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Public health practitioners rely on epidemiological case count and molec-

ular sequence data for making decisions regarding the prevention, control, and

treatment of infectious disease. The relationship between what practitioners

can observe and what they wish to know, (i.e. the epidemiological or evolu-

tionary state of the population) can be uncertain because of gaps or biases

in the data collection and interpretation steps. In this dissertation, I inte-

grate simulations of disease dynamics with statistical frameworks to link such

observational data with probabilistic statements about the range of underly-

ing possible outcomes. Chapter 2 addresses the need for real-time estimates

of local Zika epidemic risk during an unfolding outbreak to inform county-

specific public health response plans. In this chapter, I present a quantita-

tive framework for estimating real-time ZIKV risk that captures uncertainty
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in case reporting, importations, and vector-human transmission dynamics. I

find that accurate estimates of the case reporting rate can reduce the uncer-

tainty in perceived epidemic risk. In addition, local differences in both the

environmental suitability for ZIKV transmission and in the numbers of new

cases arriving influence how long a policy maker can wait before implement-

ing response efforts to curb a growing epidemic. In Chapter 3, I address the

theoretical and practical questions of how early can population level antigenic

evolution of seasonal influenza A/H3N2 be predicted, and what are the best

data metrics to inform such predictive models. Using a detailed simulation

model of seasonal influenza transmission and evolution, I fit predictive logistic

regression models of antigenic variant success to epidemiological and popula-

tion genetic predictors derived from theoretical case and molecular data. The

results show that the relative transmission rates of newly emerging influenza

variants can robustly indicate future epidemic threats, up to 10 months prior

to their widespread expansion. This chapter demonstrates that the early de-

tection of emerging influenza viruses is limited by a tight race between the

typical dynamics of antigenic turnover and the annual timeline for vaccine de-

velopment. Chapter 4 examines how complex evolutionary processes, such as

recombination and latency, leave detectable signals in HIV-1 molecular data

when analyzed using methods that assume the absence of these processes.

First, I develop a new method for simulating the evolutionary history of a set

of molecular sequence samples using ancestral recombination graphs (ARG).

Next, I use a new statistical framework for comparing simulated and observed
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HIV-1 trees. I find evidence that the intensity of within-host evolutionary

processes is detectable in binary trees constructed using hierarchical cluster-

ing methods. Furthermore, the latent reservoir size is likely to differ between

individual patients. This model represents an important advance in the real-

ism of HIV within-in host evolutionary modeling. Altogether, the results in

this dissertation demonstrate how effective infectious disease management can

be improved by using an interdisciplinary approach of computational epidemi-

ology and statistics to strategically think about complex data collection and

interpretation questions.
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3.2 Relative growth rates predict future success. (a) Clus-
ters that eventually establish have significantly higher Rc/〈R〉
than those that fail to establish. As clusters increase in rela-
tive frequency from 1% to 10%, their Rc/〈R〉 generally declines
but the distinction between future successes and future fail-
ures becomes more pronounced. (b) R is a composite value
based on the mutational load and Seff. We compared the mu-
tational load (left) and Seff (right) of a cluster when it crossed
the 1% and 10% thresholds by subtracting the former from the
latter (orange distributions); we simultaneously calculated the
difference in average mutational load and across the entire vi-
ral population (grey distributions). The top and bottom rows
shows the distributions of change for clusters that establish and
transiently circulate, respectively. The decrease in a cluster’s
fitness advantage is driven by both increasing mutational load
and a decreasing Seff. The background mutational load does not
change noticeably, while the background Seff increases slightly. 53

3.3 Viral competition predicts future success for clusters
with borderline growth rates. (a) Clusters with only a
slight Rc/〈R〉 advantage are more likely to establish if the back-
ground var(R) is low. Clusters with higher Rc/〈R〉 success-
fully regardless of var(R). Contour lines indicate the density of
values of Rc/〈R〉 and var(R). The lines represent the correla-
tion between the variables for successful and transient clusters.
(Success-black: r = 0.63, p < 2.2e−16; Transient-grey: r = 0.18,
p < 1.2e−06). The dots represent clusters with Rc/〈R〉’s be-
tween 1.025-1.030, a range within the individual distributions
of Rc/〈R〉 for success and transient clusters do not statistically
differ (Wilcox, p = 0.46). For clusters falling within this am-
biguous range of Rc/〈R〉, (b) var(R) is significantly higher in
transient clusters than in established clusters, and (c) in com-
parison to transient clusters, successful clusters tend to face
fewer co-circulating clusters (Wilcox, p = 0.005), with the cur-
rent dominant cluster at higher frequency (Wilcox, p = 0.023).
Points represent the number of circulating clusters and the fre-
quency of the dominant cluster; shading represents the kernel
density estimation of the distribution of points. Across all
graphs, values are calculated when the focal clusters reach a
10% surveillance threshold. . . . . . . . . . . . . . . . . . . . . 54
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3.4 Empirical antigenic dynamics of influenza A/H3N2, 2006-
2018. (a) Relative frequencies of all antigenic clusters that
reach the threshold of at least 10% of sampled viruses. Fre-
quencies are calculated using a 60-day sliding window. Grey
shading indicates clusters that surpass the 10% threshold, but
do not eventually establish (i.e., reach relative frequency of at
least 20% for at least 45 days). Other colors indicate distinct
antigenic clusters that eventually establish. (b) A low relative
number of epitope mutations when a cluster reaches the 1% rel-
ative frequency threshold is an early indicator of future success
(Wilcox, p < 0.003). We divide the number of epitope muta-
tions of a focal cluster by the average number of mutations of
simultaneously circulating clusters. . . . . . . . . . . . . . . . 57

3.5 Model performance across surveillance thresholds. (a)
Area under the receiver operator curve (AUC) suggests that
models can predict successful from unsuccessful clusters by the
time they reach 1% of circulating viruses, with discriminatory
power declining slightly as clusters rise in frequency. Bars rep-
resent the max, median, and minimum AUC values across 5-
fold cross validation. (b-c) There is a trade-off between lead
time and model performance. The horizontal bars represent the
IQR of time between the moment the expanding antigenic clus-
ter reaches the surveillance threshold and when it reaches the
success criteria. Vertical bars represent the range and median
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Chapter 1

Introduction

1.0.1 Thematic Overview

Effective infectious disease management relies on understanding fac-

tors that promote pathogen transmission. These factors vary depending on

the type of disease (e.g., endemic or novel, acute or chronic) and the pub-

lic health goal (e.g., prevention, control, treatment). For novel diseases, or

disease expanding into a new location (e.g., the 2014 Ebola and 2016 Zika

virus outbreaks) key questions for disease management include: Where is the

disease likely to spread? How many cases are expected? Will the outbreak

wane without intervention? If not, what is the time scale for implementing

control measures? Unfortunately, the pathogen-specific epidemiological data

necessary to answer these questions often do not exist.

On the other hand, for an endemic disease that occurs annually, like

seasonal influenza, the pathogen-specific epidemiological data does exist. Even

so, the complex interactions between an endemic disease’s epidemiology, hu-

man immunology, and environmental factors create uncertainty for future out-

breaks [26, 91, 165]. For these diseases, a different set of questions should be

asked: How does the magnitude and timing of this year’s outbreak differ from

previous years? Will it be influenced by climatic factors, such as increased
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rainfall? Will individuals infected last year be susceptible to the virus this

year?

Analogous to controlling epidemic spread on the population level, clini-

cians make decisions to treat and cure patients with chronic infections. Chronic

infections flare and wane according to a complex, within-host interaction be-

tween the immune system, treatment strategies, pathogen evolution, and co-

infections. For a chronic disease such as HIV-AIDS, a clinician asks: How

much pathogen is there in the patient and how will the level affect the pro-

jected pathogenesis? Will the individual respond to a specific treatment or is

the pathogen resistant to it?

Infectious disease management makes evidence-based decisions by com-

bining information from multiple data sources to gain a better picture of the

current state of the outbreak or infection. These data sources include forms

of disease surveillance that are based upon direct patient contact with pub-

lic health officials, such as syndromic surveillance and biological tests, and

data sources that capture individual behavior, such as school absenteeism or

Google searches [5]. For example, disease incidence in a population might be

measured either by the number of people seeking routine clinical care that

match a syndromic case definition or by the proportion of biological tests that

return positive confirmation [31, 32, 67]. Laboratory tests that measure the

presence and quantity of antibodies within an infected individual can provide

a picture of the within-host dynamics of an individual infection. Moving be-

yond these established methods, technological advances in computing power
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and next-generation sequencing (NGS) capabilities are generating a wealth of

new data sources that can be harnessed for infectious disease management at

both the within-host and between-host levels. Internet-based search activity

can complement traditional epidemiological data to assess current disease inci-

dence [4, 58, 88, 121, 141]. NGS pathogen genome data from infected patients

holds great potential to inform diagnostics, patient care, and public health

epidemiology as it can provide detailed information on the evolutionary his-

tory of a pathogen population within and between hosts [13, 57, 60], estimates

of the size of the infected population [128], the rate of transmission [142] and

many other informative variables.

Despite everything we can learn from our current data collection prac-

tices, pathogen evolution and transmission are partially visible processes. The

captured data provides only a glimpse into the state of an outbreak or an

individual infection. The conclusions derived from the data will be affected

by the biases inherent to how the data is collected. Case reporting can be

affected by the asymptomatic rate, the pathogen virulence, the quality of the

diagnostics, and access to health care [56]. Because molecular sequence data

primarily comes from individuals who seek routine clinical care, it is affected

by the same biases. At a global level, molecular sequence sampling might be

over represented in geographic areas with widespread sequencing capabilities

while other areas remain underrepresented. In addition, the timing of the sam-

ples [55, 117, 152] and choice of analytical methods can influence conclusions

derived from molecular sequence data. Therefore, one key infectious disease
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management challenge is translating sparse incidence and genetic data to ac-

tionable knowledge about the current and future state of disease dynamics.

Mathematical modeling is a useful tool for guiding the interpretation

of incomplete and biased data [94]. By incorporating the ecological and evolu-

tionary principles that govern disease dynamics and determine key epidemiological-

immunological interactions, mathematical models can provide insight into the

progression of an outbreak, assess the effectiveness of control efforts, and de-

fine pathogen epidemiological properties [77, 91, 129]. Mathematical models

can further integrate the vagaries of data collection or observational processes

and thus provide an intuitive framework for testing hypotheses while explicitly

incorporating error. In particular, stochastic simulation methods—models in

which defined events are not deterministically implemented but governed by

probabilities—are well-suited to address these challenges because they provide

a means of generating a range of plausible scenarios under defined starting

conditions [70]. By coupling the outcome of stochastic simulation models with

further statistical analysis, it is possible to quantify the probability of various

outcomes, whether that is the likelihood of an outbreak or the elimination of

an individual infection. These probabilities can then be used by policy makers

to best decide where to commit limited resources, personnel, and time.

1.0.2 Chapter Summaries

In this dissertation, I combine realistic simulation models of disease

transmission and evolution that produce either or both epidemiological and
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molecular data with statistical methods to address pressing infectious disease

management questions. The questions fall into two categories: predictive use,

those which explore outcomes under specific, pre-defined assumptions, and

statistical inference, those which evaluate alternative hypotheses and estimate

demographic and genetic parameters. The first two chapters use stochas-

tic modeling for predictive infectious disease applications at the between-host

level. In Chapter 2, I develop a new simulation model of Zika transmission

that integrates the probability of an importation and the probability of lo-

cal transmission to estimate a Texas county’s risk of a Zika epidemic. In

Chapter 3, using a rigorous experimental approach, I use a validated simula-

tion of seasonal influenza AH3N2 to advance influenza surveillance forecasting

strategies and quantify inherent limits of molecular forecasting. In my final

chapter, I taken an inferential approach to examine how molecular data can

inform knowledge about the within-host evolutionary processes of HIV-1 by

developing a novel simulation model of HIV-1 evolution that incorporates key

aspects of HIV-1 biology, specifically recombination, latency, and population

demography.

In Chapter 2, I develop a county-level model of Zika transmission in

Texas to help translate real-time reported case data into an estimate of future

epidemic risk. These estimates are necessary because public health responses

are difficult and expensive. During the widespread 2016 Zika epidemic, U.S

public health officials were instructed to implement enhanced mosquito con-

trol efforts upon documenting two locally transmitted Zika cases. However,
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because of variable ecological and socioeconomic conditions, some areas might

need to act upon recording the first Zika case as even a single case portends

rapid spread. Other areas, in contrast, could delay allocating resources until

a higher number of cases were reported. To support the decision of when to

implement control efforts, I create a framework that combines local ecological

suitability for Zika transmission with the probability of importing Zika cases

from abroad to assess how the risk of an epidemic in a county changes as a

function of the number of reported cases. Importantly, given that 80% of cases

are asymptomatic, I account for transmission not captured in reported case

counts. By incorporating each county’s ecological and importation risk, I was

able to assess the relative risk of a Zika outbreak across Texas’ 254 counties. I

find that during peak mosquito season, starting a response at two cases would

not be sufficient to stop an outbreak in some areas (e.g., Rio Grande Valley

and the Houston Metropolitan Area), while other areas of the state could wait

until dozens of cases appeared. This framework provides a quantitative means

for public health officials to develop county-specific guidelines for when to en-

act intervention efforts, and was presented to the Texas Department of Health

and Human Services. This chapter demonstrates the importance of estimating

location-specific risk and the challenge of obtaining reliable estimates of key

parameters for novel diseases.

In Chapter 3, I identify important early predictors of Influenza A/H3N2

antigenic cluster transitions because such predictors can be incorporated into

the decision making process for which strain to include in the seasonal vaccine.
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Seasonal influenza poses a significant public health burden. Last year, over

185 pediatric deaths and roughly 800,000 hospitalizations were attributed to

a severe strain of influenza A/H3N2. Seasonal influenza vaccines serve as a

critical line of defense, but their efficacy depends on immunological matching

with circulating viruses. During the annual selection of vaccine strains, public

health agencies and vaccine manufacturers collaborate to forecast which in-

fluenza strains will dominate 9-12 months into the future. To support these

decisions, scientists have begun to develop models that predict influenza evo-

lutionary dynamics from molecular and epidemiological data collected by labs

worldwide. I applied an empirically validated, high resolution simulation of

influenza A/H3N2 evolution to address the following questions: How reliably

and with how much lead time can we identify strains that will rise to dom-

inance in future influenza seasons? What data should we be collecting to

accelerate and improve the accuracy of such forecasts?

I found that, in a scenario in which we can precisely measure the muta-

tional load and population-wide susceptibility of every newly appearing strain,

we can reliably identify strains that will ultimately dominate with at least six

months advanced warning. This is true even when a given strain is still at

relative frequencies below 10% in the population. However, on a realistic vac-

cination production time scale of 9-12 months, our ability to identify strains

is reduced. The results underscore the tradeoff between prediction accuracy

and the lead-time for vaccine development. This chapter describes how nu-

merous complimentary metrics can be derived from one data source and the
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broader potential for model-based evaluation and optimization of public health

surveillance efforts.

In Chapter 4, I advance a within-host evolutionary model of Human

Immunodeficiency Virus Type 1 (HIV-1) to include realistic biological features

of HIV-1 evolution. Previously, this model had focused on modeling epidemi-

ological links between two patients and had assumed no recombination, latent

reservoir, or selection pressure on viral population size. To model HIV-1 evo-

lution within a single host, I added all three processes in. The model serves

to connect the longitudinal viral RNA sequence samples, (i.e. the data one

collects over the course of an individual’s infection) with the underlying evolu-

tionary history of the viral sample. Since its origins in the human population

in the mid-twentieth century, the HIV-AIDS epidemic has been one of the

most devastating infectious diseases to affect modern human history. Despite

antiretroviral therapy’s (ART) ability to knock HIV-1 viremia to undetectable

levels and extend the quality of life of infected individuals, drug therapy does

not eradicate the virus. In part, a cure has been elusive because of the com-

plexity and our limited understanding of the within-host HIV-1 biology. The

growth of HIV-1 sequence databases has motivated the development of phylo-

genetic methods to gain a better understanding of the evolutionary dynamics of

HIV-1. To answer questions about how the interactions between widespread

evolutionary processes should manifest themselves on phylogenetic trees re-

constructed from longitudinal samples, I integrated these key components of

HIV-1 biology into a mathematical modeling framework. The phylogenetic
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patterns arising from this model can be used to infer estimates of important

immune-evading mechanisms such as rates of recombination and the size of

the latent reservoir pool, as well as to compare qualitative differences between

individual patients. I find that high rates of recombination and a large latent

reservoir size produce unrealistic HIV-1 trees. Second, the size of the latent

reservoir might be variable between individuals. This chapter demonstrates

the importance and challenge of developing realistic evolutionary models to

improve inference of within-host evolutionary processes.

1.0.3 Data Logistics and Challenges of Simulation Modeling

The chapters in this dissertation show the utility of using stochastic

simulation models for addressing questions of how to interpret or strategically

collect data that public health officials and clinicians use for evidence-based

decision making. However, there is another type of data present in this disser-

tation that warrants mention, namely the data that is used to parameterize

and fit models. The quality and quantity of this data is an important factor

to consider when developing simulation models and translating results from

in silico to real-world settings. I will briefly describe how data availability

impacted the model selection and presented challenges in all three research

chapters.

The extent to which a model captures the real-world complexities that

dictate disease dynamics is in part dictated by the ability to parameterize

a complex model. If every component going into the model contains uncer-
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tainty, the results become less useful for public health officials, who often want

a single quantitative statement to answer their question. Model complexity

therefore becomes a balance between the quantity and quality of the data

and the question of interest. This point is demonstrated by the three differ-

ent simulation modeling techniques I used in this dissertation: an analytically

tractable compartmental model of Zika transmission, a large-scale agent-based

model of influenza A H3N2 transmission, and a coalescent-based simulation

of HIV-1 evolution. When a disease is largely unknown, such as Zika, the

wide range of uncertainty that comes from uninformative prior parameter es-

timates severely constrains the complexity of the model. In this case, even

parameterizing a compartmental model can prove challenging. In Chapter 2,

one way we sought to reduce the complexity of Zika transmission was by com-

bining the two-step human-mosquito-human transmission interaction into one

human-human step. Because our question concerned how quickly cases ac-

cumulated and because early parameter estimates were available for the Zika

serial interval, we could integrate these two biological steps into one step in

our model. In contrast, for disease that has been studied in depth, like sea-

sonal influenza, there is sufficient information to parameterize an agent-based

model that captures higher levels of realism. For Chapter 3, a fine-grained

model was necessary to give us a detailed view into how small scale events

affect population-level properties. Yet, there is still a limit on the complexity

that this model could include because of both computational cost and data

limitations. For example, it does not include spatial structure or more de-
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tailed immunological phenomenons that might influence antigenic evolution,

such as original antigenic sin and short-term heterotypic immunity. In the

final chapter, the premise of the coalescent model – simulating in reverse time

— is in part to reduce complexity. Instead of forward simulating a growing

population that would also require modeling the dynamic interplay between

the virus population and the immune system, we only focus on a subset of the

virus population and define a limited set of demographic events.

The realism in the model in turn impacts how easy it is to bridge the

gap between using simulations as scenario-based tools to directly linking the

simulation results to reality. In Chapter 2, although our results were able

to provide reasonable relative risk assessments in the short term, we saw in

the long-term that our expectations did not match the observed data. Our

absolute estimates of county-level epidemiological risk, R0, were too high and

Zika cases did not materialize in Texas despite high numbers of importations in

the most risky areas. This discrepancy was most likely due to a combination

of a lack of Zika-specific data, a weak understanding of how socioeconomic

conditions impact mosquito-human interaction in developed locations, and the

county-level resolution of our model as mosquito transmission may be better

modeled at the local and household levels. In Chapter 3, we saw the challenge

of linking the simulation to reality when we tried to reproduce our results on an

empirical data set. As previously mentioned, one of the strengths of the agent-

based model framework is that it gives a high-resolution view of the system,

that is often not reproducible in the real-world. However, the empirical data
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did not contain enough information on its own to test the predictors we had

identified as most useful. Furthermore, the temporal resolution of the data

was not sufficient to reproduce our proxy model results. In Chapter 4, we saw

the challenge of using statistical inference to narrow in on plausible parameter

combinations of individual patients. For complex models, such as ARGs, the

likelihood function is computationally costly to evaluate, and so we need to

look to likelihood-free statistical inference methods. While we were able to

use our sampling estimation framework to quantitatively ascertain which end

of the spectrum HIV-1 parameter values most likely reside, defining a narrow

range of plausible parameters for different participants proved difficult. To

adequately infer particular parameter values will require an immense amount

of computational power to get sufficient statistical power.

1.0.4 Concluding Remarks

Stochastic simulation and statistical modeling provide a way to exam-

ine the complex interplay of the ecological, evolutionary, and behavioral forces

that govern disease dynamics and surveillance. Using three in-depth analyses

during my dissertation, I demonstrate how these methods can be applied to

complex infectious disease management questions in varied biological settings.

In this dissertation, I focused on two forms of real-time data, case counts and

molecular sequence data. My results show how these two data sources can

be powerful alone or in combination for providing decision support. Look-

ing forward, infectious disease management is increasingly interested in fusing
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disparate forms of data sources, such as Internet data, weather, and mobility

data, with case and molecular data to answer complex questions for different

public health objectives. As each of these new data sources becomes inte-

grated into infectious disease modeling, it will be paramount to assess the

utility and limitations in how the data is collected and incorporated. This dis-

sertation provides examples of how to approach those questions and outlines

challenges to consider in methodology and translating insights from theoretical

to real-word settings. Altogether, the results in this dissertation suggest the

interface between the modeling community and the clinical and public health

community will be critical to strategically thinking about data collection and

interpretation for the purpose of addressing infectious disease management

questions.
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Chapter 2

Assessing real-time Zika risk in the United

States

2.1 Abstract 1

Confirmed local transmission of Zika Virus (ZIKV) in Texas and Florida

have heightened the need for early and accurate indicators of self-sustaining

transmission in high risk areas across the southern United States. Given

ZIKV’s low reporting rates and the geographic variability in suitable con-

ditions, a cluster of reported cases may reflect diverse scenarios, ranging from

independent introductions to a self-sustaining local epidemic. We present a

quantitative framework for real-time ZIKV risk assessment that captures un-

certainty in case reporting, importations, and vector-human transmission dy-

namics. We assessed county-level risk throughout Texas, as of summer 2016,

and found that importation risk was concentrated in large metropolitan re-

gions, while sustained ZIKV transmission risk is concentrated in the south-

eastern counties including the Houston metropolitan region and the Texas-

Mexico border (where the sole autochthonous cases have occurred in 2016).

1This chapter was published as Castro LA, Fox SJ, Chen X, Liu K, Bellan SE, Dimitrov
NB, et al. Assessing real-time Zika risk in the United States. BMC Infect Dis. BMC
Infectious Diseases; 2017;17: 284. doi:10.1186/s12879-017-2394-9 [27]
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We found that counties most likely to detect cases are not necessarily the most

likely to experience epidemics, and used our framework to identify triggers to

signal the start of an epidemic based on a policymakers propensity for risk.

This framework can inform the strategic timing and spatial allocation of pub-

lic health resources to combat ZIKV throughout the US, and highlights the

need to develop methods to obtain reliable estimates of key epidemiological

parameters.

2.2 Introduction

In February 2016, the World Health Organization (WHO) declared

Zika virus (ZIKV) a Public Health Emergency of International Concern [64].

Though the Public Health Emergency has been lifted, ZIKV still poses a great

threat for reemergence in susceptible regions in seasons to come [170]. In

the US, the 268 reported mosquito-borne autochthonous (local) ZIKV cases

occurred in Southern Florida and Texas, with the potential range of a pri-

mary ZIKV vector, Aedes aegypti, including over 30 states [49, 51, 162]. Of the

2,487 identified imported ZIKV cases in the US through the end of August,

137 had occurred in Texas. Given historic small, autochthonous outbreaks

(ranging from 4 - 25 confirmed cases) of another arbovirus vectored by Ae.

Aegypti—dengue (DENV) [159, 160, 162], Texas was known to be at risk for

autochthonous arbovirus transmission, and the recent outbreaks have high-

lighted the need for increased surveillance and optimized resource allocation

in the states and the rest of the vulnerable regions of the Southern United
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States.

As additional ZIKV waves are possible in summer 2017, public health

professionals will continue to face considerable uncertainty in gauging the

severity, geographic range of local outbreaks, and appropriate timing of inter-

ventions, given the large fraction of undetected ZIKV cases (asymptomatic)

and economic tradeoffs of disease prevention and response [3, 44, 90, 93]. De-

pending on the ZIKV symptomatic fraction, reliability and rapidity of di-

agnostics, importation rate, and transmission rate, the detection of five au-

tochthonous cases in a Texas county, for example, may indicate a small chain

of cases from a single importation, a self-limiting outbreak, or a large, hidden

epidemic underway (Fig 2.1). These diverging possibilities have precedents. In

French Polynesia, a handful of ZIKV cases were reported by October 2013; two

months later an estimated 14,000-29,000 individuals had been infected [90, 93].

By contrast, Anguilla had 17 confirmed cases from late 2015 into 2016 without

a subsequent epidemic, despite large ZIKV epidemics in surrounding countries

[123]. To address the uncertainty, the CDC issued guidelines for state and

local agencies; they recommend initiation of public health responses following

local reporting of two non-familial autochthonous ZIKV cases [52].

Previous risk assessments of ZIKV have provided static a priori assess-

ments based on historical incidence and vector suitability, but they do not

provide dynamic risk assessments as cases accumulate in a region. Here, we

present a framework to support real-time risk assessment, and demonstrate its

application in Texas. Our framework accounts for the uncertainty regarding
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Figure 2.1: ZIKV emergence scenarios. A ZIKV infection could spark (A)
a self-limiting outbreak or (B) a growing epidemic. Cases are partitioned into
symptomatic (grey) and asymptomatic (black). Arrows indicate new ZIKV
importations by infected travelers and vertical dashed lines indicate case re-
porting events. On the 75th day, these divergent scenarios are almost indis-
tinguishable to public health surveillance, as exactly three cases have been
detected in both. By the 100th day, the outbreak (A) has died out with 21
total infections while the epidemic (B) continues to grow with already 67 total
infections. Each scenario is a single stochastic realization of the model with
R0=1.1, reporting rate of 10%, and introduction rate of 0.1 case/day.

ZIKV epidemiology, including importation rates, reporting rates, local vector

populations, and socioeconomic conditions, and can be readily updated as our

understanding of ZIKV evolves. To estimate current and future epidemic risk

from real-time ZIKV case reports, the model incorporates a previously pub-

lished method for estimating local ZIKV transmission risk and a new model

for estimating local importation risk. Across Texas’ 254 counties, we find that
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the estimated risk of a locally sustained ZIKV outbreak rises precipitously

as autochthonous cases accumulate, and that counties at the southern tip of

the Texas-Mexico border and in the Houston Metropolitan Area are at the

highest risk for ZIKV transmission. This statewide variation in risk stems pri-

marily from mosquito suitability and socio-environmental constraints on ZIKV

transmission rather than heterogeneity in importation rates.

2.3 Methods

Our risk-assessment framework is divided into three sections: (1) county-

level epidemiological estimates of ZIKV importation and relative transmission

rates, (2) county-specific ZIKV outbreak simulations, and (3) ZIKV risk anal-

ysis (Fig A.1). To demonstrate this approach, we estimate county-level ZIKV

risks throughout the state of Texas for August 2016, given that, by May 2016,

Texas experienced dozens of ZIKV importations without subsequent vector-

borne transmission.

2.3.1 Estimating Importation Rates

Our analysis assumes that any ZIKV outbreaks in Texas originate with

infected travelers returning from active ZIKV regions. To estimate the ZIKV

importation rate for specific counties, we (1) estimated the Texas statewide

importation rate (expected number of imported cases per day) for August

2016, (2) estimated the probability (import risk) that the next Texas import

will arrive in each county, and (3) took the product of the state importation
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rate and each county importation probability.

1. During the first quarter of 2016, 27 ZIKV travel-associated cases were

reported in Texas [162], yielding a baseline first quarter estimate of 0.3

imported cases/day throughout Texas. In 2014 and 2015, arbovirus in-

troductions into Texas increased threefold over this same time period,

perhaps driven by seasonal increases in arbovirus activity in endemic

regions and the approximately 40% increase from quarter 1 to quarter

3 in international travelers to the US [118]. Taking this as a baseline

(lower bound) scenario, we projected a corresponding increase in ZIKV

importations to 0.9 cases/day (statewide) for the third quarter.

2. To build a predictive model for import risk, we fit a probabilistic model

(maximum entropy) [73] of importation risk to 183 DENV, 38 CHIKV,

and 31 ZIKV Texas county-level reported importations from 2002 to

2016 and 10 informative socioeconomic, environmental, and travel vari-

ables (Table 2.2). Given the geographic and biological overlap between

ZIKV, DENV and Chikungunya (CHIKV), we used historical DENV

and CHIKV importation data to supplement ZIKV importations in the

importation risk model, while recognizing that future ZIKV importa-

tions may be fueled by large epidemic waves in neighboring regions and

summer travel, and thus far exceed recent DENV and CHIKV importa-

tions [109]. Currently, DENV, CHIKV, and ZIKV importation patterns

differ most noticeably along the Texas-Mexico border. Endemic DENV
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transmission and sporadic CHIKV outbreaks in Mexico historically have

spilled over into neighboring Texas counties. In contrast, ZIKV is not yet

as widespread in Mexico as it is in Central and South America, with less

than 10 reported ZIKV importations along the border to date (October

2016). We included DENV and CHIKV importation data in the model

fitting so as to consider potential future importation pressure from Mex-

ico, as ZIKV continues its increasing trend since March 2016 [119]. To

find informative predictors for ZIKV importation risk, we analyzed 72

socio-economic, environmental, and travel variables, and removed near

duplicate variables and those that contributed least to model perfor-

mance, based on out-of-sample cross validation of training and testing

sets of data [100, 167], reducing the original set of 72 variables to 10.

We validated our importation model by comparing the predicted distri-

bution of cases across the state given a total number of imported cases

(September 2016) as a linear predictor of the empirical distribution of

cases across counties.

2.3.2 County Transmission Rates (R0)

The risk of ZIKV emergence following an imported case will depend

on the likelihood of mosquito-borne transmission. For emerging diseases like

ZIKV, the public health and research communities initially face considerable

uncertainty in the drivers and rates of transmission, given the lack of field

and experimental studies and epidemiological data, and often derive insights
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through analogy to similar diseases. For our case study, we estimated county-

level ZIKV transmission potential by Ae. aegypti using a recently published

model [2], that derives some of its key parameters from DENV data (Table

2.1). The utility of our framework depends on the validity of such estimates

and will increase as our knowledge of ZIKV improves. However, we expect our

results to be robust to most sources of uncertainty regarding ZIKV and DENV

epidemiology, as they may influence the absolute but not relative county-level

risks.

We estimated the ZIKV reproduction number (R0), the average num-

ber of secondary infections caused by a single infectious individual in a fully

susceptible population, for each Texas county following the method described

in Perkins et al. [2]. The method calculates R0 using a temperature-dependent

formulation of the Ross-Macdonald model, where mosquito mortality rate (µ)

and extrinsic incubation period of ZIKV (n) are temperature dependent func-

tions; the human-mosquito transmission probability (b = 0.4), number of days

of human infectiousness ( c
r

= 3.5), and the mosquito biting rate (a = 0.67) are

held constant at previously calculated values [2, 17, 21, 33, 106, 116]; and the

economic-modulated mosquito-human contact scaling factor (m) is a func-

tion of county mosquito abundance and GDP data fit to historic ZIKV sero-

prevalence data [2]. To account for uncertainty in the temperature-dependent

functions (the extrinsic incubation period (EIP) and mosquito mortality rate)

and in the relationship between economic index and the mosquito-to-human

contact rate, Perkins et al. generated functional distributions via 1000 Monte
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Parameter Description

Values In-
vestigated
(or median
95%)

Source

Exposed
compartments
(e)

Number of exposed compartments 6
Fit (See
Section
A.1.1)

Incubation
Rate (ν)

Daily probability of progressing
from one exposed compartment to
the next

0.584 [90, 96]

Infectious
compartments
(n)

Number of infectious compartments 3
Fit (See
Section
A.1.1)

Recovery Rate
(δ)

Daily probability of progressing
from one infectious compartment
to the next

0.3041 [90, 96]

Reproduction
Number (R0)

The expected total number of
secondary infections from one
infectious individual in a fully
susceptible population

0− 3.1
County
R0 esti-
mates

Daily
Reporting
Rate (η)

The daily probability of an
infectious individual being reported

Daily:
0.011−
0.0224
Overall:
10− 20%

[44]

Daily
Importation
Rate (σ)

The expected number of infectious
ZIKV importations per day

0.0− 1.21

County
importa-
tion rate
estimates

Generation
Time

The average length of time between
consecutive exposures
GT = e

ν + (1
2)nδ

15
(9.5-23.5)
days

[96]

Table 2.1: Stochastic ZIKV outbreak model parameters. We hold the
disease progression parameters constant across all scenarios, estimate R0 and
importation rate for each individual county, and vary the reporting rate to
investigate its impact on the uncertainty of ZIKV risk assessments.
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Carlo samples from the underlying parameter distributions. We assume DENV

estimates for these temperature-dependent functions, since we lack such data

for ZIKV and these Flaviviruses are likely to exhibit similar relationships be-

tween temperature and EIP in Ae. aegypti [17]. We used the resulting dis-

tributions to estimate R0 for each county, based on county estimates for the

average August temperature, mosquito abundance from Kraemer et al. [84],

and GDP [17]. Our R0 estimates were similar to those reported by Perkins et

al. [2] with 95% confidence intervals spanning from 0 to 3.1 (Fig A.2). Given

this uncertainty, and that our primary aim is to demonstrate the risk assess-

ment framework rather than provide accurate estimates of R0 for Texas, we use

these estimates to estimate relative county-level transmission risks (by scaling

the county R0 estimates from 0 to 1). In each simulation, we assume that a

county’s R0 is the product of its relative risk and a chosen maximum R0. For

our case study, we assume a maximum county-level R0 of 1.5 This is consistent

with historical arbovirus activity in Texas (which has never sustained a large

arbovirus epidemic) and demonstrates the particular utility of the approach

in distinguishing outbreaks from epidemics around the epidemic threshold of

R0 = 1.

2.3.3 ZIKV Outbreak Simulation Model

Assuming mosquito-borne transmission as the main driver of epidemic

dynamics, to transmit ZIKV, a mosquito must bite an infected human, the

mosquito must get infected with the virus, and then the infected mosquito
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must bite a susceptible human. Rather than explicitly model the full transmis-

sion cycle, we aggregated the two-part cycle of ZIKV transmission (mosquito-

to-human and human-to-mosquito) into a single exposure period where the

individual has been infected by ZIKV, but not yet infectious, and do not ex-

plicitly model mosquitoes. For the purposes of this study, we need only ensure

that the model produces a realistic human-to-human generation time of ZIKV

transmission, and the simpler model is more flexible to disease transmission

pathways. We fit the generation time of the ZIKV model to early ZIKV Epi-

demiological estimates, with further fitting details described in section A.1.1.

The resultant model thus follows a Susceptible-Exposed-Infectious-Recovered

(SEIR) transmission process stemming from a single ZIKV infection using a

Markov branching process model (Fig A.3). The temporal evolution of the

compartments is governed by daily probabilities of infected individuals tran-

sitioning between disease states. New cases arise from importations or au-

tochthonous transmission. We treat days as discrete time steps, and the next

disease state progression depends solely on the current state and the transi-

tion probabilities. We assume that infectious cases cause a Poisson distributed

number of secondary cases per day (via human to mosquito to human trans-

mission), but this assumption can be relaxed as more information regarding

the distribution of secondary cases becomes available. We also assume in-

fectious individuals are introduced daily according to a Poisson distributed

number of cases around the importation rate. Furthermore, Infectious cases

are categorized into reported and unreported cases according to a reporting
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rate. We assume that reporting rates approximately correspond to the per-

centage (∼ 20%) of symptomatic ZIKV infections [44] and occur at the same

rate for imported and locally acquired cases. Additionally, we make the sim-

plifying assumption that reported cases transmit ZIKV at the same rate as

unreported cases. We track imported and autochthonous cases separately,

and conduct risk analyses based on reported autochthonous cases only, under

the assumption that public health officials will have immediate and reliable

travel histories for all reported cases [29].

2.3.4 Simulations

For each county risk scenario, defined by an importation rate, transmis-

sion rate, and reporting rate, we ran 10,000 stochastic simulations. Each sim-

ulation began with one imported infectious case and terminated either when

there were no individuals in either the Exposed or Infectious classes or the

cumulative number of autochthonous infections reached 2,000. Thus the total

outbreak time may differ across simulations. We held R0 constant throughout

each simulation, as we sought to model early outbreak dynamics over short

periods (relative to the seasonality of transmission) following introduction.

We classified simulations as either epidemics or self-limiting outbreaks; epi-

demics were simulations that fulfilled two criteria: reached 2,000 cumulative

autochthonous infections and had a maximum daily prevalence (defined as the

number of current infectious cases) exceeding 50 autochthonous cases (Fig A.4

and A.6). The second criterion distinguishes simulations resulting in large
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self-sustaining outbreaks (that achieve substantial peaks) from those that ac-

cumulate infections through a series of small, independent clusters (that fail

to reach the daily prevalence threshold). The latter occurs occasionally under

low R0s and high importation rates scenarios.

To verify that our simulations do not aggregate cases from clear tem-

porally separate clusters, we calculated the distribution of times between se-

quential cases (Fig A.5). In our simulated epidemics, almost all sequentially

occurring cases occur within 14 days of each other, consistent with the CDC’s

threshold for identifying local transmission events (based on the estimated

maximum duration of the ZIKV incubation period) [52].

2.3.5 Outbreak Analysis

Our stochastic framework allows us to provide multiple forms of real-

time county-level risk assessments as reported cases accumulate. For each

county, we found the probability that an outbreak will progress into an epi-

demic, as defined above, as a function of the number of reported autochthonous

cases. We call this epidemic risk. To solve for epidemic risk in a county fol-

lowing the xth reported autochthonous case, we first find all simulations that

experience at least x reported autochthonous cases, and then calculate the

proportion of those that are ultimately classified as epidemics. For example,

consider a county in which 1,000 of 10,000 simulated outbreaks reach at least

two reported autochthonous cases and only 50 of the 1,000 simulations ulti-

mately fulfill the two epidemic criteria; the probability of detecting two cases
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in the county would be 10% and the estimated epidemic risk following two re-

ported cases in that county would be 5%. This simple epidemic classification

scheme rarely misclassifies a string of small outbreaks as an epidemic, with the

probability of such an error increasing with the importation rate. For example,

epidemics should not occur when R0 = 0.9. If the importation rate is high,

overlapping series of moderate outbreaks occasionally meet the two epidemic

criteria. Under the highest importation rate we considered (0.3 cases/day),

only 1% of outbreaks were misclassified.

This method can be applied to evaluate universal triggers (like the rec-

ommended two-case trigger) or derive robust triggers based on risk tolerance

of public health agencies. For example, if a policymaker would like to initiate

interventions as soon as the risk of an epidemic reaches 30%, we would simulate

local ZIKV transmission and solve for the number of reported cases at which

the probability of an epidemic first exceeds 30%. Generally, the recommended

triggers decrease (fewer reported cases) as the policymaker threshold for ac-

tion decreases, (e.g. 10% versus 30% threshold) and as the local transmission

potential increases (e.g. R0 = 1.5 versus R0 = 1.2).

2.4 Results

ZIKV importation risk within Texas is predicted by variables reflecting

urbanization, mobility patterns, and socioeconomic status (Table 2.2), and is

concentrated in metropolitan counties of Texas (Fig 2.2A). In comparing the

predictions of this model to out-of-sample data from April to September 2016,
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Variables ordered by importance

Total Amount of County Direct Spending on Traveling ($K)
Percentage Population holding Graduate or professional degree

Total Amount of Visitor Tax Receipts(Local) ($K)
County Male Population

Population Commuting to Work with Other Means
Max Temperature of Warmest Month

Percentage Population below Poverty Level
Precipitation of Wettest Quarter

Population without Health Insurance
Population holding Graduate or professional degree

Table 2.2: Import risk model variables. These 10 variables were selected
from 72 variables using a combination of representative variables selection and
predictive backwards selection. The importance of each variable (from top to
bottom) is determined by order of exclusion in backwards selection, with the
most important variables remaining in the model the longest.

the model underestimated the statewide total number of importations (81 vs

151), but robustly predicted the relative importation rates between counties

(β = 0.97, R2 = 0.74, p < 0.001). The two highest risk counties – Harris, which

includes Houston, and Travis, which includes Austin – have an estimated 27%

and 10% chance of receiving the next imported Texas case respectively and

contain international airports.

ZIKV transmission risk is concentrated in southeastern Texas (Fig

2.2B), partially overlapping with regions of high importation risk (Fig 2.2A).

Our county-level estimates of R0 range widely (from 0.8 to 3.1 for the highest-

risk county), reflecting the uncertainty in socioeconomic and environmental

drivers of ZIKV (Fig A.2). We therefore analyzed the relative rather than
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Figure 2.2: ZIKV importation and transmission risk estimates across
Texas for August 2016. (A) Color indicates the probability that the next
ZIKV import will occur in a given county for each of the 254 Texas counties.
Probability is colored on a log scale. The 10 most populous cities in Texas are
labeled. Houston’s Harris County has 2.7 times greater chance than Austin’s
Travis County of receiving the next imported case. (B) Estimated county-level
transmission risk for ZIKV (See Fig A.7 for seasonal differences). Harris county
and Dallas County rank among the top 5 and top 10 for both importation and
transmission risk respectively; counties in McAllen and Houston metropolitan
area rank among the top 20. Bolded county border indicates counties with
recorded local ZIKV transmission.

absolute transmission risks. For purposes of demonstration, we assumed a

plausible maximum county-level R0 of 1.5, which closely followed our median

estimates, and scaled the transmission risk for each county accordingly. The

following risk analyses can be readily refined as we gain more precise and

localized estimates of ZIKA transmission potential.

Wide ranges of outbreaks are possible under a single set of epidemi-

ological conditions (Fig 2.3A). The relationship between what policymakers
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Figure 2.3: Real-time risk-assessment for ZIKV transmission. All fig-
ures are based on transmission and importation risks estimated for Cameron
County, Texas. (A) Two thousand simulated outbreaks. (B) Total number
of (current) autochthonous cases as a function of the cumulative reported au-
tochthonous cases, under a relatively high (dashed) or low (solid) reporting
rate. Ribbons indicate 50% quantiles. (C) The increasing probability of im-
minent epidemic expansion as reported autochthonous cases accumulate for a
low (solid) and high (dashed) reporting rate. Suppose a policy-maker plans
to trigger a public health response as soon as a second case is reported (ver-
tical line). Under a 10% reporting rate, this trigger would correspond to a
49% probability of an ensuing epidemic. Under a 20% reporting rate, the
probability would be 25%.

can observe (cumulative reported cases) and what they wish to know (cur-

rent underlying disease prevalence) can be obscured by such uncertainty, and

will depend critically on reporting rates (Fig 2.3B). Under a scenario esti-

mated for Cameron County which experienced the only autochthonous ZIKV

transmission in Texas and with a 20% reporting rate, ten linked and reported

autochthonous cases correspond to 6 currently circulating cases with a 95%

CI of 1-16 from inherent, early-stage outbreak stochasticity. From this wide

range of outbreak trajectories, we can characterize time-varying epidemic risk

as cases accumulate in a given county. We track the probability of epidemic
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expansion following each additional reported case in high and low reporting

rate scenarios (Fig 2.3C).

These curves can support both real-time risk assessment as cases ac-

cumulate and the identification of surveillance triggers indicating when risk

exceeds a specified threshold. For example, suppose a policymaker wanted to

initiate an intervention upon two reported cases, this would correspond with

a 49% probability of an epidemic if 10% of cases are reported, but only 25% if

the reporting rate is doubled.. Alternatively suppose a policy maker wishes to

initiate an intervention when the chance of an epidemic exceeds 50%. In the

low reporting rate scenario, they should act immediately following the third

autochthonous reported case, but could wait until the eleventh case with the

high reporting rate.

To evaluate a universal intervention trigger of two reported autochthonous

cases, we estimate both the probability of two reported cases in each county

and the level of epidemic risk at the moment the trigger event occurs (sec-

ond case reported). Assuming a baseline importation rate extrapolated from

importation levels in March 2016 to August 2016, county R0 scaled from a

maximum of 1.5, and a 20% reporting rate, only a minority of counties are

likely to experience a trigger event (Fig 2.4A). While 247 of the 254 counties

(97%) have non-zero probabilities of experiencing two reported autochthonous

cases, only 86 counties have at least a 10% chance of such an event (assuming

they experience at least one importation), with the remaining 168 counties

having a median probability of 0.0038 (range 0.0005 to 0.087). Assuming that
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Figure 2.4: Texas county ZIKV risk assessment. (A) Probability of an
outbreak with at least two reported autochthonous ZIKV cases. (B) The prob-
ability of epidemic expansion at the moment the second autochthonous ZIKV
case is reported in a county. White counties never reach two reported cases
across all 10,000 simulated outbreaks; light gray counties reach two cases, but
never experience epidemics. (C) Recommended county-level surveillance trig-
gers (number of reported autochthonous cases) indicating that the probability
of epidemic expansion has exceeded 50%. White counties indicate that fewer
than 1% of the 10,000 simulated outbreaks reached two reported cases. All
three maps assume a 20% reporting rate and a baseline importation scenario
for August 2016 (81 cases statewide per 90 days) projected from historical
arbovirus data.

a second autochthonous case has indeed been reported, we find that the under-

lying epidemic risk varies widely among the 247 counties, with most counties

having near zero epidemic probabilities and a few counties far exceeding a

50% chance of epidemic expansion. For example, two reported autochthonous

cases in Harris County, correspond to a 99% chance of ongoing transmission

that would proceed to epidemic proportions without intervention, with the

rest of the Houston metropolitan also at relatively high risk ranging from 0

(Galveston) to 90% (Waller) (Fig 2.4B).

Given that a universal trigger may signal disparate levels of ZIKV risk,
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policy makers might seek to adapt their triggers to local conditions. Suppose

a policymaker wishes to design triggers that indicate a 50% chance of an

emerging epidemic (Fig 2.4C). Under the baseline importation and reporting

rates, an estimated 31 of the 254 counties in Texas are expected to reach a

50% epidemic probability, with triggers ranging from one (Harris County) to

21 (Jefferson County) reported autochthonous cases, with a median of two

cases. Counties who detect cases simply due to high importation rates do not

have triggers, and the magnitude of a trigger helps quantify a county’s absolute

risk for an epidemic as a function of the reported autochthonous cases.

2.5 Discussion

Our framework provides a data-driven approach to estimating ZIKV

emergence risks from potentially sparse and biased surveillance data [19, 28].

By mapping observed cases to current and future risks, in the face of consider-

able uncertainty, the approach can also be used to design public health action

plans and evaluate the utility of local versus regional triggers. We demonstrate

its application across the 254 ecologically and demographically diverse counties

of Texas, one of the two states that has sustained autochthonous ZIKV out-

breaks [159, 160]. The approach requires local estimates of ZIKV importation

and transmission rates. For the Texas analysis, we developed a novel model for

estimating county-level ZIKV importation risk and applied published methods

to estimate relative county-level transmission risks (Fig 2.2). We expect that

most Texas counties are not at risk for a sustained ZIKV epidemic (Fig 2.4),
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and find that many of the highest risk counties lie in the southeastern region

surrounding the Houston metropolitan area and the lower Rio Grande valley.

However, R0 estimates are uncertain, leaving the possibility that the R0 could

be as high as other high risk regions that sustained epidemics [2, 86, 131]. Our

analysis is consistent with historic DENV and CHIKV outbreaks and correctly

identifies Cameron county, the only Texas county to have reported local trans-

mission, as a potential ZIKV hot-spot, especially when November estimates

are used [161] (Fig A.7).

Surveillance triggers, guidelines specifying situations that warrant in-

tervention, are a key component of many public health response plans. Given

the urgency and uncertainty surrounding ZIKV, universal recommendations

can be both pragmatic and judicious. To assist Texas policymakers in inter-

preting the two-case trigger for intervention guidelines issued by the CDC [52],

we used our framework to integrate importation and transmission risks and

assess the likelihood and implication of a two-case event for each of Texas’

254 counties, under a scenario projected from recent ZIKV data to August

2016. Across counties, there is enormous variation in both the chance of a

trigger and the magnitude of the public health threat if and when two cases

are reported. Given this variation, rather than implement a universal trigger,

which may correspond to different threats in different locations, one could de-

sign local surveillance triggers that correspond to a universal risk threshold.

Our modeling framework can readily identify triggers (numbers of reported

cases) for indicating any specified epidemic event (e.g., prevalence reaching a
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threshold or imminent epidemic expansion) with any specified risk tolerance

(e.g., 10% or 50% chance of that the event has occurred), given local epi-

demiological conditions. We found close agreement between the recommended

two-case trigger and our epidemic derived triggers based on a 50% probability

of expansion. Of the 30 counties with derived triggers, the median trigger was

2, ranging from one to 21 reported autochthonous cases. These findings apply

only to the early, pre-epidemic phase of ZIKV in Texas, when importations

occur primarily via travel from affected regions outside the contiguous US.

These analyses highlight critical gaps in our understanding of ZIKV bi-

ology and epidemiology. The relative transmission risks among Texas counties

appear fairly robust to these uncertainties, allowing us to identify high risk

regions, including Cameron County in the Lower Rio Grande Valley. Public

health agencies might therefore prioritize such counties for surveillance and in-

terventions resources. Given the minimal incursions of DENV and CHIKV into

Texas over that past eleven years since the first DENV outbreak in Cameron

County, and the high number of importations into putative hotspot counties

without autochthonous transmission, we suspect that, if anything, we may

be underestimating the socioeconomic and behavioral impediments to ZIKV

transmission in the contiguous US. Our analysis also reveals the significant

impact of the reporting rate on the timeliness and precision of detection. If

only a small fraction of cases are reported, the first few reported cases may

correspond to an isolated introduction or a growing epidemic. In contrast, if

most cases are reported, policymakers can wait longer for cases to accumu-
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late to trigger interventions and have more confidence in their epidemiological

assessments. ZIKV reporting rates are expected to remain low, because an es-

timated 80% of infections are asymptomatic, and DENV reporting rates have

historically matched its asymptomatic proportion [40, 44]. Obtaining a realis-

tic estimate of the ZIKV reporting rate is arguably as important as increasing

the rate itself, with respect to reliable situational awareness and forecasting.

An estimated 8-22% of ZIKV infections were reported during the 2013-2014

outbreak in French Polynesia [86]; however estimates ranging from 1 to 10%

have been reported during the ongoing epidemic in Columbia [131, 170]. While

these provide a baseline estimate for the US, there are many factors that could

increase (or decrease) the reporting rate, such as ZIKV awareness among both

the public and health-care practitioners, or active surveillance of regions with

recent ZIKV cases. Our analysis assumes that all counties have the same case

detection probabilities. However, only 40 of the 254 Texas counties maintain

active mosquito surveillance and control programs, potentially leading to dif-

ferences in case detection rates and surveillance efficacy throughout the state

[147]. Thus, rapid estimation of the reporting rate using both traditional epi-

demiological data and new viral sequenced based methods [142] should be a

high priority as they become available.

Our framework can support the development of response plans, by forc-

ing policymakers to be explicit about risk tolerance, that is, the certainty

needed before sounding an alarm, and quantifying the consequences of prema-

ture or delayed interventions. For example, should ZIKV-related pregnancy
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advisories be issued when there is only 5% chance of an impending epidemic?

10% chance? 80%? A policymaker has to weigh the costs of false positives–

resulting in unnecessary fear and/or intervention–and false negatives–resulting

in suboptimal disease control and prevention–complicated by the difficulty in-

herent in distinguishing a false positive from a successful intervention. The

more risk averse the policymaker (with respect to false negatives), the earlier

the trigger should be, which can be exacerbated by low reporting rates, high

importation rate, and inherent ZIKV transmission potential. In ZIKV prone

regions with low reporting rates, even risk tolerant policymakers should act

quickly upon seeing initial cases; in lower risk regions, longer waiting periods

may be prudent.
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Chapter 3

Early Prediction of Antigenic Transitions for

Influenza A H3N2

3.1 Abstract 1

Influenza A/H3N2 is a rapidly evolving virus which experiences major

antigenic transitions every two to eight years. Anticipating the timing and

outcome of transitions is critical to developing effective seasonal influenza vac-

cines. Using simulations from a published phylodynamic model of influenza

transmission, we identified indicators of future evolutionary success for an

emerging antigenic cluster. The eventual fate of a new cluster depends on its

initial epidemiological growth rate, which is a function of mutational load and

population susceptibility to the cluster, along with the variance in growth rate

across co-circulating viruses. Logistic regression can predict whether a cluster

at 5% relative frequency will eventually succeed with∼ 80% sensitivity, provid-

ing up to eight months advance warning. As a cluster expands, the predictions

improve while the lead-time for vaccine development and other interventions

decreases. By focusing surveillance efforts on estimating population-wide sus-

1At the time of submitting this dissertation, this chapter was published as Castro L,
Bedford T, Meyers L. Early Prediction of Antigenic Transitions for Influenza A H3N2.
bioRxiv. Cold Spring Harbor Laboratory; 2019; doi:10.1101/558577 [26]
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ceptibility to emerging viruses, we can better anticipate major antigenic tran-

sitions.

3.2 Introduction

Seasonal influenza A/H3N2 causes significant annual morbidity and

mortality worldwide, as well as severe economic losses [102]. In the United

States, the 2017-2018 season was unusually long and severe, lasting over 16

weeks and causing over 900,000 hospitalizations and 80,000 fatalities, includ-

ing 183 pediatric deaths [30, 31, 110]. The global health community continu-

ally tracks H3N2 and annually updates H3N2 vaccines. However, annual in-

fluenza epidemics continue to impart a significant public health burden. The

rapid antigenic evolution of the influenza virus via mutations in hemagglutinin

(HA) glycoproteins and neuraminidase (NA) enzymes [66, 115], and logistical

requirement of selecting vaccine strains almost a year prior to the flu season

pose a significant challenge. Vaccines target the antigen-binding regions of

dominant influenza subtypes. While a particular subtype may circulate for a

few years, strong positive selection for new antigenic variants will eventually

produce antigenic drift [15, 23, 36], rendering a vaccine less effective if new

mutations in the antigen-binding regions are not included in vaccine chosen

strains [14, 24]. The typical reign of a dominant subtype ranges from two to

eight years [13, 80]. From 2004 to 2018, seasonal influenza vaccines have had

an estimated average efficacy of 40.56% against all influenza strains included

in the vaccine [14].
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The World Health Organization’s Influenza Surveillance and Response

System (GISRS) coordinates influenza surveillance efforts to survey and char-

acterize the diversity of influenza viruses circulating in humans. Viral samples

are rapidly analyzed via sequencing of HA and NA genes, serologic assays, and

other laboratory tests to identify newly emerging antigenic clusters. Within

the past decade, the number of complete HA gene sequences in the GISAID

EpiFlu [20, 146] database has increased tenfold, from fewer than 1,000 in 2010

to over 10,000 in 2017 [104]. Molecular data at high spatiotemporal resolution

could potentially revolutionize influenza prediction. However, the research

and public health communities have just begun to determine effective strate-

gies for extracting and integrating useful information into the vaccine selection

process.

Phylodynamic models describe the interaction between the epidemi-

ological and evolutionary processes of a pathogen [61]. The availability of

molecular data coupled with the recent development of detailed, data-driven

phylodynamic models has galvanized the new field of viral predictive modeling

[53, 81, 87, 137]. These models aim to predict the future prevalence of specific

viral subtypes based on past and present molecular data. For example, one

approach generates one-year ahead forecasts of clade frequency using a fitness

model parameterized by the number of antigenic and genetic mutations that

dictate the virus’ antigenicity and stability respectively [95]. Another method

maps antigenic distance from hemagglutination inhibition (HI) assay data onto

an HA genealogy to determine whether the changes in antigenicity among high-
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growth clades necessitate a vaccine composition update [153]. A third model

predicts which clade will be the progenitor lineage of the subsequent influenza

season by estimating fitness using a growth rate measure derived from topo-

logical features of the HA genealogy [114]. All three approaches have been

tested on historical predictions. The  Luksza & Lässig model [95] predicted

positive growth for 93% of clades that increased in frequency over one year.

Steinbruk et al. [153] predicted the predominant HA allele over nine influenza

seasons with an accuracy of 78%. Both  Luksza’s & Lässig’s [95] and Neher et

al. [114] model predictions of progenitor strains to the next season’s performed

similarly. Since 2015, both these models have been used to provide recommen-

dations on vaccine composition for the upcoming flu seasons [11, 65, 111].

Taken together, this body of work points to the promise of predictive

evolutionary models. Phylodynamic simulation models provide a complemen-

tary window into the molecular evolution of emerging viruses. By observing

influenza evolution in silico, we can take rigorous experimental approach to

test hypotheses about early indicators of cluster [29,30] success and design

surveillance strategies to inform vaccine strain selection. Here, we simulate

decades of H3N2 phylodynamics using a published model [12, 82] and ana-

lyze the simulated data to identify early predictors of a cluster’s evolutionary

fate. Viral growth rates, both for an emerging cluster and its competitors, are

the most robust predictors of future ascents. When a new antigenic cluster

first appears at low frequency (e.g., 1% of sampled viruses), our models can

predict whether it will eventually rise to dominance (e.g., maintain a relative
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frequency greater than 20% of sampled viruses for at least 45 days) with rea-

sonable confidence and advanced warning. To translate these findings into

actionable guidance for global influenza surveillance, we also evaluate proxy

indicators that can be readily estimated from current data, quantify limits in

the accuracy, precision and timeliness of predictions, and construct models to

predict future frequencies of emerging clusters.

3.3 Methods

3.3.1 Simulation Model

We implemented a published stochastic individual-based susceptible-

infected (SI) phylodynamic model of influenza A/H3N2 [12, 82] to repeatedly

simulate 30 years of transmission in a constant population of 40 million hosts

with birth and death dynamics (Fig. 3.1). In brief, each individual host is

characterized by its infection status – susceptible or infected –– and a history

of prior viral infections. Viruses are defined by a discrete antigenic phenotype,

which determines the degree of immune escape from other phenotypes, and a

deleterious genetic mutation load (k) which affects the virus’ transmissibility.

Antigenic mutations occur stochastically and confer advanced antigenicity to

the virus. The probability that a given virus will infect a given host is de-

termined by how similar the antigenic phenotype of the challenging virus is

to the antigenic phenotype of the host’s most related previous infection. This

probability, or degree of immune escape, is tracked through the simulation by

the evolutionary history of clusters (parent-child relationships). Antigenic and
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deleterious non-antigenic mutations occur only during transmission events; the

model assumes that viruses within a single individual host are genotypically

homogeneous. The model also assumes no co-infection, no seasonal forcing

[45, 144], and no short-term immunity that would broadly prevent reinfection

after recovering from infection. We used the baseline parameters chosen in

Koelle & Rasmussen [82] based on empirical, epidemiological, and virological

estimates [8, 16, 25, 140].

3.3.2 Simulated Data

We ran 100 replicate simulations and selected a subset that produced

realistic global influenza dynamics. Specifically, we excluded 38 simulations

in which endemic transmission died out prior to the 30 years. We treated the

first five years of each simulation as burn-in periods. In total, we analyzed

1550 years of simulated influenza transmission and evolutionary dynamics.

Throughout each simulation, we tracked 23 metrics reflecting the epi-

demiological state of the host population (i.e., number of susceptible and in-

fected individuals) and evolutionary state of the viral population (Table B.1)

at 14 day intervals. When possible, we monitored these quantities for both

individual antigenic clusters and the entire viral population, and then calcu-

lated their ratio. For example, we monitored the average number of deleterious

mutations within each antigenic cluster and across all viruses, as well as the

relative mutational load of each cluster with respect to the entire viral popu-

lation. Henceforth, we refer to the metrics as candidate predictors.
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3.3.3 Classifying Evolutionary Outcomes

We classified each novel antigenic cluster in each simulation into one of

three categories: (1) rapidly eliminated clusters that never reach 1% relative

frequency in the population, (2) transient clusters that surpass 1% relative fre-

quency but do not qualify as established clusters, and (3) established clusters

that circulate above 20% relative frequency for at least 45 days. With this

criteria, transient and established clusters constituted on average 81% of the

infections at any point in time (Figures B.1 and B.2).

3.3.4 Predictive Models

Restricting our analysis to transient and established clusters, we used

generalized linear modeling to identify important early predictors of evolution-

ary fate. For each antigenic cluster, we predicted its evolutionary future (i.e.,

whether it ultimately becomes established) at specified surveillance thresh-

olds, such as 5% relative frequency. Specifically, we recorded all candidate epi-

demiological and evolutionary predictors at the moment each cluster crossed

the threshold. We analyzed all ten surveillance thresholds ranging from 1%

to 10% at 1% increments. For each surveillance threshold, we centered and

scaled candidate predictors and removed collinear factors. Using five-fold cross

validation, we partitioned the data into five subsets, keeping data from indi-

vidual simulations in the same subsets. We fit mixed-effects logistic regression

models using four subsets for training and controlling for differences between

independent simulations. Predictors were added sequentially based on which
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term most significantly lowered the average Akaike Information Criterion of

the five training folds.

We evaluated model performance by predicting the evolutionary out-

comes of clusters in the held-out test subset. We calculated three metrics: the

area under the receiver operating curve (AUC), the sensitivity (the propor-

tion of all positives predicted as positive), and the positive predictive value

(the proportion of true positives of all predicted positives). The model pre-

dicts the probability that a cluster will establish. To translate these outputs

into discrete binary predictions of future success, we applied a probability

threshold which maximized the F1 score [150], which is the harmonic average

of a model’s positive predictive value and sensitivity (Table B.2). When we

included historical data of candidate predictors, i.e the value of a candidate

predictor at an earlier surveillance threshold, model performance did not have

a significant difference (Fig. B.3).

We also considered an opportunistic sampling regime, where samples

are tested as they arise regardless of their relative frequency. We fit models

aimed at two prediction targets: (1) the evolutionary success of a cluster

sampled at an arbitrary relative frequency and (2) the frequency of a cluster up

to twelve months into the future. We built models based on data sampled from

ten random time points in each of the 62 25-year simulations. We considered

all clusters present above 1% relative frequency but not yet established as a

dominant cluster. The frequency of a cluster at the time of sampling was

included as an additional predictor. To predict the frequency of an antigenic
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cluster X months into the future, we fit a two-part model that first predicted

whether the cluster would be present at the specified date, and, if so, then

estimated the frequency of the cluster at that date. We used forward variable

selection and cross validation model, as described above. We used the R

statistical language version 3.3.2 [158] for all analyses, and the afex package

for generalized linear models [149].

3.3.5 Candidate predictors

Reproductive Rates In our simulated data, we can calculate the instanta-

neous reproductive rate for particular clusters and the entire viral population.

As described in Koelle & Rasmussen [82], the reproductive rate of a virus is

given by,

R(v) =
β0

(
1− sd

)k(v)

µ+ ν

(Seff(v)

N

)
(3.1)

where β0 is the inherent transmissibility, sd is the fitness effect for each

of the virus’ k(v) deleterious mutations, µ and ν are the per capita daily

death and recovery rates, respectively, and N is the host population size. We

assume that β0, sd, µ and ν are constant across all viruses. Seff(v) denotes

the population-wide susceptibility to the virus accounting for cross-immunity

from prior infections, herein referred to as the effective susceptibility, and the

population level effective susceptibility is estimated for a virus as,

Seff(v) =
S

N

N∑
h=1

σv(h) (3.2)
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where σv(h) is the immunity of host h towards virus v based on the

antigenic similarity between v and the virus in host h’s infection history most

antigenically similar to virus v. A σv(h) = 1 indicates full susceptibility, while

σv(h) = 0 indicates complete immunity.

The growth rate of an antigenic cluster is then the average over all

viruses in that cluster, given by,

Rc =
1

Ic

Ic∑
i=1

R(vi) (3.3)

where Ic is the number of hosts infected by a virus from cluster c and

vi is the virus infecting host i. Likewise the population-wide average (〈R〉)

and variance (var(R)) in are computed across all current infections, and the

relative reproductive rate of a cluster is given byRc/〈R〉.

Practical approximations Equations (3.1)–(3.3) are not easily calculated

from current surveillance data. Therefore, we considered two proxy measures

of viral growth rates and two proxy measures of viral competition. We first

choose two surveillance thresholds, for example, 6% and 10%. When the rela-

tively frequency of a cluster crosses the second threshold, we calculate both the

time elapsed since it crossed the first threshold and the relative fold change,

as given by,

χc(t1, t2) =
∆c(t1, t2)

1
Nc

∑Nc
j=1 ∆j(t1, t2)

(3.4)

where t(1) and t(2) are the times at which cluster c crossed the first and

second threshold, respectively, ∆c(s, t) is its relative frequency at time t divided
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by its relative frequency at time s and Nc is the number of distinct clusters

present at both time t(1) and t(2). For the competition proxy measures, we

calculate the the variance in χc(t1, t2) and the Nc where ∆c(s, t) > 1.

We evaluate the performance of these approximations by comparing

logistic regression models that predict whether a cluster will establish from

either the true Rc/〈R〉 at the 10% surveillance threshold, the relative fold

change between the 6% and 10%, or time elapsed between reaching the 6%

and 10% thresholds. As before, we evaluated model performance based on

AUC, positive predictive value, and sensitivity.

3.4 Results

Our simulations roughly reproduce the global epidemiological and evo-

lutionary dynamics of H3N2 influenza over a 25 year period. Without sea-

sonal forcing, prevalence rises and falls, peaking every 3.2 years on average

(s.d. = 1.6). These dynamics reflect the turnover and competition of anti-

genic clusters. The median of the most recent common ancestor (TMRCA) in

our simulations was 5.9 years (IQR 4.62 - 7.9), which is higher than empirical

estimates of 3.89 years [13]. The median life span of established clusters was

1128 days (s.d. = 480), corresponding to roughly 3.5 years. However, the an-

nual incidence of influenza in our model (4.0%, 95% CI0.37−9.7%) was lower

than empirical annual incidence estimates of 9 − 15% [13]. Given the model

only simulates the transmission of H3N2 and not all circulating flu types, our

annual incidence is comparable to empirical estimates [120]. We assume that
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clusters become detectable once they cross a relative frequency threshold of

1% and are fully established if they maintain a relative frequency above 20%

for at least 45 weeks. In our simulations, 2% of the approximately 200 novel

antigenic clusters per year overcome early stochastic loss to reach detectable

levels. As the relative frequency of a newly emerging cluster increases, the

probability that the cluster will ultimately establish also increases. There is

an inverse relationship between the number of clusters that reach a threshold

and the probability of future success. For example, far fewer clusters reach

a relative frequency of 10% than 1%. If a cluster succeeds in reaching rela-

tive frequency thresholds of 1%, 6%, and 10%, its probability of establishing

increases from 13% to 50% to 67% (Fig. B.2). Our model classifies clusters as

either positives that are likely to establish or negatives that are expected to

circulate only transiently. As we increase the surveillance threshold, the frac-

tion of successful clusters that are misclassified as negatives decreases. In a

representative out-of-sample 25-year simulation, 17 of 132 detectable clusters

eventually rose to dominance (Fig. 3.1). Of these, 65% and 88% were correctly

predicted when they reached the 1% and 10% surveillance threshold, respec-

tively. The number of true negative events decreased considerably, from 109

at the 1% surveillance threshold to only 11 at the 10% surveillance threshold,

while the other types of events held relatively constant.

Across all surveillance thresholds, the first four predictors chosen through

forward model selection are the relative growth rate of the focal cluster (Rc/〈R〉),

the background variance (var(R)) and mean 〈R〉 of viral growth rates,and the
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Figure 3.1: Out-of-sample predictions of antigenic cluster evolution-
ary success at relative frequency thresholds of 1% (a) and 10% (b).
Grey shading indicates clusters that surpass the surveillance threshold, but do
not establish. Other colors correspond to distinct antigenic clusters that even-
tually establish. The top time series graphs depict the absolute prevalence
of antigenic clusters; the middle graphs give their relative frequencies. The
bottom panels indicate the timing and accuracy of out-of-sample predictions
based on the optimized model for each surveillance threshold. The top row of
symbols indicate clusters predicted to succeed, with true positives indicated
by circles and false positives indicated by crosses; the bottom row indicates
clusters predicted to circulate only transiently, true negatives indicated by tri-
angles and false negatives indicated by squares. The number of predictions in
each category is provided in the legend.
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Predictor Symbol Models
Included

(Surveillance
Threshold %)

Coefficient
Estimate

All Models

1. Relative Growth Rate (R) Rc/〈R〉 1-10 [2.3, 2.64]
2. Variance in population R var(R) 1-10 [-0.72, - 0.49]
3. Population R 〈R〉 1-10 [0.32, 0.42]
4. Relative mutational load kc/〈k〉 1-10 [-0.34, -0.21]

Some Models

Relative variance in transmissibility var(βc)/var(β) 1-10 [0.17, 0.34]
Variance in susceptibility to cluster c var(σc) 1-6 [0.16, 0.20]
Frequency of current dominant cluster Ic/I 3,5,8,9 [0.14, 0.21]
Proportion of individuals infected I/N 2 [-0.17]
Total number of individuals infected I 3,4 [-0.17, -0.16]
The most recent common ancestor tMRCA 10 -0.16
Relative variance in susceptibility* var(σc)/var(Seff) 1 [0.12, 0.16]

Table 3.1: Predictors selected by five-fold cross validation and forward
selection. The top four variables were selected in the identical order (as
listed) across all surveillance threshold models. The fifth predictor, relative
variance in transmissibility, was included in all models, but not always as
the fifth chosen. In the formulas, c refers to cluster-level quantities. The
rightmost column gives the full range of fitted coefficients (log-odds) across
all models based on across the five-fold cross validation for each surveillance
thresholds’ final model. var(σc) was calculated across all hosts; var(Seff) was
calculated across only infected hosts. I = number of infected hosts, N = total
number of hosts, σc = effective susceptibility to infection by cluster c, βk =
the transmission rate of the virus carrying k deleterious mutations.Formulas
to calculate each quantity are in Table B.1.

relative deleterious mutational load of the focal cluster (kc/〈k〉). Population-

level epidemiological quantities were only selected for models at low surveil-

lance thresholds (2 − 4%); in these models, overall prevalence had a slightly

negative correlation with future viral success (Table 1). The median number

of predictors chosen was 6.5, with a range of 5 to 7. The best fit models are

described in Table B.2.

We examine the dynamics of the top two predictors. As newly emerging

clusters rise in relative frequency from 1% to 10%, their relative growth rate
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declines towards one. That is, they approach the population average fitness

(Fig. 3.2). The relative growth rate is significantly higher for clusters that will

eventually establish than those will burn out, with the separation between the

two groups increasing as the clusters ascend in frequency (Fig. 3.2a). This

predictor is a composite quantity, estimated based on both mutational load

and effective susceptibility. We compare these two quantities at two time

points, when the clusters reach 1% and 10% frequencies. Mutational load

increases and effective susceptibility decreases in ascending clusters, with more

extreme changes occurring in clusters that ultimately fail to establish. We

also measure the changes in these two quantities for the entire population,

and find that the background mutational load remains relatively constant and

background effective susceptibility increases slightly. The background effective

susceptibility peaks when a new cluster begins to constitute a major proportion

of the circulating types –– at this point the immunity from previous infections

is not strongly protective against the newly dominant cluster. The decline in

cluster fitness likely stems from the accumulation of deleterious mutations and

exhaustion of the susceptible population (Fig. 3.2b). While this occurs within

both established and transient clusters, the mutational loads in established

and transients increase by averages of 1.4 and 2.04 mutations, respectively

(Wilcox, p < 2.2e16).

The background variance in viral growth rates, var(R), is the second

most informative predictor. The lower the variance, the more likely a cluster

is to establish. However, it is a weaker predictor than Rc/〈R〉’s; the estimated
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Figure 3.2: Relative growth rates predict future success. (a) Clusters
that eventually establish have significantly higher Rc/〈R〉 than those that fail
to establish. As clusters increase in relative frequency from 1% to 10%, their
Rc/〈R〉 generally declines but the distinction between future successes and
future failures becomes more pronounced. (b) R is a composite value based on
the mutational load and Seff. We compared the mutational load (left) and Seff

(right) of a cluster when it crossed the 1% and 10% thresholds by subtracting
the former from the latter (orange distributions); we simultaneously calculated
the difference in average mutational load and across the entire viral population
(grey distributions). The top and bottom rows shows the distributions of
change for clusters that establish and transiently circulate, respectively. The
decrease in a cluster’s fitness advantage is driven by both increasing mutational
load and a decreasing Seff. The background mutational load does not change
noticeably, while the background Seff increases slightly.
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Figure 3.3: Viral competition predicts future success for clusters with
borderline growth rates. (a) Clusters with only a slight Rc/〈R〉 advantage
are more likely to establish if the background var(R) is low. Clusters with
higher Rc/〈R〉 successfully regardless of var(R). Contour lines indicate the
density of values of Rc/〈R〉 and var(R). The lines represent the correlation
between the variables for successful and transient clusters. (Success-black:
r = 0.63, p < 2.2e−16; Transient-grey: r = 0.18, p < 1.2e−06). The dots repre-
sent clusters with Rc/〈R〉’s between 1.025-1.030, a range within the individual
distributions of Rc/〈R〉 for success and transient clusters do not statistically
differ (Wilcox, p = 0.46). For clusters falling within this ambiguous range of
Rc/〈R〉, (b) var(R) is significantly higher in transient clusters than in estab-
lished clusters, and (c) in comparison to transient clusters, successful clusters
tend to face fewer co-circulating clusters (Wilcox, p = 0.005), with the current
dominant cluster at higher frequency (Wilcox, p = 0.023). Points represent
the number of circulating clusters and the frequency of the dominant cluster;
shading represents the kernel density estimation of the distribution of points.
Across all graphs, values are calculated when the focal clusters reach a 10%
surveillance threshold.
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logit coefficient of the Rc/〈R〉 is approximately four times that of var(R) (Table

1). The var(R) tends to increase as a cluster expands from 1% to 10% relative

frequency (Wilcox, p < 2.2e−16). This may stem from diverging fitnesses of

the newly expanding cluster and the receding dominant cluster, which has

likely accumulated a considerable deleterious load and burned through much

of its susceptible host population. A higher var(R) decreases the probability

of a cluster being successful, particularly when a cluster has only a modest

growth rate. Clusters with high Rc/〈R〉’s are successful even when emerging

in highly variant environments (Fig. 3.3a). High variance may reflect high

levels of inter-viral competition. If we consider both transient and established

clusters with similar Rc/〈R〉 (ranging from 1.025 to 1.03), successful clusters

encounter significantly fewer co-circulating clusters, and the frequency of the

resident dominant cluster is significantly higher (Fig. 3.3c). This may reflect

suppression of competition by the dominant cluster, creating a vacuum for a

moderately fit cluster to fill.

Using 6271 geographically diverse influenza A/H3N2 sequences sampled

from 2006 and 2018, we assessed whether our predictive models can be directly

applied to influenza surveillance efforts. Clusters were distinguished by single

mutations to epitope sites on the HA1 sequence and successful clusters were

those that reached a relative frequency of at least 20% for at least 45 days.

Despite sparse sampling, the dynamics of antigenic transitions resemble those

produced by our simulations (Fig. 3.4a). Over the 12-year period, dominant

clusters circulated for an average of 2.25 years (s.d. 1.17); 44 clusters reached
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a relative frequency of 10%; 18 of the 44 were eventually successful. For each

emerging cluster, we calculated the relative number of epitope mutations by

dividing the average number of epitope mutations in viruses within the cluster

by the average number found in other co-circulating viruses. For clusters that

reached 1% relative frequency, this quantity was less than one for clusters that

eventually established (N=18) and greater than one for transient clusters that

did not establish (N=1516); this difference is statistically significant (Wilcox,

p = 0.0003) (Fig. 3.4b). This difference was not significantly different when

measured when clusters reached the 5% relative frequency surveillance thresh-

old. We also fit classifier models to the empirical data using proxies for fitness

(e.g., fold change and growth rate between sequential sampling of a cluster)

and competition, (e.g., the number of co-circulating clusters). While some of

these factors are significant predictors of future evolutionary success, our best

models had sensitivity and positive predictive values below 50%.

When forecasting influenza dynamics, there may be trade offs between

prediction certainty, the extent advanced warning, and the surveillance effort

required to detect and characterize emerging viruses. Across our ten models,

there is a marked trade-off between lead-time and reliability, with low surveil-

lance thresholds providing earlier but less accurate indication of future threats

(Fig. 3.5). Across simulations, the median time difference between a cluster

reaching the 1% and 10% surveillance thresholds was approximately 7 months

(IQR: 154-294 days).

Classifier models have substantial discriminatory and predictive power
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Figure 3.4: Empirical antigenic dynamics of influenza A/H3N2, 2006-
2018. (a) Relative frequencies of all antigenic clusters that reach the threshold
of at least 10% of sampled viruses. Frequencies are calculated using a 60-day
sliding window. Grey shading indicates clusters that surpass the 10% thresh-
old, but do not eventually establish (i.e., reach relative frequency of at least
20% for at least 45 days). Other colors indicate distinct antigenic clusters that
eventually establish. (b) A low relative number of epitope mutations when a
cluster reaches the 1% relative frequency threshold is an early indicator of
future success (Wilcox, p < 0.003). We divide the number of epitope muta-
tions of a focal cluster by the average number of mutations of simultaneously
circulating clusters.
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even when an antigenic cluster is present at low frequencies (Fig. 3.5a). Model

AUC’s tend to decrease as the frequency of the candidate clusters increases.

Conversely, the positive predictive value (PPV) and sensitivity increase at

higher surveillance thresholds. The gains in sensitivity and PPV per month

decrease at higher surveillance thresholds. Between the 1% and 5% surveillance

thresholds, there is on average a 4% increase in sensitivity and 4.5% increase

in PPV per month lost in lead-time. However, between the 6% and 10%

surveillance thresholds, sensitivity gains drop to 1.2% and PPV to 3.6% per

month lost in lead-time. This decreasing trade off between gain in certainty

and loss of lead-time reflects shorter intervals between surveillance thresholds

as the cluster begins to rapidly expand and the model’s prediction capabilities

reach upper capacity.

The primary predictor across all models––the relative growth rate of

a cluster––cannot easily be estimated from available surveillance data. Thus,

we built and evaluated bivariate logistic regression models that predict future

success using more easily attained proxies (3.4). One considers the time taken

for the cluster to rise from 6% to 10% relative frequency and the total number

of clusters that grew during this period; the other considers the fold-change

in the relative frequency of the cluster between these time points and the

background variance in fold-change. Of the four proxies, all but the relative

fold-change of the cluster were statistically significant predictors, with nega-

tive effects on the probability of cluster success (Fig. B.4). These resulting

models have higher sensitivity than positive predictive values. We also tested
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Figure 3.5: Model performance across surveillance thresholds. (a)
Area under the receiver operator curve (AUC) suggests that models can pre-
dict successful from unsuccessful clusters by the time they reach 1% of cir-
culating viruses, with discriminatory power declining slightly as clusters rise
in frequency. Bars represent the max, median, and minimum AUC values
across 5-fold cross validation. (b-c) There is a trade-off between lead time and
model performance. The horizontal bars represent the IQR of time between
the moment the expanding antigenic cluster reaches the surveillance threshold
and when it reaches the success criteria. Vertical bars represent the range and
median positive predictive value (b) and sensitivity (c), across five-fold evalu-
ation. Colors correspond to the best fit model for each surveillance threshold.
Dashed gray lines indicate lead times of nine months, which represents the
current time between the Northern Hemisphere vaccine composition meeting
in February and the following start of the influenza season in October.
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Model Type AUC PPV Sensitivity

1. Rc/〈R〉 + var(R) Actual 0.88 0.81 0.89
2. δc(t1, t2) + N∆j(t1,t2)>1 Proxy 0.78 0.74 0.87
3. χc(t1, t2) + var(∆j(t1, t2)) Proxy 0.67 0.66 0.95

Table 3.2: Model 1 predicts the fate of a cluster using the top two
predictors in our best fit model. The two proxy models use data from
two time points, when the cluster reached relative frequencies of 6% (t1) and
10% (t2). Model 2 considers the time elapsed between and the number of
competing expanding clusters. Model 3 considers the relative fold change in
the focal cluster between the two time points and the population-wide variance
in fold change. Performance values are the median of five fold cross-validation.

analogous models using statistics calculated at alternative surveillance check-

points (1% to 5%, 3% to 5% , and 8% to 10%), and found that the 6%− 10%

comparison performed best (Table B.3).

Finally, we fit models to predict the presence and frequency of clusters

based on opportunistic sampling of clusters, rather than waiting for specified

surveillance thresholds. Cluster frequencies tend to skew towards low fre-

quencies (Fig. B.5). Our best fit model for predicting the future success of all

clusters present at a random time point performs comparable to our best mod-

els for low surveillance thresholds (Fig. B.6). We fit a second two-part model

that sequentially predicts the presence-absence and the frequency of a cluster

in three month intervals out to one year ahead. The model predicted up to

twelve-month ahead presence-absence with 92% discriminatory power (AUC).

However, the accuracy of the frequency predictions declined after six months,

with a tendency to underestimate the frequencies of future dominant clusters
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(Fig. B.7,Tables B.4 and B.5). The top predictors included the frequency of

the cluster at the time of sampling and most of the top predictors selected for

the surveillance threshold models.

3.5 Discussion

Until we develop an effective universal flu vaccine, seasonal vaccines

will remain the frontline of flu prevention. The severe 2017-2018 flu season

was a stark reminder that anticipating dominant strains with sufficient lead

time for incorporation into vaccines is paramount to public health. Here, we

analyzed over 1500 years of simulated influenza phylodynamics to explore the

predictability of antigenic emergence and identify early predictors of future

evolutionary success that can be plausibly monitored via ongoing surveillance

efforts.

Phylodynamic models provide insight into both the interplay of evolu-

tionary and epidemiological processes and how these dynamics are manifested

in observable data. Our simulations revealed a stereotypical path to antigenic

turnover consistent with those described in Koelle & Rasmussen [82]. An

antigenic mutation appears on a virus. If its fitness is high relative to the

competition, it can gain a foothold. In general, the lower the deleterious load

and higher the susceptibility in the host population, the higher the fitness of

the new virus. Thus, antigenic mutations occurring on good genetic back-

grounds are more likely to gain traction [82]. The dynamics of susceptibility

are a bit more complex. Although all hosts will be partially susceptible to a
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new antigenic type, the level of susceptibility will depend on past infections by

antigenically similar viruses. We find that some successful mutants arise with

markedly higher fitness than other co-circulating viruses, which propels them

towards dominance, while others enter with only moderately high fitness but

are able to ascend in the wake of a prior antigenic sweep, which suppresses

other potentially competing viruses. Many of the mutants that eventually es-

tablish as dominant clusters first appear as another dominant cluster is cresting

[1, 122]. The rampant transmission affords opportunities for such mutations

to arise and quashes other potentially competing clusters. Transmission of the

previous cluster type begins to decreases as the population gains immunity

through infection. With fewer susceptible hosts available to the previously

dominant cluster, the expanding cluster, as well as any competing clusters,

begin to constitute a larger fraction of all circulating viruses.

As a cluster expands, it accumulates deleterious mutations. By the time

new clusters reach a relative frequency of 10%, their mutational loads begins to

approach the population average. Simultaneously, the number of susceptible

hosts decreases as the cluster sweeps through the host population. If a cluster

reaches a relative frequency of 10%, its probability of future dominance will

be influenced by how much of a fitness advantage it retains, and by the level

of competition from other clusters.

The strongest predictor of future dominance across all of our models is

the relative effective reproductive number of a cluster, that is, the growth rate

of the cluster compared to the average growth rate across the viral popula-
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tion. This measure of viral fitness incorporates both the real-time competitive

advantage (vis-a-vis the immunological landscape) and deleterious mutational

load. Intuitively, faster growing clusters are more likely to persist and expand.

Our ability to predict the fate of an emergent virus improves as the cluster

increases in relative frequency. Both sensitivity –– the proportion of successful

clusters detected by the model –– and positive predictive value –– the propor-

tion of predicted successes that actually establish –– surpass 80% by the time

a cluster has reached 10% relative frequency.

The second most informative predictor selected across all models ––

the population-wide variance in the effective growth rate, var(R) –– requires a

more nuanced interpretation. The greater the background variance at the time

a cluster is emerging, the less likely the cluster is to succeed. To unpack this

result, we analyzed the competitive environment of emerging clusters with only

modest growth rates; rapidly growing clusters are likely to succeed regardless

of their competition. Within this class of slowly emerging viruses, those that

initially face a single high frequency dominant cluster and fewer co-emerging

competitors are more likely to succeed [59, 154]. A recent sweep by a dominant

cluster leaves a wake of immunity that can be exploited by antigenically-novel

clusters that stochastically battle for future dominance. We hypothesize that

these two conditions––a reigning dominant cluster and reduced competition

with emerging novelty––reduce the overall variance in viral growth rate and

explain the negative correlation between this quantity and the future ascent

of an emerging cluster.
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While the certainty of our predictions improves as clusters increase in

relative frequency, there is a trade-off with lead time. The longer we wait

to assess a rising cluster, the less time there will be to update vaccines and

implement other intervention measures. For a successful cluster detected at a

relative frequency of 1%, there will be, on average, 10 months before the clus-

ter becomes established (maintains a relative frequency over 20% for 45 days).

If detected only after reaching a relative frequency of 10%, the expected lead

time shrinks to four months. Although real-world surveillance is noisy and

dependent on sufficient sampling depth and geographic coverage, our results

suggest that, with a perfect knowledge of the host and viral populations, pre-

dictions can be made with at least 85% sensitivity and confidence before a

cluster rises to 10% of all circulating strains.

As policy-makers consider new strategies for antigenic surveillance and

forecasting, the trade-off between prediction accuracy and lead time has practi-

cal implications. For example, a detection system targeting new viruses as soon

as they reach 1% relative frequency has the benefit of early warning and draw-

back of low accuracy, which translate into economic and humanitarian costs

and benefits. On the positive side, early warning increases the probability that

seasonal vaccines will provide a good match with circulating strains, and thus

lowers the expected future morbidity and mortality attributable to seasonal

flu. Based on the vaccine production and delivery schedule, the surveillance

window for emerging clades is from October to February for the Northern

Hemisphere and vaccine composition is determined at an international meet-
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ing in February [104]. Our analysis suggests that, at nine months before an

emerging cluster sweeps to dominance, it is likely to have be circulating at a

low relative frequency in the range of 1% to 4%. On the negative side, the low

surveillance threshold for candidate clusters and consequent lower accuracy

require far more surveillance and vaccine development resources than higher

surveillance thresholds. In our simulations, for example, the number of clusters

screened at the 1% threshold is an order of magnitude higher than at the 10%

surveillance threshold and the number of false positive predictions potentially

prompting further investigation is also manifold greater.

Our top predictors of viral emergence require a comprehensive sam-

pling of the viral and host population. Although exact measurements of these

quantities are practically infeasible, our results suggest that targeting molecu-

lar surveillance towards precise and accurate estimation of viral growth rates,

both for newly emerging clusters and the resident circulating viruses, may en-

hance flu prediction. One approach is to target the two key components of

growth rate separately––mutational load and effective susceptibility. Changes

in the mutational load can be estimated from sequence data, comparing the

number of differences that occur in non-epitope portions of the genome over

time [65, 95, 112]. Our parameterization of Rc follows the empirical method of

[95], with fitness costs based on nonsynonymous amino acid differences between

a given strain and its most recent common ancestor. Estimating the effective

susceptibility is more challenging, as it depends on the interaction between an

individual’s exposure history [50, 91, 125] and new amino acid substitutions in
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epitode coding regions [18, 66]. Nonetheless, several studies introduce inno-

vative methods for estimating susceptibility from the historic distribution of

flu subtypes, seasonal flu prevalence, and HI-titers. For example, Neher et al.

[112] predict antigenic properties of novel clades by mapping both serological

and sequence data to a phylogenetic tree structure of HA sequences.  Luksza

& Lässig estimate effective susceptibility by first estimating the historic fre-

quency of clades in six-month intervals and then estimating cross-immunity

between those clades and the focal cluster based on amino acid differences in

epitope regions [95]. However, both methods only consider clusters that have

already surpassed 10% relative frequency, at which point strains are thought

to be geographically well-mixed and less prone to geographic sampling bias.

Another approach to estimating the growth rate of an emerging cluster

is to treat it as a composite quantity. We evaluated several proxy measures

of cluster growth rate, including the relative fold-change in frequency between

two time points. Models based on fold change rather than the true growth

rate actually have greater sensitivity, that is, they are more likely to detect

clusters destined for dominance when they first emerge. However, the positive

predictive values of our best models drop from from 0.81 to 0.67, meaning that

replacing the true growth rates with an approximation increases the rate of

false alarms. Importantly, the proxy model improves with the addition of a

second predictor, the variance in fold-change across the viral population, which

can also be readily estimated from surveillance data. Thus, variance in fitness

appears to be a robust secondary predictor of future sweeps, regardless of how
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fitness is quantified. Surprisingly, a model based on seemingly naive approxi-

mations of growth rate –– the time elapsed between two frequency thresholds

and the number of other co-circulating clusters rising in frequency –– was even

more accurate, though still inferior to the true growth rate models. We did

not evaluate a promising alternative strategy for approximating fitness, based

on the phylogenetic reconstruction of currently circulating sequences [39, 114].

Unlike the proxies we considered, this does not require historical data but does

rely on pathogen sequencing. Finally, although not as informative as predic-

tors that quantify the evolutionary and immunological state of the population,

easily quantifiable predictors such as the total number of infected individuals

or the frequency of the circulating dominant cluster, can be incorporated into

future predictive models.

Our attempts to directly apply the optimized models to empirical data

were of limited success. While the global evolutionary dynamics of influenza

A/H3N2 clusters visually resemble those observed in our simulations, the

sparse genotypic data available do not permit estimation of the phenotypic

predictors identified in our study. The number of epitope mutations in a

newly emerging cluster relative to co-circulating viruses provides early indica-

tion of future success. This provides proof of concept that the evolutionary

viability of influenza viruses is predictable, but will require better models for

estimating viral fitness from sequence data and the expansion of surveillance

efforts [33] to collect phenotypic data reflecting the mutational loads viruses

and dynamic trends in population susceptibility.
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While our study provides actionable suggestions for improving both

the surveillance and forecasting of antigenic turnover, it is limited by several

assumptions. One caveat of our method is that we do not capture the ex-

plicit phylogenetic structure of the influenza population. Therefore, we do

not distinguish between clusters that are successful because of one mutation

and clusters that are successful because of a series of mutations. If for in-

stance, a novel antigenic mutation caused the emergence of a new cluster

(phenotype) that circulated briefly before a second novel antigenic mutation

caused a second phenotype that eventually achieved our defined criteria, we

ignore the fact that the established cluster is a subclade of the first and that

the antigenic mutation that conferred the first phenotype is fixed along with

the second antigenic mutation [59, 143]. This scenario follows Koelle & Ras-

mussen’s description of a two-step antigenic change molecular pathway that

leads to antigenic cluster transitions [82]. Our analysis is therefore relevant for

scenarios that depict their described jackpot strategy – a combination of one

large antigenic mutation occuring on a low deleterious background. Second,

the simulation represents global H3N2 dynamics and ignores differences in

temperate and tropical transmission dynamics [1, 144, 156]. Prior studies have

revealed considerable global variation in transmission rates, which should pos-

itively correlate with the frequency of cluster transitions. Furthermore, viruses

that emerge in tropical regions are more likely to be the source of viruses that

eventually circulate in temperate regions [10, 89]. Temperate regions produce

more extreme seasonal bottlenecks, potentially leading to greater stochasticity
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in viral dynamics, which makes it more difficult for novel strains that emerge

in temperate regions to spread globally [164]. We also do not consider selective

pressures imposed by seasonal vaccination. Its impact on antigenic turnover

depends on vaccination rates and the immunological match between the vac-

cine and all co-circulating viruses. Seasonal vaccination could differentially

modify the effective susceptibility of clusters, suppressing some while creat-

ing competitive vacuums for others. Theoretical study suggests that antigenic

drift should slow down [7, 155] and the circulation of co-dominant clusters may

become more common [85]. Given these caveats, we emphasize our qualitative

rather than the quantitative results. Our study highlights promising predic-

tors of viral success, characterizes robust trade-offs between the timing, costs

and accuracy of such predictions, and serves as proof-of-concept that model-

derived surveillance strategies can accelerate and improve forecasts of antigenic

sweeps. If we fit similar models directly to historic surveillance data, the re-

sulting predictions will likely reflect greater uncertainty but perhaps naturally

reflect global variation in influenza dynamics and vaccination pressures.

Our study demonstrates that the early detection of emerging flu viruses

is limited by a tight race between the typical dynamics of antigenic turnover

and the annual timeline for influenza vaccine development. It also provides

a foundation for analyzing the costs and benefits of expanding surveillance

capacities and shortening the vaccine production pipeline. As we strive to

expedite and improve molecular surveillance for vaccine strain selection, even

incremental progress is valuable. Earlier detection of antigenic sweeps, regard-
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less of vaccine efficacy, can inform better predictions of severity, public health

messaging regarding personal protective measures, and clinical preparedness

for seasonal influenza.
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Chapter 4

Within-host HIV-1 biological processes

reflected in deconstructed Ancestral

Recombination Graphs

4.1 Abstract

Pathogen phylogenies are used to infer transmission dynamics of HIV-

1 among hosts. However, inference of within-host evolutionary dynamics has

proved challenging because common phylogenetic reconstruction methods and

tools assume that there is no recombination, an important feature in HIV-1’s

complex biology. Recombination contributes significantly to HIV-1 within-host

diversity, has been suggested to accelerate HIV-1 adaptation, and facilitates

the persistence of HIV-1 lineages that display a signal of latency. To address

this gap, we developed a new within-host coalescent model of HIV-1 based on a

network approach, the Ancestral recombination Graph. Using our within-host

HIV-1 ARG model to simulate evolutionary histories from a set of molecu-

lar sequence samples, we first investigated whether complex processes such as

recombination, cycling in and out of a latent reservoir, and population de-

mographic changes leave detectable signals in reconstructed phylogenies using

traditional tools. Second, we implemented patient-specific sampling schemes

to generate plausible evolutionary histories of two specific individuals, and
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used a sampling estimation framework that used topological and distance-

based tree statistics for comparison between simulated and observed trees to

identify differences in recombination rate and latent reservoir size between the

two. Overall, our within-host ARG model showed agreement with HIV-1 trees

when the recombination rate is at the current biological estimate, and when

the latent reservoir is at the low end of current estimates. We also found

that as the recombination rate increases, the latent reservoir size has to in-

crease to generate simulated trees that align with observed trees. Finally we

find the possibility that the latent reservoir size differs between individual pa-

tients. This study represents an important step in adding realism to HIV-1

within-host evolutionary modeling and is the first study in developing a rig-

orous inference method based on approximate Bayesian computation (ABC)

that will jointly estimate recombination and latent reservoir parameters for 11

patients.

4.2 Introduction

HIV-1 molecular sequence data, collected as part of routine clinical

care, has recently been shown to capture epidemiological dynamics [42, 75, 79]

at both the within-host and population levels. Phylogenetic inference has been

used to elucidate the epidemiological relationships between transmission pairs

[133], the direction of transmission, and the diversity of the founding popula-

tion [134]. At the population level, studies in HIV phylodynamics, the coupling

of phylogenetic analysis with epidemiological models, have estimated stage-
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specific HIV transmission rates, the estimated time of cross-species spillover

into humans [169], and HIV-1 prevalence in at risk populations [128]. Despite

the advances in inferring epidemiological dynamics, applications to within-

host HIV-1 evolutionary dynamics have not kept pace. Within a host, HIV-1

evolves rapidly due to interplay of the selective pressure exerted by the host’s

immune response and a combination of HIV-1’s error prone reverse transcrip-

tion process, short generation time, and pervasive recombination. The fre-

quency of recombination in HIV has serious clinical and epidemiological conse-

quences, including driving drug resistance, immunological escape, and disease

progression. Despite its importance as a key feature of HIV-1 evolution, its

inclusion in modeling studies remains limited due to the fact that almost all

of the tools and models developed to study molecular evolution assume that

there is no recombination.

A recombinant is a genetic sequence that contains regions from genet-

ically distinct parental strains. A recombinant genotype occurs when distinct

parental strains coinfect a CD4 T+ cell, are encapsulated into a heterozygous

virion, the virion infects a new cell, and the reverse transcriptase enzyme syn-

thesizing new retroviral DNA switches between the distinct RNA templates.

Both participant [113] and simulation-based studies [9] estimate that the effec-

tive recombination rate, which incorporates both the probability of coinfection

of a single host cell [76] and the template switching rate, is on the order of

1.4 × 10−5 to 1.38 × 10−4 per base per generation, comparable to the esti-

mated point mutation rate of 2.2− 5.4× 10−5 per base per generation [54, 97].
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Within a host, recombination provides HIV-1 with a means to increase the

genetic variation for selection to operate on [37, 46, 48, 101, 107], can lead to

rapid emergence of antiviral drug resistance [63, 78, 105], and can help shed

deleterious mutations. However recombination can also slow the rate of adap-

tation by separating beneficial alleles in the same genome. Theoretical studies

have shown that the magnitude of benefits brought by recombination depends

on the interaction between factors such as population size and epistatic in-

teractions [83, 101, 103]. In the case of HIV-1, a study of mother-child HIV-1

transmission demonstrated that recombination beneficially contributes to the

early diversification of HIV and elevates the effective evolutionary rate [139].

The most common methods for reconstructing the evolutionary history

from genetic sequence data assume a dichotomous tree such that each virus is

the descendant of one ancestral virus. However, recombination, especially on

the pervasive scale of HIV-1, violates this assumption. Under the assumption

of recombination, a single sampled genome can have different evolutionary and

genealogically relationships depending on what part of the genome you use to

reconstruct those relationships. Therefore, representing the evolutionary his-

tory of a set of HIV samples with a single genealogy may lead to erroneous

inference in both the estimation of parameters and inference of relationships

[6, 127]. This source of error can be factored out of analysis by using recom-

bination detection tools [98, 99, 126, 151] to identify and exclude recombinants

from phylogenetic analysis. Yet, the rate at which recombination occurs in

HIV suggests that most lineages have a recombination event in their recent
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past and are comprised of multiple ancestral lineages. One way to incorpo-

rate recombination into phyogenetic methods is to use a more general class

of networks to model the evolutionary history of a sampled set of individuals.

Griffiths and Majoram proposed such a method in their 1996 paper based on

Ancestral recombination graphs (ARGs) [62]. ARGs allow for the complete

record of coalescent and recombination events of a set of aligned DNA se-

quences. However, they have not yet been widely integrated into population

genetics because of the computational intensity of inferring an ARG from more

than a handful of sequences. Furthermore, unlike standard phylogenetic recon-

struction, we have less intuition for how to interpret the structure of an ARG

to derive meaningful conclusions about the evolutionary history of a sample.

Further complicating the development of phylogenetic inference meth-

ods for within-host HIV-1 evolution that take into account recombination is

the presence of the latent reservoir, transcriptionally inactive HIV-1 provirus

integrated into the genome of resting memory CD4+ T cells. The latent reser-

voir may establish as early as the first week of infection[34, 166], will persist

through antiretrovrial therpy (ART)[136], and can be reactivated through ex-

posure to recall antigen or various cytokines, or the cessation of ART [135].

Once ancestral sequences are reactivated, recombination facilitates the persis-

tence of archival sequences [71], HIV sequences that display less divergence

from the transmitting virus than contemporary sequences, further increas-

ing the diversity of the population that selection can act upon. Therefore, a

key barrier to functionally curing HIV is the presence of the latent reservoir.
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”Shock and kill” methods that hope to cure HIV through first shocking CD4+

T cells into activation and then using a second agent to kill the infected cells

and block new infection cannot be effectively evaluated without an estimate of

the reservoir size. Estimates of the size of the latent reservoir are difficult to

measure, and have ranged from 1 in every 106 resting CD4+ T cells [35, 47, 168]

to ∼ 60-fold higher [69].

HIV-1 biology and evolutionary dynamics are vastly more complex than

standard models permit, including recombination, latency, and population de-

mography. The purpose of this study is to determine if it possible to detect the

signal of that complex biology in standard binary tree form. We incorporated

these within-host biological processes into a modified coalescent framework to

generate an ARG. We investigated the effect of including these processes on a

reconstructed binary tree using topological and distance summary statistics.

Finally, we sought to describe qualitative differences between two participant

phylogeny’s from Shankarappa et. al [145] by using a matching algorithm to

search combinations of parameters that produce similar trees. We find that

our biologically realistic model is able to reproduce the qualitative and quan-

titative characteristics of HIV-1 evolution as measured in a binary tree and

that our trees are comparable to empirical patients when using the biological

estimation of recombination and smaller latent reservoir sizes.
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4.3 Methods

4.3.1 Methodological overview

Our approach is based on a modified coalescent theory method that

simulates an ARG conditioned on a defined sampling scheme, i.e. number

of samples taken at designated time points since infection. A forward-time

simulation of the entire viral population’s evolutionary history would be com-

putationally costly as an infected host can generate up to 1011 viral particles

per day, whereas the coalescent approach efficiently simulates the history of a

sample of lineages. The simulated ARG thus represents the entire evolutionary

history of our sample, where branch lengths correspond to the time between

coalescent and recombination events. We decompose the ARG into a series

of binary trees based on the genealogies of specific residues, taking into ac-

count recombination breakpoints and periods of latency. Using a sample of the

residue genealogies, we calculate an average distance matrix between extant

tips and construct an average tree based on a hierarchical clustering algo-

rithm. Finally, we compare the average distance matrix and tree to empirical

data to identify plausible parameter values and combinations for evolutionary

processes.

4.3.2 Model Assumptions

We make several assumptions about the within-host evolutionary dy-

namics of HIV-1. First, we assume that an individual is infected with a single

transmitted HIV-1 variant. From that lineage, the HIV-1 population diverges
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and diversifies linearly with time, with intermittent demographic bottlenecks

caused by the host immune response. In addition, we assume that there is a

reservoir latent population that is established three weeks after infection and

remains constant in size for the duration of HIV-1 that we are simulating. The

lineages present in the reservoir population turnover during the course of the

infection. For all processes, we assume neutrality, specifically that any lineage

is equally likely to coalesce, recombine, or go into or out of the latent reservoir.

Lastly, we assume that the evolutionary rate remains constant over the course

of the infection.

4.3.3 Simulation of the ARG

Our simulation models four possible events in reverse time: (1) a re-

combination event between two active lineages, (2) a virus entering the latent

reservoir, (3) a virus in the latent reservoir reactivating, and (4) a coalescent

event between two active lineages. We assume that waiting times to each

event are independent and conditional only on the extant number of lineages

in either an active or latent state and the time since transmission. To move

forward in the simulation along the reverse time axis, we draw random waiting

times to each of the four possible events according to the equations described

below and proceed with the event of the minimum waiting time.
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Event Reaction Parameter Value Reference

Coalescence 2kA → kA α = 0; β = 1 [132]
Recombination kA → 2kA ρ ∈ (0, 0.001, 0.01, 0.05, 0.1) [9, 74, 113,

171]
Latency/Deposition kA → kL λ = [0.5− 5.25]* [148]

Activation kL → kA λ = [0.5− 5.25]* [148]

Table 4.1: Within-host HIV evolutionary events in the ARG. kA and
kL represent the number of active and latent lineages present. λ is the global
flow rate of a lineage into and out of the latent reservoir. σ is the per genome
per day rate of recombination. *This range of λ corresponds to the values of
eqn. 4.4 using values of NL ∈ (101, 103).

4.3.3.1 Evolutionary Events

• Coalescence: When a coalescent event occurs, two extant active lin-

eages are chosen randomly and joined to form a parent lineage. The

branch length between the chosen and parent lineages is the time since

each extant lineage’s last event in the ARG and the new coalescent event.

The expected waiting time for two random lineages to coalesce is depen-

dent on the effective population size and the number of active lineages.

During periods of linear growth, the effective population size is modeled

as N(t) = α+βt, where α is the number of transmitted lineages, β is the

growth rate, and t, is the time since infection in days. For all simulations

we assume that α = 0 and that β = 1. During bottleneck events, the

population remains at a constant size, Bstrength, for a period of 5 days.

To simulate the time to the next coalescent event, we use two functions

corresponding to the two regimes of population demography. During
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periods of linear growth, we use the inverse cumulative function derived

in [132]:

F−1
C(l)(u) =

(
1− (1− u)

β

(kA2 )
)

(α + βt1)β−1 (4.1)

where u is a unit uniform random variate.

During periods of bottlenecks that occur every Bfrequency days, we use

the Kingman n-coalescent model:

FC(b)(kA) ∼ Exp

(
kA(kA − 1)

2N

)
(4.2)

In this way, we approximate the effects of directional selection without

explicitly incorporating the reproduction probability of individual lin-

eages. Following the period of decreased population size, the population

resumes linear growth, maintaining the overall gradual linear increase in

genetic diversity over the course of the infection.

• Recombination: A recombination event adds a lineage to the total

number of extant active lineages. When a recombination event occurs,

one lineage is chosen from the set of extant active lineages and two

lineages are added to the ARG, representing the two parental lineages

in forward time that each contributed a portion of its genome. Each

recombination event has a randomly generated specific breakpoint at

one of 700 sites, corresponding to the env gene we are simulating. The

branch lengths between the recombinant lineage and each parent lineage
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is the time since the recombinant lineage’s last event in the ARG and

the new recombination event.

We assume recombination to be a homogeneous process where recombi-

nation events occur at rate ρ per lineage, and thus draw the expected

time to the next recombination event from:

FR(ρ, kA) ∼ Exp
(
kAρ

)
(4.3)

• Latent Reservoir Deposition and Reactivation: When a deposition

event occurs we randomly select one of kA lineages, calculate its branch

length as the time from its last event in the ARG until the time of

the deposition event, and put the lineage into a latent state. While a

lineage is in a latent state, which we refer to as latency, it does not

experience mutational processes. When an activation event occurs, we

randomly select one of the kL lineages in the latent reservoir, calculate

its branch length from its time of deposition to the time of the next

activation event, and put the lineage into an active state. On the whole,

through deposition and activation events, the total number of lineages

in the population, k, remains constant, with kL and kA increasing and

decreasing by one respectively.

We use a single parameter, λ, as the global rate per day for entering and

leaving the latent population. The value of λ is calculated by:
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λ = NL
log(2)

44 ∗ 30
, (4.4)

where 44 corresponds to the estimated half life in months of the latent

reservoir population [148] and NL is the total reservoir population size

that contains replication competent provirus. We use the inverse cumu-

lative function,

F−1
L (u) =

(
1− (1− u)

β
kAλ

)
(α + βt1)β−1 (4.5)

and the exponential distribution,

FA(λ, kL) ∼ Exp

(
kL
NL

λ

)
(4.6)

to govern the dynamics in and out of the latent reservoir population.

Equation 4.5 is structurally similar to Equation 4.1 because the popula-

tion size of active lineages ka is changing over time. From the moment

of transmission, the HIV-1 population size is growing. During the early

stage of infection when the population is still small, there is a greater

probability that a lineage entering the latent reservoir will be in the

evolutionary history of our sample. Conversely, as the population size

grows, the probability that the next lineage to enter latency is in the

evolutionary history of our sample decreases. Equation 4.6 governs the

joint probability that a lineage in the latent population will reactivate

in reverse time and that the lineage will be in our sample.
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Longitudinal Sampling To simulate longitudinal sampling we designate

times along the reverse time-axis when new active lineages are added to the

simulation. At each additional sampling event, the branch lengths of any

remaining active and latent lineages from the previous sample are extended

in time up to the next sampling time. From there the simulation proceeds

as before, with k and kA updated to reflect the additional new samples. The

simulation ends after the last sampling time (first in forward-time) when kA =

1 before t = 0.

4.3.4 Obtaining a Distance Matrix from the ARG

Decomposing the ARG into a series of binary trees To use distance

and topological statistics that are applicable to dichotomous trees, we decom-

pose the ARG into a series of binary trees that each represent the genealogies

of individual residues. First, for residue i in the genome, we remove recombina-

tion events by selecting one path through the ARG according to the individual

residue’s history. Moving along the reverse time axis, for a recombination event

and a given residue, i, if residue position i is smaller than the recombination

break point, we select the path of the most recent parent in the ARG. Con-

versely, if residue position i is greater than the recombination break point,

we select the path of the more ancestral parent in the ARG. We remove the

branch in the ARG between the recombination event and the non-selected

parent and create a new branch between the descendant of the recombination

event and the selected parent. The new branch length equals the length of time
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between the descendant node and the recombination event plus the length of

time between the recombination event and the next event of its parent node.

Second, for each residue binary tree, we adjust the branch lengths to account

for periods of latency. We remove the inner events that represent the start and

end of a lineage’s time in the latent reservoir recalculate the branch length as

only the time spent in an active state. Because of computational limitations,

we complete this decomposition process for a random sample of 25 residues.

Calculating a distance matrix Once each ARG has been decomposed

into a series of i binary trees that consistent only of coalescent events with

branch lengths reflecting time spent in an active state, we calculate an average

distance matrix. We first use the igraph package [38] in R to turn the edge list

of each residue i binary tree into a distance matrix, where entries record the

pairwise distance in time between two tips. Second, we average the pairwise

distances between all combinations of tips over all i residue distance matrices.

Finally we use a minimum evolution principle [41] to generate a hierarchical

clustering representation of the average distance matrix. To visualize a hier-

archical clustered tree, we root it at tMRCA of the samples from the first (in

forward-time) sampling event and order the internal structure of the tree to

highlight tree imbalance.
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Figure 4.1: Ancestral Recombination Graph (ARG) decomposition
into a series of binary trees. (a) The simulated ARG from two sampling
events. Red dots represent recombination events, with the break point iden-
tified in the white text. Blue dots represent coalescent events between two
lineages. Dashed grey lines represent when a lineage is in the latent reser-
voir. The branch lengths correspond to time. This ARG was simulated using
ρ = 0.08, NL = 760, and no bottlenecks. 5 samples were taken 3.5 months
post transmission and 10 samples were taken 7 months post transmission. (b)
Each panel represents the true genealogy of a specific site in the genome from
(a). Despite being almost 400 residues apart, residue 61 and residue 418 share
the same genealogy. Residue 507 and residue 697 are unique.

4.3.5 Data

We applied this framework to the analysis of longitudinal HIV-1 DNA

sequences sets from 2 empirical participants [145]. In the study, sequences

corresponding to the HIV-1 env gene were taken from each participant over a

course of 6 to 12 years starting at 3 months from the time of seroconversion.

There was an average of 11.875 individual sampling events with an average of

9.83 (s.d. 1.66) samples taken per event.
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For our study, we aligned the sequences of each participant using MAFFT

v7.305b2 and generated a tree again using the minimum evolution principle

[41]. To translate the sequences into distance matrices we used the TN93

model[157]. The overall distribution of distances were similar using other evo-

lutionary models. We obtained the sampling scheme from each participant, i.e.

the number of samples (clones) taken at how many months post transmission.

Thus for each participant, we have a distance matrix, a consensus tree, and a

sampling scheme.

4.3.6 Distance Function and Parameter Inference

For five strata of recombination rates, we sampled from three proposed

distributions for the frequencies of demographic bottlenecks, U(14, 365), the

bottleneck strength U(1, 100), and the latent reservoir size U(1, 10000). Thus,

for each θi, representing the four parameters of the simulation, we simulated

and analyzed the ARG. We chose to stratify the recombination rate into five

fixed rates instead of a continuous distribution because of computational effi-

ciency. Likewise, we sampled fewer particles at the higher recombination rates

because of computational cost. We sampled on the order of 10,000 particles

each for ρ = {1e−12, 0.001, 0.01}; on the order of 1,000 particles for ρ = 0.05

and on the order of 100 for ρ = 0.1. We do not believe sparse sampling at

high recombination rates significantly impacts our results because we saw less

variation in simulation outcome and summary scores at higher recombination

values.
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We compared the fit of an ARG simulation to an empirical participant

through a combined distance score of five equally weighted features, including

three distance statistics and two topological statistics (Table 4.2).

For the Sackin index, MLT, and the EI Ratio, the score of a statis-

tic, si was the squared difference between the raw statistic and the empirical

statistic. The CV score was calculated as the sum of the absolute differences

in CV value at each sampling time. While all features may be sensitive to the

sampling scheme, the ranked distance matrix, is calculated by making one-to-

one comparison between the empirical and simulated distance matrices. We

calculate the score of the ranked distribution of pairwise distances as follows:

yi,j,k,n is the observed genetic distance between the jth sequence in the ith

sample time and the nth sample in the kth sample time, and si,j,k,n is the sim-

ulation time distance between the jth sequence in the ith sample time and the

nth sample in the kth sample time. (1) Sort the distances for all time points

pairs i, k (yi,.,k,. and si,.,k,.) (2) Calculate f(y, s) =
∑i,k(yi,j,k,n − yi,j,k,n × τ)2.

(3) Minimize f(y, s) over τ < 0. τ is a scaling factor which serves to scale

the simulated distance matrix, measured in time, to the participant distance

matrix, measured in genetic distance.

To get the final ranking of trees across all parameter combinations for a

participant, we normalized each individual statistic across all simulations and

added the normalized components for a total score. Thus, for a simulation

with parameter set Θi, giving a vector of statistics s1, ..., s5 the distance score

would be d = s1 + ...+ s5 where si is the normalized statistic. Lower values of
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the distance score d indicate closer matches to the empirical tree.

We calculated the Sackin Index normalized by the Yule Model [138]

using the CollessLike package in R. A higher Sackin Index indicates a less

symmetrical and more ladder-like tree. We calculated the number of lineages

through time by dividing the number of monophyletic groups by the number of

extant tips at each sampling event [72]. We used the R package ape (Analysis

of Phylogenetics and Evolution) [124] to create and plot all binary trees.
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Feature Feature Type Description

Sackin Index Topological The average number of splits from a tip to
the root of a tree and captures asymmetry
over the evolutionary history of the sample

Mean Lineages
Through Time
(MLT) [72]

Topological The diversification of lineages normalized
by the number of extant tips

External:Internal
Branch Ratio (EI
Ratio)

Distance The ratio between the mean external
branch length (branch that ends with a
sampling event) and the mean internal
branch length (branch between coalescence
events)

Ranked Distance
Matrix

Distance The difference in the empirical and sim-
ulated distributions of branch lengths
ranked by size within each sampling event

Coefficient of
Variation in Pairwise
Distance (CV)

Distance The ratio between the standard deviation
of pairwise distances between branches of
the same sampling event and the mean
pairwise distance between branches of the
same sampling event

Table 4.2: Features used to match the simulated evolutionary history
to a participant’s empirical HIV-1 env phylogeny. Some features mea-
sure tree characteristics (Topological) while others measure distance statistics
(Distance). A simulation’s score, d, is the sum of the normalized differences
between the feature measured on reconstructed simulated tree and the empir-
ical tree.
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4.4 Results

4.4.1 Additional biological complexity results in trees consistent
with HIV-1 phylogenies

The within-host ARG simulation model that includes population de-

mography, a latent reservoir, and recombination produces trees consistent with

HIV-1 phylogenies over a 12 year period of within-host evolution (Fig. 4.2).

We illustrate an example of adding each of these features to the within-host

model to visualize their effects on the reconstructed viral phylogeny and build

up to our most complex biological model in Fig. 4.2h. For comparison, Panels

(i-l) are four participant HIV-1 phylogenies from the Shankarappa et al. study

[145]. The empirical trees reveal several defining characteristics of within-host

HIV-1 trees. Generally, they have a strong ladder-like structure, meaning the

tree is asymmetrical, the terminal branch lengths are longer than the internal

branches, and tips from the same sampling event cluster together. However,

this last feature, which we will refer to as chronological grouping, is not strictly

adhered to. In Participants 7, 1, and 11 there are instances where tips from

later sampling events are clustered with tips from previous sampling events.

Each panel in (a-h) shows a reconstructed phylogeny from one ARG

simulation using the same sampling scheme but realized under different lev-

els of biological complexity. First, we consider the effect of each process in

isolation. In (a), we see an example of a tree generated using only a linear-

growth coalescent model that accounts for linear growth in genetic diversity

from the time of transmission. This condition represents the baseline upon
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Figure 4.2: Relationship among within-host evolutionary processes
and virus phylogenies. Each tree in (a-h) is the decomposed average tree
from one ARG simulation of 12 years using 132 sampled lineages spread over
10 sampling events. Color represents tips sampled at the same time. The
baseline model, a linear-growth coalescent model is in (A). Parameters are
consistent across panels (a-h). For simulations in which the process is active:
Bfrequency = 300 and Bstrength = 15; NL = 2500; and ρ = 0.01. Panels (i-l) are
reconstructed HIV-1 trees from participants in [145].
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which we advance the biological realism of the coalescent model. In (a) termi-

nal branches are elongated due to the underlying growing population. Samples

from later time points form polyphyletic groupings and the tree is moderately

symmetrical. In (b) we introduce population demography with intermittent

bottlenecks, emulating the impact of the host immune response. The effective

population size is reduced during bottlenecks, causing lineages to quickly coa-

lesce according to standard coalescent theory that the rate of coalescence will

be proportional to the inverse of the population size. This process results in

a stronger ladder-like structure that is consistent with the signature of pos-

itive selection. However, periods of rapid coalescence cause shorter terminal

branches. In (c) we add recombination to the linear-growth coalescent model.

Recombination increases the ladder-like structure and chronological grouping

over that of (a). However, the length of the terminal branch lengths results in

an extreme external to internal branch ratio. Adding the presence of a latent

reservoir (d) permits lineages to spend time in a dormant stage where they

do not experience outside evolutionary pressures. Including this feature has

the most visually disruptive effect. The ladder-like structure is lost, terminal

branches of later time points extend back to the root, and the chronological

structure is lost.

Panels (e-g) show the effects of adding features in tandem to the linear-

growth coalescent model. The presence of a latent reservoir in (e) and (f) re-

sults in a flatter tree despite either intermittent bottlenecks or recombination.

The tree in (g), the product of recombination and intermittent bottlenecks,
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begins to look similar to empirical trees, in particular (i). For trees where all

tips chronologically group together by sampling event, these two features are

sufficient to reproduce the qualitative characteristics of an HIV-1 phylogeny.

However, if there is any signal of latency, such as in panels (k-l), then the

model must also include a latent reservoir. In panel (h) we show our most

biologically complete model. Fig. 4.2h shows a clear picture of how all three

processes work together – recombination maintains the ladder-like structure

which intermittent bottlenecks further enhance, recombination and latency

cause variation among and lengthening of the terminal branches, and latency

allows for deviations from strict chronological groupings.

4.4.2 Evidence of biological processes in topological and distance
statistics

To establish that recombination, a latent reservoir, and population de-

mography leave detectable quantitative signals on reconstructed phylogenies,

we measured how two topological and two distance statistics change with vary-

ing intensities of each process.

Both the frequency and strength of bottlenecks have significant impacts

on topological and distance statistics (Fig. C.1). As bottlenecks become more

frequent and reduce the effective population size to a smaller number, trees be-

come more imbalanced, fewer lineages survive between sampling events, branch

lengths between lineages sampled during the same event become more varied,

and the EI ratio decreases. These results are consistent with theoretical and
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Figure 4.3: The magnitude of each biological process causes variability
in distance and topological statistics. Each dot represents the mean and
standard error of the mean of the statistic. Colors represent different rates of
recombination, ρ. Simulations are grouped into three levels of reservoir size
of increasing magnitude, with the breakpoints depicted on the x-axis. This
figure shows all simulations where Bfrequency < 200 days, and Bstrength < 75.
Results over all bottleneck combinations of strength and frequency are similar.
The number within each category are provided in Table C.1. The grey dashed
lines indicate the maximum, median, and minimum value for the 9 empirical
participants in [145]. On the y-axis we show the limits of the MLT and the
Sackin index to highlight that both the empirical and simulation values are a
subset of the possible range.
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experimental population genetics research that show how bottlenecks reduce

population genetic variation.

4.4.2.1 Recombination countervails the effects of latency

We can see the varying impact of the latent reservoir size, NL, and

recombination rate, ρ, across all four statistics in Fig. 4.3. Increasing NL has

a monotonic effect on each statistic for ρ ≤ 0.01. As NL increases, trees have

more variable distance between tips of the same sampling event, greater EI ra-

tios, a higher number of lineages surviving through time (MLT), and are more

symmetrical. These effects are most strongly seen when the recombination

rate is lower, and may not be observed at higher rates of ρ because of smaller

sample sizes. Kruskal-Wallis rank sum tests between the mean statistic at

each level of NL are highly significant for all values of ρ except for ρ = 0.1

(p < 2.2e−16 for all Kruskal-Wallis tests). At ρ = 0.01, the mean Sackin index

at NL < 500 and NL < 10000 is significantly different (Dunn’s Test, Z = -2.63,

Holm’s Adjusted p = 0.01) and the mean CV is significantly different between

NL < 2500 and NL < 10000 (Dunn’s test, Z=2.57, Holm’s Adjusted p=0.012).

Higher MLTs and lower Sackin Indices imply more balanced trees. This is be-

cause with a non-negligible latent reservoir, lineages that are deposited soon

after transmission are reactivated later in the infection and will be geneti-

cally more similar to lineages from earlier sampling events than contemporary

lineages. This deviation from a strong chronological structure creates more

variation in the branch lengths of any given sampling event.
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If one of the ancestral lineages of a recombinant genome was ever in

the latent reservoir, recombination can remove the latency signal in a single

residue genealogy if the residue descended from the non-latent parent. Thus

recombination offsets the effects of latency on all four statistics. For example

when recombination is absent (ρ = 1e−12) and NL is large, the tree is more

comb-like with short internal branches and long external branches, and high

levels of symmetry. As ρ increases, reactivated ancestral lineages are increas-

ingly forming recombinant genomes with contemporaneous lineages, leading

to stronger chronological structure and a more homogeneous distribution of

distances between extant tips of the same sampling event as indicated by lower

CV means. In the same way, the MLT decreases with larger values of ρ. For

all statistics, Kruskal-Wallis rank sum tests between values of ρ are signifi-

cant at all values of NL (p < 2.2e−16 for all Kruskal-Wallis tests see Table

C.3). Narrowing our focusing on the pairwise differences between ρ = 0.01

and ρ = 1, as an example comparison between a mid-range biological estimate

and an extreme value of ρ, there are significant differences for all statistics at

NL < 2500, and at NL < 10000 with the exception of the Sackin index (Table

C.4 Dunn’s test, Holm’s adjustment). There are no significant differences at

NL < 500, most likely due to small sample sizes (Table Dunn’s test, Holm’s

adjustment). The EI ratio shows an interaction dependency between NL and

ρ. At small values of NL, higher values of ρ have an elongating effect on ex-

ternal branches. The reverse is true at higher values of NL, where extreme EI

ratios are from simulations with ρ = 1e−12 and ρ = 0.001. This is because
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the processes of recombination and latency each individually lead to longer

external branches. However, the effect of latency is stronger on its own than

recombination. Thus when recombination is included, it has the ability to

remove some of the latency signal.

Figure 4.3 shows that a range of recombination, latency, and bottleneck

intensities may be consistent with within-host HIV-1 evolutionary dynamics.

However, while we represent the mean statistic in Fig. 4.3 to describe quanti-

tative trends in topological and distance metrics as function of intensity, there

is considerable variation in the statistical values. This variability might come

from integrating over the variability in strength and frequency of the bottle-

necks and latent reservoir size. Indeed, combinations with a mean statistic

outside the empirical range can occasionally produce trees with statistics that

fall within the empirical range. Furthermore, different statistics give conflict-

ing support for which parameter values of recombination and latent reservoir

size are most consistent with HIV-1. Specifically, the MLT and EI Ratio give

inconsistent conclusions for the likely end of the latent reservoir population

spectrum; the MLT statistic approaches the empirical median at higher latent

reservoir sizes, while the EI Ratio far overshoots the empirical range at higher

reservoir sizes. To account for such dissonant information, we use a distance

algorithm that looks at an equally weighted combined measure of all statistics

to gauge the fit of a simulation to an empirical tree.
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4.4.3 Application to sequence data from HIV-1 infected individuals

4.4.3.1 Distance algorithm recovers empirical tree features

We implemented the specific sampling schemes of Participants 6 and

7 and simulated possible ARG evolutionary histories over 30,000 parameter

sets of Θ. We choose Participants 6 and 7 because despite similar sampling

schemes, their HIV-1 trees are dissimilar in the strength of the chronological

grouping and symmetry of the trees. Using our distance algorithm to rank

decomposed trees derived from the ARG simulations, we identified trees that

are close fits to each participant.

Figure 4.4 shows the simulated distributions of all statistics, the empir-

ical range from the 9 participants in the [145] study, and the specific statistic

value of Participants 6 and 7. Kolmogorov-Smirnov two-sided tests indicate

that the distributions of the statistical values are different for every statistic.

(CV: D = 0.5, p < 2.2e−16; EI Ratio: D = 0.10, p < 2.2e−16; MLT: D =

0.14, p < 2.2e−16; Sackin: D = 0.06, p < 2.2e−16. Wilcoxon rank sum tests

indicate that the distribution means are significantly different for all statistics

except for the CV (CV: W = 4.78× 108, p = 0.57; EI Ratio: W = 5.41× 108,

p < 2.2e−16; MLT: W = 5.70 × 109, p < 2.2e−16; Sackin: W = 5.165 × 109,

p < 2.2e−16). These results hold when we tested differences between a smaller

sample that included 10% of simulations at each value of ρ. The topological

and distance statistics of the simulated trees span the empirical ranges and

with the exception of the Sackin index produce more extreme values at either

end. For the Sackin index and the MLT, the empirical measurements fell at
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Figure 4.4: Density distributions of topological and distance statistics
derived from the complete collection of the ARG-simulated recon-
structed phylogenies for Participant 6 and Participant 7. Each panel
shows the kernel density estimate of the statistic calculated from the recon-
structed tree or distance matrix over 30,918 simulations for Participant 6 and
30,853 simulations for Participant 7. The blue and yellow lines show the em-
pirical value for each participant. The grey lines show the maximum and
minimum values from the 9 participants in [145].

or above the 90% percentile of all simulations (Table 4.3). We suggest hy-

potheses for why our simulations generally produce more balanced trees in the

discussion.

We illustrate the performance of our algorithm for matching ARG-

simulations to empirical data in Figure 4.5. Our algorithm was able to recover

the distinguishing features between Participants 6 and 7 in the best-matching

trees. The empirical tree for Participant 6 is conventional (Fig. 4.5a) and the

best-fit simulation for Participant 6 has similar characteristics, specifically a
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Participant Sackin % MLT % EI Ratio% CV%

6 Complete 95 27 43 22
Best 5% 77 67 92 14

7 Complete 90 91 32 11
Best 5% 86 96 65 43

Table 4.3: Participant percentile of the ARG-simulated reconstructed
phylogenies. Complete corresponds to the ∼ 30, 000 simulations for each par-
ticipant. Best 5% corresponds to the distribution of only the ARG simulations
that produced the lowest 5% of distance scores.

long EI ratio, a clear ladder-like structure, and consistent chronological struc-

ture. Conversely, the empirical tree for Participant 7 is noisy (Fig. 4.5b). For

later sampling events, there are three distinct clusters that comprise tips from

multiple time points. Fig. 4.5b is an example of a tree from the lowest 1% of

distance scores for Participant 7, where d = 0 represents the best score. It

has multiple surviving clusters, heterogeneous branch lengths between tips of

the same-time point, and is more symmetrical than Participant 6. Trees that

return higher distance scores are dissimilar to the participant trees. Panels

(c-d) show that trees at the 25th percentile of scores display deviation from

the empirical trees.

4.4.3.2 Distance scores are low when NL is small

The distribution of normalized distance scores differs between the two

participants. The median score for Participant 6 is 0.3379 (IQR: 0.2407-0.4395)

and for Participant 7 is 0.1697 (IQR: 0.1159-0.2494) (Fig. SC.2). The distribu-

tion of scores for Participant 7 is more skewed to the right than for Participant
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Figure 4.5: Distance algorithm discriminates between good-fit and
bad-fit trees. The top row shows the empirical trees for Participant 6 and
Participant 7 with their topological and distance statistics. The middle row
shows the top 99th percentile of distance scores (the lowest 1% of scores). The
bottom row shows trees at the 75th percentile of distance scores. Parameters
for (c) Bstrength = 48.13, Bfrequency = 207.87, ρ = 0.01, NL = 357; Parameters
for (d) Bstrength = 95.28, Bfrequency = 171.36, ρ = 0.01, NL = 467; Parameters
for (e) Bstrength = 90.80, Bfrequency = 29.53, ρ = 0.01, NL = 6673; Parameters
for (f): Bstrength = 84.65, Bfrequency = 294.54, ρ = 0.01, NL = 4068.
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6. This is because for Participant 7 ρ = 0.01 simulations produce the lowest

distance scores (Fig 4.6) while higher values of ρ produce lower distance scores

for Participant 6 (see below for further discussion). Because of the compu-

tational cost of simulating and decomposing the ARG at ρ ≥ 0.01, there are

10 and 100 fold fewer simulations at ρ = 0.05 and ρ = 0.1 respectively than

ρ = 0.01.
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Figure 4.6: Mean distance scores, d̄, for Participant 6 (a) and Par-
ticipant 7 (b) by recombination rate ρ and latent reservoir size NL.
The color of each tile represents the mean normalized distance score for each
combination of ρ and NL. d is normalized separately for each participant.
While we restrict our simulations to five discrete values of ρ, NL is sampled
from a continuous distribution. For this analysis, we bin NL into increments
of 1000. The number of individual simulations in each tile ranges from 3 when
ρ = 0.1 to 1000 for ρ ≤ 0.01. The mean distance score and standard deviation
by recombination rate ρ are in Table S: C.2.

To evaluate which θi produced good fits for Participants 6 and 7 we

measure the mean distance score for different combinations of recombination

ρ and latent reservoir size NL (Fig. 4.6).
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Comparing across the entire range of simulations for Participants 6

and 7, several patterns emerge. For Participant 6, the mean distance score is

closer to 0, indicating a better fit, when the recombination rate is high and

the reservoir population is small. In addition, we see that as the recombina-

tion rate increases, higher reservoir populations produce lower distance scores

compared to smaller reservoir population sizes. For example, for a NL = 6000,

at ρ = 1e−12, d̄ = 0.423; at ρ = 0.1, d̄ = 0.204. This suggests that in Partici-

pant 6, there is an interaction effect between the recombination rate and the

reservoir population size. The highest d̄ are at low recombination rates with

high latent reservoir sizes. Participant 7 has a more defined range of good-fit

combinations. The recombination rate ρ = 0.01 consistently produces better

fit trees for a range of NL. In contrast to Participant 6, there is no relationship

between higher rates of ρ, NL, and the mean distance score.

These patterns become more extreme as we restrict our analysis to

simulations in the best 5% of distance scores (Fig. 4.7). When considering

these top simulations, there are significant differences in the latent reservoir

size at different values of ρ (Kruskal-Wallis rank sum test, χ2 = 62.14, d.f. =

4, p = 1.03e−12.) The lowest mean scores for Participant 6 are concentrated

in regions with higher recombination rates and smaller reservoir sizes. We

stress the qualitative patterns rather than the absolute differences in the mean

distance score because of the few numbers of individual simulations in the ρ =

0.1 column. In Participant 7, there is strong support for a maximum ρ = 0.01

with a range of possible latent reservoir sizes. Across recombination rates,
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Figure 4.7: Simulation distance scores for Participant 6 (a) and Par-
ticipant 7 (b), restricted to the top 5% of simulations. The number of
individual simulations in each tile ranges from 1 to 100. Blank tiles indicate
that no simulations with that combination of latent reservoir size and recom-
bination rate are in the top 5% of simulations. The mean distance score and
standard deviation by recombination rate ρ are in Table C.2.
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the latent reservoir distribution is significantly different between ρ = 0.001

and ρ = 0.01 (Dunn’s Test, Z = -2.80, Holm’s adjusted p = 0.0153). Both

participants show less support for extreme latent reservoir sizes close to 10000.

For both participants, we do not find a strong effect of the bottleneck

frequency and strength on the distance score (Figs. C.5, C.6). The top 5% of

simulations for Participant 6 are nearly uniformly sampled across the range of

both frequency and strength and did not have a strong correlation with the

final distance score (Bstrength: Pearson’s r = -0.04, p = 0.099, d.f. = 1544;

Bfrequency: Pearson’s r = -0.015, p = 0.554, d.f. = 1544). Participant 7 showed

a slight negative correlation between the strength of the bottleneck and the

distance score (Pearson’s r = -0.048, p = 0.06, d.f. = 1541,) but no significant

correlation with bottleneck frequency (Pearson’s r = -0.002, p = 0.931, d.f =

1541).

Our results thus far demonstrate that Participants 6 and 7 are the most

sensitive to the recombination rate and the latent reservoir size. Although the

top 5% of simulations for Participant 6 favored recombination rates ρ ≥ 0.05,

simulations with ρ = 0.01 are included, which Participant 7 heavily favored.

Furthermore, ρ = 0.01 is a recombination rate within the range of current

estimates. Given the overlap of the model parameters (Fig C.5, we sought

to parsimoniously attribute the differences between Participants 6 and 7 to

only the latent reservoir size. To test this hypothesis, we set equal prior

distributions on all parameters except for the latent reservoir size. Because

Patient 7 showed some sensitivity to the bottleneck specifications (Fig. C.6),
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Figure 4.8: Size of the latent reservoir accounts for qualitative but
not quantitative differences between Participant 6 and Participant
7. (a) Example reconstructed trees from ARG simulations based on prior
distributions where only NL varied between participants. (b) Violin plots show
the kernel probability distribution of the topological and distance statistics
from the distribution of reconstructed trees. Dashed lines show the empirical
statistic, with the color corresponding to the Participant (blue - Participant
6; yellow - Participant 7).

we took the mean (µ) and standard deviation (σ) of the bottleneck strength

(µ = 68.65, σ = 21.52) and bottleneck frequency (µ = 237.92, σ = 79.16) for

the simulations in the top 2.5% where ρ = 0.01. Likewise, for each participant

we found the mean and standard deviation of the latent reservoir size when

ρ = 0.01 from the top 2.5% of simulations (P6 µ = 816, σ = 759; P7 µ = 2190,

σ = 1675). We set a prior on each parameter θ such that θ ∼ N(µθ,
σθ
3

) for

all parameters except for the recombination rate, which we set to ρ = 0.01.

We generated 200 ARG simulations under these prior distributions, where the

only difference between Participant 6 and Participant 7 was the prior placed

on the latent reservoir size. Through this experiment, we are able to produce

the qualitative but not quantitative differences between Participants 6 and
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7. When we looked at the reconstructed trees from these distributions, we

found that in general Participant 6 trees showed higher tree-like structure and

fewer lineages through time. However, the relative ranking in the CV and EI

ratio was backwards: trees from Participant 7 had on average higher EI ratio,

when the empirical measures indicate Participant 6 has a higher EI Ratio.

Reconstructed trees for Participant 7 also had lower variation between tips of

the same sampling event, when in reality Participant 6 has a lower CV.

4.5 Discussion

The importance of recombination and the latent reservoir in within-

host HIV-1 evolutionary dynamics has been described in detail since the mid

1990’s [47, 135]. Although these two processes have been modeled individually

and together using forward mathematical models and simulations [43, 68, 71,

108], both processes have been largely ignored in phylodynamic investigations

because of the theoretical and computational problems in jointly inferring

phylogeny and recombination patterns. As efforts continue towards finding

a functional cure of HIV-1 that involves eliminating or reducing the size of

the latent reservoir, studying the interaction between the latent reservoir and

recombination remains key. In this study we extend a previously developed

within-host coalescent model [132] into an ARG simulation model that allows

for lineages to coalesce, recombine, and cycle in and out of a latent state.

We find that these complex evolutionary dynamics leave tractable signals in

binary trees reconstructed using hierarchical clustering and can be quantified
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in readily measurable topological and distance features. Additionally, we use

a sampling estimation framework to evaluate the intensity of recombination

and the latent reservoir size in HIV-1 patient trees.

Our within-host HIV-1 ARG simulation model and decomposition frame-

work produces trees that qualitatively and quantitatively capture HIV-1 evo-

lutionary dynamics. The topological and distance-based statistics from recon-

structed trees are within the range of empirical HIV-1 phylogenies, and our

distance matching algorithm shows the ability to recover distinguishing tree

and topological characteristics when applied to patients with visually distinct

evolutionary histories. We find that in some cases, there is a dependency be-

tween the intensity of recombination and the size of the latent reservoir. In

these cases, faster recombination rates are associated with larger latent reser-

voirs. Because these are compensatory features, parameter identifiability is a

problem as multiple combinations of the two might be observationally equiv-

alent. Moving forward, experimental studies might help define an informative

prior distribution for one or both of these parameters. In Participant 7 we see

an instance of how strong evidence for one parameter can reduce the inference

problem to one dimension. Furthermore, a rigorous Approximate Bayesian

Computation (ABC) inference framework could better test between alternate

hypotheses and indeed our future directions include implementing one for more

participants.

The analysis of the two participants from the Shankarappa study demon-

strates the above-mentioned difficulties in parameter identification. Even so,
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we can derive conclusions and generate hypotheses about the relative strength

and consistency of the recombination rate and size of the latent reservoir. We

find consistency between the recombination rates that produce the best-fitting

trees to the empirical data and the current biological estimates of the effective

recombination rate. The estimated effective recombination rate, 1.4× 10−5 to

1.38 × 10−4 per base per generation, corresponds to a rate of 0.008 − 0.081

recombination events per lineage per day in our simulation of a 700bp ge-

nomic fragment. For Participant 7, reconstructed trees from simulations with

ρ = 0.01 have on average the lowest distance scores. For Participant 6, the

lowest distance scores correspond to simulations where ρ = 0.05 or ρ = 0.1, but

favor 0.05 when considering only the top fitting simulations (Table C.2). Trees

with negligible recombination are ill-fits for both participants, emphasizing the

need to develop phylodynamic methods that account for recombination.

In terms of the latent reservoir size, both participants show strong sup-

port for latent reservoirs that are on the order of 102-103, although simulations

with values up 104 occasionally produce good fits. Large latent reservoirs closer

to 104 produce trees with extreme external to internal branch ratios, at times

almost 9-fold larger than the maximum empirical measurement (Fig. 4.4). A

102 latent reservoir corresponds to the estimate of 1 per 106 million CD4+ T

cells. While our results suggest the latent reservoir is near the smaller end

of the estimated spectrum and might vary between individuals, there remain

unanswered questions relating the absolute size of the reservoir with how much

virus it produces and quantifying the adaptive impacts it has on generating
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genetic diversity available for immune escape.

The third biological feature we include in our within-host ARG simu-

lation model is population demography in the form of bottlenecks. We find

that bottlenecks are important for increasing the asymmetry of an HIV-1 tree,

an indicator of directional selection driven by immune escape, and producing

realistic topological and distance metrics (Fig. C.1). However, we do not find

strong evidence for any one type of bottleneck event (Fig. C.5). This is un-

surprising given that we model bottlenecks as a crude approximation of the

selection pressure coming from the immune system. A lack of fitness differences

between lineages might explain the tendency of our model to produce more

balanced trees than real HIV-1 trees. In between bottlenecks, the coalescence

rates of lineages are neutral. In reality, low-level positive selection from the

immune system will create fitness differences between lineages, particularly for

reactivated latent lineages that would be less fit because of long-term immuno-

logical memory[22, 130, 163]. These fitness differences in turn will increase the

ladder-like structure of the tree. In addition to creating more balanced trees,

this neutrality likely causes the variability in possible evolutionary histories for

a given Θ, particularly when recombination is low. Lastly, this model artifact

might be creating tension in the distance scoring. Because the Sackin index of

simulated trees is often far below the empirical value, when the Sackin index is

close, it has a disproportionate weight on the overall scoring. To address these

shortcomings, future work will consider alternative formulations of changes in

demography.
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We show that when we simulate different patients under the same pa-

rameter assumptions except for the average latent reservoir size we can recover

qualitative differences but not the expected ranking differences in topological

and distance statistics (Fig. 4.8). One potential reason is that rather than a

single cause that distinguishes the differences because individuals, it might be

the complex dynamic interaction of multiple biological processes. Other pos-

sible explanations include a missing biological component, such as an explicit

model of selection, or a poorly defined prior of the parameters.

In our distance algorithm we introduce the ranked distance matrix as

a new statistical probe, which has two notable features. First, because the

ARG models the time between events, the distance matrix obtained from a

ARG-decomposed binary tree accounts for the true evolutionary distance in

time between the extant tips. Second, distance matrix does not depend on

any topological structure and thus the assumptions of phylogenetic recon-

struction that omit recombination. However, a potential source of error comes

from matching the time scale of the ARG to the genetic distance of the se-

quence data. In our formulation, an optimized scaling factor transforms the

time distance to match the genetic distance and is independent of any spe-

cific genome-region. However, the scaling factor assumes a constant rate over

the course of an individual’s infection and does not account for the possibility

that multiple mutations have occurred at an individual site. Thus a branch

in the genetic distance matrix would appear shorter than if the branch was

represented in time.

111



The calculation of a ranked distance matrix score depends on a one-

to-one match with the empirical data and therefore we generate participant-

specific ARG simulations. Despite considering Θs from the same prior distri-

butions, we find significant differences between the topological and distance

features of reconstructed phylogenies (Fig. 4.4). This suggests that the sam-

pling scheme constrains the evolutionary histories in an observable way and is

an important feature to consider in phylodynamic inference and can impact

parameter estimation.

While our model advances the biological realism of within-host HIV-1

evolution, it could be further modified to include population structure. Pop-

ulation structure might be an important feature for reducing the range of

evolutionary histories for a given set of parameter by limiting the lineages

that could coalesce and recombine to lineages in a shared subpopulation. In

effect, this would increase the number of lineages that survive through time

and maintain the ladder-like structure of simultaneously evolving lineages as

seen in Participant 7.
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Appendix A

Assessing real-time Zika risk in the United

States

A.1 Extended Methods

A.1.1 Fitting the Generation Time

To capture the correct outbreak timing, we fit the generation time of

our SEIR model to estimates for the ZIKV exposure and infectious periods

in humans. The generation time measures the average duration from initial

symptom onset to the subsequent exposure of a secondary case, and is esti-

mated to range from 10 to 23 days for ZIKV [96]. In our model, the generation

time corresponds to the sum of the exposure period and 1/2 the infectious pe-

riod. We therefore fit the infectious period in our model to human ZIKV

estimates for duration of viral shedding, and then fit the exposure period so

that the sum of the two classes match the estimated ZIKV serial interval.

According to our modeling framework: with one infectious compart-

ment, the distribution of waiting times in the compartment would follow a

geometric distribution, with the most common waiting time equal to one day

regardless of the transition rate. As this is a biologically unrealistic waiting

time distribution, we use Boxcar implementations to yield a more realistic dis-

tribution [92]. In such a framework one splits a compartment into multiple

114



separate compartments (boxes), has individuals transition through these com-

partments, and alters the transition rate for each compartment so the average

waiting time spent in all compartments equals that of the original desired av-

erage. For example, if a 10 day infectious period were desired, one could model

the infectious period as 1 compartment with a daily transition rate of 1/10, or

5 compartments with a daily transition rate of 5/10. The number of infectious

individuals is either the number of individuals in the single compartment, or

the total number of individuals in all five boxes. Both scenarios would have

an average waiting time of 10 days to move through the infectious period,

but the 5 boxes would necessitate individuals being infectious for at least 5

days giving a more realistic waiting time distribution that follows a negative

binomial distribution (sum of multiple independent geometric distributions).

First, we solved for transition rates and compartments of a Boxcar

Model infectious period that yielded an infectious period with 3 compartments

and mean duration of 9.88 days and 95% CI of (3-22) [90]. Then, we fit the

exposure period so that the combined duration of the infectious and exposure

periods matched the empirical ZIKV generation time range [96], yielding 6

compartments and a mean exposure period of 10.4 days (95% CI 6-17) and

finally a mean generation time of 15.3 days (95% CI 9.5-23.5). Given that

the exposure period includes human and mosquito incubation periods and

mosquito biting rates, this range is consistent with the estimated 5.9 day

human ZIKV incubation period [90].
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Development and 
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Figure A.1: ZIKV Risk Assessment Framework. The method consists
of three steps. First, we use data-derived models to estimate county-level
ZIKV introduction rates and ZIKV transmission rates. Each estimate is
based on a combination of general and county-specific factors. Second, for
every county-risk combination, we simulate 10,000 ZIKV outbreaks using a
stochastic branching process ZIKV transmission model parameterized by the
county-level importation and transmission rate estimates along with several
other recently published disease progression estimates. The simulations track
the numbers of autochthonous and imported cases (unreported and reported)
and, based on the total size and maximum daily prevalence, classifies each
outbreak as self-limiting or epidemic. Third, we analyze the simulations to
determine (1) robust relationships between the number of reported cases in a
county and the current and future ZIKV threat and (2) surveillance triggers
(number of reported cases) indicative of imminent epidemic expansion.
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Figure A.2: The 95% CI of R0 Distributions for August. From left to
right, the 2.5%, 50% and 97.5% quantile R0 values for August. The range of
absolute values spans 0.02-6.90. Given the considerable uncertainty in socioe-
conomic and environmental drivers of ZIKV, we analyzed relative rather than
absolute transmission risks.
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Figure A.3: Diagram of ZIKV outbreak model. The model tracks disease
progression, transmission, and reporting of both imported and autochthonous
ZIKV cases. Individuals progress through compartments via a daily Marko-
vian process, according to the solid arrows in the diagram. The Exposed and
Infectious periods consist of several (boxcar) compartments to simulate realis-
tic outbreak timing. Unreported infected individuals have a daily probability
of being reported. Imported cases are assumed to arrive daily according to
a Poisson distribution (with mean σ) at the beginning of their infectious pe-
riod, and otherwise follow the same infectious process as autochthonous cases.
Autochthonous transmission occurs at rate β(IA + II), where IA and II are
the total number of infectious autochthonous and imported cases, respectively
(dashed arrows).
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Figure A.4: Determining outbreak simulation length. If outbreak simu-
lations are too short, self-limiting outbreaks may reach the maximum number
of infections due to stochasticity. We chose to run our simulations to 2,000
cumulative infections as it conservatively differentiated the large outbreaks
of simulations with R0 just below 1 (0.95) from the epidemics of those with
R0 just above 1 (1.05). We therefore chose to run our simulations until a
maximum number of 2,000 infections.
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Figure A.5: Time between detection of locally transmitted cases dur-
ing epidemics. Across a range of R0 values with an importation rate 0.1
cases/day, we plot the time between detection events of autochthonous cases
for simulations out of the 10,000 trials in which epidemics occurred (black
dots). The blue line indicates a two-week threshold as recommended by the
CDC for follow-up of local transmission. Even under a high importation rate
of 0.1 cases/day, epidemics do not occur when R0 = 0.8, and rarely occur when
R0 = 0.9. As R0 increases, a greater proportion of simulations have fewer days
in between detection events as the number of infections rapidly increase.
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Figure A.6: Selecting daily prevalence threshold for distinguishing
self-limiting outbreaks from epidemics. Across a range of R0 values, we
plot the maximum daily total autochthonous infectious individuals for 1,000
of our 10,000 trials (black dots). The blue line indicates the threshold (50)
selected to differentiate epidemics with R0 > 1 from outbreaks with R0 ≤ 1.
At a low importation rate (0.01), the majority of simulations with R0 ≤ 1
are self-limiting and rarely progress into large sustained outbreaks. As R0

increases, a greater proportion of simulations exceed the threshold. As the
importation rate increases (panels from left to right) the separation between
self-limiting outbreaks and epidemics becomes more pronounced.
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Figure A.7: Monthly R0 estimates based on seasonal changes in the
temperature-dependent extrinsic incubation period of ZIKV in Ae.
aegypti and the mosquito mortality rate of Ae. aegypti
.
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Appendix B

Early Prediction of Antigenic Transitions for

Influenza A H3N2

B.1 Extended Methods

B.1.1 Influenza Phylodynamic Simulations

Deriving the criteria for cluster establishment in the popula-

tion

To separate the clusters that are eventually successful from those that

only transiently circulate, we derived a two-criteria threshold of establishment

based on reaching a minimum frequency in the population, and circulating

above the minimum frequency for a specified duration of time. We choose the

most stringent criteria that, when only accounting for clusters that reached the

criteria, still maintained cyclical influenza dynamics. In addition, we compared

the proportion of the total infected population attributable to established clus-

ters under different criteria (Fig. B.1).
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Figure B.1: The proportion of total infections caused by established
clusters is more sensitive to a frequency criteria than the duration
of time. Established antigenic clusters account for the majority of the disease
activity at any point in time. In our analysis, established clusters are those
that circulate above 20% relative frequency for at least 45 days. Using this
criteria, infections caused by future successful clusters account for a median
of 81% of the disease activity at any point in time.

B.1.2 Candidate Predictors

Candidate predictors are those population genetic and epidemiological

indicators that were tracked during the phylodynamic simulations or calculated

from the output. The full list is in Table B.1.
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Candidate Predictor Formula Population Cluster Relative

Number of Infected Individuals I X

Number of Uninfected Individuals S X

Proportion of Individuals Infected I/N X

Number of Circulating Antigenic Clusters Nc X

Frequency of Current Dominant Cluster fc = max
[
Ic/I

]
X

Entropy (Shannon’s Diversity Index) H = 1
NC

∑NC
j=1 fj ln 1

fj
X

Serial Interval of Infection* SI = 1
I

∑
a,b∈infecteds

(ta0 − tb0) X

The most recent common ancestor* TMRCA = max
[

1
2

((
tTMRCA0 − ta0

)
+
(
tTMRCA0 − tb0

))]
X

Genetic Diversity* ω = 1
I

∑
a,b∈infecteds

1
2

((
tTMRCA0 − ta0

)
+
(
tTMRCA0 − tb0

))
X

Antigenic Diversity* λ = 1
I

∑
a,b∈infecteds

λab X

Deleterious Mutational Load k = 1
I

∑I
i=1 k(vi) Mean, Var Mean, Var Mean, Var

Transmissibility β = 1
I

∑I
i=1 β0

(
1− sd

)k(vi) Mean, Var Mean, Var Mean, Var

Effective Susceptibility* Seff(v) = S
N

∑N
h=1

(
σv(h)

)
Mean, Var

Covariance in transmissibility and effective susceptibility cov = 1
I

∑I
i=1

(
(βi − β̄) ∗ (σv(i)− σ̄)

)
X

Cluster Susceptibility* σ(v) =
∑N

h=1 min(1, σv,c(h,v)) Mean, Var

Reproductive Growth Rate R(v) =
β0

(
1−sd

)k(v)

µ+ν

(
Seff(v)
N

)
Mean, Var Mean, Var Mean, Var

Table B.1: Full set of candidate predictors considered. Values were
taken at the moment a focal antigenic cluster reached a specified surveillance
threshold. The columns Population, Cluster, Relative indicate the scale and
measure (e.g. mean and/or variance) that a predictor was considered in the
model. Depending on the scale of the predictor, the formula could refer to
all strains in the population, i.e. the strains of infected hosts, or the subset
of strains in a specific cluster. *For computational simplicity, these quantities
were calculated using strains from a random sample of 10,000 infected indi-
viduals. N = number of hosts; ta0 = the time of birth of virus a; λ = antigenic
distance between two strains. The antigenic distance is the pairwise degree of
cross-immunity between two strains determined by the size of antigenic mu-
tations and parent-offspring relationships; k(vi) = the number of deleterious
mutations on a virus v of infected host i; sd = the fitness effect of a deleterious
mutation; σv = the average individual population susceptibility to cluster c;
σv,c(h,v) = the probability of infection of a host with historical infection i by a
strain of cluster v
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Figure B.2: The fate of novel antigenic clusters (A) Each point represents
the number of antigenic clusters in our simulations that reach each increas-
ing surveillance threshold (i.e., relative frequency in the population). As the
surveillance threshold increases from 1 to 10%, the number of candidate clus-
ters decreases from 7969 clusters at the 1% threshold to 1816 clusters at the
10% surveillance threshold. (B) Given a cluster has reached a surveillance
threshold, the proportion of antigenic clusters that will establish (i.e. reaches
> 20% for 45 days) increases with higher surveillance thresholds.

B.2 Extended Results

B.2.1 Incorporation of historical data

We tested an additional strategy for building classifier models: one

that incorporated previously sampled data for each cluster.

To predict a cluster’s evolutionary outcome for a specific surveillance

threshold, we used data from three timepoints: 1) when it reached 1%, 2)

when it reached the half-way frequency level between 1% and the surveillance

threshold of interest, and 3) when it reached the surveillance threshold. The
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candidate predictors included all variables listed in Table B.1, as well as the dif-

ference in predictor values between 1% and the halfway point, and the halfway

point and the maximum surveillance threshold. In addition, the difference of

these differences was an additional predictor. Models were fit using the same

approach described in the manuscript.

To compare the performance of models that incorporated data from

past time points to models based only on current data, we compared the

sensitivity and positive predictive value across surveillance thresholds from

1−10%. Both model types performed similarly across the range of surveillance

thresholds (Fig. B.3). We focus on strategy that only incorporates current

data because of the simplicity in the methodology and reduction of candidate

predictors.

B.2.2 Surveillance Threshold Results

The best-fit logistic regression models for surveillance thresholds from

1− 10% are listed in Table B.2.
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Surveillance Threshold (%) Predictor Variable Coefficient Estimate Std. Error

1

Rc/〈R〉 [2.61, 2.77] [0.09,0.09]
var(R) [-0.54, -0.60)] [0.06,0.06]
〈R〉 [0.30, 0.40] [0.05-0.05]
kc/〈k〉 [-0.20, -0.28)] [0.06, 0.06]
var(σc)/var(Seff) [0.12, 0.16] [0.05-0.06]
var(βc)/var(β) [0.17, 0.24] [0.05-0.05]
var(σc) [0.11, 0.19] [0.05-0.06]

2

Rc/〈R〉 [2.60, 2.71] [0.09-0.10]
var(R) [-0.52, -0.57] [0.06-0.07]
〈R〉 [0.28, 0.40] [0.05-0.05]
kc/〈k〉 [-0.27, -0.34] [0.06-0.06]
var(βc)/var(β) [0.32, 0.36] [0.05-0.06]
I/N [-0.16, 0.18] [0.06-0.06]
var(σc) [0.13, 0.19] [0.06-0.06]

3

Rc/〈R〉 [2.36, 2.43] [0.09-0.10]
var(R) [-0.46, -0.57] [0.07-0.07]
〈R〉 [0.39, 0.47] [0.06-0.06]
kc/〈k〉 [-0.32, -0.37] [0.06-0.06]
var(βc)/var(β) [0.26, 0.29] [0.06-0.06]
I [-0.14, 0.21] [0.06-0.06]
max

[
[Ic//It

]
[0.11, 0.19] [0.06-0.06]

4

Rc/〈R〉 [2.53-2.75] [0.10-0.11]
var(R) [-0.47, -0.63] [0.07-0.08]
〈R〉 [0.30, 0.42] [0.06-0.06]
kc/〈k〉 [-0.22, -0.28] [0.06-0.07]
var(βc)/var(β) [0.30, 0.33] [0.06-0.06]
var(σc) [0.15, 0.22] [0.06-0.06]
I [-0.15, 0.17] [0.06-0.06]

5

Rc/〈R〉 [2.35, 2.58] [0.11-0.12]
var(R) [-0.46, -0.59] [0.08-0.08]
〈R〉 [0.31, 0.44] [0.06-0.06]
kc/〈k〉 [-0.25, -0.32] [0.06-0.07]
var(σc) [0.17, 0.23] [0.06-0.06]
var(βc)/var(β) [0.14, 0.20] [0.06-0.06]
max

[
Ic/It

]
[0.11, 0.17] [0.06-0.06]

6

Rc/〈R〉 [2.36, 2.60] [0.11-0.12]
var(R) [-0.60, -0.71] [0.08-0.08]
〈R〉 [0.32, 0.43] [0.06-0.06]
kc/〈k〉 [-0.26, -0.17] [0.06-0.06]
var(βc)/var(β) [0.19, 0.23] [0.06-0.06]
var(σc) [0.09, 0.21] [0.06-0.07]

7

Rc/〈R〉 [2.36, 2.59] [0.12-0.13]
var(R) [-0.69, -0.78] [0.08-0.08]
〈R〉 [0.32, 0.40] [0.07-0.07]
kc/〈k〉 [-0.25, -0.32] [0.07-0.07]
var(βc)/var(β) [0.17, 0.25] [0.06-0.07]

8

Rc/〈R〉 [2.22, 2.40] [0.11-0.12]
var(R) [-0.51, -0.62] [0.08-0.09]
〈R〉 [0.32, 0.42] [0.07-0.07]
kc/〈k〉 [-0.27, 0.34] [0.07-0.07]
var(βc)/var(β) [0.17, 0.25] [0.07-0.07]
max

[
Ic/It

]
[0.15, 0.29] [0.07-0.07]

9

Rc/〈R〉 [2.24, 2.45] [0.12-0.13]
var(R) [-0.48, -0.63] [0.09-0.10]
〈R〉 [0.30, 0.38] [0.07.-0.07]
kc/〈k〉 [-0.22, 0.31] [0.07-0.07]
max

[
Ic/It

]
[0.13, 0.25] [0.07-0.07]

var(βc)/var(β) [0.09, 0.24] [0.07-0.07]

10

Rc/〈R〉 [2.38, 2.55] [0.13-0.14]
var(R) [-0.63, -0.74] [0.09-0.09]
〈R〉 [0.27, 0.35] [0.07-0.07]
kc/〈k〉 [-0.18, -0.23] [0.07-0.08]
var(βc)/var(β) [0.14, 0.22] [0.08-0.08]
TMRCA [-0.10, -0.21] [0.08-0.08]

Table B.2: Best-fit model results for surveillance thresholds 1 − 10%.
The predictor variables are listed in the order by which they were selected
using a forward selection algorithm. The coefficient estimate is the maximum
and minimum coefficient (log-odds) from the five-fold cross validation of the
final full-term model with the corresponding std. error.
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Figure B.3: Predictive models that rely on data from a single sample
of time perform similarly to those that include data from multiple
time points. Each point represents the combination of candidate predictors
that best predict the evolutionary fate of antigenic clusters at varying surveil-
lance thresholds, whether the combination includes data from a single time
point (yellow) or multiple time points (purple). Model performance is mea-
sured in terms of sensitivity and positive predictive value. Dots represent the
median, and error bars span the range of performance values across the five
folds of cross-validation of the best-fit model.

B.2.3 Proxy Model Results

Because the top selected predictors across all models cannot easily be

estimated using readily available surveillance data, we evaluated several proxy

measures of viral growth rates and viral competition. The results of the models

and how they compare to the performance of a model using only the true

relative epidemiological growth rate and the background variance in growth

rate can be seen in Table B.3. In addition to the terms included in the table,

we tested the fold change of the dominant cluster from t1 and t2 as a predictor,

but did not find that this term was a significant proxy in any model.

129



Surveillance Thresholds Model Type Balanced Accuracy AUC PPV Sensitivity

5% 1. Rc/〈R〉 + var(R) Actual 0.78 0.88 0.81 0.89

1-5% 2. δc(t1, t2) + N∆j(t1,t2)>1 Proxy 0.57 0.71 0.65 0.93

1-5% 3. χc(t1, t2) + var(∆j(t1, t2)) Proxy 0.50 0.58 0.61 0.99

5% 1. Rc/〈R〉 + var(R) Actual 0.78 0.88 0.81 0.89

3-5% 2. δc(t1, t2) + N∆j(t1,t2)>1 Proxy 0.56 0.67 0.64 0.95

3-5% 3. χc(t1, t2) + var(∆j(t1, t2)) Proxy 0.50 0.58 0.61 0.99

10% 1.Rc/〈R〉 + var(R) Actual 0.78 0.88 0.81 0.89

6-10% 2.δc(t1, t2) + N∆j(t1,t2)>1 Proxy 0.70 0.78 0.74 0.87

6-10% 3.χc(t1, t2) + var(∆j(t1, t2)) Proxy 0.59 0.67 0.66 0.95

10% 1. Rc/〈R〉 + σR Actual 0.78 0.88 0.81 0.89

8-10% 2. δc(t1, t2) + N∆j(t1,t2)>1 Proxy 0.63 0.72 0.68 0.95

8-10% 3. χc(t1, t2) + var(∆j(t1, t2)) Proxy 0.58 0.70 0.65 0.97

Table B.3: Evaluating proxy measures for different phases of a novel
antigenic cluster’s early expansion. Model 1 shows the performance of
the best-fit model using the actual values of relative fitness (relative growth
rate) and competition (variance in the population growth rate) for clusters
that reached the 5% surveillance thresholds (top two sections) and the 10%
surveillance threshold (bottom two sections). Within each section, Model 2
substituted a time proxy for the fitness term and the absolute number of
clusters that were growing for the competition term. Model 3 substituted
a relative fold change for the fitness term and the population-wide variance
in fold change for the competition term. t1 is when a focal cluster reaches
the lower surveillance threshold (1%, 3%, 6%, 8%); t2 is when the same cluster
reaches the higher surveillance threshold (5%, 10%) Performance metric values
are the median across the five folds in cross-validation. Balanced accuracy
measures the accuracy of the model, accounting for the imbalance in outcomes
(i.e. number of transient versus established clusters) in the data set.
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Figure B.4: The rate of change (a) and relative fold change (b) as
proxy measures for the relative growth rate R/〈R〉. Contour lines indi-
cate the density of cluster values for clusters that establish (black) and those
that transiently circulate (grey). Values along the x-axis indicate the measured
relative growth rate of a cluster the moment it reaches the 10% surveillance
threshold. Values along the y-axis indicate the proxy measure (rate of change
in (a) and relative fold change in (b) for the cluster, approximated for the
time between the 6% and 10% thresholds. The rate of change, measured in
the number of days between the two thresholds, is a better proxy measure
than relative fold change.

B.3 Alternate Surveillance Paradigms

Instead of a making antigenic transition predictions based on specific

surveillance thresholds, one may opportunistically make predictions on cluster

fate when samples become available. To compare the robustness of important

predictors and model performance under this type of surveillance strategy, we

fit two other model types, focused on 1) predicting the evolutionary fate of a

cluster and 2) predicting the frequency up to a year out in 3-month increments.

Our data set consisted of all the antigenic clusters present in 10 random

131



time points over a 25 year time period for each of the 62 independent simula-

tions (N = 2846 clusters). We collected candidate predictors for all antigenic

clusters that were present above 1% frequency and that had not already sur-

passed the successful criteria. In addition to the candidate predictors listed

in Table B.1, the present frequency of each antigenic cluster, fc, at the time

of sampling was also included as a predictor. To directly compare the two

types of surveillance strategies, we found the best fitting model that predicted

the antigenic cluster’s evolutionary fate using the same cross-validation model

fitting process previously described ( Fig. B.6.)

Second, rather than a binary transient-successful classification, we pre-

dicted frequency levels of present transient clusters at 3 month intervals up

to 12 months into the future. Out of the 2846 unique clusters in this data-

set, 2279 cluster had f ′c ≥ 0.01% at 3 months; 1921 clusters at 6 months,

1624 clusters at 9 months, and 1378 clusters at 12 months. For each 3 month

increment, we went through the following model fitting process. First, clas-

sification models were built to assess whether an antigenic cluster would be

present or absent in X months time. Next, regression models were fit to pre-

dict the frequency for any antigenic cluster that was present above 1% in X

months time. At each step, candidate predictor values of the eligible clusters

were centered and scaled. To improve model fit, the target frequency, f ′c in X

months was log-transformed. We tested the performance of the best-fit model

for each 3-month increment on a new data set consisting of 5 random time

points over a 25 year period, corresponding to 310 time points over all 62 sim-
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ulations (Tables B.4, B.5, Fig. B.7). In addition, we tried fitting the model

the frequency fold in X months time, i.e. fc(t+X)/fc(t); however the model’s

goodness-of-fit, as measured by the adjusted R2 was consistently lower than

that of the models predicting the log-transformed frequency.

0

200
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0.00 0.05 0.10 0.15 0.20

Frequency of antigenic clusters within random time sample

C
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nt

Figure B.5: The distribution of the 2846 cluster frequencies from 620
random time samples across the 1500 years of influenza evolution.
Clusters that were below 1% relative frequency in the population or those that
had already reached our establish criteria were excluded.
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Months Ahead Predictors AUC PPV Sensitivity

3

fc

0.93 0.90 0.96

Rc

〈R〉
βc/〈β〉
var(βc)/var(β)

6

fc

0.93 0.89 0.89

Rc

〈R〉
βc/〈β〉
var(R)

var(βc)/var(β)

I

9

Rc

0.93 0.84 0.91

fc

〈R〉
βc/〈β〉
var(R)

var(βc)/var(β)

tMRCA

12

Rj

0.92 0.81 0.87

fc

〈R〉
var(R)

βc/〈β〉
var(βc)/var(β)

Table B.4: Best-fit logistic regression results for predicting presence-
absence of a cluster in X months time into the future. Terms are listed
in the order they were added to the model through forward-selection.
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Months Ahead Predictors R2Adjusted RMSE (log)

3

fc

0.84 0.36
Rc

〈R〉
βc/〈β〉

6

fc

0.74 0.51

Rc

〈R〉
βc/〈β〉
var(R)

9

Rc

0.66 0.65

fc

〈R〉
var(R)

βc/〈β〉
var(βc)/var(β)

12

Rj

0.57 0.77

fc

〈R〉
var(R)

var(βc)/var(β)

βc/〈β〉

Table B.5: Best-fit linear regression models for predicting frequency
of a cluster in X months time into the future. Terms are listed in the or-
der they were added to the model through forward-selection. The R2Adjusted
and Root Mean Squared Error (RMSE) were measured on a testing data set
of 5 random time samples over a 25-year period.
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Figure B.6: Comparing the sensitivity and positive predictive value
trade-off of two surveillance strategies: 1) surveillance threshold
(circles, triangles) and 2) random sampling through time (squares).
Each line highlights the trade off between sensitivity and positive predictive
value at different probability thresholds for what constitutes a positive pre-
diction, i.e. a future successful cluster. All models converge in areas with low
sensitivity and high positive predictive value, where the model has to predict
with probability 0.90 that the cluster will establish in order to classify it as a
positive prediction. However, in areas of greater sensitivity, the time sample
model consistently under performs surveillance threshold models based on a
5% or higher surveillance threshold. The black stars represent the probability
threshold that maximizes the F1 value.
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Figure B.7: Model predictions of cluster frequency up to a year in ad-
vance in three-month increments. Black dots represent clusters that will
eventually establish, and grey dots are clusters that will transiently circulate.
The black line represents perfect agreement between the actual and predicted
log frequencies. The number of clusters present at the time of sampling, but
expected to persist in the future, decreases with increasing month-ahead pre-
dictions. By 12 months, fewer than half of the starting clusters will still be
circulating. As you predict further into the future, the model underestimates
future-high frequency circulating clusters, which are usually clusters that will
establish.
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Appendix C

Within-host HIV-1 biological processes

reflected in deconstructed Ancestral

Recombination Graphs

C.1 Extended Figures

CV External:Internal MLT Sackin Index

Rare Periodic Frequent Rare Periodic Frequent Rare Periodic Frequent Rare Periodic Frequent
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Figure C.1: The impact of bottleneck strength and frequency on dis-
tance and tree statistics. Bottleneck frequency is measured in days Rare
[200-365], Periodic [100-200) Frequent [14-100). Bottleneck strength is the
size of Ne during a bottleneck. As Ne grows linearly with time, the bottle-
neck accounts for progressively greater proportions of the effective population
size from the time of infection. Bottleneck Strength Categories: Strong [1-
30), Medium [30-60), Weak [60-100]. The grey lines represent the empirical
minimum, median, and maximum value of each statistic.
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Figure C.2: Distributions of distance score, d, for each participant
(P6: N= 30,918, P7: N = 30,853). Within each participant, we nor-
malize the distance scores across simulations so that a score d = 0 represents
the closest-matching simulation and d = 1 represents the worst-matching sim-
ulation. The median of Participant’s 7 score distribution is lower than that
of Participant 6 (Wilcoxon Rank Sum, p ¡ 2.2e-16) because simulations with
a ρ = 0.01 had the lowest scores compared to Participant 6, where ρ = 0.05
and ρ = 0.1 had lower scores. Because of computational cost and the reduced
variability in simulation outcome at higher recombination rates, we sampled
10-100 times less at these recombination rates than at ρ = 0.01. Distance
summary statistics: Participant 6 (median: 0.34, IQR: 0.24-0.44); Participant
7 (median: 0.17, IQR: 0.12-0.25).
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Figure C.3: Sampling diagnostics for Participant 6. (Left) Pairwise rela-
tionships between parameters in the top 5% matching simulations for Partic-
ipant 6. (Right) Pairwise relationships between statistical probes in the top
5% matching simulations for Participant 6.

Figure C.4: Sampling diagnostics for Participant 7. Pairwise relation-
ships between parameters in the top 5% matching simulations for Participant
7. (Right) Pairwise relationships between statistical probes in the top 5%
matching simulations for Participant 7
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Figure C.5: Marginal distributions of NL, bottleneck frequency, and
bottleneck strength. Colors distinguish the density of parameters between
simulations with the lowest 5% of distance scores (yellow) and highest 95%
of distance scores (blue). Two-sided Kolmogorov-Smirnov tests indicated the
distributions for the latent reservoir size and for bottleneck strength are sig-
nificantly different between parameters in the lowest 5% of scores and those
in the top 95% for Participant 6 (Latent Reservoir: D = 0.735, p < 2.2e−16;
Strength: D = 0.110, p = 5.651−05; Frequency: D = 0.063, p = 0.060). Two-
sided Kolmogorov-Smirnov tests indicated the distributions for all parameters
are significantly different for Participant 7 (Latent Reservoir: D = 0.270,
p < 2.2e−16; Strength: D = 0.308, p < 2.2e−16; Frequency: D = 0.271,
p < 2.2e−16). The lowest 5% distributions are significantly different between
Participant 6 and Participant 7 for each parameter (Kolmogorov-Smirno two-
sided tests, p < 2.2e−16). Summary statistics for the lowest 5% (yellow)
in the form of Q1-Median-Q3 Patient 6: Latent Pool Size (0.12-0.30-0.63);
Strength (32.44-55.43-78.99); Frequency (114.34-202.03-287.80). Patient 7:
Latent Reservoir (0.58-1.14-1.85); Strength: (52.46-70.05-86.09); Frequency
(187.18-253.63-312.11).
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Figure C.6: Conditional distributions of NL, bottleneck frequency,
and bottleneck strength by recombination rate for the lowest 5% of
distance scores. The line through each ridge represents the 50th quantile.
Within each participant, the median of the Latent Reservoir increases with
the recombination rate.
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C.2 Extended Tables

Recombination
Rate ρ

Latent Reservoir Category NL

Low Medium High

1e-12 343 1035 3336
0.001 342 1091 3477
0.01 358 1018 3389
0.05 38 93 339
0.1 2 10 38

Table C.1: The numbers of simulations used to calculate the mean
and standard error for Figure 4.3

.

Participant ρ
1e-12 0.001 0.01 0.05 0.1

6 Complete 0.37 (0.13) 0.36 (0.13) 0.31 (0.13) 0.20 (0.10) 0.20 (0.09)
Top 5% 0.11 (0.02) 0.10 (0.02) 0.09 (0.03) 0.08(0.03) 0.09 (0.02)

7 Complete 0.22(0.14) 0.21 (0.13) 0.18 (0.13) 0.20 (0.11) 0.24 (0.09)
Top 5% 0.05 (0.01) 0.05 (0.01) 0.04 (0.01) 0.06 (0.00)

Table C.2: Mean distance score, d̄, and standard deviation by recom-
bination rate ρ for Participant 6 and Participant 7. Participant 6 Top
5%: ρ = 1e−12, N = 163; ρ = 0.001, N = 242; ρ = 0.01, N = 884; ρ =
0.05, N = 235; ρ = 0.1, N = 22. Participant 7 Top 5%: ρ = 1e−12, N = 263;
ρ = 0.001, N = 421; ρ = 0.01, N = 855; ρ = 0.05, N = 5.
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Metric Testing Parameter Conditional Group χ2 d.f. p-value

Sackin index NL

ρ = 1e−12 693.24 2 < 2.2e−16

ρ = 0.001 694.87 2 < 2.2e−16

ρ = 0.01 966.07 2 < 2.2e−16

ρ = 0.05 183.58 2 < 2.2e−16

ρ = 0.1 17.96 2 < 2.2e−16

CV NL

ρ = 1e−12 36.62 2 < 2.2e−16

ρ = 0.001 190.80 2 < 2.2e−16

ρ = 0.01 666.07 2 < 2.2e−16

ρ = 0.05 26.69 2 < 2.2e−16

ρ = 0.1 6.75 2 0.03

EI Ratio NL

ρ = 1e−12 2590.74 2 < 2.2e−16

ρ = 0.001 2568.72 2 < 2.2e−16

ρ = 0.01 2107.92 2 < 2.2e−16

ρ = 0.05 104.81 2 < 2.2e−16

ρ = 0.001 2568.72 2 < 2.2e−16

ρ = 0.1 3.08 2 0.21

MLT NL

ρ = 1e−12 1481.35 2 < 2.2e−16

ρ = 0.001 1329.80 2 < 2.2e−16

ρ = 0.01 974.41 2 < 2.2e−16

ρ = 0.05 103.40 2 < 2.2e−16

ρ = 0.1 4.29 2 0.12

Sackin index ρ
NL < 500 40.00 4 < 2.2e−16

NL < 2500 105.18 4 < 2.2e−16

NL < 10000 544.34 4 < 2.2e−16

CV ρ
NL < 500 546.85 4 < 2.2e−16

NL < 2500 1505.05 4 < 2.2e−16

NL < 10000 3565.02 4 < 2.2e−16

EI Ratio ρ
NL < 500 382.92 4 < 2.2e−16

NL < 2500 170.39 4 < 2.2e−16

NL < 10000 1909.82 4 < 2.2e−16

MLT ρ
NL < 500 71.08 4 < 2.2e−16

NL < 2500 181.28 4 < 2.2e−16

NL < 10000 1261.14 4 < 2.2e−16

Table C.3: Kruskal-Wallis χ2 ranked sum tests associated with Figure
4.3. For a given Metric, and Conditional Group, the Kruskal-Wallis test is
testing for significant differences in the means of the Testing Parameter. NL

refers to the latent reservoir size and ρ refers to the recombination rate of
lineages per day. For example, there is a significant difference in the mean
statistic of the Sackin index across possible values of NL when ρ = 0.1. How-
ever, there is not a significant difference in the MLT across groups of NL when
ρ = 0.1.
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Metric Conditional Parameter Testing Group 1 Testing Group 2 Z-Statistic P-value

Sackin ρ = 0.1 NL < 2500 NL < 10000 0.823 0.205

CV

ρ = 1e−12 NL < 2500 NL < 10000 -1.52 0.063
ρ = 0.001 NL < 2500 NL < 10000 -1.357 0.087
ρ = 0.01 NL < 2500 NL < 10000 1.302 0.193
ρ = .05 NL < 2500 NL < 10000 0.631 0.0264
ρ = 0.1 NL < 500 NL < 10000 -0.132 0.448

EI Ratio

ρ = 0.05 NL < 2500 NL < 10000 -1.83 0.034
ρ = 0.1 NL < 500 NL < 2500 1.314 0.2833
ρ = 0.1 NL < 500 NL < 10000 1.29 0.196
ρ = 0.1 NL < 2500 NL < 10000 -0.638 0.262

MLT
ρ = 0.1 NL < 500 NL < 2500 1.92 0.082
ρ = 0.1 NL < 500 NL < 10000 0.97 0.1665
ρ = 0.1 NL < 2500 NL < 10000 -1.36 0.175

Sackin

NL < 500 ρ = 1e−12 ρ = 0.001 -2.36 0.055
NL < 500 ρ = 1e−12 ρ = 0.01 -2.55 0.037
NL < 500 ρ = 1e−12 ρ = 0.1 1.93 0.081
NL < 500 ρ = 0.001 ρ = 0.01 1.67 0.434
NL < 500 ρ = 0.001 ρ = 0.1 -2.184 0.058
NL < 500 ρ = .01 ρ = 0.1 -2.20 0.069
NL < 500 ρ = 0.05 ρ = 0.1 -0.086 0.389
NL < 2500 ρ = 1e−12 ρ = 0.01 2.125 0.050
NL < 2500 ρ = 0.001 ρ = 0.01 1.270 0.204
NL < 2500 ρ = 0.05 ρ = 0.1 -0.617 0.269
NL < 10000 ρ = 1e−12 ρ = 0.1 -1.816 0.173
NL < 10000 ρ = 0.001 ρ = 0.1 1.00 0.460
NL < 10000 ρ = 0.001 ρ = 0.05 1.298 0.243
NL < 10000 ρ = 0.01 ρ = 0.1 -1.666 0.192
NL < 10000 ρ = 0.05 ρ = 0.1 -0.370 0.712

CV

NL < 500 ρ = 0.01 ρ = 0.1 1.139 0.255
NL < 500 ρ = 0.05 ρ = 0.1 0.255 0.400
NL < 2500 ρ = 0.05 ρ = 0.1 0.548 0.292
NL < 10000 ρ = 0.05 ρ = 0.1 0.183 0.427

MLT

NL < 500 ρ = 1e−16 ρ = 0.001 0.507 0.612
NL < 500 ρ = 1e−16 ρ = 0.01 -2.119 0.068
NL < 500 ρ = 1e−16 ρ = 0.1 -2.242 0.0623
NL < 500 ρ = 0.001 ρ = 0.1 2.300 0.065
NL < 500 ρ = 0.01 ρ = 0.1 2.017 0.066
NL < 500 ρ = 0.05 ρ = 0.1 0.390 0.348
NL < 2500 ρ = 0.05 ρ = 0.1 0.541 0.589
NL < 10000 ρ = 0.05 ρ = 0.1 1.805 0.036

EI Ratio

NL < 500 ρ = 1e−12 ρ = 0.001 1.920 0.082
NL < 500 ρ = 0.01 ρ = 0.1 -1.525 0.127
NL < 500 ρ = 0.05 ρ = 0.1 -0.163 0.435
NL < 2500 ρ = 1e−12 ρ = 0.001 -0.987 0.324
NL < 2500 ρ = 1e−12 ρ = 0.01 0.087 0.465
NL < 2500 ρ = 0.001 ρ = 0.01 -1.071 0.426
NL < 10000 ρ = 1e−12 ρ = 0.1 -2.171 0.045
NL < 10000 ρ = 0.001 ρ = 0.01 0.871 0.192
NL < 10000 ρ = 0.01 ρ = 0.05 -2.049 0.041

Table C.4: Insignificant pairwise comparisons between Testing Group
1 and Testing Group 2 for a given Conditional Parameter using
Dunn’s z-test-statistic. The pairwise The p-value is adjusted using the
Holm’s adjusted method for multiple comparison correction. The null hypoth-
esis for each pairwise comparison is rejected if the p-value is less than 0.5α,
where α = 0.05. All other pairwise comparisons are significant.
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[154] Natalja Strelkowa and Michael Lässig. Clonal interference in the evolu-

tion of influenza. Genetics, 192(2):671–82, oct 2012.

[155] Rahul Subramanian, Andrea L. Graham, Bryan T. Grenfell, and Ni-

malan Arinaminpathy. Universal or Specific? A Modeling-Based Com-

parison of Broad-Spectrum Influenza Vaccines against Conventional, Strain-

Matched Vaccines. PLOS Computational Biology, 12(12):e1005204, dec

2016.

[156] James D. Tamerius, Jeffrey Shaman, Wladmir J. Alonso, Kimberly Bloom-

Feshbach, Christopher K. Uejio, Andrew Comrie, and Cécile Viboud.

Environmental Predictors of Seasonal Influenza Epidemics across Tem-

perate and Tropical Climates. PLoS Pathogens, 9(3):e1003194, mar

2013.

[157] Koichiro Tamura and Masatoshi Nei. Estimation of the number of

nucleotide substitutions in the control region of mitochondrial DNA in

humans and chimpanzees. Molecular Biology and Evolution, 10(3):512–

526, may 1993.

175



[158] R Core Team. R: A Language and Environment for Statistical Com-

puting, 2016.

[159] Texas Department of State Health and Human Services. Arbovirus

Activity in Texas 2013 Surveillance Report, 2014.

[160] Texas Department of State Health and Human Services. Arbovirus

Activity in Texas 2014 Surveillance Report, 2014.

[161] Texas Department of State Health and Human Services. Texas An-

nounces Local Zika Virus Case in Rio Grande Valley, 2016.

[162] ”Texas Department of State Health and Human Services”. Zika in

Texas, 2016.

[163] Xiping Wei, Julie M. Decker, Shuyi Wang, Huxiong Hui, John C. Kappes,

Xiaoyun Wu, Jesus F. Salazar-Gonzalez, Maria G. Salazar, J. Michael

Kilby, Michael S. Saag, Natalia L. Komarova, Martin A. Nowak, Beat-

rice H. Hahn, Peter D. Kwong, and George M. Shaw. Antibody neu-

tralization and escape by HIV-1. Nature, 422(6929):307–312, mar 2003.

[164] Frank Wen, Trevor Bedford, and Sarah Cobey. Explaining the geo-

graphical origins of seasonal influenza A (H3N2). Proceedings of the

Royal Society of London B: Biological Sciences, 283(1838), 2016.

[165] Frank T. Wen, Sidney M. Bell, Trevor Bedford, and Sarah Cobey. Esti-

mating vaccine-driven selection in seasonal influenza. Viruses, 10(9):1–

37, 2018.

176



[166] James B. Whitney, Alison L. Hill, Srisowmya Sanisetty, Pablo Penaloza-

MacMaster, Jinyan Liu, Mayuri Shetty, Lily Parenteau, Crystal Cabral,

Jennifer Shields, Stephen Blackmore, Jeffrey Y. Smith, Amanda L. Brinkman,

Lauren E. Peter, Sheeba I. Mathew, Kaitlin M. Smith, Erica N. Borduc-

chi, Daniel I. S. Rosenbloom, Mark G. Lewis, Jillian Hattersley, Bei Li,

Joseph Hesselgesser, Romas Geleziunas, Merlin L. Robb, Jerome H. Kim,

Nelson L. Michael, and Dan H. Barouch. Rapid seeding of the viral reser-

voir prior to SIV viraemia in rhesus monkeys. Nature, 512(7512):74–77,

aug 2014.

[167] Laurence A. Wolsey. Integer programming. Wiley New York, New York,

vol. 42. edition, 1998.

[168] Joseph K Wong, Marjan Hezareh, Huldrych F Günthard, Diane V Havlir,

Caroline C Ignacio, Celsa A Spina, and Douglas D Richman. Recovery

of Replication-Competent HIV Despite Prolonged Suppression of Plasma

Viremia. Science, 278(5341):1291–1295, 1997.

[169] Michael Worobey, Marlea Gemmel, Dirk E. Teuwen, Tamara Haselkorn,

Kevin Kunstman, Michael Bunce, Jean-Jacques Muyembe, Jean-Marie M.
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