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smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all

undiscovered before me...”
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Semantic Matching and Dynamic Enrichment

by Souleiman Hasan

There has been a significant change in the data landscape with the emergence of the

Internet of Things (IoT). Tens of billions of devices are expected to connect to the

Internet in the coming years within smart buildings, smart grids, smart cities, and

cyber-physical systems. A basic requirement to realize the IoT is an infrastructure of

sensing and communication solutions. Middleware systems, such as event processing, are

also required to abstract the application developers from the underlying technologies.

Large-scale event processing environments are open, distributed, and heterogeneous in

semantics and contexts. Interoperability is a key requirement and currently addressed by

top-down granular agreements represented by ontologies and taxonomies for semantics.

Such approaches are non-scalable, and achieving such agreements may be unfeasible

under the characteristics of current and future event environments such as the IoT. This

thesis analyses this problem using a decoupling versus coupling trade-off framework.

Event producers and consumers do not know each other and are decoupled in space, time,

and synchronization to enable scalable deployments. They have boundaries that they

have to cross in order to communicate with other systems. Such boundaries are syntactic,

semantic, and pragmatic. Events are boundary objects that convey meanings signified

by symbols. They must effectively cross the three levels of boundaries to establish

interoperability and communication between event agents.

The current event processing paradigm is focused on crossing lower syntactic bound-

aries. Thus, human agents are needed in the loop to cross semantic and pragmatic

boundaries through explicit agreements on event types, properties, values, and contexts,

introducing coupling into these systems. Coupling limits the paradigm and contradicts

the fundamental basis of decoupling for scalability. A trade-off can be concluded between

decoupling for scalability and coupling for interoperability.
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Space, time, and synchronization decoupling dimensions of event systems contribute to

event transfer. I define two new types of problematic coupling dimensions: the semantic

coupling and the pragmatic coupling. They correspond to granular and labour-intensive

agreements on event semantics and contexts by humans involved in developing and using

the event system. Such agreements may not be feasible in large-scale environments

such as the IoT. Current approaches to semantic and context interoperability in event

processing are coupled on one or more of these two dimensions, limiting scalability.

This thesis concerns two research questions of how semantic and pragmatic coupling can

be loosened effectively and efficiently. I propose an approach based on four elements:

subsymbolic semantics, free tagging, dynamic native enrichment, and approximation. A

statistical vector-space model of semantics is built from a textual corpus that reflects the

mutual understanding of event producers and consumers. Subscriptions are consumers’

expressions to match events of interest. Free tags, called themes, are added to events and

subscriptions to improve their meanings. Subscriptions are enhanced with indications of

context to dynamically enrich events. Terms in events and subscriptions are decoded into

their subsymbolic vector representations that are then matched using an approximate

probabilistic matcher, resulting in scored relevance of events to subscriptions.

The hypotheses underlying the proposed approach are empirically validated within syn-

thetic and real-world scenarios from the smart cities and energy management domains.

A loose semantic coupling can be achieved with coarse-grained agreements on statisti-

cal semantics, with 100 approximate subscriptions compensating for 74, 000 exact sub-

scriptions otherwise needed. The approximate matcher achieves a magnitude of 1, 000

events/sec of throughput, and an effectiveness of over than 95% F1Measure. Using the-

matic tagging, a lightweight amount of tags is needed: around 2−7 for events and 2−15

for subscriptions. It delivers a magnitude of 800 events/sec in the worst case and 85%

F1Measure as opposed to 62% worst-case for non-thematic processing.

Loose pragmatic coupling is achieved with 4 high-level clauses in the subscriptions to

guide the dynamic enricher. They specify the source, the retrieval method, the context

search strategy, and the fusion method of events with context. Enrichment is instantiated

with spreading activation in Linked Data graphs. It is tested with 24, 000 events, with

live DBpedia, a structured version of Wikipedia, as a contextual source. It reaches an

efficiency and effectiveness of 7 times more than other instantiations of the enricher.

The research discussed in this thesis has been deployed in working systems for energy

and water management where it has had an impact on real world applications. The

model has also been developed into the concept of thingsonomies, an architecture for

the Internet of Things that can tackle variety and allows IoT systems to evolve into

large-scale, heterogeneous, and loosely coupled environments.
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Chapter 1

Introduction

“The beginning is the most important part of the

work.”
— Plato

1.1 General Introduction

In the recent years, there has been a tremendous increase in information sources and

volume. The Organization for Economic Co-operation and Development (OECD) esti-

mates that there will be about 50 billion devices connected to the Internet by 2020 [1].

This leads to challenges for information processing solutions as the volume, velocity,

and variety of data increase. Smart cities [2], smart grids [3], smart buildings [4], and

cyber-physical systems [5] are examples of active research topics. A technology enabler

for such areas is represented by the Internet of Things [6].

A basic requirement to realize the IoT is an infrastructure of communication solutions

and standards such as the Constrained Application Protocol (CoAP) by the Internet

Engineering Task Force (IETF) [6]. Sensing technologies such as Radio-frequency Iden-

tification (RFID) form the basic infrastructure for IoT to map the world of things into

the world of computationally processable information. There is a need for middleware

that can abstract the application developers from the underlying technologies, and that

is crucial to the adoption and evolution of IoT applications [6]. Among the technologies

that contribute to this layer are Service-Oriented Architectures (SOA) [6] and event

processing systems.

1
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While significant efforts in the area of IoT come from communication and networking

communities, there has been a growing realization that the challenges of the IoT will be

more prevalent at the data level [7] including data collection, management, and analytics.

At this level, IoT can be linked with the area of Big Data, signified by the three main

dimensions of volume, velocity, and variety.

The trends of IoT and Big Data signify a considerable shift in the characteristics of infor-

mation production, communication, and consumption. Such a shift is characterized by

a set of aspects: an increasing number of sources, a growing heterogeneity, an increasing

number of users, a decentralized organization of users, information incompleteness, and

a timeliness requirement.

Given this shift in the data landscape, there has been an evolution in the information

processing paradigms required to meet these new challenges. Thus, the event processing

paradigm has been motivated by a plethora of distributed applications that require on-

the-fly and low-latency processing of information items. The event processing paradigm

has evolved from the works of several communities including: active databases, reactive

middleware, event-based software engineering, message-oriented middleware, and data

stream management systems.

1.2 Motivation and Problem Overview

Assume the scenario of energy consumption events generated from sensors in a smart

building. Event producers and consumers can use different terms to describe their

events and information needs such as ‘energy consumption’, ‘energy usage’, and ‘power

consumption’ to refer to the same thing. Consumers may also expect contextual infor-

mation in events, which are not complete, such as the ‘room’ or the ‘floor’ where the

event was originated.

To address these challenges, traditional event processing systems depend on explicit

agreements on semantics and contexts (or pragmatics) between producers and con-

sumers. Semantic agreements are manifested in the form of explicit semantic models

such as taxonomies or ontologies. Pragmatic agreements are manifested by a distinction

between events and background data, with data join or enrichment logic which are imple-

mented in dedicated enrichers. Thus, this is tackled as an interoperability problem on the
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levels of semantics and pragmatics. Nonetheless, large-scale event processing environ-

ments are open, distributed, and heterogeneous in semantics and contexts. Agreements

may not be feasible in large-scale environments such as the IoT.

A fundamental principle of the event-based interaction paradigm is the use of the event

to decouple producers and consumers. Event producers and consumers do not know each

other and are decoupled in space, time, and synchronization to enable scalable deploy-

ments. Events are not a mere exchange of symbols, but they are boundary objects that

convey meanings signified by symbols. I define two new types of problematic coupling

dimensions: the semantic coupling and the pragmatic coupling. They correspond to

granular and labour-intensive agreements on event semantics and contexts by humans

involved in developing and using the event system.

Current approaches to semantic and context interoperability in event processing are

coupled on one or more of these two dimensions. Human agents are needed in the loop

to cross semantic and pragmatic boundaries through explicit agreements on event types,

properties, values, and contexts, introducing coupling into these systems. This coupling

limits the paradigm and contradicts the fundamental basis of decoupling for scalability.

Thus, decoupling is required to enable scalability. Coupling on the other hand, such

as agreements, is necessary to enable effective event-based communication between pro-

ducers and consumers. The problem tackled in this thesis is loosening semantic and

pragmatic coupling between event producers and consumers to enable scalable deploy-

ments of event processing systems in open, distributed, and heterogeneous environments

and allow effective event-based communication at the same time.

1.3 The Event Processing Computational Paradigms

The event processing paradigm has evolved through the work of several communities as

suggested by Cugola and Margara [8], Hinze et al. [9], Etzion [10, p. 16–21], Eugster et

al. [11], and Mühl et al. [12, p. 7–8]. Elements of the paradigm can be found in the

following paradigms:
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� Active Databases started to appear during the late twentieth century [13] to move

active logic from the application layer into the database layer to avoid its redun-

dancy among distributed applications which affects maintenance.

� Reactive Middleware are asynchronous and decoupled extensions that have been

added to the existing middleware systems like the Java Platform Enterprise Edition

(J2EE) [14] and the Real-time CORBA Event Service [15]. This is to accommodate

the case where data and services are not tied to static network nodes as assumed

in the Remote Procedure Call (RPC) paradigm [16].

� Event-based Software Engineering adopts an implicit method invocation model [17]

which is widely used now in enterprise application integration [18], aspect-oriented

programming [19], and graphical user interfaces [20].

� Message-Oriented Middleware motivated by the Internet becoming a platform for

dynamic distributed applications such that a decoupled interaction scheme has

become crucial to the development of large-scale applications. Eugster et al. [11]

give decoupling a high importance concerning scalability, recognizing three dimen-

sions of decoupling: space, time, and synchronization which are concerned with

addresses, activity time, and blocking respectively. Thus, the publish/subscribe

paradigm evolved to overcome this issue [11].

� Data Stream Management Systems emerged as active databases do not scale under

high rates of database updates or a large number of rules [8]. Streams form the

basic concepts in DSMS as opposed to tables in conventional databases. DSMSs

adopt an interaction paradigm based on continuous queries where users register a

set of queries with the DSMS and data items are homogeneous in a stream, they

do not typically have temporal or causal semantics, and languages are typically of

a transformation nature.

� Complex Event Processing associate a specific semantics to their data items: they

represent events. I follow the Event Processing Technical Society (EPTS)’s glos-

sary [21] definition of an event as: “An object that represents, encodes, or records

an event, generally for the purpose of computer processing.” A Complex Event

Processing (CEP) engine emphasizes the matching of event patterns specifically

with ordering conditions such as temporal sequencing and causal relationships.
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Figure 1.1: The event processing functional model 1

Figure 1.1 presents an elaboration of Cugola and Margara’s functional model of event

processing [8]. It shows the main functionalities of an event engine. Event Sources,

which can be human, software, or hardware agents, create events. Events get received

by the Receiver, which sends the events to the Decider. The Decider is responsible for

the detection of conditions or patterns, which hold in single events or a set of events,

according to the condition parts of the Rules registered in the engine. When a condi-

tion is detected in the Decider, the participating events that caused the detection are

propagated along with the condition to the Producer, refer to A and B in Figure 1.1.

The Producer generates an event as dictated by the action parts of the Rules whose con-

ditions or patterns are detected with possibly binding of placeholders with actual values

from events. The generated events may feed back to the Receiver and/or propagate to

the Forwarder which sends them to the external event Consumers, which may be human

agents, software applications such as user interfaces, or hardware agents. The Decider

keeps in its working memory a History of events, which may be eligible to trigger a de-

tection. The Single Event Matcher detects only single events that match some filtering

conditions while the Complex Pattern Matcher detects a pattern of events such as the

sequence of two or more events that have passed single event matching.

Large-scale event processing systems feature three main technical traits: distribution,

heterogeneity, and openness. A fundamental principle of the event-based interaction

paradigm is the use of the event to decouple producers and consumers. Eugster et al. [11]

define decoupling as “removing all explicit dependencies between the interacting partic-

ipants.” The true impact of this principle is the increase of scalability [11].

1Adapted from Cugola and Margara’s functional model [8]
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Figure 1.2: Decoupling dimensions

Eugster et al. [11] recognize three dimensions of decoupling as shown in Figure 1.2:

space, time, and synchronization which are concerned with addresses, activity time,

and blocking, respectively. Decoupling results in dependencies on events and the now

autonomous events may lead to ambiguities in semantics, which require participants to

collaborate again to resolve. This leads into limitations in scalability and undermining

the fundamental reason participants are decoupled.

1.4 Problem Description

The first problem arises when events and subscriptions contain heterogeneous terms and

need to cross significant semantic boundaries. For instance, events contain terms such as

‘energy consumption’, ‘energy usage’, and ‘power consumption’ to refer to the same thing.

The second problem comes from the nature of a decoupled event processing system, as

data consumers in many situations need more information than that is included in

events. For instance, when a user is interested in situations where energy consumption

of a building is excessive, the user tends to include higher level business concepts in their

subscriptions to events. Examples of these are the ‘room’ or the ‘floor’ where the event

was originated, or the ‘business unit’ or ‘project’ with which the device is associated.

The events do not have information about the ‘floor’ to answer the subscription.

Event agents form an overall system of systems that have boundaries which they have

to cross in order to communicate with other systems. Such boundaries are syntactic,

semantic, and pragmatic. Events are not a mere exchange of symbols, but rather mean-

ings signified by symbols. Events must effectively cross the three levels of boundaries

to establish communication between event agents. I argue that the current event pro-

cessing paradigm is focused on crossing lower boundaries, i.e. syntactic, for achieving

the task of event transfer rather than that of event-based communication. Thus, human
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Figure 1.3: Trade-off between decoupling and event exchange across boundaries

agents are needed in the loop to cross semantic and pragmatic boundaries which leads

to limiting the paradigm as these tasks are external to it rather than being at its core.

Space, time, and synchronization decoupling dimensions contribute to event transfer

across syntactic boundaries only. A trade-off can be concluded between decoupling and

event exchange across boundaries as Figure 1.3 illustrates. I recognize two new coupling

dimensions that exist in current event processing systems as shown in Figure 1.4:

� Semantic Coupling is the amount of agreement between participants in the event

processing environment on mappings between symbols used in event messages and

the meanings they refer to.

For instance, a high semantic coupling results from the granular agreements on

the individual meanings of the terms ‘energy’, ‘power’, and ‘electricity’ as follows:

‘energy’ 
 usable power that comes from heat or another source.

‘power’ 
 a source or means of supplying energy.

‘electricity’ 
 a wire-carried energy used to operate appliances, machines, etc.

A looser semantic coupling can be achieved by establishing a quantifiable relation-

ship between the three terms and meanings above, e.g. frequency of co-occurrence,

and having a coarse-grained agreement over this relationship, through agreeing on

a corpus that encompasses the terms in use.
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Figure 1.4: Dimensions of de/coupling

� Pragmatic Coupling is the amount of agreement between participants in the event

processing environment on contextual information needed to complement event

messages to evaluate users interests. For instance, an event consumer and producer

who agree that an energy event should have both the ‘room’ and the ‘floor’ of

the energy consuming device, assume more pragmatic coupling than agreeing on

having only the ‘room’ of the device in the event.

1.5 Core Requirements and Research Questions

This work tackles four main requirements as follows:

� R1. Loose coupling of event processing systems on the semantic dimension. It can

be defined as a low cost to define and maintain rules with respect to the use of

terms, and to building and agreeing on an event semantic model.

� R2. Loose coupling of event processing systems on the pragmatic dimension. It

can be defined as a low cost to define and maintain the context parts of rules, and

to agree on contextual data that is needed in events.

� R3. Efficiency of event processing. It can be defined as the timeliness in matching

event semantics, and precision in integrating contextual data with events.

� R4. Effectiveness of event processing. This can be quantified by the proportion

of true positives and negatives achieved by the decider (or matcher), and the

effectiveness in completing events with contextual data.
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To meet requirements, two main research questions need to be investigated:

� Q1. The first research question is concerned with the case when event produc-

ers and consumers do not have exact, granular, and rigid agreements on terms

used in events and rules and their meanings but rather a form of statistical loose

agreements on the meanings (Requirement R1 ). The question is how to achieve

timely event matching (Requirement R3 ) with high true positives and negatives

(Requirement R4 ) in such a loosely semantically coupled environment?

� Q2. The second research question is concerned with the case when event produc-

ers and consumers do not have equal assumptions on the amount of contextual

information included in events and how much they are complete with respect to

evaluating some consumers’ rules (Requirement R2 ). The question is how to com-

plement events with context at high precision (Requirement R3 ) and completeness

needed to meet consumers expectations (Requirement R4 ) in such a loosely con-

textually coupled environment?

1.6 Existing Approaches

The event processing literature related to this work can be classified into two major

categories: (1) approaches to cross semantic boundaries of event-based systems, and

(2) approaches to cross pragmatic boundaries of event-based systems. Approaches to

cross semantic boundaries of event-based systems can be classified as follows:

� Content-based event processing: In content-based event processing, event sources

and consumers use the same event types, attributes, and values without any addi-

tional description of meaning external to the rules and events. The main works in

this category are those by Carzaniga et al. [22] (SIENA), Eugster et al. [23], and

Fiege et al. [24] (Rebeca). Such approaches are effective with the timely match-

ing and routing of events but they assume an implicit agreement on semantics of

events outside of the event engine, which is a type of semantic coupling that does

not scale in heterogeneous environments.

� Concept-based event processing: In this category participants can use different

terms and values and still expect matchers to be able to match them properly
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thanks to explicit knowledge representations such as thesauri and ontologies that

encode semantic relationships between terms. The main works in this category

are those by Petrovic et al. [25] (S-ToPSS), Wang et al. [26] (OPS), Zeng and

Lei [27], and Blair et al. [28] (CONNECT). Given agreements on explicit models,

efficient and effective detection of positive and negative matching can be achieved.

Nonetheless, agreements on explicit models may become an unfeasible task to

achieve due to high levels of heterogeneity at large scales.

� Approximate event processing: Approaches in this category are distinguished by a

matching model that is not Boolean. The main works in this category are those by

Zhang and Ye [29] (FOMatch), Liu and Jacobsen [30, 31] (A-TOPSS), Drosou et al.

[32] (PrefSIENA), and Wasserkrug et al. [33]. These approaches reduce semantic

coupling due to their ability to deal with uncertainties of users about semantics.

Time efficiency is high, but effectiveness is lower due to the approximate model,

which allows some false positive/negatives to occur.

Approaches to cross pragmatic boundaries of event systems can be classified as follows:

� Dedicated enrichers: This category is mainly concerned with event enrichment via

ad-hoc dedicated agents that are tailored specifically to particular situations. The

main works in this category are those by Schilling et al. [34] (DHEP), and Hohpe

and Woolf [18]. These approaches mainly focus on integrating events with their

contexts and can efficiently and effectively complete events to be matched later.

However, they depend on an implicit understanding of the pragmatics around

events that are implemented by developers through a set of ad-hoc enrichment

logic. This keeps context handling out of the event engine and represents a level

of coupling that hinders scalability where significant pragmatic boundaries exist.

� Query-based fusion: Approaches in this category adopt declarative languages sim-

ilar to SQL. Such languages support operators of semantics similar to relational

join, enabling the fusion of streams of events with background context data. The

main works in this category are those are by Arasu et al. [35] (CQL), Teymourian

et al. [36], Le-Phuoc et al. [37] (CQELS), and Anicic et al. [38] (EP-SPARQL).

These approaches are effective and efficient in integrating events with their con-

texts. However, a full understanding of event contexts is assumed and encoded by
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developers as join statements and thus causes a pragmatic coupling that makes

them not scalable with contextual boundaries.

� Semantic and context transformation: Approaches in this category handle events

individually and perform a set of transformations on them to move from one se-

mantic and pragmatic model to another. The main works in this category are

those by Freudenreich et al. [39] (ACTrESS), and Cilia et al. [40, 41] (CREAM).

These approaches consider semantics and contexts to have one nature and impact

on event matching. They are effective and efficient in matching and completing

the events. Nonetheless, semantic and pragmatic models that depend on ontolo-

gies and conversion functions require agreements which form a coupled mode that

limits scalability in heterogeneous environments.

1.7 Proposed Approach

The proposed approach stands on three main models: the approximate semantic event

matching model, the thematic event matching model, and the dynamic native event

enrichment model. These models can be conceptually decomposed into four main ele-

ments:

� Subsymbolic Distributional Event Semantics. Assuming that semantic coupling

can be quantified by the number of mappings between symbols, i.e. terms, and

meanings, then a semantic model that condenses these mappings can be very

useful. Ontological models require granular agreements on the symbol-meaning

mappings while distributional vector space semantics leverages the statistics of

terms co-occurrence, e.g. ‘power’ and ‘electricity’, in a large corpus to establish

semantics [42] leaving event producers and consumers to loosely agree on the corpus

as common knowledge.

� Free Event Tagging. This element allows users to adapt the conveyed events’

meanings in different domains and situations without introducing any coupling

components between participants. This element, called thingsonomies, builds on

the success of free tagging, known as folksonomies, within social media research

[43]. For instance, the term ‘energy’ when used in an event tagged by the tags
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{‘building’, ‘appliance’} helps the matcher distinguish the meaning of ‘energy’ and

associate it with the domain of power management, rather than associating it with

the domain of sport or diet for example.

� Dynamic Native Event Enrichment. Pragmatic coupling that is caused by mutual

agreements on contextual information can be reduced by allowing the event pro-

cessing system to discover contextual data dynamically. For instance, an energy

consumption event could include information about the consuming ‘device’ and its

‘power consumption’. The event engine shall be able to dynamically look up the

device in a building management system database to get information about the

‘room’ and ‘floor’ where the device exists. Thus, events are assumed to be incom-

plete and contextual data is dynamically added through an enrichment process

that is moved to the core of the event engine.

� Approximation. Loose coupling introduces uncertainties to the event processing en-

gine which results from not exactly knowing which event’s tuples shall be mapped

to which subscription’s tuples, and which information can be assumed in an event

that is incomplete. For instance, with the loose agreements on terms semantics,

there are various possible mappings between an event and a subscription such as:

σ1 ={(device = laptop ↔ device:computer),

(room = room 112 ↔ office: room 112)}

σ2 ={(device = laptop ↔ office: room 112),

(room = room 112 ↔ device:computer)}

Each mapping has a different probability that reflects the uncertainty of the match-

ing. The same applies to the uncertainty about which tuples complement an event.

Approximation at the core of the event processing engine can tackle uncertainties

and complement the elements mentioned above.

The main elements of the proposed approach can be unified and fit into the event pro-

cessing functional model proposed by Cugola and Margara in [8] as shown in Figure 1.1.

Figure 1.5 illustrates how the elements work together, along with non-impacted compo-

nents, to fulfil the role of an event processing engine as follows:
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Figure 1.5: The proposed event processing model

� Elm1 Subsymbolic Distributional Event Semantics. The actual distributional se-

mantic model could be built outside of the event processing engine by indexing a

textual corpus. The resulting model forms the basis to compare any two strings

in events and subscriptions, as those get decoded into their subsymbolic vector

representations, the basis for distance and similarity measures.

� Elm2 Free Tagging. Events flowing from event sources, and subscriptions get

tagged by users before they are considered for matching. Users use free tags to

enhance events and subscriptions and improve their interpretation and meaning

disambiguation by the matcher.

� Elm3 Dynamic Native Event Enrichment. A new functional component, the Dy-

namic Enricher, is added to the model. Enrichment guidance elements are added

to the subscriptions to identify enrichment sources, retrieval, search, and fusion

mechanisms of contextual information with events. Events get enriched before

being passed to the decider.

� Elm4 Approximation. Events are matched in the decider against subscriptions

and the result of event matching is a scored ranking of events that signifies their

relevance to each subscription.
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1.8 Hypotheses

The proposed approach stands on four main hypotheses respectively with the elements.

H1. Subsymbolic distributional event semantics decreases the cost needed

to define and maintain rules with respect to the use of terms, and to build

and agree on an event semantic model more than symbolic semantic models;

and at the same time it can achieve timely event matching with high true

positives and negatives of magnitudes comparable to that of event processing

based on semantic models.

H2. Free tagging of events and subscriptions does not add to the cost of

defining and maintaining rules with respect to the use of terms, and the cost

of building and agreeing on an event semantic model required by subsymbolic

event semantics; and at the same time it can achieve timely event matching

with high true positives and negatives more than event processing based on

non-tagged subsymbolic event semantics.

H3. Dynamic native event enrichment decreases the cost needed to define

and maintain the context parts of rules, and to agree on contextual data that

is needed in events more than dedicated enrichers; and at the same time it can

achieve high precision integration of event context with high completeness of

events comparable to that of event processing based on dedicated enrichers.

H4. Approximate event processing can operate in event environments

with low-cost agreements on event semantics and pragmatics more than ex-

act event processing; and at the same time achieve timely event matching

with high true positives and negatives, and high precision integration of

event context with high completeness of events, comparable to that of event

processing based on exact models.

The rationales for the hypotheses are detailed in Chapters 5, 6, and 7.
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1.9 Research Methodology

The methodology followed in this work consists of the following steps:

1. Review the literature and the related work and define the problems of semantic

and pragmatic coupling in event systems.

2. Formulate the research questions of effective and efficient event processing in

loosely coupled environments.

3. Formulate the main four hypotheses to answer the questions and design experi-

ments for testing.

4. Synthesize a workload of events with high semantic heterogeneity and velocity.

An evaluation event set of 50, 000 events has been semantically expanded out

of seed event sets from actual deployments of IoT smart city, energy manage-

ment, building, and relevant datasets, to evaluate the approximate semantic event

matching model. Similarly, 14, 743 events were generated to evaluate the thematic

event matching model, and 24, 000 events from DBpedia, a Linked Data version

of Wikipedia have been used for evaluating dynamic native event enrichment.

5. Synthesize a workload of situations of interest representative to the supposed users

of IoT and the need for context.

6. Implement the four proposed elements: subsymbolic semantics, tagging, dynamic

native enrichment, and approximation in an event processing engine.

7. Test the workload and compare with suitable baselines to validate the hypotheses.

8. Recognize the trade-offs and limitations of the proposed approach and where it

outperforms the current event processing paradigm in the supposed environment.

1.10 Contributions

The contribution of this work is manifold:

� A new analytical framework of event systems based on communication models that

cross system boundaries, and loose semantic and pragmatic coupling.
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� An effective and efficient approximate event processing model:

– Loose semantic coupling: coarse-grained agreement on semantics where 100

approximate subscriptions can compensate for 74, 000 exact subscriptions oth-

erwise needed.

– Efficiency: a magnitude of 1, 000 events/sec of throughput reflecting an effi-

cient matching model.

– Effectiveness: over than 95% F1Measure reflecting a high accuracy of the

matching model.

� An effective and efficient thematic event processing model that outperforms the

non-thematic approach.

– Loose semantic coupling: a lightweight amount of tags to describe events,

around 2− 7, and subscriptions, around 2− 15.

– Efficiency: a magnitude of 800 events/sec in the worst case.

– Effectiveness: 85% F1Measure as opposed to 62% worst case for non-thematic

processing.

� An architecture for IoT based on thingsonomies and thematic matching.

� A formal framework and evaluation for the proposed model based on an ensemble

of semantic and top-k matchers in addition to a probability model for uncertainty

management.

� A unified and native model of event enrichment is proposed along with its formal-

ism and evaluation framework.

� An instantiation of the enrichment model based on dereferenceable Linked Data,

spreading activation, and semantic relatedness.

– Loose pragmatic coupling: high-level enrichment clauses in the subscriptions.

– Efficiency and effectiveness: up to 44% F5Measure of enrichment precision

and completeness, 7 times more than other instantiations of the enrichment

model on average.
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1.11 Thesis Outline

The rest of this thesis is organized as follows:

� Chapter 2- Problem Analysis: Crossing Boundaries in Distributed Open Systems:

This chapter motivates the problem and provides a thorough investigation of

the shift in the data landscape and the evolution towards the event processing

paradigm. It defines the terminology used and analyses event systems based on

a framework of communication models and knowledge exchange among systems

boundaries. Limitations of current event processing are discussed, leading to the

development of a set of requirements and research questions of this work.

� Chapter 3- Related Work: This chapter elaborates on the requirements and clas-

sifies the related work to the studied problem into six categories. The chapter

charts the current approaches against requirements and analyses their features. It

provides a gap analysis that gives guidance for the proposed approach.

� Chapter 4- Overview of the Approximate Semantic Event Matching and Dynamic

Enrichment Approach: This chapter presents the proposed approach in terms of

three main models, and the four main elements on which they stand. Each element

is then mapped into a hypothesis.

� Chapter 5- The Approximate Semantic Event Matching Model: This chapter fo-

cuses on research question Q1 of loose semantic coupling and the associated hy-

potheses H1 and H4. It details the model, experiments, and results.

� Chapter 6- The Thematic Event Matching Model: This chapter focuses on research

question Q1 of loose semantic coupling, and the associated hypothesis H2. It

details the model, experiments, and results.

� Chapter 7- The Dynamic Native Event Enrichment Model: This chapter focuses on

research question Q2 of loose pragmatic coupling, and the associated hypotheses

H3 and H4. It details the model, experiments, and results.

� Chapter 8- Prototype and Use Cases: This chapter discusses aspects of this work

related to building a complete system for the Internet of Things and the event-

based architecture associated with it. The COLLIDER system design and imple-

mentation building blocks are discussed along with real-world use cases.
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� Chapter 9- Conclusions and Future Work: This chapter concludes the thesis and

discusses the potential impacts along with future work.
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Chapter 2

Problem Analysis: Crossing

Boundaries in Open Distributed

Systems

“We build too many walls and not enough bridges.”

— Isaac Newton

2.1 Introduction

Significant trends can be observed in the data landscape in the last decade. Such trends

are instantiated in areas such as the Internet of Things [6] and Big Data [44]. They are

characterized by an increasing number of information sources and users, an increasing

level of heterogeneity, a domain-agnostic nature, and dynamism. Users within large-

scale systems have a non-technical expertise and lack organization as they are highly

distributed and decoupled [45]. Besides, the need to process information on a timely

basis is an significant factor to leverage the potential of such large-scale environments.

Event processing systems have been proposed as a computational paradigm to handle

these challenges [8]. Producers of information items fire atomic and instantaneous events

that carry information to consumers. Producers and consumers are decoupled and they

21
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can only interact by exchanging events. Decoupling is considered as an important factor

for the scalability of distributed event-based systems [11].

Nonetheless, events are supposed to cross system boundaries between participants in

event-based environments. Boundaries are syntactic, semantic, and pragmatic [46]. The

more open, distributed, and heterogeneous the environment becomes, the more sig-

nificant these boundaries become, especially the latter ones. Crossing semantic and

pragmatic boundaries require mutual agreements between participants, which implies

coupling. These agreements add to the issue of semantics and pragmatics an important

social dimension. Using fixed, centralized, and top-down authoritative semantic and

context models is not scalable within large-scale event processing systems [43].

Thus, an inherent trade-off between decoupling for scalability and coupling for crossing

boundaries is recognized. Current decoupling dimensions in event processing systems are

confined to the lower syntactic boundaries. Coupling at higher boundaries constrains the

scalability of event systems within the emerging data landscape such as in the Internet

of Things (IoT). The analysis in this chapter has been mainly presented in the ACM

International Conference on Distributed Event-Based Systems (DEBS 2015) [47].

In Section 2.2, I motivate the problem, and in Section 2.4, recent trends in the data land-

scape are discussed. The evolution path towards event processing is discussed in Section

2.5. Section 2.6 provides a precise definition of the used terminology, and in Section

2.7, I discuss the traits of distribution, heterogeneity, and openness that characterize

large-scale event environments. The principle of decoupling, which is central to event

systems, is discussed in Section 2.8. The current event processing paradigm is projected

onto communication models that cross system boundaries as a theory for event exchange

in Section 2.9. Analysis of the limitations and problem with current event processing

paradigm is described in Section 2.10. In Section 2.11, the set of high-level requirements

tackled in this thesis are formulated along with the associated research questions and

scope. The chapter is summarized in Section 2.12.

2.2 Motivational Scenarios

I start this chapter with two motivational scenarios that are derived from the energy

management domain.



Chapter 2. Problem Analysis: Crossing Boundaries in Open Distributed Systems 23

2.2.1 Scenario 1: Heterogeneous Energy Events

Alice is a sustainability officer in a large corporate in the electronics industry. The

organization has many offices and facilities all over the city. Alice’s job is to ensure that

the company sticks to its Corporate Social Responsibility (CSR) programs such as saving

energy and lowering its overall CO2 emissions. Most of the company’s buildings are

equipped with sensors for energy consumption, temperature, and other environmental

parameters.

Alice wants to set up a rule to notify her when an excessive energy consumption situation

in the public spaces of the buildings is detected. The intended alert should fire when

energy consumption from heating public halls of the buildings increases. Such a scenario

may happen as employees tend to open the windows if it is warm despite the fact that

the heater is still turned on. This rule can be expressed using an Event Processing

Language (EPL) such as Esper’s language [48] as follows:

pattern [ every a=BuildingsEvents(a.type= ‘heater energy consumption increased’

and a.location=‘public hall’)]

While the sources of the required information are available from the buildings IoT nodes,

the semantics of the events differ from one building to another. That is due to differ-

ent manufacturers of the sensors. For instance, events contain terms such as ‘energy

consumption’, ‘energy usage’, and ‘power consumption’ to refer to the same thing.

Alice is not interested in an exact number of such behavioural patterns but rather in a

rough estimate that helps her take an action. Alice asks the IT department to realize

the intended detection scenario. The IT department reports that the scenario requires

a large set of rules such as the one above to be deployed on an existing event processing

engine with all possible variations of semantics to cover the semantic heterogeneity that

exists. These rules take time to be defined and will also need to be updated when the

environment or the requirements change (such as adding new sensors).

2.2.2 Scenario 2: Incomplete Energy Events

For a sustainability officer Dave to do his job, various energy-related sensors are instru-

mented, so events flow into a middleware. Events in such a scenario are encapsulated
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with minimal information recording, for instance, a device’s name and the amount of

energy used. An example attribute-value event describing the energy consumption of a

heater is as follows:

{(type: energy consumption),

(device: heater1),

(consumption: high)}

Non-technical users such as Dave tend to include higher level and business concepts and

checks in their subscriptions to events. Examples of these are the ‘room’ or the ‘floor’

where the event was originated, or the ‘business unit’ or ‘project’ with which the device

is associated. One example subscription is as follows:

{(type= energy consumption)

and (floor= second floor)

and (consumption= high)}

The events do not contain information about the ‘floor’ to answer the subscription.

Thus, to meet the information requirement for this subscription, additional information

sources in the enterprise such as data about the building would need to be exploited.

Dedicated software agents need to be developed to enrich events with sufficient infor-

mation. A large number of subscriptions may require dedicated enrichment agents. As

a result, enrichment routines can become a burden to develop and maintain.

2.3 Challenges

The above motivational scenarios reflect real-world situations with substantial chal-

lenges. The first challenge, reflected in Scenario 1, is tackling semantic variety in an

event environment with a low cost on the users’ side. The second challenge, reflected in

Scenario 2, is ensuring the information completeness of events for processing with a low

cost on the users’ side. These challenges become harder in light of new trends that are

taking place in the data landscape and affecting the assumptions made in computational

paradigms.
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2.4 Significant Trends in the Data Landscape

In recent years, there has been a tremendous increase in information sources and volume.

The Organization for Economic Co-operation and Development (OECD) estimates that

there will be about 50 billion devices connected to the Internet by 2020 [1]. This leads

to challenges for information processing solutions as the volume, velocity, and variety

of data increase. Environments such as smart cities [2], smart buildings [4], and cyber-

physical energy systems [5] are active topics of research throughout the last decade. A

key technology enabler for these areas is represented by the Internet of Things [6].

2.4.1 Internet of Things

The Internet of Things (IoT) aims to connect physical objects, or things, to the Internet

and enable a plethora of applications such as assisted driving and smart cities. From a

high-level architectural perspective IoT can be divided into three tiers [6]:

1. Sensing and communication technologies form the basic infrastructure for IoT

to map the world of things into the world of computationally processable informa-

tion. Radio-Frequency Identification (RFID) plays a critical role within this tier

where RFID tags are attached to real-world things and RFID readers are respon-

sible for instrumenting their information into the Internet. Communication and

networking standards such as the IPv6 over Low power Wireless Personal Area

Networks (6LoWPAN) and the CoAP protocols [6] serve this layer of IoT.

2. Middleware layer abstracts application developers and users from IoT infrastruc-

ture details. Technologies here include the Service-Oriented Architectures (SOA)

[6], the Message-Oriented Middleware (MOM), or hybrid service computing with

event patterns [49]. Event processing systems are a more generic version of MOM

which supports functionalities such as early filtering of events, spatio-temporal

correlation, sequencing, event enrichment, and complex event processing.

3. Application layer builds upon the middleware to provide direct domain-specific

benefits to users. IoT promises new applications in domains including transporta-

tion and logistics, healthcare, smart environments, personal and social media, and

more advanced applications such as robo-taxis and virtual reality.
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Actual deployments have started to appear such as the SmartSantander smart city [50],

the Oulu smart city [51], Friedrichshafen smart city [52], CitySense urban-scale wireless

networking testbed [53], and METRO Future Store for RFID-based retail [54].

Significant efforts in the area of IoT come from communication and networking commu-

nities, e.g. the Internet Engineering Task Force (IETF) [6]. However, there is a growing

realization that the challenges of the IoT will be more prevalent at the data level [7]

including data collection, management, and analytics. At this level, IoT can be linked

with the area of Big Data.

2.4.2 Big Data

The real potential of Big Data is that it will improve decision making in business and

society where it is not based on data and facts, more and more with a data-based process

[55] as put by Jagadish et al. [44]:

“In a broad range of application areas, data is being collected at an

unprecedented scale. Decisions that previously were based on guesswork, or

on painstakingly handcrafted models of reality, can now be made using data-

driven mathematical models. Such Big Data analysis now drives nearly every

aspect of society, including mobile services, retail, manufacturing, financial

services, life sciences, and physical sciences.”

Big Data should not be understood just in terms of data volume. In fact, one of the

most commonly used analysis recognize three dimensions of the phenomenon [56]:

� Volume: refers to the sheer size of the data.

� Variety : refers to the heterogeneity of data representation, types, and semantic

interpretation.

� Velocity : refers to the rate of incoming data, and the need for low latency to act

upon the data.

Jagadish et al. [44] recognize five phases in the Big Data lifecycle being: (1) data

acquisition, (2) information extraction and cleaning, (3) data integration, aggregation,
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and representation, (4) modelling and analysis, and (5) interpretation. Jagadish et al.

[44] argue that much focus has been given to data analysis, with less focus on the other

phases. I do agree and think that phases such as integration are of great importance

to have a properly complete grounding for analysis to take place and benefit from all

possible aspects related to data on the phenomenon of interest.

2.4.3 Common Characteristics

The observed trends of IoT and Big Data signify a considerable shift in the character-

istics of information production, communication, and consumption paradigms. A set of

common characteristics can be identified as follows:

2.4.3.1 Number of Information Sources

The number of sources that can create data has been increasing significantly. For exam-

ple, the International Telecommunication Union (ITU), a United Nations organization,

reports that the number of worldwide mobile subscriptions has increased from 738 million

in 2000 to 7 billion in 2015 [57], i.e. around 800% increase in 15 years. The percentage of

basic mobile devices is shrinking with the use of more smartphones [58] with advanced

capabilities such as Global Positioning System (GPS) information tracking and sensors

on-phone.

2.4.3.2 Data Heterogeneity

Heterogeneity appears in various forms including different types of networks, protocols,

devices capabilities, data formats, and representation [6]. This phenomenon is also re-

ferred to as variety [56]. Heterogeneity in data representation, or semantic heterogeneity,

in IoT follows partially from the number of devices and manufacturers of these devices.

For instance, the Semantic Web [59] is a worldwide initiative to provide structured data

on the Web that started around 2001. It uses Semantic Web technologies such as the

Resource Description Framework (RDF) [60], the RDF Schema (RDFS) [61], and the

Web Ontology Language (OWL) [62]. Falcons [63], a search engine for the Semantic

Web, could discover in 2008 about 4, 000 ontologies on the Web [64], while this number
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has increased to more than 6, 400 in 2015 [65], i.e. more than 50% increase in 7 years. By

analogy, I suggest that a similar trend will be seen in IoT with more data representations

used for things especially in domains such as smart cities.

2.4.3.3 Number of Users

The number of users who have access to data has been drastically increasing. On the

Internet, for example, the ITU reports an increase in the number of individuals using the

Internet from 400 million in 2000, to 3.2 billion in 2015 [57], i.e. around 700% increase

in 15 years.

2.4.3.4 Technical Knowledge of Users

Among a large number of users who have access to the produced data, very few could be

expected to have a proper technical knowledge to do so. For example, according to the

US National Science Foundation, National Center for Science and Engineering Statistics,

about 135, 000 people graduated with a bachelor’s degree in computer, mathematics, or

related disciplines in 2010 [66]. That is about 3% of people in that age bracket [67].

By projecting this ratio into the number of users with access to data, I conclude that

billions of users lack the technical knowledge to access and interpret data if they are not

supported by a computational paradigm to overcome this lack of technical expertise.

2.4.3.5 Organization and Coordination of Users

In large-scale environments of data production and consumption, users do not follow

any form of organization, but they are rather autonomous and decoupled. This fact has

been acknowledged and leveraged in some cases as in crowdsourcing, which harnesses

the knowledge of widely decoupled users to provide services or content [45, 68], as in

Wikipedia for instance [69]. Studies of the demographics of crowdsourcers reveal a

global diversity and geographical distributions of crowdsourcers [70]. I suggest that

similar characteristics can be assumed in IoT settings where users will be decoupled and

non-organized, which affects the assumptions of any computational paradigm for IoT.
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2.4.3.6 Dynamism

The architecture for platforms such as IoT has been continuously becoming more dy-

namic, where data producers and consumers continuously join and leave the environ-

ment. Vermesan et al. call this phenomenon fluid systems that are continuously chang-

ing and adapting and put it as follows [71]:

“In IoT systems ... it is very common to have nodes that join and leave

the network spontaneously.”

This dynamic nature puts constraints on the assumptions that can be made within a

computational paradigm about having full understanding or control over the environ-

ment.

2.4.3.7 Domain

The domain of data in large-scale systems is open rather than specific. For example,

anticipated IoT applications belong to various domains and even some of them such as

smart cities can be domain-agnostic [72]. While individual users could have interests

influenced by a specific domain, data itself comes from many sources with different

contexts. Thus, I argue that data representation should be domain-agnostic in general,

but easily adaptable to specific domains when users have this interest.

2.4.3.8 Timeliness

This is called velocity too [56], and means that due to the high volume of data and

the high number of data sources available in Big Data settings such as IoT, it becomes

crucial to filter important data items as early as possible [44]. It could be economically

expensive to store raw data [44] and thus computational paradigms for these scales

should employ early filtering and detection, as well as indexing to meet the timeliness

requirement.
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2.4.3.9 Information Completeness

Data at large scales coming from distributed sources could be erroneous, inconsistent,

and incomplete for some users’ requirements. Jagadish et al. [44] state that:

“Big Data increasingly includes information provided by increasingly di-

verse sources, of varying reliability. Uncertainty, errors, and missing values

are endemic, and must be managed.”

Given this shift in the data landscape, there has been an evolution in the information

processing landscape to meet these new challenges.

2.5 The Event Processing Paradigm

Throughout the end of the twentieth century and the first decade of the twenty first,

there has been a realization among researchers and practitioners that a new class of in-

formation processing systems is needed. The new class, the event processing paradigm,

has been motivated by a plethora of distributed applications that require on-the-fly and

low-latency processing of information items. Example applications include environmen-

tal monitoring from sensors [73], stock market analysis for emerging trend identification

[74], RFID-based anomaly detection in inventories [75], and security systems such as

intrusion detection [76].

Hinze et al. [9] analyse various applications that could justify the need of the new

paradigm of event processing. They abstract the features required in such applications

and develop a framework that correlate them to their application classes. Features

include for example “spatio-temporal correlation,” “event sequencing,” “out of order

events,” “homogeneous aggregation,” “derived events,” “event enrichment,” “outlier

handling,” “early filtering,” “volume,” “security,” “mobility of event source,” “mobility

of event subscriber,” etc. Cugola and Margara [8] complement this picture to justify a

new paradigm stating that: “The concepts of timeliness and flow processing are crucial

for justifying the need for a new class of systems.”

The concept of timeliness has been expressed in the literature using various terms such

as low latency [77, 78], high throughput [78, 79], low delay [80], volume [9], and real-time
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processing [81, 82]. All of these terms, except real-time processing, can be classified

under the umbrella of fast computing. This term means essentially that the system is

efficient in processing information items in a way that the ratio value
time is maximized.

On the other hand, real-time processing includes the other concept of executing the

information processing task within a time constraint, called a deadline [83]. Timeliness,

as described by Cugola and Margara [8], is much more similar to the concept of fast

computing. Technically, it can be measured by the related concepts of latency and

throughput. Latency is defined in this work as the total time required to process an

information item starting from its arrival to the processing agent until its completion.

Throughput is the number of information items completely processed within a time unit.

The concept of flow processing refers to the processing of information items without the

need to store them. A very relevant concept to both timeliness and flow processing is the

processing of information items as they become available. Thus, timeliness whenever

used in this thesis means low latency, high throughput, and processing as soon as the

information items are available. Real-time processing if used should also be taken to

have this meaning. Stonebraker et al. [81] call this an active model of processing:

“Ideally the system should also use an active (i.e., non-polling) processing

model.”

As an example that encompasses both aspects, consider a system that needs to generate

an alert for excessive energy usage in a room. A situation that could occur when a

projector and lights are turned on in an empty room. Assume that the room is equipped

with sensors to monitor these phenomena. On the one hand, the alert shall be fired once

the situation is detected so an action is taken and no more energy is wasted. On the

other hand, streams from the sensors do not need to be stored if they are non-relevant

to the situation of interest.

2.5.1 Evolution Towards Event Processing

The event processing paradigm has evolved through the work of several communities

in whose artefacts elements of the paradigm can be detected. In the following sec-

tions, I consolidate an evolution path based on works by Cugola and Margara [8],

Hinze et al. [9], Etzion [10, p. 16–21], Eugster et al. [11], and Mühl et al. [12, p. 7–8].
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2.5.1.1 Active Databases

Active databases started to appear during the last two decades of the twentieth century

[13]. The term active is put in contrast to the term passive that is assumed to exist in

database systems before the appearance of active databases. Paton and Dı́az define a

passive mode as:

“Traditional database management systems (DBMSs) are passive in the

sense that commands are executed by the database (e.g., query, update,

delete) as and when requested by the user or application program.”

The challenge when applications are developed on top of passive databases is that it is

sometimes needed to detect a situation in the database as soon as it happens so that an

action can be taken upon it. For example, a database system stores information about

a bus transportation company and is available to booking applications from multiple

travel agencies. If the booked seats of a particular route exceed some threshold, the

system administrator shall notify the operations department to provide more buses or

consider double-deck buses in advance. With passive databases, this behaviour must be

incorporated in every booking application to query the database, check the condition

after each booking, and notify the system administrator. This causes a redundancy of

business logic among distributed applications and affects maintenance. Active databases

move the reactive behaviour from the application layer to the database layer.

Three parts of an active behaviour are recognized: event, condition, and action [13].

These parts are encoded in active databases using rules that are called in this context

Event Condition Action (ECA) rules. HiPAC [84, 85] has been the first system to

propose the ECA model along with an architecture of the system [8]. Ode [86, 87] is

an object-oriented active database system that uses triggers and supports detection of

a set of events to fire the trigger. SAMOS [88] is similar to Ode and can also consume

external events. Snoop [89] defines an active database rule language independent from

the underlying data model, making it suitable for relational or object-oriented models.

As active databases are centred around a persistent storage as opposed to processing

in-flow, their performance degrades when the number of updates or the number of active

rules become very high.
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2.5.1.2 Reactive Middleware

In a distributed heterogeneous application network of different operation systems, ap-

plications need a homogeneous view, so developers are abstracted from low-level issues

of distributions and focus on the application logic [12, p. 2]. Within the context of static

networks, middleware systems view data and services stationary in objects of databases.

This fixed topology allows an interaction model of request/reply to and from the sta-

tionary nodes. That has given rise to the Remote Procedure Call (RPC) paradigm [16]

and its derivative client/server architecture. Many middleware systems have been devel-

oped such as the Object Management Group (OMG)’s Common Object Request Broker

Architecture (CORBA) [15] developed for object-oriented software distribution, and the

Java Platform Enterprise Edition (J2EE) [14].

When the stationary assumption of networked applications is not valid, the request/reply

paradigm is limited as it imposes a tight coupling between the communicating parties

[11]. Clients use more resources to check for data integrity, and more-than-necessary

polling of remote data stores causes unnecessary waste of resources [12, p. 2]. Thus,

asynchronous extensions have been added to the existing middleware systems [9] such

as a J2EE extension [90] and the Real-time CORBA Event Service [91].

2.5.1.3 Event-based Software Engineering

Complex software systems consist of many integrated components that collaborate to

achieve the overall system’s goal. Consider for example an object-oriented architecture,

the classical way for components to interact with each other is by explicit invocation

where objects explicitly have references to each other. Each object then explicitly calls

methods contained in other objects.

An alternative to this mechanism is called implicit invocation [17] where a component

fires events that announce some actions, which have occurred. Other components, which

are interested in particular actions, register their interest and, as a result, they get

notified whenever such events happen so they can react properly. This principle is widely

used now in Enterprise Application Integration (EAI) [18] and software design patterns

such as the observer pattern [92, p. 293–304]. Implicit invocation has been employed
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in various areas such as Aspect-Oriented Programming (AOP) [19] and Graphical User

Interfaces (GUIs) [20].

2.5.1.4 Message-Oriented Middleware

The Internet is based on a set of protocols and primarily the Internet Protocol (IP).

According to the IP-based architecture, nodes on the Internet can communicate via a

coupled, synchronous, and end-to-end interaction scheme [11]. Nonetheless, the Internet

has become a platform for distributed applications that exchange information in a way

that the location and behaviour of these applications are dynamic. Thus, a decoupled

interaction scheme has become crucial to the development of large-scale applications as

stated by Eugster et al. [11]:

“Individual point-to-point and synchronous communications lead to rigid

and static applications, and make the development of dynamic large-scale

applications cumbersome ”

A middleware layer can serve as the distribution platform over the IP-based Internet in

a transparent manner to the dynamic higher level applications. Eugster et al. [11] give

the coupling dimensions of the interaction scheme a great importance to scalability, as

discussed in Section 2.8. They recognize three dimensions of decoupling: space, time,

and synchronization that are concerned respectively with addresses, activity time, and

blocking.

Communication paradigms such as remote procedure call [93] and shared spaces [94]

are coupled on one or more of these dimensions. Thus, the publish/subscribe paradigm

evolved to overcome this issue [11]. In publish/subscribe the publishers send messages

to the middleware, and the consumers subscribe to particular messages of interest (also

called events in this context). The way subscribers can express their interests vary and

thus various publish/subscribe schemes exist:

� Topic-Based Publish/Subscribe suggests that producers publish their messages on

named logical channels. The names of the channels are derived typically from the

content of the messages to form a logical grouping of them. Topics may have a
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hierarchical naming scheme similar to a Uniform Resource Identified (URI) and

can use wildcards. Early examples are iBus [95] and TIBCO Rendezvous [96].

� Content-Based Publish/Subscribe uses the actual content of event messages as the

routing mechanism and the matching basis between events and consumers interests

[97]. Consumers register their subscriptions in terms of filters that are used for

matching. Filters can comply with a tuple model, an attribute-value model, a

hierarchical model for XML, or a graph model [12, 26]. Early examples of content-

base publish/subscribe approaches include Siena [22], Elvin [98], Jedi [99], and the

Java Messaging Service (JMS) [100].

� Type-Based Publish/Subscribe depends on the use of event types from the type

hierarchy of programming languages to address that events have structure in com-

mon as well as the topic name [23].

� Concept-Based Publish/Subscribe defines a mediator layer based on an ontology

for resolving data heterogeneity between events and subscriptions [40]. This topic

will be tackled in further detail throughout this thesis.

I argue that the publish/subscribe paradigm be the main cornerstone to the modern

event processing paradigm. That is due to the view of a message as an individual data

item that may have temporal semantics to qualify for an event. Thus, discussions of

the current principles and fundamental issues of event processing, especially decoupling,

could be based on previous work in the publish/subscribe research.

2.5.1.5 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) advanced the traditional one sensor architecture to

build a large ad-hoc network of communicating sensor nodes that have a better sens-

ing coverage to some stimuli. WSNs have been enabled by advancements in wireless

communication and low production costs for sensor devices that hold sensing, data pro-

cessing, and communication elements [101]. Akyildiz et al. [101] recognize several design

factors that have been addressed by researchers including “fault tolerance,” “scalabil-

ity,” “production costs,” “hardware constraints,” “network topology,” “environment,”

“transmission media,” and “power consumption.” Power consumption forms one of the
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main challenges which requires power efficient routing protocols to move data sensed by

the nodes to interested sink nodes [9].

I argue that each node in a WSNs can be compared to an event processing engine.

However, abilities of sensor nodes to process data are limited due to power and hardware

constraints. Although the scale of sensor networks can reach a magnitude of thousands

of nodes, the variety in the sensed data is still manageable when compared to that which

exists in data generated in enterprise applications or humans on the Web. They also

form ad-hoc solutions as opposed to a generic event processing paradigm where events

can come from sensors or other sources [10, p. 16].

2.5.1.6 Data Stream Management Systems

Active databases do not scale under high rates of database updates or large numbers of

rules as the discussion in Section 2.5.1.1. Thus, the database community developed Data

Stream Management Systems (DSMSs) to cope with high rates of data updates. Streams

form the basic concepts in a DSMS as opposed to tables in conventional databases. A

stream is an unbounded table of tuples. Tuples have no assumption on their arrival

order and typically have no temporal semantics [8].

DSMSs adopt an interaction paradigm based on continuous queries where users register

a set of queries with the DSMS [102]. DSMS is responsible for evaluating the queries

periodically and notifying users accordingly. This model is a Database-Active Human-

Passive (DAHP) model as opposed to the Human-Active Database-Passive (HADP)

model exemplified by conventional database systems [103]. The time constraints of

DSMS applications, such as real-time monitoring, prevents the storage for delayed pro-

cessing and requires an in-flow processing model. Windows are associated with DSMSs as

operators to limit the stream from which input data items are considered for processing.

Example DSMS engines include: TelegraphCQ [104], NiagaraCQ [105], OpenCQ [106],

Tribeca [107], CQL/Stream [35], Aurora/Borealis [103], Gigascope [108], and Stream

Mill [109]. Commercial DSMSs also exist such as Sybase Coral8 Engine [110], SteamBase

[111], and IBM System S [112].

DSMS extend the event-based model and the reactive behaviour with transformation

operators, that is operators that consume one or more streams and produce a transformed
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stream. Cugola and Margara [8] analyse DSMSs and find basic commonalities that

distinguish this category of systems:

� Data items are homogeneous in a stream: A stream is similar to a conventional

relational table of data tuples that share the same set of properties such as in

TelegraphCQ [104], NiagaraCQ [105], OpenCQ [106], Tribeca [107], CQL/Stream

[35], Aurora/Borealis [103], Gigascope [108], and Stream Mill [109].

� Data items do not typically have temporal or causal semantics: There is no total

order assumed for the data items and thus sequence or caused by operators, for

example, cannot be found in pure instances of such systems, e.g. [35, 103, 105–

107, 109]. However, some DSMSs such as TelegraphCQ [104] and Gigascope [108]

have some form of temporal or causal order.

� Languages are typically of a transformation nature: Examples can be found in

[35, 103–109]. Consequently, a rule processes input streams by filtering, joining,

or aggregation and produces an output stream. Detection languages of clearly

recognized condition and action parts are not the dominant type.

� Languages can be declarative or imperative: SQL-like declarative languages can be

found in [35, 104–106, 108, 109]. Imperative languages as in [103, 107] depend on

plans of operators that can be graphically expressed.

I argue that the critical and most important feature that can distinguish DSMSs is the

handling of streams as the most atomic information item. Although streams contain

smaller items, those are homogeneous and lack total temporal or causal ordering. This

fact has deep impacts on other features of DSMS such as the type of operators that

are found in DSMSs to deal with streams as inputs and streams as outputs. Events, as

I define and use in this thesis, are the information items when the system can handle

them separately not necessarily in a stream. That is the view adopted in complex event

processing systems as discussed in Section 2.5.1.7 and Section 2.6.

2.5.1.7 Complex Event Processing

Data stream management systems do not associate particular semantics to their data

items. They serve as generic systems that process generic data items similarly to the
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case of conventional database systems. On the other hand, event processing systems

associate specific semantics to their data items. They are computer objects that repre-

sent notifications of actual or virtual happenings as gathered by sources. That is, events

are the most atomic data items in event processing systems as opposed to streams in

DSMSs.

Publish/subscribe systems [11] form the basis for event processing systems, with pro-

cessing focused on filtering and routing. Typical publish/subscribe systems process one

message, i.e. event, at a time . Events are matched against subscriptions without looking

at what previous events happened before in the history [113]. Thus, the publish/sub-

scribe systems have been extended with the notion of matching multiple events against

a single subscription, or rule. This set of events is called a pattern and they signify a

composite event [114], a complex event [115], or a situation of events [116].

A Complex Event Processing (CEP) engine thus emphasizes the matching of event

patterns specifically with ordering conditions such as temporal sequencing and causal

relationships. They take the name from Luckham’s book “The Power of Events: An

Introduction to Complex Event Processing in Distributed Enterprise Systems” [115].

For instance, a complex event engine fires an excessive energy consumption event if an

occupancy sensor detected that a room is empty and a light sensor detected that the lights

are on for at least 10 minutes after the last person left the room.

Examples of CEP engines include: Rapide [117], GEM [118], Padres [114], DistCED

[119], Cayuga [120], NextCEP [121], PB-CED [122], Raced [123], Amit [116], Sase [124],

Sase+ [125], Peex [126], and TESLA/T-Rex [127, 128]. Commercial systems do also

exist such as SAP Event Stream Processor [129], Oracle Event Processing [130], Esper

[48], TIBCO Business Events [131], and IBM WebSphere Business Events [132].

Use cases for CEP engines such as environmental and business process monitoring as

well as actuation systems, usually require CEP engines to interact with a large set

of distributed components such as events sources and consumers. Thus, the research

agenda of complex event processing has been impacted by distributed views of CEP

engines (or agents), over a network. CEP research is typically concerned with relevant

topics such as bandwidth, throughput, latency, the distribution architecture, forwarding

schemes, and the placement of various pieces of processing logic over the network.
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Cugola and Margara [8] present the main common aspects that distinguish CEP engines

as follows:

� Data items are heterogeneous: Events are not supposed to fall into one data model

within a stream and multiple types of events can feed into one input of the CEP

engine as in Rapide [117], GEM [118], Padres [114], DistCED [119], PB-CED

[122], Raced [123], Amit [116], Sase [124], Sase+ [125], Peex [126], TESLA/T-Rex

[127, 128], and TIBCO Business Events [131].

� Data items typically have temporal and/or causal semantics: That is a total order

is assumed for the data items and thus sequence or caused by operators can be

found in most instances of these systems as in Rapide [117], GEM [118], Padres

[114], DistCED [119], PB-CED [122], Raced [123], Amit [116], Sase [124], Sase+

[125], Peex [126], SAP Event Stream Processor [129], Oracle Event Processing

[130], Esper [48], TIBCO Business Events [131], and IBM WebSphere Business

Events [132].

� Languages are of a detection nature: Clearly distinguishable condition and action

parts can be found in these languages as in Rapide [117], GEM [118], Padres [114],

DistCED [119], PB-CED [122], Raced [123], Amit [116], Sase [124], Sase+ [125],

Peex [126], TESLA/T-Rex [127, 128], and TIBCO Business Events [131].

Event processing within this scope is understood to deal with atomic items that are

records that could exist independently of others and not necessarily in a stream. Such

events have partial/total temporal or causal order that allows CEP authors to write

rules with complex patterns that leverage such relationships to detect complex events.

The result of detection is a derived, and possibly abstract, event that is produced by

the CEP engine to join the overall set of events and can feed back into the input or be

forwarded to the user for consumption.

2.5.2 The Information Flow Processing Domain

There have been multiple works for consolidating the picture of event processing systems

and providing a unified version over the communities they emerged from. Descriptions
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Figure 2.1: The IFP functional model 1

and classifications of active database systems, for instance, have been studied by Mc-

Carthy and Dayal [85], and Paton and and Dı́az [13]. Analysis of data stream manage-

ment systems have been done by Babcock et al. [133], Golab and Özsu [134], and Babu

and Widom [102]. Similar surveys and analysis have been conducted for publish/sub-

scribe systems by Eugster et al. [11] and Mühl et al. [12], as well as work for event

processing systems by Luckham [115], Etzion and Niblett [10], Hinze et al. [9], and the

glossary by the Event Processing Technical Society (EPTS) [21].

I think that among those studies, the analytical survey done by Cugola and Margara [8]

is the most comprehensive for the following reasons: (1) they provide a wide coverage of

relevant paradigms, (2) they define an umbrella paradigm of the emerging systems and

call it the Information Flow Processing (IFP) Domain, and (3) they build their analysis

on several models in order to study the IFP domain.

Figure 2.1 presents an elaboration of Cugola and Margara’s first model, functional

model, and shows the main functionalities of an IFP engine. Event Sources are human,

software, or hardware agents that create events. Events propagate get received by

the Receiver that sends the events to the Decider. The Decider is responsible for the

detection of conditions or patterns that hold in single events or a set of events according

to the condition parts of the Rules registered in the engine. When a condition is detected

in the Decider, the participating events that caused the detection are propagated along

with the condition to the Producer, refer to A and B at the centre of Figure 2.1.

The Producer generates an event as dictated by the action parts of the Rules whose con-

ditions or patterns are detected with possibly binding of placeholders with actual values

1Adapted from Cugola and Margara’s functional model [8]
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from events. The generated events may feed back to the Receiver and/or propagate to

the Forwarder that sends them to the external event Consumers, which may be human

agents, software applications such as user interfaces, or hardware agents. The Decider

keeps in its working memory a History of events that may be eligible to trigger a de-

tection. The Single Event Matcher detects only single events that match some filtering

conditions while the Complex Pattern Matcher detects a pattern of events such as the

sequence of two or more events that have passed single event matching.

The second model for analysing IFP engines is the processing model. When an event

arrives at the engine, a detection-production cycle occurs. Its output is determined by

the decider, rules, history, and the knowledge base. The processing model is concerned

with three important factors: the selection, consumption, and load shedding policies.

Selection policy can be single, multiple, or programmable to determine how many times

a rule is fired upon an incoming event. Consumption policy can be zero, selected,

or programmable to determine in how many detection-production cycles an incoming

event can participate. Load shedding includes techniques to drop some events where

their incoming rate is higher than the processing capacity of the engine.

The third model to classify IFP engines is the deployment model being centralized or

distributed. The fourth model for IFP engines is the interaction model, which can be

push-based where the first component initiates the interaction, or conversely pull-based.

The fifth model to analyse IFP engines is the data model: events being homogeneous

or heterogeneous, the format being: tuples, records, objects, hierarchical like XML, or

graphs, and whether the engine can deal with uncertainty.

The sixth model is the time model. It defines whether the engine can establish a

happened-before or causal, partial, or total order between events. The seventh model

is the rule model being transforming or detecting rules. The eighth and final model

to classify engines is the language model being either declarative or imperative. Lan-

guages can also be studied according to the available operators.



Chapter 2. Problem Analysis: Crossing Boundaries in Open Distributed Systems 42

2.6 Terminology and Definitions

The central concepts of the event processing paradigm which are used within this work

are: events, producers and consumers, subscriptions and rules, and event engines.

2.6.1 Event

The first aspect to consider about an event is the fact that it reflects some activity in

the real world or some virtual realm. For example, ‘a person left the room 10 minutes

ago’ is an activity that happened in a real world building at a recent point in time. This

meaning is typically found in English dictionaries. Merriam-Webster online dictionary

[135] defines an event as:

“Something (especially something important or notable) that happens.”

Oxford British and World English online dictionary [136] defines it as:

“A thing that happens or takes place, especially one of importance.”

Within the event processing research and technical community, this meaning has been

captured by Luckham [115, p. 88–90] as the significance of the event, by Mühl et al.

[12, p. 11], Etzion and Niblett [10, p. 4], and the EPTS glossary [21] as the event.

The other important aspect is related to the information object or message that rep-

resents the first meaning in a computing system. For example, a Java object of type

‘PersonLeftEvent’ and suitable data fields can represent the real world happening that

‘a person left the room 10 minutes ago’ in an Esper deployment. This meaning has been

captured by Luckham [115, p. 88–90] as the event’s form, by Etzion and Niblett [10,

p. 4] as the event, by Mühl et al. [12, p. 11] as notification, by Cugola and Margara [8]

as an information item, and in the EPTS glossary [21] as the event, event object, event

message, and event tuple.

I adopt in this work the term event to refer to both meanings, including the meaning

of information items of the generic IFP domain (Section 2.5.2). Nonetheless, the term

event as used throughout this work refers mostly to the meaning of the digital object
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that represents the real world occurrence. Other terms, such as message, are also used

to refer to this meaning. Thus, I herein adopt the EPTS glossary [21] definition as:

Definition 2.1 (Event). “An object that represents, encodes, or records an event,

generally for the purpose of computer processing.”

Other terms that are usually associated with events are defined below:

Definition 2.2 (Event Stream). A totally ordered set of homogeneous events. Ordering

refers to time, causality, or aggregation, also called event relativity by Luckham [115,

p. 88–96].

Definition 2.3 (Event Cloud). “A partially ordered set of events.” [21]

Definition 2.4 (Single Event, or Simple Event). “An event that is not viewed as sum-

marizing, representing, or denoting a set of other events.” [21]

Definition 2.5 (Complex event). “An event that summarizes, represents, or denotes a

set of other events.” [21]

Definition 2.6 (Event Type, Event Class, Event Definition, or Event Schema)). “A

class of event objects.” [21]

I argue that time be not a very central concept in the paradigm as it is conceived. In fact,

time has two faces that occur in literature. The first one, timeliness, is about in-flow

processing and latency as discussed in Section 2.5 which is a system feature rather than

an event feature. The other one, timestamp, is about the point in time when the event

happens or is detected. This latter one makes sense mainly when events are projected

together, so it is about the relationship and order between events, or event relativity

in Luckham’s terms [115, p. 88–96]. Thus, I argue that it be an extrinsic property of

events, rather than an intrinsic property.

2.6.2 Producers and Consumers

Events flow within networks of event agents that produce, process, or react to events

[115, p. 176–177]. This entails the following definitions:

Definition 2.7 (Event Producer, or Event Source). “An event processing agent that

sends events.” [21]
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Definition 2.8 (Event Consumer, or Event Sink). “An event processing agent that

receives events.” [21]

Let us take an example from software engineering. A software component that plays

the role of a producer is a “self-focused” component as called by Mühl et al. [12, p. 12]

as it observes its own internal state. The event is then a change in that state. The way

components are programmed to define what and when to publish and event is the topic

of areas such as debugging [137], reflection [138], and Aspect-Oriented Programming

(AOP) [19]. Event consumers react to events delivered to them via the network. An

agent can play both roles at the same time.

2.6.3 Subscriptions and Rules

Users exist in event processing models as shown in Figure 2.1. Subscriptions and rules

are entities that allow users to express their interest in an event or situation and possibly

react to it. That entails the following definitions:

Definition 2.9 (Subscription, or Event Template). A filter that describes an event of

interest to the user. A template is a subscription which has some parameters as variables.

Definition 2.10 (Rule). “A prescribed method for processing events.” [21]

Subscriptions are typically filters, while rules usually have explicit parts for the event(s),

and an action to be taken when the events are detected. Subscriptions and rules conform

to a language model which is dependent on the underlying event model as described by

the rule model in Section 2.5.2. The detection part of subscriptions and rules may refer

to single events, or to a pattern of events.

Definition 2.11 (Event Pattern). “A template containing event templates, relational

operators and variables. An event pattern can match sets of related events by replacing

variables with values.” [21]

The action part in complex event processing rules are typically events that are generated

upon detection.

Definition 2.12 (Derived Event). “An event that is generated as a result of applying

a method or process to one or more other events.” [21]
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2.6.4 Event Processing Engine

Event engines are central to the paradigm of event processing.

Definition 2.13 (Event Processing Engine, or Agent). “A software module that pro-

cesses events.” [21]

The term processing is understood within the functional model of Section 2.5.2. It

consists of receiving events, management of rules, deciding on a detection condition,

producing derived events, and forwarding events.

2.7 Traits of Large-Scale Event Processing

Herein, I analyse three main traits of event processing systems from a technical perspec-

tive. I suggest that these traits are fundamental characteristics for event systems when

dealing with large-scale environments.

2.7.1 Distribution

Distribution can be understood from two complementary aspects. This first aspect of

distribution is the placement of processing workloads on different nodes and as a result

makes use of parallel computing. This can be done on a cluster or a network of connected

processing units.

The second aspect is that environments at large-scales are inherently distributed with

event production and consumption happening at distributed components. As put by

Cugola and Margara [8]:

“This feature also has an impact on the architecture of CEP engines. In

fact, these tools often have to interact with a large number of distributed

and heterogeneous information sources and sinks which observe the external

world and operate on it.”

Thus, even when dealing with a centralized event processing engine, considerations of

the innate nature of distribution of the environment of event producers and consumers
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shall be taken into account. For this purpose, I define a distributed event processing

environment as follows:

Definition 2.14 (Distributed Event Processing Environment). A deployment of event

processing network where event producers, consumers, and processing engines may be

distributed across multiple physical networks, computers, and software artefacts [21].

The functionality of event processing engines does not need to be distributed or paral-

lelized.

2.7.2 Heterogeneity

Heterogeneity occurs at large scales in the form of differences in hardware components,

protocols, operating systems, middleware, and data [24]. This work is concerned with

data heterogeneity in event systems as described by Mühl et al. [12]:

“Syntax and semantics of notifications are likely to vary and there are

inevitably different data models in use.”

This work deals with semantic heterogeneity. I start by defining semantics first. I draw

here on Gärdenfors [139, p. 151]:

Definition 2.15 (Semantics). Semantics can be defined as the mapping S between

symbolic words and expressions of a language L and their meanings M.

Two crucial aspects can be recognized in this definition. The first one is the set of

meanings M. What meaning is and how it is represented is discussed in more detail in

Section 5.4. The other crucial aspect of Definition 2.15 is the language L which is used

to describe event content. A language can be understood as a set of terms, or lexicons,

and a syntax to connect these terms and form sentences. I deal mainly with terms in

this work without focus on syntax. Thus, I reduce the mapping S to a relation between

the terms of L and the set of meanings M.

In a distributed environment, each event processing agent of A = {a1, a2, ..., an} (pro-

ducers or consumers) has a set of meanings Mai . Consequently, sets Mai come from the

human users or developers who configure or program the event agents. For simplicity,
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Figure 2.2: Event semantic heterogeneity

I assume that all humans have the same set of meanings which contain all the sets, i.e.

M =
⋃

1≤i≤n
Mai .

Let us now assume that each event agent uses a different set of terms, or language, to

describe events, being languages Lai for agents A = {a1, a2, ..., an}. By discarding the

syntax structure of languages and assuming that there is a super set of symbols used by

all the agents I get the language L =
⋃

1≤i≤n
Lai . This assumption can be valid for the

sake of simplicity. Now, semantic heterogeneity, as shown in Figure 2.2, can be defined

as follows

Definition 2.16 (Semantic Heterogeneity). It is the use of different mappings Si from

M to L by each event agent ai.

Last but not least, to make this trait more realistic, it is important to notice that

moving between meanings and symbolic terms of the language used to describe the

event is guided by surrounding data, or context. A context Ci at the event agent ai

serves then as a parameter to how the semantic mapping Si is interpreted.

2.7.3 Openness

While the term ‘open’ has been frequently used in the literature to describe large-scale

distributed event systems, e.g. [140], it has not been defined precisely. Thus, herein

I draw upon the definition commonly used in systems theory [141, p. 139–153] as the

system that has external interactions in the form of information, energy, or matter

transfer through the system boundary. A boundary here separates the system from its

environment. For example, in biology a cell exchanges chemicals with its environment

through its membrane and thus it is an open system from this perspective.
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In event processing environments, I consider each event agent as a system. Thus, I define

an open system, or environment, from different perspectives which are the concern of

this work as follows:

Definition 2.17 (Open Event System- The Semantics/Context Perspectives). It is the

event environment where any event agent can in theory exchange events with any other

event agent that uses different event semantics/context i.e. event agent x which has

semantic mapping Sx and context Cx can in theory exchange events with another event

agent y which has semantic mapping Sy and context Cy.

2.8 The Principle of Decoupling

A principle that can be considered very fundamental to the event-based interaction

paradigm is the use of the event to decouple producers and consumers as stated by

Etzion and Niblett [10, p. 34]:

“An event has meaning that is independent of its producer and of its

consumers, and as a result event producers and event consumers can be

completely decoupled from each other. The idea of using the event itself to

decouple the event producer and event consumer is a significant difference

between event-based programming and application design based on request-

response interactions.”

I herein define decoupling using the analysis of Eugster et al.:

Definition 2.18 (Principle of Decoupling). It is “removing all explicit dependencies

between the interacting participants.” [11]
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The true impact of this principle is the increase of scalability [11]. Eugster et al. [11]

recognize three dimensions of decoupling as shown in Figure 2.3:

� Space decoupling suggests that participants do not need to know each other. Pro-

ducers do not hold references to consumers or know how many of them are actually

interacting and vice versa.

� Time decoupling means that participants do not need to be active at the same

time.

� Synchronization decoupling suggests that event producers and consumers are not

blocked while producing or consuming events.

Decoupling is also called implicit interaction [12, p. 150]. It means that the control over

an event-based system has been decentralized into an autonomous version. Mühl et al.

[12, p. 150] describes this phenomenon as follows:

“This control has been relinquished deliberately in favour of the loose

coupling. It is withdrawn from the components, replacing explicit addressing

with the matching of notifications to subscriptions. The explicit control of

interaction given in request/ reply approaches is replaced by the implicit

interaction in event-based systems.”

I argue that the hypothesis that removing explicit dependencies between event producers

and consumers leads to an increased scalability needs to take into consideration that

dependencies in fact have been moved to events and thus extra importance and meaning

is put inside the event objects. Thus, in my opinion this hypothesis can not be accepted

in an absolute sense. But rather, with taking other assumptions into considerations.

As autonomous events can lead to ambiguities in semantics or context, that requires

participants to collaborate again in order to solve. That leads to limitations on scala-

bility and as a result undermines the very fundamental reason of why participants are

decoupled. I believe that any computational paradigm that tackles event processing at

large scales, in distributed, open, and heterogeneous environments must take into con-

sideration that it has valid assumptions that do not break the principle of decoupling,

and thus do not affect scalability.
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2.9 A Theory for Event Exchange

Event processing systems at large scales are distributed, open, heterogeneous, with de-

coupled components that exchange messages. This requires an abstraction which helps

better analyse these systems and their challenges. A useful abstraction is a communica-

tion model as discussed in Section 2.9.1.

2.9.1 The Model of Communication

One of the earliest models is the mathematical model of communication developed by

Shannon and Weaver [142] and shown in Figure 2.4. The purpose of the Shannon-

Weaver model is to provide a model for technical transfer of information supported by

quantification means of information based on the mathematical theory of probability

and entropy. It has similarities at an abstract level with the event processing model as

presented in Sections 2.5 and 2.6.

The model consists of six elements as illustrated in Figure 2.4: an information source, a

transmitter, a channel, noise, a receiver, and a destination. Chandler [143] in his work

on semiotics, the theory of signs and meanings, analyses communication models as an

aspect of the theory. He recognizes transmission as a basic level of moving signs, or

symbols, between participants but which by itself constitutes a small and mechanical

fraction of communication [143, p. 178–179]. Chandler describes the Shannon-Weaver

model as a model of information transmission rather than of information communication.

That is due to the fact that it ignores semantic and contextual aspects of communication,

which are crucial for communication to succeed. In fact, those has been left out of

the model deliberately as stated by Shannon and Weaver themselves for example on

semantics:
2Based on [142]
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“The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another

point. Frequently the messages have meaning; that is they refer to or are cor-

related according to some system with certain physical or conceptual entities.

These semantic aspects of communication are irrelevant to the engineering

problem.” [142]

2.9.2 Event Exchange as Crossing System Boundaries

A framework for knowledge exchange has been proposed by Carlile [46, 144] within the

area of organization science. Its foundations can be traced back to the Shannon-Weaver

model with implications for information systems.

Carlile’s framework is concerned with the exchange of knowledge between systems (prod-

uct development teams in his concrete case). He defines the task of knowledge exchange

as a task of crossing boundaries between systems. Carlile recognizes three main levels

of boundaries that may exist in a given knowledge exchange scenario:

� A Syntactic Boundary describes the boundaries between systems that focus on the

sharing and establishment of a common syntax across a given boundary. This view

has been established by Shannon and Weaver [142] in their communication theory

where syntax has the form of zeros and ones. They claim that once such a syntax

is shared, accurate communication can be ensured and the task becomes that of

information processing rather than communication. This view has been adopted by

system theorists such as Bertalanffy [141]. Carlile [46] sees that crossing syntactic

boundaries is synonymous to transferring knowledge across those boundaries.

� A Semantic Boundary starts to appear when some meanings become unclear or

ambiguous. Even when syntax is established, interpretations can be different be-

tween the two sides of a boundary. This issue has been left out of the Shannon-

Weaver theory as discussed in Section 2.9.1. The essential premise is that a message

conveys meanings rather than mere symbols. This has been the emphasis of lin-

guists such as Reddy [145] in his theory of the “metaphor of conduit” which states



Chapter 2. Problem Analysis: Crossing Boundaries in Open Distributed Systems 52

Event 
Producer 

Pragmatic 

Semantic 

Syntactic 
Event 

Consumer 

Boundaries 

Known 

Open 

Known 

Open 
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that language reveals metaphors about communication itself as meanings are con-

veyed through language containers. Carlile [46] sees crossing semantic boundaries

as synonymous with translating knowledge across the boundaries.

� A Pragmatic Boundary appears when assessing the exchanged knowledge requires

a bigger picture of the interacting parties’ mutual and conflicting interests and

contexts. The origin of the pragmatic view can be traced back to work by semi-

oticians such as Peirce [146]. Carlile [46] sees crossing pragmatic boundaries as

synonymous to transforming knowledge across the boundaries.

Carlile [46] views boundaries as existing in every scenario, but with different importance.

He suggests that boundaries exist in an incremental manner, that is syntactic boundaries

always exist, then semantic boundaries can be significant above that, followed by the

pragmatic boundaries as shown in Figure 2.5. Carlile argues that the complexity and

dominance of semantic and pragmatic boundaries increases when uncertainty increases.

That is the case when moving from known environments to open environments with

novel types of participants requirements.

Carlile’s framework is complemented with the notion of boundary objects. This con-

cept has been developed by Star and Griesemer [147] to analyse the heterogeneity in

distributed scientific communities. Carlile [46, 144] reuses the concept of boundary ob-

jects within his boundary-based knowledge exchange framework. Carlile suggests that
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boundary objects, such as design documents in the concrete case of product develop-

ment, are the key to make tacit knowledge explicit, which leads to the effective crossing

of boundaries.

2.9.3 Discussion

I herein project the event processing paradigm onto the previously discussed abstractions

of communication and knowledge exchange across boundaries. Each event agent can be

considered as a system by itself. This system can exchange knowledge with the external

world via events. The whole event-based system then becomes a system of systems.

Event agents, i.e. systems, have boundaries (hence Carlile’s boundaries [46]) that they

have to cross in order to communicate (hence Shannon-Weaver’s model [142]) with other

systems. Boundaries are syntactic, semantic, and pragmatic. Events are not a mere

exchange of symbols, but rather meanings signified by symbols (hence the semiotics

view [145]).

Events must effectively cross the three levels of boundaries in order to establish commu-

nication between event agents. For this to happen, I think events should be thought of as

the boundary objects (hence Star and Griesemer [147]) that must have the effectiveness

characteristics of Carlile, i.e. at the syntactic, semantic, and pragmatic levels.

I argue that the current event processing paradigm is focused at crossing lower bound-

aries, i.e. syntactic, for achieving the task of event transfer rather than of event-based

communication. Thus, human agents are needed in the loop to cross semantic and prag-

matic boundaries which leads to hindering the paradigm as these tasks are external to

it rather than being at the core of it.

The space, time, and synchronization decoupling dimensions of Eugster et al. [11] con-

tribute to event transfer across syntactic boundaries only. Semantic and pragmatic

boundaries are inherent in large-scale, open, distributed and heterogeneous environ-

ments such as the Internet of Things. This in turn leads to magnifying the problematic

nature of semantic and pragmatic coupling which contradicts with the fundamental basis

of event systems as decoupled and scalable systems as discussed in Section 2.10.

3Adapted from Carlile’s framework [46]
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2.10 Limitations of the Current Event Processing Paradigm

One of the main requirements for event processing systems is scalability. From a software

performance perspective, Bondi [148] defines Scalability as follows:

Definition 2.19 (Scalability). “The concept connotes the ability of a system to accom-

modate an increasing number of elements or objects, to process growing volumes of work

gracefully.” [148]

On the other hand, a system is non-scalable according to Bondi [148] if:

“we usually mean that the additional cost of coping with a given increase

in traffic or size is excessive, or that it cannot cope at this increased level at

all.”

From the above discussion, two aspects of scalability can be recognized:

� Load, which is the volume of work that a system is supposed to handle.

� Cost, that must be paid in return for scalability to meet the load.

Load as a general term has been instantiated in event processing research in different

ways including: volume of input streams and the complexity of processing [81], number

of subscriptions and the volume of event messages [149], increase in event sources [34],

number of producers, number of consumers, number of agents, and size of state [150].

Cost on the other hand is usually realized by adding new machines or processors [81]. In

this work, I define a model of load based on an increase in: the number of event producers

and consumers, the number of users, the proportion of non-technical users, the level of

semantic heterogeneity in the event environment, and the level of context-dependent

event processing in the event environment.

Within the current event processing paradigm, the cost model to meet scalability for

this load can be described based on:

1. The level of agreement between event producers and consumers on the semantic

interpretation of events and users’s interests to cross the semantic boundaries.
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For instance, a high level of agreement results from the granular agreements on

the individual meanings of the terms ‘energy’, ‘power’, and ‘electricity’ as follows:

‘energy’ 
 usable power that comes from heat or another source.

‘power’ 
 a source or means of supplying energy.

‘electricity’ 
 a wire-carried energy used to operate appliances, machines, etc.

A lower level of agreement can be achieved by establishing a quantifiable relation-

ship between the three terms and meanings above, e.g. frequency of co-occurrence,

and having a coarse-grained agreement over this relationship, through agreeing on

a corpus that encompasses the terms in use.

2. The level of agreement between event producers and consumers on the necessary

contextual data to complement events, to cross the pragmatic boundaries. For

instance, an event consumer and producer who agree that an energy event should

have both the ‘room’ and the ‘floor’ of the energy consuming device, assume more

pragmatic coupling than agreeing on having only the ‘room’ of the device in the

event.

I dub the first point as semantic coupling, and the second one as pragmatic coupling.

I argue that decoupling in the current event processing paradigm is practised only at

the syntactic transfer level, including space, time, and synchronization. However, when

higher boundaries become significant at large-scale, distributed, open, and heterogeneous

environments such as the Internet of Things, coupling is re-introduced. This leads to a

trade-off which hinders the paradigm.

Two problems can be concluded from this trade-off as shown in Figure 2.6:

1. Problem 1: decoupling is important for scalability, but scalability to the defined

environments needs semantic and pragmatic coupling within the current event

processing paradigm, which leads to a trade-off.

2. Problem 2: scalability to the assumed environments needs semantic and prag-

matic coupling, i.e. agreements, which may not even be feasible due to the large

number of participants, non-technical background of users, and the lack of orga-

nization of the inherently decoupled and distributed users.
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Figure 2.6: Trade-off between decoupling and knowledge exchange across boundaries

Thus, I recognize two new dimensions of coupling that exist in current event processing

systems that can be added to the coupling dimensions of Eugster [11] as shown in Figure

2.7. I define in the following semantic and pragmatic coupling dimensions.

Definition 2.20 (Semantic Coupling). The amount of agreement between participants

in the event processing environment on mappings between symbols used in event mes-

sages and the meanings they refer to. This amount is dependent on the model of map-

pings, i.e. the semantic model, whether it is symbolic or not, explicit or implicit, and

on its granularity as discussed in Sections 5.4, 5.5, and 6.3.

One of the main root problems of semantic coupling dimension is the that most current

event systems are based on an exact matching model and symbolic semantics which are

not tolerant towards uncertainties of semantics and is very dependent on rigid semantic

agreements.

Definition 2.21 (Pragmatic Coupling). The amount of agreement between participants

in the event processing environment on contextual information needed to complement

event messages in order to better evaluate users’ interests. This amount is dependent

on the model of context, where and how the context is found, how it is retrieved, and

integrated with events, Sections 5.5 and 7.3.
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On of the main root problems that is relevant to the pragmatic coupling is the fact that

current event systems are based on a Closed World Assumption (CWA). That is, the

processing model assumes that events are complete objects from an information point

of view, while they are not.

2.11 Requirements, Questions, and Scope

The discussion throughout this chapter leads to a need for extending the current event

processing paradigm with a compromise to the trade-off between knowledge exchange

across boundaries and the semantic and pragmatic coupling dimensions. Such an exten-

sion can be mapped to a set of requirements as follows:

� R1. Loose coupling of event processing systems on the semantic dimension. It can

be defined as a low cost to define and maintain rules with respect to the use of

terms, and to building and agreeing on an event semantic model. For instance, the

cost in terms of the effort required to define three rules to cover three events of

types: ‘energy consumption event’, ‘energy usage event’, and ‘power consumption

event’ is higher than that for defining one rule that can cover all the heterogeneity.

Besides, the labour needed to build a taxonomy to establish explicit relationships

between the terms ‘energy’, ‘power’, and ‘electricity’ is higher than an automatic

or semi-automatic approach that can estimate such relationships.

� R2. Loose coupling of event processing systems on the pragmatic dimension. It

can be defined as a low cost to define and maintain the context parts of rules,
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and to agree on contextual data that is needed in events. For instance, the cost

to define an enricher that adds the ‘room’, ‘floor’, and ‘project’ which a device

belongs to in an energy consumption event is higher than the cost to define an

enricher that could search and discover the needed pieces of information on the fly

at the time of matching.

� R3. Efficiency of event processing. It can be defined as the timeliness in matching

event semantics, and precision in integrating contextual data with events. For

instance, an event matcher that can match 1, 000 events/sec is more efficient than

a matcher that can match 200 events/sec. Similarly, an enricher that enriches an

event with data that 90% of which is useful for later processing is more efficient

than an enricher that 10% of its complementary data is useful.

� R4. Effectiveness of event processing. This can be quantified by the proportion of

true positives and negatives achieved by the decider (or matcher), and the effec-

tiveness in completing events with contextual data. For instance, an event matcher

that decides on 95% correctly is more effective than a matcher with only 50% ac-

curacy. Similarly, an enricher that complements events with 95% of required data

is more effective than an enricher that complements events with 10% of required

data.

Two main research questions are formulated:

� Q1. The first research question is concerned with the case when event producers

and consumers do not have exact, granular, and rigid agreements on terms used in

events and rule and their meanings but rather a form of statistical loose agreements

on the meanings (Requirement R1 ). The question is how to achieve timely event

matching (Requirement R3 ) with high true positives and negatives (Requirement

R4 ) in such a loosely semantically coupled environment?

� Q2. The second research question is concerned with the case when event produc-

ers and consumers do not have equal assumptions on the amount of contextual

information included in events and how much they are complete with respect to

evaluating some consumers’ rules (Requirement R2 ). The question is how to com-

plement events with context at high precision (Requirement R3 ) and completeness
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needed to meet consumers expectations (Requirement R4 ) in such a loosely con-

textually coupled environment?

Finally, I scope the work in this thesis according to the models of information flow

processing of Cugola and Margara [8] discussed in Section 2.5.2 as follows:

1. The functional model. This work is scoped to a sub-component of the Decider,

which is single event matching. Its impacts on related aspects such as pattern

matching and complex event processing are partially addressed. A new Enricher

component is added to the function model as discussed in Section 4.3.5.

2. The processing model. This work is scoped to a single selection policy and a selected

consumption policy. Load shedding is out of the scope of this work.

3. The deployment model. This work assumes a distribution of the participants of

an event processing environment. Nonetheless, a single event processing engine is

considered in a centralized deployment model, with the possibility of the existence

of multiple distributed event engines.

4. The interaction model. This work follows a push-based model of interaction.

5. The data model. This work can be generalized to various data models. The specific

model of attribute-value records has been used for experimentation in Chapters 5

and 6, while a graph model has been used in Chapter 7.

6. The time model. As this work is scoped to single event matching, no semantics of

partial or total time order such as happened-before relationships are considered.

Nonetheless, impacts on related aspects such as pattern matching and complex

event processing are partially addressed.

7. The rule model. Rules considered in this work are detection rules, with the aware-

ness of uncertainty in semantics and pragmatics.

8. The language model. The language considered in this work is a detection language,

with single-item selection operator.
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2.12 Chapter Summary

This chapter positions the problem within an energy management scenario. Event pro-

ducers and consumers can use different terms to describe their events and information

needs such as ‘energy consumption’, ‘energy usage’, and ‘power consumption’ to refer

to the same thing. Consumers may also expect contextual information in events that

are not complete such as the room or the floor where the event originated. To address

these challenges, traditional event processing systems depend on explicit agreements on

semantics and contexts (or pragmatics) between producers and consumers.

Event processing systems are the outcome of an evolution path of computational paradigms

which includes: active databases, publish/subscribe systems, and data stream manage-

ment systems. The principle of decoupling for scalability represents a cornerstone in

the event processing paradigm. It means that event producers and consumers have no

explicit interdependencies, that is they do not hold references to each other (space), they

are not active simultaneously (time), and they do not block each other (synchroniza-

tion). Nonetheless, I recognized agreements on semantics and pragmatics as additional

coupling dimensions that can hinder the decoupling for scalability principle.

The current data landscape is characterized by a distributed, open, and heterogeneous

nature, which magnifies the problem of semantic and pragmatic coupling. This problem

has been analysed in this chapter from a communication model perspective and knowl-

edge exchange across system boundaries where events are boundary objects which have

to carry semantic and pragmatic information along the way but without introducing

coupling in the overall system of systems.

An apparent trade-off has been detected between the need for coupling to establish

meaningful communication and the need for decoupling to enable scalability. As a

result, this chapter defined the requirements of loose semantic and pragmatic coupling

in an effective and efficient manner. These requirements are translated into research

questions that drive the main investigation in this thesis.



Chapter 3

Related Work

“Learn from yesterday, live for today, hope for

tomorrow. The important thing is not to stop

questioning.”

— Albert Einstein

3.1 Introduction

In this chapter, I develop the requirements identified in Section 2.11 into a more elaborate

and technical version. Based on the new set of full requirements, a set of previous work

that targets some of those requirements, and is deemed relevant to this work is identified.

Related work is categorized into six classes of approaches: content-based, concept-based,

and approximate event processing, as well as dedicated event enrichers, query-based

event fusion, and semantic and context event transformation. Representative approaches

of each class are then analysed including a description of the approach, its evaluation,

and a critique regarding its addressing of the requirements.

Some parts of the related work analysis in this chapter have been presented to vari-

ous degrees in the IEEE Internet Computing (2015) [151], the International ACM/I-

FIP/USENIX Middleware Conference (Middleware 2014) [152], the ACM Transactions

on Internet Technology Journal (ToIT 2014) [153], the ACM International Conference

on Distributed Event-Based Systems (DEBS 2015) [47], DEBS 2013 [154], DEBS 2012

[155], and the the International Workshop on Semantic Sensor Networks (SSN 2011) at

the International Semantic Web Conference (ISWC 2011)[156].

61
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The first three categories of the related work mainly tackle crossing semantic boundaries.

Section 3.4 analyses the category of content-based event processing. Section 3.5 analyses

concept-based event processing approaches, while approximate event processing related

work is discussed in Section 3.6. The last three categories are concerned with crossing

pragmatic boundaries. Section 3.7 discusses the category of dedicated event enrichers.

Query-based event fusion approaches are analysed in Section 3.8, and semantic and

context event transformation related work is discussed in Section 3.9.

Discussion and a gap analysis of the related work from the perspective of requirements

and features is detailed in Section 3.10 along with directions for the proposed approach.

Other miscellaneous relevant work is discussed in Section 3.11, and the chapter is sum-

marized in Section 3.12.

3.2 Requirements

In Section 2.11 four high-level requirements have been proposed to address large-scale,

open, distributed, and heterogeneous event systems. The requirements are:

� R1. Loose coupling of event processing systems on the semantic dimension.

� R2. Loose coupling of event processing systems on the pragmatic dimension.

� R3. Efficiency of event processing.

� R4. Effectiveness of event processing.

I develop these requirements herein into more technical versions which help the analysis

of the related work. Requirements are elicited from the following works:

� Stonebraker et al. [81]. The authors suggest eight requirements for stream

processing engines: in-stream message processing, support for high-level and uni-

form languages, resiliency against stream imperfections, deterministic processing,

efficient seamless integration of stored and streaming data, data safety and avail-

ability, scalability across multiple processors, and instantaneous real-time response.

Five of these requirements (in-stream message processing, support for high-level

and uniform languages, resiliency against stream imperfections, efficient seamless
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integration of stored and streaming data, and instantaneous real-time response)

are mapped to the requirements of this work as shown in Table 3.1.

� Hinze et al. [9]. The authors outline the underlying technologies of event-

based systems being: handling different forms of contextual information in events,

supporting event sequencing and out of order events, homogeneous aggregation,

heterogeneous composition/fusion, derivation of higher abstraction events, event

enrichment, early filtering, event propagation and notification, handling hetero-

geneity of platform, processing a large volume of events, supporting mobility of

event sources, sensibility to false positives and negatives, and supporting mobility

of event subscribers. Four out of these (handling heterogeneity of platform, pro-

cessing a large volume of events, sensibility to false positives and negatives, and

event enrichment) are mapped to the requirements as detailed in Table 3.1.

� Obweger et al. [157]. The authors propose a set of requirements for a user-

oriented management of rules in event-based systems. These are: aggregation, sit-

uation detection, transformation, expressiveness, efficiency of use, full and system-

wide access, decoupling of pattern detection and reaction logic, reusability, ease of

use, immediate and transparent rule management, hot deployment, and security.

Three out of these (ease of use, immediate and transparent rule management, and

transformation) are mapped to the requirements of this work as in Table 3.1.

� Cugola and Margara [8]. The authors provide a comprehensive survey of event

processing and stream management systems. They define a set of dimensions over

seven models of the studied systems as discussed in Section 2.5.2. Three among

these dimensions (support for heterogeneous flow, declarative languages, selection)

are mapped to the requirements of this work as presented in Table 3.1.

� Etzion [10]. The author provides a comprehensive account of event processing

systems, discussing various aspects of requirements. Among those, two classical

requirements (efficiency, and effectiveness) and two anticipated requirements (in-

exact matching, and sensibility to false positives and negatives) are mapped to the

requirements of this work as shown in Table 3.1.

� Eugster et al. [11]. The authors analyse publish/subscribe systems and related

technologies. They organize their analysis in two main interrelated dimensions

that are decoupling and scalability. Decoupling is focused on space, time, and
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synchronization, and not within the areas of semantics or pragmatics. However,

I map these two requirements (decoupling, and scalability) to the requirements of

this work as presented in Table 3.1.

� Schilling et al. [34]. The authors examine a set of requirements and challenges

to enhancing scalability and interoperability of complex event processing. Among

the requirements are: dealing with heterogeneity, purposeful deployment, context

modelling, rule management, and event context enrichment. Three out of these

(dealing with heterogeneity, context modelling, and event context enrichment) are

mapped to the requirements of this work as shown in Table 3.1.

The elaborated set of requirements dimensions are as follows:

� R1. Loose coupling of event processing systems on the semantic dimension (re-

siliency against stream imperfections in [81], heterogeneity of platform in [9], sup-

port for heterogeneous flow in [8], inexact matching in [10], decoupling in [11], and

dealing with heterogeneity in [34]). This requirement can be elaborated into the

following technical requirements:

– TR1.1. Low cost to define and maintain rules with respect to the use of terms

(support a high-level language [81], ease of use in [157], and declarative lan-

guages in [8]). This requirement means that the effort and time put by users

to define and maintain the rules should be minimized. It can be understood

in terms of a small amount of rules to express the users’ needs.

– TR1.2. Low cost of building and agreeing on the event semantic model (re-

siliency against stream imperfect missing data in [81], and immediate and

transparent rule management in [157]). This requirement means that the

overhead to build a common semantic understanding should be minimized,

possibly with less granular items, such as individual concepts, to agree on.

� R2. Loose coupling of event processing systems on the pragmatic dimension (re-

siliency against stream imperfections in [81], and decoupling in [11]). This require-

ment can be elaborated into the following technical requirements:

– TR2.1. Low cost to define and maintain context parts of rules (uniform

integration language in [81], and ease of use in [157]). This requirement means
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that the amount of effort and time put by users to define and maintain the

parts concerned with integrating the context shall be minimized.

– TR2.2. Low cost of agreement for contextual data that is needed in an event

(seamless integration in [81], immediate and transparent rule management

in [157], declarative languages in [8], and context modelling in [34]). This

requirement means that the overhead to build a common understanding of

context should be minimized.

� R3. Efficiency of event processing (in-stream processing and real-time response

in [81], processing a large volume of events in [9], efficiency in [10], and scalability

in [11]). R3 can be elaborated into the following technical requirements:

– TR3.1. Timeliness in matching event semantics (in-stream processing and

real-time response in [81], and processing a large volume of events in [9]). This

requirement means a high throughput matching as many events as possible

within a unit of time.

– TR3.2. Precision in integrating contextual data (efficiently access and com-

bine state information in [81]). This requirement means that event integra-

tion with context should use only the relevant complementary data out of the

overall available context to complete events for further processing.

� R4. Effectiveness of event processing (selection in [8], and effectiveness in [10]).

This requirement can be elaborated into the following technical requirements:

– TR4.1. Effectiveness in matching event semantics (sensibility to false posi-

tives and negatives in [9], selection in [8], and sensibility to false positives and

negatives in [10]). This requirement means a high proportion of true positives

and negatives achieved by the decider (or matcher).

– TR4.2. Completeness of events with contextual data (integrate stored and

streaming data in [81], event enrichment in [9], transformation in [157], and

event context enrichment in [34]). This requirement means that events should

be as complete as possible, with contextual data, before the matching takes

place, having none or a minimum number of non-existing attributes or values.

The mapping of the requirements as suggested in the literature, with the requirements

tackled in this work is shown in Table 3.1.
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Table 3.1: Requirements Dimensions as Defined by Previous Work

Requirement Stonebraker et al.
[81]

Hinze et al.
[9]

Obweger et al.
[157]

Cugola and
Margara [8]

Etzion [10] Eugster et
al. [11]

Schilling et
al. [34]

R1. Loose semantic coupling resiliency against
stream imperfections

handling het-
erogeneity of
platform

support for
heterogeneous
flow

inexact match-
ing

decoupling dealing with
heterogeneity

TR1.1. Low cost to define and
maintain rules’ terms

support a high-level
language

ease of use declarative
languages

TR1.2. Low cost to build
and agree on the event seman-
tic model

resiliency against
stream imperfect
missing data

immediate and
transparent rule
management

R2. Loose pragmatic coupling resiliency against
stream imperfections

decoupling

TR2.1. Low cost to define and
maintain rules’ context parts

uniform integration
language

ease of use

TR2.2. Low cost of agreement
on contextual data

seamless integration immediate and
transparent rule
management

declarative
languages

context mod-
elling

R3. Efficiency in-stream processing,
real-time response

processing a
large volume of
events

efficiency scalability

TR3.1. Timeliness in match-
ing event semantics

in-stream processing,
real-time response

processing a
large volume of
events

TR3.2. Precision in integrat-
ing contextual data

efficiently access and
combine state infor-
mation

R4. Effectiveness selection effectiveness

TR4.1. Effectiveness in
matching event semantics

sensibility to
false positives
and negatives

selection sensibility to
false positives
and negatives

TR4.2. Completeness of
events with contextual data

integrate stored and
streaming data

event enrich-
ment

transformation event context
enrichment
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3.3 Categories of Related Work

The literature on event processing systems related to this work, can be classified into

two major categories:

� Approaches to cross semantic boundaries of event-based systems: These are the

approaches that mainly focus on achieving a good transfer of event semantics

across boundaries, such as dealing with synonyms and ambiguities.

� Approaches to cross pragmatic boundaries of event-based systems: These are the

approaches which mainly focus on conveying contextual data with events.

This classification drives from the fact that the two issues have been seen in the literature

as two distinct problems. That does not prevent works from dealing with aspects of both,

with varying degrees, due to the relatedness between the two topics. I have discussed in

Chapter 2 in detail the view of event processing systems as a communication paradigm.

Within this paradigm, semantics and pragmatics play an increasing role with more

importance given to their boundaries at larger scales.

Both categories can be further classified into subcategories as follows:

� Approaches to cross semantic boundaries of event-based systems:

– Content-based event processing.

– Concept-based event processing.

– Approximate event processing.

� Approaches to cross pragmatic boundaries of event-based systems:

– Dedicated event enrichers.

– Query-based event fusion.

– Semantic and context event transformation.

Each of these categories is discussed in the following sections. The main approaches

under each category are discussed in detail. How these approaches address the require-

ments is summarized in Table 3.2, and their features are discussed in Table 3.3, along
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with discussions and gaps analysis. The main indicators for the proposed approach are

the conclusion of this chapter.

3.4 Content-Based Event Processing

In content-based event processing, event sources and consumers use the same event types,

attributes, and values without any additional description of meaning external to rules

and events. This is the case assumed in traditional content-based publish/subscribe and

event processing systems where the matcher performs exact string comparison between

terms. The approach has high semantic coupling between parties and works effectively

in environments with a low level of data heterogeneity.

3.4.1 Carzaniga et al. (SIENA)

Description

SIENA [22] represents a broad class of publish/subscribe systems that match and route

an event based on its content and its relevance to subscriptions. Other examples include

Elvin [98], Jedi [99], and the Java Messaging Service (JMS) [100]. Carzaniga et al. re-

alize an event notification service that is highly scalable to networks like the Internet.

To achieve such scalability, they recognize a set of principles: loose coupling, expressive-

ness, a best-effort distributed service, primitive typed-attributes data model, along with

content-based routing.

Loose coupling is realized through an implicit invocation design style, represented by

an event-based software architecture. Expressiveness is provided by a powerful, but yet

simple, event model, and a subscription model with a set of simple operators: ordering

relations, substring, prefix, suffix, and an operator that matches any value. Best-effort

distribution is adopted, where issues of distributions such as race conditions are not

handled. The event model is a set of type-attribute-value triples, which is simpler than

the typed notifications found for instance in CORBA [15].

Single and patterns of notifications can be matched based on their contents and rela-

tionships. Coverage relationships between subscriptions are defined and leveraged for

optimization. A distributed topology of servers is assumed, where clients are connected
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to each server. The routing algorithm is based on two principles: late downstream repli-

cation of events, and early upstream evaluation of subscriptions. Both principles are

realized via forwarding subscriptions and forwarding advertisements of intended notifi-

cations. As a result, routing paths can be constructed over the topology to minimize

traffic and improve scalability.

Evaluation

In [22], Carzaniga et al. provides a qualitative analytical evaluation of SIENA. The

first part of the analysis focuses on positioning SIENA at a trade-off scale between

expressiveness and scalability. At one extreme lie the least expressive and highly scal-

able channel-based event notification services. At the other extreme lie the most ex-

pressive, application-defined event structures, types, and operators which could poten-

tially be Turing-complete and lead to undecidable algorithms, leading to less scalability.

Carzaniga et al. show that SIENA stands in between the two extremes, and thus ad-

dresses the requirements of better expressiveness and scalability.

The second part of the analysis is concerned with the computational complexity of

coverage and routing algorithms. In a non-optimized version of the algorithms, matching

an event to a subscription has a time complexity of O(n+m), linear in n the number of

subscription’s predicates and m the number of event’s attributes. Similarly, computing

the coverage between two subscriptions or two advertisements is O(n.m), polynomial

with the number of predicates/attributes in each. Matching a pattern is constrained

to matching a sequence, leading to a time complexity of O(l(n + m)) where l is the

length of the pattern, linear to the number of subscriptions. Carzaniga et al. show that

algorithms that conform to their proposal could be computed effectively, leading to a

scalable notification in terms of time.

In [158], Carzaniga evaluates SIENA quantitatively using a simulation framework and

synthetic workloads. Each simulation consists mainly of two elements: a network of

clients and servers sites which represents the topology, and a scenario configuration that

represents the advertise, publish, subscribe, unadvertise behavioural requests of parties.

Carzaniga generates a total of 2, 200 simulations, with up to 1, 000 sites of publishers

and servers, and up to 10, 000 subscribers. The links in the network are configured with

an abstract cost, which is not materialized by the author but can be mapped, in reality,
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to delay or bandwidth. The main metric for evaluation is an overall abstract cost that

reflects the effect of site-to-site costs on various topologies, algorithms, and workloads.

The main result of the evaluation is an empirical proof that distributed topologies show

a sub-linear increase of cost with increasing numbers of subscribers and publishers, out-

performing a linear case for centralized topologies. For instance, at 1, 000 publishers,

and 10, 000 subscribers, a centralized topology requires an abstract cost of 70 million,

compared to just below 2 millions for an acyclic peer-to-peer topology with subscrip-

tion forwarding. Results also show that the cost-per-service request, e.g. advertise or

subscribe, is dominated by internal message passing when the number of publishers and

subscribers is low.

Critique

The strength of SIENA is represented in its scalability to a large number of sites, publish-

ers, subscribers, events, and subscriptions. This scalability stems from a good utilization

of the network effect by supporting distributed topologies and algorithms. Carzaniga et

al. also recognize imperative principles for any event service to scale to environments

such as the Internet including: loose coupling, expressiveness, a best-effort distributed

service, primitive typed-attributes data model, along with content-based routing. The

analytical evaluation of Carzaniga et al. justifies these principles, while empirical vali-

dation is only provided for the distribution of the service.

The limitations of SIENA stem from its complete dependence on the content of events

and subscriptions. While scalability is the main motivation behind SIENA, the semantic

heterogeneity aspect is not covered, with a lack of sources of meaning that can support

the content. In the simulations, Carzaniga states that all objects of interest publish

the same events. For SIENA to scale into heterogeneous environments, a large number

of subscriptions will need to be deployed in order to cover the heterogeneity of events.

That is due to the exact string matching model that is followed in content-based routing,

adopted by SIENA. In terms of requirements, the loose semantic coupling is not covered,

while efficiency of matching is high. Effectiveness in matching is high, in fact 100%, given

that all required subscriptions are defined. Requirements on context and pragmatics are

not covered in this work.
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3.4.2 Eugster et al.

Description

Eugster et al. investigate in [23] the integration of publish/subscribe primitives into a

strongly typed object-oriented language such as Java, focusing on linguistic primitives

based on four principles: type safety, encapsulation preservation, application-defined

events, and composable event semantics. The authors implemented the primitives on

using the infrastructure offered by the Distributed Asynchronous Computing Environ-

ment (DACE) as well as structural reflection for dynamic event methods invocation.

Events are considered as first-class citizens in the programming language where they

are defined using normal Java objects called obvents by the authors. New constructs

to realize publish/subscribe in Java are put into effect through the utilization of a pre-

compiler that transforms calls to specifically generated adapters.

A key outcome of this proposal, which makes it relevant here, is the introduction of a

type-based publish/subscribe model. That is, the type hierarchy in the programming

language, i.e. the Java class hierarchy, is leveraged. As a result, subscribers can make

subscriptions to a class called StockObvent for instance, and expect events of the sub-

class StockRequest to be matched. This approach forms an extension to content-based

matching, where a kind of events is supported by a type hierarchy.

Evaluation

The authors provide an analytical discussion on design issues of the approach, along with

its interoperability. The authors state that their approach does not support interoper-

ability in heterogeneous platforms, due to the lack of a neutral specification language

such as the one used in CORBA [15] for instance.

In [159] Eugster and Guerraoui conduct an empirical evaluation to analyse the Java

reflection contribution to performance. They show that the overhead of dynamic method

invocation on objects can reach around 0.13 ms/invocation for 10 objects, compared to

just over 0 for static Java invocation. They provide an optimized version of matching

based on avoiding redundant invocations, and enforcing static filters. The testbed for

evaluation is synthetic, of one producer on a single machine, publishing to a set of

subscribers equally distributed over two networks of 20 and 60 stations respectively.
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The main metric of evaluation is the throughput, i.e. the number of messages processed

per a millisecond. Results show that optimized matchers compete with the static in-

vocation that lacks any optimization as it is a pure Java behaviour. The throughput

of optimized and static matching decreases gradually when the number of subscribers

increases. It achieves around 1 message per ms for 120 subscribers.

Critique

The main problem targeted by this work is the integration of the publish/subscribe with

programming languages. The strengths of the approach come from that integration,

making the language more ready to have the publish/subscribe logic within an appli-

cation program. The type-based approach is also more expressive than channel-based

publish/subscribe. It frees subscribers to an extent from expecting exact types of events.

However, the approach is limited to types, rather than attributes or values, which are

dealt with using Java Boolean expressions called filters. Interoperability is restricted

to the levels below semantics as discussed by the authors, making it not ready for

interoperability issues such as semantic heterogeneity. Besides, having the language

type model as the basis of matching, makes the approach more coupled. In fact, type

safety leads by itself to compile-time errors when subscribers use non-supported classes.

Regarding requirements, the loose semantic coupling is not covered, while efficiency and

effectiveness in matching are high. This is true given that heterogeneity is handled

manually by agreeing on type hierarchies, or defining classes and filters for all expected

types, properties, and values. Requirements on pragmatics are not covered in this work.

3.4.3 Fiege et al. (Rebeca)

Description

Fiege et al. [24] tackle several issues that arise when events have to cross organiza-

tional boundaries between event-based applications. These concerns are management,

customization, heterogeneity, and security. They propose a model to address these prob-

lems based on the introduction of scoping into the event-based service. Scopes are meant

to control visibility within distributed event-based applications.
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A scope can be mapped in reality to an organizational boundary. For instance, an event

about temperature in an area of a warehouse can be visible only to subscribers within

the warehouse. Thus, a warehouse scope defines the boundary that in turn represents

the basis for the management of the distributed application’s components.

The concept of scopes is orthogonal to publications and subscriptions. Scopes can, in

turn, belong to superscopes. Scopes interface with each others via interfaces, which

define what events can cross the boundaries. Such interfaces also define how events get

transformed when crossing the boundaries, either to accommodate a new vocabulary of

the destination scope, or to include more data to convey context. Fiege et al. propose

the use of ontologies to define transformations at the boundaries. Scope administrators

take the responsibility to define transformation and mapping logic.

Evaluation

The scoping model is implemented within the Rebeca middleware, which has served as

a prototype to evaluate several aspects of publish/subscribe systems. Routing within

Rebeca has been evaluated empirically in [160] using synthetic datasets from the stock

exchange domain. The main two metrics of interest are the size of the routing tables,

and the filter forwarding overhead. Ideally, routing algorithms should target the mini-

mization of both metrics.

Experiments show that the size of routing tables increases sub-linearly with identity-

based routing, compared to a linear increase with simple routing. At 60, 000 subscrip-

tions, identity-based routing with advertisements require 80, 000 routing entries, com-

pared to 230, 000 for simple routing with advertisements, on the chosen topology. The

average control messages as forwarding overhead correspond to 1% and 4% respectively.

Fiege implements scoping over Rebeca’s architecture and routing mechanisms in what is

called integrated routing. The new algorithms are not evaluated empirically, but the au-

thor provides a comprehensive analysis of the correctness of scope-based routing related

algorithms in [161]. The particular aspect of semantic mapping and context transfor-

mation and the associated effort put by administrators is not evaluated separately from

the algorithms underneath.
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Critique

The work of Fiege et al. takes its importance from the explicit notion of boundaries,

which are important for scalability in event systems as discussed in Chapter 2. Scopes

form the actual realization of boundaries. Thus, issues related to crossing boundaries in

an effective semantic and pragmatic way are tackled at scope interfaces as proposed by

Fiege et al. in this work. Scopes are important as they subdivide the distributed system

into stable regions of semantics and pragmatics, which interface with each other.

The realization of scope interfaces as transformations, which are based on symbolic

semantics like ontologies, requires administrators to define these transformations. The

fact that the underlying routing and matching at scope interfaces follow exact string

matching limits the flexibility of crossing scope interfaces and thus limits scalability.

In terms of requirements, an attempt to address loose semantic and pragmatic coupling

is made, but the result is not conclusive. Efficiency is high as in content-based routing,

given that heterogeneity is handled manually by the user with correct and exact scope

interfacing. Effectiveness of semantic and pragmatic boundary crossing is not evaluated.

3.5 Concept-Based Event Processing

In this category, participants can use different terms and values and still expect matchers

to be able to match them properly thanks to an explicit knowledge representation that

encodes semantic relationships between terms. Example knowledge representations are

thesauri and ontologies that describe the meaning of each concept and its properties

and relationships with other concepts. Building and agreeing upon such a knowledge

representation suggests an explicit dependency between parties via a conceptual model.

3.5.1 Petrovic et al. (S-ToPSS)

Description

S-ToPSS [25] is a semantic publish/subscribe system meant to solve the problem of se-

lective information dissemination within semantically heterogeneous environments. The

system processes incoming events using three phases that can be done optionally or
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combined. The first stage accepts incoming events and generates for each original event,

called root in S-ToPSS, a set of events by replacing each property with a set of synonyms

for that property. The second phase operates on the value level and generates for each

incoming event from the previous stage a set of events by replacing values with others

that have taxonomic relationships with them. The last phase is an ad-hoc stage where

individual mapping functions can be written to generate further events out of incoming

events from the previous stages.

The resulting set of new events that have been generated during these three phases are

then matched in a Boolean exact matching model with subscriptions. It extends current

matchers to do the Boolean matching, so they take advantage of already existing match-

ers. Thus, the authors extend content-based matching to semantic matching. Petrovic

et al. also build on the conceptual model to define semantic coverage between subscrip-

tions, where a subscription for events with the term ‘vehicle’ covers a subscription with

the term ‘car’.

Evaluation

The authors state that the approach is demonstrated through a job finder scenario, and

the workload is generated to simulate publications and subscriptions from companies

and clients. Nevertheless, the work does not provide details about the workload or the

evaluation criteria that are followed.

Critique

S-ToPSS can be considered as a general approach for semantic matching in publish/sub-

scribe systems. Its main strength is that it extends the syntactic based matching and

coverage relations with a semantic-enabled matching and coverage allowing publishers

and consumers to use semantically equivalent terms that are syntactically different.

The work does not provide a concrete method for generating synonyms or for exploiting

taxonomic relationships and does not discuss design issues associated with the proposed

model. The approach of generating new events out of the original ones can overwhelm

the system with many events and thus hinder the efficiency requirement.

Concerning the requirements identified in this work, S-ToPSS externalizes semantics

into an explicit model represented by taxonomies. It thus provides a degree of loose

coupling in developing the rules. However it is limited by the fact that it is based on an
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agreed-upon ontology. Ontologies and taxonomies are labour-intensive to build which

means that when the environment scales to include other ontologies the system does not

scale without fundamental changes [43]. Effectiveness can be assumed full given a fully

agreed-upon semantic model. Pragmatic aspects are not addressed in this work.

3.5.2 Wang et al. (OPS)

Description

Wang et al. [26] target the problem of trade-off between expressiveness and efficiency

in publish/subscribe systems through a combination of both. They use Semantic Web

technologies such as RDF [60] and DAML+OIL [162] to describe events and subscrip-

tions. The authors propose a graph-based event model and a graph-based subscription

model with variables. The problem then becomes one of graph matching.

Subscriptions are decomposed into statement patterns to exploit commonalities between

them. An index is built over the statement patterns, taking into account the concept

model provided by the ontology, by extending the index with a set of inferred facts

about a subscription. Each event is scanned in a breadth-first manner, and the matching

process exploits the subscriptions index to match scanned facts from the event. Matching

on the vertex level becomes an exact string matching.

Evaluation

Evaluation is done on a theoretical as well as an empirical level. Theoretical evaluation

proves the correctness of the matching algorithm formally. Experiments compare the

system with another system that uses a different graph matching algorithm called De-

composition by Messmer and Bunke [163]. Experiments focus on the metrics of matching

time and memory usage per event, as well as the scalability with the number of sub-

scriptions.

A synthetic workload is generated by varying the number of subscriptions and the num-

ber of classes in the ontology. Matching takes place on a single machine. The number of

events is not stated, but each event has 50 vertexes with 55 edges. The number of sub-

scriptions ranges from 500 to 10, 000, each has 10 vertexes and 11 edges. The ontology

has 10 classes, each of which has 2 properties.
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The experiment shows an efficient matching time versus the number of subscriptions with

a linear relationship for OPS, where the matching time is 1.2 sec for 10, 000 subscriptions.

The proposed OPS outperforms the Decomposition algorithm where the matching time

of the latter reaches 500 ms compared to 1 ms for OPS at 20 subscriptions. Time

efficiency improves when subscriptions become very diverse in using classes as early

filtering becomes more selective. Space efficiency is high with a constant upper limit of

5 index nodes when the number of subscriptions increases.

Critique

The system extends syntactic matching with semantics-enabled matching allowing pub-

lishers and consumers to use semantically equivalent terms. The work proposes an

efficient matching algorithm for graph models, which are universal and essential for the

heterogeneity in data models. This work opens the black box of the matcher, such as in

[25], and proposes a white box approach, allowing for more optimization opportunities.

On the other hand, the work considers only taxonomic relationships, not including re-

latedness for instance. It also assumes only one ontology with a relatively small number

of classes and properties and does not consider multiple semantic models. Regarding

requirements, OPS externalizes semantics into an explicit model, providing some loose

coupling in developing the rules. Effectiveness and efficiency are high given that a fully

agreed-upon semantic model exists. Pragmatic aspects are not addressed in this work.

3.5.3 Zeng and Lei

Description

Zeng and Lei [27] target the problem of heterogeneous event schema, and how event

systems should tackle that. They use a relational approach to event-based systems,

in which a subscription can select the source event(s) as with SQL in databases. The

approach allows the selection of single events, and the correlation of multiple events.

The approach transfers the problem of heterogeneity from the application level to the

middleware level. It can operate over already existing publish/subscribe systems as

black boxes.

To handle heterogeneity, and loosen the semantic coupling, the authors propose an

ontology-based model. An ontology, as they define it, is similar to an object-oriented
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class diagram, with classes, properties, and inter-relationships such as subClassOf. A

term also has a set of synonyms defined in the ontology. The approach follows a query

rewriting method, where a subscription is translated into various equivalent subscriptions

based on the ontological model. The generated subscriptions are then matched against

the events in a Boolean exact matching manner.

The work approaches pragmatics with the source search mechanism. This component

allows the search for sufficient event sources that could at schema-level match a sub-

scription. It also makes use of the ontology repository.

Evaluation

The approach is not empirically evaluated. However, the authors provide an analytical

discussion that compares the proposed approach of subscription rewriting with the ap-

proach of event rewriting. The latter can be exemplified by S-ToPSS [25]. The authors

make the case for the viability of subscription re-writing on the basis of not overwhelm-

ing the matcher with many generated events. Besides, events need to be rewritten every

time they arrive, while subscriptions could be rewritten at registration time.

Critique

The approach’s main strength comes from the acknowledgement of the data hetero-

geneity problem and the use of a novel model based on subscription rewriting based

on ontologies. The proposed ontological model supports multiple relationships includ-

ing taxonomic, properties, and dependencies. Besides, the concept of sufficient event

sources for a subscription is important, although not fully developed, with respect to

contextual data enrichment.

Nonetheless, the approach is limited by the fact that the assumed ontological repository

is labour-intensive to define. The underlying matching model is Boolean which makes

it less flexible with respect to potential uncertainties such as a missing synonym in the

ontology. Regarding the requirements of this work, Zeng and Lei slightly address loose

coupling through rules rewriting. Effectiveness and efficiency can be high given that

a fully agreed-upon semantic model exists. However, it is also not clear how many

subscriptions could be rewritten from an original one leading to a combinatorial number

of rewritten subscriptions when the number of concepts and synonyms increases, leading
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to a reduced throughput Pragmatic aspects are not elaborated beyond the sufficient

source concept.

3.5.4 Blair et al. (CONNECT)

Description

Blair et al. [28] tackle the problem of increased heterogeneity and increased dynamism.

The authors recognize the need for novel approaches to interoperability between net-

worked systems through middleware. Middleware as discussed by Blair et al. includes

all systems that could abstract systems data, interfaces, and behaviours in a way that

allows easy interoperability. The formed entity, as a result, is a system of systems,

enabled by the middleware.

The authors recognize that the current approaches to interoperability, which are dom-

inated by standards, are in fact effort-intensive to develop and agree on. Thus, they

propose the approach of emergent middleware, the focus of the CONNECT project.

Emergent middleware systems are not static entities, but rather dynamically generated

and tailored glues between networked systems. Such types of middleware are made real

through a set of enablers, which are software technologies that collaborate to generate

the middleware.

Enablers are three: discovery, learning and synthesis enablers. The discovery enabler is

responsible for recognizing the concepts in a system’s interfaces. The learning enabler

attaches semantic annotations to interfaces based on determined interaction behaviour.

The synthesis enabler takes the completed systems models from the previous enablers’

output and generates the middleware system.

A central element of the CONNECT framework is ontologies as conceptual models. On-

tologies are the basis for describing interfaces, behaviour, and synthesization of emergent

middleware. For instance, a domain ontology of the travel domain can be used to find

out a subsumption relation between selectFlight and selectTrip, where the former is a

part of the later. As a result, the emergent middleware can translate one request from

the first system to a request in the other system.
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Evaluation

This work is qualitatively analysed through two experiments. The first experiment

provides an analysis of the interoperability in the application and middleware layers. It

is based on two travel agencies systems, one is European and the other is American.

Each system uses a set of affordances represented by its interface functions such as

selectFlight and selectTrip. One is implemented by SOAP, and the other by HTTP

REST. The analysis shows how a domain ontology can, in fact, be used as a basis to

create a middleware that can translate one request to another.

The second experiment deals with reasoning about interoperability at the network layer.

For this reason, the authors show how ontologies can be used to interoperate two het-

erogeneous Vehicular Ad Hoc Network (VANET) protocols: BBR and Broadcom. The

experiment shows how ontologies and Semantic Query-Enhanced Web Rule Language

(SQWRL) based rules can serve as a conceptual model to classify a network packet, and

decide which fields in it can be used to fill in an output packet from a different protocol.

Critique

This work is important as it recognizes the limitations of common approaches such as

standards to achieve interoperability. The strength of this approach comes from its

identification of a set of enablers that surrounds the middleware and helps generate it.

Middleware, as the authors define, is a dynamic entity that can in principle serve for

eternal interoperability as it is dependent on its networked systems. I think this work

can be seen as a framework for interoperability, rather than a single approach. Various

ways to realize conceptual models or enablers can still fit in the emergent middleware

framework to generate the emergent middleware.

This work is generic for middleware, but not for event-based systems specifically, al-

though the challenges are similar. The assumption of the existence of a domain ontology

that networked systems partially use to be composed, may be challenging at very large

scales [43]. Ontology alignment techniques may be needed in this case, as suggested by

the authors. Nonetheless, ontology alignment and matching need to take the networked

systems into consideration and uncertainties embedded in this process need to propa-

gate into the emergent middleware generation. Such details are left out of this work,
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and can enhance the fundamental principle of generating emergent middleware suited

for networked systems.

From a requirements perspective, this work tackles the loose semantic coupling require-

ment through emergent middleware systems that ensure decoupling. However, the use

of domain ontologies, which are previously agreed on, can introduce coupling. Effective-

ness and efficiency of the approach are high, given that two systems are interoperable

and that ontologies are available. The contextual pragmatics aspect is out of the scope

of this work.

3.6 Approximate Event Processing

Approaches in this category are distinguished by a matching model that is not Boolean.

They support one form or another of uncertainty, probability, or ranking in event pro-

cessing. This gives the event engine more flexibility to deal with heterogeneity and thus

improves its ability to address the loose coupling requirements.

3.6.1 Zhang and Ye (FOMatch)

Description

FOMatch [29] is similar to the previous category from the point of view that it uses

a common understanding of the domain to achieve semantic matching. However, it

leverages a fuzzy ontology model of the domain where relationships between concepts

are not certain but rather weighted edges. Before matching, a pre-processing step takes

place where a closure of the ontology is built in order to construct an index of terms and

relations with scores of the degrees of relations using transitivity of some relationships

such as the subClass relationship.

Actual matching is done by leveraging commonalities between statement patterns of

subscriptions and each term in the event is compared to terms in the index to conclude

a scored match. Scores are aggregated for each event and the result is compared to a

threshold to achieve a conclusive matching result.
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Evaluation

The work follows an empirical evaluation where a synthetic workload of 1, 000 events is

simulated from the touristic tours domain, each of which has 12 attributes. The number

of subscriptions range from 10, 000 to 100, 000, each of which has between 1 and 12

attributes. The main metrics of interest are pre-processing and matching time, along

with precision, recall, and F1Score concerned with the proportion of correctly matched

events out of the relevant ones. The baseline is S-ToPSS [25] on a single machine.

Results show that FOMatch outperforms S-ToPSS for all numbers of subscriptions,

with a linear scalability. At 100, 000 subscriptions, FOMatch requires 1, 500 ms for pre-

processing and 400 ms for matching, compared to 3, 000 ms and 1, 100 ms respectively

for S-ToPSS. For effectiveness evaluation, 500 events were created and users were asked

to write subscriptions for them. Users manually picked the ground truth of relevance

between events and subscriptions. Results show an F1Score of 90% for FOMatch versus

77% for S-ToPSS.

Critique

This model is relevant in that it acknowledges the uncertainty that underlies semantics

in a semantic model. Besides, it leverages uncertain matching that is flexible at large-

scales. The time efficiency of the model is high too. The use of precision, recall, and

derived measures also forms an important feature for evaluating event systems at large

scales as it acknowledges a best-effort approach to matching.

However, the model depends on a common ontology. Concerning requirements, this

work provides partial loose coupling in developing the rules and approximate matching.

Effectiveness and efficiency are relatively high, but with less than 100% for effectiveness.

Pragmatic aspects are not addressed in this work.

3.6.2 Liu and Jacobsen (A-TOPSS)

Description

A-TOPSS [30, 31] is an approximate publish/subscribe model that addresses the re-

quirement for users to express their interests in numeric values of events using textual

values. The authors approach the problem using fuzzy sets where fuzzy membership
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functions are trained in order to define the membership of a numeric value in a textually

described category. The matching between subscriptions and events is then based on

aggregation of fuzzy functions values. The result is a score that reflects the degree of a

match.

Evaluation

A-TOPSS is evaluated empirically using a synthetic workload. Approximate events and

subscriptions are used first, and they are transformed into crisp ones to render the cases

comparable to an exact paradigm. For efficiency evaluation, the main metric of interest is

the matching time. Different mechanisms to implement the approach are compared. An

algorithm named the float-list-based model is efficient with a minuscule matching time

of less than 1, 000 ms at 100, 000 subscriptions, compared to 140, 000 ms for the bit-

10values algorithm. For effectiveness evaluation, precision, and the F1Measure metrics

are used. Results show a constant relationship with the number of subscriptions with

an F1Measure of 95%.

Critique

A-TOPSS addresses an important aspect of semantic decoupling that is value approxi-

mation. It acknowledges the compromise in matching precision at large scales. However,

types and properties are not supported by the model. Direct extension of the model

to concepts and properties may not be straightforward as it is designed around the

existence of numeric values on one side of the matching.

From the requirements perspective of this work, A-TOPSS provides loose coupling in

developing the rules, and the model behind it, but it is limited to numeric-to-strings

approximation. Effectiveness and efficiency are relatively high, but with less that 100%

for effectiveness. Pragmatic aspects are not addressed in this work.

3.6.3 Drosou et al. (PrefSIENA)

Description

Drosou et al. [32] address the problem that all the matched events to a subscription in

traditional event-based systems are considered equally important. The authors propose

an approach based on event ranking using user-defined preferences as well as diversity.
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The subscription language allows the user to express the preference for some attributes

over others. A preferential graph can be defined on subscriptions, with coverage rela-

tionships between them. Top-k diverse events matching a subscription are ranked and

returned. In a stream, a continuous periodic return of top-k matchings is returned with

a sliding window.

Evaluation

The proposed approach extends SIENA [22]. The authors use a real movie-dataset from

the Internet Movie Database (IMDB) 1 of 58, 788 movies. Events and subscriptions are

generated from this set. For efficiency evaluation, authors compare a brute-force delivery

algorithm with their heuristic algorithm. The metrics of interest are time and diversity.

For 30 events, and k = 8, the brute-force requires 0.5 hours, compared to just 38 ms for

the heuristic algorithm. The difference in time efficiency comes at the cost of decreased

diversity of returned events, but the drop is below 1% in all cases.

For effectiveness evaluation, the authors measure the number, average rank, and diver-

sity of the returned events. Ideally, the former one should be lowered while the latter

two should be improved. Scenarios consist of 2, 000 events, 930 of which match the

subscriptions. For 400 events, and a window length k = 20, only 100 are returned, i.e.

around 11% of matching events are ranked and returned, with an average rank up to

90% and a diversity between 80% and 90%.

Critique

This approach is not directly associated with semantics or pragmatics. However, it is

relevant from the point of view that it extends current event systems with the ranking

and best-effort paradigm that is crucial for large scales. The work builds a case for

approximate matching in the delivery of events, where even matching events can be

missed and some only are prioritized.

With respect to requirements, the approach is flexible regarding the organization and

expectations of event publishers and consumers, and thus can be seen to address the

loose coupling requirements. Efficiency and effectiveness are high with less than 100%

quality of matching.

1http://www.imdb.com/
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3.6.4 Wasserkrug et al.

Description

Wasserkrug et al. [33] tackle the problem of evaluating event processing rules over

uncertain events. The uncertainty they address could come from unreliable sources such

as an inaccurate sensor reading, or an unreliable network such as packet loss. Also

uncertainty is generated by an inability to determine if a phenomenon occurred given

the available sources. The authors address two problems: the scalable derivation of

complex events under high volume sources, and the correct derivation and propagation

of uncertainties to conclude a complex event uncertainty.

The authors extend the concept of selectability, or early filtering, of events to exclude

irrelevant uncertain events to some uncertain event rule derivation. They also devise a

probabilistic derivation by translating CEP rules into Bayesian networks. To enhance

the performance of derivation, the authors approximate the outcome of a network using

a set of samples. However, instead of sampling the network, which would be inefficient

due to its construction cost, they sample the event processing rules that correspond to

the networks.

Evaluation

The authors evaluate their approach using a synthetic events and rules set. They use

20, 000 explicit events and a set of rules of two levels of hierarchy, on a single machine.

The main metrics of interest are the accuracy and the performance measured by event

processing rate per second. For accuracy, the baseline is the theoretical expectation.

For performance, they compare with a deterministic engine which is Amit [116].

The accuracy results show that actual probabilities, which are based on specially built

Bayesian networks, always lie within 95% of the probabilities derived by the sampling

approximation. This means that for a confidence interval of 5%, the sampling approxi-

mation leads to equivalent results to a none-approximated derivation.

Performance results show that the event rate decreases sub-linearly when the number of

possible worlds, corresponding to the number of samples, increases. These results prove

a scalable method for uncertain event derivation. In [164] the authors show that for a

relatively small number of samples, corresponding to 0.2 approximation, the performance
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is at the same number of magnitude with the Amit [116] deterministic engine, which is

a magnitude of hundreds of events/sec. These results show that an uncertain engine can

compete with a deterministic engine in terms of time performance.

Critique

This work’s strength comes from its comprehensive tackling of uncertainty within event

engines. The work proves empirically that the extended selectability and sampling can

deliver event engines capable of dealing with uncertain events, which the authors argue

are inevitable in modern applications. The work also does not limit itself to single events,

but shows how a full model can handle complex event processing too.

I agree with the authors on the importance of handling uncertainty natively in event

engines. The work does not address semantics or pragmatics in event engines, but if loose

coupling can lead to an uncertainty of events and their derivation, the work becomes

related.

For requirements, Wasserkrug et al. do not focus on loosening semantic or pragmatic

coupling. However, the approach, if considered related from the uncertain loose coupling

perspective, shows effective and efficient results.

3.7 Dedicated Event Enrichers

This category is mainly concerned with event enrichment via ad-hoc dedicated agents

that are tailored specifically to particular situations. Such approaches are non-native

to the event processing paradigm where the enrichment behaviour is pushed to the end

user and less integrated with the rest of the features of event processing engines.

3.7.1 Schilling et al. (DHEP)

Description

Schilling et al. [34] tackle the problem of scaling event processing engines to large-scale

environments, such as the Smart Grid, through distribution. They particularly address

the problem of distribution over heterogeneous event engines. They define a high-level
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system, DHEP, that sits on top of heterogeneous distributed nodes. DHEP uses a meta-

language that serves as a high-level unified language for defining contextual state objects,

events, and rules.

DHEP has a runtime environment, which is a middleware that can consume events from

an event bus, decode them, enrich them, and produce new ones back to the event bus.

Encoding and decoding are common tasks to address heterogeneity at the syntax level,

such as with protocols. A wrapper wraps existing event engines and adapts them to

DHEP. Some rules have the ability to query state databases and enrich events with

context before these events can cross system boundaries. DHEP estimates the cost of

rules’ evaluation, and thus decides on the distributed placement of rules over the nodes.

Evaluation

The system has been evaluated empirically using synthetic benchmarks. The main

metrics of interest are the latency introduced by the system on top of the typical event

engines that are wrapped, and the latency of enrichment. For the system latency, a

smart meter sending power request events was simulated with one filtering rule. Results

show that the system adds almost 150% of latency over the CEP engine that is wrapped

(IBM’s AMiT).

For enrichment, the system is evaluated by one rule that retrieves an integer value from

a MySQL database and adds it to input events. Results show that enrichment adds a

significant overhead to the rule latency. They also show that enrichment enabled with

caching can reduce the added latency from around 1, 000− 1, 400 to 50 units of time.

Critique

The strength of DHEP is that it recognizes the heterogeneity of event processing nodes,

and tries to provide a solution on top of that. Another strength comes from the identifi-

cation of enrichment as a task that needs to be reflected in distributed event processing

solutions. The DHEP meta-language can be seen as an approach that tries to address

both semantic and contextual pragmatic boundary crossing in distributed event engines.

Nonetheless, a unified language as proposed is an added layer that still needs to be main-

tained by administrators. Those need to establish semantic and contextual agreements

that can scale to limit only. Furthermore, the evaluation focuses on performance and
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latency while the proposed unified meta-language and its usability and ability to address

heterogeneity is not investigated.

Concerning the requirements, this work attempts to address semantic and pragmatic

coupling but the results are not conclusive. Efficiency is slightly worse than the wrapped

CEP engine due to added overhead. Effectiveness in matching and completeness of

events can be assumed 100% given that agreements on semantic and context modelling

is established, as the system follows the exact model of the underlying CEP engines.

3.7.2 Hohpe and Woolf

Description

Hohpe and Woolf [18] abstract good practices in Enterprise Integration (EI) into a set of

patterns of Message-oriented Middleware (MoM). Among the categories they define for

patterns, there is the category of Message Transformation. Under this category, there is

a set of patterns that are: Envelope Wrapper, Content Enricher, Content Filter, Claim

Check, Normalizer, and Canonical Data Model. Those patterns can be seen as the actual

patterns usually followed to address the requirements of this work.

Evaluation

The work of Hohpe and Woolf does not provide particular instantiations, or evaluation,

of patterns but rather abstract guidelines. However, the authors claim to have designed

the patterns based on a shared practice within MoM-based enterprise integration.

Critique

The main strength of this work is its abstraction of patterns that could enhance the

design of event-based integration solutions. However, this work dedicates nodes that

specialize in specific tasks such as enrichment or semantic normalization. An event

engine should be able to address these tasks at once to scale into highly heterogeneous

and open environments, which go beyond enterprise integration systems.

Patterns such as Normalizer and Content Enricher assume an exact model and a full

control and agreements of semantics and contexts in the environment. These assump-

tions are only valid within small environments such as enterprise systems, the motivation



Chapter 3. Related Work 89

for the work. Besides, there is no open disclosure of how the patterns can be verified in

real settings, through surveying the experts’ opinions for instance.

With respect to requirements, patterns mainly abstract content-based messaging. Se-

mantic and pragmatic coupling is thus comparable to content-based approaches that are

coupled. Effectiveness and efficiency are high given that agreements are established, but

that assumption is limited to the scale of enterprise integration closed systems.

3.8 Query-Based Event Fusion

Approaches in this category adopt declarative languages similar to SQL. Such languages

support operators of semantics similar to relational join, enabling the fusion of streams

of events with background context data.

3.8.1 Arasu et al. (CQL)

Description

The authors examine in [35] the problem of defining abstract semantics for a declarative

language that can query relations and streams at the same time. The problem arises with

non-monotonic and complex queries that include aggregations, subqueries, windowing,

relations, and streams, etc. The authors define exact semantics for continuous queries

based on two data types: relations and streams. They also define three black-box

operators that are only characterized by their input/output rather than implementation;

Those are stream-to-relation, relation-to-relation, and relation-to-stream operators.

Instantiating these black-boxes vary. For instance, in CQL the SQL language can be

used to instantiate relation-to-relation operators. The authors use sliding windows to

instantiate stream-to-relation operators. They define three operators to create streams

from relations: Istream, Dstream, and Rstream. Semantics for these operators are

defined, with an implementation in the STREAM data stream management system.

Optimizations such as query planning are also investigated.
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Evaluation

Arasu et al. provide in [35] an analytical discussion to show the relative ease of capturing

stream processing requirements. In [165] Babu et al. examine the adaptive optimization

of the STREAM management system. They use synthetic data with generated streams

of 32 bytes tuples on a single machine. Tuples are fed into the system, and the metric

of evaluation is mainly the number of tuples per second that the system can process.

Results vary based on the variable parameters that reflect the actual adaptive and

caching behaviour. However, the main result of interest within this context is that the

system can join 3 relations with up to 40, 000 tuples/sec and that number drops with

more joining relations, and reaches around 5, 000 tuples/sec for 9 relations.

Critique

The main strength of this work lies in its abstraction of the semantics of stream querying

to relations using a generic model. Thus, it unifies streams of events with contextual

data and brings the task of joining into the core of the processing engine. The adoption

of a declarative query language to achieve this also eases the fusion between events and

their context, although this aspect is not evaluated quantitatively.

Nonetheless, the work adopts a semantic for the CQL operators that assume full control

and understanding by the engine over the schema of both streams and relations. It

thus serves as a fusion approach given that all events and contexts are known. From

a requirements perspective, this work does not tackle the semantic heterogeneity or

coupling problem. It also does not provide a solution to the loose pragmatic coupling

requirement. Its efficiency and effectiveness are high given that all the assumptions

made are valid, which may be only the case in small and controlled environments.

3.8.2 Teymourian et al.

Description

Teymourian et al. [36] tackle the problem of fusing complex event processing with

knowledge bases. They extend semantic complex event processing, i.e. systems that

use RDF and ontologies to describe events and declarative rules to represents patterns.

They add the querying of external knowledge bases, which are described using RDF,
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ontologies, and rules. The authors formalize complex event patterns based on a logical

knowledge representation (KR) and interval-based event calculus.

The purpose of their work is to make the complex event engine aware of more information

about the events, through taking into account their background knowledge. Thus, events

can be detected based on their type hierarchy, temporal/spatial relationships, and also

depending on their relationship to other non-event objects. Consequently, expressiveness

and flexibility of the event engine improves.

The authors categorize event rules into 5 categories based on the role of the query

concerning the background knowledge base and its relation to the event detection part

in the event rule. Based on this categorization, the authors propose a set of query

planning strategies that decrease the latency for event rule execution. The authors

implement their approach with SPARQL and RDF knowledge bases.

Evaluation

The authors use two real-world datasets: live stock market event stream from Yahoo!

finance, and background knowledge about companies from DBpedia. They link both

sets manually by linking on the company stock market symbol and its corresponding

DBpedia URI. They use two machines, one for each set. The DBpedia dataset has 288

million RDF triples, hosted in a Virtuoso triple store. The Prova rule engine has been

used for event processing.

The metric of interest is throughput, i.e. the number of events per second which are

fused with the background knowledge base according to a variety of queries. Results

show that throughput reaches 280, 000 events/sec for simple event rules, and gets to

500 − 4, 000 events/sec with complex ones in terms of the dependency between events

and the background knowledge queries. Results also show that throughput decreases

drastically when the size of background knowledge, e.g. number of RDF triples, returned

by the query increases. For instance, for simple event rules this ranges from 280, 000

events/sec for a few triples to around 1, 000 events/sec for 1, 400 returned triples.

Critique

The strength of this work lies in its fusion approach of events before they can be con-

sidered for complex event detection. This fusion can increase the ability of the event

engine to detect more situations given the available background knowledge. The work
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also adopts a unified model for both events and background knowledge and provides a

principled way to improve the performance of event enrichment.

However, this work tackles the problem of event completeness with context, but users

are still assumed to know fully how the background queries shall be used and how data

shall be fused with events. Thus, regarding requirements, loose pragmatic coupling is

not supported although it is made easier with a declarative and unified model. The

semantic aspect is equivalent to that of conceptual event processing, as they both rely

on a top-down semantic model represented by the ontologies. Effectiveness and efficiency

of the approach are high, but given that the assumptions on full semantic and pragmatic

agreements exist, which may be only the case in small and controlled environments.

3.8.3 Le-Phuoc et al. (CQELS)

Description

Le-Phuoc et al. [37] address the problem of scalable integration between Linked Data

streams, and background Linked Data. The authors propose a white box approach

in which operators such as windowing, relational, and streaming operators are given

semantics within a Linked Data framework. Thus, optimization through an adaptive

planning of query execution can be done natively by the query engine. Intermediate

transformation of data and queries into corresponding black box query engines and

stream engines is not further required. As a result, query execution delay can be lowered.

Evaluation

Evaluation is conducted with 5 query templates selected to cover most operators. For

stream data, the authors use RFID-based tracking data from the Open Beacon commu-

nity 2. The data represents the movement of the attendees at a research conference. For

static data, simulated DBLP records have been generated.

The main metric of interest is the query execution time. The system has been compared

with two similar engines: C-SPARQL [166] and ETALIS [167]. Results show that the

average execution time for single queries ranges from 0.47−21.83 milliseconds, compared

to 99.84 − 395.18 milliseconds for C-SPARQL, and 0.06 − 469.23 for ETALIS. Results

2http://www.openbeacon.org/
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also show that execution time stabilizes when the number of contextual triples increases,

compared to a linear increase for the other systems. It also increases linearly with the

number of queries. For instance, the execution time for query Q1 increases from 1

millisecond for 1 query, to 100 millisecond for 1, 000 query.

Critique

The strength of this work comes from its adoption of a native white box model to

handle Linked Data streams and background data. Thus, execution time can be saved

by avoiding intermediate transformations. Linked Data is a generic representation of

data in terms of syntax, and uses vocabularies for semantics. Such an approach has the

potential to provide a generic model for stream and background data.

This work assumes a full knowledge by the user of how background information can be

found and fused. Thus, for requirements, loose pragmatic coupling is not enabled. The

semantic aspect is equivalent to that of conceptual event processing. The approach does

not support reasoning, e.g. through a type hierarchy. Thus, effectiveness of semantic

matching is limited. Effectiveness and efficiency of the background data fusion are high

if the assumptions on full semantic and pragmatic agreements exist, which might not be

valid at large scales such as the Internet of Things.

3.8.4 Anicic et al. (EP-SPARQL)

Description

Anicic et al. [38] propose an approach to bridge the gap between event processing

systems that lack integration with background knowledge, and reasoning over back-

ground knowledge that lacks dealing with rapidly changing data. The authors propose

EP-SPARQL which is a language for which they define syntax and formal semantics.

Syntax and semantics are an extension of SPARQL, where queries are translated into

algebraic expressions. New operators such as SEQ, which expresses that a graph pattern

strictly comes after another graph pattern in a stream, are given formal semantics.

The language’s execution model is founded in logic programming and is capable of

inferencing over temporal and static data. The execution model is based on Event-

Driven Backward Chaining (EDBC) of event rules. That enables incremental detection
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of event complex event situations. EDBC rules are logic rules, and that is how they can

be integrated with background logic-based knowledge bases.

Evaluation

For evaluation, the authors have implemented the ETALIS system in Prolog. Two

main tests have been conducted: event processing capability, and stream reasoning

capabilities. For event processing, Esper 3.3.0 [48] has been used as a baseline. The

main metric of interest is throughput, measured by the number of events processed per

second. The systems were tested for two queries from stock market scenarios. Results

show a throughput of 8, 200 − 9, 400 events/sec compared to 7, 000 − 9, 000 events/sec

for Esper, depending on the temporal window size. When the window size is defined by

the number of events, ETALIS scores steadily around 25, 000 events/sec, compared to

10, 200 events/sec for Esper.

For stream reasoning, only results of ETALIS are reported. A set of 40, 080 sub-classes

have been used, with a maximum class-hierarchy depth of 8. The purpose is to detect

if a subject in a stream is of a particular class. The main metric of interest is the delay

caused by the inference. The results show that inference causes delays that increase

linearly with the number of triples, from 500 milliseconds for 5, 000 triples, to 2, 000

milliseconds for 20, 000 triples.

Critique

One strength of this work comes from its unification of background knowledge and event

processing by logic programming. In principle events are not seen as different objects

from their contextual information, but rather as information that is complemented with

the background knowledge. Another strength comes from the embedding of semantic

reasoning in the process as well. Thus, this work, in fact, acknowledges both semantics

and pragmatics as two related problems on a logical basis.

However, the use of logic programming requires an effort by the logician to define se-

mantic and pragmatic assumptions explicitly. This is a labour-intensive task and may

not be scalable. The semantic reasoning is only evaluated with a type hierarchy, but

that is generic given the existence of sufficient logic rules.

Regarding requirements, the work does address effective and efficient semantic match-

ing and contextual background knowledge integration. However, loosening semantic
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and pragmatic coupling is not effectively addressed due to basing the model on logic

programming. Logic programming is a pure symbolic model that requires an explicit

definition and maintenance. This may not be scalable in a loosely coupled environment.

3.9 Semantic and Context Event Transformation

Approaches in this category handle events individually and perform a set of transfor-

mations on them to move from one semantic model to another. The transformation is

typically more specific to the approaches, so I do not put them in the previous categories

but dedicate the last category to them.

3.9.1 Freudenreich et al. (ACTrESS)

Description

Freudenreich et al. [39] address the need for event interpretation in event-based systems

based on their corresponding contexts. For instance, an event producer may use meters

to measure distance, while a consumer could be interested in the measure in yards.

The authors propose an approach that could be built upon existing publish/subscribe

systems. The approach is based on a context handler component that transforms events

before they go into a broker network, or before they get received by a consumer.

For transformation to happen, a context repository is stored on the level of a broker net-

work. The context repository contains agreed-upon hierarchy of contexts, such as root,

European, and German, and contexts for time and measurement units. Contexts also

have transformation functions between various nodes in the context hierarchy. The pro-

ducers indicate the context of its event, and the same for consumers. Context handlers

drive the conversions according to the source and destination contexts.

Evaluation

The work has been empirically evaluated with synthetic messages over a distributed set-

ting. The approach was implemented over ActiveMQ [168], a publish/subscribe message

broker, and compared with a baseline of pure content-based publish/subscribe with no

transformations, and with a transformation based on reflection. A producer-to-consumer
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ratio of up to 1 : 10 has mainly been used. The main metric of interest is latency in

processing an event.

Results show that in a distributed setting, the baseline scored 850 − 1, 000 microsec-

onds for 1 − 10 consumers respectively. The proposed approach scored 20% − 60%

more than the baseline’s latency, outperforming the reflection-based approach that was

1, 300−2, 850 microseconds. Another interesting measure provided by the authors is the

implementation effort. They show that, for the proposed approach, a total of 15 extra

lines of code is required, compared to 29 for the reflection-based approach.

Critique

This work targets the same problem of this thesis, taking into consideration specifics

of event-based systems especially decoupling. The strengths of this work come from

acknowledging contextual transformations as native components in event processing.

The context handler component is made central to handling messages. The evaluation

of the implementation effort provided by the authors is valuable as it makes it explicit

how an approach to the semantic and context transformation problem should be reflected

in usability to loosen the coupling.

Nonetheless, the downside of this work is that the context model is labour-intensive

to build as it is formed of conversion functions. Context in this work is defined in a

way that makes it closer to semantics rather than to background knowledge. From a

requirements perspective, this work loosens semantic coupling to a degree, but results are

not conclusive. The model is effective and efficient, given that context management and

conversion functions are all defined, which may be unfeasible at large scales. Pragmatic

aspects are not covered.

3.9.2 Cilia et al. (CREAM)

Description

Cilia et al. tackle in [40] the joint problem of semantic heterogeneity and contextual

dependencies of event interpretation. The authors propose an approach that tackles

these problems at the notification service level, rather than the application level. The

approach is comprised of three components: the shared conceptual/contextual model,
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the local conceptual/contextual models at the publishers and consumers sides, and the

mediators for semantic and contextual transformation. Producers and consumers repre-

sent their events and subscriptions in their vocabularies and contexts. Such local models

are called the matching models, and they are subsets of the agreed-upon model.

The mediators, or adapters, convert events and subscriptions into the shared models.

They also enrich events with contextual information from the producer side. The notifi-

cation service operates with the newly formed data items. At the receivers’ side, events

are turned into suitable models for the subscriber according to its local adapters. The

authors implement the conceptual part of this approach in the CREAM middleware

[41]. CREAM also features composite event detection over the single event semantic

approach.

Evaluation

The authors provide an analytical discussion of the proposed approach, comparing it with

two other conceptual groups that are: the implicit agreements outside of the middleware,

and the explicit handling of heterogeneity at the application level. The analysis leads

to the superiority of the proposed approach as it enables a loosely coupled mode for

tackling the issue of heterogeneity rather than completely depending on agreements. An

empirical account for the proposed approach in terms of effort, effectiveness, or efficiency

is not discussed.

Critique

There are two main strengths of this work: the first one lies in its adoption of an

approach that targets loosening the coupling in the notification service use, and thus

enabling scalability, and the other one lies in its unification of the semantics and context

heterogeneity problems. That reflects the unified nature of the two as they both serve

a better interpretation of events, and enable them to cross semantic and pragmatic

boundaries.

Nonetheless, the approach followed in this work assumes a shared semantic and contex-

tual model. Achieving such models may not be feasible at high scales of distribution

[43]. Besides, a significant effort is assumed at the adapters/mediators sides to imple-

ment conversion and enrichment functions. While this can be practical at enterprise and
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small scales, it may be challenging when semantic and contextual boundaries become

harder to cross at large scales, the thing that is not evaluated in the work.

From a requirements perspective, there is an attempt to address semantic and contextual

loose coupling. Effectiveness and efficiency are not articulated and measured.

3.10 Discussion and Gap Analysis

The previous discussion can serve as the basis for a gap analysis, which can happen at

two levels: requirements and features. The requirements level provides indications at

the problem space while the features level provides indications for the solution space.

3.10.1 Gap Analysis at the Requirements Level

Table 3.2 summarizes the discussion made above on the addressing of requirements by

each category and specific approaches. From this review of the literature, the following

conclusions and gap analysis can be done:

� Content-Based Event Processing approaches are mainly efficient with the timely

matching and routing of events. They assume an implicit agreement on the seman-

tics of events outside of the event engine and express agreements in terms of rules

and subscriptions. This class of approaches matches events on the basis that they

are complete, leaving all issues with pragmatic agreements outside of the event

engine.

� Concept-Based Event Processing differs from the content-based approaches in that

they make semantics explicit through knowledge representation models such as

ontologies and class hierarchies. Given agreements on these explicit models, effi-

cient and effective detection of positive and negative matching can be achieved.

Nonetheless, the agreement on explicit models may become by itself an infeasible

task to achieve due to heterogeneity. This class of approaches also leaves pragmat-

ics out of its scope.
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Table 3.2: Requirements as Addressed by Previous Work

R1. Loose semantic
coupling

R2. Loose pragmatic
coupling

R3. Efficiency R4. Effectiveness

TR1.1.
Low cost to
define and
maintain

rules’ terms

TR1.2.
Low cost to
build and

agree on the
event

semantic
model

TR2.1.
Low cost to
define and
maintain

rules’
context
parts

TR2.2.
Low cost of
agreement

on
contextual

data

TR3.1.
Timeliness

in matching
event

semantics

TR3.2.
Precision in
integrating
contextual

data

TR4.1.
Effectiveness
in matching

event
semantics

TR4.2.
Complete-

ness of
events with
contextual

data

Content-based event
processing

Carzaniga et al. [22] (SIENA) - - NA NA ++ NA ++ NA
Eugster et al. [23] - - NA NA ++ NA ++ NA
Fiege et al. [24] (Rebeca) -+ - -+ - ++ ++ NE NE

Concept-based event
processing

Petrovic et al. [25] (S-ToPSS) + - NA NA + NA ++ NA
Wang et al. [26] (OPS) + - NA NA ++ NA ++ NA
Zeng and Lei [27] + - -+ -+ ++ NE ++ NE
Blair et al. [28] (CONNECT) ++ -+ NA NA ++ NA ++ NA

Approximate event
processing

Zhang and Ye [29] (FOMatch) + -+ NA NA ++ NA + NA
Liu and Jacobsen [30, 31] (A-TOPSS) + -+ NA NA ++ NA + NA
Drosou et al. [32] (PrefSIENA) -+ - -+ NA ++ NA + NA
Wasserkrug et al. [33] -+ NA NA NA + NA + NA

Dedicated event
enrichers

Schilling et al. [34] (DHEP) -+ - -+ - + + ++ ++
Hohpe and Woolf [18] - - - - ++ ++ ++ ++

Query-based event
fusion

Arasu et al. [35] (CQL) NA NA -+ – ++ ++ ++ ++
Teymourian et al. [36] + - + - NE ++ ++ ++
Le-Phuoc et al. [37] (CQELS) + - + - NE ++ + ++
Anicic et al. [38] (EP-SPARQL) + - + - ++ ++ + +

Semantic & context
event transformation

Freudenreich et al. [39] (ACTrESS) + -+ NA NA ++ NA ++ NA
Cilia et al. [40, 41] (CREAM) + -+ + -+ NE NE NE NE

Legend

++ the requirement dimension is well covered
+ the requirement dimension is partially covered with positive results
-+ there is an attempt to address the requirement dimension but the solution is not effective
- the requirement dimension is poorly covered
- - the requirement dimension is very poorly covered
NA the requirement dimension is not addressed or the focus of the research
NE the requirement dimension is not evaluated
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� Approximate Event Processing uses explicit models of semantics along with ap-

proximate matching of events. This approximate matching allows a loose semantic

coupling due to their ability to deal with uncertainties of users on semantics. Time

efficiency is high, but less effectiveness is achieved due to the approximate model

that allows some false positive/negatives to occur. These approaches do not deal

with pragmatic and contextual coupling and scalability.

� Dedicated Event Enrichers are orthogonal approaches to classes that deal with

semantics. They mainly focus on integrating events with their contexts. They

depend on an implicit understanding of the pragmatics around events that are

implemented by developers through a set of ad-hoc enrichment logic. This keeps

context handling out of the event engine and represents a level of coupling that

limits scalability where significant contextual boundaries exist.

� Query-Based Event Fusion approaches focus on the integration of events with their

context using an approach similar to joins in databases. This approach is effective

and efficient. However, the fact that a full understanding of event contexts and

their need for matching is assumed and encoded by developers as join statements

causes a pragmatic coupling that limits scalability with contextual boundaries.

� Semantic and Context Event Transformation represents a set of approaches that

consider semantic and contexts to have one nature and impact on event match-

ing. They are effective and efficient in matching and completing the events. Thus,

they handle semantic and pragmatic interoperability. Nonetheless, semantic and

pragmatic models are explicit, e.g. granular conversion functions, requiring agree-

ments that form a coupled mode that is not scalable in heterogeneous, open and

distributed environments.

As a conclusion, the following gap in the literature at the requirements level can be

detected:

Gap Analysis- The Requirements Level. The event processing lit-

erature lacks approaches that unify the problems of semantic and contextual

pragmatic interoperability despite their close nature and importance for event

interpretation, and at the same time keep loose coupling on these dimensions

for the purpose of scalability for semantic and pragmatic boundaries.
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3.10.2 Gap Analysis at the Features Level

Based on the discussion of each approach in this chapter, a set of features can be ex-

tracted which gives an idea of the main building blocks and assumptions made by related

work. The gap analysis of features helps in Chapter 4 proposing the main hypotheses

of this work’s approach to answer the research questions. The features are:

1. Matching Model, which details if the model uses exact string matching, includes

semantic matching such as synonyms and hyponyms, or if it is approximate.

2. Semantic Model, which details the type of semantics used, whether it is implicit

or explicit, top-down symbolic, or bottom-up statistical.

3. Domain Specificity Cost, which details the cost to make the semantic model suit-

able for a specific domain or situation.

4. Semantic Interoperability Cost, which details the effort needed to make the class

of approaches work within an open, heterogeneous environment.

5. Context, which details the assumptions about the context of events whether it is

ignored and events are assumed to be complete, fully known by the developers, or

partially left to the engine.

6. Context Retrieval, which details how contextual data is retrieved from the source.

7. Context Search, which concerns whether the engine is capable of searching for

contextual data or if it has to be specified all externally to it.

8. Context Fusion, which concerns how contextual data is added in the events.

9. Enrichment Cost, which concerns the effort needed to make the class of approach

work within an open environment with significant pragmatic boundaries due to

dependencies on contextual data of events.

Table 3.3 summarizes the features of each class of approaches.
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Table 3.3: Features as Addressed by Previous Work

Matching Semantics Domain
Specificity

Cost

Semantic In-
teroperability

Cost

Context Context
Retrieval

Context
Search

Context
Fusion

Enrichment
Cost

Content-based
event processing

[22–24]

exact string
matching

not explicit defining many
domain rules

defining many
rules

event assumed
complete

NA NA NA NA

Concept-based
event processing

[25–28]

Boolean
semantic
matching

top-down
symbolic

defining
domain-specific

ontology

granular shared
agreements

event assumed
complete

NA NA NA NA

Approximate
event processing

[29–33]

approximate
matching

top-down
symbolic

defining
domain-specific

ontology

granular shared
agreements

event assumed
complete

NA NA NA NA

Dedicated event
enrichers [18, 34]

NA top-down
symbolic

NA NA fully known ad-hoc NA ad-hoc defining many
enrichers

Query-based
event fusion

[35–38]

Boolean
semantic
matching

top-down
symbolic

defining
domain-specific

ontology

granular shared
agreements

fully known query NA join defining much
join logic

Semantic &
context event

transformation
[39–41]

Boolean
semantic
matching

top-down
symbolic

defining
domain-specific

ontology

granular shared
agreements

fully known encoded in
events by
developer

NA transformation defining many
conversion
functions

Legend: NA means that the feature is out of the scope of the research
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From Table 3.3, the following observations are made:

� Most approaches use an exact Boolean model of matching. Such a model can

be sensitive to errors and less tolerable with missing data, and thus assumes a

significant level of agreements that can limit scalability.

� Most approaches depend on top-down symbolic models of semantics to achieve

semantic interoperability. These symbolic models can restrict the scalability of

event systems due to the semantic coupling associated with these granular semantic

models.

� Most approaches require a significant effort to adapt into domain-specific seman-

tics, limiting the ease of crossing system boundaries.

� Most approaches either assume events are complete and ignore contexts or handle

context externally to the event engine assuming it is fully known. This can restrict

the scalability of event systems due to the pragmatic coupling associated with the

models.

� There is no uniform and native way in event engines to retrieve, search, and fuse

context with events. This leaves handling the pragmatic boundaries external to

the event engines, leading to pragmatically coupled environments and thus limits

scalability.

As a conclusion, the following gap in the literature at the level of features can be detected:

Gap Analysis- The Features Level. The event processing literature

lacks approaches that unify the problems of semantics and contextual prag-

matics uniformly and natively to the event engine. The literature is mainly

based on symbolic semantics, exact matching, ad-hoc domain specificity, and

ad-hoc enrichment.

3.11 Other Relevant Approaches

I herein discuss two relevant approaches that can be argued to address some aspects of

the problem of semantic and pragmatic coupling.
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3.11.1 Schema Matching

Schema matching approaches have been used in the database community to address

the problem of semantic heterogeneity in database schema [169]. It can be argued that

several schema are mapped before a traditional event system is put in use. The event

system would use the schema mapping to translate the events or subscriptions.

I argue that there be three main limitations to this approach:

� The assumption that existing schemas are in place can be invalid in event systems

as the users, who compose events and subscriptions, may not comply to a prede-

fined schema. That leaves open the use of many possibilities of the terms that can

be used. In fact, the ‘schema-less’ assumption about data has been regarded as a

more realistic assumption at large scales in the database community [170, 171].

� It is known that schema matching is intrinsically uncertain [172, 173]. That is,

each mapping between two schemas is associated with a probability distribution

that quantifies the mapping. Schemas are typically large and concern a domain,

while events and subscriptions are small items that concern atomic concurring

of a subset of a domain. Thus, an a-priori mapping may not be useful for the

event-to-subscription mapping. Technically, they would have different probability

distributions.

� Using a-priori mappings to translate events or subscriptions to all possible varia-

tions to cover heterogeneity may lead to an exponential number of newly generated

events or subscriptions. This can put a burden on the traditional event engine un-

derneath limiting its scalability.

� A-priori mappings limit users control over the meanings of events and subscriptions

that they may want to adapt to suit a particular situation.

� This approach does not address the aspect of pragmatics and event enrichment.

All in all, the limitation of this approach lies in its externalization of the semantic

handling out of the event engine. I argue that such an approach shall be adapted and

reduced to become native to the event engine, and that is one of the lines followed in

this work as discussed in Chapter 5.
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3.11.2 Approximate Query Answering Over Databases

In [174] Freitas et al. propose an approximate query processing approach for databases

based on distributional semantics. They analyse natural language queries and build a

query plan for Linked Data databases. To bridge the semantic gap between the query and

the database, they employ a statistical model of semantics that is built automatically

from textual corpora [175]. Freitas et al. further devise a vector-space index of the

database named the τ − space.

The strengths of this approach are the ease in building the semantic model and its ability

to tackle natural language sentences. The approach is limited within an event processing

context due to the following:

� The paradigm in [174] is a query paradigm suitable for databases. Event pro-

cessing, on the other hand, is an active, on-the-fly, and timely paradigm. The

timeliness in event processing needs different types of optimizations such as com-

monalities between subscriptions. That has an effect on the actual matching model.

� Freitas et al. analyse a query as it is input by the user, and the database is in-

dexed beforehand. Events and subscriptions, on the other hand, may have various

interpretations that are defined by users according to particular situations. Thus,

the event engine shall allow the adaptation of interpretations on-the-fly.

� Adaptive thresholds are used to cut off relevant answers to a query, which can then

be returned to the user. However, single event processing should keep probabilistic

scores of the matching to be used later for complex event processing, a case not

relevant within a database querying context.

� Query answering over databases typically uses a closed world assumption about

the database. Thus, considerations regarding pragmatics and enrichment are out

of the scope.

I argue that some aspects of this approach shall be adapted to the event processing

paradigm, and that is one of the lines followed in this work such as extending the query

model with probabilistic and top-k matching, and common-predicate optimization in

Chapter 5; equipping statistical semantics with tags to adapt it to particular situations

in Chapter 6; and dynamic event enrichment in Chapter 7.
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3.12 Chapter Summary

In this chapter, the requirement of loose semantic coupling has been elaborated into

the technical requirements of low cost to define rules with respect to the use of terms,

and low cost to build and agree on the event semantic model. The requirement of

loose pragmatic coupling has been elaborated into the technical requirement of low cost

to define context parts of rules, and low cost of agreement on contextual data that is

needed in events. The requirement of efficiency has been elaborated into the technical

requirements of timeliness in matching and precision in integration with contextual data

while the requirement of effectiveness has been elaborated into the technical requirements

of effective matching and completeness of events with contextual data. Requirements

are backed up by similar requirements from the literature.

The literature has been analysed to project related work with respect to the identi-

fied requirements. Related work has been classified into six categories. The first three:

content-based, concept-based, and approximate event processing mainly address seman-

tic interoperability. The last three: dedicated event enrichers, query-based event fusion,

and semantic and context event transformation mainly tackle pragmatic interoperability.

Related work analysis revealed that the event processing literature lacks approaches that

unify the problems of semantic and contextual pragmatic interoperability, which keep

loose coupling on these dimensions for the purpose of scalability. It also showed that the

event processing literature lacks approaches that unify these problems uniformly and

natively with the event engine. The literature is mainly based on symbolic semantics,

exact matching, ad-hoc domain specificity, and ad-hoc enrichment of events.



Chapter 4

Approximate Semantic Event

Matching and Dynamic

Enrichment

“An idea can be tested, whereas if you have no

idea, nothing can be tested and you don’t

understand anything.”

— James D. Watson

4.1 Introduction

To tackle the main requirements of loose semantic and pragmatic coupling in event

processing efficiently and effectively, I propose an approach to event processing that

is based on three main models: the approximate semantic event matching model, the

thematic event processing model, and the dynamic native event enrichment model. This

chapter gives an overview of these models. It also aims at developing a set of hypotheses

to address the research questions of this work. In order to develop the hypotheses,

the approach is decomposed analytically into four conceptual elements: subsymbolic

distributional event semantics, free event tagging, dynamic native event enrichment,

and approximation. More discussion and evaluation of the models, the elements, and

the rationale behind the derived hypotheses is the focus of Chapter 5, Chapter 6, and

Chapter 7.
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Figure 4.1: The main models of the proposed approach

An overview of the main models is discussed in Section 4.2. Section 4.3 provides an

overview of the main elements and their relationships to the requirements and research

questions and the main models. The scope of the proposed model is discussed in Section

4.4. A summary of the chapter is presented in Section 4.5.

4.2 Main Models

The proposed approach is constructed from three main models as shown in Figure 4.1

and outlined in the following sections.

4.2.1 The Approximate Semantic Event Matching Model

This model tackles the requirements of efficient and effective loose semantic coupling. It

is illustrated by Model I in Figure 4.1. It extends the current event processing paradigm

through the following:

� Rules are equipped with the tilde ∼ semantic approximation operator so users

can express their delegation to the event engine to match similar or related event

terms to the term used in a subscription. The background semantic model for
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approximation is a statistical model built from co-occurrences of terms in a large

corpus of plain text documents. For instance, the following subscription tells the

event engine to match it to events generated from a ‘laptop’ or a similar device,

with the term ‘office’ used or related terms such as ‘room’ or ‘zone’.

{type= increased energy usage event,

device= laptop∼,

office∼= room 112}

� The single event matcher is equipped with matching and mapping algorithms to

detect events semantically relevant to approximate subscriptions. For instance, let

an event of increased energy consumption be represented as follows:

{type: increased energy consumption event,

measurement unit: kilowatt-hour,

device: computer,

office: room 112}

The most probable mapping, or the top-1 mapping, of this event to the previous

subscription is generated as a probable scored result. It can be described as follows:

σ∗ ={(type=increased energy consumption event

↔ type:increased energy usage event),

(device∼ = laptop∼ ↔ device:computer),

(office = room 112 ↔ office: room 112)}

� The complex pattern matcher can then perform a probabilistic reasoning to deduce

the probabilities of occurrences of the derived events in the action parts of the

complex rules.

This model has been presented in the ACM Transactions on Internet Technology Journal

(ToIT 2014) [153], and the ACM International Conference on Distributed Event-Based

Systems (DEBS 2012) [155]. It will be discussed in detail in Chapter 5.

4.2.2 The Thematic Event Matching Model

This model tackles the requirements of efficient and effective loose semantic coupling. It

is illustrated by Model II in Figure 4.1. It suggests associating free tags, called themes
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or thingsonomies, that describe the themes of types, attributes and values in events and

subscriptions, and clarify their meanings. For instance, the previous increased energy

consumption event is associated with tags as follows:

{appliances, building}

These tags help to disambiguate the meaning of terms in the event such as ‘energy’

and ‘office’ and get them closer to the energy management domain in smart buildings.

Thematic events can more easily cross semantic boundaries as: (1) they free users from

needing a prior semantic top-down agreements, and (2) they carry approximations of

events meanings composed of payloads and theme tags which, when combined, carry less

semantic ambiguities. An approximate matcher exploits the associated thematic tags to

improve the quality of its uncertain matching of events and subscriptions.

This model has been presented in the IEEE Internet Computing (2015) [151], and the

International ACM/IFIP/USENIX Middleware Conference (Middleware 2014) [152]. It

will be discussed in detail in Chapter 6.

4.2.3 The Dynamic Native Event Enrichment Model

This model tackles the requirements of efficient and effective loose pragmatic coupling.

It is illustrated by Model III in Figure 4.1. In this model, events are assumed incomplete

under an open world assumption. Enrichment is the process of complementing events

from background knowledge. The model uses four aspects for event enrichment: deter-

mination of the enrichment source, retrieval of information items from the enrichment

source, finding complementary information for an event in the enrichment source, and

fusion of complementary information with the event.

The model proposes that the enrichment logic is described using a set of declarative

language constructs similar to the ones used currently for matching purposes. Four

language clauses that are mapped to the four enrichment aspects are proposed: ENRICH

FROM, RETRIEVE BY, FIND BY, and FUSE BY. All the enrichment clauses are

described by the event consumer. The resulting subscription, which contains enrichment

and matching elements, is called a unified subscription. For instance, the following

unified subscription tells the engine to explore a Linked Data graph by a method called
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Spreading Activation to enrich an RDF event with triples that can be missing such as

the ‘floor’ in the building where it was generated.

ENRICH FROM <www.myenterprise.org>

RETRIEVE BY ‘DEREF’

FIND BY ‘Spreading Activation’

FUSE BY ‘UNION’

{?event rdf:type ont:EnergyConsumption.

?event (?p){3} building:SecondFloor.}

This model has been presented in the ACM International Conference on Distributed

Event-Based Systems (DEBS 2013) [154], and the International Workshop on Semantic

Sensor Networks (SSN 2011) at the International Semantic Web Conference (ISWC

2011)[156]. It will be discussed in detail in Chapter 7.

4.3 Main Elements

The approach I propose in this work can be conceptually decomposed into four main

elements. Elements are jointly used throughout the concrete models of the previous

section and experiments discussed in Chapters 5, 6, and 7. Elements form the basis for

formulating the hypotheses of this thesis. These elements are outlined in the following

sections:

4.3.1 Subsymbolic Distributional Event Semantics

This element stems from the need for loosening the semantic coupling between event

producers and consumers. Assuming that semantic coupling can be quantified by the

number of mappings between symbols, i.e. terms, and meanings, then a semantic model

that condenses these mappings can be very useful. Ontological models require granular

agreements on the symbol-meaning mappings, that is proportional to the number of

symbols. However, distributional vector space semantics leverage the statistics of terms

co-occurrence in a large corpus to establish semantics [42]. For instance, the terms

‘power’ and ‘electricity’ would frequently co-appear in an energy management domain
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corpus. Thus, they can be assumed related or similar, and this can be leveraged for

energy event matching. Using such a model leaves event producers and consumers to

loosely agree on the corpus as a representative of their common knowledge and decrease

the need for granular agreements on every individual term of the domain.

The research question mainly addressed by the subsymbolic distributional event seman-

tics element is research question Q1 :

Q1. The first research question is concerned with the case when event

producers and consumers do not have exact, granular, and rigid agreements

on terms used in events and rules and their meanings but rather a form of

statistical loose agreements on the meanings. The question is how to achieve

timely event matching with high true positives and negatives in such a loosely

semantically coupled environment?

The formulated hypothesis that underlies the proposal of this element and its use within

the proposed models is as follows:

H1. Subsymbolic distributional event semantics decreases the cost needed

to define and maintain rules with respect to the use of terms, and to build

and agree on an event semantic model more than symbolic semantic models;

and at the same time it can achieve timely event matching with high true

positives and negatives of magnitudes comparable to that of event processing

based on semantic models.

More discussion about this element and the rationale behind this hypothesis will be

detailed in Section 5.4. This hypothesis is the subject of investigation with the approx-

imate semantic event matching model in Chapter 5, and the thematic event matching

model in Chapter 6.

4.3.2 Free Event Tagging

This element stems from the need to enable event processing within a loosely coupled

model in an effective and efficient way, and allow users to adapt the conveyed events’

meanings in different domains and situations. Free tagging of events and subscriptions
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do not introduce any coupling components between participants as suggested by top-

down fixed taxonomies. This element builds on the success of free tagging, known as

folksonomies, within social media research [43]. For instance, the term ‘energy’ when

used in an event tagged by the tags {‘building’, ‘appliance’} helps the matcher distin-

guishes the meaning of ‘energy’ and associate it with the domain of power management,

rather than associating it with the domain of sport or diet for example.

The research question mainly addressed by the free event tagging element is research

question Q1 :

Q1. The first research question is concerned with the case when event

producers and consumers do not have exact, granular, and rigid agreements

on terms used in events and rules and their meanings but rather a form of

statistical loose agreements on the meanings. The question is how to achieve

timely event matching with high true positives and negatives in such a loosely

semantically coupled environment?

The formulated hypothesis that underlies the proposal of this element and its use within

the proposed models is as follows:

H2. Free tagging of events and subscriptions does not add to the cost of

defining and maintaining rules with respect to the use of terms, and the cost

of building and agreeing on an event semantic model required by subsymbolic

event semantics; and at the same time it can achieve timely event matching

with high true positives and negatives more than event processing based on

non-tagged subsymbolic event semantics.

More discussion about this element and the rationale behind this hypothesis will be

detailed in Section 6.3. This hypothesis is the subject of investigation with the thematic

event matching model in Chapter 6.

4.3.3 Dynamic Native Event Enrichment

This element stems from the need for loosening the pragmatic coupling between event

producers and consumers in an effective and efficient way. Such a coupling is caused by
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mutual agreements on contextual information as in dedicated enrichers. It can be re-

duced by allowing the event processing systems to discover contextual data dynamically.

For instance, an energy consumption event could include information about the consum-

ing ‘device’ and its ‘power consumption’. The event engine shall be able to dynamically

look up the device in a building management system database to get information about

the ‘room’ and ‘floor’ where the device exists. Thus, events are assumed to be incom-

plete, and contextual data is dynamically added through an enrichment process that is

moved to the core of the event engine.

The research question mainly addressed by the dynamic native event enrichment element

is research question Q2 :

Q2. The second research question is concerned with the case when event

producers and consumers do not have equal assumptions on the amount of

contextual information included in events and how much they are complete

with respect to evaluating some consumers’ rules. The question is how to

complement events with context at high precision and completeness needed

to meet consumers expectations in such a loosely contextually coupled envi-

ronment?

The formulated hypothesis that underlies the proposal of this element and its use within

the proposed models is as follows:

H3. Dynamic native event enrichment decreases the cost needed to define

and maintain the context parts of rules, and to agree on contextual data that

is needed in events more than dedicated enrichers; and at the same time it can

achieve high precision integration of event context with high completeness of

events comparable to that of event processing based on dedicated enrichers.

More discussion about this element and the rationale behind this hypothesis will be

detailed in Section 7.3. This hypothesis is the subject of investigation with the dynamic

native event enrichment model in Chapter 7.



Chapter 4. Approximate Semantic Event Matching and Dynamic Enrichment 115

4.3.4 Approximation

This element stems from the realization that loosening the coupling between event pro-

ducers and consumers at the semantic and pragmatic levels introduces uncertainties to

the engine. Uncertainty results from not exactly knowing which event’s tuples shall be

mapped to which subscription’s tuples, and which information can be assumed in an

event that is incomplete. For instance, with the loose agreements on terms semantics,

there are various possible mappings between an event and a subscription such as:

σ1 ={(device = laptop ↔ device:computer),

(room = room 112 ↔ office: room 112)}

σ2 ={(device = laptop ↔ office: room 112),

(room = room 112 ↔ device:computer)}

Each mapping has a different probability that reflects the uncertainty of the match-

ing. The same applies to the uncertainty about which tuples complement an event.

Approximation at the core of the event processing engine can tackle uncertainties and

complement the elements mentioned earlier.

The research questions mainly addressed by the approximation element are both research

questions Q1 and Q2 :

Q1. The first research question is concerned with the case when event

producers and consumers do not have exact, granular, and rigid agreements

on terms used in events and rules and their meanings but rather a form of

statistical loose agreements on the meanings. The question is how to achieve

timely event matching with high true positives and negatives in such a loosely

semantically coupled environment?

Q2. The second research question is concerned with the case when event

producers and consumers do not have equal assumptions on the amount of

contextual information included in events and how much they are complete

with respect to evaluating some consumers’ rules. The question is how to

complement events with context at high precision and completeness needed



Chapter 4. Approximate Semantic Event Matching and Dynamic Enrichment 116

to meet consumers expectations in such a loosely contextually coupled envi-

ronment?

The formulated hypothesis that underlies the proposal of this element and its use within

the proposed models is as follows:

H4. Approximate event processing can operate in event environments

with low-cost agreements on event semantics and pragmatics more than ex-

act event processing; and at the same time achieve timely event matching

with high true positives and negatives, and high precision integration of

event context with high completeness of events, comparable to that of event

processing based on exact models.

More discussion about this element and the rationale behind this hypothesis will be

detailed in Sections 5.5 and 7.4. This hypothesis is the subject of investigation mainly

with the approximate semantic event matching model in Chapter 5, along with further

tests with the thematic event matching model in Chapter 6 and the dynamic native

enrichment model in Chapter 7.

4.3.5 Elements within the Event Flow Functional Model

The main elements of the proposed approach can be unified and fit into the event

processing functional model discussed in Section 2.5.2. The elements work together,

along with non-impacted components, to fulfil the role of an event processing engine

along with the requirements tackled in this work. Figure 4.2 contrasts the changes

introduced by the proposed approach, with a typical event processing model as discussed

previously in Section 2.5.2.

Figure 4.2 shows how each element fits into the model as follows:

� Elm1 Subsymbolic Distributional Event Semantics. The actual distributional se-

mantic model could be built outside of the event processing engine by indexing a

textual corpus. The resulting model forms the basis to compare any two strings

in events and subscriptions, as they get decoded into their vector representations.

Vectors form the basis for distance and similarity measure.
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Figure 4.2: The main elements within the proposed event processing approach

� Elm2 Free Event Tagging. Events flowing from event sources, and subscriptions

get tagged by users before they are considered for matching. Users use free tags to

enhance events and subscriptions and improve their interpretation by the matcher.

� Elm3 Dynamic Native Event Enrichment. A new functional component, the Dy-

namic Enricher, is added to the model. Enrichment guidance elements are added

to the subscriptions to identify parts like the enrichment source, the retrieval,

search, and fusion mechanisms of contextual information with events. The en-

richer is also guided by the matching parts of subscriptions. Events get enriched

before being passed to the decider.

� Elm4 Approximation. Events are matched in the decider against subscriptions.

The decider is now approximate, and the result of matching are scored events that

signify their relevance to each subscription. The decider makes use of the semantic

model, the tags, and the enriched complemented versions of the events.

Table 4.1 summarizes the mapping between the elements, requirements, and research

questions, with the proposed models of approximate semantic matching, thematic event

matching, and dynamic native event enrichment that constitute the event flow model.
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Table 4.1: Elements and Models of the Proposed Approach with Respect to Require-
ments and Research Questions

The ap-
proximate
semantic

event
matching

model

The
thematic

event
matching

model

The
dynamic
native

event en-
richment

model

E
le

m
e
n
ts

Subsymbolic distributional event se-
mantics

× × ×

Free event tagging ×
Dynamic native event enrichment ×
Approximation × × ×

R
e
q
u

ir
e
m

e
n
ts R1. Loose semantic

coupling
× ×

R2. Loose pragmatic
coupling

×

R3. Efficiency × × ×
R4. Effectiveness × × ×

R
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Q

u
e
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n

s

Q1. The first research question
is concerned with the case when
event producers and consumers do
not have exact, granular, and rigid
agreements on terms used in events
and rules and their meanings but
rather a form of statistical loose
agreements on the meanings. The
question is how to achieve timely
event matching with high true pos-
itives and negatives in such a loosely
semantically coupled environment?

× ×

Q2. The second research question
is concerned with the case when
event producers and consumers do
not have equal assumptions on the
amount of contextual information
included in events and how much
they are complete with respect to
evaluating some consumers’ rules.
The question is how to complement
events with context at high pre-
cision and completeness needed to
meet consumers expectations in such
a loosely contextually coupled envi-
ronment?

×
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4.4 Scope

Beside the functional model, the proposed elements can be localized with respect to

the other models of Cugola and Margara [8] for the purpose of scoping. The following

discussion complements that on the scope of the work outlined in Section 2.11 as follows:

� The processing model. This work follows a single selection policy and a selected

consumption policy. Single events get enriched between the receiver and the de-

cider before they are considered for matching.

� The deployment model. This work assumes a distribution of the participants of

an event processing environment with a centralized deployment model of the en-

gine. The subsymbolic distributional semantic model is established within the

distributed environment. Low requirements regarding the effort to establish such

a model include the adoption of a mediator distributed comprehensive corpus, such

as Wikipedia, and the use of free tagging.

� The interaction model. This work follows a push-based model of interaction. The

introduction of explicit context and semantic relatedness services lead to some

forms of pull-based interaction between the engine from one side, and the enrich-

ment source and the semantic measure on the other side. Nonetheless, this pull-

based behaviour is secondary, and the prime interaction between event producers

and consumers is push-based.

� The data model. This work can be generalized to include various data models.

Nonetheless the concrete model of attribute-value records have been used for ex-

perimentation in Chapters 5 and 6, while a graph model is used in Chapter 7. The

use of free tagging introduces changes to the event model, where thematic tags

are associated with the event payload that conforms to a classical model such as

attribute-value records as shown in Chapter 6.

� The time model. As this work is scoped to single event matching, no partial or total

temporal order such as happened-before relationships are considered. Nonetheless,

as single event matching is probabilistic due to approximation, there is a need to

handle probabilities propagation during complex event pattern matching. This is

partially addressed in this work but is kept out of scope.
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� The rule model. Rules considered in this work are detection rules. The adoption

of an approximate model leads to the awareness of uncertainty in semantics and

pragmatics and the possibility to describe rules as supporting uncertainty.

� The language model. The language considered in this work is a detection language,

with a single-item selection operator. The use of unified enrichment subscriptions

introduces changes to the subscription model, were enrichment language elements

are associated with the subscription expression that conforms to a classical model

such as attribute-value records as shown in Chapter 7.

4.5 Chapter Summary

This chapter proposed an approach to loosen semantic and pragmatic coupling based on

three main models: approximate semantic event matching, thematic event matching, and

dynamic native event enrichment. The models have been conceptualized in four elements

that constitute the hypotheses underlying the models: subsymbolic distributional event

semantics, free event tagging, dynamic native event enrichment, and approximation.

The rationale for subsymbolic distributional event semantics is that symbolic models

require granular agreements on the symbol-meaning mappings which imply coupling,

while subsymbolic distributional semantics leverages the statistics of terms co-occurrence

in a large corpus, leading to relaxed semantic agreements. The grounds for free event

tagging stems from the fact that it does not introduce any coupling components between

participants as opposed to top-down imposed fixed taxonomies.

The rationale for dynamic native event enrichment stems from the acknowledgement

that events are incomplete, and contextual data can be dynamically added through an

enrichment process that is moved to the core of the event engine. Finally, the rationale

for approximation stems from the realization that loosening semantic and pragmatic

coupling introduces uncertainties to the event processing engine, thus approximation is

needed to enable the other elements of the proposed approach.

The chapter mapped the proposed models to the elements, the requirements, and the

research questions. The models, elements, and hypotheses are discussed in more detail

and evaluated within Chapter 5, Chapter 6, and Chapter 7.



Chapter 5

The Approximate Semantic Event

Matching Model

“An approximate answer to the right problem is

worth a good deal more than an exact answer to an

approximate problem.”

— John Tukey

5.1 Introduction

In Chapter 4 a set of hypotheses has been formulated to answer the research questions

based on a set of four elements that are combined to form the proposed approach. This

Chapter 5 tackles mainly research question Q1 that states the following:

Q1. The first research question is concerned with the case when event

producers and consumers do not have exact, granular, and rigid agreements

on terms used in events and rules and their meanings but rather a form of

statistical loose agreements on the meanings. The question is how to achieve

timely event matching with high true positives and negatives in such a loosely

semantically coupled environment?

121
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This chapter tests the hypothesis H1 and the semantic part of hypothesis H4 which are

formulated as follows:

� H1. Subsymbolic distributional event semantics decreases the cost needed to define

and maintain rules with respect to the use of terms, and to build and agree on

an event semantic model more than symbolic semantic models; and at the same

time it can achieve timely event matching with high true positives and negatives

of magnitudes comparable to that of event processing based on semantic models.

� H4. Approximate event processing can operate in event environments with low-cost

agreements on event semantics and pragmatics more than exact event processing;

and at the same time achieve timely event matching with high true positives and

negatives, and high precision integration of event context with high completeness

of events, comparable to that of event processing based on exact models.

To test the hypotheses, this chapter constructs a model that realizes the elements of sub-

symbolic distributional semantics and approximation. Section 5.2 outlines the proposed

model. This model has been mainly presented in the ACM Transactions on Internet

Technology Journal (ToIT 2014) [153], and the ACM International Conference on Dis-

tributed Event-Based Systems (DEBS 2012) [155].

Section 5.3 presents an overview of the distributional semantic model that is used. The

background of semantics and approximation and a discussion of the rationale behind the

hypotheses about the elements of subsymbolic distributional semantics and approxima-

tion are detailed in Section 5.4 and Section 5.5 respectively. The concrete approximate

semantic event matching model is discussed afterwards. Section 5.6 describes the event

flow model and the changes which affect it. The event, language, and matching models

are discussed in Section 5.7, Section 5.8, and Section 5.9 respectively.

The constructed model of event matching is empirically validated where Section 5.10

details the evaluation methodology and results. This chapter shows that the formulated

hypotheses H1 and H4 are valid. Thus, the elements of subsymbolic distributional

semantics and approximation can answer the research question and consequently can

address the requirements of effective and efficient event processing that is loosely coupled

in semantics. This chapter is summarized in Section 5.11.



Chapter 5. The Approximate Semantic Event Matching Model 123

5.2 Overview

The proposed model loosens semantic coupling by making participants agree on a topic

or set of topics that are represented as a large corpus of text. The corpus is then used to

build a distributional semantic model to derive semantic similarity and relatedness. The

model also introduces the tilde ∼ semantic approximation operator to the event pro-

cessing language. For example, a subscription to energy events such as the one required

in Section 2.2 can be expressed as {type= heater energy consumption increased ∼} to

let the engine match events of the mentioned type or any other type semantically related

to it. The proposed model is realized based on:

� The use of distributional semantics relatedness measures, such as the Wikipedia-

based Explicit Semantic Analysis (ESA) to parametrize the tilde ∼ operator.

� A matching model rooted in uncertain schema matching related work [173].

� A probability model for uncertainty management.

5.3 Distributional Semantics as a Loosely Coupled Event

Semantic Model

Distributional semantics is based on the hypothesis that similar and related words appear

in similar contexts as discussed in Section 5.4. Distributional models are useful for the

task of assessing semantic similarity and relatedness between terms. A semantic measure

is a function sm that quantifies the similarity/relatedness between two terms. Typically

sm has its values in R. Distributional models can be constructed automatically from

statistical co-occurrence of words in a corpus of documents, e.g. the measure based on

the Explicit Semantic Analysis (ESA) of the Wikipedia corpus.

The IoT event cloud would include events from various domains which suggests that

domain-agnostic measures have a potential for IoT. The discussion in this chapter is

scoped to the domain-agnostic distributional semantic measure esa [42] constructed from

the Wikipedia corpus as of 2013 1. That is due to its relative ease of construction as

it is based on statistical analysis of unstructured document corpus. However the model

1http://en.wikipedia.org/wiki/Wikipedia:Database download
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is generic and suitable for other measures as well. Semantic measures are assumed to

be external services to the event engine, and they are constructed independently. This

assumption simplifies the interface between the event engine and the service and makes

the embedding of different services relatively easy.

In the next two sections, I discuss in detail the elements of subsymbolic distributional

event semantics and approximation. The discussion gives a background of what seman-

tics is and the various models of semantics. It also gives a background of approximation

and its role within computing systems. The discussion in Section 5.4 and Section 5.5 mo-

tivates the rationale behind hypothesising that these elements can answer the research

question and meet the requirements of efficient and effective loose semantic coupling in

event systems. The approximate semantic event processing model is discussed afterwards

from Section 5.6 to Section 5.10.

5.4 Subsymbolic Distributional Event Semantics

As this work addresses the problem of coupling in semantics, a semantic model is at

the core of the approach. Thus, the first element of the proposed approach tackles the

aspect of semantics.

5.4.1 Semiotic Systems for Symbols and Meanings

Semantics generally refers to a relationship between two spaces (or worlds or sets): the

meanings, and the symbols. As put by Gärdenfors [139, p. 151]:

“Semantics concerns the relation between the words or expressions of a

language and their meaning.”

This view is mostly visible in the field of semiotics [143] where the focus is on signs

and sign systems. Two main models traditionally frame the science of semiotics: the

Saussurean model [176], and the Peircean model [177]. In semiotics, the sign is the whole

of the symbol and the meaning. Saussure divides a sign into two parts: the signifier, or

the symbol, and the signified. For example, Figure 5.1 illustrates a sign that is composed
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laptop

Figure 5.1: A sign of two parts: a signifier and a signified

of the concept laptop, represented by the top image, and its signifier, the English word

‘laptop’ at the bottom.

Peirce [177] on the other hand provides a triangular model of a sign. For Peirce the sign

consists of three components: the representation, the interpretant, and the object. The

representation is the form that the sign takes, which is analogous to the signifier in the

Saussurean model. The interpretant is the sense, which is similar to the signified in the

Saussurean model. The interpretant can also refer by itself to an object that could be a

material aspect that exists in reality.

Despite the fact that Saussure suggests a dyadic model, and Peirce suggests a triadic

model, they both recognize the signifier or the representation, that is the symbol, and

the signified, that is the meaning. For Saussure, the signified is, in fact, a mental

representation, which is the same meant by Peirce’s interpretant. Saussure recognizes

that the mental representation could stand for something in reality, but does not dedicate

a part of the sign for it explicitly. On the other hand, Peirce dedicates a part of his sign

model to that as represented with the object part [143, p. 13–35].

What matters in this discussion is the distinction between two sets: the symbols and

the meanings. The two sets only meet within signs. Signs are then the realization of

semantics. They are the mapping relations mentioned by Gärdenfors. This leads to a

conclusion that any model of semantics needs to provide or adopt a model for meaning

representation, as well as a model for mapping.

Various proposals have been put towards representing meanings. I adopt here a classi-

fication of these proposals based on the three-level framework described by Gärdenfors

[139, p. 33–58]. The purpose of this classification is to draw fair comparisons between

meaning models. Gärdenfors bases this categorization on previous similar works by
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Harnad [178], Mandler [179], and Radermacher [180]. He recognizes three main levels of

representation: symbolic, conceptual, and subconceptual.

The domain of meanings can be classified into objects, properties, and concepts. Objects

are individuals like a specific laptop used by Alice. Properties are a “way of abstracting

away redundant information about objects”[139, p. 59]. For instance, Alice’s laptop is

‘black’ which is a property. Concepts are the most generic form of objects and properties.

A concept clusters similar properties and objects such as the concept ‘Laptop’. I discuss

those notions with respect to the three levels of meaning representation in the following

sections.

5.4.2 Symbolic Representation of Meaning

The key principle of symbolism is that information is represented by symbols, and the

processing of information is by definition a manipulation of symbols through rules [139,

p. 35–36]. This symbolic paradigm sticks to a symbolic level syntax and semantics of a

combinatorial nature as discussed for example by Foder and Pylyshyn [181]:

“While both Connectionist and Classical architectures postulate repre-

sentational mental states, the latter but not the former are committed to a

symbol-level of representation, or to a ‘language of thought’: i.e., to repre-

sentational states that have combinatorial syntactic and semantic structure.”

The symbolic approach to meaning is widely adopted by computing communities such

as Artificial Intelligence (AI).

5.4.2.1 Computationalism and the Symbolic Paradigm

A key testimony to the dominant role of the symbolic paradigm in computing systems

comes from Newell and Simon [182]:

“One of tile fundamental contributions to knowledge of computer science

has been to explain, at a rather basic level, what symbols are. This explana-

tion is a scientific proposition about Nature. It is empirically derived, with
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a long and gradual development. Symbols lie at the root of intelligent ac-

tion, which is, of course, the primary topic of artificial intelligence. For that

matter, it is a primary question for all of computer science.”

Symbols can be gathered into sentences of a language of thought. What a sentence means

is a belief of an agent. Various beliefs are connected by logical or inferential relations

such as first-order logic in AI. Thus, meanings are purely the result of logical, syntactic

relations of symbols, rather than the states to which they refer.

The tradition of the symbolic paradigm of meaning representation is the signature of

computationalism in general, not only of AI. It also extends to other areas such as

databases and event-based systems where semantic assumptions are derived from those

of databases. For instance, in the database community, the relational model has been

widely adopted [183]. Codd [183] proposes “a relational view of data” such that:

“The term relation is used here in its accepted mathematical sense. Given

sets S1, S2, ..., Sn (not necessarily distinct), R is a relation on these n sets if

it is a set of n-tuples each of which has its first element from S1, its second

element from S2, and so on.”

Elements of S1, S2, ..., Sn are referred to as constants, which is the database name for

symbols.

Schema is handled similarly, and here I quote Codd [183]:

“The significance of each column is partially conveyed by labelling it with

the name of the corresponding domain.”

Where labels are the synonyms of symbols for a schema. I argue that the definition of

relation be none but a logical predicate, a common tenet of symbolism.

Another indication of the symbolic paradigm in databases comes from the Unique Name

Assumption (UNA) which is adopted in databases [184]:

“The unique-name assumption which says that two distinct constants

(either atomic values or objects) necessarily designate two different objects

in the universe.”
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I argue that by projecting this definition on the semiotics model, the result is an iso-

morphic mapping between the set of signifiers and the set of signifieds. Thus, meanings

are explicitly mapped one-by-one to symbols, which reflects a symbolic paradigm.

5.4.2.2 Symbolic Semantics

Due to the tight relationship between symbols and meanings in the symbolic paradigm,

it is difficult to separate a meaning model from a model of semantics. Thus, discussion of

a representation of meanings in this paradigm is typically a part of an overall semantics

program. There are mainly three directions to tackling the fundamental question of

what a property is [139, p. 60–62]:

� Extensional Semantics where a property is identified by the set of objects that

have the property. For instance, ‘black’ is the set of all objects of the colour black.

In the model theory of Tarski [185], this is done through a mapping between a

language and a model structure that is said to represent the world.

� Intensional Semantics alters the concept of one world to the case of multiple pos-

sible worlds. This is done to handle the case of the so-called intentional properties

such as small, which can not be thought of simply as a set of small objects. Thus,

the basic elements of semantics become the objects in a set of possible worlds.

Truth functions map a language to a subset of these worlds to provide an interpre-

tation of the language. This model has been developed by Kanger [186], Kripke

[187], Montague [188], and others.

� Situation Semantics uses a one world model, but instead of truth functions from

symbols or sentences to possible worlds, it uses a polarity function from symbols

or sentences to a subset of the world, called situation. This model has been largely

developed by Barwise [189].

Properties and concepts are not distinct in symbolism. Thus a discussion on properties

also applies to concepts. In ontologies, for instance, properties and concepts are de-

scribed using TBox statements. Objects, on the other hand, are described using ABox

statements that are compliant with the TBox terminological description.
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5.4.2.3 Limitations of the Symbolic Paradigm

The classical symbolic approaches to meaning and semantics have been criticized from

various aspects. For instance, Gärdenfors [139, p. 37–40, 62–66] provides the following

critics:

1. The definition of properties and concepts as functions is highly counterintuitive.

2. The definition does not explain how a person can perceive two objects to have the

same property or two properties to be similar.

3. The traditional symbolic approaches to semantics and meaning cannot account for

the problem of inductive reasoning.

4. The model-theoretic definition of properties and concepts does not, in fact, work

as a theory of meaning as investigated by Putnam [190, p. 22–48].

5. The frame problem that states that representing all necessary knowledge about

the world in a symbolic way requires a combinatorial explosion of logical axioms

and inferences.

6. The development problem that results from the unnatural or simple way to change

predicates at the symbolic level as a cognitive system evolves in time.

7. The symbol grounding problem that states that, in the symbolic paradigm, the

meanings of symbols are actually grounded in the symbols themselves [191].

I add to this critique a perspective derived from the requirement of loose semantic

coupling in event-based systems. The problem as I see with the symbolic approach to

meaning is that it does not largely separate the symbolic level from the meaning level,

as also manifested by the symbol grounding problem. Let us assume that the agents

who exchange information are symbolic agents, such as event agents programmed by

humans who are symbolic too. When agents need to agree on the meanings, which are

the essence of information exchange, they have to agree on symbols due to the tight

relationship between meanings and symbols.

Agreeing on symbols is granular and an extremely costly process, thus it does not qualify

for the loose semantic coupling requirement. Fundamentally this is a result of the lack of
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a natural account for similarity in the symbolic level models of meanings. The existence

of similarity, and more generally topological relationships, between meanings can lower

the amount of information that two parties need to agree on. This issue is well tackled

at the conceptual level of meaning models as discussed in Section 5.4.3.

Furthermore, the combinatorial nature of the frame problem is an inefficient way to

loosen semantic coupling or to create an event system efficiently, contradicting the Re-

quirements R1 of loose semantic coupling and R3 of efficiency. The development prob-

lem can also be manifested in an unsuitable manner to reflect meanings in a changing

event environment, contradicting the Requirement R4 of effectiveness.

5.4.3 Conceptual Representation of Meaning

At this level comes various alternative meaning models that fundamentally leverage the

topological features of meanings. Here lies a class of approaches which depart from

the symbolic tenets, but at the same time do not go very deep to a neural level where

explicit explanations of the models can be lost. What is defining in these approaches is

a geometrical nature of the meaning space. In such a geometry, distances and closeness

between meanings can be established.

5.4.3.1 Conceptual Spaces

An example of conceptual representations of meaning is the Conceptual Spaces proposed

by Gärdenfors [139]. He states the central principle behind his proposal as follows:

“The epistemological role of the theory of conceptual spaces to be pre-

sented here is to serve as a tool in modelling various relations among our

experience. ” [139, p. 5]

So, for Gärdenfors, the notion of similarity is a central motivation behind geometrical

models of meanings.

Gärdenfors’ conceptual spaces start from the observation that concepts are not inde-

pendent from each others, but rather are structured into domains, e.g. the domain

of colours, the spatial domain, etc. Conceptual spaces are then built up from quality
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dimensions that serve the purpose of building the domains. For instance, the colours

domain can be built up from three dimensions: hue, chromaticness or saturation, and

brightness.

Dimensions do not have to follow a classical Euclidean geometry. They could rather

organize in a form that ideally fits better with human cognition, e.g. perception in

the case of colours. Spaces formed by quality dimensions shall still have some basic

topological features such as betweeness, and the existence of a distance function in the

space (i.e. being a metric space). For example, the hue dimension of colours is, in fact, a

circle. Yellow is closer to Green on that circle, rather than to Violet. The overall domain

of colours becomes a spindle, rather than a classical three-dimensional Euclidean space

[192].

A natural property in conceptual spaces is a convex region in a domain. For instance,

the property Green is a three dimensional region in the colour spindle. Given two points

within this Green area a and b, any point that lies between a and b is in the Green area

too. Betweeness here does not have to follow a straight line according to the Euclidean

geometry, but rather can be a “curved” line according to the defined domain geometry.

A natural concept in conceptual spaces is a set of regions in a number of domains, with an

assignment of salience weights to the domains. For instance, the concept of a Laptop is

a collection of possible regions from the colour domain such as Black, White, and Silver ;

a region of the space domain possibly of possible sizes of laptops, etc. Some domains

can be weighted higher than others. Given this definition, some concepts are closer to

each other than others. For example, the concept of a Laptop is closer to the concept of

a Mobile Phone that to the concept of a Car. That can be derived geometrically from

the closeness between regions in each domain.

Objects are points in the conceptual space. For instance, Alice’s laptop is one with a

specific colour like black, a specific size, etc. This point lies within the region of the

concept Laptop. Thus, some objects can be closer to others based on a geometrical basis.

For example, Alice’s laptop and Bob’s laptop have the same screen size, are yellow and

green, have same the CPU and memory size, and have a power consumption of 30 and

35 watts respectively. Geometrically they can be closer than Alice’s laptop and Dan’s

laptop, which is black, with higher CPU power, and consumes 60 watts of power.
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Some objects can be more central within a concept region, i.e. more typical. This

provides a very close connection with the prototype theory [193] widely used in cogni-

tive science. Nonetheless, conceptual spaces provide a more natural way to represent

closeness and similarity between meanings.

Given this theory of meaning, the question arises of how one can build a theory of

semantics based on that. In semantics, the concern is to provide a mapping with symbols

and expressions of a language L. Gärdenfors [139, p. 167–176] suggests a mapping

between various types of a language’s expressions and the conceptual spaces elements.

His main thesis is that:

“Basic lexical expressions in a language are represented semantically as

natural concepts. ” [139, p. 167]

A key point that I raise here is that geometrical models of semantics, such as conceptual

spaces, emphasizes a lexical semantics. That is, the main target of semantic mapping

is the lexicon or the symbols of a language. More complex syntactic structures such as

sentences have been the focus of truth conditions types of semantics, manifested by the

symbolic approaches to meaning shown in Section 5.4.2.

I argue that in events models, the syntax is more controlled and of less importance

rather than when dealing with natural languages. For instance, in an event model such

as the attribute-value maps, the focus in this work, the actual language of the event is

reduced to the set of lexicons or terms used as attributes and values. Thus, geometrical

spaces of meanings are suitable as no more compositionality requirements are assumed.

Conceptual models of semantics that leverage topology and similarity of meanings, and

thus of terms, can lower the dimensionality of the agreement problem. Let us assume

that two cognitive agents, such as event publishers and consumers, agree on a conceptual

space. If the publisher uses the term ‘laptop’ in an event, while the consumer expects

the term ‘device’ then the consumer can leverage the similarity between both terms due

to the existence of a mediator space and still be able to establish matching between

the event and the subscription. Thus, the agreement problem has been considerably

lowered to a loose agreement on the space rather than a granular agreement on every

term that could be used. Within this sense, the conceptual models of meanings meet

the Requirement R1 of loose semantic coupling.
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I redefine event matching as an estimation of closeness, or similarity, between the event

and the subscription. This similarity is broken down to a similarity between two at-

tributes or two values, which are points in a conceptual space. Thus, a model of meaning

derived from geometrical spaces, which support similarity naturally, makes the best fit

for the event matching problem. Measuring closeness can be reduced to measuring dis-

tance in the space, which is efficient computationally on mathematical grounds. From

this perspective, the conceptual models of meanings meet the requirements R3 and R4

of efficiency and effectiveness.

5.4.3.2 Statistical Distributional Semantics

While I agree on the importance of similarity as the basis for meaning and semantic

models for event matching, I argue that the proposal of Gärdenfors [139] be compu-

tationally challenging. The main problem with Gärdenfors’ conceptual spaces is that

building quality dimensions, and agreeing on them can be hard to achieve at large scales.

It can be reduced to the problem of agreement on symbolic concepts. Thus, the concep-

tual spaces as proposed in [139] can be understood as a generic model to conceptual level

approaches. Nonetheless, more computationally suitable models are needed to tackle the

semantic coupling problem.

What is required is an instantiation of a conceptual space as defined by Gärdenfors,

such that it builds a geometrical space that supports the basic notions of distance and

similarity. I argue that such an instantiation of the model can be built solely by operating

at the symbolic level. To clarify this, let us assume a large number of textual documents.

If two terms such as ‘laptop’ and ‘device’ frequently occur with each other, one can

assume that they are close within the meaning space, and that is reflected in the text,

which is a symbolic representation [194].

Thus, while the meaning space is not accessible, one can approach it by how the symbols

are used, i.e. a usage-based approach. This particular observation is the tenet of a class

of approaches within computational linguistics known as Statistical Semantics [195].

Statistical semantics is based on the distributional hypothesis that states according to

Harris that words that occur in the same contexts tend to have similar meanings [194].

This class of approaches to semantics is also called Distributional Semantics which is



Chapter 5. The Approximate Semantic Event Matching Model 134

the name I adopt in this work, often along with the adjective subsymbolic to emphasize

its relative relationship to the symbolic approach.

5.4.3.3 Vector Space Models

One of the widely used mathematical tools to formalize and deal with distributional

semantics are Vector Space Models (VSM) [196]. The premise is that a multi-dimensional

vector space is built out of some textual corpora that reflect the usage of terms in a

domain-agnostic or domain-specific setting. A term or a meaning then becomes a vector

in the space with coordinates for each component. The main motivation for using VSM

for semantic modelling lies in its highly automatic nature to build knowledge as put by

Turney and Pantel:

“VSMs extract knowledge automatically from a given corpus, thus they

require much less labour than other approaches to semantics, such as hand-

coded knowledge bases and ontologies. ” [196]

This supports loosening the semantic coupling as suggested by Requirement R1, which

is not the case for models that require labour such as ontologies. Besides, VSMs serve

as a direct link between hypotheses of cognitive backgrounds such as the distributional

hypothesis, and computational models of mathematical feasibility. Vector space mathe-

matics are efficient and proved useful in Information Retrieval (IR) settings [197, p. 100–

122], which meets the Requirement R3 of efficiency. Furthermore, VSMs are suitable

for tasks that are concerned with measuring the similarity between words, which meets

a matcher’s role in an event processing engine and the Requirement R4 of effectiveness

as put by Turney and Pantel:

“VSMs perform well on tasks that involve measuring the similarity of

meaning between words, phrases, and documents. ” [196]

Matrices are the basic elements to encode term statistical occurrences. For instance

a term–document matrix encodes the number of times a term occurs in a document

of the corpus. Documents are a special case of contexts, which could be windows of

terms around the target term or terms of a particular syntactic relation with the target
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term [198]. Weighting schemes can be used to increase the importance of some terms or

documents. For instance, the Term Frequency Inverse Document Frequency (TF/IDF)

scheme gives more weight to a term if it appears more often in a document and less

often in other documents.

5.4.3.4 Latent Semantic Analysis

One example, which is widely used in cognitive science and information retrieval, is the

Latent Semantic Analysis (LSA) [197, p. 369–383]. LSA builds upon a term-document

matrix but targets the reduction of dimensionality of this matrix. Dimensionality re-

duction targets various objectives: the reduction of noise from terms such as ‘the’,

sparsity reduction, computational efficiency, and handling synonymy [196]. Deerwester

et al. [199] introduced a principled approach to smoothing the matrix and reducing

the dimensionality with an algebraic approach named as Singular Value Decomposition

(SVD).

The rationale behind SVD is to compress the information in the matrix and make use of

potential term-to-term and document-to-document relationships purely on mathematical

grounds. During SVD, some information is lost. Nonetheless many benefits are gained

by getting a smaller matrix. A vital point here is that the resulting matrix represents a

vector space of dimensions different from the original documents. The new dimensions

are latent meanings according to Deerwester et al. [199] and they could enhance the

precision-recall in information retrieval systems.

Here I see a very clear link with the conceptual space model of Gärdenfors [139] and a

return to a semiotics system where symbols and meanings are represented. Nonetheless,

what these hidden meanings are and if they are the adequate representation of the

meanings space is out of the scope of the LSA but I recognize this as an important

direction of future work within this area. In fact, this very point of latent meanings

brought critics to the LSA model and motivated the research towards spaces with more

interpretable indications as put by Gabrilovich and Markovitch:

“Latent semantic models are notoriously difficult to interpret, since the

computed concepts cannot be readily mapped into natural concepts manip-

ulated by humans. The Explicit Semantic Analysis method we proposed
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circumvents this problem, as it represents meanings of text fragments using

natural concepts defined by humans. ” [42]

5.4.3.5 Explicit Semantic Analysis

Gabrilovich and Markovitch [42] introduced an Explicit Semantic Analysis (ESA) ap-

proach for computing semantic similarity and relatedness where the dimensions of the

vector space are human-defined and easy to interpret. For instance, they applied their

approach on Wikipedia and proved it to outperform LSA in computing words semantic

relatedness with 75% vs. 56% of correlation with human judgement. In a nutshell,

Wikipedia-based esa builds an index of words based on the Wikipedia articles they ap-

pear in. A word becomes a vector of articles and the more common articles between two

words exist, the more related the words are. For example, esa(‘parking’, ‘garage’) >

esa(‘parking’, ‘energy’) as the formers appear frequently in common articles. Typically,

semantic relatedness between a pair of terms is measured using cosine distance between

the two vectors representing the two terms.

I scope this work to the distributional explicit semantic analysis semantic measure con-

structed from the Wikipedia corpus as of 2013 2. This is because of its relative ease of

construction as it is based on a statistical analysis of unstructured document corpus as

shown by Carvalho et al. [175]. I use in this work the ESA index developed by Freitas

et al. [174, 175, 200]. Wikipedia is also a very comprehensive corpus of human knowl-

edge, created and curated by vastly decoupled users. That simulates the requirement

of loosely coupled semantics in event exchange. However the proposed model is generic

and suitable for other measures as well, as shown in Chapters 5, 6, and 7.

5.4.3.6 Limitations of Distributional Semantics

Distributional semantics and similar models are criticized on three main aspects as

discussed by Lenci [201]:

1. Compositionality, which states that distributional semantics mainly concerns lex-

ical meanings, i.e. meanings of individual terms. This, in fact, extends to more

generic models of cognitive semantics as stated by Gärdenfors:

2http://en.wikipedia.org/wiki/Wikipedia:Database download
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“The emphasis of the studies within cognitive semantics has been on

lexical meaning rather than on the meaning of sentences.” [139, p. 157]

2. Lexical inference, which states that distributional models do not account for various

types of lexical relationships and thus cannot validate or invalidate some types of

inferences. For instance, the inference “I have a laptop → I have a device” is valid

but the opposite is not as the hyponymy relationship between ‘laptop’ and ‘device’

is asymmetric.

3. Reference and grounding, which states that distributional models lack the capacity

to address aspects of linking a word’s meaning to the world. It is argued that

distributional models be nothing but symbolic representations and thus fall under

the symbol grounding problem [191].

I argue that the compositionality problem be not an issue for the event matching ap-

proach. That is because linguistic structures and syntax is not the kind of data model

used in event processing systems to represent events and subscriptions. In fact, models

such as the attribute-value data model reduces the meaning representation problem to

the individual items of attributes and values, thus making lexical meaning enough for

the problem in hand.

The lexical inference problem is irrelevant to the event processing case tackled in this

work as it does not address inference. Besides, inferences in event processing systems

are done on the level of events rather than lexis. Matching an event to a subscription is

considered as a symmetric operation in this work, and thus, asymmetry is not an issue.

I argue that what matters for this work from the grounding perspective is relevant to the

semantic coupling problem. In distributional semantics, there is a need for an agreement

on distributions, i.e. on the corpus in general, which is coarse-grained compared to the

granular agreement needed on each symbol in classical symbolic models.

Thus, I do not agree that distributional semantics models can be considered symbolic

at the same level with classical symbolic models. They indeed perform on the symbolic

level, but distributions can be regarded as approximations of the lower levels in the

meaning space rather than the symbolic space as it is apparent in hidden dimensions

of LSA for example. Thus, while I agree on the principle of describing such models as

symbolic, I argue that they should not share that same adjective with classical symbolic
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models. Thus, I draw upon the distinction made by Gärdenfors [139, p. 33–58], and I

call them subsymbolic in this work.

5.4.4 Subconceptual Representation of Meaning

At the subconceptual level lies a class of approaches to meaning representation that

builds on the work of early cognitive philosophers such as David Hume who states that:

“It is evident, that there is a principle of connexion between the different

thoughts or ideas of the mind, and that in their appearance to the memory

or imagination, they introduce each other with a certain degree of method

and regularity.” [202, p. 31]

This associationism view as called by Gärdenfors [139, p. 40-41] has been manifested

with a model of cognition: the connectionism.

5.4.4.1 Connectionism

Connectionist systems are Artificial Neural Networks (ANNs) and consist of a number

of connected units: the neurons. A neuron can be activated and deactivated based on

weighted excitatory and inhibitory input coming from his input connections. Activation

spreads in the network, with units getting activated and deactivated in a parallel manner.

The state of the network at a specific point in time could be thought of as a meaning or

idea [203]. Thus, the ANN operates in fact as a dynamical system, which resonates in

a phase space, a space of states, each of which is a point in this high dimensional space.

Consequently, similar to the conceptual spaces, a geometrical interpretation can be given

to ANNs. Similarity and distance are as natural to such a space as to conceptual-level

models. Thus, what applies to the conceptual spaces also applies to connectionist models

in terms of geometrical properties and support for distances and similarity.

5.4.4.2 Limitations of Connectionism

Critics of connectionist models of meaning representation come from two main aspects

[139, p. 42-43]:
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1. Learnability, which states that ANNs need a large training set to learn structure

and adjust weights.

2. Interpretation, which states that it is hard to describe what an emerging network

means.

The learnability problem can be the main drawback that puts vector space models ahead

of ANNs when it comes to computational systems such as event processing. Building

vector space models is highly automatic and can be done in an unsupervised way as

shown by Carvalho et al. [175]. This meets Requirement R1 of loose semantic coupling

as less agreement is needed at the learning stage for distributional semantics.

Vector space models are of a lower dimensionality compared to ANNs, making computa-

tion in vector space systems more suitable for Requirement R3 of efficiency. Interpreting

the networks and their hidden dimensions is similar to the issue of latent semantics mod-

els. Thus explicit semantic analysis appears as the right fit to overcome this secondary

problem.

5.4.5 How Subsymbolic Distributional Event Semantics Meets the Re-

quirements

As discussed throughout Section 5.4 various models of meanings and semantics exist, but

the vector space distributional model based on explicit semantic analysis appears to meet

the requirements. It also has the favourable characteristics of support of similarity, and

ease of building and interpretation as discussed in the previous sections and summarized

in Table 5.1.

5.5 Approximation

This element of the proposed approach is crucial for the other elements to work. The

need for approximate models stems from loosening the coupling on the semantic and

pragmatic level. As discussed in Section 2.10, coupling is necessary to cross semantic

and pragmatic boundaries. Nonetheless, it limits scalability. Loosening coupling at

these levels is a compromise to tackle the trade-off between decoupling for scalability
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Table 5.1: Semantic Models and Requirements

Symbolic Conceptual Connectionist
Conceptual

Spaces
[139]

LSA
[199]

ESA
[42]

R1. Loose semantic
coupling

- + ++ ++ +

R2. Loose pragmatic
coupling

NA NA NA NA NA

R3. Efficiency +++ ++ ++ ++ +

R4. Effectiveness + ++ ++ +++ ++

Support for similar-
ity

- +++ +++ +++ ++

Easy to build - - - + +++ +++ +

Easy to interpret +++ ++ - + - -

Legend

+++ the model excellently addresses the requirement
++ the model moderately addresses the requirement
+ the model slightly addresses the requirement
- the model mildly affects the requirement in a negative way
- - the model moderately affects the requirement in a negative way
- - - the model extremely affects the requirement in a negative way
NA the requirement is not in question

and crossing boundaries. The cost of this compromise is a loss in effectiveness while

crossing the boundaries, i.e. loss of some precision and context when processing the

events.

5.5.1 Approximate Computing Versus Time

Approximate computing has been getting acceptance with the computing community.

Nair declares in the Communications of the ACM that “Big Data Needs Approximate

Computing” [204]. He states that:

“What would systems look like if we had to deal with only this new body

of nontransactional data? Typical applications that mine and process this

data can often tolerate lower precision, imprecise ordering, and even some

unreliability in the operation of the system. Thus, an occasional stale or

approximately correct piece of information delivered promptly is often more

useful than up-to-date and precise information delivered later or at greater

cost.”[9]
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Thus, approximation from Nair’s perspective is a compromise for time efficiency. In

fact, this view has been dominant in computing literature, and specifically in operational

research. For instance, approximation algorithms have been the focus of research where

finding an optimal solution can have a combinatorial time [205]. In such a case the

value of the solution can be measured as a ratio to the optimal value, e.g. the least

possible weight and most valuable items in a Knapsack problem. The algorithm is then

concerned with guaranteeing a bound to this ratio, given a time limit.

In databases, approximate query processing has been used to deal with large data volume

and tackle the response time requirements. For instance, calculating the exact average

price over a large number of products can take a few minutes and lead to a value of

$59.1415. If one takes a sample of the products and calculate the average price of

the sample, it can take a few seconds and lead to a value of $59.2. Such trade-offs

could be acceptable in many settings. Techniques in databases include: sampling-based

techniques [206], histogram-based techniques [207], and wavelets-based techniques [208].

In stream processing systems, similar techniques have been applied to compensate for an

event input rate that exceeds an engine’s capacity. Cugola and Margara [8] account for

this in their Information Flow Processing (IFP) model under the name of load shedding,

a task attributed to the receiver component (refer to Section 2.5.2). For instance, Tabul

et al. [209] implement load shedding through a dynamic insert and removal of a drop

operator within a query plan according to the input rate.

Thus, approximate computing can be seen as a viable and acceptable approach to tackle

many problems when requirements such as response time become pressing. All the above

approaches provide answers with a precision of less than 100%. Nonetheless they are

inevitable when other parameters are factored into the equation, mostly the response

time as is the dominant case in the literature.

5.5.2 Approximate Computing Versus Full Integration

Approximation can also be found in the literature in a different context from time.

For instance, Gravano at al. [210] propose an approximate join approach in database

systems over strings. The rationale for their work comes from the need to join tables on

a string that represents a name, for example ‘John Smith’. This name can exist in the
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first table as ‘John A. Smith’ and in another table as ‘Smith, John’. The need to join

tables on strings comes from data quality issues such as typographical errors or even

more generally in data integration contexts. The result of such joins are uncertain, and

can be cut using thresholds.

In a more generic context, integration processes acknowledge the fact that heterogeneous

schema and data models could be used to describe different databases. Schema matching,

for instance, addresses the matching and mapping of various schema attributes. The

target of schema matching for integration is to map a set of source schemas into a global

schema. Mapping provides a means of translation from queries against the global schema

into the source schemas.

During the schema matching process, some mappings are created between items, which

are not necessarily identical or originally mean the same thing. That implies a form of

approximation at the schema level that accounts for the lack of a complete unified view

of all schema. Such an approximation is apparent in evaluations of schema matching

approaches as discussed by Chaudhri el al. [211]. Metrics that reflect approximation

such as precision and recall are prime quality measures for matching effectiveness.

Although approximation is conducted during schema matching, thresholds are used,

and the top-1 mapping is usually picked. Thus, the approximation becomes hidden

in the process. In recent years, uncertain schema matching research has gained more

attention with the realization that matchers are inherently uncertain [173]. Statistically

monotonic matchers may assign a slightly lower similarity than it should to mappings

of a specific precision, thus matching with top-k mappings results becomes a potential

solution [172]. Gal proposes a model for uncertain schema matching with top-k and

investigates various algorithms within several mapping constraints [172]. Uncertainty

scores that reflect approximation in schema matching can be preserved and propagated

to query processing, which becomes uncertain in nature.

Thus, I conclude that approximation has been in fact acknowledged regarding issues

related to semantics. In this work, approximation can be used when loosening the

semantic coupling leads to a lack of complete control over the event semantics. It forms

a suitable model to address the need for a matching model that works within such

assumptions.
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5.5.3 Limitations of Approximation

Current event processing systems, as with most database systems, follow an exact model

of matching (see Table 3.3). This trend stems from the need for precision in computing

systems. In fact, the main limitation of an approximate model is that it achieves a less-

than-optimal value of the solution. This value can take different forms according to the

domain and application, but could be measured in the case of event matching in terms

of true positives and negatives achieved by the matcher, and the degree of completeness

of events. An approximate event model would typically miss some relevant events, and

pass some irrelevant ones.

However, I argue that this limitation be, in fact, the result of giving up some control

over the system, as full control is infeasible at large scales. This control takes the form

of semantic and pragmatic agreements in event systems. Thus, loose coupling at these

dimensions implies the loss of some precision in order to scale. Accepting this approach

is fundamental to scale event processing systems in open, distributed, and heterogeneous

environments. In fact, this has been the case in Information Retrieval (IR) [197, p. 151–

175] where precision, recall, and derived measures are standard to evaluate IR systems.

From this perspective, approximation appears as a proper fit for event systems to meet

the requirements R1 and R2 of loose semantic and pragmatic coupling. The use of ap-

proximate event models could lead to the use of techniques such as semantic relatedness

instead of exact string comparison that is costly from a time performance point of view.

Thus, approximation is not the best solution from the perspective of requirements R3

and R4 of effectiveness and efficiency. However, it should target high values of these

measures within an approximate paradigm. Applications with hard real-time deadlines

or an exact precision requirement such as security systems or critical infrastructures may

not be the ideal applications. It can be better to afford the cost of establishing semantic

and pragmatic agreements and use an exact event processing system rather than leaving

approximation to the matcher.

5.5.4 How Approximation Meets the Requirements

As discussed throughout Section 5.5 approximation is required in event processing sys-

tems that are distributed and decoupled by nature. Approximate and exact models are
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Table 5.2: Approximation and Requirements

Exact Model Approximate Model

R1. Loose semantic coupling + +++

R2. Loose pragmatic coupling + +++

R3. Efficiency +++ ++

R4. Effectiveness +++ ++

Legend
+++ the model excellently addresses the requirement
++ the model moderately addresses the requirement
+ the model slightly addresses the requirement

the main models for event systems, but the approximate approach seems the one to meet

the main requirements as summarized in Table 5.2.

5.6 Event Flow Model

The event processing engine plays the key role to filter and make sense out of the event

cloud. Cugola and Margara present an abstract functional model for information flow

processing systems in [8]. The core components of an event engine in their model are

the event Receiver, the Decider, the Producer and the event Forwarder. Event Sources,

Consumers and Users interact with the engine through protocols and condition/action

Rules. Figure 5.2 presents an elaboration of Cugola and Margara’s model with compo-

nents as described in Section 2.5.2.

The proposed model extends the event processing engine as follows:

� Rules are equipped with the tilde ∼ semantic approximation operator. Rules,

which consist only of a detection part for single events, are called Subscriptions

throughout the rest of this work.

� The Single Event Matcher is equipped with matching and mapping algorithms

to detect events semantically relevant to approximate subscriptions. The Single

Event Matcher works in two modes

– Top-1 which forwards the best mapping between an event and a subscription

to the Consumers.
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Figure 5.2: Event flow model

– Top-k that results in a list of top-k possible mappings between an event and

a subscription. The top-k mappings of various events to subscriptions go to

the Complex Pattern Matcher.

� The Complex Pattern Matcher performs a probabilistic reasoning to deduce the

probabilities of occurrences of the derived events in the action parts of the complex

rules.

The focus of this thesis is on the Single Event Matcher sub-component of the Decider.

5.7 Event Model

The event model used in this chapter is an attribute-value model, but the discussion

is as relevant to other models such as hierarchical or graph-based event models. Each

event is a set of tuples. Each tuple consists of an attribute-value pair. Example 5.1

represents an event complying to the model.

Example 5.1 (Increased Energy Consumption Event).

{type: increased energy consumption event,

measurement unit: kilowatt-hour, device: computer,

desk: desk 112c, office: room 112, floor: ground floor,

zone: building, city: Galway, country: Ireland, continent: Europe}

The formal definition of the event model is as follows: Let E be the set of all events

and let A and V be the sets of possible attributes and values respectively. Let T be
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the set of possible attribute-value pairs, i.e. tuples, such that T = {(a, v) : a ∈ A ∧ v ∈

V }. Let’s define two functions Attribute : T → A and V alue : T → V that give the

attribute and value respectively when applied to a tuple such that Attribute(a, v) = a

and V alue(a, v) = v. An event e ∈ E is a set of tuples where no two distinct tuples can

have the same attribute as in Equation 5.1.

e = {t : t ∈ T ∧ ∀t1, t2 ∈ e, t1 6= t2 ⇒ Attribute(t1) 6= Attribute(t2)} (5.1)

5.8 Language Model

Subscriptions follow a conjunctive query form of attribute-value predicates. Each pred-

icate uses the equality operator to signify exact equality or approximate equality when

indicated. Other Boolean and numeric operators such as ! =, >, and < are kept out of

the language for the sake of simplicity and to focus the discourse on semantic matching.

Nonetheless, the model can be extended to encompass such operators as discussed in

Section 5.9.5.

Each predicate consists of an attribute, a value, and specifications of the semantic ap-

proximation for the attribute and the value. The most notable feature of the language

is the tilde ∼ operator that helps specify the approximation for an attribute/value when

it follows it. The tilde ∼ operator also helps specify optionally the semantic measure to

be used for the approximation as shown in Example 5.2.

Example 5.2 (Approximate Subscription).

{type =increased energy consumption event,

device = laptop∼,

room∼esa = room 112}

The author of the subscription in Example 5.2 is interested in an event of exactly the

type ‘increased energy consumption event’. The subscription specifies that the device can

be ‘laptop’ or something related semantically to ‘laptop’ with no specification of what

semantic measure to use, meaning that the default should be used. The subscription also

states that the event’s ‘room’ must be ‘room 112’. However, it states that the attribute

‘room’ itself can be semantically relaxed using the esa semantic measure.
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The formal definition of the language model is as follows: Let S be the set of subscriptions

and let A and V be the sets of possible attributes and values respectively which can be

used in a subscription. Typically there are no restrictions on A or V and the user

is free to use any term or combination of terms. Let SM be the set of all possible

semantic relatedness measures available for approximate subscriptions. Each predicate

is a sextuple that consists of the attribute, the value, whether or not the attribute/value

are approximate, and the semantic measure to relax the attribute/value if applicable.

Let P be the set of possible predicates. Thus, P is a subset of a Cartesian product as

shown in Equation 5.2.

P = {p : p = (a, v, appa, appv, sema, semv) ∈ A× V × {0, 1}2 × SM2} (5.2)

A subscription s ∈ S is a set of predicates such that s = {p : p ∈ P}. Let Attribute : P →

A and V alue : P → V be two functions that give the attribute and value respectively

when applied to a predicate. Let App∼A : P → {0, 1} be a Boolean function that specifies

if the attribute of a predicate p ∈ P must be approximated if App∼A(p) = appa = 1.

Let Sem∼A : P → SM be a function that specifies for a predicate p ∈ P the semantic

measure Sem∼A(p) = sema to be used to approximate its attribute if the predicate is

approximated, i.e. if App∼A(p) = 1. Let App∼V and Sem∼V be two functions for values

approximation in a similar way. An exact subscription is a special case of approximate

subscriptions where all attributes and values are not approximated.

5.9 Matching

Given an approximate subscription s ∈ S and en event e ∈ E, an approximate seman-

tic single event matcher M decides on the semantic relevance between s and e. The

relevance results from a semantic mapping between attribute-value predicates of s and

attribute-value tuples of e. Example 5.3 shows a possible mapping between the event in

Example 5.1 and the approximate subscription in Example 5.2.

Example 5.3 (Mapping between the Subscription and the Event).

σ ={(type=increased energy consumption event

↔ type:increased energy consumption event),

(device = laptop∼ esa ↔ device:computer),
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(room∼ esa = room 112 ↔ office: room 112)}

M works in two modes: the top-1 mode which decides on the most probable mapping

between s and e, and the top-k mode which decides on the top-k probable mappings to

be used later for complex event processing. It has been shown in [172] that producing

the top-k mappings increases the chance of hitting the correct mapping. That is due to

the statistical monotonicity principle which roughly states that mappings with higher

similarities tend to have higher precisions but with a statistical distribution such that

a mapping with a slightly smaller similarity can have a better precision than that of

higher similarity [172]. Uncertain mapping between predicates and tuples is inherent in

both matching modes with probabilities being the final outcome.

The formal definition of the matching model is as follows: Let C = s×e be the set of all

possible correspondences between the predicates of s and the tuples of e. ∀c = (p, t) ∈

C ⇒ p ∈ s∧t ∈ e. Σ = 2C is the power set of C and represents all the possible mappings

between s and e. Let Γ : Σ→ {0, 1} be a Boolean constraint function which defines the

validity of a mapping σ ∈ Σ. I adopt in this work an n : 1 cardinality constraint function

which allows every predicate to be mapped to one and only one event tuple. The set of

all valid mappings according to Γ is denoted as ΣΓ. There are exactly n correspondences

in any valid mapping σ where n is the number of predicates in the subscription s.

For any valid mapping σ ∈ ΣΓ there exists a probability function that quantifies

the probability of every predicate-tuple correspondence (p, t) ∈ σ such as (device =

laptop∼ esa ↔ device:computer). The probability of (p, t) is denoted as p(p,t) where

p(p,t) ∈ [0, 1]. The probabilities p(p,t) form a probability space Pσ over all (p, t) ∈ σ as

shown in Equation 5.3. ∑
(p,t)∈σ

p(p,t) = 1 (5.3)

For any valid mapping σ ∈ ΣΓ there exists a probability function which quantifies the

probability of the overall mapping σ among other possible mappings. The probability

of σ is denoted as pσ where pσ ∈ [0, 1]. To realize a matcher such as the matcher M

described above, I propose an ensemble of matchers as illustrated in Figure 5.3.
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Figure 5.3: The approximate semantic event matcher model

5.9.1 First-Line Matchers and Similarity Matrices

First-line matchers operate on actual attributes and values of s and e and output simi-

larity matrices according to the semantic measures sm ∈ SM in s. A similarity matrix

M l is an n ×m matrix where n is the number of predicates in s and m is the number

of tuples in e. Each element M l
i,j of M l represents the degree of similarity between

predicate pi ∈ s and tuple tj ∈ e according to the matcher l. Typically M l
i,j ∈ R. For in-

stance, the cell M l1
i,j of the correspondence (device = laptop∼ esa↔ device:computer)

would be assigned the value 1 by the matcher l1 responsible for attribute exact matching.

Another cell M l2
i,j in another matrix M l2 would be assigned a value < 1 by the matcher

l2 responsible for value approximate matching.

There are two sets of first-line matchers: matchers which operate on the attributes

of predicates/tuples and those which operate on values. There is an exact matcher for

attributes and an exact matcher for values. These exact matchers handle the predicates’

attributes/values which do not have any approximation specification and ignore the rest.

An exact matcher operates on attributes or values and produces a Boolean similarity

matrix, i.e. M exact
i,j ∈ {0, 1}. Let the matchers labelled exa and exv be the attributes

and values exact matchers respectively. Let pi ∈ s, tj ∈ e, Equation 5.4 shows how

the attributes exact matcher assigns similarities. The same applies to the values exact

matcher.

M exa
i,j =

 0 if App∼A(pi) = 0 ∧Attribute(pi) 6= Attribute(tj)

1 otherwise
(5.4)
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The remaining first-line matchers are approximate matchers, each of which uses one of

the semantic measures used in the subscription. An approximate first-line matcher han-

dles the predicates’ attributes/values which are relaxed by its corresponding semantic

measure and ignores the rest. It operates on attributes or values and produces a simi-

larity matrix as shown in Equation 5.5 which explains the behaviour of an approximate

attribute matcher l which corresponds to a semantic measure sm. The same applies to

values approximate matchers. Let pi ∈ s, ∀tj ∈ e:

M l
i,j =

 sm(Attribute(pi), Attribute(tj)) if App∼A(pi) = 1 ∧ Sem∼A(pi) = sm

1 otherwise
(5.5)

The inner working and order of first-line matchers can be changed according to opti-

mization strategies as discussed in Section 5.9.5.2.

5.9.2 Global Aggregator and the Combined Similarity Matrix

The global aggregator F operates on the resulting similarity matrices from first-line

matchers and produces a single combined similarity matrix M as sown in Figure 5.3.

For example, the correspondence (device = laptop∼ esa ↔ tool:computer) would be

assigned a similarity value of 0 by the attribute exact first-line matcher because ‘device’

6= ‘tool’ and they are not approximated. It would be assigned a similarity value x > 0 by

the value approximate first-line matcher of esa as ‘laptop’ is related to ‘computer’ and

they are approximated. The global aggregator shall combine the 0 similarity from the

first matrix with the similarity x from the other matrix and conclude a judgement of 0

as an overall similarity according to matching semantics as the correspondence violates

it for attributes.

M represents an overall judgement on the similarity between the subscription’s predi-

cates and the event’s tuples. The global aggregator chosen for the model is the element-

wise matrix multiplication operator ◦, also called the Hadamard product as defined in

Equation 5.6.

Mi,j = (M1 ◦M2 ◦ ... ◦ML)i,j =
l=L∏
l=1

M l
i,j (5.6)

The Hadamard product is commutative and associative. It is also efficient to be imple-

mented as it can be computed in O(n ×m × L) time. The zero and identity elements
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of the Hadamard product easily extends from the familiar zero and identity elements of

the multiplication operator ×, i.e. 0 and 1. This makes it easy to pass information from

the first-line matchers to the aggregator. i.e. to neglect or skip a correspondence (pi, tj)

by assigning 0 or 1 as its similarity.

5.9.3 Top-1 Matcher

In the top-1 matching mode, the top-1 matcher operates over the combined similarity

matrix M . It produces the best mapping σ∗ and the space Pσ∗ which defines the

probabilities of correspondences ci ∈ σ∗. It also produces the space P which defines the

probability that σ∗ is the correct mapping between the subscription s and the event e as

illustrated in Figure 5.3. Given the combined similarity matrix M , the best mapping σ∗

can be computed by choosing the tuple tji which has the maximal similarity for every

predicate pi as shown in Equation 5.7.

σ∗ = {(pi, pji) : 1 ≤ i ≤ n ∧ ji = arg max
j

(Mi,j)} (5.7)

According to Equation 5.7, σ∗ can be found in O(n×m) operations. σ∗ contains exactly

n predicate-tuple correspondences under the n : 1 matching semantics.

To create the probability space Pσ∗ Equation 5.8 defines the n probabilities of the

correspondences (subscription predicate ↔ event tuple) of σ∗. That is done by dividing

each (predicate ↔ tuple) similarity in the mapping by the sum of all similarities so the

sum of probabilities becomes 1. These probabilities can be computed in O(n) time.

pi,ji =
Mi,ji

i=n∑
i=1

Mi,ji

, 1 ≤ i ≤ n (5.8)

To create the probability space P which defines the probability that σ∗ is the correct

mapping between s and e among other possible mappings, there is a need to normalize

the similarity matrix M among other possible matrices. The maximal possible similarity

value maxsm of each measure sm ∈ SM is used as they are universal among all mappings

so the probability that σ∗ is correct ≤ 1. The maximum value of any element in M is

maxSM =
∏

sm∈SM
maxsm. Thus, the probability that σ∗ is correct is defined in Equation
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Figure 5.4: Top-k by an evolving frontier algorithm

5.9 and can be computed in O(n) time.

pσ∗ =
∑

(pi,tji )∈σ∗

Mi,ji

n ∗maxSM

(5.9)

5.9.4 Top-k Matcher

In the top-k matching mode, the matcher M produces a ranked list of the best k

mappings σ∗1, σ
∗
2, ..., σ

∗
k ∈ ΣΓ along with the probability spaces of correspondences Pσ∗

r

and the probability space of mappings P as illustrated in Figure 5.3. Given the combined

n×m similarity matrix M between a subscription s and an event e, I propose an efficient

algorithm to find the top-k mappings σ∗r based on an evolving Pareto frontier in a vector

space as shown in Figure 5.4.

Consider the set V of all n-dimensional vectors where the components of each vector are

tuples of e, i.e. V = {~v : ~v ∈ {1, 2, ...,m}n}. Each vector ~v ∈ V encodes a valid mapping

σ ∈ ΣΓ as shown in Equation 5.10. This is denoted as ~v ↔ σ.

~vi = j ⇔ (pi, tj) ∈ σ : σ ∈ ΣΓ, pi ∈ s, tj ∈ e (5.10)

For example, let an approximate subscription be

{type =increased energy consumption event,

device = laptop∼,

room∼esa = room 112}
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Let an event be

{type: increased energy consumption event,

office: room 112,

device: computer}

Let a mapping

σ ={(type=increased energy consumption event

↔ type:increased energy consumption event),

(device = laptop∼ esa ↔ device:computer),

(room∼ esa = room 112 ↔ office: room 112)}

A vector ~v = 〈1, 3, 2〉 corresponds to this mapping between the subscription’s predicates

1, 2, and 3 to the event’s tuples 1, 3, and 2 respectively.

To quantify a vector, and hence its corresponding mapping, I define an operator ‖...‖
M

:

V → R given the similarity matrix M as in Equation 5.11.

‖~v‖
M

=

i=n∑
i=1

Mi,j : j = ~vi (5.11)

The more similarity a vector ~v encodes according to M , the more becomes ‖~v‖
M

.

A vector ~v ∈ V is dominated by a vector ~u ∈ V if and only if the similarity encoded by all

components of ~v is greater than or equal to the similarity encoded by the corresponding

components of ~u with at least one similarity to be greater than and not equal. That

means that the mapping σ~v ↔ ~v is better than the mapping σ~u ↔ ~u and that ‖~v‖
M
>

‖~u‖
M

. This is denoted as ~v ≺ ~u.

A vector ~u directly dominates a vector ~v if there exists no vector ~w different from ~u and

~v where ~v ≺ ~w ≺ ~u. This is denoted as ~v ≺≺ ~u. For instance, ~v2 ≺≺ ~u7 in Figure 5.4.

In terms of similarity, this means that ~v2 encodes a mapping that has more similarity

between predicates and tuples than the mapping encoded by ~v7.

The proposed algorithm which is called Top-k by an Evolving Frontier is depicted in

Figure 5.4. It starts by sorting the rows in the similarity matrix M in descending order

and keeping track of the new locations of tuples in a matrix called MT . The best
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mapping σ∗1 is represented by the elements of the sorted matrix which have j = 1. This

is equivalent to a vector ~v1 which is dominated by all other vectors of V . Vector ~v1 is a

Pareto frontier. A Pareto frontier is a set of vectors which are dominated by all other

non-searched vectors not in the frontier, and which do not dominate each other.

ALGORITHM 1: Top-k by an Evolving Frontier

Input: the similarity matrix M , the required number of mappings k
Result: top-k mappings Σk

1 begin
2 Σk ←− Φ;
3 SortedM ←− SortRows(M);
4 MT ←− TupleIndicesOf(SortedM);
5 Frontier ←− Φ ; /* a priority queue of vectors whose key is ‖~v‖

M
*/

6 ~v1 ←− 〈1, 1, ..., 1〉;
7 Enqueue(~v1, Frontier);
8 for 1 ≤ r ≤ k do
9 ~vr ←− Head(Frontier) ; /* get the best vector ~vr from head of the queue */

10 Σk ←− Σk ∪ σ∗r : ~vr ↔ σr;
11 Frontier ←− Frontier\~vr ; /* remove ~vr from head of the queue */

12 D ←− {~d : ~vr ≺≺ ~d} ; /* set of n vectors directly dominating ~vr */

13 Enqueue(D, Frontier);

14 end
15 return Σk;

16 end

Because the dominance as defined is equivalent to the quality of mapping, then the best

mapping of non-searched mappings must lie on the frontier. The algorithm works in

iterations, and the frontier keeps evolving. When a vector is found to correspond to the

best mapping, it is removed from the frontier. All vectors that directly dominate the

removed vector are candidates for search, and thus, they are added to the frontier. Vec-

tors, which directly dominate a vector, can be found by changing one of its n components

at a time by moving one step rightwards in the rows of the sorted similarity matrix. As

a result, the algorithm can find the top-k best mappings within k iterations and the

search space is kept to a minimum and updated with n vectors at each iteration. The

correctness of the algorithm follows from the previous discussion. Algorithm 1 shows its

main steps.

The frontier is presented as a priority queue of vectors ~v ∈ V on the key ‖~v‖
M

. So,

searching the frontier is efficient as the best vector sits at the head of the queue. Sorting

M in Step 3 has a time complexity of O(n.m.log(m)). Taking the head of the queue

in Step 9 for k times has an overall complexity of O(k). Generating the set D in Step

12 for k times has an overall complexity of O(k.n2). Enqueuing the n vectors of D in
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Step 13 for k times has an overall complexity of O(n.log(n) +k.log(k)−k). That makes

the overall time complexity of the proposed algorithm proportional to O(n.m.log(m) +

n.log(n) + k.n2 + k.log(k)). Creating the probability spaces Pσ∗
r

of correspondences and

the probability space P of mappings σ∗r is achievable in the same way as in the top-1

mode by normalizing M as shown in Equations 5.8 and 5.9, with the difference that in

the top-k mode there are k probabilities pσ∗
r

in P to be calculated.

5.9.5 Matcher Extensibility

This section tackles the extensibility of the matcher to include Boolean and numeric

operators and to leverage common optimization strategies in event processing.

5.9.5.1 Boolean and Numeric Operators

The current language as described in Section 5.8 is confined to the equality operator.

However Boolean and numeric operators such as ! =, <, ≤, >, and ≥ can be added as

exact first-line value matchers in Figure 5.3. Let (temperature> 25) be a predicate

and let {location:first floor, temperature:26} be an event of two tuples. Then an

exact matcher for the > operator will produce a Boolean matrix which contains 0 for

the cell which corresponds to the predicate and first tuple, while it contains 1 for the

predicate and the second tuple.

If the predicate contains an approximate attribute, i.e. (temperature ∼ esa > 25)

then the approximate first-line matcher of attributes produces the similarities for the

mappings (‘temperature’↔ ‘location’) and (‘temperature’↔ ‘temperature’). This result

will need to be combined then with the matrix produced by the > operator first-line

matcher.

5.9.5.2 Optimization

A distinguishing aspect of matching in event processing systems is that there is typically

a large number of subscriptions S to be matched against every event e. There are

two main types of optimization strategies which can be recognized in the literature:
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leveraging commonalities between subscriptions and changing the evaluation order of

predicates [212, 213].

Leveraging commonalities is based on the observation that two subscriptions x, y ∈ S

may share one or more predicates. Thus, it is more efficient to evaluate unique atomic

predicates first and then propagate the results to subscriptions. In the model in Figure

5.3, this can be achieved by decomposing registered subscriptions into their predicates

before entering the matcher. The set of predicates then forms the entries of the similarity

matrices. The top-1 and top-k matchers then aggregate the matching results according

to each subscription. This affects the creation of probability spaces which shall consider

only those predicates which are a part of the subscription in question. A matcher

equipped with this strategy is called a commonalities-based matcher.

The idea of ordering the evaluation of predicates stems from inter-dependencies between

predicates. In the proposed model, there are two distinct types of predicates: exact and

approximate. If an exact predicate of a subscription evaluates to False then there is no

need to evaluate the rest of the subscription’s predicates if they do not belong to other

subscriptions. Thus, the execution of first-line matchers is ordered by starting with the

exact matchers first. Another observation is that when an approximate attribute/value

of a predicate evaluates to 0 then the whole predicate evaluates to 0. A matcher equipped

with this strategy is called an order-based matcher.

5.10 Evaluation

The model introduced in this chapter loosens the semantic coupling dimension of event

processing. Thus, to test the hypotheses H1 and H4 I evaluate to what extent this

model is effective and efficient, and to what extent it loosens the semantic coupling.

This section describes the evaluation methodologies and the experiments’ results.

5.10.1 Evaluation Metrics

Evaluation metrics can be classified into two categories: effectiveness and efficiency met-

rics [214]. Effectiveness metrics measure the quality of event matching. A fundamental
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Table 5.3: Base Concepts for Effectiveness Evaluation

Ground Truth
Relevant Events

Ground Truth
Irrelevant Events

Matcher Relevant Events TP (True Positive) FP (False Positive)

Matcher Irrelevant Events FN (False Negative) TN (True Negative)

requirement is the existence of a ground truth which divides events into relevant and

irrelevant with respect to each approximate subscription.

Table 5.3 shows the base concepts needed for evaluating effectiveness. For all these

concepts to exist, the resulting events from the matcher must be divisible into two

distinct sets of matcher relevant and irrelevant events. In the case of the approximate

matcher which assigns probabilities to events with respect to a subscription, the two sets

can be achieved by ranking and cutting off using recall levels. Precision, Recall, and the

combined F1Score have been used for effectiveness evaluation.

Precision measures the proportion of relevant events discovered by the matcher with

respect to all the discovered events such that Precision = TP/(TP + FP ). Recall

measures the proportion of relevant events discovered by the matcher with respect to all

the known relevant events from the ground truth such that Recall = TP/(TP + FN).

Precision and recall are calculated for the whole set of subscriptions S by averaging the

precision and recall achieved for all individual subscriptions respectively.

F1Score is computed at 11 recall points, {0, 0.1, 0.2, ..., 1.0}, to cover all the precision-

recall curve without using thresholds and the maximal F1Score is then used. The

F1Score equally combines Precision and Recall such that F1Score = (2× Precision×

Recall)/(Precision + Recall). The metric used for evaluating time efficiency is the

matcher Throughput defined as Throughput = (Number of processed events)/(Time unit).

Additionally, to measure the loosening in semantic coupling, I use two measures: alter-

native number of exact subscription rules that would be needed in a coupled model, and

the degree of approximation used in the approximate subscriptions. These two measures

reflect to a large extent the loosening in coupling. These measures are compared to the

exact matching model’s numbers which would typically have a large number of exact

subscription rules that have zero degree of approximation as a result of coupling.
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5.10.2 Methodology for Effectiveness Evaluation

The evaluation methodology for effectiveness is based on the methodologies of the schema

matching/mapping community [211]. The task of schema matching/mapping is to find

the best mapping between a source schema S and a target schema T . The common

evaluation methodology is based on a real world workload of a relatively small number of

schemas, and manually decided ground truth mappings for the baseline [211]. However,

due to the large-scale nature of the Internet of Things it is preferable to evaluate with

large sets of events and subscriptions. Thus, specifying the ground truth mappings

becomes a challenge.

In recent years there has been a trend towards synthetic evaluation [214]. Two ap-

proaches can be recognized: a top-down approach and a bottom-up approach. In

the top-down approach a source schema S is used. Then, by systematically remov-

ing and transforming parts of S, it is possible to generate various target schemas and

their corresponding ground truth mappings to S as in eTuner [215]. In the bottom-up

approach pairs of relative small source and target schemas with known ground truth

mappings are used. Systematic transformations are then applied to the schemas and

the mappings to generate other pairs with corresponding ground truth mappings as in

STBenchmark [216].

Synthetic evaluation for various purposes has been widely used in event processing as

discussed in Chapter 3, see [26, 29–31, 33, 34, 37, 39, 158–160, 165]. Within the context

of event matching there are approximate subscriptions and events instead of source and

target schemas. Similarly to the idea in STBenchmark [216], I start with pairs of exact

subscriptions X and events E with known ground truth which are simply the result of

exact matching of events to subscriptions. A semantic expansion transformation is then

applied to the events and subscriptions based on thesaurus similarly to the synonyms

transformation based on the Merriam-Webster thesaurus [217] in eTuner [215]. Along

with semantic expansion, the ground truth is updated accordingly. The methodology is

outlined in Figure 5.5 and detailed in the following sections.
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Table 5.4: Sensor Capabilities

Sensor Capabilities

solar radiation, particles, speed, wind direction, wind speed, temperature, water flow,
atmospheric pressure, noise, ozone, rainfall, parking, radiation par, CO, ground tem-
perature, light, NO2, soil moisture tension, relative humidity, energy consumption,
CPU usage, memory usage

5.10.2.1 Generation of a Seed Event Set

The goal of the event set is to simulate the case of a large set of events that would exist

in a large-scale heterogeneous environment of event producers and consumers. The seed

event set, SE in Figure 5.5, has been synthesized based on a set of IoT sensors identical

to the ones deployed in the SmartSantander smart city project [50] and the Linked

Energy Intelligence (LEI) dataspace [218]. The SmartSantander project proposes a city-

scale experimental research testbed for IoT applications and services based on sensors

deployed in a set of European cities. The LEI project targets sensing buildings for energy

saving and management purposes. The used sensor capabilities are shown in Table 5.4.

Some capabilities have been the subject of study by Derguech et al. in [219, 220].

A set of car brands from the Yahoo! directory [221] has been used to generate vehicle

platforms for mobile sensors. A set of home based appliances from the BLUED KDD

dataset has been used as indoor platforms [222]. For indoor locations, rooms from the

LEI DERI Building has been used [223]. For geographical locations, the SmartSantander

project locations, as well as the LEI location of Galway city, have been used.

Seed events are generated by randomly combining various attributes and values from the

datasets. A set of 165 seed events has been used to generate events for the experiments.

Example 5.4 represents a resulting seed event generated at this stage.

Example 5.4 (Seed Event).

{type: increased energy consumption event,

measurement unit: kilowatt-hour, device: laptop,

desk: desk 112c, room: room 112, floor: ground floor,

zone: building, city: Galway, country: Ireland, continent: Europe}
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Figure 5.5: Methodology for effectiveness evaluation

5.10.2.2 Generation of an Exact Subscription Set

Exact subscriptions are generated by randomly picking a number of tuples from the

seed events and turning them into exact subscriptions, the set X in Figure 5.5, Exam-

ple 5.5 represents an exact subscription of length 3 generated from the seed event in

Example 5.4.

Example 5.5 (Exact Subscription).

{type =increased energy consumption event,

device = laptop,

floor = ground floor}

5.10.2.3 Generation of Ground Truth for Exact Subscriptions and Seed

Events

An exact matcher has been used to find the relevant and irrelevant seed events to exact

subscriptions, function PX−SE in Figure 5.5. An event is relevant to an exact subscrip-

tion if all the predicates in the subscription are exactly matched by at least one tuple

from the event.

5.10.2.4 Semantic Expansion of Seed Events

The purpose of semantic expansion of seed events, transformation PSE−E in Figure 5.5,

is to generate a relatively large amount of events for evaluation where the semantic

heterogeneity property holds. Thus, the Merriam-Webster online thesaurus has been

used [217] as in eTuner [215].
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A set of 50, 000 expanded events of a length up to 10 tuples has been generated starting

from seed events by replacing one or more terms in an event’s tuples by synonyms

or related terms from the thesaurus. Example 5.6 represents an event resulting from

semantically expanding the seed event in Example 5.4. The latter has different terms

used for attributes, e.g. such as ‘place’ instead of ‘room’, and different terms used for

values, e.g. ‘computer’ instead of ‘laptop’.

Example 5.6 (Event Resulting from Expansion).

{type: power consumption rise event,

magnitude unit: kilowatt per hour, apparatus: computer,

bureau: bureau 112c, place: room 112, level: ground level,

area: building, metropolitan: Galway, homeland: Ireland, landmass: Europe}

5.10.2.5 Generation of an Approximate Subscription Set

An approximate subscription set, S in Figure 5.5, can be generated from an exact

subscription set by introducing the tilde ∼ operator into one or more predicates in the

exact subscription, the transformation PX−S in Figure 5.5. This generation can also

be guided by: the percentage of predicates parts to be relaxed by the tilde ∼ operator

that is called the degree of approximation and the semantic measure to be used at

the attribute/value part of predicates tuples. Example 5.7 represents an approximate

subscription resulting from relaxing 50% of the exact subscription in 5.5 using the esa

semantic measure.

Example 5.7 (Approximate Subscription).

{type =increased energy consumption event∼ esa,

device∼ esa = laptop∼ esa,

floor = ground floor}

5.10.2.6 Generation of Ground Truth for Approximate Subscriptions and

Expanded Events

The goal of this stage is to find the resulting relevance function between approximate

subscriptions and expanded events, function PS−E in Figure 5.5. PS−E is isomorphic

to the basic exact relevance function PX−SE thus it is an exact relevance function. As
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a result, an expanded event is relevant to an approximate subscription if it exactly

matches the subscription or a version of it which results from it by replacing the tilde ∼

approximated parts with related terms from the thesaurus.

5.10.3 Methodology for Efficiency Evaluation

Efficiency evaluation aims to position the proposed approach on the throughput scale

with respect to an approach based on an exact matcher, and namely rewriting of rules

based on WordNet [224] as a knowledge representation followed by an exact matching.

Given a set of approximate subscriptions, each approximate subscription can be re-

written as a set of conjunctive statements, each of which is a set of attribute-value pairs

resulting by replacing the approximate parts of a subscription with related terms from

the WordNet [224] dictionary. Example 5.8 shows a rewritten statement arising from

the approximate subscription in Example 5.7.

Example 5.8 (Exact Rewritten Statement).

{type =increased energy use event,

appliance = portable computer,

floor = ground floor}

5.10.4 Results

The following sections explain the experiments that study the top-k algorithm perfor-

mance, the effects of optimization, approximation degree, and the comparison with the

exact model. All experiments have been conducted on a Windows 7 machine, with an

Intel Core i7-3520 2.90 GHz CPU and 8GB of RAM running JVM 1.7.

5.10.4.1 Top-k by an Evolving Frontier Algorithm Performance

Figures 5.6, 5.8 and 5.7 show that the algorithm time performance is polynomial and

approximately linear with k and the number of event’s tuples m while it is polynomial

and approximately quadratic with the number of subscription’s predicates n. These

findings confirm the anticipated contribution of n, m, and k to the algorithm complexity

analysed in Section 5.9.4. They also show that the proposed algorithm is efficient in
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finding the top-k mappings between a subscription and an event. Thus, the efficiency

part of hypotheses H1 and H4 is validated for event processing when further processing

of single events is needed, e.g. in the case of complex event processing.

5.10.4.2 Optimization Strategies

This experiment has been conducted with 9 sets of 100− 500 approximate subscriptions

of 50% degree of approximation with esa. 43% of the predicates on average are unique

in the subscriptions. Figure 5.9 shows that a matcher equipped with the commonali-

ties and order optimization strategies outperforms a naive matcher for any number of

subscriptions with an average optimization of 134%. The commonalities-based matcher

and the order-based matcher both outperform the naive matcher.

In the selected sample the commonalities-based optimization outperforms the order-

based one. That is caused by the relatively high number of shared predicates (about

one shared predicate per each two subscriptions). Besides, 50% degree of approximation

seems to leave a little to do to the exact matchers for early elimination of subscrip-

tions. The higher proportion of shared-predicates and the lower degree of approximation,
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the better optimization that shall be achieved by commonalities-based and order-based

strategies respectively.

These findings show that the proposed approximate matching model is naturally and

effectively extendible by optimization strategies commonly used in event processing.

Thus, the efficiency part of hypotheses H1 and H4 is validated for event processing with

the single event matching functionality.

5.10.4.3 The Effect of the Degree of Approximation

The experiment has been conducted with 11 sets of increasing degrees of approximation

of 100 approximate subscriptions with esa. Figure 5.10 shows that the matcher performs

well with low degrees of approximation. Effectiveness slightly drops with medium de-

grees, 90%− 100% F1Score with degrees up to 90%. It then sharply drops to 40% when

the subscriptions become mostly or fully approximated, i.e. > 90%. That is because

exact predicates can better discriminate relevant events and as they disappear in higher

degrees of approximation it becomes difficult for the matcher to decide on relevance and

F1Score drops consequently. Thus, the effectiveness part of hypotheses H1 and H4 is

validated for event processing with single event matching functionality, the scope of this

work, for a reasonable amount of approximation.

Figure 5.11 shows that throughput decreases sharply from 9, 700 events/sec to 5, 100

events/sec when approximation starts to appear in subscriptions at around 20% degree

of approximation. It then decreases almost linearly from 5, 100 events/sec to 1, 700

events/sec when the degree increases from 20% to 100%. That is because approximate
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predicates, which increasingly appear in higher degrees, are more time consuming to test

than exact comparisons and throughput decreases as a result.

These results suggest that the best use cases for the proposed model are where small-to-

medium degrees of approximation are expected with the user having, at least, a partial

knowledge of the event semantics. This would be the case for many IoT applications.

The efficiency part of hypotheses H1 and H4 is validated for event processing with single

event matching functionality, the scope of this work, with scalability with a reasonable

amount of approximation.

5.10.4.4 Comparison to the Exact Model

This experiment has been conducted with 10 sets of 10−100 approximate subscriptions of

50% degree of approximation with esa. Figure 5.12 shows that the approximate matcher

delivers 94%− 97% matching quality, which is higher than the 89%− 92% delivered by

the WordNet-based rewriting approach equipped with exact matching. The rewriting

approach outperforms the approximate model in throughput when the pairwise semantic

relatedness scores are calculated at run-time. However, the approximate matcher based

on precomputed esa scores outperforms in throughput with around 91, 000 events/sec

compared to around 19, 100 events/sec on average as shown in Figure 5.13.

In this experiment, around 16 million pairwise comparisons are needed, less that 100, 000

of them, i.e. less than 1% of them, need to be calculated just once. That is a valid
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Table 5.5: Approximate versus Exact Model

Maximal
F1Score

Number of
Subscription

Rules

Degree of
Approxi-
mation

Coupling

Exact Model 100% 74, 000 0% high

Approximate Model 95% 100 50% low

assumption as pre-computation can happen at the semantic measure side beforehand

or when the system caches newly calculated scores, so no re-computation is required.

These results show the validity of an approximate model enhanced with a loosely coupled

semantic model such as the distributional semantic model to achieve good effectiveness

and efficiency as opposed to other approaches based on semantically coupled knowledge

representations.

Finally, to achieve the 100% of F1Score and a throughput of an exact matcher there is

a need to write manually all the possible rules that are equivalent to the approximate

rules as shown in Table 5.5. To quantify this situation, I measure how many exact rules

are required to compensate for approximate rules given that the rewriting is done with

the ground truth thesaurus which is Merriam-Webster. This showed that about 74, 000

exact rules are needed to cover all events compared to a maximum of only 100 rules for

the approximate matcher. This is a non-feasible situation in semantically heterogeneous

environments.

These figures show a trade-off between effectiveness and efficiency on the first hand

versus loose semantic coupling and ease of use on the other hand. These results suggest

that the proposed approximate event processing model is suitable for scenarios such as

the IoT with a high level of semantic heterogeneity and where having complete prior

semantic knowledge of events is unfeasible. Thus, the effectiveness and efficiency parts

of hypotheses H1 and H4 are validated with clear identifiable loosening in the semantic

coupling dimension.

5.11 Chapter Summary

This chapter constructed a model that realizes the elements of subsymbolic distributional

event semantics and approximation. The rationale for subsymbolic distributional event

semantics as a bottom-up, coarse-grained model for semantics has been discussed with
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respect to other semantic models such as symbolic and non-symbolic semantic models.

The rationale for the approximation element as a model for tackling uncertainty that

results from the lack of full semantic agreements has also been discussed.

The approximate semantic event matching model is designed to extend the current event

processing paradigm in that:

� Rules are equipped with the tilde ∼ semantic approximation operator.

� The single event matcher is equipped with matching and mapping algorithms to

detect events semantically relevant to approximate subscriptions. The single event

matcher works in two modes: top-1 that forwards the best mapping between an

event and a subscription to the consumers; and top-k which results in a list of top-

k possible mappings between an event and a subscription. The top-k mappings of

various events to various subscriptions go to the complex pattern matcher.

� The complex pattern matcher can then perform a probabilistic reasoning to deduce

the probabilities of occurrences of the derived events in the action parts of the

complex rules.

A synthetic evaluation framework has been used to evaluate the model as opposed to an

exact model, which uses re-writing of rules based on the WordNet thesaurus. The eval-

uation event set of 50, 000 events has been semantically expanded out of seed event sets

from actual deployments of IoT, energy management, building, and relevant datasets.

Approximate subscriptions are synthesized with the ground truth being updated. Eval-

uation showed that the approach outperformed the baseline with a throughput of 1, 000

events/sec, and over than 95% F1Measure of matching quality. Experiments also showed

that 100 approximate subscriptions could compensate for 74, 000 exact subscriptions

otherwise needed, representing a low semantic coupling. Hypotheses H1 and H4 with

respect to the use of the elements of subsymbolic distributional event semantics and

approximation have been validated. The results suggested that the best use cases for

the proposed model are where small-to-medium degrees of approximation are expected

with the user having, at least, a partial knowledge of the event semantics, which would

be the case for many IoT applications.





Chapter 6

The Thematic Event Matching

Model

“Necessity is the theme and inventress of nature.”

— Leonardo da Vinci

6.1 Introduction

This chapter tackles mainly research question Q1 that states the following:

Q1. The first research question is concerned with the case when event

producers and consumers do not have exact, granular, and rigid agreements

on terms used in events and rules and their meanings but rather a form of

statistical loose agreements on the meanings. The question is how to achieve

timely event matching with high true positives and negatives in such a loosely

semantically coupled environment?

This chapter tests the hypothesis H2 that is formulated as the following:

H2. Free tagging of events and subscriptions does not add to the cost of

defining and maintaining rules with respect to the use of terms, and the cost

of building and agreeing on an event semantic model required by subsymbolic

169
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event semantics; and at the same time it can achieve timely event matching

with high true positives and negatives more than event processing based on

non-tagged subsymbolic event semantics.

To test the hypothesis, this chapter constructs a model that realizes the element of free

tagging. A generic model called thematic event matching is proposed and discussed in

Section 6.2. This model has been mainly presented in the IEEE Internet Computing

(2015) [151], and the International ACM/IFIP/USENIX Middleware Conference (Mid-

dleware 2014) [152].

The background on free tagging and the rationale for the proposed model and the

hypothesis are detailed in Section 6.3. An instantiation of the model, along with concrete

event, language, and matching models are defined in Section 6.4. The new concept of

parametric vector spaces along with thematic projection and semantic measures are

discussed in Section 6.5.

The constructed model of thematic event matching is then empirically validated in

Section 6.6. This chapter shows that the proposed hypothesis H2 is valid. Thus, the

element of free tagging can answer the research question and consequently can address

the requirements of effective and efficient event processing that is loosely coupled in

semantics. The chapter is summarized in Section 6.7.

6.2 The Thematic Model

The thematic event matching approach suggests associating representative terms with

events and subscriptions to describe the themes of types, attributes, and values and

clarify their meanings as shown in Figure 6.1. A theme is a lightweight method to convey

semantics when combined with a semantic model such as distributional semantics. At

the same time, themes are meant to be used in situations where little or no agreements

can be achieved on a fixed taxonomy.

Event publishers associate their events with a number of terms that describe their pay-

load. Subscribers also associate their subscriptions with a number of terms that clarify

their interests. If agreements on themes can be achieved, then a theme is decided for

each event type. If agreements cannot be assumed, then event publishers and subscribers
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freely add themes that better represent their artefacts. Thematic events can more easily

cross semantic boundaries as: (1) they free users from needing a prior semantic top-

down agreements and thus enable event exchange across such boundaries, and (2) they

carry approximations of events meanings composed of payloads and theme tags which

when combined carry less semantic ambiguities. An approximate matcher exploits the

associated theme tags to improve the quality of its uncertain matching of events and

subscriptions.

This generic architecture applies to various types of event payloads. For example, an

event payload can be an image and its theme is a set of tags describing its content

like {‘girl’, ‘football’, ‘outdoor’}. A subscription can be an image too associated with

a set of tags such as {‘female’, ‘soccer’, ‘play’, ‘nature’}. The approximate matcher

performs an uncertain matching on images based on their pixels and other intrinsic

image features. It also exploits the tags associated with the event and the subscription

to parametrize its matching algorithm and improve its matching quality. For instance,

it weighs up some object recognition candidates more like ‘girl’ versus ‘boy’ in the event

image. Event sources and consumers can either (1) agree to use representative terms

when an agreement is possible and thus having a lightweight loose coupling, or (2) freely

use representative terms in open environments when an agreement is not feasible, thus

having no coupling.

The generic thematic event processing model is instantiated for structured attribute-

value events and subscriptions. The attribute-value model is simple, widely used, and

may be used to convey other models. Theme tags are exchanged with the events and

utilized by the matcher to more accurately filter a distributional representation of terms

in a vector space as discussed in Sections 6.4 and 6.5.
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In the following, Section 6.3 gives a detailed account of the concept of free tagging and

its role in managing information resources. The section also discusses the rationale for

hypothesising that the free event tagging approach can answer the research question Q1

on the loose semantic coupling. Various aspects of the thematic event matching model

instantiation are discussed in the afterwards from Section 6.4 to Section 6.6.

6.3 Free Event Tagging

Subsymbolic or non-symbolic communication can be a sound solution to semantic cou-

pling within event processing systems. Nonetheless, humans are still symbolic in nature.

This second element of the proposed approach deals with this fact. Tagging is a mecha-

nism by which the humans behind event producers and consumers can add information

to events and subscriptions. The proposed approach uses added tags to enhance the

meaning exchanged with events via a better symbolic approximation of the non-symbol

meaning space.

6.3.1 The Web and Social Tagging

Web 2.0 forms a platform over the Web where users are no longer readers of HTML

rendered pages. Users can contribute with content to Web objects such as images,

tweets, and blog posts. One type of contribution is the tagging of such Web objects.

Gupta et al. recognize this as a significant trend in online social communities:

“Social tagging on online portals has become a trend now. It has emerged

as one of the best ways of associating metadata with web objects. With the

increase in the kinds of web objects becoming available, collaborative tagging

of such objects is also developing along new dimensions.” [43]

Websites supporting social tagging emerged and became popular as investigated by Bres-

lin et al. [225, 226]. Table 6.1 shows some example social websites with a categorization

by type and web resources subject to tagging. The basic concepts within social tagging

are three: the users, the resources, and the tags. Out of these, matrices can be built

where each cell show what tags t a user u uses to tag a resource r.
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Table 6.1: Example Social Tagging Websites

Website Type Web Resource

Delicious 1 link sharing bookmarked URL

Flicker 2 photo sharing photo

Blogger 3 blogging post

Twitter 4 micro-blogging tweet

LibraryThing 5 cataloguing book

Digg 6 social news news story

YouTube 7 video sharing video

Gupta et al. summarize the main incentive behind social tagging:

“Different web portals focus on sharing of different types of objects like

images, news articles, bookmarks, etc. Often to enrich the context related to

these objects and thereby support more applications like search, metadata

needs to be associated with these objects.” [43]

Several motivations for tagging exist such as: future retrieval, contribution and sharing,

attracting attention, play and competition, self-presentation, opinion expression, task

organization, social signalling, money, and technological ease. Tags can also be of various

kinds: content-based tags, context-based tags, attribute tags, ownership tags, subjective

tags, organizational tags, purpose tags, factual tags, personal tags, self-referential tags,

and tag bundles [43].

6.3.2 Metadata Generation and Fixed Taxonomies

While social tagging websites provide users with the tools to tag resources, the question

of how taxonomies of tags are created arises. It has been found within the social media

research that using fixed static taxonomies is not a suitable approach within the social

tagging context as put by Gupta et al. [43] for the following reasons:

1. Centralized fixed taxonomies are rigid.

1http://www.delicious.com/
2http://www.flickr.com/
3http://www.blogger.com
4http://www.twitter.com/
5http://www.librarything.com/
6http://www.digg.com/
7http://www.youtube.com/
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2. Items do not fit necessarily in just a single category.

3. Hierarchical classifications represent the one view of the world which is the cata-

loguer’s and thus they are subject to bias.

4. Fixed taxonomies do not account for the case when the corpus evolves.

5. Fixed taxonomies for social tagging need cataloguers who think exactly the same

way as users.

6. A controlled vocabulary is expensive to build and maintain in terms of development

time.

7. Enforcing a controlled vocabulary presents a steep learning curve to users.

Gupta et al. state a summary to these problems:

“This implies a loss of precision, erases difference of expression, and does

not take into account the variety of user needs and views.” [43]

These problems add to the cognition-based discussion of semantics in Section 5.4 an

important social dimension. In a more generalized way, using fixed, centralized, and

top-down authoritative semantic models is not scalable within large-scale event process-

ing systems. I argue that such top-down organization of semantic models increase the

problem of semantic coupling, which already exists due to the granularity of these mod-

els, which are symbolic in nature. A more flexible approach to how semantic models

are managed is required to address this aspect of the semantic coupling problem. This

element discussed in Section 6.3 builds upon the analogy with the free event tagging

approach, called folksonomies, and adopted within social tagging systems.

6.3.3 Folksonomies

Folksonomies, (folk (people) + taxis (classification) + nomos (management)), are terms,

freely generated by users, and freely used by users to tag resources. This is the type of

taxonomy adopted in most social tagging platforms such as those in Table 6.1. Several

advantages of folksonomies could be recognized [43]:
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1. Folksonomies support entry and cooperation with no barriers.

2. Folksonomies require a very low cognitive cost.

3. Folksonomies are inclusive in terms of having terms related to popular and rare

topics.

4. Folksonomies are capable of matching real users’ needs and languages.

To this end, I argue that bottom-up free tagging of events and subscriptions be a good

way to manage their semantics in a loosely coupled manner. This meets the Requirement

R1 of loose semantic coupling. Beside their scalable nature, folksonomies have proved

to be useful to enhance the results of various computing systems. For example Xu et

al. [227] showed that using folksonomies for information retrieval significantly improves

search quality. This meets the Requirement R3 of effectiveness.

My interpretation of the effectiveness aspect of folksonomies lies in the interplay between

the two spaces of symbols and meanings, made clear in semiotics [143, p. 18–21]. For

example, let us take the case of polysemy which means that one word, i.e. symbol,

can have multiple meanings. For instance, the word ‘energy’ can refer to the meaning

of acting or being active, or to the usable power such as electricity, along with other

meanings. If the word energy has been associated by the word ‘bulb’, then the second

meaning is probably meant. This kind of association could be formulated as a type

of tagging. The phenomenon of polysemy is the subject of research in Word Sense

Disambiguation (WSD) [228].

Thus, tags can be used to provide a better approximation of the meaning space, based

solely on the symbol space. I discussed in Section 5.4 how statistical semantics can ap-

proach the meaning space using vectors of co-occurring words. I believe that an enhanced

approach can be supported using free tags, combined with statistical distributional se-

mantics. Additionally, tags associated with statistical models can filter many unrelated

meanings of the words used in events and subscriptions. This meets the Requirement

R4 of efficiency.

6.3.4 Limitations of Free Event Tagging

Folksonomies suffer from three main limitations as discussed by Pan et al. [229]:
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Table 6.2: Free Event Tagging and Requirements

Fixed Taxonomy Free Event Tagging

R1. Loose semantic coupling - +++

R2. Loose pragmatic coupling NA NA

R3. Efficiency ++ +

R4. Effectiveness + ++

Legend

+++ the model excellently addresses the requirement
++ the model moderately addresses the requirement
+ the model slightly addresses the requirement
- the model mildly affects the requirement in a negative way
NA the requirement is not in question

1. Tag variation (synonymy) which states that two synonyms tagging a web resource

could be handled differently by the social tagging system.

2. Tag ambiguity (polysemy) which states that the same tag can be used to mean

different meanings by two different users.

3. Flat organization of tags which states that tags do not have an explicit hyponymy

relationship.

I argue that these limitations can be largely reduced in the context of the proposed

approach. Those limitations arise mainly due to the lack of a back-end semantic model in

classical social tagging systems. Objects in such systems are passive being, for instance,

a photo, a URL, etc. I propose the use of tags: (1) to tag other symbols in events and

subscriptions, and (2) in association with a statistical semantic model. Thus, merging

those together can move the system from the symbolic space to a meaning space, and

thus lower the limitations proposed above which emerge mainly due to sticking to a

symbolic level only.

6.3.5 How Free Event Tagging Meets the Requirements

As discussed throughout Section 6.3, free event tagging addresses the social management

aspect of computing systems, inherent to event processing systems that are distributed

and decoupled by nature. Fixed and free taxonomies are the main models for enforcing

semantic models, but the free event tagging approach appears to be the ideal choice for

satisfying the main requirements as summarized in Table 6.2.
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Figure 6.2: Thematic event matching model

6.4 Model Instantiation

The main elements of the model instantiation are illustrated in Figure 6.2. Let an event

of increased energy consumption be represented as follows:

{type: increased energy consumption event,

measurement unit: kilowatt-hour,

device: computer, office: room 112}

In the thematic model, this event is accompanied by a set of key terms that represent

approximately the domain and meaning of the event attributes and values. These terms

are called the event theme tags. An example of terms for the above event are:

{energy, appliances, building}

Similarly, subscriptions are associated with subscription theme tags. The proposed model

language introduces the tilde ∼ operator that signifies that the user wants the matcher to

match the term used or any term semantically similar to it. A subscription for increased

energy consumption can be represented as follows:

{type= increased energy usage event∼,

device∼= laptop∼, office= room 112}

Example theme tags for this subscription are:



Chapter 6. The Thematic Event Matching Model 178

{power, computers}

The example event and subscription do not use exactly the same terms to describe the

type or the device, hence ‘energy consumption’ vs. ‘energy usage’, and ‘computer’ vs.

‘laptop’. Nevertheless, the event should not be considered as a negative match to the

subscription. For this reason, the model employs an approximate probabilistic semantic

matcher as discussed in Chapter 5. It uses a measure to estimate semantic similarity

and relatedness between various terms. Functionally, it tries to establish the top-1 or

top-k possible mappings between subscription predicates and event tuples along with

probability spaces of each predicate-to-tuple and the overall mapping. For example, the

most probable mapping of the previous examples, or top-1 mapping, is described as

follows:

σ∗ ={(type=increased energy consumption event

↔ type:increased energy usage event),

(device∼ = laptop∼ ↔ device:computer),

(office = room 112 ↔ office: room 112)}

The approximate matcher uses a semantic measure to estimate semantic similarity and

relatedness between each pair of attributes or values from the subscription and the event.

The matcher then combines that in a similarity matrix that encodes similarity between

all possible pairs of subscription predicates and event tuples. The model proposes the use

of a semantic measure based on distributional semantics as described in Section 6.4.1.

While typical semantic measures take as input two terms and return a value in [0, 1],

the thematic matcher passes the subscription and event themes as additional parameters

along with the terms. The themes are used to adapt the terms meaning vector space

before the actual semantic distance is measured as described in Section 6.5.

6.4.1 Distributional Semantics

Distributional models are useful for the task of assessing semantic similarity and relat-

edness between terms. A Wikipedia-based Explicit Semantic Analysis (ESA) builds an

index of words based on the Wikipedia articles they appear in as shown in Figure 6.3.

A word becomes a vector of articles and the more articles that are common between
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two words, the more related the words are. For example, esa(‘parking’, ‘garage’) >

esa(‘parking’, ‘energy’) as the first pair frequently appear in common articles. Typically

semantic relatedness between a pair of terms is measured using cosine or Euclidean dis-

tance between the two vectors representing the two terms. In the proposed thematic

parametric vector space model, the esa measure is parametrized with the theme tags.

They are used to project the term vectors to get more domain-specific meaning vectors

and then are passed to the distance function as illustrated in Figure 6.3 and detailed in

Section 6.5.

6.4.2 Themes

A theme is defined as a set of terms that describe the content of an event or a subscrip-

tion. For instance, the set {‘energy’, ‘appliances’, ‘building’} refers to an event that

conveys energy consumption of appliances in a building. A theme combines with the

actual content to form an approximation of the meaning of concepts. It is meant to be

exchanged in addition to the actual symbols, i.e. words, used to represent attributes

and values. I build in this chapter the thematic vector space model on top of the ESA

vector space developed by Freitas et al. [174, 175, 200].

6.4.3 Thematic Event Model

The event model used in the thematic event model is an attribute-value model, but

the discussion is as relevant to other models such as hierarchical or graph-based event

models. Each event is a pair of sets: a set of theme tags and a set of tuples. Each theme

tag is a single-word or a multi-word term. Each tuple consists of an attribute-value pair.

No two distinct tuples can have the same attribute. An example energy consumption

event is represented as follows:

({energy, appliances, building},

{type: increased energy consumption event,

measurement unit: kilowatt-hour,

device: computer, office: room 112})
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The formal definition of the event model is as follows: let E be the set of all events,

let TH be the set of all possible theme tags, and let A and V be the sets of possible

attributes and values respectively. Let AV be the set of possible attribute-value pairs,

i.e. tuples, such that AV = {(a, v) : a ∈ A ∧ v ∈ V }. An event e ∈ E is a pair

(th, av) such that th ⊆ TH and av ⊆ AV are the set of theme tags and the set of tuples

respectively.

6.4.4 Thematic Language Model

Each subscription is a pair of two sets: a set of theme tags and a set of conjunctive

attribute-value predicates. Each theme tag is a single-word or a multi-word term. Each

predicate uses the equality operator to signify exact equality or approximate equality

when indicated. Other Boolean and numeric operators such as ! =, >, and < are kept

out of the language for the sake of discourse simplicity. Each predicate consists of an

attribute, a value, and specifications of the semantic approximation for the attribute

and the value. The most notable feature of the language is the tilde ∼ operator that

helps specify the approximation for an attribute/value when it follows it. An example

subscription to energy usage events is as follows:

({power, computers},

{type= increased energy usage event∼,

device∼= laptop∼, office= room 112})

The author of the subscription specifies that the device can be a ‘laptop’ or something

related semantically to ‘laptop’. The subscription also states that the attribute ‘device’

itself can be semantically relaxed. However, it states that the event’s ‘office’ must be

exactly ‘room 112’, etc.

The formal definition of the language model is as follows: let S be the set of subscriptions,

let TH be the set of all possible theme tags, and let A and V be the sets of possible

attributes and values respectively which can be used in a subscription. Typically there

are no restrictions on A or V and the user is free to use any term or combination of terms.

Each predicate is a quadruple which consists of the attribute, the value, and whether

or not the attribute/value is approximated. Let P be the set of possible predicates,

thus P = {p : p = (a, v, appa, appv) ∈ A × V × {0, 1}2}. A subscription s ∈ S is a pair
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(th, pr) where th ⊆ TH and pr ⊆ P are the set of theme tags and the set of predicates

respectively. The degree of approximation is the proportion of relaxed attributes and

values. An exact subscription has 0% degree of approximation.

6.4.5 Thematic Matching Model

The thematic matching model builds upon the approximate probabilistic model detailed

in Chapter 5. An approximate semantic single event matcherM decides on the semantic

relevance between a subscription s and an event e based on the semantic mapping

between attribute-value predicates of s and attribute-value tuples of e. An example

mapping between the event in Section 6.4.3 and the approximate subscription in Section

6.4.4 is as follows:

σ ={(type=increased energy consumption event

↔ type:increased energy usage event),

(device∼ = laptop∼ ↔ device:computer),

(office = room 112 ↔ office: room 112)}

M works in two modes: the top-1 mode that decides on the most probable mapping

between s and e, and the top-k mode which decides on the top-k probable mappings to

be used later for complex event processing. It has been shown in [172] that producing

the top-k mappings increases the chance of hitting the correct mapping.

The formal definition of matching is as follows: let C = s × e be the set of all possible

correspondences between predicates of s and tuples of e. ∀c = (p, t) ∈ C ⇒ p ∈ s∧ t ∈ e.

Σ = 2C is the power set of C and represents all the possible mappings between s and e.

There are exactly n correspondences in any valid mapping σ where n is the number of

predicates in the subscription s.

For any valid mapping σ a probability function quantifies the probability of every

predicate-tuple correspondence (p, t) ∈ σ such as (device = laptop∼ ↔ device: com-

puter). There also exists a probability function that quantifies the probability of the

overall mapping σ among other possible mappings. Both functions form probability

spaces Pσ and P. In this work, all probabilities are calculated based on the combined

similarity matrix that is based on the thematic pairwise attributes or values semantic
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relatedness scores. Thematic semantic relatedness measure is discussed in Section 6.5.

For more details on the generic matcher model and detailed evaluation of top-1 and

top-k modes, please refer to Chapter 5.

6.5 Parametric Vector Space Model

I introduce the concept of a Parametric Vector Space Model (PVSM). Vector space

models are widely used in information retrieval and known to be computationally effi-

cient. Thus, I propose an extension suitable for event processing where time efficiency

is a requirement. Figure 6.3 shows the main elements of the parametric space. Building

the PVSM is identical to building the non-thematic distributional space model based on

indexing the corpus. Nonetheless, vectors in PVSM are projected into thematic dimen-

sions, which are passed as parameters before the vectors are used, as discussed in the

following sections.

6.5.1 Distributional Vector Space Model

Given a set of documents D, each document is tokenized into terms, stop words are

removed, and an inverted index is built to have an entry for each term [175], Step 1

in Figure 6.3. The inverted index encodes a vector space model whose basis is the set

of unit vectors that represent the documents, i.e. {~di : di ∈ D}. Each term t is then

represented as a weighted vector ~vt in the vector space as shown in Equation 6.1.

~vt =

i=|D|∑
i=1

wti~di (6.1)

The Term Frequency Inverse Document Frequency (TF/IDF) weighting scheme is used.

It gives more weight to a term if it appears more often in a document and less often in

other documents than another term. It is important to keep the raw tf and idf values for

each pair (term, document) in the inverted index so they can be used later for thematic

projection. The TF/IDF scheme is shown in Equations 6.2, 6.3, and 6.4.

tf(t, d) = 0.5 +
0.5× freq(t, d)

max{freq(t′, d) : t′ ∈ d}
(6.2)
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Figure 6.3: Parametric distributional vector space for thematic event processing

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
(6.3)

tfidf(t, d,D) = tf(t, d)× idf(t,D) (6.4)

6.5.2 Thematic Projection

At the usage stage, the ultimate goal is to measure the semantic relatedness between

two terms terms and terme given the subscription and the event themes ths and the

respectively. Given a term and a theme, the key operation is to use the theme to filter the

space into a thematic subspace. The basis of the thematic space is the set of documents

that define the themes representative tags.

The thematic basis can be derived by getting the vector representation of the theme,

Step 2 in Figure 6.3, and then the documents where its weights are greater than 0,

Step 3 in Figure 6.3. Given the new basis, the term vector is transformed to have 0
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components for documents not in the thematic basis and to have new tf/idf weights

for the basis documents as the overall number of documents is now different from |D|.

These steps are shown in Algorithm 2. Projection can be computed in O(|D|) time if all

vectors components are stored and O(|V |) where V is the non-zero components if only

those are stored in the index.

ALGORITHM 2: Thematic projection

Input: a term t, a set of theme tags th, parametric distributional vector space PV SM
Result: thematic projection vector ~tth of t given th

1 begin

2 ~t←− distributional vector of t from PV SM ;

3 ~th←− distributional vector of th from PV SM ;

4 for d ∈ D s.t. ~thd = 0 do

5 ~tthd
←− 0;

6 end

7 for d ∈ D s.t. ~thd > 0 do
8 tf ←− original tf(t, d) from PV SM ;

9 idf ←− log |{d∈D: ~thd>0}|
|{d∈D: ~thd>0∧~td>0}|

; /* recalculate idf */

10 ~tthd
←− tf × idf ; /* update weight */

11 end

12 return ~tth;

13 end

6.5.3 Distance and Semantic Relatedness

Let T be the set of terms, and TH the set of all possible thematic tags. The semantic

measure sm is defined as a function that operates on a pair of terms associated with

their themes such that sm : T × 2TH × T × 2TH → [0, 1]. Given two terms ts and te

from a subscription and an event respectively and their associated themes ths ∈ 2TH

and the ∈ 2TH respectively, sm works by finding the thematic projections ~tsths and ~tethe

and then calculating the vector distance between the resulting projected vectors, Step 4

in Figure 6.3.

The Euclidean distance to measure projected vectors distance is used as defined in

Equation 6.5.

dis(~a,~b) =

√√√√i=|D|∑
i=1

(~ai −~bi)2 (6.5)
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Semantic relatedness is estimated to be the opposite of the distance and can be calculated

as defined in Equation 6.6.

relatedness(~a,~b) =
1

dis(~a,~b) + 1
(6.6)

The more filtering that occurs during thematic projection due to smaller themes, the

less time is required for computing relatedness.

6.6 Evaluation

To evaluate the thematic approach, I compare it with non-thematic approximate seman-

tic event processing, specifically the approach from Chapter 5. As the thematic model

already uses the elements of subsymbolic distributional semantics and approximation,

and as Chapter 5 validated hypotheses H1 and H4, this evaluation herein adds to the

power of hypothesis testing done in the previous chapter. Besides, to test the hypothesis

H3, I evaluate to what extent this model is effective and efficient, and to what extent it

loosens the semantic coupling.

In Chapter 5 the non-thematic approximate approach was compared with a concept-

based approach that uses query rewriting using WordNet [224]. Experiments were con-

ducted with 10 sets of 10−100 approximate subscriptions of 50% degree of approximation

with esa. Results show that the approximate matching model delivers 94%−97% match-

ing quality, higher than the 89%− 92% delivered by the WordNet rewriting approach.

The rewriting approach outperforms the approximate approach in throughput when the

pairwise semantic relatedness scores are calculated at run-time. However, the approxi-

mate model based on precomputed esa scores outperforms in throughput with around

91, 000 events/sec compared to around 19, 100 events/sec on average. Distributional

semantics-based approximation is based on a very loose model of semantic coupling

which scales to heterogeneous environments. That is different from the case of rewrit-

ing that is based knowledge bases. Building knowledge bases is time-consuming and

establishing agreements is granular and difficult to achieve.

In this chapter, a large event set is generated with a particular theme as well as a set of

subscriptions which assume no semantic agreements and 100% degree of approximation.
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The thematic matcher is compared with the non-thematic matcher when different theme

tags are used. Evaluation metrics and a detailed methodology are described in the

following sections.

6.6.1 Evaluation Metrics

Evaluation metrics are similar to the ones used in Chapter 5. They can be classified into

two categories: effectiveness and efficiency metrics [214]. Effectiveness metrics measure

the quality of event matching. Table 5.3 shows the base concepts needed for evalu-

ating effectiveness. Precision, Recall, and the combined F1Score have been used for

effectiveness evaluation. Precision measures the proportion of relevant events discov-

ered by the matcher with respect to all the discovered events such that Precision =

TP/(TP + FP ). Recall measures the proportion of relevant events discovered by the

matcher with respect to all the known relevant events from the ground truth such that

Recall = TP/(TP + FN). Precision and recall are calculated for the whole set of sub-

scriptions by averaging the precision and recall achieved for all individual subscriptions

respectively.

The F1Score equally combines Precision and Recall such that F1Score = (2×Precision×

Recall)/(Precision+Recall). F1Score is computed at 11 recall points, {0, 0.1, 0.2, ..., 1.0},

to cover all the precision-recall curve without using thresholds and the maximal F1Score

is then used. The metric used for evaluating time efficiency is Throughput defined as

Throughput = (Number of processed events)/(Time unit).

Additionally, to measure the loosening in semantic coupling, I use the measures of al-

ternative number of exact subscription rules that would be needed in a coupled model,

the degree of approximation used in the approximate subscriptions, and the amount of

tagging needed. These three measures reflect to a large extent the loosening in coupling

as they represent the effort and agreements assumed by users. These measures are com-

pared to an exact model’s numbers that would typically have a large number of exact

subscriptions, which have zero degree of approximation as a result of coupling and need

no tagging.
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Table 6.3: Sensor Capabilities

Sensor Capabilities

solar radiation, particles, speed, wind direction, wind speed, temperature, water
flow, atmospheric pressure, noise, ozone, rainfall, parking, radiation par, CO,
ground temperature, light, NO2, soil moisture tension, relative humidity, energy
consumption, CPU usage, memory usage

6.6.2 Methodology

The evaluation methodology for effectiveness is similar to the methodology used in Chap-

ter 5. It is outlined in Figure 6.4 and is based on schema matching methodologies [214]

concerned with finding the best mapping between a source schema and a target schema.

For event matching, approximate subscriptions and events are used. Specifying the

ground truth mappings is a challenge for large sets of events and subscriptions.

In recent years, there has been a trend towards synthetic evaluation [214]. Similarly

to the idea in STBenchmark [216], I start with pairs of exact subscriptions and events

with a known ground truth which is simply the result of exact matching. A semantic

expansion transformation is then applied to the events and the subscriptions based on a

thesaurus, similarly to the synonyms transformation in eTuner [215]. The ground truth

is updated accordingly. The EuroVoc8 thesaurus is used for themes and ground truth

generation as it has many domains and can be used for semantic expansion according to

specific themes. EuroVoc is a multilingual and multidisciplinary thesaurus that provides

common lexis to cover the activities of the European Union.

6.6.2.1 Generation of the Seed Event Set

To create a heterogeneous IoT environment, a dataset of events using a set of real-world

datasets has been established. Seed events have been synthesized from a set of IoT

sensors identical to those deployed in the SmartSantander smart city project [50] and

the Linked Energy Intelligence (LEI) dataspace [218]. SmartSantander proposes a city-

scale experimental research testbed for IoT applications and services based on sensors

deployed in a set of European cities. The LEI project targets smart buildings for energy

saving purposes. The used sensor capabilities are shown in Table 6.3.

8©European Union, 2014, http://eurovoc.europa.eu/
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Figure 6.4: Evaluation methodology for thematic event processing

A set of car brands from the Yahoo! directory [221] is used to generate vehicle mobile

sensors platforms. A set of appliances from the BLUED KDD dataset is used as indoor

platforms [222]. For indoor locations, rooms from the DERI Building [223] have been

used. For geographical locations, the SmartSantander project locations, as well as Gal-

way City, have been used. Seed events are generated by randomly combining various

attributes and values from the aforementioned datasets. A set of 166 seed events has

been used. An example seed event generated is as follows:

{type: increased energy consumption event, measurement unit: kilowatt-hour,

device: laptop, desk: desk 112c, room: room 112, zone: building,

city: Galway, country: Ireland, continent: Europe}

6.6.2.2 Semantic Expansion of Seed Events

The purpose of semantic expansion of seed events is to generate a large number of events

for evaluation where semantic heterogeneity holds. The EuroVoc thesaurus has been

used and specifically its micro-thesauri belonging to domains ‘transport’, ‘environment’,
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Table 6.4: Thematic Model versus Exact Model

Maximal
F1Score

Number
of Sub-
scrip-
tions

Degree
of

Approxi-
mation

Number
of Tags

Coupling

Exact Model 100% 48, 000 0% 0 high

Thematic Model 62%−
85%

(effective
region)

94 100%
(worst
case

scenario)

2− 15
(effective
region)

low

‘energy’, ‘geography’, ‘education and communications’, and ‘social questions’. This is

because those micro-thesauri conform to the theme of the events used in the experiments.

A set of 14, 743 expanded events of a length up to 10 tuples has been generated starting

from seed events by replacing one or more terms in an event’s tuples by synonyms

or related terms from the thesaurus. An example event resulting from semantically

expanding the seed event in Section 6.6.2.1 is as follows:

{type: increased energy consumption event,

measurement unit: kilowatt-hour, device: laptop,

desk: desk 112c, room: room 112, zone: building,

urban area: Galway, country: Eire, continent: European countries}

6.6.2.3 Generation of Approximate Subscription Set and Ground Truth

A set of 94 exact subscriptions is generated by randomly picking a number of tuples from

the seed events. A set of 94 approximate subscriptions is then generated by introducing

the tilde ∼ operator into all the predicates in the exact subscriptions to exclude the non-

approximation effect. These are equivalent to about 48, 000 subscriptions that would

be needed by a non-approximate approach to cover events heterogeneity as shown in

Table 6.4, reflecting a loose semantic coupling by the thematic matcher. Effectiveness

and efficiency parts of H2, which correspond to the remainder of Table 6.4, are discussed

later in Section 6.6.3 on results. An example approximate subscription resulting from

relaxing all predicates of the exact subscription is as follows:

{type∼: increased energy consumption event∼,

device∼: laptop∼, floor∼: ground floor∼}
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The resulting relevance function between approximate subscriptions and expanded events

is isomorphic to a basic exact ground truth function between exact subscriptions and

seed events. Thus, it is an exact relevance function. As a result, an expanded event is

relevant to an approximate subscription if it exactly matches the subscription or a ver-

sion of it which results from it by replacing the approximated parts with related terms

from the thesaurus used for semantic expansion.

6.6.2.4 Generation of Theme Tags

The target of this step is to associate events and subscriptions with tags. EuroVoc has

top terms for each of its micro-thesauri. The top terms associated with the domains

‘transport’, ‘environment’, ‘energy’, ‘geography’, ‘education and communications’, and

‘social questions’ that are originally used to expand the event set, are randomly picked.

For each sub-experiment, two sets of representative tags are chosen to represent the

subscriptions theme and the events theme. The purpose is to study the behaviour of the

thematic matcher with different combinations of themes tags. An example subscription

theme tags from EuroVoc of size 2 is {land transport, protection of nature}.

Given the events and subscriptions sets, various combinations of theme tags have been

associated to them. For each combination, there is a sub-experiment that gives an

F1Score and a throughput result. In every combination, the event theme tags set con-

tains the subscription theme tags set or vice versa. Each combination is defined by the

size of the event and the subscription themes. For example, a 3− 2 combination means

that the event theme contains 3 terms while the subscription theme contains 2 terms

and the former contains the latter.

For each combination of sizes, a random sample of 5 different pairs of theme tags sets is

used. The experiment has been conducted with different sizes of 1 to 30 tags for subscrip-

tions and 1 to 30 tags for events. This gives 30× 30× 5 = 4, 500 sub-experiments. The

thematic matcher was executed in each sub-experiment to give F1Score and throughput

results. The choice of the sample size is due to the high dimensionality of the experi-

ments, which poses practical constraints. Future work shall use more resources to allow

experimentation with larger samples.
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Figure 6.5: Effectiveness of thematic matcher

6.6.2.5 Baseline

Given the generated events and subscriptions sets, a non-thematic approximate matcher

with domain-independent esa from Chapter 5 has been used. The matcher gives 62% of

F1Score and a throughput of 202 events/sec averaged over 5 runs which represents its

worst case due to full approximation by using ∼ on all subscriptions predicates.

6.6.3 Results

The following sections discuss the effectiveness and efficiency results. All experiments

have been conducted on a Windows 7 machine, with an Intel Core i7-3520 2.90 GHz

CPU and 8GB of RAM running JVM 1.7.

6.6.3.1 Effectiveness

Each cell in Figure 6.5 represents the average F1Score of the sample of 5 sub-experiments,

each of which uses a different combination of events and subscriptions themes tags. For

instance, the sub-experiments of the cell in the 2nd column and 10th row from the bottom

left, all use 2 terms to describe events theme, and 10 terms to describe subscriptions
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Figure 6.6: Effectiveness sample error

theme and the event theme terms set is a subset of the subscription theme terms set.

The sub-experiments of the cell in the 10th column and 10th row from the bottom left, all

use 10 terms to describe events theme and 10 terms to describe subscriptions theme and

the event theme terms are the same as the subscription theme terms. Square cells are

sub-experiments that exceed the baseline while circular ones score below the baseline.

Cell colour reflects the average F1Score for the sample of combinations for that cell.

Colours range from blue (low F1Score) to red (high F1Score).

Figure 6.5 shows that thematic matching outperforms non-thematic matching in F1Score

for more than 70% of combinations with scores 62%−85% and an average of 71% versus

62% for the baseline. Those are more concentrated in the upper left two-thirds of

Figure 6.5. F1Score on the diagonal line is also slightly lower for the thematic matcher,

59%− 62% versus 62%, suggesting that the projection stage of the vector space by the

same tags seems to be less discriminative as opposed to using different tags which could

disambiguate attributes/values better.

Thematic matching performs worse when the number of thematic tags is very small,

e.g. using just one term as a theme tag. Also, in the bottom triangular half of the

figure with F1Score widely ranging from 4% to 62%. Larger themes for subscriptions

quickly improve effectiveness as opposed to an opposite effect by event themes. That

reflects the asymmetric relationship between the many heterogeneous events versus fewer

subscriptions. Thus, more terms are needed in subscription themes to discriminate

relevant events.

Figure 6.6 illustrates the standard deviation (standard error) of the samples conforming

to each set of 5 combinations. The average standard error is 7% of F1Score in effec-

tiveness. Most of these errors are around sub-experiments of medium F1Scores where it
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Figure 6.7: Throughput of thematic matcher

reaches values around 10% − 25%. Very small errors are concentrated around the sub-

experiments of very low F1Scores but those are not of concern as theme combinations

conforming to such areas of Figure 6.5 should be avoided. More importantly, error con-

verges to smaller values around 7% for sub-experiments of high F1Scores which mainly

exceed the baseline. This suggests that the experiments are more predictive for higher

F1Scores and the areas of Figure 6.5 which outperforms the non-thematic approach are

more probable to outperform it in other samples.

6.6.3.2 Time Efficiency

Figure 6.7 shows the average throughput for each combination of events and subscrip-

tions theme tags. It suggests that the thematic approach outperforms the non-thematic

matcher for more than 92% of the sub-experiments, with a throughput of 202− 838 and

an average of 320 versus 202 events/sec. Better throughput is due to the thematic filter-

ing of the space during the thematic projection phase, which saves time during semantic

relatedness calculation. This has less effect given more tags towards the top right corner

with throughput as low as 95 events/sec.
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Figure 6.7 shows that throughput decreases gradually when larger sets of theme tags

are used to describe events and subscriptions due to less thematic filtering. The last

half of the diagonal line shows a drop in throughput, 95 − 177 versus 202 events/sec,

as two equal sets of thematic tags for events and subscriptions causes more common

dimensions for the semantic measure to be calculated and thus more time is needed for

the calculation.

Figure 6.8 shows that few sub-experiments outliers (around 5%) have high standard

deviation ranging from 20 to 240 events/sec. The outliers can be explained by rare the-

matic tags that do not exist in the original indexed corpus. That causes the space to be

filtered completely to zero dimensionality and results in a very different time consump-

tion behaviour from other combinations in the same sample. This causes higher errors

and less predictability. However, most other sub-experiments have a standard error

around the average of 10 events/sec, which is small compared to the overall throughput.

Most of the small errors are identified around sub-experiments with throughput from

200−600 events/sec, which is mainly above the non-thematic baseline. This small error

shows that throughput results are predictive and should be expected in other samples

of subscriptions and events theme combinations.

In Chapter 5 I discussed lower degrees of approximation when some agreements can

be assumed, and throughput of a magnitude of thousands of events/sec was achieved.

Experiments here represent a worst case scenario with 100% degree of approximation

and were conducted on a single laptop. There can be further opportunities to optimize

the matcher with commonalities, evaluation order, caching, and indexing techniques to

improve efficiency.
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6.6.3.3 Discussion

Results show that the thematic approach is limited when users can provide only a

small number of tags for subscriptions, and when hard real-time deadlines are required.

Otherwise, results suggest that the use of fewer terms to describe events, around 2− 7,

and more to describe subscriptions, around 2− 15, can achieve a good matching quality

and throughput together with less error rates. That is concentrated in the middle to the

upper left side of Figures 6.5 and 6.7. This result shows that events and subscriptions

can be associated with only a lightweight number of thematic tags.

For containment between subscriptions themes and events themes to hold, it can be

handled in two ways:

� Event sources and consumers loosely agree on terms to use which guarantee con-

tainment but causes some semantic coupling.

� Event sources and consumers use more theme tags when no agreement can be

achieved in vastly open and decoupled scenarios. Containment and overlap can

be assumed to hold due to the distribution of term usage by humans where some

terms are more probable to be used by both parties.

Thus, the effectiveness and efficiency parts of hypothesis H2 are validated with iden-

tifiable loosening in the semantic coupling dimension represented by a low amount of

required free tagging.

6.7 Chapter Summary

This chapter constructs a model that realizes the element of free event tagging. The

rationale for using free tagging as loosely coupled mode of improving information con-

tent has been discussed. A generic model called thematic event processing was proposed

with an instantiation based on structured attribute-value events and subscriptions. The

proposed approach suggests associating representative terms, called themes or thing-

sonomies, which describe the themes of types, attributes and values and clarify their

meanings. Thematic events can more easily cross semantic boundaries as: (1) they free
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users from needing a prior semantic top-down agreements, and (2) they carry approxi-

mations of events meanings composed of payloads and theme tags which when combined

carry less semantic ambiguities. An approximate matcher exploits the associated the-

matic tags to improve the quality of its uncertain matching of events and subscriptions.

The concept of vector space semantic models was extended with the idea of parametric

vector spaces. A vector that represents a term is adapted by the vector, which represents

its thematic tags, in a process called thematic projection. The resulting new vector

represents the modified meaning of the original term. Those new thematic vectors are

used for actual approximate matching.

The model has been evaluated with a synthetic evaluation framework and compared to

a non-thematic matcher. For the evaluation dataset, 14, 743 events and 94 approximate

subscriptions were used from IoT and energy management domains. Tags are associated

with events and subscriptions based on the EuroVoc thesaurus. Experiments showed

that a lightweight amount of tags to describe events, around 2 − 7, and subscriptions,

around 2− 15 is needed. That reflects a loose semantic coupling model. The evaluation

also showed that the thematic matcher outperformed the baseline with a throughput

magnitude of 800 events/sec and 85% F1Measure in the worst case of full approximation.

As a result, the hypothesis H2 on the use of free event tagging for loose semantic coupling

in event systems has been validated.



Chapter 7

The Dynamic Native Event

Enrichment Model

“No knowledge is completed except by knowledge of

its accidents and accompanying essentials.”

— Avicenna

7.1 Introduction

This chapter mainly tackles the second research question Q2 that states the following:

Q2. The second research question is concerned with the case when event

producers and consumers do not have equal assumptions on the amount of

contextual information included in events and how much they are complete

with respect to evaluating some consumers’ rules. The question is how to

complement events with context at high precision and completeness needed

to meet consumers expectations in such a loosely contextually coupled envi-

ronment?

This chapter tests the hypothesis H3 and the pragmatic part of hypothesis H4 that are

formulated as follows:

� H3. Dynamic native event enrichment decreases the cost needed to define and

maintain the context parts of rules, and to agree on contextual data that is needed

197
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in events more than dedicated enrichers; and at the same time, it can achieve

high precision integration of event context with a high completeness of events

comparable to that of event processing based on dedicated enrichers.

� H4. Approximate event processing can operate in event environments with low-cost

agreements on event semantics and pragmatics more than exact event processing;

and at the same time achieve timely event matching with high true positives and

negatives, and high precision integration of event context with high completeness

of events, comparable to that of event processing based on exact models.

To test the hypotheses, this chapter constructs a model which realizes the element of

dynamic native event enrichment, along with the element of approximation as outlined

in Section 7.2. This model has been mainly presented in the ACM International Con-

ference on Distributed Event-Based Systems (DEBS 2013) [154], and the International

Workshop on Semantic Sensor Networks (SSN 2011) at the International Semantic Web

Conference (ISWC 2011)[156].

The rationale for using these elements and formulating the hypotheses is discussed in

Section 7.3 and Section 7.4. The main elements of the enrichment model are discussed

in Section 7.5. The model and its formalism are discussed in Section 7.6 and Section

7.7. Section 7.8 discusses a Linked Data instantiation of the model based on semantic

relatedness and spreading activation.

The constructed model is then empirically validated as detailed in Section 7.9. This

chapter shows that the proposed hypotheses H3 and H4 are valid. Thus, the elements

of dynamic native enrichment and approximation can answer the research question and

consequently can address the requirements of effective and efficient event processing that

is loosely coupled in pragmatics. The chapter is summarized in Section 7.10.

7.2 Overview of the Dynamic Native Event Enrichment

Model

This model tackles the requirements of efficient and effective loose pragmatic coupling. In

this model, events are assumed incomplete under an open world assumption. Enrichment

is the process of complementing events from background knowledge. The model uses
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four aspects for event enrichment: determination of the enrichment source, retrieval of

information items from the enrichment source, finding complementary information for

an event in the enrichment source, and fusion of complementary information with the

event.

The model proposes that the enrichment logic is described using a set of declarative

language constructs similar to the ones used currently for matching purposes. Four

language clauses that are mapped to the four enrichment aspects are proposed: ENRICH

FROM, RETRIEVE BY, FIND BY, and FUSE BY. All the enrichment clauses are

described by the event consumer. The resulting subscription, which contains enrichment

and matching elements, is called a unified subscription. For instance, the following

unified subscription tells the engine to explore a Linked Data graph by a method called

Spreading Activation to enrich an RDF event with triples that can be missing such as

the ‘floor’ in the building where it was generated.

ENRICH FROM <www.myenterprise.org>

RETRIEVE BY ‘DEREF’

FIND BY ‘Spreading Activation’

FUSE BY ‘UNION’

{?event rdf:type ont:EnergyConsumption.

?event (?p){3} building:SecondFloor.}

In the following two sections, Section 7.3 and Section 7.4, the rationale for using dynamic

native enrichment and approximation, along with the hypotheses are detailed. The

concrete model is then discussed afterwards from Section 7.5 to Section 7.9.

7.3 Dynamic Native Event Enrichment

The elements of subsymbolic distributional event semantics and free event tagging target

the proper semantic interpretation of events within a loosely coupled paradigm. The

element of dynamic native event enrichment of the proposed model is concerned mainly

with building upon the semantic interpretation through pragmatic loose coupling in

event processing systems for improved contextual interpretation.
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Pragmatics, as discussed in Chapter 2 and Chapter 3, aligns with the meaning of prag-

matics used in semiotics: “interpretation of the sign in terms of relevance, agreement,

etc.” [143, p. 196]. In computing systems, this meaning covers the use of the context of

data upon processing. This notion has been recognized within event processing systems

as put by Antollini et al.:

“These events encapsulate data which can only be properly interpreted

when sufficient context information about its intended meaning is known. In

general, this information is left implicit and as a consequence it is lost when

data/events are exchanged across system or institutional boundaries.”[230]

The dynamic native event enrichment element aims at providing the context of events

in a loosely coupled manner.

7.3.1 Information Incompleteness

While the basic information item in an event-based system is an event, it is not uncom-

mon that users require the system to handle contextual information that is not encoded

in the event. Such information typically comes from legacy databases or web data

sources. This causes an information incompleteness problem for events to be sufficient

for tasks such as subscription matching.

One current solution to the information incompleteness issue is to develop external,

static and dedicated event processing agents that retrieve information from legacy data

sources and enrich the event before it is propagated for further processing. For example,

an energy consumption event is generated by a smart electric heater containing the

heater’s serial number. An enricher retrieves information about the room and floor of

the heater from a building management system database and adds it to the event which

can then be considered when matching the users’ interests in high energy consumption

events from that specific room or floor.

Large-scale applications of event-based systems such as the Internet of Things would

have an increasing number of tasks that require information not included in events. In

these environments, the enrichment agents can quickly become difficult to develop and

maintain. I argue that the problem lie in the approach taken in current event-based
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middleware where an event is assumed as a closed world. For example, if a subscription

tests a specific property that is not included in the event, then that is considered a

negative match by default. No attempt is made to complement information in the event

before judging of positive or negative matching.

The need to complement incomplete events has been recognized by the event processing

community. Hinze et al. states that:

“event enrichment calls for an understanding not only of the events but

also for the external sources of information.”[9]

Hohpe and Woolf [18] dedicate a set of patterns such as message translator, content

enricher, and aggregator to address several problems that can be classified under event

incompleteness. Teymourian et al. [36] investigate the improvement of expressiveness

and flexibility of complex event processing systems via the usage of background knowl-

edge about events and their relations to other concepts in the application domain.

Related work from the database community identifies the problem of incomplete databases

and incomplete queries. While the proposed approaches are more attached to databases

in general and the relational model, in particular, they give good insight into the prob-

lem. Some work focuses on missing tuples and missing values such as [231]. Some are

more aligned with the query answering perspective such as [232] and [233]. While other

works focus on improving the quality of incomplete databases [234].

7.3.2 Dimensions of Incompleteness

Event incompleteness is a relative concept; it does not only depend on the event but

also on the event consumption logic that is implemented by an event consumer. Event

consumers may vary from simple User Interface (UI) agents to complex event processing

engines. To simplify the discussion on event consumers, I limit the discussion to content-

based matchers of single events using a subscription language to match events. These

are common in the publish/subscribe paradigm and are usually implemented using a

message-oriented middleware [235]. However, generalization to other types of event

consumers is possible in light of the formalism presented in Section 7.7.
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Let us consider the following example subscription:

Example 7.1 (Subscription for High Energy Consumption in the Second Floor).

{type = energy consumption,

floor = second floor,

consumption = high}

Given a particular event consumption logic, event incompleteness has a broad set of

orthogonal dimensions. I define the dimensions based on an analysis of the patterns of

Hohpe and Woolf [18]. This analysis produces general dimensions of incompleteness as

follows:

1. Event Format where the event lacks the syntactical structure that can be processed

by an event consumer. For example, let an event be as follows:

{energy consumption of the heater in the second floor is high}

This event is in a plain text language syntax and thus cannot be processed by an

event consumer which uses the subscription from Example 7.1. This is because

the subscription expects attribute-value syntax not available in the event.

2. Event Semantics where the event lacks references to an interpretation scheme that

can be used by an event consumer to understand what the event payload means.

For example, let an event be as follows:

{energy consumption, second floor, high}

This event is in tuple structure. It lacks the reference scheme according to which

an event consumer which uses the subscription from Example 7.1 can interpret the

actual indication of the term ‘high’.

3. Complementary Background Knowledge where the event lacks the amount of infor-

mation required by an event consumer and the complementary information resides

in an enrichment source. For example, let an event be as follows:

{type: energy consumption,

device: heater1,

consumption: high}
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This event cannot be processed by an event consumer that uses the subscription

from Example 7.1 because the event lacks any information about the ‘floor’ in

which the event occurred. This complementary information is likely to exist in a

building management system database, which has a fact such as (heater1, exists

in, second floor).

4. Complementary Transformation where the event lacks the amount of information

required by the event consumer and the complementary information can be ob-

tained via a reasoning process over the event. For example, let an event be as

follows:

{type: energy consumption,

device: heater1,

watt-hour: 1500}

Let the event consumer use the following subscription:

{type= energy consumption,

device= heater1,

kilowatt-hour= 1.5}

The event lacks the property ‘kilowatt-hour’ and thus is incomplete for the con-

sumer. However, this information can be obtained by calculation on the actual

event itself using a transformation rule such as: kilowatt-hour= watt-hour/1000.

5. Temporal Segmentation where a single event does not have the amount of infor-

mation required by an event consumer and the complementary information resides

in other events that occurred previously or are going to occur in the future. For

example, it is common to have three-phase electricity power feeds to buildings.

Clamp-on power monitoring sensors are usually installed on every 1-phase cable

entering the building. This results in three events arriving at a specified rate one

after the other:

{type:power consumption, consumer:building, watt phase 1, 3000}

{type:power consumption, consumer:building, watt phase 2, 2800}

{type:power consumption, consumer:building, watt phase 3, 3200}
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Let an event consumer use a subscription such as the following:

{type= power consumption,

consumer= building,

watt all phases: 9000}

The consumer finds that all the events lack the knowledge about the three-phases

power consumption. However, such information can be obtained by temporally

aggregating three events from all the phases in order to get the overall power

consumption that can be processed by the consumer.

The event format is a part of the event syntactic level transformation, which is out of the

scope of this work. Event semantics are handled within the context of the previous two

elements in Sections 5.4 and 6.3. As this work is scoped on single event processing, I leave

the temporal segmentation dimension to future work. The reasoning for complementary

transformation over events is assumed to be done beforehand with the result stored in

a knowledge base. That turns the complementary transformation dimension into the

complementary background knowledge dimension, which is the definition of contextual

enrichment as used in this work.

7.3.3 Unified and Native Event Enrichment

I define event enrichment as the “process to complement events.” Patterns by Hohpe and

Woolf [18] reflect the current state-of-the-art and practice in the design of event process-

ing networks where dedicated agents are assigned with well-defined tasks to overcome

some incompleteness issues. For example, they propose the use of dedicated event en-

richment agents to access a database and retrieve necessary information that is added to

events before they propagate to consumers. However, such agents are ad-hoc and tailored

to the particular situations they are designed for. That challenges the event processing

vision detailed by Etzion and Niblett [10] which calls for a unified and declarative way

to process events.

Enrichment agents are non-native to the paradigm, and as event processing systems scale

out to open, distributed, and heterogeneous environments, the maintenance of such

enrichment agents becomes difficult. Other related work, as discussed in Chapter 3,



Chapter 7. The Dynamic Native Event Enrichment Model 205

focuses on the fusion of background knowledge with events using a query answering

paradigm that spans events and background knowledge. However, such approaches

make some assumptions that may not hold in many situations. For example, the work

of Teymourian et al. [36] assumes that the background knowledge and events have the

same data format and semantics and that the knowledge base is accessible via a query

service making the federation of the query feasible.

To make advancement on the event incompleteness problem, it is crucial to deal with

the abstract characteristics of the problem and to integrate it into the event processing

paradigm, so it becomes a native component of event processing engines. By unified I

mean a model of event enrichment that takes place in coordination with event matching.

The reason is that event matching and enrichment can be seen as both important tasks

to provide a better interpretation of events at the time of processing, at two levels:

semantics and pragmatics. By native I mean that event enrichment takes place as a

component within event processing engines, rather than having dedicated engines or

external agents only for enrichment.

The inherent feature of decoupling has its own virtues, but it introduces other challenges

in the event-based paradigm. An important one is the fact that event producers should

have minimal assumptions on the information needs of event consumers. As a result,

the content of an event payload becomes independent of the consumers’ needs. This

independence can lead to information incompleteness on the consumers’ side. If an

event consumer ignores the concerns of information incompleteness and attempts to

conduct matching between its subscription and events, this may result in a high rate

of false positives or false negatives due to the lack of relevant information in the events

needed for the correct matching result.

Unified and native enrichment can operate within a loosely coupled paradigm and thus

addresses the Requirement R2 of loose pragmatic coupling. Besides, aligning enrichment

with matching can lead to an efficient and effective interpretation of events, meeting

requirements R3 and R4 of efficiency and effectiveness.
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7.3.4 Late Dynamic Event Enrichment

Event enrichment can be done closer to the producer’s side or closer to the consumer’s

side. Dedicated enrichers cannot be easily classified as early or late, as that goes back

to the architecture, which specifies if they function closer to the event producer or the

event consumer. Nonetheless, I argue that consumers can better judge the content

completeness of events concerning their information needs. Thus, I explore in this work

enrichment that is unified with consumption logic, i.e. matching.

While a unified native enricher can address information incompleteness and adds con-

textual information, it partially addresses the loose pragmatic coupling requirement.

Thus, enrichment should be dynamic. By dynamic I mean that the consumer should

roughly define the basic elements needed for enrichment to happen, but most of the

process is done by the engine at the time of matching to decide how to complement the

event and with which data. Such an approach frees the users from having to agree on

contextual information of the events and shifts most of that burden to the event engine

itself, meeting the Requirement R2 of loose pragmatic coupling.

7.3.5 Limitations of Dynamic Native Event Enrichment

The two main limitations of a dynamic native event enrichment approach are:

1. Low effectiveness in controlled environments which means that such an approach

is not superior to dedicated ad-hoc enrichers in controlled environments from a

precision point of view. When event producers and consumers can pay the cost of

agreements on contextual information to include in events, it can still be better

than delegating this task to the dynamic enricher, which might miss some context

during enrichment. This can be the case in critical applications such as security

systems.

2. Low efficiency as such an approach requires the enricher to look for complementary

information, retrieve it, and fuse it within events. Dedicated ad-hoc enrichers

follow a join operator paradigm typically in a query language which is more efficient

than figuring out complementary information at a later stage.
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Table 7.1: Dynamic Native Event Enrichment and Requirements

Dedicated Ad-hoc
Enrichers

Dynamic Native
Event Enrichment

R1. Loose semantic coupling NA NA

R2. Loose pragmatic coupling – +++

R3. Efficiency +++ +

R4. Effectiveness +++ ++

Legend

+++ the model excellently addresses the requirement
++ the model moderately addresses the requirement
+ the model slightly addresses the requirement
- the model mildly affects the requirement in a negative way
- - the model moderately affects the requirement in a negative way
NA the requirement is not in question

I argue though that when the loose pragmatic coupling is a requirement, which is the

case in open distributed systems such as the Internet of Things, these limitations are

reduced as the building of dedicated ad-hoc enrichers can be costly or infeasible.

7.3.6 How Dynamic Native Event Enrichment Meets The Require-

ments

As discussed throughout Section 7.3 dynamic native event enrichment loosens pragmatic

coupling, which is required in distributed and decoupled event processing systems. Dy-

namic native enrichers and dedicated ad-hoc enrichers are the main models for crossing

pragmatic boundaries, but the dynamic native event enrichment approach can meet the

main requirements as summarized in Table 7.1.

7.4 Approximate Computing Versus Incomplete Informa-

tion

Section 5.5 showed the role the approximation element within computing systems. It

mainly tackled the use of approximation for time optimization and integration. Approx-

imation has also been used, but much less, in areas related to information quality in

databases. For instance, Parssian et al. [234] provides a model to assess information

completeness within the relational data model. Based on the Closed World Assumption

(CWA) and the Open World Assumption (OWA), and on the existence of NULL values,
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one can assess with a value how complete the database is in relation to a query [236].

Queries can still return tuples that are assumed to meet or not to meet the query. CWA

and OWA assumptions and the use of NULL values in the database include approxima-

tion of what the query result should in fact be.

Extensions of the relational model to make such process explicit have been done, early

by Codd [237]. He extended the two-valued logic into a three-valued logic, to include the

NULL value into account along with true and false. For example, the open world assump-

tion that the NULL value of an EMPLOYEE ’s ADDRESS represents some incomplete

information that exists somewhere out of the database. Under such an assumption, the

selection of employees who live in California leads to a set of employees who are known

to the database to live in California, and a set of employees who MAYBE a part of the

answer but the incomplete information restricts the certainty on the later set.

Thus, having incomplete information has been acknowledged in the literature. Assump-

tions, interpretations of NULL values, and extensions of Boolean logic have been used

to cope with this problem. Approximation is at the heart of this discussion either in

assessing how much a database is complete, how much it is complete with respect to a

query, or which tuples should go into a query’s answer to approximate reality. Based

on this work, I argue that although quantification of approximation in query processing

over incomplete data has not been dominant within databases, approximation is a logical

model to adopt when contextual agreements cannot be guaranteed. In loosely pragmati-

cally coupled environments, approximation can be the right model to complement events

during enrichment and to match the resulting approximately completed events.

7.5 Elements of Enrichment

Given the final set of incompleteness dimensions, four fundamental challenges are rec-

ognized.

7.5.1 Determination of the Enrichment Source

The first challenge to face event enrichment is the decision on which enrichment source(s)

to use. The challenge comes from the fact that event producers and consumers are
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decoupled and potentially have various perspectives of where complementary information

for an event may exist. Determining the enrichment source may be statically stated by

the event producer or consumer making this challenge easy to overcome. However, if

sources are not known beforehand, then a source discovery process is needed. Some

possible enrichment sources include:

� Wikis: The Wikipedia online corpus ‘http://en.wikipedia.org/wiki/’ can be con-

sidered as a textual domain-agnostic enrichment source.

� Relational Databases: An example is a Building Management System (BMS)

database described by a connection string ‘Server=www.example.com

rdbms;Database=BMS-DB;’.

� Linked Data [238]: The DBpedia corpus, for example, can be addressed by its

domain ‘http://dbpedia.org/resource/’.

7.5.2 Retrieval of Information Items from the Enrichment Source

The access and retrieval mechanism poses a challenge to the enrichment process as

it affects its ability to retrieve atomic information items from the enrichment source.

Retrieval of information items can be challenging if network transfer has reliability issues

or if the retrieval speed forms a bottleneck in the system. The exact retrieval mechanism

will depend on the selected enrichment source. Some example retrieval mechanisms

include:

� Wikis: A retrieval mechanism for Wikipedia is a search operation against its

search API followed by an HTTP GET request to access a Wikipedia article as

the information item.

� Relational Databases: A retrieval mechanism for a relational database is an SQL

query against a query interface, with the retrieved rows as the information items.

� Linked Data: A retrieval mechanism for the DBpedia corpus, for instance, is look-

ing up, i.e. dereferencing, URIs [239] of the resources, with the RDF [240] graphs

of these URIs being the information items retrieved.
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7.5.3 Finding Complementary Information in the Enrichment Source

The ability of the enrichment process to retrieve atomic information items from an

enrichment source is faced with the challenge to determine which of the information items

can complement an event and should be retrieved. Several ways to find complementary

information are:

� Wikis: To find complementary information in the Wikipedia corpus, articles re-

lated to a term in the event can be searched and then links from these articles are

followed one step deep and ultimately all the resulting articles are retrieved.

� Relational Databases: To find complementary information in a relational database,

one can formulate a SQL query with some specific primary keys coming from the

event.

� Linked Data: To find complementary information in the DBpedia corpus, a spread-

ing activation [241] of URIs can be conducted starting from seed URIs and following

the links in the data cloud with some termination conditions.

7.5.4 Fusion of Complementary Information with the Event

The final challenge is fusing the complementary information items with the event. Mul-

tiple instances of fusion are presented in the following example:

Example for Fusion Methods: Let an event be the attribute-value map:

{(type= energy consumption),

(device= heater1),

(consumption= high)}

Let the enrichment source be a relational database with two relations as follows:

heater room

heater1 room123

room floor

room123 second floor

One possible fusion method is to add two attribute-value pairs to the event so it becomes:

{(type= energy consumption),
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(device= heater1),

(consumption= high),

(room= room123),

(floor= second floor)}

Another fusion method is to add one attribute value pair that contains the location to

the event so it becomes:

{(type= energy consumption),

(device= heater1),

(consumption= high),

(room= room123),

(location= room123, second floor)}

7.6 Event and Enrichment Flow Model

The key pillar of the proposed model is the recognition of enrichment as a core task

of event processing engines. Also, the enrichment behaviour of an event processing en-

gine can be dictated to the engine using a uniform and declarative mechanism. The

cornerstone of the model is the concept of an enrichment element: a declarative specifi-

cation for the engine to enrich events with complementary information items. The model

proposes that the enrichment element is described using a set of declarative language

constructs similar to the ones used currently for matching purposes. To systematically

characterize the language constructs needed for the enrichment element, I propose four

language clauses that are mapped to the four enrichment challenges as follows:

� ENRICH FROM clause allows the engine to determine the enrichment source(s)

explicitly.

� RETRIEVE BY clause allows the engine to determine the retrieval mechanism

for atomic information items.

� FIND BY clause specifies the approach which would dictate the retrieval of a

subset of information items from the enrichment source(s) that can complement

the event.
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� FUSE BY clause defines the fusion approach to integrating retrieved complemen-

tary information with the incomplete event.

The next issue is to determine who is responsible for defining the enrichment elements.

Reviewing the clauses of an enrichment element shows that some of these can be specified

by the event producer and/or the event consumer. Specifically, the enrichment source

and retrieval mechanism can be defined by the producer who may know them at the

time of producing the event.

The model proposes that all the enrichment clauses are described by the event consumer.

That is because the consumer has a better understanding of the information need on the

consumption side. This is also aligned with scenarios where the event producer has little

assumptions on information needs of the consumers and where decoupling is the norm.

This adds to the aspect of loose semantic coupling and approximate matching in event

processing systems. Consequently, the model suggests that the enrichment element co-

exists with the matching element, which forms subscriptions in current practices. The

resulting subscription, which contains enrichment and matching elements, is called a

unified subscription.

By having unified subscriptions, enrichment can be brought to the core of the engine.

It operates based on the enrichment element and uses the matching element to conduct

an enrichment process over the incoming incomplete events and enrichment source(s) to

produce enriched events that can then be matched against the matching element. It is

called a native enricher in this model. While implementation details of the enricher are

left to the particular instantiations, the proposed model suggests that the enricher not

only uses the enrichment clauses to operate but also the matching element to guide the

enrichment process. Figure 7.1 depicts the proposed enrichment model.

The following example presents a simple instantiation of the enrichment clauses and the

native enricher.

Example of Instantiation for Plain Text Events: Events are represented as bags of words:

Let an event be as follows: {energy, consumption, heater1, high}. Let the matching

element of subscriptions be a bag of words as follows: {energy, second, floor, high}. The

semantics of event matching is that all words in the matching element need to be found

in the event. Otherwise, it is a negative match.
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Event Consumer

Event 
Producer

Incomplete 
Event

Enrichment Source

Enricher Matcher

Enriched 
Event

Unified Subscription

Figure 7.1: Unified and native enrichment model

The enrichment source for the system is assumed to be an enterprise wiki of text articles

called enterprise-wiki. The wiki contains an article titled second floor that contains the

term heater1. The wiki can be searched via a term search API which returns a list of

articles containing the term. The API is accessible via a RESTful web service. When

the API is searched with the term heater1, the article titled second floor is returned.

The enrichment clauses are defined as the following:

� ENRICH FROM specifies the name of the wiki.

� RETRIEVE BY specifies the access protocol.

� FIND BY specifies the search mechanism.

� FUSE BY defines whether to extract words from the retrieved article’s title or

content, and if to add/replace the event words to/with the new found words.

A full example unified subscription becomes:

ENRICH FROM ‘enterprise-wiki’.

RETRIEVE BY ‘HTTP GET’.

FIND BY ‘term search’.

FUSE BY ‘title terms’ ‘add’.

{‘energy’, ‘second’, ‘floor’, ‘high’}.

When the event {energy, consumption, heater1, high} arrives at the system, the native

enricher uses the specified values in the event to search the enterprise-wiki using each
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word at a time. Assuming that the enricher firstly retrieves the article titled second

floor, it extracts the single words from the article’s title and adds them to the event.

The enriched event becomes as follows: {energy, consumption, heater1, high, second,

floor}. Other articles are retrieved and fused in a similar manner. The matching element

is then evaluated against the enriched event. As a result, the matcher finds a positive

match.

7.7 Formal Model

The model is represented using the quadruple (L, E,ES,U), where:

� L is the unified subscription language.

� E is the set of events.

� ES is a set of information items that form the source of enrichment.

� U is the universe that contains all the possible information items.

The model has two underlying assumptions concerning valid information items and

common information items. Valid information items are those which are considered

to be true facts. Given an event e ∈ E, let’s assume that the only valid information

items are those which exist in the event e or the enrichment source ES. In other words,

this assumption is equivalent to a Closed World Assumption (CWA) where the world

W = e ∪ ES. In fact, it is worth mentioning that traditional event processing systems

usually make a closed world assumption at the matching stage, where the world W = e.

The principal assumption that the world is limited to the event causes the incorrect

decisions of the matcher in judging many positive and negative matches.

The other assumption concerns common information items between events and the en-

richment source. Let’s assume that there is no intersection between the content of e and

ES, i.e. e ∩ ES = ∅. The purpose of this assumption is to simplify the description of

the model. However, in reality, the event may have been published with some informa-

tion items that also exist in the enrichment source. Nevertheless, the model is easily

extended to the case where e ∩ ES 6= ∅. When conducting enrichment in practice, the

information items in ES, which are already in e, can simply be discarded to turn the
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∩

Figure 7.2: The universe U , the event e, the enrichment source ES, the world W ,
the enrichment view HVS , and a matching view MVS .

assumption into a valid assumption. Figure 7.2 illustrates the various concepts of the

model.

Let S be a subscription in L, S is a pair (HS,MS), where:

� HS is the enrichment clauses element of S.

� MS is the matching predicates element of S.

The model is described through the following definitions.

Definition 7.1 (Boolean Matching Element). Let S be a unified subscription and I a

set of information items, MS is a Boolean matching element if

MS(I) ∈ {True, False} (7.1)

Definition 7.2 (Approximate Matching Element). Let S be a unified subscription and

I a set of information items, MS is an approximate matching element if

MS(I) ∈ R (7.2)

Definition 7.3 (Unknown Matching Result). Let S be a unified subscription and I a

set of information items, MS = Unknown if

(MS is a Boolean matching element ∧MS(I) /∈ {True, False})

∨ (MS is an approximate matching element ∧MS(I) /∈ R)
(7.3)



Chapter 7. The Dynamic Native Event Enrichment Model 216

Definition 7.4 (Matching View). Let S be a unified subscription and I a set of infor-

mation items, MVS is a matching view of S on I if

MS(MVS(I)) 6= Unknown (7.4)

Definition 7.5 (Enrichment View). Let S be a unified subscription and I a set of

information items, HVS is an enrichment view of S on I if

HVS(I) = {ii : ii ∈ I ∧ ii is retrieved during enrichment} (7.5)

Definition 7.6 (Complete Event). Let S be a unified subscription and e an event from

E, MVS is complete with respect to MS if

∃MVS such that MS(MVS(e)) = MS(MVS(W )) (7.6)

Definition 7.7 (Enriched Event). Let S be a unified subscription, and e an event from

E. Let ES be the enrichment source, HVS the enrichment view of the HS element of S,

⊕ the FUSE BY operator of HS , ee is the enriched event of event e according to HS if

ee = e⊕HVS(U) (7.7)

Definition 7.8 (Valid Enrichment). Let S be a unified subscription, and e an event

from E, ES the enrichment source, HVS the enrichment view of the HS element of the

unified subscription S, HVS(U) is valid if

HVS(U) \HVS(W ) = ∅ (7.8)

Definition 7.9 (Successful Enrichment). Let S be a unified subscription, and e an event

from E, ES the enrichment source, HVS the enrichment view of the HS element of the

unified subscription S, ⊕ the FUSE BY operator of HS , HVS(U) is successful if

HVS(U) is valid ∧ e⊕HVS(U) is complete with respect to MS (7.9)

Definition 7.10 (Minimal Successfully Enriched Event). Let e be an event from E

and ES be the enrichment source. Let S1, S2, ..., Sn be a set of unified subscriptions in
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L where the matching element of all of them is the same MS , while they vary in the

enrichment elements being HS1 , HS2 , ...,HSn respectively. Let HVS1 , HVS2 , ...,HVSn be

the set of enrichment views corresponding to the subscriptions. Let ee1, ee2, ..., een be

the enriched events of e according to the enrichment views respectively, eek is a minimal

successfully enriched event if

∀ii ∈ eek ⇒ eek \ {ii} is not complete with respect to MS (7.10)

An ideal event enrichment process would always turn events into minimal successfully

enriched events. Ideally, the areas in Figure 7.2 of MVS(W ) and HVS(W ) would be

identical for at least one MVS . Besides, the enrichment view would be valid, i.e.

HVS(W ) = HVS(U). Thus, the areas A1, B1, A2, B2, AB2, A3, and B3 become all

empty.

The definition above can be interpreted as a hard constraint, meaning that an enrichment

process is considered successful for an event only if it produces a minimal successfully

enriched event. This interpretation is suitable in many cases such as when the matching

element MS is a Boolean matching element. However, there are cases where the event

processing system may accept approximation. One example is when the matching el-

ement MS is an approximate matching element. In such cases, it is suitable to adapt

Definition 7.10 to a softer interpretation, leading to Definitions 7.11 and 7.12.

Definition 7.11 (Cost of Transformation into a Minimal Successfully Enriched Event).

Let e be an event from E and ES the enrichment source, let S1, S2, ..., Sn be a set of all

possible subscriptions in L where the matching element of all of them is the same MS ,

while they vary in the enrichment elements being HS1 , HS2 , ...,HSn respectively. Let

eem1, eem2, ..., eemk be the set of minimal successfully enriched events of e according to

the various enrichment clauses elements HS1 , HS2 , ...,HSn . Let S be a subscription with

the enrichment element HS . Let ee be the enriched event of e according to HS . The

cost function MSECost is defined as follows:

MSECost : W ×W → R+ ∪ {0} (7.11)

MSECost(ee, eemi) is the minimum cost to turn ee into eemi (7.12)

MSECost(eemi, eemi) = 0 (7.13)



Chapter 7. The Dynamic Native Event Enrichment Model 218

Definition 7.12 (Approximately Minimal Successfully Enriched Event). Let ee be a

successfully enriched event and eemi any minimal successfully enriched event, ee is an

approximately minimal successfully enriched event if

Mineemi(MSECost(ee, eemi)) > 0 (7.14)

7.8 A Linked Data Instantiation

This section details the implementation of the proposed model illustrated in Figure 7.1

and Figure 7.2 through the instantiation of the following elements: the event model, the

enrichment source model, the matching element of subscriptions, and the enrichment

element along with a native enricher. The instantiation is designed for Linked Data

events. Linked Data [239] along with its core RDF graph model can be seen as a generic

model for events, making the concepts applied in this instantiation also applicable in

other implementations. A large amount of openly accessible Linked Data has been

published on the Web in the recent years making it easier to experiment with Linked Data

events to study the enrichment model. Linked Data has also been used as a mechanism

to link contextual data within different domains including finance, life sciences, public

sector and energy [242].

7.8.1 Event Model

Events are instantiated as Linked Data events. Thus, an overview of Linked Data is

given before proceeding.

7.8.1.1 Linked Data

Emerging from research into the Semantic Web [59, 243, 244], Linked Data proposes an

approach for information interoperability based on the creation of a global information

space. Linked Data leverages the existing open protocols and standards for the World

Wide Web (WWW) architecture for sharing structured data on the web. The overall

objective of Linked Data is to provide flexible data publishing and consumption.
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Figure 7.3: An example Linked Data event

Berners-Lee [239] summarizes Linked Data in four principles:

1. Using URIs as names for things.

2. Using HTTP URIs so that people can look up those names.

3. When someone looks up a URI, providing useful information using standards such

as RDF [240].

4. Including links to other URIs so that people can discover more things.

7.8.1.2 Event Model

An event is instantiated as a labelled directed graph. The Resource Description Frame-

work (RDF) is used to represent event information using statements or triples. A state-

ment consist of a (subject, property, object) triple.

Subjects are references to information resources and are represented as URIs. Objects

may be URIs or literal values. Properties come from various vocabularies, the Linked

Data name of ontologies, and are represented as URIs of terms in these vocabularies.

One subject may have multiple statements with the same property and different objects.

The resulting event can be represented as follows: Let E be the set of events conforming

to the event model, P the set of properties. Let URIs be the set of all URIs, and Lit

the set of all Literals such as strings and numbers, then an event can be seen as a finite

set of triples as follows:

e ∈ E ⇔ e = {(s, p, v) : (s, p, v) ∈ URIs× P × (URIs ∪ Lit)} (7.15)
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devices:Heater1
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Figure 7.4: An example Linked Data enrichment source

A URI can be written using prefixes for clarity. http://www.example.com#event can

be written as example:event with the prefix representing http://www.example.com.

Figure 7.3 illustrates an example event where ont represents a prefix for the vocabulary of

terms in the energy domain, devices a prefix for instances of devices in the environment,

and events a prefix for all event instances.

7.8.2 Enrichment Source Model

The enrichment source is instantiated as a labelled directed graph. RDF is used to

represent enrichment information. The enrichment source is a set of triples (subject,

property, object) following the Linked Data principles. Let ES be the enrichment source,

P the set of properties, URIs the set of all URIs and Lit the set of all Literals such as

strings and numbers then:

ES = {(s, p, v) : (s, p, v) ∈ URIs× P × (URIs ∪ Lit)} (7.16)

Figure 7.4 illustrates an example enrichment source where building is a prefix for

instances such as rooms and floors. The enrichment source is assumed to be accessible

by dereferencing URIs associated with it. Dereferencing a URI means sending an HTTP

request to its host, specifying the content type to be returned such as RDF, and finally

receiving the HTTP response. The validity of a triple as required by Definition 7.8 is

judged by its existence in the event or the enrichment source.

7.8.3 Matching Element Model

The instantiation of the matching element of a subscription is a simplified version of

the SPARQL Protocol And RDF Query Language (SPARQL) patterns [245] which can
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contain basic graph patterns with variables. The matching element uses property paths

in the place of properties to describe a regular expression of properties, or a path. The

matching element is Boolean as defined in Definition 7.1. A matching view as defined in

Definition 7.8 is the set of all triples that forms a solution to the graph pattern. Example

7.8.1 presents an example matching element.

Example 7.8.1 (A Matching Element). The following matching element matches any

event of type energy consumption whose URI has a path to the second floor URI within

three nodes:

?event rdf:type ont:EnergyConsumption.

?event (?p){3} building:SecondFloor.

7.8.4 Enrichment Element Model

The instantiation of the enrichment element of a subscription is as follows:

� ENRICH FROM specifies the domain URI of the enrichment source.

� RETRIEVE BY specifies dereferencibility as the method for retrieval, notated as

DEREF.

� FIND BY specifies how to explore the enrichment source to find complementary

information. I propose a spreading activation strategy to be used by the enricher

as explained in Section 7.8.5. The enrichment view defined in Definition 7.5 is the

set of all triples whose subjects are activated during the spreading activation.

� FUSE BY realizes the ⊕ operator of the model presented in Definition 7.7. The

RDF UNION is a suitable instantiation.

Example 7.8.2 presents a unified subscription that enriches from an Enterprise Linked

Data cloud, retrieves by dereferencibility, finds via a spreading activation strategy called

UniformWeightsAllAdjacent and fuses via union. It aims at matching any event of type

energy consumption whose URI has a three-links path to the second floor.
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Example 7.8.2 (A Unified Subscription).

ENRICH FROM <www.myenterprise.org>

RETRIEVE BY ‘DEREF’

FIND BY ‘Spreading Activation’ ‘UniformWeightsAllAdjacent’

FUSE BY ‘UNION’

{?event rdf:type ont:EnergyConsumption.

?event (?p){3} building:SecondFloor.}

The minimality of enriched events as defined in Definition 7.8 is realized by removal of

triples from an enriched event. Finally, the approximation between an enriched event

and a minimal successfully enriched event defined by the function MSECost in Relations

7.11, 7.12, and 7.13 is realized by the cardinality of the relative complement operation ‘\’

on sets of triples. Thus, the cost to turn an enriched event ee into a minimal successfully

enriched event eem is composed of two costs:

� The cost to include all the successful enrichment triples in eem into ee. That is

equivalent to |eem \ ee|.

� The cost to remove all unnecessary enrichment triples from ee. That is equivalent

to |ee \ eem|.

The first point measures the completeness while the second measures the precision.

These two measures and their combination form the basis for evaluation as shown in

Section 7.9.

7.8.5 Native Enricher

The enrichment model is realized through a spreading activation algorithm [241]. Spread-

ing activation (SA) originated in cognitive psychology as a network processing model for

a supposed model of human memory. Applications of SA can be found in Artificial In-

telligence, Cognitive Science, Databases, and Information Retrieval. The pure spreading

activation model incorporates a processing technique for a generic graph data structure

such as the RDF graphs. Spreading activation has been employed within semantic web

and Linked Data processing as shown, for example, by Rocha et al. [246], Jiang and

Tan [247], and Freitas et al. [174, 200].
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Spreading activation is based on the idea of marking some nodes as active and then

spreading the activation into other nodes iteratively. The way in which spreading takes

place, and the semantics of the active nodes depend on the application. The processing

is defined by a sequence of iterations that continue until a termination condition is

activated. Each iteration consists of one or more pulses and a termination check [248].

Each pulse of the spreading activation consists of three stages: pre-adjustment, spreading

and post-adjustment [248]. The spreading phase consists of a number of activation waves

where each node calculates activation inputs transferred to it from its neighbours, which

can be done using the formula:

Ij =
∑
i

Oiwij (7.17)

Where Ij is the total input to node j, Oi is the output of neighbour i and wij is a weight

associated with the edge from node i to node j. When a node computes its total input

Ij it calculates its output Oj as a function of Ij :

Oj = f(Ij) (7.18)

The function can be simply a threshold function which decides if the node j is activated

or not. The output of the node is in turn sent to neighbouring nodes in the next

pulse and so on. Activation spreads from the initially activated nodes to further nodes

in the network. Pure SA may fall in a deadlock and run forever unless controlled.

Constraints can be enforced in the pre-adjustment stage. Four sorts of constraints can

be recognized [248]:

� Distance Constraint : The SA should decay as it reaches nodes far from the initially

activated nodes.

� Fan-out Constraint : The SA should cease at nodes with very high connectivity.

� Path Constraint : The SA should be selective in the path it spreads in making use

for example of the semantics of labels on the edges.

� Activation Constraint : Using various thresholds can affect the behaviour of the

SA.
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Spreading activation within the enricher along with the Linked Data instantiation of the

event, and the enrichment source models, can realize the enrichment model. Spreading

Activation can be used to explore the enrichment source and retrieve a set of triples

to be fused in the event. To guide the SA in the enrichment source, I propose a path

constraint to favour some links over others. The path constraint is based on ranking

the links connected to a spread node based on their semantic relatedness with terms in

the matching element and then just follows the top two or three links. The semantic

relatedness used in the experiment is a WordNet-based measure called the Path measure.

Further discussion on WordNet and semantic measures can be found in [249].

7.9 Evaluation

To demonstrate how to evaluate a particular instantiation of the proposed enrichment

model, an experiment has been conducted in association with the Linked Data instan-

tiation of the enrichment model described in Section 7.8. The experiment has been

performed using real-world data, namely, events extracted from Wikipedia, and uses

the DBpedia dataset as an enrichment source. A set of event subscriptions is gener-

ated where each subscription conforms to the unified language instantiation in Section

7.8. Matching elements use the property path variables to express a path of predi-

cates between an event and a value. The minimal successfully enriched events for each

subscription are calculated to form a baseline to measure the effectiveness of enrichment.

The purpose of the experiment is to compare three strategies of event enrichment, which

vary the mechanism used by the enricher to find complementary information items in

the enrichment source. The variation is expressed by using different parameters in the

spreading activation algorithm using the FIND BY clause of the subscription enrichment

element. The three strategies are:

� UniformWeightsAllAdjacent : A spreading activation strategy where activation

from one node spreads equally to all adjacent nodes.

� UniformWeightsRandomAdjacent : A spreading activation strategy where activa-

tion from one node spreads equally to a random set of adjacent nodes.
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� DifferentWeightsSemRel : A spreading activation strategy where activation of a

node spreads unequally to a set of adjacent nodes based on the semantic relatedness

of the adjacency edges with the terms in the subscription matching element.

The key difference between the evaluated strategies is that the former two guide enrich-

ment independently from the matching element of the subscription while that last one

benefits from the fact that enrichment and matching logic exist together in the unified

subscription. The last strategy guides the enrichment algorithm according to the se-

mantic relatedness between the terms in the matching element and terms on the links

in the enrichment source. Thus, if it performs better than the former two, then this

supports that unified subscriptions native to the event processing engine is suitable for

event enrichment.

It is worth mentioning that the objective is not to investigate the best approach for

enrichment in this particular Linked Data instantiation but rather to validate the hy-

pothesis that the element of dynamic native enrichment can address the requirement of

loose pragmatic coupling. Investigating the best performing enrichment strategies for

Linked Data events is indeed an important future direction.

7.9.1 Event Set and Enrichment Source

The event set used is a structured representation of events in the English Wikipedia 1.

DBpedia 2 is a community project to extract structured information from Wikipedia

[238], and is one of the efforts under the Linked Open Data initiative that targets the

publication of structured data on the web according to the Linked Data principles [239].

The data model used to represent DBpedia data is RDF.

The event set, of 24, 000 events, contains all resources of type dbpedia-owl:Event.

Each event is a triple in the form of <eventURI, rdf:type, dbpedia-owl:Event>.

Examples event types in the event set are: Football Match, Race, Music Festival, Space

Mission, 10th-century BC Conflicts, Academic Conferences, etc.

The enrichment source is the set of all triples that are stored in the online DBpedia and

can be retrieved by looking up DBpedia resource URIs. Events are played sequentially

1http://www.wikipedia.org/
2http://downloads.dbpedia.org/3.8/en/. Last modified on the 1st of August 2012. Accessed on 25th

of February 2013.
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dbpedia-prop:team

dbpedia-prop:club

dbpedia-prop:ground

dbpedia-prop:mainSponsor

dbpedia:1966_FIFA_World_Cup_Final

dbpedia:England_national_football_team

dbpedia:Queens_Park_Rangers_F.C.

dbpedia:Loftus_Road

dbpedia:Fulham_F.C.

Figure 7.5: The base path-shaped graph used to generate the matching elements of
the subscriptions

and pushed to the native enricher which searches the enrichment source for complemen-

tary information, fuses it with the events and forwards them to the event matcher.

7.9.2 Unified Subscriptions Set

The subscription set consists of four subscriptions. The matching element of subscrip-

tions was automatically generated using the following method:

1. The seed Uniform Resource Identifier (URI) of the 1966 FIFA World Cup Final

http://dbpedia.org /resource/1966 FIFA World Cup Final is used first and

resources linked to it are retrieved to build a path-shaped graph of 4-triples long.

Figure 7.5 shows the resulting full path-shaped graph.

2. For the first subscription, the first triple is considered as the matching element.

3. For the second subscription, the first two triples are picked, and a matching element

is constructed as defined in Section 7.8 using the two terminal URIs of the two-

triple long path as subject and object and a property path variable in between.

4. The last step is repeated for subscriptions 3 and 4.

The resulting matching elements are shown in Table 7.2. Subscriptions range in com-

plexity concerning the length of the property path in their matching elements with the
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Table 7.2: Matching Elements of the Unified Subscriptions Set

ID Matching Element

1 ?event rdf:type dbpedia-owl:Event.

?event (?p){1} dbpedia:England national football team.

2 ?event rdf:type dbpedia-owl:Event.

?event (?p){2} dbpedia:Queens Park Rangers F.C..

3 ?event rdf:type dbpedia-owl:Event.

?event (?p){3} dbpedia:Loftus Road.

4 ?event rdf:type dbpedia-owl:Event.

?event (?p){4} dbpedia:Fulham F.C.

most complex subscription being the one with the longest property path. To form the

final unified subscriptions, each matching element is concatenated with an enrichment

element that consists of the four clauses ENRICH FROM, RETREIVE BY, FIND BY

and FUSE BY. The evaluated three strategies are parameters to the FIND BY operator.

7.9.3 Minimal Successfully Enriched Events Construction

To generate the event data that can be considered a minimal successfully enriched event

for each subscription, the following methodology has been used: For each matching

element of a subscription, a SPARQL [245] query is formed and executed against the

DBpedia online SPARQL API. The query uses optional joins and filters to match all

the events in DBpedia with all possible cases of their associated values or predicates.

Example 7.9.1 shows the generated query for subscription 3.

Example 7.9.1 (A Generated SPARQL Query).

{?event a dbpedia-owl:Event.

OPTIONAL

{?event dbpedia-prop:team ?team.

FILTER (!isLiteral(?team))

OPTIONAL

{?team dbpedia-prop:team ?club.

FILTER (!isLiteral(?club))}}}

When the SPARQL queries are executed, the result contains all the events with possible

values for the specified path. These events with their associated data are minimally

complete as a matching decision can be made upon them for the specified subscription.
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7.9.4 Evaluation Metrics

Given a subscription S and an event e. Let ee be the enriched event of e according to S.

Let em be the closest minimal successfully enriched event to ee according to Relations

7.11, 7.12, and 7.13 and their instantiation in Section 7.8.4. The following metrics are

defined for evaluating the effectiveness of the enrichment approach:

Completeness =
|ee ∩ em|
|em|

(7.19)

Precision =
|ee ∩ em|
|ee|

(7.20)

F5Score =
(1 + 52)× Precision× Completeness

52 × Precision+ Completeness
(7.21)

The intersection is realized via an intersection between the set of triples that form

each graph ee and em. The cardinality of events here is realized through the number

of triples in the set that corresponds to each graph. The F − Score is a composite

measure which is useful to summarize the effectiveness of an enrichment approach in

one number for a subscription rather than two numbers. I argue that completeness

and precision not be equally important. To evaluate an enrichment approach based on

information completeness, the completeness measure should be given more weight. That

is why the F5Score is chosen in this evaluation as it gives much more importance to

completeness. Depending on the application domain and constraints, other weightings

may be considered.

7.9.5 Results

Figure 7.6 illustrates the combined F5Score achieved by each enrichment approach for

each subscription and averaged over events. The chart shows the superiority of the

semantic relatedness-based approach and confirms the hypothesis that an enrichment

approach, which makes benefit from the enrichment logic unified with the matching

logic, is more effective than enrichment that is solely based on enrichment logic. There

is also a trend showing that the enrichment effectiveness decreases for more complex
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Figure 7.6: The combined F5Score achieved by the enrichment approaches for each
subscription

subscriptions. The decreasing effectiveness is because a longer property path requires

more spreading to reach relevant triples while spreading may fade before that. From an

empirical perspective, this raises the issue that the evaluation of an enrichment approach

shall factor in the effect of the different types and complexities of subscriptions in the

results.

The results show the validity of a dynamic enrichment model associated with semantic

relatedness, and approximation for matching. It shows that the events completeness

could be enhanced without coupling the participants in contextual agreements. Effi-

ciency in terms of time is not measured, but in principle it is partially covered by the

precision aspect, as more precision means that within a specific time, more relevant

information is returned, i.e. the time is fixed while precision is varied.

Efficiency and effectiveness of the semantic relatedness-based instantiation are up to

44% F5Measure, 7 times more than other instantiations of the enrichment model on

average. Thus, the effectiveness and efficiency parts of hypothesis H3 are validated with

clear identifiable loosening in the pragmatic contextual coupling dimension represented

by high-level expressions in the subscriptions to guide the enricher. The fact that the

defined model assumes approximation and that the approximate semantic relatedness-

based approach is superior also validates the pragmatic part of hypothesis H4 on ap-

proximation.
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7.10 Chapter Summary

This chapter constructs a model that realizes the element of dynamic native enrich-

ment, along with the element of approximation. The rationale for using these elements

as suitable models, which relax the effort needed to agree on contextual data, has been

discussed. Events are assumed incomplete under an open world assumption. Incomplete-

ness can be described on five dimensions: format, semantics, complementary background

knowledge, complementary transformation, and temporal segmentation. This work is

concerned with enrichment from complementary background knowledge.

Four elements of enrichment have been identified: determination of the enrichment

source, retrieval of information items from the enrichment source, finding complemen-

tary information for an event in the enrichment source, and fusion of complementary

information with the event. The proposed model recognizes enrichment as a core task of

event processing engines. Additionally, the enrichment behaviour of an event processing

engine can be dictated to the engine using a uniform and declarative mechanism.

The model proposed that the enrichment logic is described using a set of declarative

language constructs similar to the ones used currently for matching purposes. Four lan-

guage clauses that are mapped to the four enrichment elements were proposed: ENRICH

FROM, RETRIEVE BY, FIND BY, and FUSE BY. All the enrichment clauses are de-

scribed by the event consumer. The resulting subscription, which contains enrichment

and matching elements, is called a unified subscription.

The model is formalized using set algebra. Concepts such as a complete event, valid

enrichment, a minimal and approximately minimal successfully enriched event, have been

defined according to the formal model. The model has been instantiated for Linked Data

events and Linked Data enrichment sources. The instantiation uses spreading activation

in Linked Data graphs, along with semantic relatedness.

The model has been evaluated with 24, 000 events from DBpedia, a Linked Data version

of Wikipedia. Results showed up to 44% F5Measure of enrichment precision and com-

pleteness, 7 times more than other instantiations of the enrichment model on average.

The hypotheses H3 and H4 about the suitability of dynamic native event enrichment and

approximation for efficient and effective loose pragmatic coupling have been validated.



Chapter 8

Prototype and Use Cases

“I think IT projects are about supporting social

systems - about communications between people

and machines.”
— Tim Berners-Lee

8.1 Introduction

This chapter discusses how the models in this thesis are combined into a working system

called COLLIDER. The chapter details the COLLIDER system design and implemen-

tation. It discusses the concept of thingsonomies, which is based on the thematic event

processing model for the Internet of Things, and how a practitioner can utilize it to build

an IoT application. The chapter also details the employment of COLLIDER in two use

cases: energy management and water management, to show how the system can work in

real-world environments. The COLLIDER system has been demonstrated in the ACM

International Conference on Distributed Event-Based Systems (DEBS 2013) [250].

Section 8.2 describes the design of the COLLIDER system and its implementation.

Section 8.3 discusses the thingsonomy concept and architecture. Section 8.4 details

the use case of COLLIDER for self-configurable energy management while Section 8.5

concerns a water management use case. The chapter ends with reflections on COLLIDER

use in practice in Section 8.6, and a summary in Section 8.7.

231
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Figure 8.1: Internal architecture for the COLLIDER system

8.2 Internal Architecture

The main contributions of this thesis are the three models: the approximate semantic

event matching model in Chapter 5, the thematic event matching model in Chapter 6,

and the dynamic native enrichment model in Chapter 7. These models have been engi-

neered into a system called COLLIDER. The architecture of COLLIDER is illustrated

in Figure 8.1.

The main two layers of the system are the Single Event Matcher and the Enricher. The

former implements the approximate semantic event matching model and the thematic

event matching model. The latter implements the dynamic native event enrichment

model. The other layers and components are necessary from a system perspective to

enable events and rules input/output, evaluation, and to demonstrate the effect of the

proposed approach on complex event processing.
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The system is designed to be generic to facilitate experimental research with the models

and to enable extensibility from a software engineering perspective in a non-laboratory

setting. For instance, the element of approximation is realized in the system using a

set of abstract interfaces such as UncertainValue and UncertainSingleEvent. Imple-

menting classes of these interfaces define what uncertainty model is used. For example,

an UncertainValue can be instantiated by a single numeric value reflecting probabil-

ities, by two values reflecting belief and plausibility, or by another uncertainty model.

The probabilistic model has been used throughout this thesis. The components of the

internal architecture shown in Figure 8.1 are detailed in the following sections.

8.2.1 Input and Output Adapters

The Input/Output Adapters are responsible for connecting a COLLIDER agent with

the outside environment which includes event producers and consumers. An adapter

is instantiated for a particular input/output paradigm or technology such as HTTP

adapters, JMS adapters, etc. Adapters also accommodate the necessary syntax level

format handling such as dealing with multiple serializations of RDF messages and con-

verting them all into corresponding COLLIDER events. Another task of some adapters

is to map an event arriving at a particular URL or JMS topic with the respective inter-

nal in-memory channel so it can be considered for matching with rules that take input

from this channel. In principle, the engine can be instantiated programmatically and

fed with events without the need for adapters, but the programmer would be responsible

for handling input/output events and adapt them to the system in this case.

8.2.2 Language

The language component is responsible for dealing with a user’s input of rules and

subscriptions. The Parser parses rules from plain text and converts them into their

respective object models. A Rule Object Model in this context is a syntax tree that

can be visited by other parts of the COLLIDER engine for matching purposes and

uncertainty propagation. A rule can be just a single event template within the context

of single event matching as considered in this thesis. However, more generally, the leaves

in a rule syntax tree are single event templates, which are subject to matching by the

single event matcher. The Uncertainty Object Model gets generated by an Uncertainty
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Propagation Model object from the nodes of the Rule Object Model. It governs how

uncertainty values resulting from the approximate matching gets propagated through a

pattern to a derived event.

8.2.3 Enricher

The Enricher layer accommodates the dynamic native event enrichment approach pro-

posed in this thesis. The interface Enricher can be instantiated using various mecha-

nisms for enrichment, but the one followed in this work is the information incompleteness

model which tries to fulfil the information content of an event before it gets matched.

The particular instantiation of the Enricher illustrated in Figure 8.1 is based on Spread-

ing Activation in Linked Data graphs as discussed in Section 7.8. A part of the process

is represented by the Dereferenciation of URIs into their respect RDF representations.

The Cache is a performance enhancement mechanism to avoid the high cost of retrieving

a contextual piece of data which has already been retrieved.

8.2.4 Single Event Matcher

The Single Event Matcher layer accommodates the approximate Semantic Matcher and

its relevant sub-components. Thematic Projection is responsible for calculating terms

vectors with respect to thematic tags as discussed in Section 6.5. Semantic Relatedness

and First-Line Matchers are responsible for producing similarity and relatedness scores

from types, attributes, and values. Semantic Relatedness can be parametrized to deal

with different measures or different indices of corpora. First-Line Matchers are organized

into Optimized Ensembles to produce a single similarity matrix out of a set of matrices

as discussed in Section 5.9.2. The resulting similarity matrix is used to produce top-1

and top-k mappings between events and single event templates.

8.2.5 Pattern Matcher

The Pattern Matcher layer has not been investigated in this thesis, but approximate

probabilistic matching, and top-k mappings have effects on how pattern matching takes

place. The key to this is the use of Uncertain Values and an Uncertainty Model which
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Figure 8.2: An example thingsonomy for tagging a device’s events

defines the meaning of a matching score, such as being a probability, a two-valued belief-

plausibility score, etc. It defines how reasoning over the pattern can take place and how

the uncertainty values of single event matching in a pattern are propagated into a derived

event according to the Uncertainty Propagation Model.

8.2.6 Event Player and Evaluator

The Event Player and Evaluator components are primarily designed to enable empirical

evaluation with COLLIDER. The Event Player defines how a set of events, e.g. in a log

file, can be streamed into the engine. The Evaluator is responsible for contrasting the

matcher’s and enricher’s results with a ground truth to provide evaluation metrics. In

a non-empirical setting, the Evaluator can still be used to measure the performance of

a real-world deployment of the system.

8.3 Thingsonomies for the Internet of Things

In this section, I show how an IoT system can be built around the event processing

approach described in this thesis. Bob works in the town hall planning department of

a smart city. Bob is interested in finding the energy usage of street lights during peak

electricity usage in different areas. Such information can be detected using an expression

of an Event Processing Language (EPL) such as Esper’s language [48] as follows:

every a=StreetLightsEvents(

a.type= ‘energy consumption event’

and a.area.consumptionPeak=‘true’)
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Figure 8.3: Architecture for loosely coupled semantic normalization for Internet of
Things software

While the sources of required information are available from the street lights, the seman-

tics of the events differ from one area to another due to different sensors manufacturers.

For instance, events contain terms such as ‘energy consumption’, and ‘electricity usage’

to refer to the same thing. The scenario requires a large set of rules with high definition

and maintenance costs to cover the semantic heterogeneity of events.

I suggest thematic tags that describe the themes of types, attributes, and values to clarify

their meanings as suggested in Chapter 6. I call these tags thingsonomies for things and

taxonomies in the context of the Internet of Things. The hypothesis is that associating

events and subscriptions with extra tags can improve effectiveness and time efficiency

in heterogeneous environments and domain-specific knowledge exchange as validated in

Chapter 6. Figure 8.2 shows an example thingsonomy for tagging energy consumption

events coming from a laptop.

Figure 8.3 illustrates the main components of the system and the main steps required

by the practitioner. The underlying thematic event matching model, which enables this

architecture, has been investigated in Chapter 6.
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Step 1 to build the IoT architecture enabled with semantic normalization is to build

a semantic model that enables the system to establish automatically relationships be-

tween various terms such as ‘computer’ vs. ‘laptop’. The proposed approach adopts a

subsymbolic distributional model of semantics based on statistical indexing of a large

corpus of textual documents. Such a model is easy to build automatically as shown

in [175], and the main task for the practitioner is the corpus selection. One can start

working with an initial documents corpus, e.g. Wikipedia, and incrementally revise it

to suit the use cases.

Step 2 is to avail a semantic relatedness measure based on the built semantic model

through a conventional interface such as REST and JSON [175]. For example, a request

for relatedness between ‘electricity’ and ‘energy’ is invoked through API:

http://example.com/esa?term1=energy&term2=electricity

with the result being returned as a JSON object as follows:

{“relatedness” : 0.154}

Such a result makes sense only in comparison with the relatedness of other pairs of terms

such that ‘electricity’ is closer to ‘energy’ than to ‘office’ for instance.

Step 3 is for publishers who shall accompany their events with a set of thematic tags at

the data collector. Such tags shall represent approximately the domain and meaning of

the terms used to describe the event attributes and values. Let an event of an increased

energy consumption be represented as follows:

{type: increased energy consumption event,

measurement unit: kilowatt-hour,

device: computer}

An example of thingsonomy tags for this event are:

{computer, appliances, building, energy}
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Step 4 is for subscribers to associate their subscriptions with thingsonomy tags. I

propose using the language from Chapters 5 and 6 which leverages the tilde ∼ operator to

signify that the user wants the matcher to match the term used or any term semantically

similar to it. A subscription for increased energy consumption can be represented as

follows:

{type= increased energy usage event∼,

device∼= laptop∼}

Example thingsonomy tags are:

{power, computers}

Step 5 is the responsibility of the system to normalize events and match them to the

suitable subscriptions. The example event and subscription do not use exactly the same

terms to describe the type or the device, hence ‘energy consumption’ vs. ‘energy us-

age’, and ‘computer’ vs. ‘laptop’. Nevertheless, the event should not be considered as a

negative match to the subscription. For this reason, the system employs a probabilistic

matcher that uses a measure to estimate semantic similarity and relatedness between

various terms. Functionally, it tries to establish possible mappings between subscrip-

tion predicates and event tuples. For example, the most probable mapping of previous

examples is described as follows:

σ∗ ={(type=increased energy consumption event

↔ type:increased energy usage event),

(device∼ = laptop∼ ↔ device:computer)}

Step 6 represents the return of events matching a subscription to its initiator. The

matcher establishes probabilistic matching and, as a result, forwards the normalized

event along with an uncertainty value that reflects the amount of semantic normalization

that has been conducted all the way from publishers to subscribers.

The COLLIDER system has been successfully employed in the context of two projects

concerned with energy management and water management domains as discussed in the

following sections.



Chapter 8. Prototype and Use Cases 239

COLLIDER 
Event 

Processing 
Engine 

Decision Support Model 

Energy Task 
Manager 

Data Integration Layer 

Linked Open Data 

User 
Interface 

Enterprise 
Data 

Violations Energy Saving 
Patterns 

Event 
Warehouse 

Data Quality 
Rules 

Metadata 

Energy Event Producers 

Users 

1 

2 

3 

4 

5 

6 

7 

8 

9 10 11 12 

13 

Crowd 

Building 
Data 

Figure 8.4: The role of COLLIDER in the Self-Configurable Energy Management
Systems Use Case

8.4 Self-Configurable Energy Management Systems Use

Case

The COLLIDER system has been used within the SENSE project 1. The project mission

statement is to:

“Deliver technology required to create a self-configuring smart energy

management systems for small commercial buildings.”

SENSE has been deployed initially in the Digital Enterprise Research Institute (DERI) at

the National University of Ireland, Galway which had hosted the Sustainable DERI and

DERI Energy works [218, 251–253]. The building has been equipped with energy con-

sumption sensors. In total there have been over 50 fixed power sensors covering offices,

1http://sense-project.com/
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café, data centre, kitchens, meeting rooms, and the computing museum. Additionally,

there have been over 20 mobile energy sensors for computing and printing devices, lights

and heaters, as well as light detection, temperature, and motion detection sensors.

Figure 8.4 illustrates a high-level architecture of the project. To achieve the goal of self

configuration in energy systems, the following objectives have been addressed as shown

in Figure 8.4:

� Delivery of a multi-level decision support model for energy management.

� Integrating energy data from sensors, enterprise, and open data through the use

of a Linked Data integration layer.

� Design and implementation of persuasive user interfaces for decision support.

� Design and implementation of approximate semantic event processing for energy

data.

� Design and implementation of a collaborative crowdsourcing platform for energy

data management tasks.

� Validation of the performance of the project output.

Figure 8.4 shows the relative relationship of COLLIDER to the integration layer as the

primary source of events and contextual data, and to the energy decision support model,

which is the main consumer of energy waste and saving patterns.

8.4.1 Event Processing Requirements in the Use Case

This use case forms a good fit for motivating the use of COLLIDER. This stems from

the requirements of self-configurable energy management systems as follows:

� The self configuration requirement for energy systems is essential to easily inte-

grate energy-related resources in a building and putting a system up and running

with a low effort from building personnel. Consequently, building occupants be-

come increasing aware of energy usage and become able to detect energy saving

opportunities to help the environment and lower the costs. COLLIDER meets
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this requirement through its support of a loosely coupled semantic and pragmatic

event processing paradigm. Thus, it helps reduce the efforts by the users and shift

the semantic and pragmatic configuration tasks into the event engine.

� The requirement of decision support that includes: typical flow of energy, con-

textual business and building entities for energy management, and energy saving

patterns. COLLIDER meets these requirements through its layers and underlying

models. The flow of energy can be handled through the single event processing

from sensor feeds. The dynamic enricher can handle contextual energy data. En-

ergy saving patterns can be handled by the complex pattern matcher.

� The real-time detection requirement of energy wasting patterns which can be tack-

led by the reactive behaviour of an event engine such as COLLIDER. COLLIDER

can meet this requirement as it is built upon efficient models in terms of throughput

and latency.

Figure 8.5 illustrates an energy-specific use case of COLLIDER within SENSE. It shows

how several energy consumption devices can use various descriptions of event data such

‘energy’, ‘power’, and ‘electricity’ while they probably mean the same thing which is

energy consumption. The user can depend on COLLIDER to resolve this issue and to
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enrich events with their ‘floor’ for instance in addition to the ‘room’. Consequently,

users need less configuration effort to get benefits from the system.

8.4.2 COLLIDER Implementation for Energy Management

COLLIDER has been designed in SENSE to be deployed as running instances of the

engine, which by themselves are contained in a web application server as shown in Figure

8.6. The web application includes besides the COLLIDER instances a set of administra-

tion pages and a simulation engine. The administration pages allow the administrator,

e.g. the building administrator, to create new engine instances, configure the feeding

JMS topics, and the output topics. They also enable the administrator to deploy new

rules with the engine instances and configure the default semantic relatedness measure

to use. Administrators can also monitor the engines performance constantly.

The simulation engine allows the user to define a set of virtual sensors and zones to

simulate a building environment. Virtual sensors can be configured with templates of

event data where some parameters such as energy consumption values get generated at

random during simulations. The rate of incoming events can also be configured. The

simulation engine is also equipped with an interactive user interface as shown in Figure

8.7 which allows the user to drop new sensor instances within zones to emulate the

sensor deployment. Real-time readings from sensors are pushed to the web client using

web sockets to create an interactive simulation scenario. Users can at any time view the
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Virtual Sensors as deployed, feed into their output JMS Topics. Those feed into the 

event engine registered with the simulation which in turn match them against Rules 

that are registered in it. Thus, user can leave the simulation running and go to monitor 

a Rule to see what events are matched by it as shown in Figure 64. 

10.4 EVALUATION 

COLLIDER has been previously evaluated empirically with synthesized datasets as 

described below. 

10.4.1 EVALUATION METRICS 

Evaluation metrics can be classified into two categories: effectiveness and efficiency 

metrics [170]. Effectiveness metrics measure the quality of event matching. A 

fundamental requirement is the existence of a ground truth which divides events into 

relevant and irrelevant with respect to each approximate subscription. For all these 

concepts to exist, the resulting events from the matcher must be divisible into two 

distinct sets of matcher relevant and irrelevant events. In the case of the approximate 

matcher which assigns probabilities to events with respect to a subscription, the two 

sets can be achieved by ranking and cutting off using recall levels. Precision, Recall, 

and the combined F1Score have been used for effectiveness evaluation. 

 

Precision measures the proportion of relevant events discovered by the matcher with 

respect to all the discovered events such that Precision = True Positives/(True 

Positives+ False Positives). Recall measures the proportion of relevant events 

discovered by the matcher with respect to all the known relevant events from the 

ground truth such that Recall =True Positives/(True Positives + False Negatives). 

Precision and recall are calculated for the whole set of subscriptions S by averaging 

Figure 8.7: COLLIDER simulation engine

rules matching results, i.e. the uncertain event matchings, which are also pushed to the

JMS server topics.

COLLIDER instances also make use of deployed semantic relatedness web services in

the SENSE deployment. The semantic relatedness service works over an indexed corpus

of energy domain Wikipedia articles. The index is hosted by a Mongo DB service as

described in [175]. The semantic relatedness scores are returned to the COLLIDER

instances which then use them for probabilistic matching.

8.4.3 Building an Energy Domain Corpus for Semantic Relatedness

A domain-specific measure is achieved by building a domain-specific semantic model. A

domain-specific semantic model is built via a domain-specific thesaurus or ontology for

thesaurus-based measures, and created by a large set of domain-specific text documents

for distributional semantic models. The biomedical domain is one of the most thriving

domains with respect to semantic measures.

Pedersen et al. [254] adapt a set of thesaurus-based and distributional-based measures

for the biomedical domain. Rada et al. [255] build a semantic distance measure based

on the MeSH semantic network. Caviedes and Cimino [256] devise a measure for finding

path lengths in a Unified Medical Language System (UMLS) hierarchy. Lord et al.
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[257] adapt WordNet-based measures to the Gene Ontology. Latent Semantic Analysis

(LSA) has been used for indexing clinical records and classifying medical events [258],

for example, Pedersen et al. in [254] use LSA to build a vector-based measure.

Reviewing the literature reveals a shortage of works on semantic similarity or relatedness

measures for the energy management domain. Nonetheless, semantic models for the

energy domain exist, namely ontologies for the energy domain. Semantic models for

building energy management have been investigated in [242] and [259]. An ontological

framework for energy saving in intelligent smart homes has been proposed by Grassi

et al. [260]. Devices description plays an significant role in energy applications and

has lead to several standards for device description: Composite Capabilities/Preference

Profiles (CCPP) 2, the Generic Station Description Markup Language (GSDML), and

the Field Device Configuration Markup Language (FDCML) [261–263].

There has also been work to describe components of power systems. The International

Electrotechnical Commission (IEC) has published two standards IEC 61970-301 [264]

and IEC 61968-1 [265] which serve as a Common Information Model (CIM). Several

2http://www.w3.org/Mobile/CCPP/
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works also use the Web Ontology Language (OWL) to encode CIM models [266, 267].

The work in [268] provides a CIM extension to support photovoltaic and wind power

generation in addition to battery energy storage units. Such approaches can be classified

under the symbolic family of models as discussed in Section 5.4 which requires an effort

to establish granular agreements and thus affect semantic coupling. I am not aware of

subsymbolic distributional energy semantic models. Furthermore, there seems to be a

lack of semantic similarity and relatedness measures upon the existing energy-specific

ontological models.

The approach I follow for building an energy domain corpus that works with COLLIDER

is by filtering a Wikipedia-based domain-agnostic distributional model, developed by

Freitas et al. [174, 175, 200], as shown in Figure 8.8. The domain adjustment process

is fed by a set of seed terms that could represent the domain of interest, i.e. ‘energy’,

‘building’, and ‘sensors’ within the context of SENSE. The seed terms are then used

to search the Wikipedia API for relevant categories, and then follow recursively their

sub-categories and mentioned articles. The resulting visited subset of articles are the

ones chosen for indexing to build the ESA model, or filter an existing one for semantic

relatedness.

8.4.4 Validation within Self-Configurable Energy Management Sys-

tems

Running the COLLIDER system over the energy management deployment has shown

that event matching is done with a latency as small as 0.09 millisecond/event. This is a

small number to react to energy events within a smart building or enterprise scenario.

COLLIDER could get up and running before full ontological agreements on data de-

scription were achieved. Thus, it requires a small effort to deploy events and rules where

the semantic mediation is left to the engine. This fits the self-configuration goal of the

use case.

8.5 Water Management Use Case

The COLLIDER system has been employed within the European Waternomics project

[269]. Waternomics investigates how information and communication technology can
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Figure 8.9: Waternomics overall architecture 3

help households, businesses, and municipalities reduce water wastage and consumption.

Building a data platform to collect water usage and contextual data, as well as analysing

the integrated data is key to water management from the perspective of Waternomics.

The water management task is designed within this use case into three layers as

shown in Figure 8.9. The bottommost layer is hardware, where water sensors such

as water consumption and leakage detection hardware are developed, configured, and

instrumented. The middle layer is concerned with the water data collected from various

sources including sensors and contextual data from systems such as building management

systems. The topmost layer is concerned with the software that operates over the data

to ultimately help users better manage their water resources.

3Adapted from deliverable D3.2 (http://waternomics.eu/)
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The software layer of the use case is further divided into support services, which con-

tribute to the infrastructure, and applications which give direct decision support tools

to users such as dashboards, leakage detection apps, etc. Support services are classified

into three classes: dataspace support services, data services, and component libraries.

Dataspace support services help to manage the space of data underneath using services

such as cataloguing of data sources, searching, and querying. Data services concern the

further support of the dataspace at a higher level, including entity management, data an-

alytics, and event processing. Component libraries give domain support for applications

using services such as reporting, notifications, social services, applications management,

configuration, and user interfaces.

8.5.1 Event Processing Requirements in the Use Case

This use case forms a good fit for motivating the use of COLLIDER. This stems from

the requirements of water management systems as follows:

� The requirement of real-time water data processing, which is crucial to identify

water leakage and other waste scenarios. COLLIDER meets this requirement

through its underlying efficient models of matching in terms of throughput and

latency.

� The requirement to handle heterogeneity of water sensors, which results from the

large number of parties involved in the water lifecycle. COLLIDER meets this

requirement through its underlying support for semantic matching and its ability

to deal with semantically loosely coupled parties.

� The requirement of consuming open water data, which is useful to make predictions

about water consumption. An example of open water data is weather precipitation

forecast which could affect water distribution and cost as well as usage scenarios.

COLLIDER meets this requirement through its underlying event enrichment model

which helps to fuse open contextual data with water events.
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8.5.2 Linked Water Dataspace

Waternomics adopts a dataspace approach to data management. Dataspaces have been

proposed by Franklin, Halevy, and Maier in [270, 271] as a new abstraction of information

management as opposed to databases. Databases reflect a well-controlled environment

with a relatively centralized administrative authority of data sources. Dataspaces on the

other hand concern the management of diverse and loosely coupled data sources which

co-exist but not strictly integrate.

Waternomics emphasizes the role of Linked Data as an enabling technology for the water

dataspace. A set of services exists to support the resulting Linked Water Dataspace

(LWD) as shown in Figure 8.10. The dataspace represents an incremental view of how

water datasets join the computational space targeted by applications. In contrast to the

4Adapted from deliverable D3.2 (http://waternomics.eu/)
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classical one-time integration of datasets that causes a significant overhead, the LWD

adopts a pay-as-you-go paradigm. Water datasets join the space in an incremental

manner: the more interfaces they expose, the more links they provide; and the more

linked dataspace services they support, the more integrated into the dataspace they

become.

Figure 8.10 illustrates the components view of the LWD witch includes:

� Datasets include sources such as weather data, water sensor data, building man-

agement system data, etc.

� Adapters, or interfaces, are the technical facades of the datasets that other mem-

bers of the dataspace can talk to. A dataset that provides a JavaScript Object

Notation for Linked Data (JSON-LD) interface, for instance, allows structured

queries to be executed, and thus it is superior and more integrated into the datas-

pace than a document that is only exposed by keyword search.

� Services are the platform that allows datasets to be visible, query-able, integrable,

searchable, monitorable, and curatable. Services include catalogue, query, search,

human, monitoring, and event services. Such services form the support platform

in dataspaces [270].

Beside those three concepts, there is the notion of a relationship between two datasets.

For example, the Kafka middleware feeds into the event service. Finally, applications

surround the dataspace and make use of its services to interact with the datasets.

The Linked Water Dataspace is equipped with a real-time aspect to enable the processing

of information items within a short period of time. That is done through the adoption

of in-flow processing which means that data items are not stored and indexed in order to

be processed, but rather they undergo enrichment, matching, aggregation, and pattern

detection as they flow in streams. COLLIDER is employed to achieve this goal.

The technical architecture of the dataspace is illustrated in Figure 8.11. It is based on

a Lambda architecture that aims at the seamless integration of stream processing and

batch processing. Lambda architecture emphasizes three main layers: the speed layer,

the batch layer, and the serving layer. The speed layer is concerned with manipulating

real-time data continuously. The batch layer is concerned with calculating views over
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Figure 8.11: Waternomics Linked Dataspace architecture 5

stored data. The serving layer provides a transparent query interface to the user for

both real-time and batch data.

COLLIDER is used in the speed layer through three main functionalities: approximate

matching, event enrichment, and complex event processing. For instance, COLLIDER

can enrich water consumption events with their source ‘room’. It can approximately

match those described by ‘bathroom’ and ‘restroom’. It finally can use various events

such as ‘tap opened’ followed by ‘kitchen unoccupied’ to detect a water wastage situation.

Additional to the energy management use case, this use case gives more emphasis to

unstructured events, the thematic tagging facet of COLLIDER, as well as the complex

event detection. Unstructured events such as images, the behaviour of sensor thingson-

omy tagging by crowd users, as well as its effect on matching are objectives of investi-

gation. The effect of uncertainty propagation into complex water usage patterns is also

an aim of the work in this use case.

5Adapted from deliverable D3.1.1 (http://waternomics.eu/)
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8.6 Reflections on COLLIDER in Use

Putting the proposed approach via the COLLIDER system into practice has revealed a

number of insights as follows:

� In real-world scenarios of small-to-medium scales, events do not fully occupy the

time scale when arriving at the event engine. Thus, throughput does not reflect

the full picture of the event engine’s performance without being complemented by

latency. For this reason, latency has been put into use when building systems for

the use cases presented in this chapter.

� Latency could be within the range of milliseconds to seconds in small-to-medium

scales. That appears to be sufficient in applications with no security or time-critical

requirements.

� Approximate matching by itself results in scored mappings between subscriptions

and events. Nonetheless, normalization of events to the subscriptions they matched

can be very useful for further processing of matched events by other components

in the system where the event engine is deployed.

� Finding a ready-to-use corpus to build a distributional semantics relatedness ser-

vice may be challenging within corporates. Thus, it is worth investigating the

possibilities of indexing structured data available in companies. Another line is

also to develop novel methods to adjust domain-agnostic indices to domain-specific

indices, similarly to what has been presented in this chapter.

� The COLLIDER system does not incorporate thresholds on scored event matching

natively. That is in order to allow propagation of uncertainties for potential further

processing. However, the use of thresholds and mechanisms to allow that can

be important within real-world applications to cut down the number of matched

events and allow users to act upon situations of their interest.

� Tagging has been meant for events mainly in this work which is crucial to improve

their understanding. However, users might also find it more intuitive to tag entities

such as locations or sensors. Thus, extending the thematic model to account for

this can be very beneficial within real-world scenarios.
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� Enrichment is a very valuable functionality within real-world scenarios as users

would typically match events on high level information not included in events,

but rather existent in companies’s data assets such as spreadsheets or databases.

Thus the access to enrichment sources shall be facilitated by, for instance, serving

sources as Linked Data and providing them through appropriate data portals.

� Caching of semantic similarity scores and enrichment data can return significant

performance gains in real-world scenarios due to repetitive patterns of use. Thus,

this factor shall be more investigated and developed in future work.

� Surrounding components of an event engine such as user interfaces for administra-

tion and monitoring, as well as input/output adapters for connecting the engine

with sources such as event buses are very important to facilitate the use of the

overall system by end users.

� Simulation environments, such as the one presented in this chapter, can reduce the

barrier to end users to understand COLLIDER and its approximate paradigm.

� Having an explicit linkage between events and application-specific situations can

allow a quantitative evaluation of the impact of the technology on domain-specific

application targets such as reducing costs or CO2 emissions which are important

measures within real-world use cases.

8.7 Chapter Summary

This chapter shows how the proposed approach can be employed in an Internet of Things

architecture. Events arriving from things, and subscriptions of users are tagged using

thingsonomies, which are then used to enhance semantic matching. The chapter recog-

nizes the components of a working system that realizes the functionalities of the proposed

approach. The resulting system, which is called COLLIDER, is designed through the

three main layers: enricher, single event matcher, and pattern matcher. Additionally,

the components of language, input, and output adapters are considered.

COLLIDER has been exploited within the use case of self-configurable energy manage-

ment systems in the SENSE project. It has been supported with an administration

application, a simulation engine, and an energy domain-specific distributional semantic
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model. Running COLLIDER over the energy management deployment showed a latency

for event matching of 0.09 millisecond/event.

COLLIDER has also been employed within the water management domain in the Eu-

ropean Waternomics project. The use case emphasizes the concept of Linked Water

Dataspace for data management, including events. COLLIDER realizes the event sup-

port service in the architecture. The technical implementation adopts a Lambda archi-

tecture of speed, batch, and serving layers, with COLLIDER being a part of the speed

layer. More emphasis is given to image-based events, crowd tagging, and complex event

processing for water usage and saving scenarios.





Chapter 9

Conclusions and Future Work

“We can only see a short distance ahead, but we

can see plenty there that needs to be done.”

— Alan Turing

9.1 Thesis Summary

A significant shift in the data landscape has been taking place through recent years.

This shift can be described by a set of characteristics: an increasing number of data

sources and users, an increasing heterogeneity, a loose organization of users, a need to

process information in time as it flows, and an incompleteness and uncertainty of data.

The Internet of Things (IoT) is one area where these characteristics are realized as tens

of billions of devices are expected to connect to the Internet in the coming years within

smart cities, smart grids, and cyber-physical systems.

Event processing systems represent a computational paradigm to exchange data items

by distributed and potentially heterogeneous producers and consumers. Thus, interop-

erability is a key requirement for such a paradigm. However, the current approach to

this problem is done through top-down granular agreements represented by ontologies

and taxonomies for semantics. Such approaches are non-scalable and achieving such

agreements may be unfeasible under the characteristics of current and future event and

data environments.

255
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This thesis analysed this problem using a decoupling versus coupling trade-off frame-

work. The principle of decoupling allows event systems to scale as it removes interde-

pendencies between interacting parties. This thesis viewed events as boundary objects,

and event exchange as a model of crossing system boundaries where every event agent is

a system in an overall system of systems. Boundaries are syntactic, semantic, and prag-

matic and events shall cross them all for effective interoperability and communication.

Current event-based systems are decoupled on three dimensions as they do not hold

references to each other (space), they are not active simultaneously (time), and they do

not block each other (synchronization). While this decoupling enables scalability, events

can still cross syntactic boundaries and achieve syntactic interoperability. Nonetheless,

human agents are needed in the loop to cross semantic and pragmatic boundaries and

address interoperability through explicit agreements on event types, attributes, values,

and contexts, introducing coupling into these systems and limiting scalability. I recog-

nized this problem as two new dimensions of coupling: semantic coupling and pragmatic

coupling.

This thesis tackled the trade-off problem between coupling through agreements which

is needed for event-based interoperability, and decoupling needed for scalability. The

thesis formulated two research questions of how this trade-off can be approached on the

semantic and pragmatic dimensions. By analysing the related literature, I found that the

current event processing approaches mainly depend on an exact model of matching. This

can be intolerant towards semantic and contextual loose agreements and heterogeneity in

event environments. Thus, an approximate model has been proposed with probabilities

as the main outcome of event matching and enrichment.

Besides, current event processing use symbolic models of semantics such as ontologies

and taxonomies. These models require granular agreements on concepts and terms

and thus can be coupling and non-scalable. I proposed the use of a statistical vector

space model of semantics, which are based on term co-occurrence in large corpora.

Such models are geometrical and naturally supports similarity and distance so they can

address heterogeneity. This model is accompanied by free tagging, or thingsonomies,

which enhance meaning representation and disambiguation. The agreement on a corpus

and the use of free tagging is a coarse-grained process that represents a loose semantic

coupling.
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Regarding event contexts, the current event processing paradigm interprets events under

a closed world assumption. That is, when an event lacks a piece of information, it is

considered as a negative match. Enrichment is done outside the event engine using

dedicated enrichers which depend on full understanding of the required context and

its fusion within the event, entailing a non-scalable pragmatic coupling. This thesis

proposed a dynamic native event enrichment model which tries to complement events

before they are considered for matching. This process is guided by high-level clauses to

tell the enricher how to access the context. The dynamic enrichment search the context

based on each event and each subscription to decide on what information is used for

enrichment.

The ability of the proposed elements and models to answer the research questions has

been formulated into hypotheses which have been validated empirically. To evaluate the

approximate semantic event matching model, an evaluation event set of 50, 000 events

has been synthesized out of seed event sets from real-world deployments of IoT smart

cities, energy management, building, and relevant datasets. The set has been semanti-

cally expanded to reflect a large-scale heterogeneous event environment. Similarly, a set

of 14, 743 events has been used for evaluating the thematic event matching model, and

20, 000 Linked Data events to evaluate the dynamic native enrichment approach.

The experiments have shown, as summarised in the next section, that the proposed

approach which is based on approximate semantic event matching, free tagging, and

dynamic native event enrichment can loosen agreements on semantics and pragmatics

and thus enable scalability. It can at the same time support interoperability, and efficient

and effective event-based communication.

9.2 Thesis Conclusions

The main conclusion of this thesis is that event exchange which uses subsymbolic statisti-

cal event semantics, free tagging, dynamic native event enrichment, and approximation,

can effectively and efficiently loosen semantic and pragmatic coupling leading to scala-

bility in open, distributed, an heterogeneous environments. It thus outperforms exact

event processing which depends on symbolic semantics and dedicated enrichers, which
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require a significant level of semantic and contextual agreements that can limit scalabil-

ity in large-scale environments. The four elements of subsymbolic event semantics, free

event tagging, dynamic native event enrichment, and approximation provide the answer

to the research questions set out for this thesis as follows:

� Q1. The first research question has been concerned with the case when event

producers and consumers do not have exact, granular, and rigid agreements on

terms used in events and rules and their meanings but rather a form of statistical

loose agreements on the meanings. The question is how to achieve timely event

matching with high true positives and negatives in such a loosely semantically

coupled environment?

� Q2. The second research question has been concerned with the case when event

producers and consumers do not have equal assumptions on the amount of contex-

tual information included in events and how much they are complete with respect

to evaluating some consumers’ rules. The question is how to complement events

with context at high precision and completeness needed to meet consumers expec-

tations in such a loosely contextually coupled environment?

This broad conclusion can be broken down into the conclusions drawn from the analytical

and empirical testing of hypotheses discussed throughout this thesis as follows:

Hypothesis H1: Subsymbolic distributional event semantics decreases the cost needed to

define and maintain rules with respect to the use of terms, and to build and agree on

an event semantic model more than symbolic semantic models; and at the same time it

can achieve timely event matching with high true positives and negatives of magnitudes

comparable to that of event processing based on semantic models. This hypothesis has

been validated through the investigation of the proposed approximate semantic matcher

in Chapter 5 due to the following results:

� Loose semantic coupling: the subsymbolic semantic model requires a coarse-grained

agreement on semantics rather than granular agreements on symbols. That is also

manifested by the result that 100 approximate subscriptions in the proposed model

compensate for 74, 000 exact subscriptions otherwise needed in a symbolic model-

based event engine. The results suggested that the best use cases for the proposed
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model are where small-to-medium degrees of approximation are expected with the

user having at least a partial knowledge of the event semantics, which would be

the case for many IoT applications.

� Efficiency: a magnitude of 1, 000 events/sec of throughput has been achieved by

the proposed matcher.

� Effectiveness: over than 95% F1Measure of matching quality has been achieved by

the matcher.

Hypothesis H2: Free tagging of events and subscriptions does not add to the cost of

defining and maintaining rules with respect to the use of terms, and the cost of building

and agreeing on an event semantic model required by subsymbolic event semantics; and

at the same time it can achieve timely event matching with high true positives and

negatives more than event processing based on non-tagged subsymbolic event semantics.

This hypothesis has been validated through the investigation of the proposed thematic

matching model in Chapter 6 due to the following results:

� Loose semantic coupling: a lightweight amount of tags to describe events, around

2−7, and subscriptions, around 2−15 have been required which does not add any

semantic coupling.

� Efficiency: a magnitude of 800 events/sec of throughput has been achieved by the

thematic matcher. The thematic approach outperforms the non-thematic matcher

for more than 92% of the sub-experiments, with throughput of 202 − 838 and an

average of 320 versus 202 events/sec.

� Effectiveness: 85% F1Measure of matching quality has been achieved by the the-

matic matcher as opposed to 62% for non-thematic processing, in the worst case

of full approximation.

Hypothesis H3: Dynamic native event enrichment decreases the cost needed to define and

maintain the context parts of rules, and to agree on contextual data that is needed in

events more than dedicated enrichers; and at the same time it can achieve high precision

integration of event context with high completeness of events comparable to that of event

processing based on dedicated enrichers. This hypothesis has been validated through the
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investigation of the proposed dynamic native enrichment model in Chapter 7 due to the

following results:

� Loose pragmatic coupling: four high-level clauses were added to the subscriptions

to guide the enricher which does not induce a coupling to contextual sources as

assumed by dedicated enrichers or fusion-based queries which require a granular

specification of the contextual data.

� Loose pragmatic coupling: four high-level clauses were added to the subscriptions

to guide the enricher which does not induce a coupling to contextual sources as

assumed by dedicated enrichers or fusion-based queries which require a granular

specification of the contextual data.

� Efficiency and effectiveness: up to 44% F5Measure of enrichment precision and

completeness have been achieved, 7 times more than other instantiations of the

enrichment model on average.

Hypothesis H4: Approximate event processing can operate in event environments with

low-cost agreements on event semantics and pragmatics more than exact event process-

ing; and at the same time achieve timely event matching with high true positives and neg-

atives, and high precision integration of event context with high completeness of events,

comparable to that of event processing based on exact models. This hypothesis has been

validated through the investigation of the previous models as approximation comple-

ments these models to work properly in loosely coupled environments.

9.3 Contributions

The Core Contributions of this thesis are as follows:

A Problem Analysis Framework based on Communication Models, Crossing

System Boundaries, and Decoupling

A new analytical framework of distributed, open, and heterogeneous event systems has

been used in this thesis. The problem of the effect of semantic and contextual agreements

on scalability has been approached through abstracting event-based systems using a

communication model and a model of crossing system boundaries. For event systems
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to achieve interoperability, they need to address full event-based communication rather

than transmission. The analysis found that this can happen when events are seen as

boundary objects that can cross syntactic, semantic, and pragmatic boundaries. A

trade-off is found between crossing these boundaries and the decoupling that is assumed

on each type of the boundaries. The thesis used this analysis to address this trade-off

through loosening semantic and pragmatic coupling, and embedding more subsymbolic

semantics and contexts into events and subscription rules.

This analysis has been presented in the ACM international Conference on Distributed

Event-Based Systems (DEBS 2015) [47].

An Approximate Semantic Event Matching Model

An effective and efficient approximate event processing model to address semantic cou-

pling in heterogeneous event environments, such as the Internet of Things, has been

proposed. The model employed two main elements: subsymbolic statistical event se-

mantics, and approximation. The model uses a formal framework for semantic event

matching based on an ensemble of semantic, top-1, and top-k matchers. A probabilis-

tic model for uncertainty management has been used where the result of matching is a

probability score that reflects the uncertainty about a particular mapping between an

event and a subscription.

An efficient algorithm to find top-k matchings based on an evolving Pareto frontier in

a vector space has be proposed. The overall time complexity of the proposed algorithm

is proportional to O(n.m.log(m) + n.log(n) + k.n2 + k.log(k)), i.e. polynomial and

approximately linear with k and the number of event’s tuples m while it is polynomial

and approximately quadratic with the number of subscription’s predicates n.

This model has been presented in the ACM Transactions on Internet Technology Journal

(ToIT 2014) [153], and the ACM International Conference on Distributed Event-Based

Systems (DEBS 2012) [155].

Thingsonomies and Thematic Matching

A new model has been proposed for improving the semantic content of events and

subscriptions without entailing further semantic agreements. The model is based on free

tags, or thingsonomies, which are added to events and subscriptions and used by the

approximate matcher to parametrize the semantic model and get better approximations
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of events and subscriptions meaning. An effective and efficient thematic event processing

model based on free tagging and thingsonomies has been developed and proved superior

to its non-thematic counterpart.

This model has been presented in the IEEE Internet Computing (2015) [151], and pre-

sented in the International ACM/IFIP/USENIX Middleware Conference (Middleware

2014) [152].

A Dynamic Native Event Enrichment Model

A new model for tackling event contextual content has been proposed based on altering

the assumption on events from a closed world to an open world. Under the open world

assumption, events are considered incomplete; and a unified and native model of event

enrichment has been proposed to complement events based on subscriptions on the fly in

a loosely pragmatically coupled manner. The model developed a new formalism based

on set algebra and information incompleteness, and an instantiation based on spreading

activation in Linked Data.

This model has been presented in the ACM International Conference on Distributed

Event-Based Systems (DEBS 2013) [154], and the the International Workshop on Se-

mantic Sensor Networks (SSN 2011) at the International Semantic Web Conference

(ISWC 2011)[156].

Additional Contributions of this thesis are as follows:

Literature Review and Gap Analysis

Related work to the problem of interoperability in event processing systems have been

investigated and projected against the newly defined requirements of loose semantic and

pragmatic coupling. This novel analysis revealed a gap in the literature in terms of using

approaches, such as symbolic ontologies, to address interoperability but which can also

add coupling that limits scalability. The analysis showed that current event systems

depend on exact models, top-down symbolic semantics, and dedicated enrichers. That

helped define the directions of the hypotheses and proposed models of this thesis.

Some parts of the related work analysis in have been presented to various degrees in the

IEEE Internet Computing (2015) [151], the International ACM/IFIP/USENIX Middle-

ware Conference (Middleware 2014) [152], the ACM Transactions on Internet Technology
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Journal (ToIT 2014) [153], the ACM International Conference on Distributed Event-

Based Systems (DEBS 2015) [47], DEBS 2013 [154], DEBS 2012 [155], and the the

International Workshop on Semantic Sensor Networks (SSN 2011) at the International

Semantic Web Conference (ISWC 2011)[156].

A Synthetic Evaluation Framework for Event Matching and Enrichment

A new evaluation framework based on synthetic event loads and approximate subscrip-

tions from real world IoT deployments have been proposed. The framework featured a set

of metrics for evaluating event-based systems based on precision, recall, F-measures, and

information completeness. The framework tackled the challenge of large-scale ground

truth generation via starting with a small ground truth and updating it systematically

while expanding events to create a large-scale heterogeneous environment for evaluation.

This framework has been presented in the ACM Transactions on Internet Technology

Journal (ToIT 2014) [153], and the ACM International Conference on Distributed Event-

Based Systems (DEBS 2013) [154], and DEBS 2012 [155].

9.4 Limitations

The research conducted in this thesis has the following main limitations:

� The approximate event matching model is not suitable in critical scenarios such as

security settings or time-critical use cases. The use of semantic relatedness services

instead of exact string comparison is costly from a time performance perspective.

Thus, applications with hard real-time deadlines may not be the ideal applications.

Besides, the relatively lower accuracy of the approximate model compared to an

exact model may incur false negatives, which can have serious implications in

critical infrastructures. It could be better to afford the cost of establishing semantic

and contextual agreements and use an exact event engine rather than leaving

semantic approximation to the matcher.

� The subsymbolic distributional event semantic model is limited to short lexical

compositions of terms such as one or two words, and may not be able to represent

complex syntactic structures which can be the case of natural language events and
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subscriptions. The extension of geometrical semantic models to complex syntax is

still an area of open research called compositional distributional semantics.

� The approach is limited by the limitations of the underlying semantic models. A

semantic model that is more suitable to carry out thematic projection is more

effective for decoding symbols into geometrical representations. Advancement in

the areas of semantic encoding and decoding can push the limits of the proposed

approach, specifically the mechanisms concerned with using tags to parametrize

the vector space semantic model.

� The proposed approach is limited to the cases where contextual data is automati-

cally accessible and discoverable from where the enrichment-enabled engine resides.

Considerations of networking and accessibility issues can limit the extent to which

the enricher can perform its task. Security and privacy considerations can also be

restrictive to what data can be used to enrich an event.

� This study has been limited by practical considerations of the size of the exper-

imental parameter space which is of a high dimensionality in some experiments.

Particularly in the thematic matching model, the size of the parameters space is

(the number of events × the number of subscriptions × the number of event themes

× the number of subscription themes × the sample size). This poses practical con-

straints on conducting the experiments on the available machines, and any future

work shall use more resources to allow experimentation with higher parameters.

9.5 Future Work

The main future directions of this work are as follows:

Approximate Semantic Event Matching

One future work of interest is the extension of the proposed approximate semantic

event matcher to other data models of events and subscriptions beyond attribute-value

models to encapsulate more types of scenarios into the approach. Such an extension

may have impacts on the design of the first line matchers, on the definition of mapping

functions, and on the one-to-one and one-to-many constraints of an event tuple versus

a subscription’s predicate.
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Another prospective area is the matcher extensibility to other operators such as Boolean

and numeric operators, e.g. ! =, <, ≤, >, and ≥, to improve the expressiveness of the

matching language. Besides, an interesting direction is the investigation of paralleliza-

tion, optimization and indexing techniques for approximate uncertain matching which

can reduce the time delay caused by semantic relatedness computation.

Exact Event Matching

A future work is the comprehensive study of the relationship between approximate

matching and exact matching in partially approximate subscriptions and rules. That can

dictate the design of a seamless integration between approximate matching and exact

matching and the development of a matcher that can transparently perform better in

cases where approximate matching or exact matching is preferred. Exact matching

parts of rules may be outsourced into another exact matching-based event engine which

is optimized for such scenarios, with the ability of the matcher to combine efficiently

exact matching results with approximate results to produce the final matching results.

Complex Event Processing

A future work of interest is the study of suitable uncertainty models and uncertainty

reasoning models to support complex event processing over approximate single event

matching and approximate enrichment. Such a direction would need to consider the

statistical monotonicity in single event matching and proper methods to propagate top-k

probability spaces into pattern matching. It also requires the study of efficient reasoning

models including sampling over uncertain matching and other pattern-level approxima-

tion models.

Thingsonomies and Thematic Matching

The thematic event matching model is generic using the idea of free tagging. It can be

developed by considering unstructured models of events such as images, video streams,

and voice events. The interplay between tagging and unstructured events is an area of

future research where models to use tags to improve matching over such events shall be

investigated.
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Dynamic Native Event Enrichment

Another area for future research includes the instantiation of dynamic native enrich-

ment for non-Linked Data events and background knowledge and the study of the effect

of such other instantiations on the model. That can help improve the applicability of

the model into various scenarios, and help develop the model and enrichment clauses

according to the investigation of different instantiations. Besides, the dynamic native

event enrichment model could be developed to extend into other dimensions of incom-

pleteness such as temporal segmentation. Caching and its effect on the performance of

enrichment are also an area of interest for future studies regarding event enrichment.

Semantic Models

The investigation of the effect of various subsymbolic and non-symbolic event semantic

models is an area for future research. Such a direction requires the use of latent semantic

indexing, as well as models based on neural networks for semantics. The effect of such

models on the efficiency and effectiveness of the matcher shall be considered along with

the suitability of these models for parallelization, optimization, and interpretability.

Evaluation Framework

Future work shall consider the experimentation of the proposed models with larger pa-

rameters to investigate more dimensions of the performance. Such a direction requires

the consideration of the use of parallelization and powerful computing resources such as

cloud-based evaluation to enable experimentation with very large parameters. Evalua-

tion can also extend synthetic methods with real-world crowd behaviour with respect to

using tags and thingsonomies to annotate events and subscriptions.
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[148] André B. Bondi. Characteristics of scalability and their impact on performance.

In Proceedings of the 2Nd International Workshop on Software and Performance,

WOSP ’00, pages 195–203, New York, NY, USA, 2000. ACM. ISBN 1-58113-195-

X. doi: 10.1145/350391.350432. URL http://doi.acm.org/10.1145/350391.

350432.

[149] Chi Zhang, Arvind Krishnamurthy, Randolph Y. Wang, and Jaswinder Pal Singh.

Combining flexibility and scalability in a peer-to-peer publish/subscribe system. In

Proceedings of the ACM/IFIP/USENIX 2005 International Conference on Middle-

ware, Middleware ’05, pages 102–123, New York, NY, USA, 2005. Springer-Verlag

New York, Inc. URL http://dl.acm.org/citation.cfm?id=1515890.1515896.

[150] Ayelet Biger, Opher Etzion, and Yuri Rabinovich. Stratified implementation of

event processing network. Fast abstract on DEBS, 2008.

[151] Souleiman Hasan and Edward Curry. Thingsonomy: Tackling variety in internet

of things events. Internet Computing, IEEE, 19(2):10–18, 2015.

[152] Souleiman Hasan and Edward Curry. Thematic event processing. In Proceedings

of the 15th International Middleware Conference, pages 109–120. ACM, 2014.

[153] Souleiman Hasan and Edward Curry. Approximate semantic matching of events

for the internet of things. ACM Trans. Internet Technol., 14(1):2:1–2:23, August

2014. ISSN 1533-5399. doi: 10.1145/2633684. URL http://doi.acm.org/10.

1145/2633684.

[154] Souleiman Hasan, Sean O’Riain, and Edward Curry. Towards unified and native

enrichment in event processing systems. In Proc. The 7th ACM international

http://doi.acm.org/10.1145/350391.350432
http://doi.acm.org/10.1145/350391.350432
http://dl.acm.org/citation.cfm?id=1515890.1515896
http://doi.acm.org/10.1145/2633684
http://doi.acm.org/10.1145/2633684


Bibliography 285

conference on Distributed event-based systems, DEBS ’13, pages 171–182, 2013.

ISBN 978-1-4503-1758-0.

[155] Souleiman Hasan, Sean O’Riain, and Edward Curry. Approximate semantic

matching of heterogeneous events. In Proc. The 6th ACM International Confer-

ence on Distributed Event-Based Systems, DEBS ’12, pages 252–263, 2012. ISBN

978-1-4503-1315-5.

[156] Souleiman Hasan, Edward Curry, Mauricio Banduk, and Seán O’Riain. Toward

situation awareness for the semantic sensor web: Complex event processing with

dynamic linked data enrichment. SSN, 839:69–81, 2011.

[157] Hannes Obweger, Josef Schiefer, Martin Suntinger, Peter Kepplinger, and Szabolcs

Rozsnyai. User-oriented rule management for event-based applications. In Proceed-

ings of the 5th ACM international conference on Distributed event-based system,

pages 39–48. ACM, 2011.

[158] Antonio Carzaniga. Architectures for an event notification service scalable to wide-

area networks. PhD thesis, Politecnico di Milano, 1998.

[159] Patrick Th. Eugster and Rachid Guerraoui. Content-based publish/subscribe with

structural reflection. In Proceedings of the 6th Conference on USENIX Conference

on Object-Oriented Technologies and Systems - Volume 6, COOTS’01, pages 10–

10, Berkeley, CA, USA, 2001. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=1268241.1268251.

[160] Gero Muhl, Ludger Fiege, Felix C Gartner, and Alejandro Buchmann. Evalu-

ating advanced routing algorithms for content-based publish/subscribe systems.

In Modeling, Analysis and Simulation of Computer and Telecommunications Sys-

tems, 2002. MASCOTS 2002. Proceedings. 10th IEEE International Symposium

on, pages 167–176. IEEE, 2002.

[161] Ludger Fiege. Visibility in Event-Based Systems. PhD thesis, TU Darmstadt,

2005.

[162] Dan Connolly, Frank Van Harmelen, Ian Horrocks, Deborah L McGuinness, Pe-

ter F Patel-Schneider, and Lynn Andrea Stein. Daml+ oil (march 2001) reference

description. 2001.

http://dl.acm.org/citation.cfm?id=1268241.1268251
http://dl.acm.org/citation.cfm?id=1268241.1268251


Bibliography 286

[163] Bruno T Messmer and Horst Bunke. Efficient subgraph isomorphism detection:

a decomposition approach. Knowledge and Data Engineering, IEEE Transactions

on, 12(2):307–323, 2000.

[164] Segev Wasserkrug, Avigdor Gal, Opher Etzion, and Yulia Turchin. Complex event

processing over uncertain data. In Proc. DEBS ’08, pages 253–264, 2008. ISBN

978-1-60558-090-6.

[165] Shivnath Babu, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani. Adap-

tive caching for continuous queries. In Data Engineering, 2005. ICDE 2005. Pro-

ceedings. 21st International Conference on, pages 118–129. IEEE, 2005.

[166] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Grossniklaus.

An execution environment for c-sparql queries. In Proceedings of the 13th Interna-

tional Conference on Extending Database Technology, EDBT ’10, pages 441–452,

New York, NY, USA, 2010. ACM. ISBN 978-1-60558-945-9. doi: 10.1145/1739041.

1739095. URL http://doi.acm.org/10.1145/1739041.1739095.

[167] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic,

and Rudi Studer. Etalis: Rule-based reasoning in event processing. In Reasoning

in Event-Based Distributed Systems, pages 99–124. Springer, 2011.

[168] Bruce Snyder, Dejan Bosnanac, and Rob Davies. ActiveMQ in action. Manning,

2011.

[169] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic schema

matching. the VLDB Journal, 10(4):334–350, 2001.

[170] David A Maluf and Peter B Tran. Netmark: A schema-less extension for rela-

tional databases for managing semi-structured data dynamically. In Foundations

of Intelligent Systems, pages 231–241. Springer, 2003.

[171] Alon Y Halevy, Naveen Ashish, Dina Bitton, Michael Carey, Denise Draper, Jeff

Pollock, Arnon Rosenthal, and Vishal Sikka. Enterprise information integration:

successes, challenges and controversies. In Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, pages 778–787. ACM, 2005.

http://doi.acm.org/10.1145/1739041.1739095


Bibliography 287

[172] Avigdor Gal. Managing uncertainty in schema matching with top-k schema map-

pings. In Stefano Spaccapietra, Karl Aberer, and Philippe Cudré-Mauroux, edi-
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[209] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael

Stonebraker. Load shedding in a data stream manager. In Proceedings of the

29th International Conference on Very Large Data Bases - Volume 29, VLDB

’03, pages 309–320. VLDB Endowment, 2003. ISBN 0-12-722442-4. URL http:

//dl.acm.org/citation.cfm?id=1315451.1315479.

[210] Luis Gravano, Panagiotis G Ipeirotis, Hosagrahar Visvesvaraya Jagadish, Nick

Koudas, Shanmugauelayut Muthukrishnan, Divesh Srivastava, et al. Approximate

string joins in a database (almost) for free. In VLDB, volume 1, pages 491–500,

2001.

[211] Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of schema match-

ing evaluations. In Web, Web-Services, and Database Systems, pages 221–237.

Springer, 2003.

[212] Françoise Fabret, François Llirbat, Joao Pereira, I Rocquencourt, and Dennis

Shasha. Efficient matching for content-based publish/subscribe systems. In Proc.

CoopIS, 2000.

[213] Z Liu, S Parthasarathy, A Ranganathan, and H Yang. Near-optimal algorithms

for shared filter evaluation in data stream systems. In Proceedings of the 2008

ACM SIGMOD international conference on Management of data, pages 133–146.

ACM, 2008.

[214] Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis. On

evaluating schema matching and mapping. In Schema matching and mapping,

pages 253–291. Springer, 2011.

http://doi.acm.org/10.1145/304181.304207
http://dl.acm.org/citation.cfm?id=1315451.1315479
http://dl.acm.org/citation.cfm?id=1315451.1315479


Bibliography 291

[215] Yoonkyong Lee, Mayssam Sayyadian, AnHai Doan, and Arnon S. Rosenthal.

etuner: Tuning schema matching software using synthetic scenarios. The

VLDB Journal, 16(1):97–122, January 2007. ISSN 1066-8888. doi: 10.1007/

s00778-006-0024-z. URL http://dx.doi.org/10.1007/s00778-006-0024-z.

[216] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. STBenchmark: towards

a benchmark for mapping systems. Proceedings of the VLDB Endowment, 1(1):

230–244, 2008.

[217] Merriam-Webster’s. Merriam-Webster’s Collegiate® Thesaurus, 2012. URL

http://www.dictionaryapi.com/products/api-collegiate-thesaurus.htm.

[218] Edward Curry, Souleiman Hasan, and Sean O’Riain. Enterprise energy manage-

ment using a linked dataspace for energy intelligence. In Proc. SustainIT, pages

1–6. IEEE, 2012.

[219] Wassim Derguech, Souleiman Hasan, Sami Bhiri, and Edward Curry. Organizing

Capabilities Using Formal Concept Analysis. In Enabling Technologies: Infras-

tructure for Collaborative Enterprises (WETICE), pages 260–265, 2013.

[220] Wassim Derguech, Sami Bhiri, Souleiman Hasan, and Edward Curry. Using For-

mal Concept Analysis for Organizing and Discovering Sensor Capabilities. The

Computer Journal, 2014. doi: 10.1093/comjnl/bxu088. URL http://comjnl.

oxfordjournals.org/content/early/2014/09/11/comjnl.bxu088.abstract.

[221] Yahoo! Yahoo! Directory: Automotive - Makes and Models, 2013. URL http:

//dir.yahoo.com/recreation/automotive/makes_and_models/.

[222] Kyle Anderson, Adrian Ocneanu, Diego Benitez, Derrick Carlson, Anthony Rowe,

and Mario Berges. BLUED: a fully labeled public dataset for Event-Based Non-

Intrusive load monitoring research. In Proc. SustKDD, August 2012.

[223] Richard Cyganiak. Rooms in the DERI building, 2013. URL http://lab.

linkeddata.deri.ie/2010/deri-rooms.

[224] George A Miller. WordNet: a lexical database for English. Commun. ACM, 38

(11):39–41, November 1995. ISSN 0001-0782.

[225] John G Breslin, Alexandre Passant, and Stefan Decker. Social tagging. In The

social semantic web, pages 137–158. Springer, 2009.

http://dx.doi.org/10.1007/s00778-006-0024-z
http://www.dictionaryapi.com/products/api-collegiate-thesaurus.htm
http://comjnl.oxfordjournals.org/content/early/2014/09/11/comjnl.bxu088.abstract
http://comjnl.oxfordjournals.org/content/early/2014/09/11/comjnl.bxu088.abstract
http://dir.yahoo.com/recreation/automotive/makes_and_models/
http://dir.yahoo.com/recreation/automotive/makes_and_models/
http://lab.linkeddata.deri.ie/2010/deri-rooms
http://lab.linkeddata.deri.ie/2010/deri-rooms


Bibliography 292

[226] John G Breslin, Alexandre Passant, and Stefan Decker. Introduction to the social

web (web 2.0, social media, social software). In The Social Semantic Web, pages

21–44. Springer, 2009.

[227] Shengliang Xu, Shenghua Bao, Ben Fei, Zhong Su, and Yong Yu. Exploring

folksonomy for personalized search. In Proceedings of the 31st Annual International

ACM SIGIR Conference, pages 155–162. ACM, 2008.

[228] Roberto Navigli. A quick tour of word sense disambiguation, induction and related

approaches. In SOFSEM 2012: Theory and practice of computer science, pages

115–129. Springer, 2012.

[229] Jeff Z Pan, Stuart Taylor, and Edward Thomas. Reducing ambiguity in tagging

systems with folksonomy search expansion. In The Semantic Web: Research and

Applications, pages 669–683. Springer, 2009.

[230] Jose Antollini, Mario Antollini, Pablo Guerrero, and Mariano Cilia. Extending

rebeca to support concept-based addressing. In Proceedings of the Argentinean

Symposium on Information Systems (ASIS’04), 2004.

[231] Wenfei Fan and Floris Geerts. Capturing missing tuples and missing values. In

Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 169–178. ACM, 2010.

[232] Alon Y Levy. Obtaining complete answers from incomplete databases. In VLDB,

volume 96, pages 402–412. Citeseer, 1996.

[233] Simon Razniewski and Werner Nutt. Checking query completeness over incomplete

data. In Proceedings of the 4th International Workshop on Logic in Databases,

pages 32–32. ACM, 2011.

[234] Amir Parssian, Sumit Sarkar, and Varghese S Jacob. Assessing information quality

for the composite relational operation join. In IQ, pages 225–237, 2002.

[235] Edward Curry. Message-oriented middleware. Middleware for communications,

pages 1–28, 2004.

[236] Wenfei Fan and Floris Geerts. Relative information completeness. ACM Trans.

Database Syst., 35(4):27:1–27:44, October 2010. ISSN 0362-5915. doi: 10.1145/

1862919.1862924. URL http://doi.acm.org/10.1145/1862919.1862924.

http://doi.acm.org/10.1145/1862919.1862924


Bibliography 293

[237] Edgar F Codd. Extending the database relational model to capture more meaning.

ACM Transactions on Database Systems (TODS), 4(4):397–434, 1979.
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