differential

Py(x,y) de = /yw(:c, ), (83)

so that YPy(z,y) is holomorphic for x € S,y € S, with x # y and for (11, T2, €) € Dgey-

Remark 5.1. Since P, (z,y) = 5;1]?;8;6;(1771(:5,;/)) for all 4,5 > 0, a:\ll N :Al
genus two generalised Weierstrass functions are holomorphic for all x € S,,y € &
with = # y and for all (71, 7o, €) € Dgey-
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5.2 Genus two Heisenberg n-point functions

Consider the rank 1 Heisenberg VOA M generated by h with commutator
[h(m), h(n)] = M, —n.

The genus two partition function (found by combinatorial methods) is [10]

Z](\?f) (’7'1, T2, 6) = det (I]_ — AlAQ)_1/2 s (84)

1(71)n(72)
where Z\!(7) = n(7)~! for Dedekind eta function () = ¢/* [1.>:(1 —¢"). Hence,

by Theorem ﬂv Z](\? is holomorphic on D,.,. For a pair of irreducible M—modules
My, = M @ eM and My, = M ® e one finds the partition function (cf. Remark
is given by [10]

Z§\2) (11, To,€) 1 = Z Z](\}il (u;Tl)ZJ(\}lQ (T; 72)

ueEM
AL 7O (11, 7oy €), (85)

=€

where XA- Q- X\ = zz,b:1 Aa§2apAp for the genus two period matrix 2. We compute the
1-point function for the Heisenberg generator h

Zf)(h,x;ﬁ,ﬁ, Z ZJ(\Z Y[h, z|u; 71)21(\22 (T; 72),
ueM

by means of Theorem [{.1] We first note that in this case

Or(hi 71, 70,€) = 3 Tragy, (o(R)o(w)a!'O™"*") Z{)) (@ 7)

ucM
1 )
=\ Z Z](\é,il (u; 7‘1)Z](\/[12 (T; 72)
ueM

= )\1Z£\2)(7'1,T2,€),
and similarly Os(h; 11, 79, €) = )\QZ§\2) (71, T2, €). Defining
va(z) = Mvi(x) + Aara(2), (86)
and applying to Theorem we obtain

Proposition 5.3. The 1-point correlation function for the Heisenberg generator h for
a pair of irreducible Heisenberg modules My, , M), is given by

Zf)(h, T T, Ty, €)dr = V)\(l’)Zg‘Z)(Tl,TQ, €).
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This agrees with Theorem 12 of [10] obtained by a combinatorial method.

We next consider, for two irreducible modules M), , M,,, the n-point function for
L + 1 Heisenberg vectors h inserted at z,z1,...,2; € & and R Heisenberg vectors h
inserted at yq,...,2p € Sy

22 (h,w; by ilhyy,) = Y 24 (b Y [hy @us ) 24 (Y [hy g0 7).
ueM

Much as before we find that
Oa(h; h, ml’h’ yr) = AaZg\Q)(ha wl|ha yr)a a=1,2,

for Heisenberg (L + R)-point function Z§\2)(h, xi|h,y,). Furthermore, since h[j]h =
;11 and using then Theorem [4.1] implies:

Proposition 5.4. The genus two n-point function for L+ R+ 1 Heisenberg vectors h
inserted at x,x1,...,Tn_1 € Sy and at y1,...,rr € So and for irreducible Heisenberg
modules My, M), is given by

L R
Z;Q)UL’ x; h? wl‘ha yv‘)dm H dmk H dys

k=1 s=1
L R
= ua(2) 20 (hy il hy ) [ [ dae [ ] dvs
k=1 s=1
L - L R
+Zw(m,xz)Zf)(h,xl;--';h,fcl;-..;hﬂsLlh,yr) IT = I dv
1=1 k=1,k#1 s=1

+

M=

r=1

L R
(@, ) 23 (hy il hyss s hoyes s hoy) [ [ doe T dos,
k=1

s=1,s#r

where h,x etc. denotes omission of the given term.

This agrees with Theorem 13 of [10] proved by a combinatorial method. In fact, all
n—point functions for the Heisenberg VOA are generated by such n—point functions
for the Heisenberg vector A [10].

6 Weight Two Genus Two Zhu Reduction

In this section we specialise Theorem [4.1|to the case where v is quasi-primary of weight
wt[v] = N = 2. We demonstrate the holomorphy of the %F(z) terms which appear.
This allows us to express genus two Ward identities and genus two Virasoro n-point
correlation functions in terms of a covariant derivative with respect to the parameters
(11, T2, €) and the generalised Weierstrass functions. The general expressions derived
here are examined further in Sect. [7, where analysis of the resulting partial differential
equations demonstrates the holomorphy of all coefficient terms appearing in N = 2
genus two Zhu reduction.
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6.1 Holomorphy of 2F(x) terms

We now specialize Theorem to the case where v is quasi-primary of weight wt[v] =
N = 2 so that the infinite matrices of I', A, IT of are

000 0 ..
100 0000
000 1000
I'=II=1p 0 0 , A=10 10 0
0010

We now relate the formal 2F,(x) and 2F"(x) coefficients appearing in the N = 2
genus two Zhu reduction formula to the three dimensional space of holomorphic
2—differentials. The geometric meaning of the genus two Weierstrass function 2P (x,y)
will be described later on in Proposition

Let {®,(z)}, for r = 1,2,3, denote the formal 2—differentials

Dy (z) = Fi(x)de?, Oy(z) = Folz)ds®, @s(x) = e V2. 2FN(x; 1)da”. (87)

Theorem 6.1. {®,(z)} is a basis of holomorphic 2-differentials for x € S, and for
(71, T2, €) € Dgew with normalization

L ®,(2)(dz)"" = 0,4,

271 al

L 7{ Za P (20)(d2za) ! = 0,3, (88)

omi |
with i = 1,2 where o' is the standard genus two homology cycle and C, 1is an anti-

clockwise contour surrounding the excised disc centred at z, =0 on S,.

Remark 6.1. The normalization conditions are all coordinate dependent unlike
the analogous condition for holomorphic 1-differentials.

Proof. Let ¥U(z) = (¥, (x)), for r = 1,2, 3, denote the column vector with components
given by the 3 independent genus two holomorphic 2-differentials

Ui(z) = wi(2)?, Wala) =wm(x)?,  Py(x) = n(x)re(r), (89)

for normalised 1-differentials v;(x). Let E = (Z,5) denote the 2-differential period
matrix over the cycles a’ and the contour C, defined by

1
== 5 W) fori=12
1
Er3 = a\I’radail.
=om b7 (2a)(d2a) (90)

Clearly, =, is holomorphic in (71, 79, €) € Dgew. With 2o = €/2; we note that

Qim b 21 W) (da)” :2%. <_ i) (Z%) _ (_Zi%%)l

1 1
= v, d ,
ori ), 2 W, (22) (dzp)
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so that =,3 is well-defined. We now show that = is invertible on D, and that
O(z) == 1(2), (91)

where ®(z) = (D,.(x)). implies that {®,(x)} is a indeed basis of holomorphic
2—differentials with normalization (88)).

In order to prove , we compute in two separate ways the genus two 1-point
function for a particular weight N = 2 primary vector in the rank 2 Heisenberg VOA
M? = M ® M. One computation is manifestly holomorphic and expressed in terms
of the 2—differential basis {¥,(z)} whereas the other is in terms of the formal 2—-
differentials {®,(x)}. M? is generated by h' =h® 1 and h? =1 ® h. Let M), ,, and
My, i, (Where My, = M, ® M,) be a pair of irreducible modules for this VOA. Using
the shorthand notation

(2) _ 72
200 =289 (),

we then find that Proposition [5.4] implies

2 2

Z2) (W', 12, y) dady = va(2)vu(y) Zy),

which is holomorphic for = € §a, y € S, and (T1, T2, €) € Dyew. Taking z = y gives

the genus two 1-point function for v = h ® h, a weight 2 primary vector with vertex
operator Y (v,z) = Y (h,x) ® Y (h, z) where

Z;%L(v,ac)dac2 :VA(ac)u“(x)ZfL. (92)
Alternatively, Theorem for N =2 and implies that for x € §1
Z2) (v, 2)da? = 1(2)041(v) + y()Oa(v) + By() - /2K (v; 1), (93)

From and we have

Or(0) = 3 Ty, (o(o(war ™) 257 (@ 7).

ueM?

Ox(v) = 3 247, (w7) Trar, , (olw)o@at O ~™),

ueM?
1 _
72X (v 1) = Z Iy, (1}[1]1L,7'1)Z](\41M2 (T, m2).
ueM?

But these terms may be found from the holomorphic expression . In particular,
using o(v) = v(1) (since v is a primary vector of weight 2) we find

1 271
O, (v) ——/0 ZSL(v,as)dm

o

1 _
2 5 o))
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and

1
e/ 2X M (v: 1) :2—]{ xZg\QL(v,x)dx
™ Je, ’

1
2 —
=230 3 B, a@ ) (da) ™

Thus comparing the respective Ajpuq, Aopro and A\jpo + Aopq terms in and we
find the holomorphic 2—differentials are given by

U(z) = Z0(z), (94)

where = is the holomorphic 2—differential period matrix (90)).

We lastly show that = is invertible on Dge,,. Suppose that = is singular for some
(T1,T2,€) € Dgew. Then there must exist a row vector £ # 0 for which kKZ = 0.
Hence would imply that x¥(z) = 0 which contradicts the fact that {¥,(x)} is
an independent basis of holomorphic 2—differentials. Therefore is true and the
theorem follows. O

6.2 Genus two Virasoro 1-point functions

We next consider applications of Theorems [4.1] and [6.1] to the important case where
v = w, the square bracket VOA Virasoro vector of weight N = wt[v] = 2. We first

consider the Virasoro vector 1-point function inserted at x € §1 for which Theorem
for N = 2 implies (much as in (93)))

ZP (@, z)da? = By (£)01(@) + Pa(2)Oo(&) + Ps(z) - /X3 1), (95)

for the holomorphic 2—differentials ®,(x) of . Here

0:(@) = > Ty (0@>0<u>q5<0>—c/24> 2 (@)

uevVv
=" 010, 2 (u; 1) 23 (@ )
ueV

= QIaql Z\(/2) (7-17 T2, 6)7
and similarly Oy(@0) = ¢20,, Z‘(/2 ) (71, Ta, €). Furthermore, since w[1] = L[0]

1/2XH (w; 1) ZZ 0]u; 1) Z‘(,l)(ﬂ; T2).
ueV
Choose an L[0]-homogeneous basis {u} giving

I/QXH Z Z nZ( (u;m)Z ()(U;Tg).

n>0 ue V'[n]
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ZM (u; 1) 23 (@, 1) is proportional to € from for u € V},) and so

51/2XH Z Z €0, (Z( ) u;T)Z AS )(u 7'2)) = EaEZ‘(/Q)(Tl,TQ,E).

n>0 ue Vi,
We therefore define the differential operator
D, = %F () .0y, + Fo(x) 420, + F(x;1) /%0, (96)
where the subscript indicates the dependence on x € §a, Equivalently,
d2’D, = ®(1) 10, + Po(z) 20,, + P3(z) €0, (97)
for holomorphic 2-differentials {®, ()} with normalization (88). Thus we have

Proposition 6.1. The genus two Virasoro 1-point correlation function for a VOA 'V
s given by

Z‘(/Z)(@,x;ﬁ,m,e) = DIZ‘(/Q)(Tl,TQ,E). (98)

Proposition is analogous to the genus one Virasoro 1-point function . Note
that D, acts on differentiable functions on D¢. We will directly relate D, to the
differential operator V, of in the next section.

6.3 Genus two Ward identities

Consider the n-point function for w inserted at x and Virasoro primary vectors ay, ..., ar,
and by, ..., bg (of respective L[0] weight wt[a], ..., wt[bg]) inserted at xy,...,zp € &
and y1,...,Yr € S, respectively. Since L[j — 1] = w[j] and a;, b, are primary Vectors,

we find Theorem [4.1] implies

ZX(/'Z)(C~U7.T; alawl|br9 y’r‘) = 2f1<1’) Ol(a.al’m”br’yr)
+ 2f2($) Oz(w al,wl‘bm yT‘)
+ 2]—““(1’) le(w a, by, y,)

L
+3 P, e) 20 (s L= Yar s )

=1

L
T Z ?7)2(33’ xl)Z\(/Q)(- < L[O]al, X .. )

=1

R
+ Z Zpl(xa yr)Z\(/2)<' s L=1brs s )
r=1

R
+ 3 Paw,y) 2P (- LIy ), (99)

r=1
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Much as for the Virasoro 1-point function we find that

Ou(@: a1y T1|bys Yr) =aDy, 27 (a1, 1| bry yr),
El/QXll_[(&; 1; ag, ml’bra yr) :ean\(/Q)(ah wl’bra yr)a

and altogether we obtain
Proposition 6.2. The n-point function obeys the genus two Ward identity

2~ .. .
ZV (CU,CC, al7wl|b’r7 y’r‘77—1)7—2a€)

L
= (Dx + Z <Q’P1(a:,xl)8xl + wt[a] - Q’PQ(SL‘,Z‘[))

=1

R

+ Z (QIPI X y'f‘)ayr + Wt[ ] 2732(1‘ yr))) Z\(/Q)<al, wl|br9 y'r)7 (100)
where ay, ... ,ap, by, ..., br € V are primary vectors of respective L[0] weight wtla], . ..
and with D, of (96).
(100]) is analogous to the genus one Ward Identity .

Remark 6.2. In Theorem below we prove the convergence of all the coefficients
appearing in (100)) for all x # x;,y, and for all (71, 79, €) € Dyey-

We lastly consider the Virasoro n-point correlation function for w inserted at z
x1,...,x; € Sy and yy,...,yr € S respectively. We find, much as in Proposition
and using L[2]w = $1, that Theorem |4.1| implies

Proposition 6.3. The genus two Virasoro n-point correlation function is

Z‘(f)(@ T, W, Ty|W, Yp; T1, To, €)

:<DI+Z (*Pi(z, 21)0, + 2+ *Pa(z, 7))

R
+> (PPu(w,9,)0,, +2- "Pa(a, y»))Z”(w,mw,yT)
r=1

L
C ~ o ~ ~
—1—522’7741‘3:1 (w,xl;...;w,xl;...;w,xL\w,yr>
=1
R
gz (x,y.)Z )<w,wl|w yl,...,@,yr;...;@,y}g), (101)

—_—

where w, x; and w,y, denotes omission of the given term.

Remark again applies concerning the convergence of the coefficients in (101)). Also
note that (101]) is analogous to the genus one Ward Identity .
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7 Analytic Genus Two Differential Equations

In this section, we discuss the geometric significance of the differential operator D,
(96]) which was employed in the previous section. We derive a number of differential
equations involving D, arising from the Heisenberg VOA. One important consequence
is a proof that the holomorphic map F* from the sewing domain Ds., to the Siegel
upper half plane Hy provided by Q(7, 7o, €) is injective but not surjective and we
show that the differential operators D, and V, of are equivalent on the sewing
domain. Further, the holomorphy of all coefficient terms appearing in the genus two
Ward identities and Virasoro n-point functions derived in Sect. [0] is demonstrated.
As a direct consequence, the genus two differential equations arising from Virasoro
singular vectors have holomorphic coefficients.

As in previous sections, we suppress the dependence on 71, 79, € where there is no
ambiguity.

7.1 The injectivity and non-surjectivity of F*
Consider the Heisenberg VOA M generated by h. Proposition [5.4] implies
237 (hy s b, y) dady = w(z, y) 257 .

Since @ = 3h[—1]*1 the Virasoro 1-point function can be obtained in the limit

2) (1~ . 1 2 1 2 1 2
da* 23] (@, ) = lim = (Z](W)(h,a:; h,y) — mzz(w)) drdy = Es(m)ZJ(M),

where s(z) is the projective connection (10). Comparing with we find

Proposition 7.1. The genus two partition function for the rank 1 Heisenberg VOA
satisfies the differential equation

1
dx? DwZ](Vzl) (11, To, €) = (a:)Z](\/zl)(Tl, To, €). (102)

= —s
12

This is analogous to the genus one result qanj(\})(T) = %EQ(T)Z](\}) (1) for Z](\}) (1) =

1/n(q) with the projective connection playing the role of Es(7).

Similarly, consider the genus two Virasoro 1-point function for a pair of Heisenberg
modules M), , M), with Z )\2) = e”A'Q'AZ](VQI). In this case, Proposition implies

72 (h, ;b y) dedy = (va(x)va(y) + w(z,y) 22

Taking the x — y limit we find

1 1
7@, x)dx? = (—VA@)? + Es(x)) A (103)
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But using and we also have
2@, 2)dz = d? D, (6™ Z(7)

= <dx2 D, (imA-Q-A) + 1—128(ZL‘)) Z;Q).

Comparing these expressions we obtain:
Proposition 7.2. Fori,j =1,2
2mi da® D, = vi(z)v;(z). (104)
It is convenient to define €2, for r = 1,2, 3, and 73 by
D=1, o=, Q3=0p, =5,

Recall the differential operator V, of which we can rewrite as

3

1 0

- 5 \Ijr a0
oi 4 )5,

x

using the holomorphic 2-differential basis {¥,(z)} of (89). From (97) we may rewrite
(104)) in terms of the bases {V,(z)} and {®,(x)} of to find

a(Qla 927 Q3)

8(7-17 T2, TS)

U(z) = O (x)

for Jacobian matrix 2812:5) and column vectors U(z) = (U,(z)) and ®(z) =
T1,T2,73)

0
(®,(x)). Referring to , this implies
8(91, QZ) Q3)

6(7-17 T2, T?))

—_
]
—_ -

)

where = is the holomorphic 2-differential period matrix defined in . But by The-
orem [6.1], = is invertible on the sewing domain and therefore, by the inverse function
theorem, the map (71, 79, €) — Q(71, 72, €) is one to one. Hence, altogether we have the
following result:

Theorem 7.1. The holomorphic map

F: Dy — H,,
(T17T276) — 9(7—177276)7

is injective. Furthermore, the differential operators dx*>D, and ¥V, are equivariant in
the sense that

di?D, = (F?) " oV, 0 F%,  V,|pap..,) = F?oda’D, o (F) ", (105)
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Remark 7.1. We will write dz2D, = V, below as shorthand for (105]).
Theorem 7.2. The holomorphic map F : Dy — Hy is not surjective.

Proof. Assume that F' is surjective and find a contradiction. Consider the rank two
Heisenberg VOA M? with partition function (from (84)))

1
n(m1)?n(12)* det (1 — Ay Ag)

21(\3)2(7—177—276) =

Since F* is assumed surjective it follows that G1(Q) := 1/Z](\§)2((FQ)_IQ) is a solution
on Hy to the differential equation (using (102)))

(vx + és(x)) Gh(Q) = 0. (106)

For v € Sp(4,Z), consider the modular transformation v : Q — Q of (106). Then
Lemmamimplies that G (Q) := G1(R)/ det(CQ + D) is also a solution to (T06). Let
Y = G1(Q)/G41(Q) which must therefore satisfy V,x = 0 since the {®,(z)} of are
independent holomorphic 2-differentials. Hence x = x(v) and it follows that

G1(Q) = X(7) det(CQ + D)G1(Q),

ie. G1(€) is a meromorphic Sp(4,Z) Siegel modular form of weight 1 with a mul-
tiplier system x(7), a 1-dimensional complex character for Sp(4,Z). The commu-
tator subgroup of Sp(4,7Z) is of index 2 in Sp(4,7Z) so that x(y) € {£1} for all
v € Sp(4,7Z) [28, 29]. But Theorem implies that the left torus modular trans-
formation 71 — 7 4+ 1 is equivalent to the Sp(4,Z) transformation 77 : Q17 — Q1 + 1
with multiplier x(7}) = /¢ which contradicts that y(7}) € {#1}. Hence F is not
surjective. O

Remark 7.2. We note that (106]) is invariant under the Sp(4,7Z) subgroup I' ~
(SL(2,7Z) x SL(2,7)) x Zs of Theorem [2.3| which preserves Dy, for G1(2) a weight 1
Siegel form with a multiplier system y(7) € (¢"™/®) as shown in Theorem 8 of [10].

Remark 7.3. We emphasise that Z](\?Q (11,72, €) is not a function on the full Siegel

upper half plane but only on the image F' (Dsey).

7.2 A differential equation for holomorphic 1-differentials

Consider two Heisenberg VOA modules M), , M,,. The genus two 3-point function for
h inserted at xy, 9,y is from Proposition (and [10]) given by

dxldl‘QdngQ)(h) X1, h: T2, hv y)
= (alea(zval) + vala)w(za, y)

+ va(zo)w(x1,y) + va(y)w(z, x2)> Z§\2).
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Since @ = 1h[—1]*1 we find

dx2dyZ§\2) (W, z; h,y)

T;i—T

1
= lim §dx1dx2 (dy Z§\2)(h,:v1; h, x93 h,y) — V)‘—(y)Z@))

= (SraaPialo) + oale)olie ) + pot)sta)) 252

By Proposition [6.2] and Theorem [7.1] we also have
dx2dyZ§\2) (W, x; h,y)
— <V$ + da? (Q’P1(ac, )0, + *Pa(x, y)) )Z;Q)(h, y)dy

Using (103) and comparing we thus obtain (recalling that Pa(z,y) = 0, P1(z,y)):

Proposition 7.3. The genus two holomorphic 1-forms v;(x), i = 1,2, satisfy the
following differential equation on the sewing domain Dgey

V.vi(y) + da?d, (2731@, y)yl(y)) = w(x,y)v(x). (107)

Proposition [7.3| allows us to determine a global analytic expression for the gener-
alised Weierstrass function 2P (z,y):

Proposition 7.4. ?P;(x,y) is given by the (2, —1)-bidifferential
vi(z) Vl(y)‘ L) val(y)’

va(z) 12(y) va(y) Varn(y)

V1<y) ay”l(?/) d
va(y) Oyra(y)

w(w,y)

Pi(z,y)da?(dy) ™ = — : (108)

which is holomorphic for x # y where, for any local coordinates x,y
1
Py (z,y) = —— + reqular terms.
r—=y

Proof. Proposition 7.3 implies

v (y)Vaern(y) + V2(Z/)d9523y (Q’Pl(ﬂ?,y)lfl(y)) = va(y)w(z, y)vi(x),
v (y)Vara(y) + vi(y)dedy, ("Pi(z, y)ra(y)) = ni(y)w(z, y)va(z).
Taking the difference we obtain (108)). Thus 2Py (z, y)dx?(dy)~' is globally defined for
all Q € Hy (i.e. not just on F(Dyey)).
Let W(y) = ‘ o 8; g‘zzgg ‘ dy denote the Wronskian denominator of the right hand
side of (108]). W (y) is a holomorphic 3-differential with 6 zeros in y (counting multi-
plicity) from the Riemann-Roch theorem [25]. The numerator of (108)) is a holomorphic
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(2,2)-bidifferential for z # y with a simple pole at = y with residue —W (y)dz*dy "
so that 2Py(z,y) ~ x—iy for x ~ y. But from (107), Pi(z,y) cannot have any -
independent poles in y so that the numerator of the right hand side of (108|) possesses
the same 6 zeros in y as W (y). Thus ?P;(z,y) is holomorphic for all x # y. O

Remark 7.4. Proposition implies that *P;14;(x,y) is similarly holomorphic for
x # y following with

?’Pi,1+j($7 y) =

—————— + regular terms.
(z — y) it

Referring to the genus two Zhu reduction of Theorem [{4.1] and combining Theo-
rem [6.1], Proposition [7.4] and Remark [7.4] we conclude

Theorem 7.3. All the coefficients *F,(z), *F"(x;1) and *Pi1;(z,y) involved in the
N =2 genus two Zhu reduction are holomorphic for all x € S,, y € Sy for x # vy, and
for all (11, 72,€) € Dsew-

Remark 7.5. Theorem implies that all coefficients appearing in the genus two
Ward identities of Propositions [6.2] and are convergent on Dg,. In particular,
this implies that any genus two differential equation derived from a Virasoro singular
vector has coefficients convergent on Dgey,. This is explored further in [31] and [32].

7.3 A differential equation for the normalised bidifferential

Consider the genus two 4-point function for h inserted at xq,xs,¥1,y2 which from
Proposition (and [I0]) is given by

dxldxgdyldngﬁ)(h, w15 hy w3 by yis by o)

= (w(q}l, xg)w(yl, y2) + W(I'h y1)w(l“2a y2)

+ w(z1, Yo )w (T2, y1)>Z](\/2[)'

Much as before, we find

dx2dy1dy2Z](V2[) (@, 2 h,y1; h, y2)

g dzdx

= lim ~ (dx1d$2dy1dy221(\/2[)(h,xl; h, xa; hyy hyy) — (o ixj)gw(yl’y2)zf(‘?>
1

= (ES(x)w(yl, y2) + w(x,?h)w(%?h)) Z](\?'

By Proposition [6.2] and Theorem [7.1] we find

da:Qdyldng](\? (@, h, Y15 b, y2)
2

= (Vz +da® > (*Pi(x,y:)0y, + Palx,yr)) )Zﬁ)(h, y1; s yo)dyrdys

r=1

= (VI + da? Z (?’Pl(x,yr)ayr + 2732(% yr)) )W(yb yz)Z](\?,
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which implies on using Proposition
Proposition 7.5. The bidifferential w(z,y) satisfies the differential equation
2
(Vz + dz® Z (2731(% Yr)Oy, + Py (z, yr)) >w(y1,yg) = w(z, y1)w(@, y2).
r=1

This differential equation is similar in form to the genus one case [30]

2
(404 + Y (P& =0, 7)0,, + Palw = ,,7)) ) Palys = 1. 7)
r=1

= Py(z =y, 7) Po(x — 12, 7).

7.4 A differential equation for the projective connection

Very much as in the last example, we find

-~ 1 1
1y 28 G, :5) =  1gs(o)s) + gt ) 285

By Proposition [6.3| and Theorem we find

deZ](\? (W, x;0,y)

- (Vx + da® (*Pi(z,y)0, + *Pa(z,y)) )Z](\? (W,y) + % - 2Py (, y)Z](é)d:I;Z.
which implies on using Proposition that

Proposition 7.6. The genus two projective connection satisfies

(Vz +da? (PPi(z,y)d, + 2°Pa(x,y)) ) <é8(y)) + *Py(z, y)da’dy® = w(z, y)*.

Finally, we note that Proposition implies Proposition on integrating y; or
12 over a [3* cycle and applying and Proposition on taking the y; — y limit.

7.5 Conjectures

We conclude with number of conjectures that naturally arise:

Conjecture 7.1. We conjecture that

- N1
(i) the formal inverse matriz (]l - AaAa) of s convergent on Dgey for all
N > 2,

(ii) NF,(z)dz™ and NFY(x;m)dzN of Deﬁnitz’onform a dimension 2N — 1 basis
of holomorphic N —differentials on Dsey for all N > 3 (c.f. Remark ,
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(111) the geneml@sed Weierstrass function™Py(x,y) of Definition m is holomorphic
foralla:ESa,yeSbforx#y and N > 3,

(iv) NPy(x,y)dzN (dy)= is a globally defined holomorphic (N,1 — N)-bidifferential
for x # vy for all N > 3.

Conjecture 7.2. The genus two partition function for a Cy-cofinite VOA is convergent
0N Dyew. In particular, a Cy-cofinite VOA partition function obeys a partial differential
equation resulting [31)] from genus two Zhu recursion applied to the genus two 1-point
function for a singular Virasoro vacuum descendant. This is explored in [32] for the
c = —22/5 Virasoro (2,5)-minimal model.

ConJecture 7.3. Proposition [7.1] generalises to all genera in some particular sewing
domain DL where the genus g partition function for the rank 1 Heisenberg VOA
satisfies the differential equation

1
<v — Es(a:)> 79 = .

for x € Dég‘)v and where V, is a suitable generalisation of , that is, a covariant
derivative with respect to the surface moduli depending on a basis of holomorphic 2-
differentials.
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