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Abstract

Using classical density functional theory (DFT) the liquid crystal (LC)-mediated interaction

between a cylindrical nanoparticle and a structured substrate is studied. The surface is structured

by cutting a rectangular groove into the surface. In the absence of the nanoparticle, a range of

defect structures are formed in the vicinity of the groove. By varying the groove width and depth

the LC-mediated interaction changes from repulsive to attractive. This interaction is strongest

when the groove is of comparable size to the nanoparticle. For narrow grooves the nanoparticle is

attracted to the centre of the groove, while for wider grooves there is a free energy minimum near

the side walls.

PACS numbers: 61.20.Gy,61.30.Cz,61.30.Jf
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I. INTRODUCTION

The behaviour of dispersions of nm-scale particles (nanoparticles) in both simple and

complex fluids is important in many areas of science and technology1. The reduced di-

mensions of such particles result in properties that dramatically diverge from those of bulk

materials. Advances in the synthesis of such nanometre sized particles have opened up a

range of possibilities in materials science. One key issue is the formation of ordered struc-

tures from these nanoparticles2. For colloidal particles, crystallization may be induced at

solid substrates, with a range of crystal structures being observed. More complex structures

may be formed at suitably templated surfaces3. For nanoparticles, similar techniques may

be applied. However, due to their small size these are greatly complicated due to solvent

effects.

Nanoparticles dispersed in nematic liquid crystals (LCs) are of much interest. The di-

rector field around a solid particle immersed in a nematic becomes distorted, with a range

of defect structures, depending on particle size and shape, and anchoring conditions at the

particle surface. These topological defects give rise to long-range interactions between im-

mersed nanoparticles, which leads to a range of structures, including chains4,5, clusters6, and

periodic arrays7. As well as leading to the formation of such ordered structures, the fluid-

ity of LCs allows the manipulation of immersed particles under external fields or bounding

surfaces. This is being exploited in order to constructed ordered arrays of nanoparticles and

related particles such as carbon nanotubes8–10. Dispersions of nm-scale particles, such as

synthetic nanoparticles11,12, carbon nanotubes13, and clay platelets14 are being investigated

for use in optoelectronic devices. Carbon nantubes in discotic LC have also been investi-

gated for applications in organic electronics15 and carbon-nanotbe-lyotropic LC suspensions

have been investigated, both as a means of nanotube alignment and also for applications in

biotechnology16.

In addition to many experimental studies17, nanoparticles in LCs have been the sub-

ject of a number of theoretical studies using a variety of approaches. Molecular simulation

has been used to study LC structure around single nanoparticles18–21 and interactions be-

tween small numbers of them22–24, but for larger systems becomes prohibitively expensive.

Phenomenological Landau-de Gennes (LdG) theory has been used to study a range of LC-

nanoparticle systems25–31. However it is incapable of accounting for spatial variation in the
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LC density, which for nanoparticles of comparable size to LC molecules may be of consider-

able importance. Classical Density Functional Theory (DFT) incorporates density variation

and is computationally less expensive than simulations, and has been recently applied to

LC-nanoparticles dispersions32–34 by us. Closely related to DFT is Integral Equation Theory

(IET), which has also been recently applied to spherical nanoparticles in LCs35–37, studying

the colloid induced structure and interactions between them. However, IET does not pro-

duce spontaneously ordered phases, so these calculations were performed using (arbitrarily)

weak aligning fields.

In many instances interactions between nanoparticles and solid substrates in LCs is im-

portant. As well as being used to form ordered nanoparticle arrays, this is of interest in

LC biosensors38,39. Recent work, using either LdG27,40,41 or DFT33 have shown a repulsive

LC-mediated interaction between a nanocylinder and a planar substrate. This arises due

to an increase in elastic energy due to director deformations and excluded volume effects.

LdG theory has also been applied to nanoparticles near substrates with cavities31,40. For

a range of cavity sizes the LC-mediated interaction changes from repulsive to attractive

with the strength of this interaction varying with cavity size, with the strongest attraction

found when the cavity size was comparable to the size of the nanoparticle. The interac-

tion strength was also found to be dependent on the cavity shape31. However the neglect

of density variation means that the particle sizes studied are significantly larger than the

molecular dimensions. By using DFT we are able to study nm-sized particles, in regimes

that are difficult to access experimentally.

II. THEORY

The DFT methodology used in this paper is fully outlined in previous work32–34 and will

only be briefly described here. The liquid crystal solvent is modelled as a fluid of hard

ellipsoids of aspect ratio e = a/b = 15 (in the rest of this paper b = 1 will be taken to be

the unit of length). The grand potential of such a system may be written as42

βΩ [ρ(r,u)] =

∫
drdu ρ(r,u) {log ρ(r,u)− 1}+ βFex [ρ(r,u)]

+ β

∫
drdu

(
Vext(r,u)− µ

)
ρ(r,u), (1)
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where ρ(r,u) is the position- and orientation-dependent single particle density, Vext(r,u)

is the external potential, µ is the chemical potential, and β = 1/kBT . The first term in

eqn. (1) is the (exact) ideal free energy (FE). The second is the excess FE, which is generally

unknown. Here we employ the Onsager approximation43

βFex [ρ(r,u)] = −1

2

∫
dr1dr2du1du2 f(r12,u1,u2)ρ(r1,u1)ρ(r2,u2) , (2)

where r12 = r1 − r2 and f(r12,u1,u2) = exp
{
−βV (r12,u1,u2)

}
− 1 is the Mayer function.

V (r12,u1,u2) is the intermolecular potential, where V = ∞ (f = −1) when two molecules

overlap and V = 0 (f = 0) otherwise. Although eqn. (2) is only exact for infinite elongations,

previous studies44 have shown that there is good agreement between Onsager theory and

simulation for the elongation used in this study (e = 15). While this aspect ratio is larger

than those of common LC molecules (which have typically e ≈ 4 − 8), the behaviour of

such molecules is expected to be qualitatively similar. More sophisticated DFTs45–47 are

necessary to study these aspect ratios. As the intermolecular potential is purely repulsive,

the phase behaviour is solely determined by the chemical potential. In this work βµ = 1.4,

well inside the nematic phase (βµ ≈ 1.32 for the model and parameters used in this work).

The external potential, representing a single cylindrical nanoparticle of radius Rc orien-

tated along the y axis, is given by

Vext(r,u) = Vext(s,u) =


V0
[
tanh(b/w)

]
s−Rc < −b

1
2
V0

[
tanh

(Rc − s
w

)
+ tanh(b/w)

]
|s−Rc| < b

0 s−Rc > b

(3)

where s = (x, z), s = |s|, V0 = 50kBT , and w = b/5. This represents a sharply vary-

ing repulsive potential acting on the ellipsoid centres of mass; it excludes the molecules

from the cylinder and gives rise to homeotropic (normal) anchoring at the surface. The

nanoparticle radius was Rc = 15b (one molecular length). The relative sizes of the solvent

molecules and nanoparticle are similar to those of typical LC (a ≈ 1.8 nm) and typical

inorganic nanoparticles17 or proteins48 (3-20 nm). The substrate is similarly represented by

a step function acting on the centres of the solvent molecules, which likewise gives rise to

homeotropic alignment at the surface. Structure is introduced into the substrate by cutting

a rectangular groove, with width w and depth d, as shown in Fig. 1.
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FIG. 1: Geometry of calculation

Following previous work32–34 the angularly dependent functions are expanded in a set of

spherical harmonics, e.g. ρ(r,u) =
∑

`,m ρ`m(r)Y ∗`m(u), log ρ(r,u) =
∑

`,m ρ̃`m(r)Y`m(u),

etc (note the complex conjugate in the density expansion). Similarly the Mayer function is

expanded in rotational invariants. Inserting these expressions into eqn (1) and integrating

over angles and the y direction gives the grand potential (per unit length along the y direction

denoted as L)

βΩ[ρ(r,u)]

L
=

∫
ds
∑
`,m

ρ`m(s)
(
ρ̃`m(s)−

√
4π(1 + βµ)δl0 + βV`m(s)

)
+

∫
ds1ds2

∑
`1,m1
`2,m2

L`1m1`2m2(s12)ρ`1m1(s1)ρ`2m2(s2) . (4)

The quantities L`1m1`2m2(s12) come from integrating the Mayer function and are the spherical

harmonic coefficients of the excluded length (in the y direction) of two molecules with a

separation vector s12 = s1 − s2 in the xz-plane, treated as a function of the molecular

orientations. As the last term in eqn (4) is a convolution, it is most conveniently evaluated

in reciprocal space. If ρlm(k) is the two-dimensional Fourier transform of ρlm(s) then this
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term may be written ∑
k

∑
`1,m1
`2,m2

L`1m1`2m2(k)ρ`1m1(k)ρ`2m2(k) (5)

where L`1m1`2m2(k) is the Fourier transform of L`1m1`2m2(s12).

In order to find the equilibrium density, the functions are tabulated on a regular grid in

the xz plane; the grid spacing is δx = δz = 0.5b, the molecular length corresponding to 30

grid points. The grand potential is then minimised with respect to the ρ̃`m(s) coefficients

at each grid point using the conjugate gradient method49. When required, the coefficients

ρ`m(s) are calculated from the spherical harmonics expansions, with angular integrations

performed using Lebedev quadrature50,51.

Once the equilibrium density coefficients ρ`m(s) have been determined, the number den-

sity ρ(s) and order tensor Qαβ(s) may be found from

ρ(s) =

∫
du ρ(s,u) =

√
4πρ00(s) (6)

Qαβ(s) = 3
2

∫
du ρ(s,u)uα(s)uβ(s)− 1

2
δαβ, α, β = x, y, z . (7)

The spatially varying order parameter S(s) is given by the largest eigenvalue of Qαβ(s) and

the director n(s) by the eigenvector associated with S(s). The LC mediated force (per unit

length) on the nanoparticle may be found by differentiating the grand potential with respect

to the nanoparticle coordinates52,53. Explicitly the the force is given by34

βF

L
=

∫
ds
√

4πw−1 sech−2
(
Rc − |s− Sc|

w

)
ρ00(s)

(
s− Sc

)
(8)

where the integration is over the region |s− Sc| < Rc − b.

III. RESULTS

A. Liquid crystals adsorbed at structured substrate

Shown in Fig. 2 are density and order parameter maps for nematic solvent in the absence

of the cylinder. For shallow grooves (Fig. 2(a)) the director remains largely uniform in

the vicinity of the surface. On increasing groove depth two small defects appear, due to

competition between ordering at the groove sides and bottom. For the deepest, narrowest

groove (d = 30b, w = 30) the LC inside the groove is aligned along the x-axis, due to
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homeotropic alignment at the groove sides (Fig. 2(c)). This leads to a complex structure,

with a large defect at the mouth of the groove and a second extended defect at the bottom

of the groove. When the groove width is increased, this defect structure disappears, begin

replaced by two small defects near the groove sides. The defect structures for the d = 15b,

w = 30b and d = 30b, w = 60b walls are similar to those found using LdG theory for grooves

of the same aspect ratio31.

B. Variation of free energy with nanoparticle-substrate separation

The variation of Ω with zc for different cell depths (for fixed width w = 30b) is shown in

Fig. 3. For the flat planar substrate the interaction is short-ranged and largely repulsive33,

due to a combination of elastic and excluded volume interactions. The potential barrier

and minimum near the surface arises due to overlap between the high density regions at

the surface and around the nanoparticle. Similar behaviour is seen in simulation27, but

it is in contrast to predictions of LdG theory27,40, due to the neglect of spatial density

variation. Ω(zc) for the d = 5b wall shows similar behaviour. On increasing groove depth

the nanocylinder-substrate interaction becomes attractive and increases in range. For groove

depths up to d = 15b the potential minimum, with is typically 2−3b from the groove bottom

increases with d. For deeper grooves the potential minimum remains near the mouth of the

groove zc ≈ 3b (roughly the same position as the d = 15b groove). This minimum however,

is much shallower than for smaller d. When the cylinder moves inside the groove Ω(zc)

increases with a barrier at zc ≈ −7.5b and a shallow minimum at zc ≈ −13b.

The variation in Ω(zc) with cylinder separation for different groove widths in shown in

Fig. 4. On increasing w for the d = 15b groove the potential well first deepens then becomes

shallower, with the deepest minimum for w = 35b. As the groove widens a potential barrier

develops at zc ≈ 10b. For the d = 30b groove there is an abrupt change in βΩ(zc) on

increasing w from 30b to 31b, with the potential minimum at zc ≈ −13b becoming deeper

than the minimum at the groove mouth. The position of this (now) secondary minimum

moves to lower zc. For this and wider grooves the global minimum is inside the groove. As

for the d = 15b groove the potential minimum is deepest for w = 35b, with the secondary

minimum being absent for 35b ≤ w ≤ 45b grooves. Shown in Fig. 5 is the potential minimum

and minimum zc as a function of w. For both d = 15b and d = 30b the lowest free energy is
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(d)

(d)

(a)

(b)

(c)

FIG. 2: (Colour online) Density (left) and order parameter (right) maps of LC solvent in contact

with surface (in absence of cylinder), for groove dimensions (a) d = 5b, w = 30b, (b) d = 15b,

w = 30b, (c) d = 30b, w = 30b, and (d) d = 30b, w = 60b.

found for the w = 35b groove, with rapid variation in Ωmin around this. For a nanoparticle

in the centre of a groove with large w the influence of the side walls becomes increasingly

small and the interaction becomes that of a nanoparticle and flat substrate. This has been

observed using LdG theory for spherical nanoparticles of spherical nanoparticles (radius 10
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FIG. 3: (Colour online) Grand potential (per unit length) against separation (zc) for wells of width

w = 30b and depths d = 0b (solid line, black), d = 5b (dotted line, red), d = 10b (dashed line,

green), d = 15b (dot-dashed line, blue), and d = 30 (double-dot-dashed line).

nm) in much larger channels31. With the exception of the narrowest groove, the free energy

minimum position lies inside the groove for d = 30b.

The cylinder-substrate potential may be understood through changes in the LC-structure

with cylinder separation. Shown in Fig. 6 are density and order parameters maps of the LC

around cylinders in their potential minima. When the the cylinder is located at the mouth

of the d = 30b, w = 30b groove (zc = 50b) (Fig. 6a) the large defect found for the surface

without cylinder (Fig. 2d) is absent. The radial anchoring at the surface of the cylinder

causes the fluid in the groove to lie along the z direction. Two small defects appear near

the sides of the groove due to the mismatch between homeotropic anchoring at the groove

sides and the anchoring at the bottom of the groove. When the cylinder moves deeper into

the groove (zc = 33b) the structure is simpler, with two defects in the cusps between the

cylinder and groove sides. When w is increased to 35b bridges of dense fluid appear between

the cylinder and groove walls and the defects move away from the cylinder. These regions

of high density and order lead to a decrease in the free energy. As w is increased further

the bridges become more diffuse and have disappeared for w = 60b. The defects remain

attached to the sharp corners of the groove31 and become larger.

9



0 15 30 45 60 75 90

z
c
 / b

-20

-10

0

10

β
Ω

 (
z

c
 ) 

/ 
L

-15 0 15 30 45 60 75

z
c
 / b

-30

-15

0

15

β
Ω

 (
z

c
 ) 

/ 
L

0 5 10 15
-20

-15

-10

-5

0

-15 -10 -5 0
-40

-30

-20

-10

0

(a)

(b)

FIG. 4: (Colour online) Grand potential (per unit length) against zc for wells of depth (a) d = 15b

and (b) d = 30b. In both cases w = 30b is denoted by solid line (black), w = 31b dotted line

(red), w = 35b dashed line (green), w = 40b dot-dashed line (blue), w = 45b double-dot-dashed

line (magenta), and w = 60b dot-double-dashed line (orange). Insets show details near free energy

minima.

C. Variation of free energy within groove

In the previous calculations the cylinder was held equidistant from the groove walls. In

Fig. 7 the variation in the grand potential as the cylinder is moved along the groove bottom

(zc = 0 for the d = 15b and zc = −15b for the d = 30b grooves). For narrow grooves

(d ≤ 40b) βΩ(xc) has a minimum in the groove centre, while for wider grooves βΩ(xc) has

a maximum in the centre with minima near the groove walls. Such attraction into corners

of wide wells has been observed experimentally in hard sphere colloids54.
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FIG. 5: (Colour online) Minimum grand potential (left) and minimum position (right) against 1/w

for d = 15b (circles, online black) and d = 30b (squares, online red) grooves. The 1/w = 0 point

corresponds to a flat surface. The lines are a guide to the eye.

D. Variation of free energy with lateral displacement

The variation of Ω and force with lateral displacement, xc, (for fixed zc = 15b) is shown

in Fig. 8. Figure 9 show the LC-structure around the nanoparticle and different grooves

with xc 6= 0. Far from the groove Ω(xc) is constant. For wider grooves there is a free energy

barrier on decreasing xc (Fig. 8(a)). This is caused by the formation of a large defect near

the groove side (Fig. 9(a)). A similar barrier was also seen in LdG theory calculations40.
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(a)

(b)

(c)

(d)

(e)

FIG. 6: (Colour online) Density (left) and order parameter (right) maps for (a) d = 30b, w = 30b,

zc = 50b, (b) d = 30b, w = 30b, zc = 32b, (c) d = 30b, w = 35b, zc = 33b, (d) d = 30b, w = 45b,

zc = 33b, and (e) d = 30b, w = 60b, zc = 33b.
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FIG. 7: (Colour online) Variation of grand potential for nanoparticle with zc = 0b for groove depth

(a) d = 15b and (b) d = 30b. For both graphs widths w = 40b (circles, online black), w = 45b

(squares, online red), and w = 60b (diamonds, online red).

In this region rapid variation in the lateral force is also seen (Fig. 8(b)). For narrower

grooves this barrier is much smaller for d = 15b and completely absent for d = 30b. The

barrier disappears for this groove due the relief of the director frustration at the mouth of

the groove (Fig. 9(c)).

On decreasing xc Ω(xc) drops rapidly. For xc ≈ −22.5b (w = 60b) or xc ≈ −7.5b

(w = 30b) there is a potential minimum due to the formation of a high density bridge

between the nanoparticle and groove corner (Fig. 9(b)). For the w = 30b grooves this is the
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minimum energy position (βΩ(xc = −7.5b)/L− βΩ(xc = 0)/L ≈ 1). For the wider grooves

this is a very shallow local minimum, with the energy being lowest when the nanoparticle

is over the centre of the groove. The z-component of the force (Fig. 8(c)) is large and

positive for large lateral displacements, due to the repulsion between a nanoparticle and

a planar substrate. When the centre of the nanoparticle moves past the groove wall, Fz

rapidly decreases, with there being a weak attraction towards the groove bottom.
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FIG. 8: (Colour online) (a) Variation of grand potential with lateral displacement for groove depth

d = 15b (left) and d = 30b (right). In both cases width w = 30b (circles, black) and w = 60b

(squares red).(b) (b) x-component of force for groove depth d = 15b (left) and d = 30b (right).

Symbols as in (a). (c) z-component of force for d = 15b (left) and d = 30b (right). Symbols as in

(a). In all graphs the position of the groove edge is denoted by the dotted vertical lines (online

w = 30b groove red, w = 60b groove green).
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(a)

(b)

(c)

FIG. 9: (Colour online) (a) Density (left) and order parameter (right) maps for nanoparticle

coordinates xc = −39b, zc = 15b for groove dimensions d = 30b and w = 60b. (b) Density (left)

and order parameter (right) maps for nanoparticle coordinates xc = −30b, zc = 15b for d = 30b,

w = 30b groove. (c) as (a) for xc = −18b

IV. CONCLUSIONS

Using classical DFT the interaction between a cylindrical nanoparticle and a structured

substrate has been studied. In the absence of a nanoparticle competition between anchoring

at the groove sides and bottom sets up a complex defect structure for a range of groove

widths and depths.

The nanoparticle-substrate interaction was found to be sensitive to changes in the sub-

strate geometry. For a flat substrate the interaction is short-ranged and repulsive, due to
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distortions in the LC director field33. By cutting a rectangular groove in the substrate the

interaction becomes attractive and longer ranged. This interaction is strongest for a groove

width slightly larger than the nanoparticle diameter. The depth of the potential well varies

rapidly with groove width around this minimal value. For narrow grooves the equilibrium

position for the nanoparticle is in the groove centre, while for wider grooves the nanoparticle

is attracted towards the groove walls. The variation with free energy with lateral displace-

ment also depends on substrate geometry. For wider substrates a potential barrier appears

on decreasing lateral displacement, due to formation of a defect near the groove corner. For

narrower grooves this barrier is smaller and was absent for the d = 30b, w = 30b grooves as

the presence of the nanoparticle at the side of the groove relieves the director distortion at

the mouth of the groove. Ω(xc) drops rapidly due elimination of this defect and formation

of a high density bridge between the groove corner and nanoparticle. For wider grooves this

is a local minimum, with Ω(xc) being lowest when xc = 0, while for narrower grooves there

is a weak potential maximum at xc = 0.

The size-selectivity of the nanoparticle-substrate interaction is reminiscent of ‘key-lock’

mechanisms seen in biological systems. As the interaction strength varies rapidly with

changes in groove geometry, such structured substrates may be used for sorting particles and

for the nucleation of nanoparticle crystals. As well as depending on the groove geometry

size, the interaction will also be dependent on nanoparticle size and shape, which has not

been investigated in this work. It would also be interesting to investigate systems of several

nanoparticles in and near grooved substrates31. Also of interest would be the behaviour near

the nematic-isotropic transition, as studied for the planar wall in Ref.34.
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Figure Captions

Fig. 1. Geometry of calculation

Fig. 2. (Colour online) Density (left) and order parameter (right) maps of LC solvent in

contact with surface (in absence of cylinder), for groove dimensions (a) d = 5b, w =

30b, (b) d = 15b, w = 30b, (c) d = 30b, w = 30b, and (d) d = 30b, w = 60b.

Fig. 3. (Colour online) Grand potential (per unit length) against separation (zc) for wells of

width w = 30b and depths d = 0b (solid line, black), d = 5b (dotted line, red), d = 10b

(dashed line, green), d = 15b (dot-dashed line, blue), and d = 30 (double-dot-dashed

line).

Fig. 4. (Colour online) Grand potential (per unit length) against zc for wells of depth (a)

d = 15b and (b) d = 30b. In both cases w = 30b is denoted by solid line (black),

w = 31b dotted line (red), w = 35b dashed line (green), w = 40b dot-dashed line

(blue), w = 45b double-dot-dashed line (magenta), and w = 60b dot-double-dashed

line (orange). Insets show details near free energy minima.

Fig. 5. (Colour online) Minimum grand potential (left) and minimum position (right) against

1/w for d = 15b (circles, online black) and d = 30b (squares, online red) grooves. The

1/w = 0 point corresponds to a flat surface. The lines are a guide to the eye.

Fig. 6. (Colour online) Density (left) and order parameter (right) maps for (a) d = 30b,

w = 30b, zc = 50b, (b) d = 30b, w = 30b, zc = 32b, (c) d = 30b, w = 35b, zc = 33b, (d)

d = 30b, w = 45b, zc = 33b, and (e) d = 30b, w = 60b, zc = 33b.

Fig. 7. (Colour online) Variation of grand potential for nanoparticle with zc = 0b for groove

depth (a) d = 15b and (b) d = 30b. For both graphs widths w = 40b (circles, online

black), w = 45b (squares, online red), and w = 60b (diamonds, online red).

Fig. 8. (Colour online) (a) Variation of grand potential with lateral displacement for groove

depth d = 15b (left) and d = 30b (right). In both cases width w = 30b (circles, black)

and w = 60b (squares red).(b) (b) x-component of force for groove depth d = 15b (left)

and d = 30b (right). Symbols as in (a). (c) z-component of force for d = 15b (left)

and d = 30b (right). Symbols as in (a). In all graphs the position of the groove edge
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is denoted by the dotted vertical lines (online w = 30b groove red, w = 60b groove

green).

Fig. 9. (Colour online) (a) Density (left) and order parameter (right) maps for nanoparticle

coordinates xc = −39b, zc = 15b for groove dimensions d = 30b and w = 60b. (b)

Density (left) and order parameter (right) maps for nanoparticle coordinates xc =

−30b, zc = 15b for d = 30b, w = 30b groove. (c) as (a) for xc = −18b
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