
 
Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published

version when available.

Downloaded 2020-10-17T02:31:44Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Probabilistic metadata generation for places based on user data

Author(s) Hegde, Vinod Kumar Gajanana

Publication
Date 2016-08-16

Item record http://hdl.handle.net/10379/5985

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Probabilistic Metadata Generation for
Places Based on User Data

Vinod Kumar Gajanana Hegde

Insight Centre for Data Analytics

College of Engineering and Informatics

National University of Ireland, Galway, Ireland

Ph.D. Thesis

16th August 2016

Galway, Ireland



ii

SUPERVISOR:
Dr. Matthias Nickles

CO-SUPERVISOR:
Dr. Alessandra Mileo

INTERNAL EXAMINER:
Dr. Colm O’Riordan

EXTERNAL EXAMINER:
Prof. Dr. Pedro José Marrón



iii

Abstract

In recent years, there has been a wide adoption of mobile devices such as
smart phones and tablets. This wide adoption is supported by numerous
mobile and Web applications which help users to consume and generate data
on the go. Users generate large volumes of data using these applications
which represent real time contextual information about them. Most of the
current mobile and Web applications analyse user data such as social interests
and physical presence of users at places to deliver better services and user ex-
perience in applications. However, studies have shown that spatial databases
lack sufficient metadata for places as users are required to manually provide
this information. Since this is time consuming work, users rarely annotate
places in spite of having knowledge about them. Automatically generating
annotations for places by exploiting user generated data on mobile and Web
applications can potentially be used to overcome the lack of metadata for
places. Rich metadata about places can be used by geospatial web services
and location based services to provide accurate results.

Automatic generation of place metadata requires new sophisticated data
mining algorithms. This thesis focuses on unsolved questions regarding the
utilization of physical presence and social data of users to generate metadata
for places. Specifically, we have developed probabilistic models and text
processing algorithms for short text snippet or tag generation for locations
using social interest profiles and check-ins of users at places. Then, we have
studied how only the user presence data at places can be used to infer real
world events at those places. To this end, we discuss a probabilistic outlier
detection model and an algorithm to detect any unusual presence of huge
crowds at places. We have then defined and implemented an approach to
generate tags by analysing textual data generated during events conducted at
locations. We have evaluated all the discussed models and algorithms with
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both synthetic and real world data. Our experiments show that rich metadata
for places can be derived by analysing user generated data.
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Chapter 1

Introduction

Recent years have seen a huge rise in the number of users utilizing various services
on the Web. This has led to an increase in the number of interesting Web applications
which are diverse in the type of services they provide. At the same time the large
number of mobile device users has prompted the creation of a vast number of mobile
applications. Many of these mobile and Web applications address the creation and
consumption of geospatial data. These geospatial applications can be classified as
geospatial web services (GWS) and location based services (LBS) depending on
whether they use real time location of a mobile device to deliver content. LBS are
dependent on the real time physical location of a device which is obtained via global
positioning system (GPS), cell triangulation method, and IP address analysis among
other techniques. Geospatial applications enable users to contribute to the enrichment
of geospatial databases by annotating geospatial objects with metadata. In this thesis,
we specifically consider metadata for places or locations or Points of Interests (PoIs).
Note that we use these terms interchangeably throughout the thesis.

Users enrich metadata in the geospatial databases by adding geo-locations or
places to the maps, rating the places, annotating them with photos, videos, comments
etc. Various types of metadata are used by geospatial applications mainly to provide
accurate search and recommendation of places. Geospatial applications support search
for places by place attributes such as name, category, distance from the user, rating
etc. They also recommend famous places in real time, show the amount of people
and predict the size of the crowd at places for various time periods. Location based
services determine the physical location of users and enable users to express their visits
to places via check-ins and share their experience. Personalised recommendations
of places to users based on their place visiting patterns and social profiles are major

1



2 Introduction

features of many location based services. There are numerous geospatial applications
provided by commercial players such as Google1, Facebook2, FourSquare3, Yelp4 and
many other players. There are also non-commercial projects like OpenStreetMap5

(OSM), Wikimapia6 among others. Most of the above mentioned geospatial application
vendors rely on data provided by volunteers to build their own geospatial databases.

A huge increase in the number of applications critically dependent on geospatial
data on both mobile devices and the Web have made the study of creation, storage and
consumption of geospatial data crucial. It has been evident through various literature
and research studies that the geospatial databases lack rich metadata. This motivates
us to provide potential solutions to the problem of metadata generation for places,
which we will present in this thesis. In what follows, we discuss the state-of-the-art
in geospatial databases and major issues involved in creation and consumption of
geospatial data. Specifically, we describe the current techniques of automatic and
manual metadata generation for places that are adopted by major vendors. We analyse
and discuss the sparsity of manually added metadata in these databases. We then
discuss the challenges involved in automatically enriching geospatial databases, which
sets the basis for our hypothesis and contributions.

Geospatial Databases
Geospatial databases are the databases that deal with creation, storage and retrieval of
geospatial data. Geospatial data refers to any data about spatial objects that exist on the
surface of the earth. Some of these spatial objects such as rivers, roads, and buildings
can have well defined geographic boundaries. Places, which also represent spatial
objects represent abstraction of a physical location and usually do not have well define
boundary. Spatial objects can be defined by single or multiple location attributes. The
most commonly used location attributes are latitude, longitude and altitude triplets to
accurately identify spatial objects. The other common spatial attributes include textual
address, ZIP codes. The term place is an abstract form of location as a place does not
have exact geospatial boundaries defined, though a place exists on the surface of the
earth.

1https://maps.google.ie/
2//www.facebook.com/places/
3https://foursquare.com/
4http://www.yelp.ie/la
5https://www.openstreetmap.org/
6http://wikimapia.org/
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The geospatial data has been historically used for applications in mining, defence
planning, natural resource mapping, environmental analysis, and weather prediction
among others. The successful adoption of mobile devices in recent years by users
has given rise to new ways of creation and consumption of geospatial data. The data
about interaction and experience of users at places has become a major part of the
geospatial databases. The extensive use of geospatial applications has increased the
amount of geospatial data voluntarily contributed by users. In spite of these efforts,
accurate metadata generation for places remains a challenge due to various technical
and human limitations. We now discuss some of the research efforts and application
techniques that have been employed to generate geospatial metadata. Our discussion
includes both manual and automatic techniques for metadata generation.

The majority of the data in geospatial databases used by location based services
and geospatial web services are contributed by volunteering users. These datasets are
collectively termed as Volunteered Geographic Information (VGI). Mobile device users
represent a major community of stakeholders in terms of geospatial data generation
and consumption using both the mobile applications and Web applications on mobile
devices. It has been noted that users provide geospatial data for various social and
financial benefits [1, 2]. Note that populating geospatial databases demands extensive
knowledge of the places under consideration. This demands utilizing the knowledge
shared by residents and visitors of places. There has been extensive work on mining
user generated data to derive metadata of various types for locations. The information
in systems based on VGI is provided by locals and covers vernacular places and their
names. Flanagin et al. [3] argues that credibility of such information is an issue and
discusses how community based information generation can be useful. Wang et al. [4]
discusses various approaches that can be adopted for manually tagging places using
mobile phones. The semi-automatic approach to integrating such rich and timely
information into the gazetteers has been discussed in Keßler et al. [5]. The work by
Lin at al. [6] studies the naming preferences of people regarding the places they visit
and shows that such preferences depend on the context of the person naming a place. It
also finds that on an average places have very few description names (mean of number
of place descriptions is 2.8).

Place tags can be classified into two categories based on their purpose. Semantic

tags and event tags are the two major categories of metadata that can potentially
be associated with a place. Semantic tags are short text snippets that semantically
representative of a place. They are intended to describe the nature and abstract meaning
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of a given place, that users can relate to. Event tags describe events that are held at
places along with additional information of event such as start and end time, number
of people at an event, purpose of event etc. There have been various efforts to derive
the above mentioned metadata for places. Such efforts have successfully utilized
information from location based services. Location based services at their core enable
their users to broadcast visits to places via check-ins. Check-in data are descriptive of
real time crowd movement at places along with experience of people at places. There
have been other works that use information about geospatial coordinates (i.e., latitude
and longitude) of user movements to infer categories of places. Similarly, sensor data
captured about people’s movements in buildings and road networks have been used to
infer events at places. Now we describe some of the works that have exploited such
user presence information to generate place metadata.

In Lian et al. [7], an automatic place naming technique based on user check-in
activities is discussed. In Ye et al. [8], data analysis techniques to automatically derive
the abstract category of location such as hotel, entertainment venue etc. have been
presented. In Manasour et al. [9], places are modelled based on mentions of places in
tweets to generate keywords or tags for places. The aim here is to derive those tags that
closely align with query terms of place search queries by users. Commercial vendors
are highly dependent on the manually curated VGI for populating their geospatial
databases. They have successfully developed automatic metadata generation tech-
niques based on data generated by mobile devices at various locations. The automatic
metadata generation approaches adopted in OpenStreetMap [10] demand huge data
about physical context of the mobile device users. OpenStreetMap uses the GPS
traces of its mobile device users to create the road network maps for highly populated
areas. Extraction of data from sensors such as GPS sensor, accelerometer etc. in
mobile devices is one of the major challenges. Various solutions have been proposed
in [11–14] to efficiently determine physical location of a user with minimal energy
consumption. Foursquare uses the user check-ins to automatically derive the time
periods during which a given location is actively visited by users. Pozdnoukhov et al.

[15] show that events can be detected at geographic regions by analysing the number
of geo-annotated micro-blog posts at a given time.

Through these examples, we can see that there is extensive work on metadata
generation for locations so as to make geospatial applications more efficient and user
friendly. Still, there are many challenges that need to be addressed to automatically
generate geospatial metadata. For example, collecting the right type and right amount
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of user data so as to run data mining algorithms on these data is a major challenge.
Similarly, assessing the quality of automatically derived metadata when there is no
manually generated ground truth poses another challenge. As discussed in the previous
section, geospatial databases lack extensive metadata about locations due to various
reasons. In this thesis, we mainly concentrate on automatically generating metadata
for places so as to enrich geospatial databases. These metadata mainly in the form of
tags, presence, duration of events at places etc. are crucially needed to build efficient
location based services and geospatial web services mentioned earlier. In the following
section, we describe the research questions and problems addressed by this thesis and ,
challenges that are involved in solving the stated problems.

1.1 Problem Statement

We address the problem of generating metadata for places by analysing place related
user data captured on the Web. Fundamentally, the problem of place-metadata gen-
eration demands identifying appropriate data sets having references to locations and
mining those data to derive metadata. Solving this problem needs addressing many
fundamental research questions. The research questions we consider in order to solve
the problem of automatic generation of place metadata, are as follows:

1. Which sources of data on the Web have to be chosen so that we can perform data
mining on those to derive rich metadata about places?

2. How can we derive semantic tags which conceptually represent a place using
these data sources?

3. How can we detect any events organized at a place by analysing the data about
amount of crowd at that place?

The first research question involves many challenges few of which are listed below.

Representative nature of data
There are huge streams of data constantly being pushed or pulled to the Web from
various sources such as online social networks, blogs, micro-blogs, sensors, mobile
devices etc. Some of these data are related to places and can possibly be utilized for
mining and subsequent generation of metadata about places. Some of these data such
as presence information broadcast through smart phones are directly associated with
places and are unique in their size as well as rate at which they are pushed onto the
Web. In contrast, though sources such as blogs have data related to places, they are
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highly unstructured, smaller in size and are not periodically updated on the Web. This
shows that the sources of data to derive metadata about places have to be appropriately
analyzed and chosen.

Availability of data
Though many of the Web and mobile application users often generate data related to
places, this data is not available for analysis. The reasons include, but are not limited
to, issues such as privacy, security and trust. For example, though a user wishes to
express her visit to a place, she wants it to be visible only to her friends for privacy
reasons. Similarly, social interests of a user can have restricted access to the public w.r.t
visibility and availability. These factors limit any integrated analysis of her presence
information combined with the social interests she has expressed on the online social
network profile or a micro-blog. These observations indicate that even though a data
source is rich in geospatial data, the availability of such data openly on the Web for
analysis is a challenge.

The second question has these prominent challenges.

Quality of derived tags compared to manual tags
As stated earlier, commercial geospatial databases lack metadata for places especially
in the form of semantic tags and event tags. This is due to the fact that such meta-
data has to be contributed manually by volunteers and or obtained by commercial
crowdsourcing. Note that manually generated semantic metadata is always limited by
the vocabulary of the user adding the semantic tags. Similarly, quality of event tags
annotated by users is limited by their knowledge of place being annotated and number
of active annotators. So, any approach to automatically generate place-metadata would
immediately face the challenge of evaluating the quality of automatically derived
metadata. Specifically, this is due to the lack of extensively assigned tags which can
be used as ground truth.

Variability in the derived tags
Any approach to derive semantic tags automatically has to consider the time depen-
dency of semantic tags on a place. Semantic concepts associated with a place though
are stable for a short duration of time, can change based on any logistical changes
in a place. For example, if an auditorium has a conference on Biological Sciences,
the semantic tags are relevant only during the period of the conference and changes
based on other events happening there. Similarly, if a new engineering department is
established in a building complex of engineering schools, an additional set of tags will
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turn out to be relevant for that building complex. This possible evolution of semantic
tags for a location over time is a critical question that needs to be addressed by any
semantic tag generation technique.

The challenges associated with the third question are as follows.

Criteria for event detection
Events of various types happen at places. Places differ from each other in the types of
events organized, the frequency with which those events are organized and the amount
of people present for events. Though at a small scale, users do report some of the
events and places they happen at, using various Web and mobile applications. Any
mechanism to detect and predict events at places has to take the above factors into
consideration together. This demands advanced statistical models that can flexibly
model crowd at places and detect events.

Accuracy of prediction
In the previous section, we discussed some of the challenges faced in acquiring
geolocation related data. We can observe that there is a lack of extensive data about
the presence information of users at places. In spite of this limitation, any system built
to predict the amount of crowd and events at a place has to be accurate enough. Only
outputs from such a system can be used as a source of metadata for places.

Scalability
The current geospatial databases contain information about millions of places. So, any
system built to predict the number of people at a place or crowdedness at a place at any
given time has to be scalable. This demands that crowd and event prediction system
needs to be light weight in terms of its resource consumption.

We have briefly described some of the challenges in generating metadata for places
based on data generated by users on mobile and Web applications. Any successful
attempt in automatically deriving metadata of places has many advantages. The rich
metadata derived in the form of various types of tags enables geospatial application
users to make very precise queries about places and get specific information about
places. It also means that businesses have rich information about places which in turn
can be used for recommendation and personalisation of the services they offer. Any
of geospatial web applications and location based services can make use of metadata
about places in order to enhance the quality of services.
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We now list the assumptions we have made while conducting research experiments
and studies.

1. We have an access to unbiased datasets comprising of user generated data through
mobile and Web applications.

2. Users contributing their data voluntarily are fair in data generation and publica-
tion.

3. The privacy of those users is not violated whose data is used for automatic
metadata generation about places.

In the following section, we discuss motivating facts about deriving metadata for
places. We then describe our hypothesis and briefly state the results we have obtained
to validate our hypothesis.

1.2 Hypothesis

The large scale adoption of online social networks, micro-blogging services and related
mobile and Web applications by users has enabled service providers to access vast
amount of fine-grained user data. A large proportion of these data are geospatial in
nature. For example, micro-posts generated on micro-blogging sites such as Twitter7

sometimes contain geolocation of the micro-post or tweet generation. Many of those
micro-posts have references to places and geographic regions. Similarly, users on
online social networks like Facebook often refer to places they have visited, events
organized at places among others. Location based social networks such as Foursquare
let users generate social data annotated with place information and broadcast them
publicly or to a group of friends. Most of the above mentioned data are unstructured
and do not contain metadata about places explicitly. Place metadata includes tags
or text snippets that are descriptive of places, information about events at places,
duration of those events, common interests of visitors of a place among others. These
metadata are required for accurate search and recommendation of places on geospatial
applications and online social networks. However, users on online social networks do
not manually annotate places with metadata. There are few successful data mining
efforts which have generated geospatial metadata based on data generated by users on
the Web. For example, Noulas et al. [16] compute similarity scores for geographic
regions based on user check-in activity on Foursquare. In [8], Ye et al. use the temporal

7https://twitter.com/
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and check-in count data to derive category labels for places. In [9], Mansour et al.
generate term distributions to represent business places by analysing data from social
media. These prior works motivate us to hypothesise that place metadata can be
derived from user generated data on mobile and Web applications. Specifically, we
hypothesise and show that:

1. Descriptive text snippets or tags can be derived for places using textual data
generated by a group of online users. To this end, we have used online social
profiles and user presence data and derived large number of relevant tags for
places considered in an experiment. Further, we have analysed text data related
to events conducted at places and shown that highly relevant place tags can be
derived.

2. Events organized at places can be detected effectively by analysing user presence
data for places. We have developed a Bayesian statistical model to detect outliers
in time series of univariate data, which we use to infer about events organized at
places. This shows that data generated by users due to their passive interaction
with sensors at a place can be used to infer events at that place.

We have used real world data from various types of social networks and physical
sensors to validate these hypotheses. In the following section, we describe some of the
application scenarios that can benefit from the availability of metadata for places. We
also discuss how geospatial web applications and location based services can be made
more precise and useful by utilising the automatically generated geospatial metadata.

1.3 Application Scenarios

The utilization of rich metadata about places plays an important role in the quality of
geospatial web services and location based services. In this section, we consider three
major application scenarios that can hugely benefit from the existence of metadata for
places.

Location Search
Users of geospatial applications can benefit from the ability to query for locations
with tags. There can be two types of semantic tags that can be annotated for a place.
First type comprises of categorical tags that represent an abstract category that a
place belong to. Examples of categorical tags are text snippets such as educational

institution, restaurant etc. The other type of tags are descriptive semantic tags which
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describe specific concepts a place is associated with. It is essential that a place has
annotations of both types for effective search results. For example, consider a user
query for places which are related to computer science in a geographic region. This
query can only be successfully executed if relevant places have descriptive semantic
tags such as computer science research, mathematics etc. along with categorical tag
such as educational institution. If descriptive semantic tags are not available, a user
might be shown no places or irrelevant places in a geographic region. This adversely
affects the user experience and quality of service of a geospatial application. On the
other hand, size of mobile devices and the way users depend on mobile devices for
information needs make us realize that place query texts will be precise and short on
mobile devices. So, annotating places with appropriate tags would facilitate geospatial
applications to support complex and precise queries from users. Also, the number
of places in a given geographic region can be huge. Hence, semantic tags should be
specific enough so that a short list of highly relevant locations can be shown against a
user query.

Personalised Recommendations of Places on Mobile Devices
Mobile devices are capable of capturing both social and physical context of a user.
Since mobile device users use applications extensively, their social preferences, in-
terests etc. are available on mobile devices which represent social contexts of users.
A wide range of sensors such as GPS sensor, accelerometer on these devices let us
determine physical contexts of users. This scenario makes a mobile device an ideal
platform for personalised delivery of information. We now discuss some of the re-
search works that show the crucial role of personalisation while delivering information
on mobile devices.

There have been numerous studies on the impact of personalisation of the informa-
tion delivered on mobile devices. Personalisation has been found to reduce the amount
of data traffic on mobile devices, increase user satisfaction and also be an effective
mechanism in mobile commerce [17, 18]. The limitations in terms of screen size, key
board facilities, battery power etc. demand the need for precise and personalised infor-
mation delivery on mobile devices. Irrelevant information delivered will be considered
spam and be rejected by the user community.

It has been realized that if thoroughly personalised, commercial messages may
be perceived as valuable information services as described by Bauer et al. [18].
There have been efforts towards personalisation of information delivered on mobile
devices. Activities of a mobile device user along with geolocation can be inferred
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effectively from the sensors of a mobile device. This has been used as a basis for
personalisation in Partridge et al. [19]. The approach adopted in Miele et al. [20]
enables users to explicitly mention their preferences which will be exploited by a
system for personalisation of information delivered. User profiles existing in Online
Social Networks (OSNs) along with proximity of mobile device users has been utilized
in Pietilainen et al. [21] for opportunistic social network expansion. In [18], Bauer et
al note that, if not personalised, users can reject information delivered and also change
their mobile network operator. The presence of highly descriptive tags for places
can be utilized along with social profiles of users to personalise the recommendation
of places. For example, a user interested in Art can be shown places with semantic
tags such as Irish Music, Music, Art etc. with a higher priority rather than showing
a popular place with tag Computer Science. Similarly, places similar to the places
frequently visited by a user can be recommended for the user by exploiting metadata
available for places.

Detection of Events Organized at Places
Geospatial application users can greatly benefit from real time information about
amount of crowd and events organized at places. The crowd information can be used
for better scheduling of visits to places, notify any unusual crowd gathering at a place,
deliver optimized advertisement campaigns etc. There has been extensive research
on predicting amount of crowd at places using mobile device data and data generated
from geospatial web applications and sensor data. The work in Ratti et al. [22]
analyses movement of users through space and time in urban setting and applications
are proposed for urban planning. Prediction techniques to determine future location
visits of mobile device users based on GPS trajectories of mobile devices are discussed
in Ying et al. [23]. Mobile phone signal data of users has been used in Calabrese
et al. [24] to correlate human movements during social events. In [25], Zhou et
al. show that bus arrival times can be predicted with high accuracy by detecting the
locations of mobile device users using scalable techniques. We can see from the above
mentioned research that the prediction of users at locations and detecting any unusual
crowd at locations has huge implications for urban planning, event scheduling, location
recommendation etc. There have been efforts to predict events at places based on
the user generated data where the ground truth about the occurrence of events is not
available. Accurate methods to detect events conducted at places are crucially needed
as such event information are not systematically updated on the Web.
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1.4 Contribution and Structure

The contributions made in this thesis are as follows:

1. We have shown that descriptive tags can be derived for places by analysing
social interest profiles and location visiting patterns of a group of users. We
have specifically studied whether common social interests of a group of users
can be utilized to derive text snippets that are representative of a place. We
have analysed the effectiveness of utilising implicit ‘Wisdom of Crowd’ that is
present among a set of visitors of a place. We have defined an algorithm and a
probabilistic model to achieve the same. We have used data from a well-known
social network and a location based social network for our analysis. In Chapter
3, we discuss this in detail.

2. We have shown that textual data generated by user interactions while they partici-
pate in events organized at locations can be successfully used to derive descriptive
tags for locations. We have applied a probabilistic model and performed statis-
tical analysis to derive the tags and shown that tags corresponding to multiple
topics relevant to a place can be derived. We have used data from a famous event
based social network to derive our inferences. In Chapter 5, we describe our
findings about this technique of deriving place tags.

3. We have developed an advanced probabilistic model to analyse time series data.
We have used this to detect outliers in count data generated by user movements
in buildings and subsequently identify hours during which events are conducted
in buildings. We have applied our technique on both simulated and real world
data and compared the performance of our technique against a state of the art
technique. In Chapter 4, we describe our technique and discuss the advantages
of our technique.

The work presented in this thesis has several advantages. We propose techniques for
utilizing user generated content on mobile and Web applications to enrich information
about places. Our techniques respect privacy of users whose data is used for geospatial
data enrichment by not analyzing the data of any particular user but that of the crowd.
We provide strong theoretical framework for analyzing user generated content which
can be used to generate metadata about places and is independent of any platforms or
services. We provide analysis of real world data sets, describe how our techniques can
be efficiently used and discuss the performance of our techniques against those real
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world datasets. We analyse the robustness of our techniques that automatically generate
metadata about places. We also discuss on how such metadata can be effectively used
in search and recommendation of places.

The rest of the thesis is organized as follows. In Chapter 2, we will provide the
background of the thesis which is the basis for theoretical and experimental contri-
butions made in this thesis. In Chapter 3, we consider the scenario of automatically
generating tags as metadata for places based on the location visiting patterns and social
interest profiles of mobile device users. We describe a simple probabilistic model
along with a text processing algorithm to derive tags for locations. We derive sets
of tags for locations on a well-known location based social network (LBSN) using
the social profiles and check-ins data of a group of users. We study the effectiveness
of our technique using various information theoretic measures. We also evaluate the
performance of our technique by comparing the derived tags against a set of tags
provided by volunteers.

In Chapter 4, we describe how the presence information of users at locations can be
utilized to understand any unusual crowd gathering at locations. We present a Bayesian
network which is a probabilistic graphical model along with an appropriate version
of Markov chain Monte carlo (MCMC) algorithm for the inference. We compare our
technique with a state of the art event detection technique based on Markov modulated
Poisson process (MMPP) using a simulated data set. We show that our technique has
better accuracy in detecting events by analysing the performance of our technique on a
real world events data set. We also show that our technique can be used to predict the
amount of check-ins at locations accurately. In Chapter 5, we analyse the interaction
data of users at events conducted at locations and show that such data can be used to
generate descriptive tags for locations. We derive tags for a set of locations represented
on an event based social network (EBSN) using textual data generated due to events
conducted at those locations. We use the manual tags annotated for corresponding
locations on a different social network to evaluate our performance. We show that we
are able to derive larger number of highly relevant location tags with our technique.
We conclude the thesis and discuss the future work in Chapter 6.

1.5 Research Outcome and Impact

Publications
We now list relevant publications we have produced:



14 Introduction

• In Hegde et al. [26], we have discussed how the social interest profiles of visitors
of a place can potentially be used to derive descriptive tags for places. We have
used the results of this work in Chapter 3.

• In Hegde et al. [27], we have shown that amount of people at a place can be
analysed to infer any events that happen at that place. We have proposed an
advanced Bayesian algorithm to analyse time series of count data to infer outliers
which we in turn use to detect events. The proposed algorithm is more accurate
than an advanced event detection model and has many advantages which we
describe in detail in Chapter 4.

• In Hegde et al. [28], we have shown that textual data generated by online social
network users during various events organized at a place can be analysed to derive
descriptive semantic tags for that place. Our proposed methodology considers
thousands of possible tags and comes up with a handful of highly relevant tags
for a place. We describe our methodology and outcomes in Chapter 5.

• In Weth et al. [29], we have discussed the user movements across locations in
urban settings and showed the importance of annotating locations with appro-
priate websites. We have also shown that very few locations are annotated with
websites thus hindering any reliable use of location websites for tag generation.

Invention Disclosures and Patent Applications

• Data Analysis and Event Detection Method and System
Vinod Kumar Gajanana Hegde, Milovan Krnjajic, Manfred Hauswirth
Patent Application, European Patent Office, 2015

• Unsupervised Outlier Detection in Count Data with a Bayesian Nonparametric
Model
Vinod Kumar Gajanana Hegde, Milovan Krnjajic, Manfred Hauswirth
Invention Disclosure, Technology Transfer Office, NUI Galway, 2014

Research Grants for Commercialisation

• Commercialisation Grant for a project entitled ‘DAATIC, A DatA AnalyTics
platform for customer IntelligenCe based on big data’.
Vinod Kumar Gajanana Hegde has been the principal investigator. This project
has been funded in 2015 by Enterprise Ireland and has been co-funded by the Eu-
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ropean Regional Development Fund (ERDF) under Ireland’s European Structural
and Investment Funds Programmes 2014-2020. The grant amount is e166553.

• Commercialisation Feasibility Study Grant for a project entitled ‘The need for a
data analytics platform for location based intelligence’.
Vinod Kumar Gajanana Hegde has been the principal investigator. This project
has been funded in 2013 by Enterprise Ireland. The grant amount is e13300.





Chapter 2

Background

In this chapter, we introduce some of the theoretical concepts and user data that
form the basis for the models developed and used in the thesis. First we discuss the
interaction of users on location based social networks (LBSN) and event based social
networks (EBSN) where some of the data generated by users is related to places. We
will discuss some of the data mining efforts that analyse data generated on LBSN
and EBSN. We will specifically focus on research efforts and application systems that
have exploited data generated on these types of social networks to generate metadata
for places. The findings and shortcomings of current state-of-the-art techniques
have motivated us to research further and provide potential solutions. We describe
these contributions in next three chapters. Specifically, in Chapters 3 and 5, we
have used data from these categories of social networks for analysis to derive place
metadata and to validate our hypothesis. In the following sections of this chapter,
we discuss probabilistic mixture models which can model underlying sub population
structures in any dataset. These models have been used in Chapters 4 and 5 for
probabilistically deriving place metadata. We finally describe two major categories of
probabilistic mixture models and discuss specific instances of these models that have
been successfully utilized in many applications. We have used and further developed
these specific model instances for probabilistically generating place metadata which
we discuss in Chapters 4 and 5.

2.1 Location Based Social Networks (LBSN)

In recent years, location based social networks on mobile devices have become very
popular. These social networks are centred on physical and social context of their
users. They provide many functionalities to users for online networking. The users
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can describe their social interests along with their summary profiles. They can connect
as friends with people who have similar interests or who have visited the geolocations.
LBSN enable the users to share their current geolocation with friends or broadcast to
the public depending on their privacy preferences. They can manage a list of places
they intend to visit in the future. The users can rate and comment about the places they
have visited or know about. They can also share the videos and photos that they have
taken at those places. The growing number of mobile device users demands for more
LBSN services that can provide rich experience to users. Interestingly, as a result of
the user interactions on location based social networks, a huge amount of geolocation
related data is generated by users. Various data mining and information retrieval tasks
have been defined and developed using these data. We discuss some of these data
mining tasks in the remainder of this subsection. Our discussion considers three major
categories of tasks namely place recommendation, place-centric opportunistic net-
working and metadata generation for places. Some of the prominent location based
service providers are FourSquare1, Yelp2 and Facebook3 among others. In Chapters 3
and 4, we analyse the nature of the data generated on LBSN.

Recommendation of places based on geolocation and social interests of a user
is one of the important problems to be addressed by location based services and
geospatial web services. Ye et al. [30] explores effective approaches to collaborative
recommendation of locations based on datasets of user visits or check-ins on famous
location based social networks. Noulas et al. [16] describe an approach to exploit
the semantic annotations of places to cluster geographic regions and users. They also
explain the use of such analysis for recommending appropriate places to users. In
Zhang et al. [31], authors have proposed a model to detect neighbourhood boundaries.
They have used this model to build a system that recommends activities in various
neighbourhoods. Predicting the movements of people precisely is a challenge and
accurate predictions have many applications. In [32], Cho et al. show that human
movements can be attributed to the periodic behaviour and social relationships of the
users on an LBSN and predicts people movements with high accuracy. Gao et al.

[33] use geo-social correlations among users to overcome the cold start problem in
prediction of location visits of users. Zheng et al. [34] show that even the raw GPS
trajectories can be utilized to provide place recommendations for users. Noulas et al.

1https://foursquare.com/
2http://www.yelp.ie/la
3//www.facebook.com/places/
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[35] show that check-ins data on LBSN can be used to accurately predict the places a
user will visit in the future.

Data generated on the LBSNs potentially contains information about real world
events. Motivated by this, there have been various research works on inferring events
conducted at places. De et al. [36] show that spatio-temporal information about forest
fires can be derived using the publicly available data generated on LBSNs. In [37],
Ferrari et al. describe the application of a probabilistic model to infer the most frequent
activity patterns in major cities. Data generated on location based social networks
have been used to generate metadata for locations. Mansour et al. [9] have generated
and used term distributions to represent business places by analysing data from social
media. These term distributions are found to be effective in handling user search
queries regarding business places. Ye et al. [8] use temporal and check-in count data
to derive category labels for places. Location based social network data has been
successfully exploited for other types of inference tasks. In [38], Karamshuk et al.
show that optimal locations for establishing new stores can be effectively inferred
using data like type of places, inflow of distant users to a place among others which are
generated on LBSN by users. [15, 39] show that geographic region specific topics that
are trending at any time can be obtained by analysing check-ins and interaction data
of LBSN users. Opportunistic networking with other users based on location visiting
patterns of users is a service that has been studied in Ying et al. [40]. Scellato et al.

[41] address the problem of predicting new social links among users based on their
location visiting patterns on LBSN. Historical data about location visits of users have
been used in Zheng et al. [42] to infer the user similarity and recommend friends.

2.2 Event Based Social Networks (EBSN)

The wide adoption of Web applications in everyday life of people has a significant
impact on the way people communicate and interact with each other. A huge number
of Web applications which are centred on the organization and participation of people
in real world events have successfully fused the offline and online worlds. Specifically,
event based social networks (EBSNs) are online social networks that are centred on the
events and social aspects of event participants. They act as online platforms to conduct
offline events in a systematic manner where users can physically participate in events
of their interest at a given place. They let users group among themselves based on their
interests and location. Users can also collaborate on conducting events through active
discussions on EBSN forums. EBSNs let users explore events using keyword searches
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on event categories and names. Users generate rich metadata about events and places
where events are conducted by commenting about user experience at events, rating
the events, uploading event related photos and videos, etc. Huge amounts of event
specific data generated by users potentially represent a wealth of information about
events. Motivated by this, many data mining and information retrieval solutions have
been proposed which exploit data generated on EBSNs. Some of the prominent EBSN
platform providers are Meetup4, Plancast5, Eventfull6 among others. In Chapter 5, we
discuss the nature of data generated on EBSN platforms.

Liu et al. [43] describe how EBSNs have played an important role in merging the
online connections and offline interactions. They show that networks on EBSNs are
more cohesive than other types of social networks such as LBSNs. They also infer that
information diffusion among users is best predicted by considering both online and
offline interactions. In [44], Feng et al. describe a solution to find the most influential
event organizers to determine the overall success of conducted events. Peifeng et
al. [45] show that there is no correlation between offline and online interactions thus
reiterates the importance of analysing the offline interactions involved during events
with event related data. Number of people intending to attend an event can be huge on
EBSN platforms. Those users usually have varying social interests and potential some
common interests. So, Li et al. [46] study the problem of organizing events efficiently
and propose a solution by analysing the friendship network of users on EBSNs.

2.3 Mixture Models

Mixture models are probabilistic models used for inference on data where there is
partial or complete lack of information about sub populations present in a dataset.
They are used to represent a dataset using a set of parametric probability distributions
governing the sub populations. The usual choices of probability distributions include
Gaussian, Poisson, Multinomial distributions. When the number of mixture compo-
nents is fixed, the mixture model is known as a finite mixture model (FMM). The
finite mixture models are used when there is prior information about the number of
sub populations in the dataset. It is necessary to use infinite mixture models (IMM)
when there is no prior information about the number of sub populations involved in
generating the data. The sub populations are represented by mixture components or

4http://www.meetup.com/
5http://plancast.com/
6http://eventful.com/
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clusters. They let us model the joint probability distributions governing the population
from which a sample i.e., a dataset is observed. We now discuss them in detail and the
some of their successful applications in probabilistic inference.

2.3.1 Finite Mixture Models

A finite mixture model can be described using the following variables.

1. N data items x = {x1, x2, . . . , xN}

2. K clusters which is the number of sub populations

3. π which is a vector of mixture weights of the clusters in the population

4. θ which is a vector of parameters for each of the clusters

A finite mixture model is a convex combination of more than one probability density
function of the same family. FMMs are used for inference when there is strong prior
information about the number of sub populations for a given dataset. The probability
density function of an FMM is defined as

Pr(x|θ, π) =
K∑
k=1

πkPr(x|θk) (2.1)

K∑
k=1

πk = 1 (2.2)

So, the parameter K is known before the inference is carried out on a dataset. The
inference problem will involve considering the data at hand as samples from a popu-
lation and estimating π and θ. Here π denotes cluster weights or mixing proportions
of data belonging to each sub population. θ denotes a vector of parameters of the
probability distributions governing the sub populations. In a Bayesian setting, π and
θ are random variables and have prior distributions. So, the generative model of the
finite mixture model can be described as follows.

π|α∼Dir(α) (2.3)

zi|π∼Discrete(π) (2.4)

θk|λ∼G0(λ) (2.5)

xi|zi, {θk}k=1∼F (θzi
) (2.6)
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Figure 2.1: Generative model of the finite mixture models

Here, zi is a auxiliary variable used in the sampling step of inference. π is a discrete
distribution with a dirichlet prior distribution defined by α. θk are parameters of a
probability distribution and they generally belong to an exponential family as all the
members of exponential family have a conjugate distribution. The prior distribution
for θk is defined by the base distribution with parameters λ. The inference problem
now turns out to be deriving the posterior distributions of these variables using the
likelihood of the data. Any Markov Chain Monte Carlo (MCMC) algorithm can
be applied to infer these random variables as discussed in Andieu et al. [47]. The
generative model of the finite mixture models is shown in Figure 2.1.

Finite mixture models have been successfully used for probabilistic inferences in
various applications. Bailey et al. [48] have effectively used the two component mixture
model to analyse the protein sub-sequences and estimate thresholds of Bayesian
classifiers for further analysis. In [49], Deb et al. discuss how a finite mixture of
negative binomial distributions can be used to infer the heterogeneity in the health
care spend of citizens. Image segmentation is a well-studied problem in the area of
computer vision. Alfo et al. [50] find that a finite mixture of Gaussian distributions can
be effectively applied to perform image segmentation and achieve better segmentation
results even for images with high noise. More recently, latent dirichlet allocation
(LDA) [51] has been successfully employed in various text mining problems. We now
explain latent dirichlet allocation which forms the basis of our data analysis in Chapter
5. Latent dirichlet allocation is a finite mixture model which is used to probabilistically
model a collection of data items. Here each data item has a finite mixture of latent
random variables where each random variable has its own probability distribution with
sample space comprising of individual elements of all data items.
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Figure 2.2: Generative model of latent dirichlet allocation (LDA)

2.3.2 Latent Dirichlet Allocation

The primary version of latent dirichlet allocation proposed by Blei et al. [51] is
an unsupervised text clustering technique by inferring the latent topic and word
distributions for a set of documents in a document collection. It infers the latent topic
distributions for each of the documents. Each latent topic is also analysed for the
word distributions over the set of all words in the document collection. The topic
distributions of a document can be used to infer the most probable topic indices for the
document and subsequently the most probable words representing the document. It
can be used to cluster documents, collaborative filtering on document collections and
text representation [51]. Various versions of LDA technique have been successfully
applied in data mining and machine learning tasks. These include localizing the
software bugs [52], mining business topics from source code [53], fraud detection
in telecommunication networks by analysing the call behaviour [54], unsupervised
entity resolution [55]. There are many research works that have been motivated
by the primary version of LDA and have proposed extended models of LDA for
various probabilistic inference tasks. Wang et al. [56] have studied the task of image
classification and text annotation by applying sLDA model. Titov et al. [57] show that
aspects that are rated by users can be derived along with the topics from the collection
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of user reviews using an extended model MG-LDA. The variables involved in the LDA
model are as follows.

1. N is the number of documents in the collection

2. K is the number of latent topics

3. M is the number of words in a given document

4. wij is the jth word in ith document

5. πi is the topic distribution for ith document

6. θk is the word distribution for kth topic

The generative model of LDA can be described as below.

πi|α∼Dir(α) (2.7)

θk|λ∼Dir(λ) (2.8)

zij|πi∼Discrete(πi) (2.9)

wij|zij, {θk}k=1∼Discrete(θzij
) (2.10)

Here, πi indicates the topic distribution for ith document. It is a discrete distribution
over topic indices for the documents. θk are parameters of a discrete distribution with
the sample space comprising of all the words in the document collection. The prior
distribution for θk is defined by dirichlet distribution with parameters λ. zij is the
latent topic indicator for word wij . This model can be used to infer per document
topic distributions πi and per topic word distributions θk using any variational Bayes
approximation [51], Gibbs sampling an MCMC algorithm [58]. LDA is a finite
mixture model where number of topics is known a priori. A log-likelihood based
technique has been proposed in Griffiths et al. [58] to find the optimal number of
topics. Unsupervised versions such as hierarchical dirichlet process [59] have been
applied by Teh et al. to address the problem of document clustering. These models
have performance comparable to LDA but do not require any model selection. The
generative model for latent dirichlet allocation is as shown in Figure 2.2.

2.3.3 Infinite Mixture Models

Infinite mixture models (IMM) also known as dirichlet process mixture models are
probabilistic models which are highly flexible in modelling the sub populations within
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the data. The flexibility is due to the assumption that an unknown number of mixture
components exist in the data with non-zero mixture weight. The number of mixture
components K as described in Section 2.3.1, is set to be infinite in these models.
In Figure 2.3, we show the corresponding graphical model. The number of such
components is inferred every time a new sample is observed. The ability of infinite
mixture models to infer and adapt to the changing number of mixture components in
the data has resulted in wide application of them in various probabilistic inference tasks
in various fields. Chen et al. [60] show that Gaussian IMM can be used to accurately
infer the confidence bounds during statistical process performance monitoring. Shin
et al. [61] discuss the application of Gaussian IMM on astronomical time series data
to cluster the data and detect outliers. The problem of inferring about number of sub
populations and assignment of individuals to sub populations based on the genetics
data has been discussed in Huelsenbeck et al. [62]. They conclude that infinite mixture
model can be utilized for inference and sensitivity of the inference can be unaffected
by prior choice on the number of sub populations when the data is sufficiently large.
Kottas et al. [63] discuss how IMM can be used for modelling mortality count data with
spatial attribution for accurate predictions and discuss the limitations for parametric
models for modelling such data. IMM based hierarchical clustering has been proposed
in Heller et al. [64]. This overcomes the traditional problems in hierarchical clustering
using ad hoc number of clusters, limitations on making any probabilistic statements
about cluster membership, cluster cohesion etc. Some more prominent works that have
applied infinite mixture models to various probabilistic inference tasks are [65, 66].
The generative model of the infinite mixture model can be described as follows.

π|α∼GEM(1, α) (2.11)

zi|π∼Discrete(π) (2.12)

θk|λ∼G0(λ) (2.13)

xi|zi, {θk}∞k=1∼F (θzi
) (2.14)

2.3.4 Infinite Poisson Mixture Model

An infinite Poisson mixture model is a Bayesian nonparametric model which can be
used when the probabilistic inference needs to be carried out on count data. Count
data arises often in the real world situations such as vehicular traffic data, user visits or
check-ins data at locations, number of Web clicks of any Web site etc. The following
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Figure 2.3: Generative model of the infinite mixture models

equations represent the generative model of infinite Poisson mixture model. Here,
GEM refers to the stick breaking process discussed in Sethuraman et al. [67].

π|α∼GEM(1, α) (2.15)

zi|π∼Discrete(π) (2.16)

θk|λ∼Gamma(λ) (2.17)

xi|zi, {θk}∞k=1∼Poisson(θzi
) (2.18)

The probabilistic inference will include clustering the count data into different sub
populations or clusters each with its own Poisson rate parameter. A gamma prior
distribution is used as base distribution to model the rate parameters. The proportion
of each cluster in the population corresponding to the count data is also inferred.
In [68], author discusses on how an Infinite Poisson mixture model can be used for
unsupervised learning where there are multiple features occurring multiple times
in a data point. Krnjajić et al. [69] show the advantages of modelling count data
with Bayesian nonparametric approach over the parametric approach. The authors
analyse the data of a randomized control trial and show that such count data can
be accurately modelled using the Bayesian nonparametric modelling compared to
parametric approaches. However, if there is significant Poisson over dispersion or
under dispersion in the inferred clusters, an infinite negative binomial mixture model
would be appropriate [70].
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2.4 Summary

In the first two sections of this chapter, we described two major types of social
networks that capture geospatial related social data. We specifically discussed the
nature of the data generated on these social networks. We also listed numerous
commercial players that provide some of the prominent LBSN and EBSN platforms.
Furthermore, various data mining techniques that have used on these data sources to
generate additional insights were also presented. Then, we described a prominent
class of probabilistic modelling techniques that are sophisticated and have gained huge
popularity in the recent years due to their performance. Since the aim of this research
work is to automatically generate metadata for places and uncertainty is involved in
any automated inference, we have developed and applied these probabilistic techniques
to analyse geospatial data generated on EBSN and LBSN to derive metadata for places.
In the following three chapters, we discuss these in detail.





Chapter 3

Semantic Tagging of Places with Social Pro-
files of Users

Online forums such as online social networks (OSNs), location based social networks
(LBSNs) let the users interact with each other. Some of the data generated due to
these interactions inherently has a geographic aspect. Even though these online forums
enable users to manually tag places they have visited or have knowledge about, users
rarely do so. Moreover, the available information attached to places (e.g., their names,
category, textual address) is often ambiguous or insufficient for service providers to
automatically generate tags. On the other hand, users often provide information about
their interests in online profiles via online social networks. They also express the
locations they visit by broadcasting the visits to the public or friends via online forums.
Motivated by these facts, we address the following question in this chapter. Can the

common interests of a group of people that has visited a particular place be used to

derive tags for that place?

Specifically, we focus on deriving descriptive semantic tag annotations for places
using social interest profiles and location visits or check-ins data of users. We present
an approach that automatically assigns semantic tags to places, based on interest
profiles of users and their check-ins at places. The approach consists of: (i) an interest
profile expansion algorithm to derive semantic concepts related to the user interests;
(ii) a model to determine the probability that a particular semantic concept describes
a place, based on the check-in activities of users; and (iii) a noise removal approach,
using a hierarchical clustering technique, which is applied on the top-probable semantic
concepts to derive the final semantic tags for places. We have evaluated our approach
with real world datasets from popular social networking service, against a set of
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manually assigned tags. The experimental results show that not only we are able to
automatically derive meaningful tags for different places, but also that the sets of tags
assigned to places are expected to stabilise as more unique users check-in at places.
This indicates that top-probable tags derived can be consistently assigned to places
after check-ins by a threshold number of users. In the next few paragraphs, we provide
the motivation and the state of the art techniques for annotating locations with tags.

In recent years, numerous Geospatial Web services (GWS) have enabled the
users to generate and consume geospatial data. On the other hand, mobile devices
have become highly ubiquitous. Equipped with sophisticated sensors such as GPS
sensors and cameras, they now enable a new range of location based services (LBS).
These services determine the physical location of their users and provide a number of
functionalities. The physical location of a user can be described at different levels of
accuracy. Cell triangulation techniques [71–73] determine the approximate location of
a mobile device whereas GPS sensors on mobile devices can provide much accurate
location with latitude, longitude data. For instance, users can check-in at places,
i.e. users can let others know of their whereabouts. Data about check-in activities
have already been explored to understand user behaviours to provide personalised
advertising and promotion of businesses [30, 74–76]. Another functionality common
in GWS, LBS is place recommendation: nearby places are suggested to the user by
matching the description of the places with the user needs or interests.

The performance of place recommendation techniques depends on the richness of
the geographic metadata used. This geographic metadata includes places or points of
interests (POIs), comments, ratings about places, abstract category tags and descriptive
semantic tags. By descriptive tags, we mean any short keywords which are semantically
related to a place. For example, it would be appropriate to tag a Computer Science

Building with tags such as Software, Engineering, and Programming. A categorical
tag such as Academic Building for a place is much more abstract and less informative.
Even though users often use LBS for check-in activities, they rarely tag a place.
Currently, most of the places described in the geospatial databases used by prominent
GWS and LBS providers are poorly tagged. A study by Ye et al. [8] on one such
service showed that 30% of the places do not contain any tags. Our analysis of more
than 1 million places on Foursquare1 suggested that only 7% of the places had any
descriptive tags and only 21% of the places had any tips/comments in the form of short
text snippets. We show the distribution of tags and tips in Figure 3.1.

1https://foursquare.com/
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Figure 3.1: Histograms of tags and tips at places

Geospatial application providers can not automatically generate tags since the
available information about the places is often ambiguous or insufficient. However,
users look for very specific information on the mobile phones based on their current
physical location and social contexts. Therefore, it is crucial that techniques to
automatically assign semantically related tags to places are developed so that search
and recommendation of places can be more effective. In a different context, many
complex problems related to information generation on the Web have been solved
utilising the wisdom of the crowd [77–79]. For example, in [80, 81], Goodchild et
al. and Sheth et al. discuss various ways in which explicit or implicit information
provided by the users can be utilised to enrich information on the Web. Web users
leave their footprint on the Web using resources such as online social networks (OSNs)
and microblogging systems, which can be used to derive the user’s preferences and
interests. Many of the users of OSNs also use location based services to check-in into
places. Based on the above observations, the common interests of a group of people
that has visited a particular place can potentially provide further description for the
place.

In this chapter, we describe how the two sources of information combined – user
interest profiles on OSNs and check-in logs – can be utilised to derive tags for a place.
We present an approach that automatically assigns semantic tags to places, based on
interest profiles and check-in activities of users. We first extract semantic concepts
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from the interest profiles of users available on OSNs. However, the interest profiles of
users are often sparse and contain only a few keywords. In Section 3.1.3, we describe
an interest expansion algorithm that discovers “hidden” interests by expanding the
user interest profile in a controlled manner. The expansion algorithm is able to derive
more concepts without deviating from the user interests. In Section 5.1.2, we provide
a model to determine the probability that a particular semantic concept describes a
place, based on keywords representing the interests of users and check-in activities of
users at places. We consider the top-k probable semantic concepts for any given place
and perform a hierarchical clustering on those concepts to derive the final set of tags.
We give the details of this technique in Section 3.1.2. In summary, our approach is to
use social interest profiles of a group of users to infer a collective set of interests of
users that visit a particular place. Our approach exploits such collective interests to
infer a set of semantic tags that are descriptive of that place. An abstract picture of our
approach to automatic tagging of places is shown in Figure 3.2.

Figure 3.2: Collective interests of people checking in at places

We have evaluated our algorithm with real world datasets from popular social
networking service, against a set of manually assigned tags. We have also studied the
nature of tag probability distributions against the check-in activities by users in order
to understand the quality of the top-probable tags and collective interests of people
visiting places. The experimental results show that the automatically generated tags
are similar to the manually assigned tags, and also that the sets of tags assigned to
places are expected to stabilise as more unique users check-in at places. This indicates
that top-probable tags derived can be consistently assigned to places irrespective of
the number of people who have checked-in at those places. We give the details of
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the experimental results in Section 5.2. In Section 3.3, we discuss and conclude our
findings presented in this chapter. We now discuss some of the prior work that has
been carried out to derive metadata for locations.

In recent years, there has been an increased interest in the area of analysis and
enrichment of geographic data. The amount of volunteered geographic information
(VGI) is rising, as more users are equipped with sophisticated mobile devices which
enable them to actively contribute with geographic data. [82, 83] have studied various
approaches to deriving and recommending tags to annotate geospatially annotated
images based on various types of user data. The work by Haklay et al. [10] gives
an example of how GPS traces and other geographic data provided by people can
be used to create an accurate map of the world. In [4], Wang et al. discuss various
approaches that can be adopted for manually tagging places using mobile phones. It
shows, for instance, that users prefer more than one place annotation technique in
location aware applications and the offline annotation scheme is the most preferred
one. A semi-automatic approach to integrating information provided by users into the
digital geographic gazetteers has been discussed in Kessler et al. [5].

All these works indicate that there is a need for obtaining and enriching geographic
information and that the manual effort to generate such information is not enough. In
Lian et al. [7], an automatic place naming technique based on user check-in activities
is discussed. However, this deals with deriving only the names of the places while our
approach provides descriptive tags for the places. Noulas et al. [16] provides a good
example of the importance of semantic annotations, where they show that identification
of user communities and comparison of urban neighbourhoods can be done using the
annotations of places. In [8], Ye et al. find that significant amount of places lack even
the abstract textual descriptions and hence focus on deriving the categorical tags for
place categories such as restaurant and cinema. Our work, on the other hand, focuses
on deriving more descriptive tags. To the best of our knowledge, assigning places
with automatically derived semantic tags has not been studied yet. Such methodology
is much needed as users rarely assign specific tags to places and rich information is
needed for search and recommendation of places.

3.1 Tagging of Places with OSN and Check-ins Data

Online social networks enable users to express their social interests and other personal
information via their user profiles. In addition, location based social networks let users
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express their location information with check-in activities. In this section we describe
how we use both the user interests listed in OSN profiles and the check-in activities
of users to derive descriptive tags for places. We first present our probabilistic model
for determining the probability that a given semantic tag describes a place, based on
the interests of users that have visited the place. A hierarchical clustering technique
is applied on the top-probable semantic concepts to remove possible ‘noise’ tags and
derive the final semantic tags for places.

In the later sections of this chapter, we study the quality of such derived tags by
analysing the co-occurrence of place names and derived tags on the Web. We further
analyse the stability of the derived sets of tags as social interests of larger number of
users is considered. Our analysis shows that highly relevant descriptive tags can be
derived by analysing social and physical presence or check-ins data of users. We also
infer with empirical data that most probable tags stabilize as data of larger number of
users is exploited to derive place tags.

3.1.1 Probabilistic Model for Deriving Tags for a Place

Our probabilistic model considers the check-in activities of users and their interests
to derive the most probable tags for a place. Let U denote the set of all users who
check-in at places and let P denote the set of all places (or POIs) the users can check-in.
A user check-in is modelled as a tuple of the form 〈u, t, p〉, where u ∈ U , p ∈ P and t
is the timestamp of the check-in activity. The set of all user check-ins is denoted by
CH . From CH we can extract CH ip, which is total the number of check-ins of user i
user at place p, and CHU p which is the set of users who have checked in at least once
at place p. The set of concepts in the interest profile of user i is given by Ki.

When the ith user checks in at p, we consider each concept in Ki as candidate
tag for p. We do so with the hypothesis that there is a possible semantic relationship
between a place and any concept in the interest profile of the person checking in at
that place. The check-in action by any users at p contributes to the expansion of the
candidate tag set CT p which is defined as CT p = ⋃

iKi where i ∈ CHU p. Given the
pth POI, the probability that p is checked in by ith user is given by

Pr(Uip) = CH ip∑
j CH jp

(3.1)
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where i ∈ CHU p and
∑
j CH jp is the total number of check-ins by all users at p.

The conditional probability that ith user with n concepts in Ki attaches one of the
concepts kj as tag to a POI is given by

Pr(kj|Uip) = 1
n

∀p ∈ P, kj ∈ Ki (3.2)

This is with the assumption that all concepts in a user interest profile equally represent
the interests of a user. The total probability that the pth POI is attached with the
concept kj as a tag is given by

Pr(kj) =
∑
i

Pr(kj|Uip)Pr(Uip) ∀kj ∈ CT p (3.3)

We call this the Tag Probability of the concept kj . It is easy to see that
∑
j P (Tp =

kj) = 1 and 0 < P (Tp = kj) ≤ 1 where kj ∈ CT p. This means that a categorical
random variable Tp defines the probability distribution of the tags for the place p where
the sample space Ω = CT p. We can see that a random variable T np can be defined
by considering the check-in activities of the first n unique users at place p (denoted
by CTn

p ) with the sample space Ω = CTn
p . In our model to derive tag probabilities,

concepts in the interest profile of a frequent visitor are considered as more probably
related to the corresponding place. The most probable words in T np capture common
interests of users and are influenced by the frequency of check-ins of users. Note that
number of tags in the sample space can be large and all are not descriptive of a place or
POI. So, there is a need to consider top k probable tags for some value of k, and choose
only relevant tags from that set. In the next subsection, we describe a mechanism to
obtain few but highly relevant tags for a place.

3.1.2 Hierarchical Clustering of Top-probable Tags

In our approach to deriving semantic tags for places, though we can derive a set of top-
probable tags for a place, not every tag is necessarily semantically related to that place.
Also, there can be potentially multiple topics that semantically represent a place. This
observation demands clustering of the tags so that we could obtain one or more “natural”
clusters of tags to tag a place and discard unrelated tags which are noise. We describe
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the advantages of clustering the top-probable tags in Section 3.2.2. Hierarchical
clustering is one of the widely used clustering method for efficient clustering and
Johnson et al. [84] list various techniques and advantages of hierarchical clustering.
The work in Paolillo et al. [85] successfully employs hierarchical clustering to obtain
clusters of interests from interest profiles of users without considering the geographical
aspects of users.

We compute the semantic similarity between the tags and use the agglomerative
nesting algorithm with the group average method [86] to obtain clusters of tags. The
group average method is a very effective method for clustering documents and detailed
results about the effectiveness are described in El et al. [87]. Determining the number
of clusters given a set of elements is a well-known problem and various techniques for
deriving the appropriate number of clusters have been proposed. In Langfelder et al.

[88] a novel method for cutting the dendrogram obtained from hierarchical clustering
to obtain clusters is discussed. We used this method to obtain the clusters of tags
corresponding to each random variable for each place. Any tag that does not fall into
the generated clusters is then discarded.

It has been noted that online social profiles contain very little text. So, it becomes
necessary to expand such profiles so that larger but semantically similar profiles
can be obtained to be useful in deriving place tags. In the next subsection, we
describe an algorithm to semantically expand a sparse social interest profile. The
algorithm expands a set of Wikipedia2 concepts to obtain a larger number of but highly
semantically related Wikipedia concepts. We further describe some of the reasons that
motivated us to use only Wikipedia concepts as place tags while exploiting social data
of OSN users. Since Wikipedia concepts will be used as potential tags for places in
our current approach, we have used Wikipedia Link Vector Model (WLVM) [89] to
obtain semantic similarity scores between tags. We use these scores to obtain clusters
of tags for places.

3.1.3 Interest Profile Expansion Algorithm

Users describe themselves and their interests on online social networking profiles.
Such profiles are a great source of information about the user, but they often contain
only few short textual snippets or keywords. Such explicitly created profiles represent
the interests of the users related to various aspects of their lives. Many of the field

2http://www.wikipedia.org/
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values are textual descriptions such as I love the smell of rain, which are inherently
ambiguous and complex to analyse. It has been found that user profiles in OSNs have
very few fields under various categories such as work, interests, and education and have
considerable textual descriptions which are complex to analyse [90, 91]. In [85, 92],
various ways of representing and analysing user profiles have been discussed. We
present an interest expansion algorithm that removes ambiguous concepts and expands
an initial set of user interests. The expansion is done in a way to derive hidden related
concepts, without deviation from the initial interests. These observations demand the
disambiguation of keywords in user profiles and expansion of the sparse user profiles
submitted by the users to get unambiguous and richer user interest profiles.

Our expansion algorithm uses Wikipedia to disambiguate and expand the interest
profile of a user. Wikipedia is a vast repository of knowledge constantly updated and
refined by a large user community. It has the advantage that all the concepts defined are
rich in their article content with numerous links to related concepts. The concepts and
the links between them form Wikipedia graph structure where concepts represent the
nodes and links represent the edges. We use the term concept and node interchangeably
in the work. In order to get a disambiguated user profile, we retain only those keywords
which match to a single Wikipedia concept and discard remaining keywords so that a
modified user profile contains unambiguous concepts. We disambiguated the interest
profiles mentioned in Section 5.1.1 in this way and found that 20% of the keywords
in user profiles matched to an exact Wikipedia concept. This showed that Wikipedia
concepts can be used to represent social interest profiles of users.

Next we apply our user interest profile expansion algorithm to expand the dis-
ambiguated profile. The algorithm considers the fact that a Wikipedia concept can
be associated with its related concepts based on the links to concepts in its content
on Wikipedia. A Wikipedia concept is any entity which has an article body an has
one more links to other articles. The algorithm also takes into account the fact that
concepts with a large number of inlinks from other concepts tend to be more general
as noted by Gabrilovich et al. [93] and hence does not include such concepts in the
expansion. This ensures that general concepts such as Education and United States

which have high indegree are not present in the expanded profile and hence not used
as tags for places.

Algorithm 1 describes how the expansion is done. It considers each concept in
the user profile and attempts to expand it in a depth first manner. The parameters
R and Rglob control the expansion of any node by limiting the number of nodes
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that can be expanded. The parameter Indegthreshold defines the maximum number of
inlinks that a concept can have so that its not considered to be a general concept. The
distance function computes the shortest distance between any two concepts which
is the minimum number of links to be traversed from one concept to the other in
Wikipedia graph structure. The set of neighbour nodes which would be expanded
from a given node is decided by the proximity of those nodes to the nodes in W . The
measure of proximity of a node u is stored in r[u] as seen in the algorithm. For a given
node, the algorithm only expands those nodes that are closest to the set of nodes in W .
This ensures that only those nodes more related to the original interests of a user are
expanded further.

A node vi is expanded only if
∏0
k=i−1

1
outdegree(vk) ≥ Rglob where i is the height of

the node vi in the expansion tree and vi−1,vi−2,. . . v0 represent the ancestors of vi in the
expansion tree. During the expansion jth node vij at height i, at most Nij neighbours
are added to the expansion list which are at unit distance from vij in Wikipedia graph.
At most k nodes are considered for expansion from any given node. So, the maximum
number of nodes added due to the expansion of a node is M0 +M1 +M2 . . .+Mh

or O
(∑h

i=0 Mi

)
, where Mi = ∑

j Nij and h is the maximum height possible for all
the non-leaf nodes in the expansion tree. For any Mi, neighbours of at most ki nodes
are considered. The result from the interest profile expansion algorithm for a user i
corresponds to the set Ki in the probabilistic model. In the next section, we evaluate
how both approaches combined can provide meaningful descriptive tags for places.

3.2 Experimental Evaluation

We have performed an experimental evaluation in order to verify the effectiveness of
our approach. We first describe the real world datasets used in the experiments, and
then present the results of our evaluation. The evaluation is divided into different parts.
We report on the expansion algorithm, the parameters used and the distribution of
the profile sizes. We show how the assigned tags evolve with the increasing number
of user check-in activities and how they compare to a set of manually assigned tags.
Finally, we analyse the nature of the tag probability distributions which indicates that
the set of automatically generated tags is expected to stabilise with the increasing
number of unique user check-ins. The results show that though not many semantically
related tags can be derived with check-ins by 1 to 3 unique visitors on an average, as
more users check-in, we can derive more tags semantically related to places. We also
found that despite the increasing number of unique users checking in at a place, the
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Algorithm 1 Interest Profile Expansion
function EXPANDPROFILE(W )

U ← φ
for all c ∈ W do

AddNode(c,1,W);
end for

end function
function ADDNODE(v,R,W )

if R ≥ Rglob then
N ← {u | dist(u, v) = 1}
for all u ∈ N do

if indegree(u) < Indegthreshold then
for all c ∈ W do

r[u]← r[u] + distance(c, u) + distance(u, c);
end for
add(u,U);

end if
end for
for all t ∈ TopKNeighbor(r) do

AddNode(t, R ∗ 1/|outdegree(v)|,W );
end for

else
return;

end if
end function

tags are still semantically close to the places. Moreover, the results show that both
automatically generated tags and manual tags are equally “semantically close” to a
particular place.

3.2.1 Dataset Description

We collected data from Foursquare3 for over one million random places in UK, USA
and Ireland between June and July 2012, to check how well the places are described.
Only 7% of the places had any descriptive tags and only 21% of the places had any
tips/comments in the form of short text snippets, which again confirmed the lack of
rich description of places.

We then collected Facebook4 and Foursquare user profiles of 104 volunteers
residing in the city of Galway, Ireland. These were random users as we requested

3https://foursquare.com/
4http://www.facebook.com/
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people to participate through various social media and announced prizes for their
contribution. The social interests of the users were obtained from their Facebook
profiles by extracting the text in the fields corresponding to hometown, interests,
activities, education, work, and events. We have found that interest profiles were
sparse in terms of the keywords and our observations are indeed similar to the figures
stated in [90, 91]. The size of the user profiles in terms of number of keywords can be
fit with a Poisson distribution using a Maximum Likelihood Estimation (MLE) (n = 104,
λ = 362.1, S.E = 1.9) as shown in Figure 3.3(a). We have obtained check-in activities
from both Foursquare and Facebook profiles of the volunteers. The check-in activity
data contains 4476 records of check-ins of users which they had generated using their
Facebook and Foursquare mobile applications. There are 1633 unique places where
users had checked-in and 215 places where at least 2 users had checked-in.

3.2.2 Evaluation

Interest Profile Expansion Algorithm

In this subsection, we discuss the details of the interest profile expansion algorithm
by discussing the values assigned to various variables in the expansion algorithm
and the nature of expanded user profiles obtained by running the algorithm on user
social profiles. For generating the values assigned to the different variables in the
expansion algorithm we have proceed as follows. The fact that concepts with a large
number of inlinks from other concepts tend to be more general [93] and hence the
algorithm does not include such concepts in the expansion. We have analysed the
graph structure of Wikipedia to understand the nature of inlinks among nodes. We
have first sorted the concepts by the number of inlinks to them and manually inspected
many of the top concepts. This has shown that indeed such concepts were very general
in nature. Since we have not found any formal approaches to decide the generality of
Wikipedia concepts, we discarded top 1% of the concepts and obtained the statistics
for the inlinks of the remaining concepts. All the remaining concepts had very few
inlinks (n = 3537875, min = 0, max = 221, mean = 9.274). Hence we set the value
of Indegthreshold to 221 which ensured that nodes with more than 221 inlinks were
not added during expansion. We set the expansion controller variable Rglob to 1/100
which meant that a concept is expanded only if it has no more than 100 ancestors
considered during the expansion. The expansion algorithm considerably enriched the
user interest profiles with related concepts in Wikipedia. The expanded user interest
profiles were significantly larger compared to their original size and we could fit the
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(a) Number of keywords before expansion. (b) Number of semantic concepts after expansion.

Figure 3.3: Sizes of interest profiles before and after expansion.

size with Poisson distribution using MLE (n = 104, λ = 3843.835, S.E = 6.295285) as
shown in Figure 3.3(b).

Automatic Semantic Tagging Results

For the automatic semantic tagging we have considered only those places which were
checked-in by at least 2 users. For each place p, we have computed the random variable
CTn

p by incrementally considering the unique users who had checked-in at p. This
process defined CHU p number of random variables corresponding to tag probabilities
for p. We then applied the hierarchical clustering method to obtain the clusters of tags
corresponding to each random variable for each place.

In order to evaluate the quality of the derived tags, we have used a set of manual
tags assigned by volunteers as ground truth. Another potential alternative we will
consider in our future work will involve using the contents of appropriate web pages.
Deriving a set of relevant tags for a place include implementation of a mapping method
between any website and a place to use n-grams present in the web pages. In the
current work, seven volunteers manually tagged the places they knew among the
places in the collected check-in records. They tagged a total of 25 unique places
with multiple tags (mean number of tags per place = 22.96). Manual inspection of
automatically derived tags and manually assigned tags revealed that most of the tags
in such clusters were highly related to the places under consideration, though users
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(a) Manually assigned tags.

(b) A cluster of tags derived from top-probable tags after check-ins by 10 users.

Figure 3.4: Manual and derived tags assigned to Digital Enterprise Research Institute

had not tagged places with the derived tags. Figure 3.4 shows both the manual and
automatically derived tags for Digital Enterprise Research Institute (DERI), a Semantic
Web research institute, hosted at NUI Galway, Ireland. Frequent manual tags and the
most probable tags are shown in larger fonts. We can see that though automatically
derived tags are not exactly the same as the manual tags, they are good candidate tags
for DERI. Similar observations can be made in Figure 3.5 James Hardiman Library at
NUI Galway, Ireland.

(a) Manually assigned tags.

(b) A cluster of tags derived from top-probable tags after check-ins by 3 users.

Figure 3.5: Manual and derived tags assigned to James Hardiman Library, NUI Galway.

Automatic Semantic Tagging Evaluation

In the previous subsection, we discussed that online social interest profiles of users can
have arbitrarily long text sequences and hence described a method to derive Wikipedia
concepts in order to obtain disambiguated interest profiles. We also obtained manually
assigned tags from few volunteers for places described in the previous subsection.
However, few volunteers and the handful of tags they contributed meant that robust
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ground truth was not available for our evaluation. So, we had to evaluate the quality of
manually assigned tags against corresponding places and then use subsequent inference
as baseline to evaluate the quality of automatically derived tags. For a systematic
evaluation of the generated tags, we have measured the Normalised Web Distance
(NWD) described by Gracia et al. [94] between derived tags, manually assigned tags
and the place names. We have then studied the statistical distribution of NWD scores
of manually assigned tags and compared it NWD scores obtained by derived tags. We
describe our findings in the next few paragraphs.

Normalised Web Distance has been extensively used to obtain the semantic related-
ness between any two strings, where the extensive data on the Web is used. Formally,
the NWD between any two strings x and y is given as

dnwd(x, y) = max{logf(x), logf(y)} − logf(x, y)
logN −min{logf(x), logf(y)} (3.4)

where f(x) is the number of Web pages containing the string x, f(y) is the number
of Web pages containing the string y, f(x, y) is the number of pages where both x and
y appear, and N is the total number of pages indexed by a specific search engine.

We first analyse how different users visiting a place affect the set of generated
tags. For each random variable T np , we have computed the dnwd between the top 350
automatically derived tags and place names using the index provided by Yahoo5. It is
possible that some tags have an infinite NWD to a place, which were considered as
invalid and discarded. Figure 3.6(a) shows the box plot of number of valid tags, i.e.
tags with a finite NWD, over all places. Please note that, for instance, for the case of 6
users, only places which have at least 6 distinct users were considered. We can see
that the more unique users check-in at places, the more valid tags are generated.

We then computed the values of dnwd between place names and the manually
assigned tags to compare the performance of our semantic tagging technique. The
five-number summary of dnwd between manual tags and place names is (min=0.0000,
Q1 =0.1216, median=0.3032, Q3 =0.8732, max=1.9030) with mean=0.45730. The
five-number summary of dnwd between automatic tags and place names, considering
all check-in activities, is (min=0.0000, Q1 =0.2053, median=0.5340, Q3 =1.0000,
max=3.4930) with mean=0.5719. This shows that automatic tags exhibited dnwd

5http://developer.yahoo.com/search/boss/



44 Semantic Tagging of Places with Social Profiles of Users

(a) Number of derived tags with finite NWD.

(b) Average NWD scores of tags.

Figure 3.6: Variation in the Normalised Web Distance scores against the number of unique users.

values comparable to those of the manual tags. The Welch’s t-test showed that mean
value of dnwd for automatic tags is greater than that of manual tags with 95% confidence
interval of (0.053, 0.144) where HA is that true difference in means is not equal to 0.
This means that on an average, the dnwd scores obtained by automatically derived tags
are not much higher than the ones obtained by the manual tags.
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Figure 3.6(b) shows the average values of dnwd for the valid tags obtained against
the number of unique users. We can see that in spite of more unique users visiting a
place, the average scores of dnwd obtained by the tags remain close to the ones achieved
by manually assigned tags.

We noted that we could derive an average of 158 tags for places with expanded user
profiles whereas we could derive 51 tags with unexpanded profiles. We also observed
that only 9% tags obtained from expanded interest profiles had infinite values of dnwd

against places whereas this was 17% for the unexpanded user profiles. This clearly
indicated the advantages of carefully expanding the concepts in user profiles and using
them as probable tags. Clustering the top-probable tags obtained from expanded user
profiles showed that 30% of the tags belonged to some cluster and were related to each
other and only 2% of the tags had infinite normalised web distance. 70% of the tags
did not belong to any cluster and were not related to each other and 8% of such tags
had infinite normalised web distance. This showed that clustering the tags fetched tags
related to each other and to the place thereby removing any ‘noise’ tags among the
top-probable ones.

In the previous paragraphs, we have shown that large number of semantically
relevant tags can be derived for places. However, it is necessary to study two crucial
factors that can affect the quality and quantity of derived tags.

• The number of users whose profiles are utilized for deriving tags

• The stability of the tags that are inferred as relevant after considering a specific
number of social profiles

This demands the analysis of tag probability distributions. So, in the next few para-
graphs, we discuss the nature of tag probability distributions for various places in the
current data set.

Nature of the Tag Probability Distributions

We have studied the nature of the tag probability distributions of a place over the
number of unique visitors of that place. We considered only those places which had
been checked-in by at least 5 distinct users to study the variation in the tag probability
distributions. We have computed the entropy [95] to analyse the information content
or randomness of tag probability distributions, and we have used Jensen-Shannon
divergence [96] to analyse the variations among tag probability distributions. The
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(a) Entropy values with unexpanded interest profiles. (b) Entropy values with expanded interest profiles.

Figure 3.7: Entropy values observed over the tag probability distributions w.r.t. the number of unique
visitors.

(a) Jensen-Shannon divergence values with unex-
panded interest profiles.

(b) Jensen-Shannon divergence values with expanded
interest profiles.

Figure 3.8: Jensen-Shannon divergence w.r.t. the number of unique visitors.

entropy E of a discrete random variable X is defined as

E(X) = −
n∑
1
Pr(xi)log(Pr(xi)) (3.5)
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where x can assume n discrete values with the probabilities Pr(x1), P r(x2), . . . , P r(xn).

We depict the variation in entropy of T np when unexpanded user profiles are
considered in Figure 3.7(a). As a reminder, T np is a random variable representing tag
probability distributions for place p that is derived by considering social profiles on n
users that have visited that place. Figure 3.7(b) shows the variation in entropy when
expanded user profiles are considered. Number of unique users that have checked in
for places varies. So, we see that entropy lines for some of the places stop at specific
points on x-axis which represents unique number of users that have checked in at a
place. We see that the increase in the entropy values is lesser after more unique users
check-in. This indicates that the information content of T np does not increase in spite
of increased sample space and stabilises with the number of unique users visiting place
p. It also implies that some of the semantic tags become more probable and thereby
reduce the entropy in spite of increased sample space, CT np defined in subsection 5.1.2.

Given any two probability distributions P and Q, the Kullback-Leibler divergence
can be used to measure the statistical dependence between them. Since this is an
asymmetric measure and can have infinite values, the Jensen-Shannon divergence
can be used to measure the dependencies between P and Q which gives finite and
symmetric values of dependencies. The Jensen-Shannon divergence between two
discrete random variables P and Q is defined as

JSD(P ||Q) = KLD(P ||M)
2 + KLD(Q||M)

2 (3.6)

where KLD is the Kullback-Leibler divergence and M = P+Q
2 is the mean distri-

bution. The Kullback-Leibler divergence between any two discrete random variables
P and Q is defined as

KLD(P ||Q) =
∑
i

P (i)lnP (i)
Q(i) (3.7)

and is defined for any non-zero values of P (i).

If two random variables are highly dependent, the Jensen-Shannon divergence
value between them tends to be small.
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We computed the Jensen-Shannon divergence between T np and T n+1
p . We show how

the divergence value diminishes based on the number of unique users in Figure 3.8(b)
when expanded user profiles are considered. Interestingly, the divergence values
obtained for the random variables when expanded profiles were used are very similar to
the ones corresponding to the unexpanded profiles and are shown in Figure 3.8(a). This
indicated that in spite of considering various interests of users to derive tag probability
distributions of a place, such distributions showed high dependence as interests of
more users were considered. This means that few of the tags will consistently emerge
as the most probable tags when more social profiles are considered.

3.3 Discussion

In this chapter, we have presented an algorithm to automatically derive descriptive
semantic tags for places, based on users’ interests found in online social network
profiles and their check-in activities. We have shown that highly semantically relevant
tags for places can be derived using these data. Specifically, we derived from each
user a set of concepts based on the user interests, using our interest profile expansion
algorithm. The sets are used in our probabilistic model together with the hierarchical
clustering techniques to derive a set of tags for a place, based on the users that have
visited the place. We performed an experimental evaluation that shows that not only
we are able to automatically derive meaningful tags for different places, but also that
the sets of tags assigned to places are expected to stabilise with the increasing number
of user check-ins. In the future work, we will obtain larger datasets to validate our
findings rigorously. We will also consider other online sources of user data, such as
Twitter which represent the real time interests of people and interactions at places.
Determining the appropriate number of tags to be annotated for a place based on the
nature of the place is another crucial future work involved.

In this chapter, we used the check-ins data and social profiles of users for deriving
place tags. However, some of the data sources might lack these types of physical
(check-ins) and virtual (social interest profiles) data of users. But, many data sources
capture time series data of approximate number of people at places using physical
sensors such as motion detectors and virtual sensors such as check-in counts on online
networks. In the next chapter, we describe a highly accurate probabilistic model to
infer about events organized at places using time series of count data representing the
number of people at a place.





Chapter 4

Event Detection at Places Based on User Pres-
ence

The recent emergence of the Internet of Things (IoT) demonstrates that large amount
of contextual data about places can be captured by deploying sensors at locations.
Time series data generated by sensors and Web users can be a potential data source to
infer environmental and social contexts at places. On the other hand, events conducted
at places signify the importance of a place and constitute it’s metadata. So, inferring
about events conducted at places enables us to automatically annotate places with
event metadata. Specifically, detecting outliers that have unusually high values in a
time series data is crucial for inferring about any events in the real world. In this work,
we describe an infinite Poisson mixture model to detect events by identifying outliers
in time series of count data. This unsupervised technique estimates the probability
densities of count data which have an unknown Poisson mixture while it simultaneously
detects outliers in the data. The advantage of our model is that outliers are mapped to
mixture components discovered by infinite mixture model and thus inference can be
drawn on the different ‘types’ of outliers and their proportions in the data. This lets us
identify and categorize events based on magnitude of outlier data. We have analysed
the performance of our model against a well-known event detection technique based
on Markov modulated Poisson process (MMPP) using synthetic and real world data.
Results show that our approach to detecting events is more appropriate in analysing
periodic count data as compared to the MMPP baseline. The experiments demonstrate
that the presented model provides robust, detailed, and interpretable results for the
analysis of outliers to detect events.

50
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In recent years, there has been a surge in the real world data generated by sensors on
mobile phones as well as sensors embedded into various physical infrastructures. Data
from GPS sensors, accelerometers on mobile phones capture fine-grained activities of
individual users. On the other hand, sensors such as RFID tags, traffic polling systems,
motion detectors for buildings etc. generate data, based on activities of population.
These huge amounts of real world data have been extensively used by researchers to
understand specific patterns of human activity. Particularly, analysing unusual trends
in behaviour exhibited by users in the context of hourly, daily and weekly periodic
variations is crucial to gain useful insights about real world situations. For example,
a popular cultural event held in a city would be reflected in the amount of vehicles
entering the toll gate of a city. Similarly, a minor increase in the number of vehicles
entering a city can be due to a less famous event. These events in the real world can be
mapped to unusually high count values in the corresponding time series data of user
visits. Detecting such events in an unsupervised manner demands detecting outliers in
time series of periodic count data. Also, it is crucial that outliers are classified into
various categories based on their values. This lets us identify and categorize events
based on the magnitude of increased counts due to them.

Modelling univariate data and detecting outliers has been extensively studied in
the field of statistics and machine learning. In [97], Ihler et al. demonstrate the
need for careful analysis of time series data when such data is generated by user
activities is shown and a model based on non-homogeneous Markov Modulated
Poisson Processes (MMPP) has been used for analysis. Similar models based on
different versions of MMPP have been used in [15, 98, 99]. The motivation behind
MMPP based outlier detection models is the fact that univariate time series data has
no clear boundary to differentiate abnormal high count value outliers from the normal

periodic counts. Any MMPP based outlier detection model has the assumption that
most of the periodic count data can be modelled by a Poisson distribution with fixed
rate parameter. This assumption about the nature of human generated periodic count
data does not always hold good as they exhibit multimodality with unknown number
of modes. We demonstrate this in Section 4.2 with two datasets. Detecting outliers
in multimodal data which is represented with a probabilistic mixture model has been
widely studied in the field of statistics. Yamanishi et al. [100] discuss the advantages
of detecting outliers with finite mixture model. Specifically, the authors represent data
with finite mixtures of Gaussian distributions. These finite parametric models require
prior information about the data and hence are less flexible in accurately modelling the
data.
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On the other hand, nonparametric Bayesian models have high accuracy as they
flexibly determine the right number of mixture components and mixture weights while
estimating the probability density of data. So, they have been used effectively in
various research works [65, 101, 102]. To the best of our knowledge, in spite of the
flexibility of nonparametric Bayesian models, there has been no study on utilising
them for detecting outliers in count data. Motivated by these observations, we have
developed an infinite Poisson mixture model to capture the generative mechanism for
count data and to identify outliers based on mixture components that are inferred. We
have developed an appropriate version of Gibbs sampler, a Markov Chain Monte Carlo
(MCMC) algorithm to perform the probabilistic inference. The research contribution
made in this chapter and its advantages can be summarized as follows.

• We develop an infinite Poisson mixture model for estimating outliers in a count
dataset based on the underlying mixture components. We also develop a Gibbs
sampler algorithm for parameter learning and inference.

• The proposed model has some major advantages over MMPP based baseline
technique and other traditional outlier detection techniques. It is fully unsuper-
vised and performs accurately even in cases where data has varying degrees
of multimodality. It identifies outliers in a dataset and also categorizes them
into a previously unknown number of outlier categories. Since outlier and non-
outlier data are represented by probability densities, sophisticated probabilistic
queries can be made. Finally, any prior information about outliers in a dataset
can be incorporated into the model by appropriately choosing prior distribution
parameters.

• We apply our outlier detection technique on a real world dataset to detect events
in an unsupervised manner. We show that our technique has better accuracy and
provides robust analysis.

The rest of the chapter is organized as follows. We first discuss the state of the art
work to detect outliers in count data sets. In Section 4.1, we discuss our probabilistic
model for detecting outliers in any count dataset. The model detects outliers of
unusually high count in a dataset by discovering mixture components of an unknown
Poisson mixture density. In Section 4.2, we analyse the performance of the proposed
model against a state-of-the-art version of MMPP-based outlier detection technique
using synthetic and real world data. In the last section of the chapter, we state our
conclusions and discuss the future work.
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Bayesian parametric framework for outlier detection has been studied extensively
in statistics and machine learning [103–106]. Particularly, a non-homogeneous Markov
Modulated Poisson Process (MMPP) based outlier detection techniques have been
developed for situations where events need to be detected based on data generated by
periodic human activities. In this approach, periodic count data is modelled by Poisson
process regulated by a Markov chain with a fixed number of states [97]. Effectiveness
of the approach has been studied on vehicular traffic data and user presence data to
detect events. In [15], Pozdnoukhov et al. model the number of tweets1 generated
by users and exploit MMPP to quantify abnormal volume of tweets. Modelling and
predicting voice packet data with a version of MMPP has been studied by Heffes et al.

[98]. Scott et al. [99] study the identification network intrusion using MMPP. These
works have analysed how variations of MMPP model can be used to detect outliers and
thus unusual bursts in human activity which correspond to events. Traditional models
such as MMPP based techniques have assumed fixed number of Poisson mixture
components in time series data for estimating outliers. This assumption can lead to
either overfitting or underfitting of data depending on number of mixture components
used in the model.

On the other hand, Yamanishi et al. [100] discuss the advantages of detecting
outliers with finite mixture model. Specifically, the authors represent data using a finite
mixture of Gaussian distributions as follows and show that outliers can be detected.

f(x) = (1− ε)fn(x) + εf0(x) (4.1)

fn(x) =
K−M∑
i=1

πiφ(x|µi, σ2
i ) (4.2)

f0(x) =
K∑

j=K−M+1
πjφ(x|µj, σ2

j ) (4.3)

Here, ε is a small positive fraction which represents the proportion of outliers. fn(x)
is the probability density of data that are non-outliers and f0(x) is probability density
of outlier data. However, the numbers of mixture components representing non-outlier
and outlier data are fixed in this model usingK. This is a limited assumption as number
of mixture components in a dataset cannot be known a priori. So, outlier detection
solutions based on previously described finite mixture models face the problem of
either underfitting, if few mixture components are assumed or overfitting otherwise.
This potentially leads to less accuracy in detecting outliers. Interestingly, the work in

1https://twitter.com/
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[69] considers real world data and shows the need to use an infinite mixture model to
fit count data more accurately compared to a parametric model. Similar results have
been presented in [65, 101] and numerous other works. These observations motivate
us to use an infinite mixture model for outlier detection in any univariate dataset.

4.1 Generative Model for Outlier Detection in Poisson Mixture Data

In this section, we discuss our generative model that can detect outliers by nonpara-
metrically fitting a count dataset and deriving the modes that generate anomalies of
atypically high values. The model is based on the standard results of dirichlet process
mixture model [107, 108] for nonparametric density estimation of a given dataset. In
Figure 4.1, we show the generative model in plate notation. Note that we use the
term mixture component and cluster interchangeably in the following discussion. The
random variables in this nonparametric Bayesian model are defined as follows.

p|a, b∼Beta(a, b) ei|p∼Bernoulli(p)

π|α∼GEM(1, α) zi|π∼Discrete(π)

θk|λ∼G0(λ) θ
′

l|λ
′ ∼G0(λ′)

xi|ei, zi, {θk}∞k=1, {θ
′

l}∞l=1∼ eiF (θ′

zi
) + (1− ei)F (θzi

)

(4.4)

Here, we consider N items x = {x1, x2, . . . , xN} which are discrete count data
from an unknown Poisson mixture. p is a random variable which has a Beta prior
distribution with a, b as hyperparameters. p represents the probability that a count
value in the dataset is an outlier with unusually high value. ei is a Bernoulli random
variable which would be 1 when the data xi is an outlier. π is a sample from a stick
breaking process [67] denoted byGEM with the parameter α. It represents the discrete
distribution over the cluster indices of the parameter vectors that exist for the mixture
component of the dataset. zi represents the index of cluster chosen for the data xi. θ

′
l

represents a sample from the base distribution with parameters λ′ and θk is a sample
from the distribution parametrized by λ. θ′

l , θk represent the Poisson rate parameter
for outlier and non-outlier clusters respectively. Since we need to model an unknown
Poisson mixture data, we have used Gamma distribution as the base distribution G0

which is the conjugate prior distribution for Poisson distribution. Thus, λ′ and λ are
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Figure 4.1: Generative model for detecting the outliers in periodic count dataset

hyper parameter vectors defined as λ′ = (shape′
, rate

′) and λ = (shape, rate) for θ′
l ,

θk respectively. The data xi have the Poisson likelihood given by the last statement
in the Equation (4.3). xi would be generated by a Poisson distribution with rate
parameter θ′

l if it is an outlier data and by a Poisson distribution with rate parameter
θk otherwise. The data x is modelled with two infinite mixtures as we need to model
an unknown number of non-outlier and outlier clusters present in the data. In Figure
4.1, we show the Bayesian network for the generative model described. Here, the
hyper parameters whose values are known are marked dark and random variables with
unknown distribution are marked white. The parameter learning and inference for
this network involves obtaining the joint distribution of the random variables. We use
one of the widely adopted Gibbs sampling, a Markov Chain Monte Carlo (MCMC)
algorithm which requires the full conditional distributions for every random variable
involved in order to obtain samples from the joint posterior distribution. We now show
the conditional distributions derived for each of the random variables.

Pr(ei = 1|xi, e−i, a, b, zi, {θk}∞k=1, {θ
′

l}∞l=1)

=Pr(e1 = 1|e−i, zi, {θk}∞k=1, {θ
′

l}∞l=1)

Pr(xi|ei = 1, zi, {θk}∞k=1, {θ
′

l}∞l=1)

=Pr(ei = 1|e−i, a, b)F (xi|θ
′

zi
)

(4.5)

Here e−i denotes the set with all ej , j 6= i. We use similar notation for x−i, z−i. xk
denotes the set of data items belonging to kth cluster. e denotes the set with all ej . We
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can derive the conditional distribution of e as follows.

Pr(p|a, b) = pa−1(1− p)b−1 Γ(a+ b)
Γ(a)Γ(b)

Pr(e1, . . . , en|p) = p
∑

ei(1− p)n−
∑

ei

Pr(e1, . . . , en|a, b)

= Γ(a+ b)
Γ(a)Γ(b)

∫
p(
∑

ei+a−1)(1− p)(n−
∑

ei+b−1)dp

= Γ(a+ b)Γ(∑ ei + a)Γ(n−∑ ei + b)
Γ(a)Γ(b)Γ(n+ a+ b)

(4.6)

Pr(ei = 1|e−i, a, b) = Pr(e|a, b)
Pr(e−i|a, b)

= Γ(a+∑ ei)Γ(n− 1 + a+ b)
Γ(a+∑ e−i)Γ(n+ a+ b)

= a+∑ e−i
a+ b+ n− 1

(4.7)

In a similar fashion to Equation (4.7) we can derive that

Pr(ei = 0|e−i, a, b) = b+ n−∑ e−i − 1
a+ b+ n− 1

(4.8)

Pr(ei = 0|xi, e−i, a, b, zi, {θk}∞k=1, {θ
′

l}∞l=1)

=Pr(ei = 0|e−i, a, b)F (xi|θzi
)

(4.9)

similar to Equation (4.5). We use the Chinese Restaurant Process proposed by Aldous
et al. [109] as the basis for deriving the clustering property of the dataset. The
probability that a data item falls into one of the active cluster j with parameter φ is
derived as follows. Note that φ is equal to an existing value of θk if the cluster j is
marked as non-outlier cluster and θ′

k otherwise.

Pr(zi = j|x, α, ei = 1, z−i, {θk}∞k=1, {θ
′

l}∞l=1)

= Pr(zi = j|xi, α, z−i, φ)

= Pr(zi = j|α, z−i, φ)Pr(xi|zi = k, α, z−i, φ)

= Pr(zi = j|α, z−i)Pr(xi|φ)

= nj,−i
n+ α− 1F (xi|φ)

(4.10)
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When the data belongs to an outlier cluster with ei = 1, the probability that zi gets a
new value of cluster index K + 1 where already K clusters exist is given by

Pr(zi = K + 1|x, α, ei = 1, z−i, λ, λ
′)

= Pr(zi = K + 1|xi, α, z−i, λ
′)

= Pr(zi = K + 1|α, z−i, λ
′)Pr(xi|zi = K + 1, α, z−i, λ

′)

= Pr(zi = K + 1|α, z−i)Pr(xi|λ
′)

= α

n+ α− 1

∫
F (xi|θ

′)G0(θ′|λ′)dθ′

(4.11)

The conditional distributions for the parameter vectors of the data can be determined
as follows.

Pr(θ′

l|x, e, z, λ
′) = Pr(θ′

l|xl, λ
′)

∝ G0(θ′

l|λ
′)L(xl|θ

′

l)
(4.12)

If a new cluster is formed for generating outlier data xi, the conditional distribution
for the parameter of that cluster θ′

l is derived as follows.

Pr(θ′

l|xi) = G0(θ′
l)F (xi|θ

′
l)∫

G0(θ′)F (xi|θ′)
(4.13)

We can obtain the conditional distributions for the cluster indices and parameters when
ei=0 in a similar fashion described in Equations (4.9) - (4.13).

The Gibbs sampler is used to derive the posterior samples of random variables in
question using the full conditional distributions described above. Specifically, at each
MCMC sample, we infer on the number of mixture components or clusters in the data
and their weights and parameter values. Additionally, we label each of the inferred
clusters as outlier or non-outlier cluster and the data belonging to those clusters as
outlier data and non-outlier data respectively. We give the details of the direct Gibbs
sampling in Algorithm 2 that we use for the inference. Here, we initialise two clusters
where one represents the non-outlier data and the other represents outlier data. The
Poisson rate parameters for these two clusters are initialised using the minimum and
maximum values of the dataset. All data items are initially assigned to non-outlier
cluster and are marked as non-outlier data items. The hyper-parameters of Gamma
distribution are initialised using the simple statistics of the data, namely the maximum
and minimum. A Gamma distribution with shape parameter k and rate parameter 1 has
a mean and variance value as k. The restriction on the Gamma prior distribution for
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drawing the Poisson rate parameters for outlier clusters thus results in the formation of
outlier clusters with Poisson rate parameters biased towards the maximum value in the
dataset. Similarly, Poisson rate parameters of non-outlier clusters are biased towards
the minimum value in the dataset.

At each iteration of the algorithm, a data item is labelled as an outlier or non-outlier.
The data item is then assigned to one of existing clusters or assigned to a new cluster
with certain probabilities. If data item is assigned to a new cluster, the new cluster is
marked as an outlier cluster if the assigned data item has been marked as outlier and as
non-outlier cluster otherwise. The cluster parameters are updated for outlier clusters
and non-outlier clusters using the samples from corresponding base distributions. After
all the iterations, we use all samples to compute the number of clusters in the data using
the posterior mode of number of active clusters in samples. The number of clusters is
used to select matching samples which we use to compute outlier probability, cluster
parameter values, cluster weights. We use the same samples to compute the posterior
mode of the cluster outlier labels to identify clusters as outlier and non-outlier clusters.
We then assign each data item to a cluster where it has the maximum probability
density.

4.2 Experimental Evaluation

We have evaluated the performance of the presented outlier detection technique using
synthetic and real world datasets. We first compared the effectiveness of our outlier
detection technique against an appropriate version of MMPP based technique in
identifying outliers and outlier probabilities for synthetic datasets. Then, we evaluated
the performance in identifying real world events using the buildings event dataset
mentioned in [97] by Ihler et al. Results show that the proposed technique is more
accurate and does not require manual tuning of parameters as opposed to MMPP
baseline.

4.2.1 Synthetic Datasets

We have considered four types of Poisson mixture data varying in the number of
mixture components or clusters and dispersion. These have the typical distribution that
time series data generated by periodic human activities have, as described in [15, 97].
We have used variance to mean ratio or dispersion index D = σ2

µ
to measure the

dispersion in data. A statistical description of the datasets is as follows:
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Algorithm 2 Gibbs Sampling for outlier detecting infinite mixture model
1: function INITIALISEPARAMETERS(x)
2: e← 0
3: theta

′
1 ← maximum(x)

4: theta1 ← minimum(x)
5: (rate′

, rate)← (1, 1)
6: (shape′

, shape)← (max(x),min(x) + 1)
7: end function
8: function GIBBSSAMPLER(x,e,z,θ)
9: IntialiseParameters(x)

10: At any iteration t with t > 1 of the sampling
11: For i = 1, . . . , n
12: if xi is the single element in its cluster then remove the cluster, it’s parameter and

decrement C by 1
13: end if
14: Sample ei with the following probabilities

Choose a non-outlier cluster parameterθi(t−1) where
xi has the maximum density

Pr(eit = 1) ∝ a+∑ e−i
a+ b+ n− 1F (xi|θi(t−1))

Choose an outlier cluster θ
′

i(t−1) where

xi has the maximum density

Pr(eit = 0) ∝ b+ n−∑ e−i − 1
a+ b+ n− 1 F (xi|θ

′

i(t−1))

15: Draw a sample for the cluster index with the probabilities as follows

Pr(zit = k, k <= C) ∝ nk,−i
n+ α− 1F (xi|θk(t−1))

16: if eit is 1 then

Pr(zit = k, k = C + 1) ∝ α

n+ α− 1

∫
F (xi|θ)G0(θ|λ′)dθ

17: else
Pr(zit = k, k = C + 1) ∝ α

n+ α− 1

∫
F (xi|θ)G0(θ|λ)dθ

18: end if
19: if a new cluster is formed then

C = C + 1

20: and mark the new cluster as an outlier cluster if eit is 1 or 0 otherwise
21: end if
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22: For all clusters marked as outlier clusters, sample the cluster parameters from the
posterior distributions

Pr(θkt) ∝ G0(θk(t−1)|λ
′)F (xk(t−1)|θk(t−1))

23: For all clusters marked as non-outlier clusters, sample the cluster parameters from the
posterior distributions

Pr(θkt) ∝ G0(θk(t−1)|λ)F (xk(t−1)|θk(t−1))

24: end function

Type Minimum Q1 Median Mean Q3 Maximum

1 4.0 24 125.5 193.3 329.0 579.0

2 4.0 19.2 38.5 43.6 64.7 98.0

3 16.0 28.0 32.0 48.9 38.0 160.0

4 17.0 28.0 32.0 36.5 40.0 76.0

Table 4.1: Statistical summary of the 4 types of synthetic data

1. dataset 1 - Data with multiple clusters and large dispersion: Data from a Poisson
mixture of 5 components with rate parameters (10,30,130,320,520) and mixture
weights of (0.2,0.2,0.25,0.15,0.2).

2. dataset 2 - Data with multiple clusters and small dispersion: Data from a Poisson
mixture of 5 components with mixture weights (0.13,0.18,0.2,0.24,0.25) with
rate parameters (10,22,35,58,80).

3. dataset 3 - Data with two clusters and large dispersion: dataset contains two
distinct Poisson mixture components. The mixture weights are (0.75, 0.25) with
the rate parameters (30,130).

4. dataset 4 - Data with two clusters and small dispersion: dataset has been gener-
ated from a mixture of two Poisson distributions with rate parameters(30,60) and
mixture weights (0.75, 0.25).

The statistical summary of the datasets is given in Table 4.1. There are 250 data
items for each type of dataset. We can see from the table that these data have varying
dispersion and number of clusters among them. We have used such diverse data set for
rigorous validation.
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We have run our algorithm and obtained outlier probability for the datasets and out-
lier labels for each datum. We have used the uninformative priors for Beta distribution
as (a = 1, b = 1). These values ensure that the algorithm has weak and uniform prior
information regarding outlier probability. In case there is strong prior information
about outlier probability, that information can be incorporated by appropriately altering
the values of a and b. Since the number of clusters formed is sensitive to α [110], we
have used a weak informative prior value of α = 0.01. We experimented with various
types of data using the presented version of Gibbs sampler algorithm. The sampler
converges within the first few tens of iterations for datasets with large dispersion.
In contrast, the sampler converged within first few hundred iterations for datasets
with small dispersion. So, we have run the algorithm to generate 2000 samples of
random variables for each dataset. We have used a burn-in period of 400 iterations and
discarded those samples and obtained i.i.d samples at a lag of 10 iterations to obtain
posterior predictive density of data and posterior outlier probability. The posterior
predictive density is defined as

Pr(x̃|x, α) =
∑
θ

Pr(x̃|θ)Pr(θ|x, α) (4.14)

Here, x̃ is the data element for which density is to be predicted using the observed data
x, hyperparameters α and parameters θ. We use the samples of the parameters θ′

k, θk
and mixture weight samples to compute posterior predictive density of the data. The
posterior outlier probability at any iteration t is calculated with

F (p)∼Beta(a+ n
′

t, b+ nt) (4.15)

Here n′
t is the number of data items assigned to clusters marked as outlier clusters

and nt is the number of data items assigned to clusters marked as non-outlier clusters.
At every iteration of the algorithm, we compute the posterior mean of the outlier
probability which is the considered the outlier probability of the entire dataset for that
iteration. The results of running Algorithm 2 are shown in Figures 4.2-4.4. Figure
4.2 shows the posterior predictive density that is derived for each of the datasets from
the samples of Gibbs sampler. Figure 4.3 shows the number of clusters formed for
each dataset over the samples. We show the posterior mean of outlier probability for
each of the datasets in Figure 4.4. Here, the horizontal lines show the cumulative
mixture weights of the mixture components sorted by their Poisson rate parameter.
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(a) Posterior predictive density for dataset 1
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(b) Posterior predictive density for dataset 2
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Figure 4.2: Posterior predictive density against data
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The algorithm identifies appropriate number of clusters in the dataset within first few
iterations as seen in Figure 4.3.

In order to compare the performance of our algorithm, we have used MMPP model
discussed in [97] which identifies real world events based on outliers. This model
considers that any count value in a periodic count dataset can be described as

N(t) = N0(t) +NE(t) (4.16)

whereN0(t) represents counts due to periodic activity. NE(t) represents any additional
counts that are due to an event and hence represent an outlier.

The counts observed due to periodic activities are assumed to follow a Poisson
distribution with rate parameter λ(t) dependent on time. In order to account for the
effect of day and hour on the periodic counts, the time dependent rate parameter is
calculated as λ(t) = λ0δd(t)φd(t),h(t). Here δd(t) controls the day effect and φd(t),h(t)

controls the hour effect for a day.

The presence of an event results in increased counts in addition to periodic counts
which is captured in z(t) and NE(t) defined as

NE(t) =

0, if z(t) = 0

P (N, γ(t)), if z(t) = 1
(4.17)

Here z(t) is controlled by Markovian transition probability matrix defined as

1− z0 z1

z0 1− z1

 (4.18)

and z0 and z1 have prior distributions and their values determine the number of events
detected by the system as outliers with increased count values. The model also
contains other appropriate prior distributions and hyperparameters needed for the
Bayesian inference. We have obtained MCMC samples through Gibbs sampling of
the random variables described above. The posterior mode of z(t) in the samples for
any count value determines whether that count value is an outlier and likely represents
an event. The posterior mean computed with z(t) for all the data can be used to
detect outlier probability at each sample. We use this outlier probability to analyse the
effectiveness of above described technique. In Table 4.2, we summarize the cumulative
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mixture weights and outlier probabilities inferred by both algorithms to analyse their
effectiveness. In order to analyse the performance of the algorithm in detecting outlier
probabilities, consider dataset 3 which has two distinct clusters. Mixture weights for
the clusters are (0.75, 0.25) with Poisson rate parameters (30, 130) respectively. Data
items belonging to the second cluster represent outliers with high count values. In
Figure 4.4c, it is shown that the algorithm appropriately identifies the mixture weight
of the second cluster as proportion of outliers. In dataset 2, there is very low dispersion
in spite of generating the data from 5 distinct clusters. We can see that the algorithm
identifies the combined weights of the last three clusters as outlier probability. In
Figure 4.4, the four plots show that the algorithm identifies sum of the mixture weights
of high value rate parameter clusters, as outlier probability. This approach to finding
outliers is more informative as outliers are categorized with different rate parameters
and the proportion of each category of outliers can be known. Since we assign each
datum to a single cluster where it has the maximum density, all the data items in a
given cluster are either marked as outliers or non-outliers. Also, any prior information
regarding outlier probability for the dataset can be easily incorporated using suitable
Beta prior distribution.

In Figure 4.5, we show the outlier probabilities derived for synthetic datasets.
Here the horizontal lines show the cumulative mixture weights of mixture components
sorted by their Poisson rate parameter. The third row of the table shows that both
models identify mixture weight of the cluster with large Poisson parameter as outlier
probability for dataset 3. We can see these inferences in Figures 4.4c and 4.5c. Note
that dataset 3 has a huge dispersion with clear bimodality. Since MMPP based model
specifically distinguishes between normal and outlier dataset with its parameters, it
successfully infers about the proportion of outlier data. However, in Figures 4.5a,
4.5b and 4.5d, we can see that MMPP based algorithm fails to identify the outlier
probabilities correctly for datasets 1, 2 and 4.

For each of these datasets, it labels some of the data belonging to a cluster as
outliers and the remaining in the same cluster as non-outliers. For example, consider
the posterior mean of the outlier probabilities identified by the algorithm for dataset 2
is 0.62. This implies that the algorithm identifies some of the data points belonging
to cluster with rate parameter 35 as outliers and rest of the data of same cluster as
non-outliers. Similarly, the algorithm infers that the outlier probability for dataset 4
is 0.38 which implies that 13% of the data belonging to non-outlier cluster with rate



Event Detection at Places Based on User Presence 65

0 500 1000 1500 2000

20
40

60
80

Sample index

N
um

be
r 

of
 c

lu
st

er
s

(a) Samples of number of clusters for dataset 1
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(b) Samples of number of clusters for dataset 2
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(c) Samples of number of clusters for dataset 3
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(d) Samples of number of clusters for dataset 4

Figure 4.3: Samples of number of clusters obtained during MCMC sampling
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(a) Samples of outlier probability for dataset 1
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(b) Samples of outlier probability for dataset 2
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(c) Samples of outlier probability for dataset 3
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(d) Samples of outlier probability for dataset 4

Figure 4.4: Samples of outlier probability obtained from the algorithm
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Dataset Cumulative Mixture
Weights

Presented
Model

MMPP
model

1 (0.2,0.4,0.65,0.8,1) 0.35 0.57

2 (0.13,0.31,0.51,0.75,1) 0.48 0.62

3 (0.75,1.0) 0.22 0.24
4 (0.75,1.0) 0.28 0.38

Table 4.2: Comparison of outlier probabilities inferred by the models

parameter 30 are misclassified as outliers. These results clearly show that MMPP
based outlier detection is not effective for datasets which have no strong bimodality.

On the other hand, the proposed model correctly identifies outlier probabilities
based on mixture weights of different clusters in datasets as seen in Table 4.2. For
example, in the first row, we can see that inferred outlier probability is 0.35 for the
first dataset. This means that our model identifies the sum of mixture of weights of
last two clusters as outlier probability. So, it infers that last two clusters are outlier
clusters and data belonging to them are outliers. This also lets us make probabilistic
queries about outliers belonging to outlier clusters. Similar observations can be made
for the remaining datasets as shown in the table. We now explain the advantages of
our technique in detecting real world events against MMPP based event detection
technique.

4.2.2 Buildings Dataset

Now, we analyse the performance of our algorithm in detecting events using human
generated periodic count data. We have used the buildings dataset mentioned in [97]
which consists of count data of people’s movements recorded every 30 minutes at the
Calit2 institute building in the University of California, Irvine campus for a duration
of 3 months. The data was recorded by optical detectors which count the number
of people entering and exiting the building. Additionally, there are details of events

that took place in the building. The time series data is effected by events which are
aperiodic activities held in the building. There were 89 hours during which events have
taken place in the building. Note that all the hours during which events have occurred
might not have increased counts of people moving in the building. Few events in the
building were unscheduled or unofficial and hence were not recorded. Some of these
events can be directly seen as increased count values which are outliers in the time
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(a) Samples of outlier probability for dataset 1
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(b) Samples of outlier probability for dataset 2
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(c) Samples of outlier probability for dataset 3
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(d) Samples of outlier probability for dataset 4

Figure 4.5: Samples of outlier probability obtained using MMPP model
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Figure 4.6: Performance evaluation for event detection

series data. We have used the time series data of hourly counts of people entering the
building and real world events in the building to evaluate the two models. Detecting
outliers in such data to infer about any real world events is challenging.

We have run our algorithm on count datasets corresponding to each hour of a day
and detected outliers. We have used outliers to detect hours during which events were
held in the building. We inferred Poisson rate parameters of mixture components for
hourly dataset. So, the various rates at which people arrive at any given hour and
unusual rates among them are known. For example, five different rates at which people
arrive in the building at any hour shows the variability in the arrival rates. If two rate
parameters represent outlier clusters, then count values belonging to these two clusters
potentially represent events in the building. In order to analyse the performance of the
MMPP based event detection technique, we set up the transition probability matrix
over z(t) with 30 sets of random weights to detect the same number of event hours as
detected by our model. The performance of both the techniques are shown in Figure
4.6. Our technique had a true positive rate of 28% whereas the average true positive
rate for the MMPP model was 21%. Another advantage of our technique is that the
user need not have any prior knowledge about what constitutes an event. In contrast,
such information is required in order to detect events using MMPP model as different
weights on the transition probability matrix over z(t) detect different number of events.
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4.2.3 Check-in Counts Dataset

Foursquare is a famous location-based social network (LBSN) which lets its users
broadcast their presence at places to friends or public by checking-in at places. LBSN
check-ins data for a place can be summarized as count data which is the total number
of check-ins within any hour for any given day. Such a total count is an approximate
measure of how many people have visited a place at the given hour. By aggregating
such hourly count data, we can get time series data indexed by days for any place.
LBSNs also let the users to report any events that happen at places. Usually the
check-ins count is high during the day till midnight and low for the rest of the hours

[32, 75]. Also, the check-ins count is affected by the type of the place and would be
low for a place like hospital compared to a busy airport as observed by Ye et al. [8].
Noulas et al. [111] show that check-in counts also vary based on the where the place
is situated geographically. It is known that such total number of check-ins or visits
of people vary based on the real life events at the corresponding place and can cause
unusual bursts in the count data [2, 112]. The above observations reveal that count data
based on user check-ins at places varies based on the time, events and neighbourhoods
of places. In this work, we have addressed the problem of modelling count data to
detect outliers and infer events. Now, we analyse the nature of such data and show the
necessity of applying the proposed model.

Foursquare supports developers to download place specific information through
open APIs. One such API2 gives the count of Foursquare users present at a place at
any time based on the check-ins by the users. We crawled this count data for each hour
of the day for 100,000 random places in USA and UK over a period of 3 months. We
have discarded all the places belonging to the Home category and also the places with
no check-ins. The statistical summary for the mean of check-in counts is (Min=0.015,
Q1=0.071, Mean=0.399, Q3=0.368, Max=149.5). We computed variance to mean
ratio for each of the places for all hours of the day and obtained the summary as
(Min=0, Q1=0.939, Mean=1.248, Q3=1.183, Max= 617.6). This clearly shows
that check-in counts at places have varying degrees of Poisson over dispersion and
under dispersion. We can note this dispersion by observing the multimodality of the
data in the Figure 4.8. Thus, it showed that check-in counts at a place cannot be
accurately modelled using a single Poisson random variable or a specific finite mixture
of Poisson random variables and demands a flexible approach to outlier detection. We
have considered user check-in datasets from two populous airports in USA namely San

2https://developer.foursquare.com/docs/venues/herenow
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(b) Daily check-in counts data for 2 days

Figure 4.7: Periodic human activities at airports expressed via mobile check-ins

Francisco International Airport (SFO), John F. Kennedy International Airport (JFK)
for analysing the performance of our algorithm on real world time series data. We
crawled the time series data of check-in counts for these two airports for a period of
6 weeks. So we got time series of count data for each hour of the day which meant
that the length of time series data is 42 for each hour for both the airports. We show
the weekly and daily periodic check-in activities that mobile device users perform in
Figures 4.7a and 4.7b.

We can see the periodic pattern of human activities expressed in the form of
check-ins and the effect of hour of the day on check-in counts. Since, there are
flights throughout the week, there is no effect of the day of the week in the daily
check-in patterns. Detecting outliers in this time series data with parametric approach
to identifying mixture components can be limiting. We have run the Gibbs sampler
algorithm on the hourly time series for both the airports for each hour of the day.

The statistical summary of dispersion index for the 24 time series datasets is
showing that there is presence of varying number of mixture components in the data.
We found that there are varying numbers of mixture components for various hours of
the day. Solutions to detecting outliers based on parametric mixture models such as
MMPP would have limited performance in analysing these kinds of multimodal time
series data. In order to analyse the performance of our algorithm, we will discuss the
results for 4th and 9th hour time series data for SFO airport. In Figures 4.8a, 4.8b,
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Figure 4.8: Posterior predictive density for time series data
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Figure 4.9: Samples of number of clusters obtained for the Airports time series data
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Figure 4.10: Samples of outlier probability obtained for time series data of Airports

we show the check-in counts data and posterior predictive density derived from the
algorithm. In Figures 4.9a, 4.9b, we show the number of clusters found for these data
and the outlier probabilities are shown in 4.10a, 4.10b. We can see from Figure 4.9
that there are varying numbers of mixture components.

4.3 Discussion

In this chapter, we have presented a nonparametric Bayesian model to detect outliers
in the periodic count data sets. We have used this model to describe the generative
process behind an unknown Poisson mixture of probability densities and developed
an appropriate version of the Gibbs sampling algorithm for probabilistic inference.
This algorithm identifies the outliers based on the mixture components revealed by
probability density of the data. We have first analysed the performance of the algorithm
on a synthetic dataset varying in the number of mixture components and data dispersion
and compared it with the performance of MMPP based outlier detection technique. We
have shown that the algorithm effectively identifies outliers and outlier probabilities
for the data sets even in cases where MMPP based technique has limited performance.
Then, we have used the people’s movement and events data for a university building and
shown that our technique is more effective than MMPP based technique in detecting
events based on outliers in the periodic count data. Finally, we have analysed the
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hourly time series of count data for a large number of venues on Foursquare, a location-
based social network. Significant Poisson over dispersion and under dispersion of this
data has shown that parametric mixture models to identify outliers can be of limited
performance and other solutions are required for the problem. We have analysed the
hourly time series of user presence for two major airports and found that such data has
varying number of mixture components. We have demonstrated the performance of
our algorithm by deriving outliers and outlier probability for these data sets.

Our experiments on synthetic and real world data reveal that events organized at
places can be effectively detected by analysing time series data of amount of crowd at
a place. So, event metadata for places can be generated in spite of users not actively
annotating places with event information. This further motivates us to research on
ways to utilize any event related data at places to derive more metadata for places.
In the next chapter, we analyse textual data generated regarding events organized at
places and show that descriptive semantic tags can be derived for places.





Chapter 5

Semantic Tagging of Places with Real World
Event Data

In the previous chapter, we defined and implemented a probabilistic model for detecting
events at locations by analysing the time series count data about the number of people
checking-in at a place. Interestingly, it has been noted that users generate large amounts
of textual data among others while participating in events conducted at places. In this
chapter, we analyse textual data generated during events and show that such data can
be useful in deriving tags for places. Specifically, in order to tackle the issue of lack of
manually annotated place tags and automatic generation descriptive tags for places,
we propose a solution that utilizes data about a set of events that happen in a specific
place and use it to extract meaningful descriptive tags for that place. We use data about
events held in places from Meetup, a famous event-based social network, and we apply
Latent Dirichlet Allocation (LDA) to derive sets of probable descriptive tags for each
place. In order to evaluate our approach, we measure semantic relatedness between
our derived tags and the manually assigned tags for the same places that are present in
Foursquare, a location-based social network. Results on semantic relatedness score
show that event data can be used to derive semantically relevant tags for places, and
also provide an indication of where is the cut-off point (threshold) that identifies the
best tags among the ones that are found using LDA. In the next few paragraphs, we
motivate the need for tagging places and how event related textual data can be useful
in achieving this task.

As evident in the discussions in Chapter 3, major geospatial databases that contain
data about places suffer from the lack of descriptive tags for places. Two major causes
for this problem are that writing them is a time-consuming process and only a few

76
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users do it despite having knowledge about places. In order to tackle this issue and
automatically generate descriptive tags for places, we propose a solution that utilizes
data about a set of events that happen in a specific place and use it to extract meaningful
descriptive tags for that place. We use data about events held at places on Meetup, a
well-known event based social network and apply Latent Dirichlet Allocation (LDA)
to derive sets of probable descriptive tags for any place. In order to evaluate our
approach, we measure semantic relatedness between tags derived for places on Meetup
and manually assigned tags from Foursquare, a location based service. Results show
that event data can be used to derive semantically relevant place tags. This shows that
location based services can benefit from capturing data about events to derive place
tags.

Descriptive tags or short text snippets about places are crucial in providing fine
grained and accurate place search and recommendation results. By descriptive tags,
we mean any short keywords which are semantically related to a place. The richer the
place tag sets, the better the search and recommendation results. These tags can be
used to support keyword search queries about places. For example, a set of descriptive
tags such as computer science, software development, students, higher education etc.
can be used for more effective retrieval of a computer science research center than
when it is annotated with an abstract category tag such as education. Note that a
place can have many topics associated with it, with each topic having its own set
of tags. For example, a new software company building is associated with topics
like start up and software with each topic having its own descriptive tags. The tags
entrepreneurship, incubator describe the topic start up whereas software development,
mobile application describe software. It is essential that any effort to annotate places,
either manually or automatically, takes this observation into consideration. Please
note that we interchangeably use the term place for Point of Interest (PoI) which is a
physically fixed point location on the surface of earth.

The annotation of places with descriptive tags is crucial for effective retrieval
of relevant places, but only those people who have sufficient knowledge about a
place have the ability to annotate that place with appropriate tags. Hence, major
location based service providers like Foursquare1, Facebook Places2, Google Maps3,
OpenstreetMap4 and others heavily rely on information voluntarily provided by users to

1https://foursquare.com/
2https://developers.facebook.com/docs/reference/fql/place/
3https://www.google.ie/maps/preview
4www.openstreetmap.org/
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populate their geospatial databases. The analysis of places on a famous location based
service provider showed that most of the places lack manually annotated categorical
tags and descriptive tags [8, 9, 26]. Though many people physically visit places or
have knowledge about places, they do not systematically share such knowledge by
annotating places with tags, a time consuming and knowledge intensive task. This has
resulted in poor metadata on the geospatial databases provided by major players such
as Foursquare, Google Maps and Openstreetmap. A study by Le et al. [113] found
that only 10% of the places among the 1 million places on Eventfull5, an event based
social network for event discovery, had any tags. Similarly, Hegde et al. [26] found
that only 7% of the places on Foursquare, a location based service, had descriptive
tags among more than a million places.

Though users do not actively annotate places with metadata, they do generate
data about places when they participate in various events conducted at those places.
This data can potentially contain rich information about the places which can be used
to derive place tags. The motivation for this hypothesis is that many of the events
conducted at a place will share common topics or themes and are attended by a group
of users some of whom share one or more common interests. So, textual descriptions
about groups that have conducted events at a place along with user comments and
interest profiles are potentially descriptive of that place. Recently, event based social
networks such as Meetup6, Plancast7, Eventfull8 have become popular [43] and capture
vast amount of data about events held at places. Users with similar interests can join
groups and groups organize events at places for the users on these networks. Groups
have their own profiles where a group profile describes the purpose and motivation of
the group. A user has a social profile possibly for each of the group she belongs to
and describes her social interests with a group specific profile. Users can express their
views about the events via comments, ratings and recommendations. These rich data
generated about events conducted at places can potentially be used for deriving tags for
the corresponding places. For example, data about events conducted at a fitness club

by women’s sport, nutrition, fitness groups attended by users with possible interest in
sports, diet, fitness among other interests and their comments about events can help to
find that exercise, nutrition, outdoor are candidate descriptive tags for that place.

The main questions we address in this chapter are as follows:

5http://eventful.com/
6http://www.meetup.com/
7http://plancast.com/
8http://eventful.com/
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1. How can we use textual data about events conducted at a place to derive descrip-
tive tags for that place?

2. What is the threshold score of relevance to find the best descriptive tags for a
place, using a quality metric?

3. How does the quality of derived tags vary based on the category of a place?

We describe an approach that uses event data to derive descriptive tags for places.
We have used textual data about events namely profiles of users attending an event,
profile of social group organizing the event and user comments on Meetup, an event
based social network. In order to derive place tags corresponding to various topics
describing a place, we have applied Latent Dirichlet Allocation (LDA) model on these
textual data to derive probable topics and probable words for those topics and used the
words as place tags. We have simulated probable tags for places using the parameters
inferred in LDA model and compared them against a ground truth of manual tags using
a semantic relatedness measure. We have used these semantic relatedness scores to
infer the threshold score above which a tag can be considered semantically relevant
for a place. We have then studied the effect of topic ranking and word ranking on the
relevance of derived tags by analysing semantic relatedness between derived tags and
manual tags. The experimental results show that relevant tags can be automatically
derived for places using our approach based on user text generated for events at those
places. Currently, most of the location based services like Foursquare, Google Maps,
Openstreetmap do not capture any event data about places in their geospatial databases.
We show that these services can benefit from obtaining and analysing place related
event data to derive place tags.

The rest of the chapter is organised as follows. In Section 5.1, we describe how the
text generated during events at places can be utilized to derive most probable topics
and tags for places. We discuss the experimental results and nature of derived tags in
Section 5.2. In Section 5.3 we conclude the chapter and discuss our future work. Now,
we discuss some of the state of the art techniques in location metadata generation.

The users on the Web are actively producing large quantities of volunteered geo-
graphic information (VGI). In spite of that, most places or Points of Interests (POIs)
lack rich metadata in the form of tags [8, 9, 26, 113]. There have been various solutions
proposed to overcome the problem of lack of rich metadata in geospatial databases.
Majority of them consider wisdom of the crowd at places or the collective user data
associated with places in order to generate geospatial metadata. Rattenbury et al. [114]
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use geotagged image data to categorize tags into place tags or event tags but does
not derive tags for places. [82, 83] have studied various approaches to deriving and
recommending tags to annotate images based on various types of user data. Haklay
et al. [10] use GPS traces and other geographic data provided by volunteers to create
an accurate geographic map of the world. A semi-automatic approach to integrating
information provided by users into the digital geographic gazetteers has been discussed
in [5] by Kessler et al. In [15], the authors, Pozdnoukhov et al. study identifying
events at various geographic regions and derive topics for those geographic regions
using a Twitter9 data set.

There have been significant efforts in deriving tags for places rather than whole
geographic region. In [8], Ye et al. focus on deriving categorical tags for place
categories such as restaurant and cinema based on the check-ins or place visits of
users. Hegde et al. [26] find that social interest profiles along with the place visiting
behaviour of users can be used to derive descriptive tags for places visited by users.
These two approaches require data about check-ins done by the users in order to derive
tags. This can be quite restrictive when users are unwilling to express or share their
check-in information completely. Biancalana et al. [115] use content from location-
based service to derive relevant text snippets that can potentially be used as tags points
of interest. In [9], Mansour et al. model any place based on the way the place is
mentioned in tweets to generate keywords for places that closely align with query
terms of place search queries by users.

In a different context, data about real world events expressed on online social
networks has been effectively used for various information retrieval tasks. In [116],
Yin et al. use event and location data of users to recommend locations and events
based on the user preferences. Liu et al. [117] show how event related data can be
used to recommend tags for online social groups and suggest venues for conducting
events. Qiao et al. [118] use social relationships of users, ratings for events along
with geographical characteristics of events to recommend events. Le et al. [113] have
worked on deriving tags for geographic regions and locations using textual descriptions
of events. But, they assume that concept hierarchies exist for event descriptions text
and use temporal profiles of events to derive tags. Also, they do not consider the fact
that multiple topics can be associated with a place and separate tags for those topics
have to be derived. However, there has been no work on using unstructured text data

9https://twitter.com/
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about events to derive tags corresponding to possibly multiple topics for a place, to the
best of our knowledge.

5.1 Tagging of Places with EBSN Data

Event based social networks (EBSN) are a major category of online social networks
subscribed by users. They enable a group of users with similar interests to conduct
events and physically meet at places to participate in events. Any event conducted at a
place and represented on an EBSN has extensive data such as profile of the social group
conducting the event, interest profiles of users participating in the event, comments
and ratings by users about the event, duration of the event etc. It is easy to realize
that many of the events conducted at a place will share common topics or themes.
For example, it is more likely that science related events are conducted at a science

museum and art related events are conducted at a theatre. Data about all the events
conducted at the science museum can potentially be used to derive tags such as science,
experiments, museum etc. Since there can be many topics associated with a place, it
is essential that most probable tags are derived for each of the topics. For example, a
computer science research centre can have 2 prominent topics namely Software which
is described by tags such as Programming, Computer Code, Debugging etc. and topic
Research which is described by tags such as PhD, Conference, Research Article etc.
Any approach to derive tags for places needs to consider tags for all relevant topics
rather than tags for the most relevant topic of a place. In this section we describe how
tags can be derived for places using text generated about the events at those places.

Overview of Data Analysis
We have used openly available event data on Meetup, a famous EBSN, for our experi-
ments and data analysis. We approach the problem of deriving place tags by obtaining
most probable words that can semantically represent a place using textual data about
events at places. Since a place can have multiple topics describing it, we need to
derive clusters of tags where each cluster represents a topic for a place. In Chapter 3,
we used Wikipedia Link Vector Model (WLVM) to derive similarity scores between
derived tags and cluster them using hierarchical clustering. We used this approach
as we had retained and expanded only Wikipedia concepts present in social profiles
of online social networks users. The motivation for using Wikipedia concepts for
processing profiles on a specific online social network -Facebook- has been described
in the same chapter. However, Meetup online platform allows users to provide only
short text snippets to describe user interests and group interests. Such text snippets
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can be clustered based on their co-occurrence using methods such as Latent Dirichlet
Allocation (LDA) [51], without the need for any additional processing to derive cluster
scores. So, we have derived probable tags corresponding to multiple topics using LDA

[51]. This probabilistic model has been widely used for unsupervised clustering of text
documents by deriving latent topic distributions and word distributions for topics.

We have analysed the relevance of derived place tags by comparing them with
manual tags. Comparing pairs of textual data to measure the relatedness between
them has been well studied in the field of computational linguistics. Solutions to
obtain distance and similarity scores between textual data have been proposed in

[94, 119, 120] and many others. However, semantic relatedness measure based on
Explicit Semantic Relatedness (ESA) derived in Gabrilovich et al. [121] has become
widely used due its simplicity and applicability to any type of text. So, we have used
semantic relatedness scores based on ESA for our analysis. Note that we cannot use
WLVM technique used in Chapter 3, as we do not further process event related data
to exclusively obtain Wikipedia concepts. We have used a simulation algorithm to
understand semantic relatedness scores exhibited by derived tags. We have run the
algorithm to obtain the distribution of semantic relatedness scores between derived tags
and manual tags which form ground truth. We found that only a minor proportion of
derived tags from LDA have high degree of semantic relevance to manually annotated
place tags. This motivated us to further analyse simulated semantic relatedness score
to find out threshold score of relevance that can be used to obtain only relevant tags
among derived tags for any place. We have used threshold score to analyse the effect of
topic rank and word rank on relevance of a derived place tags. We have found that top
5 words from top 3 topics for a place achieve semantic relatedness scores higher than
threshold score and can be used as place tags. We have then analysed the quality of
derived tags for different categories of places. Further analysis of derived tags shows
that derived tags have high relevance for places belonging to all categories except for
food, hotel and transport categories which are generic place categories.

5.1.1 Datasets Description

We have used openly available event data on Meetup10, a popular event based social
network, for our analysis. We chose 1400 places randomly in USA, UK and crawled
event data for these places over a period of 6 months. We retained event details such
as name, latitude, longitude of place of event along with textual data of the profile of

10http://www.meetup.com/
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social group conducting an event, user profiles of event participants and user comments.
We represent each place with what we call a place document which is a document
whose text is generated from all the events that are organized at a place. This document
conceptually represents all relevant interaction and interests of people who have visited
the place and participated in any event. In order to generate a place document for a
place, we used aggregated textual data corresponding to group profile, user profile and
comments for all the events that are conducted at that place on Meetup. We generated
the place documents by concatenating textual data of all the events conducted at any
place.

In order to analyse effectiveness of our technique, we used Foursquare tags as
ground truth since they are manually annotated by users on Foursquare. Note that most
places on Foursquare do not have descriptive tags. So, finding a corresponding place
entry for a Meetup place was a challenge. We crawled places in 200 meters radius of
places on Meetup to get the possible matching places on Foursquare, using latitude
and longitude values of Meetup places. Further, we matched the names of Meetup
places against the names of Foursquare places using Levenshtein distance proposed by
Sankoff et al. [122] and substring match percentage to filter out irrelevant places. Then
we manually found exact matches of from the relevant list of places. Finally, 356 place
pairs were found of matching Meetup and Foursquare places, which showed that 25%
of the Meetup places in our data set had a matching Foursquare place. The metadata
crawled for these Foursquare places includes tags, place name, latitude, longitude,
category among others. We have put all these data on a repository for use by interested
readers11.

5.1.2 Deriving Tags with Latent Dirichlet Allocation

In order to retrieve probable tags corresponding to multiple topics related to a place,
we have applied LDA on a collection of place documents. The primary version of
latent dirichlet allocation proposed by Blei et al. [51] is an unsupervised text clustering
technique by inferring the latent topic and word distributions for a set of documents in
a document collection. Please refer to 2.3.2 for detailed discussion about LDA. As a
reminder, the variables involved in the LDA model are as follows.

1. N is the number of documents in a collection

2. K is the number of latent topics

11https://www.dropbox.com/sh/i6y8k95me1qsmdo/AAAJM68Qmwb-OAvRBubYUulza?dl=0
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3. M is the number of words in a given document

4. wij is the jth word in ith document

5. πi is the topic distribution for ith document

6. θk is the word distribution for kth topic

Here, πi indicates the topic distribution for ith document. It is a discrete distribution
over topic indices for the documents. θk are parameters of a discrete distribution with
the sample space comprising of all the words in the document collection. The prior
distribution for θk is defined by Dirichlet distribution with parameters λ. zij is the
latent topic indicator for word wij . This model can be used to infer per document topic
distributions πi and per topic word distributions θk.

We have used Gibbs sampling mentioned by Griffiths et al. [58] on the collection
of place documents to derive the latent topic and word distributions over those topics
for an unknown number of topics over the unique words in the document collection.
In order to compute the appropriate number of topics for the document collection,
we have computed log-likelihood measure over P (w|K) where w is the set of all
words in place documents and K is the number of topics. In Figure 5.2(a), we show
the log-likelihood score against the number of topics. Based on the log-likelihood
scores obtained, we have considered 100 topics for modelling the collection of place
documents with LDA model. We show the top 10 words of 20 random topics in
Figure 5.5.

Deriving most probable topics and most probable words for those topics by apply-
ing LDA on place document collection provides us the most probable topics and tags
for places. It is possible that all topics derived might not be relevant for a place. Simi-
larly, among some of the relevant topics for a place, all words might be not equally be
descriptive of topics. So, the challenge here is to infer the statistical nature of the topics
and tags that can be used as relevant place tags. So, we have used the ground truth of
manually annotated tags on Foursquare to analyse the relevance of derived topics and
tags. We analyse the nature of the derived tags by computing the semantic relatedness
scores between manually assigned tags using Explicit Semantic Relatedness (ESA)
measure proposed by Gabrilovich et al. [121]. Semantic relatedness between two
text snippets is a measure of how strongly the text snippets are related to each other
and this notion is more general notion than semantic similarity measures. ESA is a
technique for the vector representation of a word using the text documents present in
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(a) Topic Set 1

(b) Topic Set 2

Figure 5.1: Top 10 words for 20 random topic indices

a knowledge base such as Wikipedia12. The results from our experiments show that
top 3 topics and top 5 words of those topics are highly semantically related to the
manually assigned tags on average. Now we describe how the topic distributions and
word distributions inferred from LDA for place documents can be used to obtain only
those tags that are relevant for any given place.

In order to analyse the relevance of derived tags, we have analysed semantic rela-
tionship between probable tags derived from LDA and manual tags. In Algorithm 3,
we have simulated semantic relatedness scores for derived place tags against corre-
sponding manual tags. We use this algorithm to obtain the distribution of semantic
relatedness scores between derived tags and manual tags which is further used to
identify semantically relevant tags from the set of derived tags. In this algorithm, we
draw topics and words with probabilities proportional to the inferred distributions for
each of the place documents. Here P is the set of all places where at least one event

12http://www.wikipedia.org/
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Algorithm 3 Simulation of Semantic Relatedness Scores
1: function GETAVERAGESEMANTICRELATEDNESS(P )
2: for all p ∈ P do
3: for all m ∈Mp do
4: relV ectorp ← SimulateRelatedness(m, θp)
5: end for
6: end for
7: end function
8: function SIMULATERELATEDNESS(m, θp)
9: while iter ≤ 10000 do

10: Draw topic t as t|θp ∼Discrete(θp)
11: Draw word w as w|φt ∼Discrete(φt)
12: relV ectorp ← SemanticRelatedness(w,m)
13: iter ← iter + 1
14: end while
15: return relV ectorp
16: end function
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Figure 5.2: Performance of LDA to derive semantically related tags

has been conducted. Mp denotes the set of all manually assigned tags for place p. θp is
the topic distribution inferred from LDA for place p. φt is the word distribution for
topic index t. relV ectorp is a vector storing the semantic relatedness scores computed
between all the manually assigned tags and simulated words for place p. We have
computed semantic relatedness scores using the explicit semantic relatedness technique
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Figure 5.3: Statistics of semantic relatedness scores

implemented by Freitas et al. [123]. This Web service gives a semantic relatedness
score in the range (0, 1). This ensures that we draw the words relevant to the place
document more often than drawing ‘noisy’ words in the place document.

Deriving Threshold Semantic Relatedness Score
We have considered 100 random places present on both Meetup and Foursquare
and simulated the semantic relatedness scores using Algorithm 3. We have retained
only non-zero semantic relatedness scores as the majority of manual tag and derived
tag pairs have semantic relatedness score of zero. We show the mean and standard
deviation of semantic relatedness scores computed for each place in Figure 5.2(b). We
can see that there is heteroscedasticity in the semantic relatedness scores. This means
that even for places with high mean semantic relatedness scores, there is a need to
filter out irrelevant tags which are contributing to the higher standard deviation. So, we
have further analysed the simulated semantic scores between derived tags and manual
tags to determine threshold semantic relatedness score of relevance. This threshold
score is used to analyse the effect of topic and word rank on the relevance of derived
tags. We will use this threshold score in Section 5.2 to analyse the effectiveness of
our tag generation approach. In Figure 5.3(a), we show the distribution of semantic
relatedness scores obtained for all place documents. It can be noted that only a minor
portion of scores at the tail end of the distribution are very high and there is high
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Component
Index

Mixing
Probability

Mean Variance

1 0.1296 5.33e-4 2.41e-08

2 0.1601 1.11e-3 7.89e-08

3 0.2565 1.93e-3 3.91e-07

4 0.2449 3.80e-3 1.94e-06

5 0.1517 8.76e-3 1.18e-05

6 0.0485 2.39e-2 1.01e-04

7 0.0084 3.42e-1 1.25e-01

Table 5.1: Parameters of the Gaussian mixture distribution of semantic relatedness scores

variance in scores. These show the need to derive a threshold score to infer topic ranks
and word ranks of relevant tags inferred from LDA. In Figure 5.3(b), we have plotted
the semantic relatedness scores corresponding to various percentile values. We can see
that there is a wide difference in the percentile scores at higher percentile values which
indicates clear multimodality in the scores with outliers. These outlier scores can be
used to determine the threshold score for semantic relevance of tags. Such multimodal
data can be represented as a finite mixture of probability distributions and various
parameters of mixture components can be inferred. Specifically, a multimodal data
with K modes can be represented using the following probability density function.

f(x|µ, π) =
K∑
k=1

πkφ(x|µk, σ2
k) (5.1)

K∑
k=1

πk = 1 (5.2)

Here we have used the Gaussian distribution as the generative distribution since we
have continuous data and need flexibility in variances observed among sub populations.
φ is the Gaussian probability density function with mean µk, variance σ2

k for kth

component. πk is the mixing probability of kth component which is the proportion
of the subpopulation corresponding to kth component. Each component represents
the sub population in the data and the corresponding mode. Detecting the outliers in
multimodal data which is represented with a mixture model has been widely studied
in the field of statistics. Yamanishi et al. [100] discuss the advantages of detecting
outliers with finite mixture model. Specifically, the authors represent the data from a
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finite mixture of Gaussian distributions as follows and detect the outliers in the data
using simulation.

f(x) = (1− ε)fn(x) + εf0(x) (5.3)

fn(x) =
K−M∑
i=1

πiφ(x|µi, σ2
i ) (5.4)

f0(x) =
K∑

j=K−M+1
πjφ(x|µj, σ2

j ) (5.5)

Here, ε is a small positive fraction which represents the proportion of data that are
outliers. fn(x) is the probability density of the data that is non-outliers and f0(x) is
the probability density of the outlier data. We need to infer ε for semantic relatedness
scores which we can use to infer the threshold semantic relatedness score of relevance.
We can consider one or more of the inferred components as outlier components and
the data in those components as outlier data. In Table 5.1, we can see that component 7
and 6 are not separated due to the large variance of component 7. It is also evident that
component 6 and 5 are clearly separated due to extremely small variance of component
6. Hence, we can compute that ε = 5.69e-2 which is the sum of the mixing probabilities
of component 6 and 7. This is also justified by the steep increase in the percentile
score values at 95 percentile as seen in Figure 5.3b. So, we have used 1.78e-2 which
corresponds to (1- ε) or 94.31 percentile as threshold score for semantic relatedness.
It means that we consider all the derived tags having a semantic relatedness score
of 1.78e-2 against manual tags as relevant derived tags for places and the rest of the
derived tags as irrelevant.

Effect of Topic Rank and Word Rank
There are two problems in directly using the semantic relatedness score between
probable words of place document and manually assigned tags to obtain relevant tags.

1. Since a place document collection can contain thousands of unique words, it is
not scalable to compute the semantic relatedness score between all the words and
manually assigned place tags.

2. Many of the places might not have any manually annotated tags to be used as
ground truth to retrieve relevant tags from the set of derived tags

Due to these problems, it is desirable to know the characteristics of highly semanti-
cally related tags that are derived from place documents. So, we have studied the effect
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Figure 5.4: Effect of top topics and top words on the semantic relatedness

of the ranks of topics and ranks of words for those topics on the relevance of derived
place tags. We have plotted the Empirical Cumulative Distribution Function (ECDF)
of semantic relatedness scores between top 10 words from top probable topics for place
documents and the manually assigned tags for the corresponding places. Since all the
ECDF curves in Figures 5.4(a), 5.4(b) are very similar and vary only at the higher
percentile values, we have used the semantic relatedness score at the 99th percentile
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to analyse ECDF curves corresponding to various topic and word ranks. So, we have
plotted the semantic relatedness scores corresponding to the 99th percentile for the
semantic relatedness scores obtained for various top probable topics. In Figure 5.4(a),
we can see that ECDF curves have similar shapes except that there is huge difference
in the 99th percentile score for various topics. It is evident that top 3 topics have much
higher 99th percentile score than the rest of the topics. Also, 99th percentile scores
for top 4-5 topics, top 6-10 topics and bottom 5 topics are almost same. So, word
distributions of top 3 topics capture tags that are of high relevance to manual tags.
In 5.4(b), we show the effect of word ranks among the top probable topics. It is evident
that top 5 words of the top 3 topics clearly have high semantic relevance for the places.
Even the top 6-10 words of the top topic are less relevant compared to the top 5 words
of top 3 topics, on an average.

We now summarise the data analysis carried out and our findings. First, we applied
LDA on a subset of place documents to derive place tags. These place documents were
formed by aggregating event related data of places. We studied the quality of derived
tags by simulating topics and words inferred from LDA against manual tags. We
further analysed and noted that not all topics and words are relevant for a place to be
used as tags. So, we studied the effect of topic and topic-word rank on the relevance of
tags. We have found that top 5 words of top 3 topics for a place are highly semantically
related to that place.

5.2 Experimental Evaluation

In the previous section, we used a subset of the data set and performed analysis using
LDA and semantic relatedness scores to derive relevant tags representing various topics
for places. In this section, we validate the statistical inferences about topic ranks,
topic-word ranks on the relevance of derived tags for places in the entire data set. We
analyse the relevance of derived tags by comparing average semantic relatedness score
obtained by derived place tags against the semantic threshold score that we derived in
Section 5.1.2. We have used the manual tags assigned by users to places on Foursquare
corresponding to the places in the Meetup data set to validate our inferences.

There are 37124 unique words in the text corpus corresponding to Meetup events.
In Figure 5.6a, we show the frequencies of these words. In Figure 5.6b, we show the
frequency based ranks for top 3 words from the top topic for 300 random places. Here,
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Meetup Name Foursquare
Name

Derived Tags Foursquare Tags

Adobe SF Of-
fices

Adobe adobe, classes, devel-
opment, digit, film,
foods, photography,
photography, pro-
gramming, software,
technology, web,
workshops

adobe, adobe sys-
tems, flash platform,
software develop-
ment, great software,
user groups

Pretty Lady
Pole Fit

Pretty Lady
Pole Fit

can, get, look, date,
life, meet, night, rela-
tionships, single, sin-
gles, social, dance

aerobics, dance, pole
dancing, zumba

Virginia
Volleyball
Center

Virginia Volley-
ball Center

self improvement,
exercise, fun, hours,
nutrition, social, vol-
leyball, volleyball,
women, indoor, net-
working, recreation,
fitness, sport

courts, gym, pickup,
sports, volleyball

Stuyvesant
Yacht Club

Stuyvesant
Yacht Club

sport, club, boating,
sail

sailing, boat, yacht
club, car, cars, fic-
tion, organ, science,
support, auto, discus-
sion, book, garden-
ing

Galaxy Games Galaxy Games board, card, friends,
fun, game, games,
make, meet, new,
people, war

dnd, dungeons and
dragons, gamers,
games

Arastradero
Preserve

Enid W.
Pearson
Arastradero
Open Space
Preserve

bicycling, dads, club,
paddle, biking, run,
running, cycling,
train, mountain, road,
stand, marathon

biking, running

Fit with Jenny
- NEW LOCA-
TION

Get Fit With
Jenny

self improvement,
basketball, cano,
exercise, fun, group,
kayaking, nutrition,
training, weight,
women, outdoor, fit,
fitness

fitness, group fitness,
kickboxing, personal
training, women,
zumba

Table 5.2: Manually annotated tags and derived tags for places
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Figure 5.5: Semantic relatedness scores obtained for top 5 words of top 3 topics

Data
1st

quartile
Mean

3rd

quartile

Derived
tags

9.1e-2 1.1e-1 1.2e-1

Foursquare
tags

1.5e-1 3.8e-1 5.0e-1

Table 5.3: Semantic relatedness scores within tag sets

we can see that most of the top 3 words for places have bottom ranks and middle ranks
when their frequency is considered. Only few of the top 3 words have higher frequency
based ranks. This shows that

• Most frequently occurring words in the event text corpus cannot be directly used
as most probable tags for places

• Words with least occurrence in the event text corpus can be highly relevant as
tags for places

In Table 5.4, we can see that top 3 words for most of the places have very low rank
when their frequency is considered in the text corpora. In Figure 6(b), we can see that
few of the places have got same words (indicated by the flat portion of line segment) as
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(a) Frequencies of words in text corpus

(b) Ranks of top 3 words of top topic for places

Figure 5.6: Frequencies and ranks of words in text corpus

one of their top 3 probable words. We observed that these words are very generic words
namely ‘can’, ‘get’, ‘look’ and have frequency based ranks of 11242, 16413 and 6910
respectively. Further manual observation revealed that many of these places belong
to one of categories - food, hotel and transport. This is in line with the conclusion
that our technique is not effective in deriving tags for places belonging to these three
categories. We now describe the effectiveness of our technique in deriving tags for
places belonging to different categories.
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Top Word Rank Q1 Median Q3

1 5628 11240 18320

2 2888 13740 16140

3 2659 6910 13580

Table 5.4: Statistical summary of frequency based ranks for top 3 words

We have derived the tags for the 356 place pairs in our data set using the tags and
topics inferred using LDA on the place documents for places on Meetup. We used
the top 5 words from the top 3 topics to obtain distinct tags for these places. We then
manually observed the tags derived for many of the places. We noted the places which
did not get many relevant tags were those for which the corresponding Foursquare place
categories were food, hotel or transport. This is expected as events are conducted by
different social groups with varying interests at such public places, event data generated
is more about the interests of the groups than about food, hotel or transport. So, we
categorized the places on Meetup to one of the four categories namely food, hotel,
transport, other based on the category information of corresponding Foursquare places.
We then analysed the semantic relatedness scores obtained by different categories of
places. We can see from Figure 5.5(a) that average semantic relatedness score obtained
by places using top 5 words of top 3 topics is low when we consider places of all
categories. In Figure 5.5(b), we show the average semantic relatedness score obtained
by places belonging to other categories which includes all the place categories except
food, hotel, transport. We show distinct tags from the list of the top 5 words for top
3 topics in Table 5.2 for few places belonging to other category. We can see that
most of the derived place tags are highly relevant to the places and are semantically
comparable to manually annotated tags. Also, the derived tags correspond to various
topics associated with a place. For example, consider the manual tags and derived tags
for Arastradero Preserve. The tags bicycling, biking, road, paddle, cycling represent
the topic biking whereas run, marathon, mountain, run correspond to the topic running.
Similar observations can be made about the derived tags for other places shown.
Derived tags for 67% of the places in the data set obtained a mean semantic relatedness
score of 1.78e-2 or higher which is the threshold score of relevance as mentioned in
Section 5.1.2. It shows these places obtained highly relevant semantic tags.

We then analysed the nature of the semantic relatedness exhibited by the manual
tags and derived tags among themselves for each of the places. These pairwise semantic
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Data
1st

quartile
Mean

3rd

quartile

Derived tags
vs
Foursquare
tags (Other)

3.7e-3 2.5e-2 3.7e-2

Derived tags
vs
Foursquare
tags

1.5e-3 4.7e-3 3.9e-3

Table 5.5: Semantic relatedness scores between tag sets

relatedness scores indicate the cohesiveness among the manual tags and derived tags.
In Table 5.3, rows show that manual tags on Foursquare and derived tags from Meetup
data have semantic relatedness scores of same order of magnitude and thus exhibit
similar cohesiveness in terms of semantic relatedness. We also obtained the pairwise
semantic relatedness scores obtained between the manual tags and derived tags. These
scores indicate the semantic relationship between the manual tags and derived tags for
any place. In Table 5.5, first row shows that the derived tags for places belonging to
other categories have semantic relatedness scores higher than the threshold semantic
score of 1.78e-2 on average. It is easy to see from second row that derived tags for
places belonging to food, hotel, transport categories obtain very low semantic scores
against the threshold semantic relatedness score and differ from it by an order of
magnitude. We then analysed the number of tags manually annotated by users on
Foursquare in order to analyse the number of extra tags we generated. Table 5.6
shows the statistics about the amount of that are manually annotated and the amount
of automatically derived tags. We can see from Table 5.5, 5.6 that the derived tags are
highly semantically related to manual tags and are also larger in number compared to
manual tags.

5.3 Discussion

In this chapter, we have defined and implemented an approach to automatically gener-
ate semantically relevant tags for places using data generated on event based social
networks. We have found that Latent Dirichlet Allocation (LDA), an unsupervised
document clustering technique, can effectively be utilized to derive relevant place tags
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Data
1st

quartile Mean
3rd

quartile

Derived tags
from Meetup

14
14.02

15

Manual tags
on Foursquare

2 6.26 8

Manual tags
on Foursquare
(other)

2 7.13 9

Table 5.6: Number of manual tags and derived tags

while representing different topics that are relevant to a place. We have shown that
ranks of top topics and top words in the topics inferred using LDA have an effect on
the relevance of place tags. We have also found that relevant tags can be derived for
places effectively by mining event related textual data. These tags are essential for
automatic classification of places, and can therefore play a crucial role in providing
accurate place recommendations and support more precise geospatial search queries.
Our approach utilizes successful data mining techniques on unstructured textual data
and does not require any manual supervision. It is cost-effective and provides very en-
couraging results as demonstrated by our evaluation. In its current form, the proposed
approach does not use any rich temporal information about events. In future work, we
plan to investigate the role of temporal properties of events such as periodicity, start
time and duration. We believe this can help deriving place tags more effectively for
places belonging to food, hotel and transport categories, which cannot be derived by
our current approach. We will also investigate the effect of the amount of event data
available for place events, and the accuracy of our algorithm in finding relevant place
tags.





Chapter 6

Conclusion and Future Work

6.1 Summary

In this thesis, we have addressed the problem of automatic metadata generation for
places or Points of Interests (PoIs). We have proposed and implemented various
data mining and information retrieval techniques to address this problem. We have
utilized user generated geolocation data captured by various types of online social
forums, offline physical sensors to show the effectiveness of our solutions. We have
developed three unique solutions to use various types of geolocation related data sets
in order to generate metadata for places. Specifically, we have proposed effective
solution to automatically generate textual snippets or tags descriptive of places based
on user visits to locations and their social interests. We have further analysed data
generated during participation of users in events organized on social networks to
generate place tags. Furthermore, we have proposed a novel probabilistic algorithm
to detect events at places that is more accurate than state of the art techniques and
requires no manual tuning as it is an unsupervised learning algorithm. The above
mentioned solutions can be used to automatically generate various types of metadata
for places when they lack manually annotated metadata. Geospatial applications like
location based services, geospatial web services can exploit these place metadata to
provide accurate and relevant results against geospatial data queries. Place metadata
can also be used for various applications like personalization of tour recommendations,
place recommendations, geospatial aware advertisements etc. They can also be useful
in financial planning activities such as setting up of stores in certain regions, decisions
on logistics and supply chain among others.
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6.2 Contributions

We have analysed three different types of geospatial data sets to propose various
solutions to place metadata generation. Our solution to generate place tags by analysing
social and check-in profiles of users shows that common interests of a group of people
checking-in or visiting a place contains valuable information about that place. We
have shown that common interests derived from the social interest profiles on online
social networks can be used to derive rich set of highly descriptive place tags. We have
defined a probabilistic model and a text processing algorithm for deriving relevant
place tags. Furthermore, we have studied the effect of number of social profiles
considered on the quality and stability of the tags derived. Since many users do not
intend to share their check-ins or place visit information online, some of the data
sources might not have enough check-ins information.

So we have studied the utilization of data generated during events organized at
places. In this approach, we do not consider check-in information of users and utilize
only textual data generated during events. We have used an unsupervised text clustering
technique and probabilistic mixture modelling in order to infer about the nature of
semantically relevant place tags. We have shown that the tags derived using our
approach, are of the same quality as manual tags. Our method gives approximately
three times more number of tags compared to the number of manual tags that people
assign on a famous location based social network. Other prominent advantage of our
approach is that topic specific tags are derived while we consider the relevance of
multiple topics for a place.

It has been noted that users do not explicitly describe all the events that happen at a
place. Knowledge about events happening at a place can be useful in recommending the
place to appropriate Web users. Information about all the events that have happened at
a place can also be used to analyse dynamics of population movements in a geographic
region. So, we have developed an advanced event detection technique that uses the
time series of count data of check-ins at places in order to detect events at places. This
approach requires only the aggregated counts of user check-in information and does
not require check-in information of individual users. Our approach is more accurate
than the state of the art event detection technique and is completely unsupervised.
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6.3 Future Work

We have exclusively used unstructured textual data from various types of online social
networks to address the problem of generation of place tags. There are several ap-
proaches to text analysis that can be applied in order to achieve accurate tag generation
using unstructured textual data. We have not considered the temporal aspect of users’
social interest data such as time of creation, time of last update etc. We will investigate
relevance of temporal profiles of social data of users on achieving better tag enrichment.
Our current solution to analysing event related textual data does not consider the start
time and duration of events. These data can potentially be used derive accurate tags for
places specifically in the cases of places belonging to hotel, food, transport categories.
We will also investigate utilizing other types of time series data generated for places
in order to accurately detect events at places. We will further investigate scalable
predictive models to infer amount of crowd at a location based on time series data of
user presence obtained from sensors and user check-ins data obtained from location
based social networks.
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