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On the basis of the general nonlinear theory of a hyperelastic material with initial stress,
initially without consideration of the origin of the initial stress, we determine explicit
expressions for the stress-dependent tensor of incremental elastic moduli. In considering
three special cases of initial stress within the general framework, namely hydrostatic stress,
uniaxial stress and planar shear stress, we then elucidate in general form the dependence
of various elastic moduli on the initial stress. In each case the effect of initial stress on
the wave speed of homogeneous plane waves is studied and it is shown how various special
theories from the earlier literature fit within the general framework. We then consider
the situation in which the initial stress is a pre-stress associated with a finite deformation
and, in particular, we discuss the specialization to the second-order theory of elasticity and
highlight connections between several classical approaches to the topic, again with special
reference to the influence of higher-order terms on the speed of homogeneous plane waves.
Some discrepancies arising in the earlier literature are noted.
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1 Introduction

Residual stresses in solids, i.e. stresses that are present in the absence of load (body forces
and surface tractions) can have a very significant effect on the mechanical behaviour of the
structures in which they reside. This is the case for materials as diverse as hard engineering
and geological materials and soft solids such as gels and biological tissues. Equally, stresses
that are generated due to applied loads, associated with finite deformations and commonly
referred to as pre-stresses, have a significant effect on subsequent material response, leading
to very different results compared with the situation in which there is no applied load.
Residual stresses and pre-stresses are examples of initial stresses but are different in nature
in the sense that residual stresses are necessarily non-homogeneous while pre-stresses may
be either homogeneous or non-homogeneous. Also, pre-stresses are usually associated
with an elastic pre-deformation, while residual stresses can result from processes such as
manufacturing, plastic deformation, growth and remodelling, for example. In either case
it is important to be able to analyze the effect of the initial stress on the properties of the
material and on its mechanical response. In this paper we are concerned primarily with
the effect of initial stress on the material properties in general, and on elastic ‘constants’ in
some specific cases, as well as its effect on the speeds of propagation of homogeneous plane
waves. The study is conducted with a view to the non-destructive evaluation of initially
stressed solids, which are ubiquitous in Nature and Engineering. For this purpose the
initial stress is included in the constitutive description of the material without reference
(initially) to any finite deformation with which it may be associated, and we emphasize
that in general the initial stress appears in a highly nonlinear form.

The origins of an elasticity theory including initial stress can be traced back as far as to
the works of Cauchy (1829), according to Truesdell (1966). Notable early contributors to
the subject include Poincaré (1892), Hadamard (1903), Rayleigh (1906), Brillouin (1925),
and Love (1927).

In the context of the modern linear theory of elasticity, the effect of initial stress was
first examined in the work of Biot for static problems (Biot, 1939) and also for wave
propagation problems (Biot, 1940a); see also his monograph (Biot, 1965). Here, for later
reference, we write the components of Biot’s elasticity tensor as Bpiqj with respect to a
Cartesian coordinate system (x1, x2, x3). In general these enjoy the minor symmetries

Bpiqj = Bipqj = Bpijq, (1.1)

but when there exists a strain-energy function there is also the major symmetry connection

Bpiqj − Bqjpi = δipτjq − δjqτip, (1.2)

where τij are the components of the initial Cauchy stress and δij is the Kronecker delta.
For infinitesimal strains eij, with eij = (ui,j + uj,i)/2, where ui,j = ∂ui/∂xj and ui are the
components of the displacement vector, the associated Cauchy stress, additional to the
initial stress, is given by σpi = Bpiqjuj,q. Biot left the dependence of Bpiqj on the initial
stress unspecified for most of his theoretical development and he was not concerned with

2



the source of the initial stress. In this sense his theory may be referred to as the general
linear theory of elasticity with initial stress. Biot was more specific in particular cases,
where he considered both isotropic and planar orthotropic specializations and an initial
stress due to hydrostatic pressure, uniaxial compression, or gravity. In particular, for his
isotropic model Bpiqj may be written in the form

Bpiqj = µ0(δijδpq + δqiδpj) + λ0δpiδqj − δqjτpi, (1.3)

where µ0 and λ0 are the notations that we shall use in this paper for the classical Lamé
moduli of linear isotropic elasticity. This form did not appear explicitly in Biot’s work,
as far as the authors are aware, but may be deduced from the plane strain expressions in
equation (8.31e) of Biot’s book (Biot, 1965). Biot did in fact acknowledge that in general
the elastic response in the presence of initial stress is not isotropic, but he adopted an
isotropic constitutive description for simplicity. Note that (1.3) satisfies the conditions
(1.2).

The works of Biot have formed the basis for many contributions to the literature,
particularly relating to wave propagation problems in the geophysical context, which was
the original context in which the theory was developed by Biot (1940a). Other contributions
to the analysis of initial stress, more specifically residual stress, have appeared in a series
of papers by Hoger and co-workers, including Hoger (1985), Hoger (1986), Hoger (1993a),
Hoger (1993b), Johnson & Hoger (1993), Hoger (1996), some of which are concerned with
the combined effect of finite deformation and residual stress, and in papers by Man & Lu
(1987), Man (1998) and Saravanan (2008), for example. More recently, a general theory of
nonlinear hyperelasticity for an initially stressed solid has been developed by Shams et al.
(2011) and Ogden & Singh (2011), the latter being focused on fibre reinforced materials.
We also mention the paper by Bažant (1971), who detailed connections between several
earlier formulations of linear elasticity with initial stress and their implications for the
stability of elastic bodies.

We distinguish between the above approach and that concerned with the effect of pre-
stress that is associated with a finite deformation, a subject that has attracted many
contributions, primarily concerned with the effect of the finite deformation on the propa-
gation of small amplitude elastic waves and associated static bifurcation problems. This is
commonly know as the theory of incremental (or small) deformations superimposed on a
finite deformation. We shall not discuss this extensive topic in detail but refer to Ogden
(1984) and Ogden (2007), for example, for pointers to the literature.

A special case of the theory of finite elastic deformations in which the strains are
small but the linear theory is no longer adequate is sometimes referred to as second-order
elasticity. In this theory the strain-energy function is expanded to the third order in some
suitable measure of strain and the stress is second order in the strain. Most commonly it is
the Green (or Green–Lagrange) strain tensor that is used and for an isotropic material the
strain energy is expressed in terms of invariants of the strain. The first such contribution
appears to be that of Brillouin (1925), although this has not always been acknowledged
appropriately. Equivalent formulations were developed later by Landau & Rumer (1937),
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Murnaghan (1937), Biot (1940b), Toupin & Bernstein (1961) and Hayes & Rivlin (1961);
see also the books by Brillouin (1946), Biot (1965) and Landau & Lifshitz (1986). There is
also a detailed historical discussion in the volume by Truesdell & Noll (1965), in particular
in section 66 therein. An important objective within these works was to determine the
correction to the speeds of waves due to the nonlinear terms in the stress. In particular,
various formulas were found that highlighted the effect of an initial hydrostatic pressure
(associated with a pure dilatation) or uniaxial compression on the speeds of longitudinal
and transverse waves. Of other works dealing with wave speeds based on this weakly
nonlinear theory we mention those of Hughes & Kelly (1953), who obtained experimental
results for longitudinal and transverse wave speeds in polystyrene, iron, and pyrex for
separate initial stresses corresponding to hydrostatic pressure and simple compression and
related their results to formulas based on Murnaghan’s second-order theory, and Thurston
& Brugger (1964), who obtained expressions for the second-order corrections to wave speeds
in cubic crystals. Papers by Birch (1938) and Tang (1967) also made use of the second-
order theory but failed to include the second-order constants in their expressions for the
wave speeds (note that the second-order constants are sometimes referred to as third-order
constants). We discuss this and other deficiencies of the latter paper in Sections 6.1, 6.3
and 7.3.

For several researchers it seemed important to show that all elastic materials would
behave similarly under an initial stress. Hence Biot’s incremental moduli (1.3) change
from one material to another with changes in the values of λ0 and µ0, but the effect
of the pre-stress τ remains the same across all solids. Similarly, according to Lazarus
(1949), Love (1927) showed that under external pressure P , the (linear) elastic constants
c44 and c12 (Voigt notation) of a certain class of solid are linked approximately by the
‘Cauchy relation’ c44 = c12 − 2P . This type of behaviour under pre-stress would in turn
lead to a corresponding effect on the shift in speed experienced by an acoustic wave (for
instance a wave should always travel faster in a pressurized isotropic solid than in its
unstressed counterpart). However intuitive this expectation might be, it is not supported
by experimental facts, as confirmed by the data shown in Tables 1 and 2, which show that
the wave speed can increase or decrease with pressure, depending on the material.

The purpose of the present paper is to draw together and highlight connections between
some of the historical results within a common and fairly general framework based on the
development of Shams et al. (2011) concerned with the constitutive law of a hyperelastic
material with initial stress. In particular, we examine how the elasticity tensor depends
nonlinearly on initial stress, with emphasis on the important special cases of hydrostatic
initial stress, uniaxial initial stress, and initial shear stress.

In Section 2 we summarize the basic equations for an elastic material for which the
strain-energy function depends on an initial stress as well as the deformation from the
initially stressed reference configuration. In particular, we express the strain energy as a
function of combined invariants of the initial stress and deformation and give expressions
for the nominal and Cauchy stress tensors. Next, in Section 3, we derive the equations of
motion for small displacements from a homogeneously deformed configuration when the
initial stress is uniform, which leads to the need for expressions for the elasticity tensor.
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Table 1: Initial variation of the squared wave speeds for several solids under hydrostatic
pressure P , as collected by Johnson et al. (1994): ρr is the mass density at P = 0; vT and
vL are the speeds of the transverse and longitudinal waves, respectively

Solid
d

dP
(ρrv

2
T )

∣∣∣∣
P=0

d

dP
(ρrv

2
L)

∣∣∣∣
P=0

Alumina 1.12 4.46
Aluminum 2.92 12.4
Armco-Iron 5.7 9.3
Fused silica −1.42 −4.32
Gold 0.90 6.4
Magnesium 1.47 6.89
Molybdenum 1.05 3.48
Nickel-steel 1.55 2.84
Niobium 0.29 6.18
PMMA 3.0 15.0
Polystryrene 1.57 11.6
Pyrex −2.84 −8.6
Steel (Hecla) 1.46 7.45
Tungsten 0.70 4.58

Table 2: Initial variation of the speeds of transverse waves for several solids under uniaxial
strain ε: v12, v21 are the speeds waves travelling in the direction of tension, and orthogonal
to the direction of tension, respectively; v012 and v021 are their values at ε = 0. The first row
of data is from experiments on a sample of rail steel (Egle & Bray, 1976); the other rows
are from experiments on soft solids with different compositions (Gennisson et al., 2007)

Solid
d

dε

(
v12
v012

)∣∣∣∣
ε=0

d

dε

(
v21
v021

)∣∣∣∣
ε=0

Rail steel 1 −0.15 −1.50
Agar-Gelatine 1 0.84 −0.92
Agar-Gelatine 4 4.53 2.26
Polyvinyl acetate 1 0.71 −0.47
Polyvinyl acetate 3 1.69 0.35
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Such expressions are given in Section 4, but now specialized to the undeformed (but initially
stressed) reference configuration. Several special cases are considered in which the initial
stress is either purely isotropic, uniaxial, or a planar shear stress. These formulas are
then used in Section 5 to define relevant elastic moduli that depend of the initial stress
in question and to make that dependence explicit. The moduli include stress-dependent
Lamé moduli in the case of isotropic initial stress, Poisson’s ratios and Young’s moduli for
uniaxial initial stress, and planar Poisson’s ratios and Young’s moduli for planar initial
shear stress.

In Section 6 the results are applied to infinitesimal wave propagation and related to some
known results as special cases. Section 7 then considers the deformation of an isotropic elas-
tic material from a stress-free reference configuration in order to make contact with results
in the preceding sections by considering, in particular, a pure dilatation and a deformation
corresponding to simple tension. We then focus on the specialization to second-order elas-
ticity, in which the strain-energy is approximated as a third-order expansion in the Green
strain tensor in order to highlight connections with the theory of elasticity with initial
stress herein and to draw together various contributions from the literature that date back
to the work of Brillouin (1925), with particular reference to expressions for longitudinal
and transverse wave speeds.

2 Elasticity in the presence of initial stress

We consider an elastic body that is subject to an initial (Cauchy) stress τ in some reference
configuration, which we denote by Br. In the absence of intrinsic couple stresses τ is
symmetric. Let X be the position vector of a material point in Br and let Grad and Div
denote the gradient and divergence operators with respect to X. If there are no body
forces then τ must satisfy the equilibrium equation Divτ = 0. For the most part we shall
not be concerned with how the initial stress arises, but in Section 7 we shall relate τ to an
underlying finite deformation and τ is then considered to be a pre-stress, which requires
appropriate tractions on the boundary ∂Br of Br. However, if the traction on the boundary
∂Br of Br vanishes pointwise then τ is referred to as a residual stress. A residual stress is
necessarily non-uniform (Hoger, 1985; Ogden, 2003) and in general is not associated with
a deformation from a stress-free configuration.

Next, we consider the body to be subject to a finite elastic deformation from Br into a
new configuration B with boundary ∂B so that the material point X takes up the position
x in B given by x = χ(X), where the vector function χ defines the deformation for
X ∈ Br. The deformation χ is required to be a bijection and to possess appropriate
regularity properties, which we do not need to specify here. The deformation gradient
tensor, denoted F, is defined by F = Gradχ, from which are formed the left and right
Cauchy–Green deformation tensors, defined by

B = FFT, C = FTF, (2.1)

respectively.
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We denote by σ the Cauchy stress tensor in the configuration B and we suppose that
there are no body forces, so that the equilibrium equation divσ = 0 holds. We shall also
make use of the nominal and the second Piola–Kirchhoff stress tensors, denoted S and T,
respectively, which are related to σ and each other by

S = JF−1σ = TFT, T = JF−1σF−T = SF−T , (2.2)

where J = det F > 0. The nominal stress S satisfies the equilibrium equation

DivS = 0. (2.3)

In the absence of intrinsic couples, σ, and hence T, is symmetric, while in general S is not
symmetric and satisfies

FS = STFT. (2.4)

We now consider the elastic properties of the material to be characterized in terms of
a strain-energy function, defined per unit volume in Br, which we denote by W . We write

W = W (F, τ ) (2.5)

to reflect the dependence not only on the deformation gradient but also on the initial stress.
By objectivity W depends on F only through C = FTF, but it is convenient to retain the
functional dependence indicated in (2.5). In general the presence of the initial stress will
generate anisotropy in the material response relative to Br and τ has a role similar to that
of a structure tensor associated with a preferred direction in an anisotropic material. An
exception to this arises if τ is an isotropic stress. If τ is non-uniform then the material
is necessarily inhomogeneous, but if τ is independent of X the material is homogeneous
unless its properties depend separately on X. In the present paper we shall consider τ to
be uniform and the material to be homogeneous.

We shall not consider internal constraints such as incompressibility, in which case the
nominal stress is given by

S =
∂W

∂F
(F, τ ), (2.6)

and the Cauchy and second Piola–Kirchhoff stresses can be obtained from (2.2). When
evaluated in Br, (2.6) reduces to

τ =
∂W

∂F
(I, τ ), (2.7)

where I is the identity tensor. Equation (2.7) imposes a restriction on the admissible forms
of strain-energy function for an initially-stressed elastic material.

2.1 Invariant representation of the strain energy and stresses

The strain-energy function W depends on C and τ , both of which are independent of
rotations in the deformed configuration B. Thus, W is automatically objective. If the
material possesses no intrinsic anisotropy relative to Br, so that it would be isotropic
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relative to Br in the absence of initial stress, then W is an isotropic function of C and τ ,
i.e.

W (QCQT,QτQT) = W (C, τ ) for all orthogonal Q, (2.8)

and it can be expressed as a function of the invariants of C and τ . We list a possible (and
complete) set of independent invariants as

I1 = trC, I2 = 1
2
[(trC)2 − tr(C2)], I3 = det C, (2.9)

trτ , tr(τ 2), tr(τ 3), (2.10)

I6 = tr(τC), I7 = tr(τC2), I8 = tr(τ 2C), I9 = tr(τ 2C2), (2.11)

where we have used the standard notation I1, I2, I3 for the principal invariants of C and
followed the notation I6, . . . , I9 adopted by Shams et al. (2011) for the combined invariants
of C and τ . In the reference configuration Br these reduce to

I1 = I2 = 3, I3 = 1, I6 = I7 = trτ , I8 = I9 = tr(τ 2). (2.12)

For full discussion of invariants of tensors we refer to Spencer (1971) and Zheng (1994).
Here there are 10 independent invariants of C and τ in general, a number that may be
reduced in a two-dimensional specialization or for specific simple deformations and/or
initial stresses. We have not attributed notations to the invariants (2.10) since they are
independent of the deformation and do not contribute explicitly to expressions for the
stresses. However, W may depend on (2.10) implicitly, but we do not list them in the
functional dependence and we write W = W (I1, I2, I3, I6, I7, I8, I9), retaining the notation
W , which is used severally for the (F, τ ), (C, τ ) and (I1, I2, I3, I6, I7, I8, I9) arguments.

From (2.6) the nominal stress tensor may be expanded as

S =
∂W

∂F
=
∑
i∈I

Wi
∂Ii
∂F

, (2.13)

where we have used the shorthand notation Wi = ∂W/∂Ii, i ∈ I, and I is the index set
{1, 2, 3, 6, 7, 8, 9}. We emphasize that although their derivatives with respect to F vanish
the invariants (2.10) are included implicitly in the functional dependence of W in general.
The required expressions for ∂Ii/∂F were given in Appendix A of (Shams et al., 2011)
and are not repeated here explicitly but used implicitly. The resulting expression for the
Cauchy stress σ is obtained from (2.2) in the form

Jσ = 2W1B + 2W2(I1B−B2) + 2I3W3I + 2W6Σ

+ 2W7(ΣB + BΣ) + 2W8ΣB−1Σ + 2W9(ΣB−1ΣB + BΣB−1Σ), (2.14)

wherein we have introduced the notation Σ = FτFT for the push forward of τ from Br to
B, and B = FFT is the left Cauchy–Green tensor.

When (2.14) is evaluated in the reference configuration it reduces to

τ = 2(W1 + 2W2 +W3)I + 2(W6 + 2W7)τ + 2(W8 + 2W9)τ
2, (2.15)
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where Wi, i ∈ I, are evaluated for the invariants given by (2.12). Equation (2.15) is the
specialization of (2.7) for the invariant form of W . As in Shams et al. (2011) we deduce
that

W1 + 2W2 +W3 = 0, 2(W6 + 2W7) = 1, W8 + 2W9 = 0 (2.16)

in Br.

3 Incremental motions

We now consider the static finite deformation x = χ(X) that defines the equilibrium
configuration B to be followed by a superimposed incremental motion ẋ(X, t), where t is
time. A superposed dot signifies an incremental quantity and the resulting incremental
equations are linearized in the increments, which are considered appropriately ‘small’.
Thus, ẋ represents a small displacement from x. We shall also write the displacement
in Eulerian form as u = u(x, t), noting that ẋ(X, t) = u(χ(X), t). The corresponding
increments in the deformation gradient F and J = det F are given by the standard formulas

Ḟ = LF, J̇ = JtrL, (3.1)

where L = gradu is the displacement gradient.
The (linearized) incremental nominal stress is written

Ṡ = AḞ, (3.2)

where

A =
∂2W

∂F∂F
, Aαiβj =

∂2W

∂Fiα∂Fjβ
, (3.3)

is the fourth-order elasticity tensor and, in component form, AḞ ≡ AαiβjḞjβ defines the
product used in (3.2). The usual summation convention for repeated indices is adopted here
and henceforth. For full discussion of the theory of incremental deformations and motions
superimposed on a finite deformation we refer to Ogden (1984, 2007), for example.

By taking the increments of the connections Jσ = FS and S = TFT from (2.2) we
obtain, after a little rearrangement,

Ṡ0 ≡ J−1FṠ = σ̇ + (trL)σ − Lσ, (3.4)

Ṫ0 ≡ J−1FṪFT = Ṡ0 − σLT, (3.5)

wherein the notations Ṡ0 and Ṫ0 are defined. These are the updated forms of Ṡ and Ṫ,
respectively, referred to deformed configuration, and otherwise know as their ‘push forward’
forms. The corresponding push forward A0 of the elasticity tensor is such that Ṡ0 = A0L.
It then follows from the symmetry of σ and its increment that Ṡ0 + Lσ is symmetric, and
hence

A0L + Lσ = (A0L)T + σLT. (3.6)
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In component form A0 is related to A via

JA0piqj = FpαFqβAαiβj. (3.7)

Note that as well as possessing the major symmetry A0piqj = A0qjpi, which follows from
(3.3) and (3.7), A0 has the property

A0piqj + δjpσiq = A0ipqj + δijσpq, (3.8)

which can be deduced from (3.6).
We assume that there are no body forces. Then, the incremental motion is governed

by the equation

DivṠ = ρrx,tt, (3.9)

where ρr is the mass density in Br and a subscript t following a comma signifies the material
time derivative, i.e. the time derivative at fixed X, so that x,t = u,t is the particle velocity
and x,tt = u,tt the acceleration.

Equation (3.9) may be updated (i.e. pushed forward) to the configuration B by writing
it in terms of Ṡ0 and u, which yields

divṠ0 = ρu,tt, (3.10)

where ρ = ρrJ
−1 is the mass density in B, or, in (Cartesian) component form,

(A0piqjuj,q),p = ρui,tt. (3.11)

Henceforth in this paper we assume that the initial stress τ , the underlying deformation
F and the material properties are homogeneous, so that A and A0 are independent of X.
The equation of motion (3.11) then becomes

A0piqjuj,pq = ρui,tt. (3.12)

This will be used in Section 6 in discussion of the propagation of homogeneous plane waves,
but before proceeding to that analysis we obtain explicit expressions for the dependence of
the components of the elasticity tensor and of various elastic moduli on the initial stress
based on the invariants of the right Cauchy–Green deformation tensor C and the initial
stress tensor τ discussed in Section 2.1.

4 Expressions for the elasticity tensor

The elasticity tensor A in (3.3) may be expanded in terms of invariants as

A =
∑
i∈I

Wi
∂2Ii
∂F∂F

+
∑
i,j ∈I

Wij
∂Ii
∂F
⊗ ∂Ij
∂F

, (4.1)
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where Wij = ∂2W/∂Ii∂Ij, i, j ∈ I, and I is again the index set {1, 2, 3, 6, 7, 8, 9}.
The detailed (lengthy) expressions for the components of A0 were given by Shams et al.

(2011) for a general deformed configuration based on expressions for the second derivatives
of the invariants, which were given in Appendix A of the latter paper. Here we require only
their specialization to the (undeformed) reference configuration (B → Br), which, following
Shams et al. (2011), yields

A0piqj = α1(δijδpq + δiqδjp) + α2δipδjq + δijτpq + β1(δijτpq + δpqτij + δiqτjp + δjpτiq)

+ β2(δipτjq + δjqτip) + β3τipτjq + γ1(δijτpkτkq + δpqτikτkj + δiqτjkτkp + δjpτikτkq)

+ γ2(δipτjkτkq + δjqτikτkp) + γ3(τipτjkτkq + τjqτikτkp) + γ4τikτkpτjlτlq, (4.2)

where the α’s, β’s, and γ’s are defined by

α1 = 2(W1 +W2), α2 = 4(W11 + 4W12 + 4W22 + 2W13 + 4W23 +W33 −W1 −W2),

β1 = 2W7, β2 = 4(W16 + 2W17 + 2W26 + 4W27 +W36 + 2W37), γ1 = 2W9,

β3 = 4(W66 + 4W67 + 4W77), γ2 = 4(W18 + 2W19 + 2W28 + 4W29 +W38 + 2W39),

γ3 = 4(W68 + 2W69 + 2W78 + 4W79), γ4 = 4(W88 + 4W89 + 4W99), (4.3)

all derivatives Wi and Wij being evaluated in the reference configuration and use having
been made of the connections (2.16). Note that in general the expressions (4.3) may
depend on the invariants trτ , tr(τ 2) and tr(τ 3). There are nine (τ -dependent) material
parameters in the above, just as there are nine constants for an orthotropic linearly elastic
material (see, for example, Ting, 1996), but additionally here the components τij of τ are
present separately.

Note that when referred to axes that coincide with the principal axes of τ , the only
non-zero components of (4.2) are given by

A0iiii = 2α1 + α2 + (1 + 4β1 + 2β2)τi + β3τ
2
i + 2(2γ1 + γ2)τ

2
i + 2γ3τ

3
i + γ4τ

4
i ,

A0iijj = α2 + β2(τi + τj) + β3τiτj + γ2(τ
2
i + τ 2j ) + γ3(τi + τj)τiτj + γ4τ

2
i τ

2
j ,

A0ijij = α1 + τi + β1(τi + τj) + γ1(τ
2
i + τ 2j ) = A0ijji + τi, (4.4)

where there are no sums on repeated indices, i 6= j, and τi, i = 1, 2, 3, are the principal
values of τ (in general, there are 15 non-zero components of A0 in total, dependent on
nine material parameters and three principal stresses). In the linear specialization of the
above only the parameters α1, α2, β1, β2 are retained along with τ1, τ2, τ3, although we
should strictly expand α1 and α2 as linear functions of τ . Then there are 9 constants
involved, specifically α1(0), α2(0), β1(0), β2(0), α1,i(0), α2,i(0), i = 1, 2, 3, and the three
principal initial stresses τ1, τ2, τ3, where 0 = (0, 0, 0) is the value of (τ1, τ2, τ3) for zero
initial stress and ,i signifies differentiation with respect to τi, i = 1, 2, 3. Note that since
the coefficients in (4.4) are symmetric functions of (τ1, τ2, τ3) the constants α1,i(0) and
α2,i(0) are independent of i.

We now specialize the above to consider three specific forms of τ , corresponding to
isotropic initial stress, uniaxial initial stress and planar shear initial stress.
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4.1 Isotropic initial stress

Suppose that τ is isotropic and write τ = τI, where I is again the identity tensor and
τ > 0 (< 0) corresponds to hydrostatic tension (pressure). Then equation (4.2) reduces to
the compact form

A0piqj = τδijδpq + α(τ)(δijδpq + δiqδpj) + β(τ)δpiδqj, (4.5)

where the notations α(τ) and β(τ) are defined by

α(τ) = α1(τ) + 2τβ1(τ) + 2τ 2γ1(τ), (4.6)

β(τ) = α2(τ) + 2τβ2(τ) + τ 2[β3(τ) + 2γ2(τ)] + 2τ 3γ3(τ) + τ 4γ4(τ), (4.7)

and we note that, by virtue of the specializations trτ = 3τ, tr(τ 2) = 3τ 2, tr(τ 3) = 3τ 3,
the coefficients α1, ..., γ4 are now (in general) functions of the single parameter τ , which is
indicated above by inclusion of the argument τ .

4.2 Uniaxial initial stress

Here we take τ = τa ⊗ a, where a is a fixed unit vector (the direction of the uniaxial
stress, which is a tension for τ > 0 and a compressive stress for τ < 0). In this case the
components of A0 may be expressed in the form

A0piqj = α1(δijδpq + δiqδpj) + α2δpiδqj + τ(β1 + τγ1)(δijapaq + δpqaiaj + δiqapaj + δpjaiaq)

+ τδijapaq + τ(β2 + τγ2)(δpiaqaj + δqjapai) + τ 2(β3 + 2τγ3 + τ 2γ4)apaiaqaj. (4.8)

Again the coefficients α1, ..., γ4 depend on τ in general but for the sake of brevity this has
been left implicit here. Note that, in addition to τ , there are five separate (combinations
of) parameters, namely α1, α2, β1 + τγ1, β2 + τγ2, β3 + τγ3 + τ 2γ4 and we recall that in
classical transversely isotropic linear elasticity there are five material constants (see, for
example, Ting, 1996).

Without loss of generality we may take a to coincide with the axis e1. Then the
components of A0 are listed as

A01111 = 2α1 + α2 + (1 + 4β1 + 2β2)τ + (4γ1 + 2γ2 + β3)τ
2 + 2γ3τ

3 + γ4τ
4, (4.9)

A0iiii = 2α1 + α2, A0iijj = α2, A011ii = α2 + β2τ + γ2τ
2, i, j ∈ {2, 3}, i 6= j, (4.10)

A0i1i1 = A01ii1 = A0i11i = α1 + β1τ + γ1τ
2, i ∈ {2, 3}, (4.11)

A01i1i = α1 + (1 + β1)τ + γ1τ
2, A0ijij = A0ijji = α1, i, j ∈ {2, 3}, i 6= j, (4.12)

for later reference. Note that in the linear specialization there remain only seven indepen-
dent constants, namely α1(0), α2(0), β1(0), β2(0), α′1(0), α′2(0), with argument τ = 0, and
τ , where the prime indicates differentiation with respect to τ .
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4.3 Planar shear initial stress

Consider planar shear stress in the (x1, x2) plane of the form τ = τ(e1 ⊗ e2 + e2 ⊗ e1).
Then the only non-zero components of A0 are written as

A01111 = A02222 = 2α1 + α2 + 2(2γ1 + γ2)τ
2 + γ4τ

4, A03333 = 2α1 + α2, (4.13)

A01122 = α2 + 2γ2τ
2 + γ4τ

4, A01133 = A02233 = α2, (4.14)

A0ijij = A0ijji = α1 + (β3 + 2γ1)τ
2, i, j ∈ {1, 2}, i 6= j, (4.15)

A0i3i3 = A03i3i = A03ii3 = α1 + γ1τ
2, i ∈ {1, 2}, (4.16)

A0iiij = (2β1 + β2)τ + γ3τ
3, A0jiii = A0iiij + τ, i, j ∈ {1, 2}, i 6= j. (4.17)

In the linear specialization there are now five constants, α1(0), α2(0), 2β1(0)+β2(0), α′1(0),
α′2(0), in addition to τ .

5 Dependence of elastic moduli on initial stress

5.1 Isotropic initial stress

In the connection (3.4) we now specialize the Cauchy stress σ to the initial stress τ , so
that

σ̇ = Ṡ0 + Lτ − (trL)τ . (5.1)

It follows on use of (4.5) that, for an isotropic initial stress τ = τI,

Ṡ0 = A0L = τLT + α(τ)(L + LT) + β(τ)(trL)I, (5.2)

and hence that
σ̇ = [β(τ)− τ ](trL)I + [α(τ) + τ ](L + LT). (5.3)

Since the initial stress is purely isotropic we can therefore identify the stress-dependent
Lamé moduli, which we denote as λ(τ) and µ(τ), as

λ(τ) = β(τ)− τ = α2(τ) + 2τβ2(τ) + τ 2[β3(τ) + 2γ2(τ)] + 2τ 3γ3(τ) + τ 4γ4(τ)− τ, (5.4)

µ(τ) = α(τ) + τ = α1(τ) + 2τβ1(τ) + 2τ 2γ1(τ) + τ. (5.5)

For incremental simple shear we may, without loss of generality, restrict attention to
the (x1, x2) plane. If the shear is in the x1 direction with amount of shear Lij = L12δ1iδ2j
then the corresponding incremental nominal and Cauchy stress components are equal and
given by Ṡ021 = σ̇12 = A02121L12 = µ(τ)L12. Similarly, for incremental simple shear in the
x2 direction with Lij = L21δ2iδ1j we have Ṡ012 = σ̇12 = A01212L21 = µ(τ)L21, and from
(4.5) and (5.5), A02121 = A01212 = µ(τ).

For incremental pure dilatation with L11 = L22 = L33 = (trL)/3 we obtain

trσ̇ = [3λ(τ) + 2µ(τ)]trL, (5.6)
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and this enables us to define the stress-dependent bulk modulus κ(τ), analogously to the
classical formula, as

κ(τ) = λ(τ) +
2

3
µ(τ). (5.7)

Note that from (5.1) we obtain trṠ0 = trσ̇+2τtrL, but use of trṠ0 instead of trσ̇ does
not give the correct form of the bulk modulus. Also, by using (3.5) with σ = τ = τI and
(5.2) we obtain

Ṫ0 = α(τ)(L + LT) + β(τ)(trL)I. (5.8)

Thus, it is clear that because of the dependence on the initial stress, different choices of
stress measure lead to different possible definitions of the stress-dependent elastic moduli.

The correct definitions for the stress dependent Lamé moduli are (5.4) and (5.5). If the
second Piola–Kirchhoff stress is used instead, then µ(τ) and λ(τ) would be replaced by α(τ)
and β(τ), respectively. This was effectively what was done in the paper by Tang (1967),
although he worked in terms of Young’s modulus and Poisson’s ratio. This identification
of the Lamé moduli leads to erroneous results for the speeds of homogeneous plane waves,
as we shall show in Section 6.

If there is no initial stress (reduction to the classical case) we denote the classical moduli
by λ0, µ0, κ0, so that λ0 = λ(0) = α2(0), µ0 = µ(0) = α1(0), and κ0 = κ(0). If the initial
stress is small in magnitude then we may linearize the expressions (5.4), (5.5) and (5.7) to
obtain

λ(τ) ' λ0 + [α′2(0) + 2β2(0)− 1]τ, (5.9)

µ(τ) ' µ0 + [α′1(0) + 2β1(0) + 1]τ, (5.10)

κ(τ) ' κ0 + [2α′1(0) + 3α′2(0) + 4β1(0) + 6β2(0)− 1]τ/3. (5.11)

5.2 Uniaxial initial stress

When the initial stress is uniaxial the subsequent incremental response is transversely
isotropic in nature. Then it is appropriate to work in terms of Young’s moduli and Pois-
son’s ratios. In order to determine these we need to examine both triaxial incremental
deformations without shear and separate incremental shear deformations. Consider first
the normal components of L, written L11, L22, L33, and take e1 to be the direction of the
uniaxial initial stress. Then, bearing in mind the symmetry in (4.10), the corresponding
incremental nominal stresses are

Ṡ011 = A01111L11 +A01122(L22 + L33), (5.12)

Ṡ022 = A01122L11 +A02222L22 +A02233L33, (5.13)

Ṡ033 = A01122L11 +A02233L22 +A02222L33. (5.14)

The (incremental) Poisson’s ratio ν12 (and hence ν13 by symmetry) is obtained by setting
Ṡ022 = Ṡ033 = 0 and using the resulting symmetry L33 = L22 and L22 = −ν12L11 to obtain

ν12 = A01122/(A02222 +A02233). (5.15)
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Then,
Ṡ011 = (A01111 − 2ν12A01122)L11 (5.16)

and the (incremental) Young’s modulus E1 can be read off as

E1 = A01111 − 2ν12A01122 = A01111 − 2A2
01122/(A02222 +A02233). (5.17)

To obtain ν21 = ν31, ν23 = ν32 and E2 = E3, on the other hand, we set Ṡ011 = Ṡ033 = 0,
with L11 = −ν21L22, L33 = −ν23L22, and hence

ν21A01111 + ν23A01122 = A01122, ν21A01122 + ν23A02222 = A02233 (5.18)

and
Ṡ022 = (A02222 − ν21A01122 − ν23A02233)L22 = E2L22. (5.19)

These yield

ν21 =
A01122(A02222 −A02233)

A01111A02222 −A2
01122

, ν23 =
A01111A02233 −A2

01122

A01111A02222 −A2
01122

(5.20)

and

E2 = (A02222 −A02233)
A01111(A02222 +A02233)− 2A2

01122

A01111A02222 −A2
01122

. (5.21)

The connection
E2/ν21 = E1/ν12 (5.22)

then follows, as in the classical linear theory. We note, however, that if the increments of
the Cauchy stress were used in the definitions of the stress-dependent Poisson’s ratios and
Young’s moduli instead of the nominal stress (which is entirely legitimate), then this would
not follow. There are now four independent material parameters: ν12 = ν13, ν21 = ν31,
ν23 = ν32 and E1, for example, with E2 = E3 given by (5.22).

For the incremental shear response in the plane of symmetry, we have

σ̇23 = Ṡ023 = A02323L32 +A02332L23 = α1(L23 + L32), (5.23)

according to (4.12)2, and hence α1 is the shear modulus in the plane of symmetry. In fact,
it is straightforward to show that it can be expressed in terms of the other parameters as

α1 = E2/2(1 + ν23), (5.24)

similarly to the situation in the classical theory.
However, when it comes to shear in a plane that contains the axis e1 the situation

differs from the classical one because of the influence of τ . We have

σ̇12 = Ṡ012 = Ṡ021 + τL21 = [α1 + τ(β1 + τγ1) + τ ]L21 + [α1 + τ(β1 + τγ1)]L12. (5.25)

For shear in the x1 direction with incremental simple shear Lij = L12δ1iδ2j we obtain

σ̇12 = Ṡ021 = [α1 + τ(β1 + τγ1)]L12, (5.26)
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while for shear transverse to the x1 direction with incremental simple shear Lij = L21δ2iδ1j
we have

σ̇12 = Ṡ012 = [α1 + τ(β1 + τγ1) + τ ]L21, (5.27)

and the associated shear moduli are α1 + τ(β1 + τγ1) and α1 + τ(β1 + τγ1)+τ , respectively.
Thus, in total, there are six coefficients that are functions of τ , but when linearized in

τ there remain six constants, namely α1(0), α2(0), β1(0), β2(0), α′1(0) and α′2(0), together
with τ .

5.3 Planar shear initial stress

If the initial stress lies in the (x1, x2) plane and is a pure shear stress of amount τ then
τ = τ(e1⊗e2+e2⊗e1) and the principal values of τ are ±τ . The principal axes of τ bisect
the background axes e1 and e2, along ê1,2 = (e1 ± e2)/

√
2, say. Here, we therefore take as

our axes of reference the principal axes ê1, ê2, and ê3 = e3; the associated components of
A0 are

Â01111 = 2α1 + α2 + (1 + 4β1 + 2β2)τ + (β3 + 4γ1 + 2γ2)τ
2 + 2γ3τ

3 + γ4τ
4, (5.28)

Â02222 = 2α1 + α2 − (1 + 4β1 + 2β2)τ + (β3 + 4γ1 + 2γ2)τ
2 − 2γ3τ

3 + γ4τ
4, (5.29)

Â03333 = 2α1 + α2, Â01122 = α2 − β3τ 2 + 2γ2τ
2 + γ4τ

4, (5.30)

Â01133 = α2 + β2τ + γ2τ
2, Â02233 = α2 − β2τ + γ2τ

2, (5.31)

Â01221 = α1 + 2γ1τ
2, Â01212 = α1 + τ + 2γ1τ

2, Â02121 = α1 − τ + 2γ1τ
2, (5.32)

Â03131 = Â03113 = α1 + τβ1 + τ 2γ1, Â01313 = α1 + τ + τβ1 + τ 2γ1, (5.33)

Â03232 = Â03223 = α1 − τβ1 + τ 2γ1, Â02323 = α1 − τ − τβ1 + τ 2γ1. (5.34)

Components referred to principal axes are indicated by a superposed hat. We also have
trτ = tr(τ 3) = 0, tr(τ 2) = 2τ 2, and in general all the coefficients α1, . . . , γ4 depend on τ .

To illustrate the results in this case we consider the restriction to incremental plane
strain with L̂3i = L̂i3 = 0, i = 1, 2, 3. The components of the incremental nominal stress
are then given by

ˆ̇S011 = Â01111L̂11 + Â01122L̂22,
ˆ̇S022 = Â01122L̂11 + Â02222L̂22 (5.35)

for biaxial deformation parallel to the principal axes, and

ˆ̇S012 = (α1 + 2γ1τ
2)(L̂12 + L̂21) + τL̂21,

ˆ̇S021 = (α1 + 2γ1τ
2)(L̂12 + L̂21)− τL̂12, (5.36)

for shearing deformations.
The plane strain Poisson’s ratios and Young’s modulus E1 are then deduced as

ν12 = Â01122/Â02222, ν21 = Â01122/Â01111, E1 = Â01111 − Â2
01122/Â02222 (5.37)

and, as in (5.22), E2 = E1ν21/ν12. The shear moduli are α1− τ + 2γ1τ
2 and α1 + τ + 2γ1τ

2

for shear in the ê1 and ê2 directions, respectively.
When τ = 0 we recover the classical results for plane strain isotropy: Poisson’s ratio is

ν12 = ν21 = λ0/(λ0 + 2µ0), and Young’s modulus is E1 = E2 = 4µ0(λ0 + µ0)/(λ0 + 2µ0).
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6 The effect of initial stress on infinitesimal wave prop-

agation

The theory of small amplitude (incremental) deformations or motions superimposed on a
static finite deformation is well established, but has received relatively little attention in the
case of an initially stressed material with or without an accompanying finite deformation
except for works based on Biot’s theory in the context of linear elasticity. Here we consider
incremental motions in an infinite homogeneous medium subject to a homogeneous initial
stress with A0piqj having the form given in (4.2) and various specializations of that form.

From (3.12) we recall that the equation of incremental motion is

A0piqjuj,pq = ρui,tt. (6.1)

Consider a homogeneous plane wave of the form

u = mf(n · x− vt), (6.2)

where m is a fixed unit vector (the polarization vector), f is a function of the argument
n · x − vt with appropriate regularity, n is a unit vector in the direction of propagation,
and v is the wave speed. Substitution into the equation of motion (6.1) (after dropping
f ′′, which is assumed to be non-zero) leads to

A0piqjnpnqmj = ρv2mi. (6.3)

The associated acoustic tensor Q(n) has components defined by

Qij(n) = A0piqjnpnq (6.4)

and enables the propagation condition (6.3) to be written compactly as

Q(n)m = ρv2m. (6.5)

For any given direction of propagation n we have a three-dimensional symmetric alge-
braic eigenvalue problem for determining ρv2 and m. Because of the symmetry there are
three mutually orthogonal eigenvectors m corresponding to the directions of displacement
and the (three) values of ρv2 are obtained from the characteristic equation

det[Q(n)− ρv2I] = 0. (6.6)

If m is known then ρv2 is given by

ρv2 = [Q(n)m] ·m, (6.7)

and corresponds to a real wave speed provided ρv2 > 0, which is guaranteed if the strong
ellipticity condition holds, i.e. if

[Q(n)m] ·m ≡ A0piqjnpnqmimj > 0 for all non-zero vectors m,n. (6.8)
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Then, a triad of waves with mutually orthogonal polarizations can propagate for any di-
rection of propagation n. Henceforth we assume that the strong ellipticity condition holds.
For detailed discussion of strong ellipticity we refer to Truesdell & Noll (1965) and Ogden
(1984), for example.

In the following we examine the effect of initial stress on the propagation of plane waves
for the three examples of initial stress considered in Sections 4 and 5, and for this purpose
we give explicit expressions for Q(n) in each case.

6.1 Isotropic initial stress

For the form of A0 given by (4.5), with the connections (5.4) and (5.5) and (6.4), we obtain
simply

Q(n) = µ(τ)I + [λ(τ) + µ(τ)]n⊗ n. (6.9)

As in the classical theory of isotropic elasticity with no initial stress there exists a longi-
tudinal wave with speed vL, say, and two transverse waves with equal speeds vT , say, for
any direction of propagation. With dependence on τ these are given by

ρv2L = λ(τ) + 2µ(τ), ρv2T = µ(τ). (6.10)

For sufficiently small initial stress we may linearize these expressions to give

λ(τ) + 2µ(τ) ' λ0 + 2µ0 + [2α′1(0) + α′2(0) + 4β1(0) + 2β2(0) + 1]τ, (6.11)

µ(τ) ' µ0 + [α′1(0) + 2β1(0) + 1]τ, (6.12)

where α1(0) = µ0, α2(0) = λ0.
Note that if, as in Tang (1967), the isotropic moduli were defined based on the increment

in the second Piola–Kirchhoff stress according to (5.8) then µ(τ) and λ(τ) + 2µ(τ) would
have to be replaced by µ(τ)+τ and λ(τ)+2µ(τ)+τ , respectively, leading to the erroneous
conclusion of Tang (1967) that when the elastic moduli are independent of the initial stress
the wave speeds are given by ρv2T = µ0−P , ρv2L = λ0+2µ0−P for the case of a hydrostatic
pressure (τ = −P ). Results such as these are not supported by the data shown in Tables
1 and 2.

For a general isotropic elastic material under hydrostatic pressure Truesdell (1961)
obtained expressions for the speeds of longitudinal and transverse waves; see also Truesdell
& Noll (1965), section 75.

6.2 Uniaxial initial stress

For uniaxial initial stress the acoustic tensor is given by

Q(n) = AI +Ba⊗ a + Cn⊗ n +D(n⊗ a + a⊗ n), (6.13)
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where

A = α1 + [1 + β1 + γ1τ ]τ(n · a)2,

B = β1τ + γ1τ
2 + [β3 + 2γ3τ + γ4τ

2]τ 2(n · a)2,

C = α1 + α2,

D = [β1 + β2 + (γ1 + γ2)τ ]τ(n · a). (6.14)

If n = a (propagation along the direction of unaxial stress), then there exists a longi-
tudinal wave with speed v11 given by

ρv211 = A+B+C+2D = 2α1+α2+(1+4β1+2β2)τ+(β3+4γ1+2γ2)τ
2+2γ3τ

3+γ4τ
4, (6.15)

and two transverse waves with equal speeds v12 given by

ρv212 = A = α1 + (1 + β1)τ + γ1τ
2. (6.16)

These formulas are consistent with the formulas (5.20) and (5.23) in Shams et al. (2011)
relating to propagation along a principal axis of τ except that in (5.20) there is a misprint
(the coefficient of γ1 should be 4 instead of 3 — this arises from the fact that in the
expression (5.18) for a in the latter paper γ1 should be 2γ1). The linearized forms of (6.15)
and (6.16) are

ρv211 = λ0 + 2µ0 + [2α′1(0) + α′2(0) + 4β1(0) + 2β2(0) + 1]τ, (6.17)

ρv212 = µ0 + [α′1(0) + β1(0) + 1]τ, (6.18)

respectively.
On the other hand, if n · a = 0 (propagation transverse to the direction of uniaxial

stress) then
A = α1, B = β1τ + γ1τ

2, C = α1 + α2, D = 0, (6.19)

and a longitudinal wave exists with speed v22 given by ρv222 = A + C. There are also two
transverse waves, with polarizations along and perpendicular to a and speeds v21 and v23
given by

ρv221 = A+B = α1 + β1τ + γ1τ
2, ρv223 = A = α1, (6.20)

respectively. We notice immediately that

ρv212 − ρv221 = τ (6.21)

exactly, as expected from the property (3.8). This well-known relationship (see, for ex-
ample, Biot, 1965; Man & Lu, 1987; Hoger, 1993a; Norris, 1998) forms the basis of an
experimental acoustic identification of a solid with anisotropy due to an initial stress,
as opposed to a general anisotropic linearly elastic solid without initial stress, for which
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ρv212 = ρv221 = c66 (Voigt notation). We note that, even earlier, Biot (1940a) obtained sepa-
rate expressions for, in the present notation, v12 and v21 from which the above relationship
may also be deduced. Finally, we note that the linearized forms of ρv222 and (6.20) are

ρv222 = λ0 + 2µ0 + [2α′1(0) + α′2(0)]τ, ρv221 = µ0 + [α′1(0) + β1(0)]τ, ρv223 = µ0 + α′1(0)τ.
(6.22)

If the propagation takes place neither along the direction of uniaxial stress nor perpen-
dicular to it, then several possibilities arise, which are detailed in Appendix A.

6.3 Planar shear initial stress

Here we consider wave propagation in the plane of shear — the (x1, x2) plane. The relevant
components of the acoustic tensor are then given by

Q11 = α1 + [α1 + α2 + 2(2γ1 + γ2)τ
2 + γ4τ

4]n2
1 + 2(1 + 2β1 + β2 + γ3τ

2)τn1n2 + (β3 + 2γ1)τ
2n2

2,

Q22 = α1 + [α1 + α2 + 2(2γ1 + γ2)τ
2 + γ4τ

4]n2
2 + 2(1 + 2β1 + β2 + γ3τ

2)τn1n2 + (β3 + 2γ1)τ
2n2

1,

Q12 = (2β1 + β2)τ + γ3τ
3 + [α1 + α2 + (2γ1 + 2γ2 + β3)τ

2 + γ4τ
4]n1n2,

referred to background axes (not the principal axes considered in Section 5.3). As already
noted, we assume that the strong ellipticity condition holds so the wave speeds are real.
As in the previous section we work in the (x1, x2) plane with n3 = m3 = 0 and set
n1 = cos θ, n2 = sin θ and m1 = cosφ,m2 = sinφ. Then, by eliminating the wave speed
from the propagation condition, we may apply equation (A.8) from Appendix A, recast as

tan 2φ =
2(2β1 + β2 + γ3τ

2)τ + [α1 + α2 + (2γ1 + 2γ2 + β3)τ
2 + γ4τ

4] sin 2θ

[α1 + α2 + (2γ1 + 2γ2 − β3 + γ4τ 2)τ 2] cos 2θ
, (6.23)

which gives φ for any given θ.
The (in-plane) wave speeds are given by

ρv2 =
1

2

[
Q11 +Q22 ±

√
(Q11 −Q22)2 + 4Q2

12

]
. (6.24)

For definiteness it is interesting to consider the situation in which τ is small and (6.23) is
linearized in τ , which leads to

(α1 + α2) sin(2φ− 2θ) = 2(2β1 + β2)τ cos 2φ, (6.25)

from which we deduce that a longitudinal wave can propagate for τ 6= 0 if either θ = φ =
π/4 or 2β1 + β2 = 0. The first of these possibilities corresponds to propagation along a
principal axis and the second to a special set of values of the material parameters that
allows propagation of a longitudinal and transverse wave in any in-plane direction.

In the linear specialization we obtain

Q11 +Q22 = 3α1 + α2 + 2(1 + 2β2 + β2)τ sin 2θ, (6.26)

(Q11 −Q22)
2 + 4Q2

12 = (α1 + α2)
2 + 4(α1 + α2)(2β1 + β2)τ sin 2θ, (6.27)
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and the wave speeds (6.24) are then given by

ρv2 = λ0 + 2µ0 + {2α′1(0) + α′2(0) + [1 + 4β1(0) + 2β2(0)] sin 2θ}τ, (6.28)

ρv2 = µ0 + [α′1(0) + sin 2θ]τ, (6.29)

in which the coefficients have now be linearized in τ . These are respectively longitudinal
and transverse when θ = π/4, as indicated above, or in the special case 2β1 + β2 = 0 the
transverse wave speed stands but the longitudinal wave speed specializes accordingly.

Tang (1967) considered in-plane wave propagation for an initial shear stress in which
the only non-zero components of the second Piola–Kirchhoff stress were T12 = T21. As with
the case of hydrostatic pressure discussed at the end of Section 6.1, Tang used an incorrect
incremental form of the constitutive law. When linearized in the initial stress the results
from equation (3.10) in his paper that parallel (6.28) and (6.29) can be shown to reduce,
in the present notation, to

ρv2 = λ0 + 2µ0 + (λ0 + 3µ0)τ̄ sin 2θ, ρv2 = µ0, (6.30)

where we have set τ̄ = τ/µ0 and τ = T12 since there is no distinction between stress mea-
sures themselves in the reference configuration, which is quite different from the situation
for their increments. Note, in particular, that (6.30)2 depends on neither the initial shear
stress nor the direction of propagation, which is quite unrealistic and cannot be recovered
from (6.29) for τ 6= 0. Fortuitously, (6.30)1 can be recovered from (6.28) by making the
special choices 2α′1(0) + α′2(0) = 0 and 2β1(0) + β2(0) = 1 + λ0/2µ0 of the coefficients.

6.4 Some connections with the classical theory of Biot

It is interesting now to consider how the classical theory of initial stress in the general linear
theory of elasticity due to Biot (see Biot, 1939, 1940a, 1965) relates to the present theory.
As noted in Section 1, the elasticity tensor of Biot, with components Bpiqj depends in an
unspecified way on the initially stressed configuration. First, we record that, as shown in
Ogden & Singh (2011), the general connection between A0piqj and Bpiqj may be written in
the form

A0piqj = Bpiqj − 1
2
δpjτqi − 1

2
δpqτij − 1

2
δqiτpj + 1

2
δijτpq + δqjτpi, (6.31)

which can be shown to be equivalent to the expression (4.25) given in Chapter 2 of Biot’s
book (Biot, 1965). For the general expression (4.2) to reduce to the Biot form for isotropic
response, as quantified in (1.3), the material parameters in (4.2) must be specialized to

α1 = µ0, α2 = λ0, β1 = −1/2, β2 = 0, (6.32)

where µ0 and λ0 are the classical Lamé moduli and terms of order higher than 1 in τ are
neglected.

For the hydrostatic stress considered in Section 6.1 these specializations yield, from
(6.12) and (6.11), ρv2T = µ0 and ρv2L = λ0 + 2µ0 − τ . The first of these agrees with
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the original result of Biot, who mentioned that any dependence on the initial stress must
be through the elastic constants themselves. The results in the present paper make the
dependence explicit. It does not appear that the result ρv2L = λ0 + 2µ0 − τ was given by
Biot.

We remark that in Shams et al. (2011) we adopted a slightly different form of the
isotropic constitutive law from that given in (1.3), namely

Bpiqj = µ0(δijδpq + δqiδpj) + λ0δpiδqj + δpiτqj, (6.33)

for which, in the list (6.32), β2 = 0 is replaced by β2 = 1.
Turning next to the case of uniaxial stress we find from Section 6.2 first that for

propagation in the direction of initial stress the formulas (6.17) and (6.18) reduce to
ρv211 = λ0 + 2µ0 − τ and ρv212 = µ0 + 1

2
τ , respectively, while for propagation normal to the

initial stress the formulas (6.22) reduce to ρv222 = λ0 + 2µ0, ρv
2
21 = µ0 − 1

2
τ and ρv223 = µ0.

For the case of compressive initial stress with τ = −P (P > 0) the speeds of the relevant
two transverse waves agree with those obtained by Biot, specifically ρv2T = µ0 ± 1

2
P .

It is also interesting to apply the Biot specialization to the shear stress example in
Section 6.3. Equations (6.28) and (6.29) yield

ρv2L = λ0 + 2µ0 − τ sin 2θ, ρv2T = µ0 + τ sin 2θ, (6.34)

and a longitudinal and transverse wave can propagate in any in-plane direction, where θ
is the angle the propagation direction makes with the principal direction of stress corre-
sponding to principal stress +τ . Note that for propagation along either principal direction
there is no influence of τ , which would seem to be unrealistic.

7 Deformed and pre-stressed isotropic elastic solid

In this section we consider the initial stress to be associated with a finite deformation from
an unstressed configuration (denoted B0) of an isotropic elastic solid, and we shall con-
sider two states of the accompanying stress analogous to those considered in the foregoing
sections, specifically pure dilatation, corresponding to hydrostatic stress, and an axially
symmetric deformation corresponding to uniaxial stress. There is no direct analogue of the
planar shear stress situation since when accompanied by deformation such as simple shear
there will in general also be normal stresses, which are not considered in Section 4.3.

For an isotropic elastic solid the Cauchy stress tensor σ is given by the appropriate
specialization of (2.14), namely

Jσ = 2W1B + 2W2(I1B−B2) + 2I3W3I, (7.1)

where we recall that J = det F and B is the left Cauchy–Green tensor, where F and J are
now measured relative to B0 instead of Br. We may consider the strain energy to depend
on the three principal stretches λ1, λ2, λ3 instead of the principal invariants I1, I2, I3, and
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for this purpose we write W = W̄ (λ1, λ2, λ3). The principal Cauchy stresses σ1, σ2, σ3 are
then given simply by

Jσ1 = λ1W̄1, Jσ2 = λ2W̄2, Jσ3 = λ3W̄3, (7.2)

which are equivalent to the principal components of (7.1), where W̄i = ∂W̄/∂λi, i = 1, 2, 3,
and J = λ1λ2λ3. This is easily seen by noting that in terms of the principal stretches the
invariants I1, I2, I3 are given by

I1 = λ21 + λ22 + λ23, I2 = λ22λ
2
3 + λ23λ

2
1 + λ21λ

2
2, I3 = J2 = λ21λ

2
2λ

2
3. (7.3)

In terms of invariants the components of the elasticity tensor are given by

JA0piqj = 2(W1 + I1W2)Bpqδij + 2W2[2BpiBqj −BiqBjp −BprBrqδij −BpqBij]

+ 2I3W3(2δipδjq − δiqδjp) + 4W11BipBjq + 4W22(I1Bip −BirBrp)(I1Bjq −BjsBsq)

+ 4W12(2I1BipBjq −BipBjrBrq −BjqBirBrp) + 4I3W13(Bipδjq +Bjqδip)

+ 4I3W23[I1(Bipδjq +Bjqδip)− δipBjrBrq − δjqBirBrp] + 4I23W33δipδjq, (7.4)

where Bij are the components of B. This specializes the form of JA0piqj for an initially-
stressed solid given in Shams et al. (2011) to the present situation, but equivalent forms of
(7.4) can be found in the earlier literature on isotropic finite elasticity (see, for example,
Hayes & Rivlin, 1961).

When referred to the principal axes of B the components (7.4) can be expressed more
compactly as

JA0iijj = λiλjW̄ij, JA0ijij =
λiW̄i − λjW̄j

λ2i − λ2j
λ2i , JA0ijji = JA0ijij − λiW̄i, (7.5)

where W̄ij = ∂2W̄/∂λi∂λj, i, j ∈ {1, 2, 3}. Note that the only non-zero components of
A0 are A0iijj, i, j ∈ {1, 2, 3}, together with, for i 6= j, A0ijij and A0ijji (see, for example,
Ogden, 1984), as is the case for the components of the elasticity tensor of an initially
stressed but undeformed material when referred to the principal axes of the initial stress
τ , as can be seen by reference to (4.4).

If two of the principal stretches coincide, say λj = λi, then σj = σi and a limiting
process can be applied to express the second and third elements in (7.5) as

A0ijij →
1

2
(A0iiii −A0iijj + σi), A0ijji →

1

2
(A0iiii −A0iijj − σi), (7.6)

respectively.

7.1 Pure dilatation

Here we consider a pure dilatation with corresponding isotropic stress. Let λi = J1/3, i =
1, 2, 3, and define Ŵ (J) = W̄ (J1/3, J1/3, J1/3). We denote the corresponding (equal) prin-
cipal stresses by σ . Then the simple connection σ = Ŵ ′(J) follows. The only independent
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components of A0 are then A0iijj = J−1/3Ŵij evaluated for the pure dilatation, with A0iiii

independent of i and A0iijj independent of i and j 6= i. Now, from (5.1), we obtain

σ̇ = A0L + σL− σ(trL)I. (7.7)

We consider an incremental simple shear deformation, and, without loss of generality, we
may take this to be in the (x1, x2) plane. Then

σ̇12 = A01212(L21 + L12) =
1

2
(A0iiii −A0iijj + σ)(L21 + L12). (7.8)

This enables us to define the incremental shear modulus as a function of J , which we write
as µ̂(J). It is given by

µ̂(J) =
1

2
(A01111 −A01122 + σ). (7.9)

Note that Ṡ021 = A02121L12 for simple shear in the x1 direction, Ṡ012 = A01212L21 for
simple shear in the x2 direction and A02121 = A01212. We note in passing that Ṫ012 =
(A01212−σ)(L21 +L12) and it would be incorrect to define the shear modulus as A01212−σ
based on use of Ṫ0.

Next consider an incremental pure dilation ε, so that L11 = L22 = L33 = ε/3 and

trσ̇ = (A01111 + 2A01122 − 2σ)ε. (7.10)

The incremental bulk modulus, which we denote by κ̂(J), may be defined as a function of
J as

κ̂(J) =
1

3
(A01111 + 2A01122 − 2σ), (7.11)

where the components of A0 are again evaluated for λi = J1/3, i = 1, 2, 3. This may also
be expressed in the form κ̂(J) = JŴ ′′(J), which agrees with a definition of the incremental
bulk modulus adopted by Scott (2007).

If we set σ = τ , where τ is the initial hydrostatic stress considered previously then,
because of the connection τ = Ŵ ′(J), we can in principle switch between the two different
formulations, although, for a given τ , this would involve inversion of the relation τ = Ŵ ′(J)
to obtain J . When the switch is made we can identify µ̂(J) and κ̂(J) with µ(τ) and
κ(τ), respectively. We should note here that the densities in the stress-free reference
configuration B0, with density ρ0, and the deformed (or initially-stressed) configuration
B = Br are related by ρ0 = ρJ and the factor J needs to be used to switch between ρ0v

2

and ρv2 in considering formulas for various wave speeds, where ρ = ρr.
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7.2 Uniaxial stretch with lateral contraction

Now consider a uniaxial stress σ1 = σ with σ2 = σ3 = 0 and stretches λ1 and, by symmetry,
λ2 = λ3. Then, W̄2 = W̄3 = 0 and the components of A0 are given by

JA01111 = λ21W̄11, JA02222 = λ22W̄22 = JA03333, JA02233 = λ22W̄23, (7.12)

JA011ii = λ1λ2W̄12, JA01i1i =
λ31W̄1

λ21 − λ22
, JA0i1i1 =

λ1λ
2
2W̄1

λ21 − λ22
, i = 2, 3, (7.13)

A01ii1 = A0i11i = A0i1i1 = A01i1i − σ, i = 2, 3, (7.14)

A02323 = A03232 = A02332 = A03223 =
1

2
(A02222 −A02233), (7.15)

all evaluated for λ3 = λ2 and with σ = λ−22 W̄1. Poisson’s ratios and Young’s moduli can
be defined in exactly the same way as in Section 5.2, except that here the components of
A0 are different from those in Section 5.2. There is no need to repeat them all here, but
we note, for example, that

ν12 = A01122/(A02222 +A02233) = λ1W̄12/λ2(W̄22 + W̄23) (7.16)

E1 = A01111 − 2ν12A01122 = J−1λ21[W̄11 − 2W̄ 2
12/(W̄22 + W̄23)], (7.17)

which are both functions of λ1 when λ2 = λ3 is determined from W̄2 = 0 for a given form
of W̄ . The expression for ν12 is consistent with the definition of the incremental Poisson’s
ratio given by Scott (2007). On the other hand, the definition of E1 above differs from the
corresponding definition in Scott (2007) since the latter is defined, in the present notation,
as λ1dσ/dλ1 with λ2 = λ3 given by W̄2 = 0. The definition of E1 above corresponds
to λ1dW̄1/dλ1 updated to the deformed configuration by the push-forward factor J−1λ1,
which is the appropriate specialization of the general push forward operation J−1F that
takes the nominal stress S to the Cauchy stress σ = J−1FS. This definition of E1 based
on nominal stress is consistent with that used in Section 5.2.

7.3 Application to second-order elasticity

For definiteness we now specialize the form of strain-energy function W to the third order in
the strain. The precise form of this approximation depends on the choice of strain measure,
but here, in order to make contact with several contributions to the literature, we shall use
the Green strain tensor E = 1

2
(C−I), where C is again the right Cauchy–Green deformation

tensor. The aim here is to obtain the first order correction to the classical longitudinal
and transverse wave speeds. For a discussion of the advantages of using logarithmic strain
instead of Green strain, particularly when approaching the incompressible limit, we refer
to the recent paper by Destrade & Ogden (2010).
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7.3.1 Historical expansions of the strain energy

The use of invariants for expressing the third-order expansion of W appears to have been
introduced by Brillouin (1925); see also his monograph (Brillouin, 1946). The Brillouin
expansion may be written in the form

W = W0 −
1

2
p0Ĩ1 +

1

8
λ0Ĩ

2
1 +

1

4
µ0Ĩ2 + AĨ1Ĩ2 +BĨ31 + CĨ3, (7.18)

where, in different notation from that used by Brillouin, Ĩ1 = 2trE, Ĩ2 = 4tr(E2), Ĩ3 =
8tr(E3), respectively of orders 1, 2, 3 in E, the constant W0 is the energy in the reference
configuration and p0 corresponds to an initial pressure in the reference configuration. Note,
in particular, that Brillouin used 2E rather than E itself as the strain measure and that
the notations A,B,C are different from those defined in (6.14).

Let us drop the terms W0 and p0, which are redundant for our purposes, and recast
the remaining terms using the principal invariants of Green strain, which, for consistency
with the notation used in Destrade & Ogden (2010), we denote by i1, i2, i3. Thus,

i1 = trE, i2 =
1

2
[i21 − tr(E2)], i3 = det E. (7.19)

Then, we have

W =
1

2
(λ0 + 2µ0)i

2
1 − 2µ0i2 + 8(A+B + C)i31 − 8(2A+ 3C)i1i2 + 24Ci3. (7.20)

This is entirely equivalent to the strain-energy function generally referred to as the Mur-
naghan form of strain energy that appears in Murnaghan (1951, 1967) and is based on the
use of Green strain. It is written

W =
1

2
(λ0 + 2µ0)i

2
1 − 2µ0i2 +

1

3
(l + 2m)i31 − 2mi1i2 + ni3, (7.21)

where l,m, n are the Murnaghan constants. The Brillouin constants A,B,C are given in
terms of l,m, n by

A =
1

16
(2m− n), B =

1

48
(2l − 2m+ n), C =

1

24
n. (7.22)

We remark that in his original paper Murnaghan (1937) worked in terms of the Almansi
strain tensor (I − B−1)/2 and its principal invariants, which we denote here by Ī1, Ī2, Ī3.
The original energy function of Murnaghan has the form

W =
1

2
(λ0 + 2µ0)Ī

2
1 − 2µ0Ī2 + l̄Ī31 + m̄Ī1Ī2 + n̄Ī3. (7.23)

In general (7.23) is different from (7.21), but the two are equivalent to the third order in
the strains. It is then easy to show that the constants l,m, n and l̄, m̄, n̄ are related by

l̄ =
1

3
(l + 2λ0), m̄ = −2m− 4λ0 − 12µ0, n̄ = n+ 12µ0. (7.24)
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This difference has significance when considering approximations to wave speeds at this
order, as we shall see shortly. We note in passing that because of the requirement of
objectivity the Almansi strain tensor (or any other Eulerian strain tensor) can be used as
the argument of the strain energy function if and only if the material is isotropic. Clearly,
the work of Brillouin on this topic has been to some extent overlooked, although Murnaghan
(1937), Hughes & Kelly (1953), and Truesdell (1961) did refer to Brillouin (1925). For
further historical discussion of second-order elasticity, including the contribution of Rivlin
(1953), we refer to section 66 of Truesdell & Noll (1965).

An equivalent form of the third-order expanded energy function was also introduced
by Landau & Rumer (1937), who were apparently unaware of the work of Brillouin. This
may be written

W =
1

2
λ0(trE)2 + µ0tr(E2) +

1

3
Ā tr(E3) + B̄(trE)tr(E2) +

1

3
C̄(trE)3, (7.25)

where overbars have been used to distinguish the third-order constants from those of Bril-
louin; in Landau & Lifshitz (1986) the notations A,B,C were used, differing from those in
Landau & Rumer (1937). The connections between the Murnaghan constants l,m, n and
the Landau constants Ā, B̄, C̄ were noted in Destrade & Ogden (2010) as

Ā = n, B̄ = m− 1

2
n, C̄ = l −m+

1

2
n. (7.26)

Biot (1940b) also developed a third-order expansion, which is equivalent to the above
and details may also be found in his book (Biot, 1965). Biot (1965) worked in terms of
the principal strain components λi − 1 and the corresponding principal Biot stresses. His
third-order constants, denoted D,F,G, can be shown to be related to l,m, n via

D = l + 2m+
3

2
(λ0 + 2µ0), F = l +

1

2
λ0, G = 2l − 2m+ n. (7.27)

He did not give the form of strain energy explicitly.
Finally, we mention the third-order expansion adopted by Toupin & Bernstein (1961),

who used the invariants trE, tr(E2), tr(E3) and third-order constants ν1, ν2, ν3. In terms
of the principal invariants of Green strain their energy function has the form

W =
1

2
(λ0 + 2µ0)i

2
1 − 2µ0i2 +

1

6
(ν1 + 6ν2 + 8ν3)i

3
1 − 2(ν2 + 2ν3)i1i2 + 4ν3i3. (7.28)

It is straightforward to show that the constants ν1, ν2, ν3 are related to l,m, n and Ā, B̄, C̄
by (Norris, 1998)

ν1 = 2l − 2m+ n = 2C̄, ν2 = m− 1

2
n = B̄, ν3 =

1

4
n =

1

4
Ā. (7.29)

Connections between some of the above sets of constants and others used by Rivlin (1953)
were also noted by Truesdell & Noll (1965).
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Here we shall work in terms of the Murnaghan constants l,m, n but cast (7.21) in terms
of the principal invariants (2.9) of C as

W =
λ0
8

(I1 − 3)2 +
µ0

4
(I21 − 2I1 − 2I2 + 3)

+
l

24
(I1 − 3)3 +

m

12
(I1 − 3)(I21 − 3I2) +

n

8
(I1 − I2 + I3 − 1). (7.30)

For this energy function we have W22 = W13 = W23 = W33 = 0 and the expression (7.4)
reduces to

JA0piqj = 2(W1 + I1W2)Bpqδij + 2W2[2BpiBqj −BiqBjp −BprBrqδij −BpqBij]

+ 2I3W3(2δipδjq − δiqδjp) + 4W11BipBjq

+ 4W12(2I1BipBjq −BipBjrBrq −BjqBirBrp), (7.31)

and the remaining coefficients W1, W2, W3, W11 and W12 are simply obtained from (7.30).
In working with second-order elasticity the corrections to the classical moduli are ob-

tained by expanding the coefficients in the above to the first order in E. We have C = I+2E
and I1 = 3+2E, exactly, which we use together with the linear approximations I2 ' 3+4E,
I3 ' 1 + 2E, B ' C = I + 2E, where E = trE. We also note that ρ ' ρr(1− E). To the
first order in E we obtain

W1 = µ0 + 1
8
n+ 1

2
(λ0 + 2µ0 + 2m)E, W2 = −1

2
µ0 − 1

8
n− 1

2
mE, W3 = 1

8
n,

W11 = 1
4
(λ0 + 2µ0 + 4m) + 1

2
(l + 2m)E, W12 = −1

4
m, (7.32)

and hence

JA0piqj ' µ0(δijδpq + δiqδjp) + λ0δipδjq +
1

2
[(2λ0 + 2m− n)δijδpq + 2(2l − 2m+ n)δipδjq

+ (2m− n)δiqδjp]E +
1

2
(4µ0 + n)(δpqEij + δiqEjp + δjpEiq)

+
1

2
(8µ0 + n)δijEpq + (2λ0 + 2m− n)(δipEjq + δjqEip). (7.33)

We are particularly interested in the case of a pure dilatation, for which, with Eij =
Eδij/3, (7.33) reduces to

JA0piqj = µ0(δijδpq + δiqδjp) + λ0δipδjq +
1

6
(12µ0 + 6λ0 + 6m− n)Eδijδpq

+
1

6
(8µ0 + 6m− n)Eδiqδpj +

1

3
(4λ0 + 6l − 2m+ n)Eδpiδqj. (7.34)

From the definitions (7.9) and (7.11) we now obtain the approximations

µ̂(J) ' µ0 +
1

6
(6λ0 + 6µ0 + 6m− n)E (7.35)
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and

κ̂(J) ' κ0 +
2

9
(9l + n)E, (7.36)

for small dilatation, where to the first order J = 1 + E, and we note that µ̂(1) = µ0,
κ̂(1) = κ0.

To the second order we may expand the isotropic stress as

σ = Ŵ ′(J) ' εŴ ′′(1) +
1

2
ε2Ŵ ′′′(1), (7.37)

where Ŵ ′′(1) = κ0, ε ≡ J−1 ' E+E2/6 and, for the Murnaghan strain energy, Ŵ ′′′(1) =
−κ0 + 2l + 2n/9.

As indicated earlier, if the initial stress τ discussed in Sections 4 and 5 is associated
with a pure dilatation, so that τ = τI, then in principle the results here can be converted
to those based on τ . In particular, if we set σ = τ in the above and work to second order
then we may invert the τ ←→ ε relation in the form

ε ' τ/κ0 −
1

2
Ŵ ′′′(1)τ 2/κ30, (7.38)

but in considering the linear approximations of the shear and bulk moduli only the first
order term need be retained. Then, with τ = κ0ε, we can identify µ(τ) and κ(τ) with µ̂(J)
and κ̂(J), respectively. Thus

µ(τ) ' µ0 + [α′1(0) + 2β1(0) + 1]κ0ε ' µ̂(J) ' µ0 +
1

6
(6λ0 + 6µ0 + 6m− n)ε,

κ(τ) ' κ0 +
1

3
[2α′1(0) + 4β1(0) + 3α′2(0) + 6β2(0)− 1]κ0ε ' κ̂(J) ' κ0 +

2

9
(9l + n)ε.

(7.39)

Hence we can relate the constants α′1(0), α′2(0), β1(0), β2(0) to the Murnaghan constants.
After a little rearrangement, this yields

α′1(0) + 2β1(0) = (2µ0 + 6m− n)/6κ0, (7.40)

α′2(0) + 2β2(0) = (λ0 + 6l − 2m+ n)/3κ0. (7.41)

In fact, the separate values of α′1(0), α′2(0), β1(0) and β2(0) can be obtained by con-
sidering other initial deformations than pure dilatation, and we show this in Section 7.3.3
by comparing wave speeds based on the theory of uniaxial initial stress from Section 6.2
with those based on a finite deformation from an isotropic reference configuration under
uniaxial stress.

7.3.2 Implications for the wave speeds

Turning now to the propagation of plane waves, we note that for any (m, n) pair satisfying
(6.5) the wave speed v is given by

ρ0v
2 = J [Q(n)m] ·m = JA0piqjnpnqmimi, (7.42)
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where the factor J is now included to reflect the change in reference configuration from B0
to Br = B. For the case of pure dilatation we then obtain, on use of (7.34),

ρ0v
2 = µ0 + (µ0 + λ0)(m · n)2 +

1

6
(12µ0 + 6λ0 + 6m− n)E

+
1

6
[8λ0 + 8µ0 + 12l + 2m+ n]E(m · n)2. (7.43)

For a longitudinal wave with m = n this reduces to

ρ0v
2
L = λ0 + 2µ0 +

1

3
(7λ0 + 10µ0 + 6l + 4m)E, (7.44)

and for a transverse wave with m · n = 0

ρ0v
2
T = µ0 + (λ0 + 2µ0 +m− 1

6
n)E. (7.45)

These results agree with those obtained by Hughes & Kelly (1953) for the case of hydrostatic
pressure (τ = −P ). They used the Murnaghan energy function based on Green strain.
As shown by Shams et al. (2011) there is similar agreement in the case of the uniaxial
compression considered by Hughes & Kelly (1953). Toupin & Bernstein (1961) obtained
equivalent results based on their third-order expansion, but expressed in terms of the
acoustoelastic coefficients, which we write as

d

dE
(ρ0v

2
L)
∣∣
E=0

=
1

3
(7λ0 + 10µ0 + 3ν1 + 10ν2 + 8ν3), (7.46)

d

dE
(ρ0v

2
T )
∣∣
E=0

=
1

3
(3λ0 + 6µ0 + 3ν2 + 4ν3). (7.47)

Note that the E in Toupin & Bernstein (1961) is 3× that used here. Toupin & Bernstein
(1961) mentioned that their results were equivalent to those obtained by Brillouin (1925).
The Brillouin results therefore pre-date much of the subsequent work.

In calculating the second order correction to longitudinal and transverse wave speeds,
Birch (1938) used the original (Almansi strain based) form of the Murnaghan strain energy
but effectively set l̄ = m̄ = n̄ = 0, obtaining the results

ρ0v
2
L = λ0 + 2µ0 + P (13λ0 + 14µ0)/(3κ0) ≡ λ0 + 2µ0 − (13λ0 + 14µ0)E/3, (7.48)

ρ0v
2
T = µ0 + P (λ0 + 2µ0)/κ0 ≡ µ0 − (λ0 + 2µ0)E (7.49)

for the wave speeds, where P = −κ0E is the pressure. The omission of the third-order
constants can be significant since typically they are of the same order of magnitude as the
Lamé moduli λ0 and µ0, as illustrated by the data shown in Table 3.

If the third-order constants are retained then we have, instead,

ρ0v
2
L = λ0 + 2µ0 − (13λ0 + 14µ0 − 18l̄ + 2m̄)E/3,

ρ0v
2
T = µ0 − (λ0 + 2µ0 +

1

2
m̄+

1

6
n̄)E. (7.50)
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Table 3: Lamé constants and Landau third-order elastic moduli for five solids (expressed
in units of 109 N m−2), as collected by Porubov (2003): his Murnaghan constants m, n, l
have been converted here to the Toupin–Bernstein constants ν1, ν2, ν3

Material λ0 µ0 ν1 ν2 ν3

Polystyrene 1.71 −21.2 −10 −8.3 −2.5
Steel Hecla 37 −354 82.1 −358 −282 −89.5
Aluminium 2S −204 27.6 −228 −197 −57
Pyrex glass 264 27.5 420 −118 105
SiO2 melted 72 31.3 −44 93 −11

If, by contrast, we set the third-order constants l,m, n to zero then the Hughes & Kelly
(1953) results reduce to

ρ0v
2
L = λ0 + 2µ0 + (7λ0 + 10µ0)E/3,

ρ0v
2
T = µ0 + (λ0 + 2µ0)E. (7.51)

Note, in particular, the opposite sign but equal magnitude of the second term in the
shear wave expression compared with (7.49). Thus, interpretation of the results requires
caution. In particular, care must be taken that the results allow for an increase as well as
for a decrease of the wave speeds with pressure and uniaxial stress, depending on which
solid is considered (see Tables 1 and 2).

7.3.3 The case of uniaxial stress

We now consider a deformation from a stress-free configuration B0 of an isotropic material
associated with a uniaxial stress σ in the e1 direction. We denote the corresponding
component E11 of the Green strain tensor by E. Then, by setting the lateral stress to
zero and by symmetry, E22 = E33 = −λ0E/2(λ0 + µ0), to the first order in E, and
σ = 3κ0µ0E/(λ0 + µ0), and hence

J = 1 + µ0E/(λ0 + µ0) = 1 + σ/3κ0, (7.52)

also to first order.
The wave speeds v11, v12, v22, v23 are then calculated by using (7.33) and appropriate

specializations of (7.42) and the connection ρ0 = ρJ . After some manipulations, which are
omitted, this yields the formulas

ρv211 = λ0 + 2µ0 + 2[2λ20 + 7λ0µ0 + 4µ2
0 + µ0l + 2(λ0 + µ0)m]σ/3κ0µ0, (7.53)

ρv212 = µ0 + [4µ0(4λ0 + 3µ0) + 4µ0m+ λ0n]σ/12κ0µ0, (7.54)

ρv222 = λ0 + 2µ0 − (2λ20 + 5λ0µ0 + 2µ2
0 − 2µ0l + 2λ0m)σ/3κ0µ0, (7.55)

ρv223 = µ0 − [2µ0(2λ0 + µ0)− 2µ0m+ (λ0 + µ0)n]σ/6κ0µ0, (7.56)
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and we also note the connection ρv212− ρv221 = σ. By setting σ = τ we then compare these
results with the formulas in (6.17), (6.18) and (6.22), which we now collect together as

ρv211 = λ0 + 2µ0 + [2ᾱ′1(0) + ᾱ′2(0) + 4β1(0) + 2β2(0) + 1]τ, (7.57)

ρv212 = µ0 + [ᾱ′1(0) + β1(0) + 1]τ, (7.58)

ρv222 = λ0 + 2µ0 + [2ᾱ′1(0) + ᾱ′2(0)]τ, (7.59)

ρv223 = µ0 + ᾱ′1(0)τ, (7.60)

with ρv221 given by (6.21). Note, in particular, that bars have now been placed over α′1(0)
and α′2(0). This is because the arguments of α1 and α2 are different for hydrostatic stress
and uniaxial stress, respectively the relevant invariants of τ are (3τ, 3τ 2, 3τ 3) and (τ, τ 2, τ 3),
so that α′1(0) = 3ᾱ′1(0) and α′2(0) = 3ᾱ′2(0), while β1(0) and β2(0) are the same in each
case.

Comparison the two sets of formulas yields the results

β1(0) = 1 + n/4µ0, β2(0) = (2λ0 + 2m− n)/2µ0, (7.61)

α′1(0) = −[2(2λ0 + µ0)µ0 − 2µ0m+ (λ0 + µ0)n]/2κ0µ0, (7.62)

α′2(0) = −[(2λ0 + µ0)λ0 − 2µ0l + (2m− n)(λ0 + µ0)]/κ0µ0, (7.63)

from which it is easy to check that the results (7.40) and (7.41) are recovered.
It is interesting that the four constants α′1(0), α′2(0), β1(0) and β2(0) are expressed in

terms of the three Murnaghan constants. This is explained by noting that the anisotropic
constitutive law for an initially stressed material with no accompanying deformation is
specialized to isotropy by introducing a stress-free reference configuration and an associated
deformation.

Finally, we note that the Biot values (6.32) are obtained from the latter formulas by
specializing the Murnaghan constants to m = −2l = −(λ0 + 2µ0), n = −6µ0.

8 Concluding remarks

In this paper we have examined in detail the effect of initial stress on the propagation of
small amplitude homogeneous plane waves in an undeformed elastic material on the basis
of the general theory of a hyperelastic material with initial stress developed by Shams et
al. (2011), which had its genesis in the work of Hoger (1985, 1986, 1993a,b) in particular.
A key feature of the constitutive law, formulated in terms of invariants of the deformation
and initial stress, is that the elasticity tensor depends in general in a highly nonlinear way
on initial stress. Important special cases considered within the general framework included
initial stresses corresponding to hydrostatic stress, uniaxial stress, and shear stress, for
which explicit and relatively simple forms of the elasticity tensor were given. For each
of these states of stress the dependence of various elastic moduli on the initial stress was
made explicit. For example, simple formulas were obtained for the stress-dependence of
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the Lamé moduli in the case of isotropic initial stress and Poisson’s ratios and Young’s
moduli for the cases of uniaxial initial stress and planar initial shear stress.

The results were applied to infinitesimal wave propagation and it was shown how some
known results fit within the general framework, and some discrepancies in some of the
earlier work were highlighted. We then considered the initial stress to be a pre-stress as-
sociated with the deformation of an isotropic elastic material from a stress-free reference
configuration and made connections with the analysis from the preceding sections. Specif-
ically, we considered a pure dilatational deformation and a deformation corresponding to
simple tension. We then discussed the specialization of second-order elasticity in detail
and collated various contributions from the earlier literature that date back to the work
of Brillouin (1925), with particular reference to expressions for longitudinal and transverse
wave speeds, again showing how the results are captured within the general framework
herein.
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Appendix A. Non-principal waves in a solid under ini-

tial uniaxial stress

Here we complete the analysis of Section 6.2 by considering the case of non-principal wave
propagation, for which the direction of propagation n and the direction of uniaxial stress
a are neither parallel nor orthogonal. The constants A, B, C, D are as defined in (6.14).
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By solving the equation (6.6) with Q(n) given by (6.13) we find that the wave speeds
are given by

ρv2 = A, (A−ρv2)2 + [B+C+ 2D(n ·a)](A−ρv2) + (BC−D2)[1− (n ·a)2] = 0. (A.1)

We therefore consider the cases ρv2 = A and ρv2 6= A separately.

Case 1: ρv2 = A. The propagation condition (6.5) yields

[B(m · a) +D(m · n)]a + [C(m · n) +D(m · a)]n = 0. (A.2)

If C(m · n) + D(m · a) 6= 0 then n = ±a and hence (B + C ± 2D)(m · a) = 0. The
case m · a = 0 was covered in Section 6.2 , but there is now an additional possibility, that
B + C ± 2D = 0. Both these options lead to the same result, which, on substitution from
(6.14), is written

α1 + α2 + (3β1 + 2β2)τ + (3γ1 + 2γ2 + β3)τ
2 + 2γ3τ

3 + γ4τ
4 = 0. (A.3)

There is no restriction on the direction of polarization m. Note that for the specialization
(6.32) this yields τ = −2(λ0 + µ0) and A = −λ0 and for several of the values of λ0 listed
in Table 3 there is no real wave speed in this case.

Next, consider the possibility that n 6= ±a. Then, if C(m ·n) +D(m · a) = 0 it follows
that also B(m · a) +D(m · n) = 0. By combining these we deduce that

(BC −D2)(m · a) = 0, (BC −D2)(m · n) = 0 (A.4)

provided C 6= 0, D 6= 0. Then, if BC −D2 6= 0 we must have m · a = 0 and m ·n = 0 and
m is normal to the plane of a and n. Thus, a transverse wave exists for any direction of
propagation. On the other hand, if BC −D2 = 0 then n is determined from the equation

BC −D2 ≡ (α1 + α2){β1τ + γ1τ
2 + [β3 + 2γ3τ + γ4τ

2]τ 2(n · a)2}

− [β1 + β2 + (γ1 + γ2)τ ]2τ 2(n · a)2 = 0. (A.5)

Since we are considering the case n 6= ±a and n · a 6= 0, possible directions n generate a
cone with axis a, provided |n ·a| < 1. For each such n, m must satisfy m · (Ba +Dn) = 0.
Note that in the linear approximation (A.5) cannot hold unless β1(0) = 0, in which case n
is unrestricted and A = µ0 + α′1(0)τ + τ(n · a)2.

Other special cases are as follows: if B 6= 0, C 6= 0, D = 0 then m ·n = 0, m ·a = 0 and
either n ·a = 0 or β1+β2+(γ1+γ2)τ = 0; if B = 0, C 6= 0, D = 0 then m ·n = 0 and either
n ·a = 0 or β1 +β2 + (γ1 +γ2)τ = 0. In the latter, if B = 0 and n ·a = 0 then β1 +γ1τ = 0
(assuming, of course, τ 6= 0), while if B = 0 and n · a 6= 0 then (n · a)2 is determined from
B = 0. Finally, we note that if C = D = 0 then there are four possibilities: (i) n·a = 0 and
B = 0 and hence β1+γ1τ = 0 — there is no restriction on m; (ii) n ·a = 0 and m ·a = 0 —
this is captured by the discussion around (6.19); (iii) β1 + β2 + (γ1 + γ2)τ = 0 and B = 0,
the latter determining (n ·a)2 — there is no restriction on m; (iv) β1 +β2 + (γ1 + γ2)τ = 0
and m · a = 0 — there is no restriction on n.
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Case 2: ρv2 6= A. Now, from the propagation condition (6.5) with the specialization
(6.13) we have

(A− ρv2)m + [B(m · a) +D(m · n)]a + [C(m · n) +D(m · a)]n = 0. (A.6)

Thus, m,n, a are coplanar unless either the coefficient of a or n vanishes. If neither of the
coefficients vanish then, without loss of generality, we may confine attention to the (x1, x2)
plane and set a = e1. Let (n1, n2) and (m1,m2) be the in-plane components of n and m,
respectively and set n3 = m3 = 0. The propagation condition (6.5) then specializes to the
two components

Q11m1 +Q12m2 = ρv2m1, Q12m1 +Q22m2 = ρv2m2. (A.7)

For a given propagation direction the wave speed is given by one of the two solutions of
the quadratic in (A.1) and is known explicitly. Elimination of ρv2 from (A.7) then gives

(Q11 −Q22)m1m2 = Q12(m
2
1 −m2

2), (A.8)

which determines the polarization m. Let n1 = cos θ, n2 = sin θ andm1 = cosφ,m2 = sinφ.
Then the above can be rewritten as

tan 2φ =
C sin 2θ + 2D sin θ

B + C cos 2θ + 2D cos θ
. (A.9)

From this we can immediately recover some of the previous results. If, for example, θ =
0 (propagation in the direction of initial stress) then φ = 0 or π/2, corresponding to
longitudinal and transverse waves, respectively, with wave speeds given by ρv2L = A+B +
C + 2D and ρv2T = A (degenerate case). If θ = π/2 (propagation transverse to the initial
stress) then D = 0 and again φ = 0 or π/2, transverse and longitudinal, respectively, with
wave speeds given by ρv2T = A + B and ρv2L = A + C. There is, however, an additional
case not covered previously in which a longitudinal and transverse wave can propagate. By
setting φ = θ in (A.9) and discarding cases already discussed we obtain B cos θ + D = 0,
which leads to (on discarding a factor τ 6= 0)

2β1 + β2 + (2γ1 + γ2)τ + (β3 + 2γ3τ + γ4τ
2)τ cos2 θ = 0. (A.10)

If this has a solution (or solutions) θ for cos2 θ < 1 then a longitudinal wave can propagate
in the direction defined by such an angle (or angles). The corresponding wave speed is
given by

ρv2L = A+ C +D cos θ = 2α1 + α2 + [1 + 2β1 + β2 + (2γ1 + γ2)τ)]τ cos2 θ. (A.11)

Equally, by setting φ = θ + π/2 the same reduction B cos θ + D = 0 is obtained and a
transverse wave can accompany the longitudinal wave and has wave speed which, on use
of (A.10), can be written

ρv2T = A+B+D cos θ = α1+β1τ+γ1τ
2+τ cos2 θ− [2β1+β2+(2γ1+γ2)τ ]τ sin2 θ. (A.12)
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For the specialization (6.32) equation (A.10) is satisfied and equations (A.11) and (A.12)
reduce to ρv2L = λ0 + 2µ0 + τ cos2 θ and ρv2T = µ0− 1

2
τ + τ cos2 θ, respectively. Formulas in

Section 6.4 are recovered by taking θ = 0 and θ = 1
2
π.

With reference to (A.6) we now consider the special cases corresponding to vanishing
of one or other of the coefficients of a and n. These are B(m · a) + D(m · n) = 0 with
C(m ·n) +D(m · a) 6= 0 and B(m · a) +D(m ·n) 6= 0 with C(m ·n) +D(m · a) = 0. The
first of these corresponds to the case B cos θ+D = 0 just considered, while for the second
m is aligned with the direction of uniaxial initial stress and C cos θ +D = 0, which yields
the nontrivial result

α1 + α2 + [β1 + β2 + (γ1 + γ2)τ ]τ = 0. (A.13)

This puts no restriction on the direction of propagation n and the wave speed is given by

ρv2 = A+B +D cos θ (A.14)

as in (A.12), but the wave is not necessarily transverse in this case. For the special case
(6.32) the condition (A.13) yields τ = −2(λ0 + µ0), as for (A.3), and ρv2 specializes to
µ0 + (λ0 + µ0) sin2 θ.
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