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This dissertation studies elastic wave propagation in metamaterials sub-

jected to an externally-applied static or spatiotemporally-varying pre-strain.

Elastic metamaterials are media with subwavelength structure that behave as

effective materials displaying atypical effective dynamic properties that are

used to directly control the propagation of macroscopic waves. One major de-

sign limitation of most metamaterial structures is that the dynamic response

cannot be altered once the microstructure is manufactured. However, the abil-

ity to modify, or tune, wave propagation in the metamaterial with an external

pre-strain that induces geometric nonlinearity is highly desirable for numer-

ous applications. Acoustic and elastic metamaterials with time- and space-

dependent effective material properties have also recently received significant

attention as a means to induce non-reciprocal wave propagation. However, the

modulation of effective material properties in space and time using mechanical

deformation has been unexplored. Tunable elastic metamaterials that exhibit
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large effective material property changes under a varying external pre-strain

are therefore strong candidates for a non-reciprocal medium.

The complex geometry present in unit cells that exhibit large geomet-

ric nonlinearity necessitates the development of a numerical technique. In

this dissertation, a finite element approach is derived and implemented to

study elastic wave propagation in a static pre-strained metamaterial, then

generalized to include the effects of a spatiotemporally-varying pre-strain. A

honeycomb structure composed of a doubly-periodic array of curved beams,

known as a negative stiffness honeycomb (NSH), is analyzed as a tunable and

non-reciprocal elastic metamaterial. It is shown that NSH exhibits significant

tunability and a high degree of anisotropic wave behavior when a static pre-

strain is imposed. This behavior can be used to guide wave energy in different

directions depending on static pre-strain levels. In addition, it is shown that

partial band gaps exist where only longitudinal waves propagate. The NSH

therefore behaves as a meta-fluid, or pentamode metamaterial, which may be

of use for applications of transformation elastodynamics such as cloaking and

gradient index lens devices. A negative stiffness chain, a quasi-one-dimensional

representation of NSH, is also shown as a case example of a non-reciprocal

medium. It is shown in this work that this structure displays a high degree of

non-reciprocity for a small amount of modulation pre-strain. The utility of the

finite element approach is further demonstrated by investigating the effects of

chiral geometric asymmetry to enhance the non-reciprocal behavior of elastic

wave propagation in NSH.
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Chapter 1

Introduction

1.1 Motivation

Mechanical metamaterials have received significant attention in a wide

range of fields in science and engineering, including acoustics, elastodynam-

ics, and materials science as a means to directly control the propagation of

mechanical waves through a synthetic elastic medium. These materials are

composed of an engineered microstructure which, in the limit of long wave-

lengths compared to length the microstructure, exhibit extraordinary effective

dynamic behavior. The advancement of electromagnetic metamaterials and

the first experimental demonstration of an acoustic metamaterial in 2000 [1]

prompted a flood of research, which has shown that atypical effective material

properties can be observed that do not exist in naturally-occurring materials,

such as negative mass density [1], negative stiffness [2], or a combination of

the two [3]. These unique properties have enabled, or made plausible, ap-

plications that were previously inaccessible to the acoustics community, such

as negative refraction [4–6], superlensing beyond the diffraction limit [7–9],

cloaking by bending propagating waves around an object [10–12], extraordi-

nary absorption [13], and arbitrary control of the phase of waves reflected or

transmitted from a surface [14–17]. Early research on metamaterials often
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relied on sub-wavelength resonance structures which limits their usefulness to

narrow bands of frequency and whose performance can be degraded by the

presence of absorption [18–21]. Metamaterials that do not rely on resonances

but lead to extreme effective material properties are therefore of significant

interest for the future development of acoustic metamaterials and their use in

practical applications. One particular application of interest are pentamode

metamaterials, which are stiff structures with a small static and dynamic shear

modulus. These metamaterials support only longitudinal wave propagation in

a wide frequency band and can therefore be used for impedance matching be-

tween a fluid and solid material in acoustic cloaking and lensing applications

while supporting a static load [22, 23].

One limitation of most metamaterial structures studied to date is that

their dynamic material properties cannot be altered after construction, limit-

ing the range of applications. However, there are many cases where the ability

to change, or tune, dynamic effective material properties is highly desirable.

For example, passive acoustic lenses cannot dynamically steer their focus and

thus their use is more limited than electronically-steered multi-element arrays.

Therefore, the key challenge in useful material property tunability is to design

microstructures that enable sufficiently large changes in macroscopic response

upon application of an external stimulus. Previous work on the topic of mate-

rial property tuning has primarily focused on the use of piezoelectric elements

controlled by electronic signals [24, 25]. However, it is notable that the abil-

ity to change the material properties of a medium is inherently tied to its
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nonlinearity [21]. Namely, the acoustic or elastic waves that propagate in the

medium will do so at a speed that depends on stiffness and density variations

from the prescribed deformation. Microstructures that exhibit elastic buckling

from geometric nonlinearity caused by an external pre-stain are investigated

in this work as a means to introduce large changes in the effective stiffness,

and thus the effective phase speed, of the medium [26–28].

Recently, research on the topic of breaking acoustic reciprocity has

gained attention as a means for greater control over acoustic and elastic waves.

One way to accomplish this is by modulating the material properties of a

medium in time and space, which breaks parity-time symmetry and thus en-

ables non-reciprocal acoustic and elastic wave phenomena [29–32]. By breaking

acoustic reciprocity, new applications for direction-specific wave control and

manipulation can be explored, including the possibility of one-way sound prop-

agation or the construction of devices that can simultaneously transmit and

receive acoustic signals in different directions [18, 30, 33, 34]. These direction-

dependent acoustic devices have the potential to aid in numerous acoustical

applications, such as energy harvesting, signal processing, vibration isolation,

and acoustic communication. Previous research has investigated using elec-

tromagnetic effects, such as piezoeletric materials [35–37], magnetorheological

elastomers [38], and phononic crystals containing electromagnets [39] to mod-

ulate the material properties in space and time. However, the manipulation of

the effective material properties in space and time via mechanical deformation

has been unexplored. Tunable metamaterials, which exhibit large effective
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dynamic property changes under a varying external pre-strain are therefore

strong candidates for the creation of nonreciprocal acoustic and elastic mate-

rials and are the subject of this work.

1.2 Objective

The primary goal of this dissertation is to study linear elastic wave prop-

agation in a metamaterial undergoing external static and spatiotemporally-

modulated pre-strain. The research in this dissertation is motivated by the

following questions:

1. How are the bandgaps and anisotropic properties of the trans-

verse and longitudinal waves in a metamaterial with strong geomet-

ric nonlinearity affected by an externally-applied static pre-strain?

2. What non-reciprocal effects are observed when the external pre-

strain imposed on a metamaterial with strong geometric nonlin-

earity is modulated in space and time?

Unit cells that display the necessary amount geometric nonlinearity are typ-

ically composed of complex geometry, which prevents the use of analytical

methods to study the above questions. This necessarily motivates the devel-

opment of a computational technique. The finite element method (FEM) is

a well-known numerical procedure that can accurately solve the equations of

motion to sufficient numerical precision on arbitrary domains [40]. Recently,

FEM has become a useful method to model wave propagation in pre-strained
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structures [26, 27]. The adaptation of FEM to study elastic wave propagation

in a metamaterial usually relies on Bloch wave theory applied on a unit cell,

which numerically results in a eigenvalue problem that is then used to generate

the frequency-wavenumber spectrum and the unit cell mode shapes (discussed

in Chapter 3). The identification of longitudinal and transverse waves in these

types of metamaterials can be hard to identify from a frequency-wavenumber

spectrum, as additional modes appear in the spectrum due to the presence of

extra degrees of motion in a geometrically-complex metamaterial, and modes

can often exchange their shapes to different branches of the dispersion spec-

trum through mode veering and locking [41]. Consequently, the determination

of bandgaps and the anisotropic behavior for each mode can be challenging.

Therefore, the first objective of this work is to extend the finite element ap-

proach from previous works [26, 27, 42, 43] with a modal filter technique to

easily identify each mode in a frequency-wavenumber spectrum, which will aid

in finding modal bandgaps, as well as to compute the group velocity in all

propagation directions to study the anisotropic properties for each mode of

interest.

The presence of spatiotemporal modulation of the material properties

introduces an additional complexity to the modeling of non-reciprocal wave

propagation, as the space and time dependence of the effective material prop-

erties must be properly accounted for. As a consequence, current research

has only investigated non-reciprocal wave propagation in simple mass-spring

chains and one-dimensional beam structures [31, 32, 44, 45]. The second ob-

5



jective of this dissertation is therefore to extend the finite element approach

for the static pre-strain case to accurately model time-space variations of the

effective material properties from a spatiotemporally-varying pre-strain.

One concept key to the present work is the modeling of nonlinear,

purely mechanical deformation, which effectively perturbs the linearized stiff-

ness and/or mass properties of small disturbances propagating in superposition

(the “small” wave). This “small-on-large” propagation behavior has been of

interest for ultrasonic non-destructive testing [46, 47] and mechanical metama-

terials [26, 28, 44, 48–51]. In this work, the “small-on-large” approximation is

used to decompose the calculation of the total displacement in a metamaterial

into two sequential steps: a nonlinear static finite element model that captures

the effects of the external pre-strain, and an elastic wave finite element model

that is linearized about the large deformation. In the case of non-reciprocal

wave propagation, the nonlinear finite element model captures the deformation

due to a spatiotemporally-varying pre-strain, which resembles a large periodic

traveling wave. In this case, care is taken to not violate the assumptions of

the “small-on-large” approximation by ensuring that the modulation speed is

much slower than the intrinsic longitudinal and transverse wave speeds of the

medium.

1.3 Overview

This dissertation is organized as follows. Chapter 2 provides a brief

background on tunable and non-reciprocal metamaterials. In addition, the
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negative stiffness honeycomb is introduced, which is the candidate metamate-

rial that is investigated as a tunable metamaterial in Chapter 4 and as a non-

reciprocal metamaterial in Chapter 5. Chapter 3 provides an overview of wave

propagation in periodically-modulated media. Solutions are restricted to one

dimension in space to illustrate the computational methods and relevant wave

phenomena. Three different material property modulations are considered:

space-only, time-only, and space-time modulation. The weak forms, which

is the starting point for the finite element method, are derived for each case

and compared with particular modulations that have well-known solutions. In

Chapter 4, the small-on-large approximation is used to study the elastic wave

propagation in a pre-strained negative stiffness honeycomb. The finite element

method presented in Chapter 3 is generalized to the two-dimensional elasto-

dynamic equations and utilized to solve for the dispersion behavior of propa-

gating modes as a function of the Bloch wavenumber. The anisotropic wave

properties of the lattice is also studied by solving the finite element method

for Bloch wavenumbers in all directions. It is shown that the lattice behaves

as a meta-fluid in a broad frequency range, and that the anisotropic properties

can be tuned by varying the pre-strain amount. In Chapter 5, the small-on-

large approximation is revisited for pre-strains that vary in space and time.

The spatiotemporal finite element appraoch introduced in Chapter 3 is then

generalized to the elastodynamic case. It is demonstrated that the application

of a spatiotemporally-varying pre-strain induces directional bandgaps for the

transverse and longitudinal modes. The effect of chiral geometric asymmetry
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is also investigated as a means to increase the degree of non-reciprocity. Fi-

nally, conclusions and suggestions for future research are provided in Chapter

6.
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Chapter 2

Background

The scope of research in this dissertation encompasses elastic wave

propagation in a metamaterial with tunable elastic stiffness accessed via ge-

ometric nonlinearity. That metamaterial is studied first as a medium whose

properties can be tuned to vary elastic wave speeds either uniformly or through

spatio-temporal modulation to generate non-reciprocal propagation. In order

to unify these concepts, a negative stiffness honeycomb (NSH) is used as a

representative metamaterial. This chapter introduces NSH and the relevant

background pertaining to tunable metamaterials and non-reciprocal acoustics.

2.1 Tunable Metamaterials

The limitations of passive acoustic and elastic wave metamaterials, such

as fixed narrow frequency bands of operation, prompts the study of active

tunable metamaterials with enhanced performance and adjustable operating

frequencies. Figure 2.1 showcases a few examples of tunable metamaterials in

the literature, which includes a beam whose effective properties are changed

with periodic piezoelectric patches [52], an acoustic waveguide with side-holes

and membranes whose stiffness can be controlled by electromagnets, and a

9



a)
b)

c)

Piezoelectric patch Beam

z

Figure 2.1: Example tunable metamaterials in the literature. (a) Beam with
periodic shunted piezoelectric patches. Adapted from [52]. (b) Acoustic mem-
brane metamaterial with active electromagnets. Adapted from [53]. (c) Res-
onating units embedded in soft, deformable elastomeric matrix. Adapted from
[27].

metamaterial with resonating units in a soft elastomeric matrix that exhibits

buckling from geometric nonlinearity [27], which is the method of interest to

this work. The dynamic behavior of pre-strained periodic metamaterials has

been well studied for unit cells with a buckling instability [54]. Weak and

strong non-linear effects have been investigated in a one-dimensional lattice

of bistable elastic elements [55, 56], and the existence of solitary waves has

been theoretically and numerically verified for these types of lattices [57]. In

the linear limit, the dispersion behavior of propagating modes is altered upon

application of an external pre-strain that is sufficient to alter the geometry

at the microscale [48, 58, 59]. In practice, an external pre-strain is applied via

controlled displacements of the boundaries of the metamaterial. The large

displacements of the boundaries cause the unit cells to undergo a large, geo-
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metrically nonlinear deformation.

The large deformation causes two effects: i) the unit cell geometry

changes configurations associated with geometric nonlinearity, and ii) the in-

ternal stored energy of the unit cell increases relative to the undeformed con-

figuration from material nonlinearity, both of which influence the dispersion

behavior of linear elastic waves propagating in the pre-strained medium [60].

The increase of the internal stored energy from material nonlinearity influ-

ences the effective macroscopic stiffness of the metamaterial. In other words,

a strained lattice in the deformed configuration and an un-strained lattice

with the same geometry as the deformed configuration will have different ef-

fective stiffnesses and therefore exhibit different dispersion behavior [58]. The

effect of the change in the internal geometry from geometric nonlinearity has

a large effect on the locations and widths of bandgaps [60]. Lattices with

a macroscopic buckling instability can take on a new periodicity in a post-

buckling configuration, which can switch bandgaps on and off [27, 42, 61]. In

addition to tuning bandgap behavior, the anisotropy of transverse and longi-

tudinal waves in a two-dimensional lattice can be varied upon application of

an external pre-strain [48, 58, 60]. This has applications in applying transfor-

mation acoustics to cloak an object, which requires layers of metamaterials

with varying anisotropy [62].
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A

a) B

A

b) B

Figure 2.2: The Rayleigh reciprocity theorem states that in a linear-time-
invariant medium, the acoustic signal recorded at point B emitted from a
source at point A (a) is identical in both magnitude and phase as the acoustic
signal recorded at point A emitted from a source at point B (b). This is true
even in a heterogeneous and lossy medium.

2.2 Non-reciprocal Acoustics

Acoustic reciprocity is an important fundamental property that de-

tails the characteristics of wave propagation between two points. Namely,

in a linear-time-invariant (LTI) medium, the propagation of elastic or acous-

tic waves from source to receiver will be identical if the source and receiver

are interchanged [30, 63, 64]. This concept is shown schematically in Fig. 2.2

. Acoustic reciprocity was first documented by Helmholtz [65] and later by

Lamb [66]; but it is credited to Rayleigh for formulating the general conditions

of reciprocity in his works [63]. Acoustic reciprocity holds even if the medium

is heterogeneous and/or is lossy [33].

The Onsager-Casimir principle provides the symmetry conditions on
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the transmission of acoustic waves between two points. This fundamental

principle of physics states that tAB(ω, η,B) = tBA(ω, η,−B), where tAB and

tBA are the (complex-valued) transmission coefficients for waves propagating

from point A to B and B to A in the medium, respectively, ω is the frequency, η

is a macroscopic loss factor, and B is a set of material parameters that is oddly

symmetric on time reversal [18, 33]. The set B represents a generalized form of

“momentum” bias, such as fluid flow [18, 33]. Reciprocity therefore only holds

when B = 0. The use of an external bias (B 6= 0) that is oddly symmetric on

time reversal to break reciprocity has been achieved in piezophononic media

[67], moving media [30, 68, 69], and gyroscopic phononic crystals [70, 71].

Other means to achieve non-reciprocity is to break the assumptions

of the Onsager-Casimir principle. This includes the presence of nonlinearity,

which has been used to create one-way sound propagation via harmonic gen-

eration [72–74]. The other mechanism, which is central to this work, is to

break to assumption of time-invariance through modulation of the material

properties in time and space [31, 45, 75–79]. Effective mechanical properties

have been manipulated in past works using electromagnetic effects, for ex-

ample in piezoelectric materials [35–37], magnetorheological elastomers [38],

and phononic crystals containing electromagnets [39]. The generation of non-

reciprocity via mechanical deformation has been studied in a one-dimensional

mass-spring chain [44], but has not been investigated for continuous elastic

structures. This work therefore contributes to this field by providing a fi-

nite element framework to model non-reciprocal wave propagation in a con-
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Figure 2.3: Negative stiffness honeycomb (NSH) metamaterial with the fun-
damental unit cell shaded and direct lattice vectors a1,a2.

tinuous elastic structure and a tunable metamaterial that can be used as a

non-reciprocal medium.

2.3 Negative Stiffness Honeycomb

The metamaterial unit cell under investigation is the modified version

of the honeycomb design in Correa et al. [80]. Like regular honeycombs, NSH

consist of an ordered configuration of prismatic cells. NSH differ from conven-

tional honeycomb structures in that NSH cells have been designed to permit

large, recoverable deformation and thus enable the absorption of energy im-

pacts while returning to the original shape upon removal of the mechanical
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Figure 2.4: Geometric parameters of NSH. The region shaded in blue indicates
the unit cell.

load. The recoverable deformation is the result of the unit cell geometry,

which consists of curved beams that exhibit force-displacement behavior sim-

ilar to that of bistable or snap-through structures [80–82]. Negative stiffness

honeycombs are structured to generate a non-monotonic force-displacement

relationship when subjected to externally applied deformations. Specifically,

these materials require a decreasing level of force when one imposes an increase

in the displacement field [80, 82]. This non-intuitive response is the result of

structural instabilities at the unit cell level that result from geometric nonlin-

earity associated with large deflections of the constituent elastic elements in

the structure.

A unit cell of the lattice under consideration is shown in Fig. 2.3, and

the geometric parameters are shown in Fig. 2.4. The pre-curved beams are fab-
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Figure 2.5: (a) Stored internal energy of the pre-curved beams as a function
of external pre-strain. (b) Force response of the pre-curved beams and the
resulting deformation of the beams before and after the critical point of buck-
ling. The critical point where the stiffness changes from positive to negative
is the stationary point on the force-strain curve, and the inflection point on
the energy-strain curve.
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ricated in the shape of a sinusoid with a spatial period Lx and an amplitude hb,

which mimics the shape of a beam buckled into its first Euler buckling mode

[83]. The double pre-curved beam design as well as the vertical and horizontal

elastic elements have been designed to mechanically constrain the system such

that the system buckles into a pseudo-third buckling mode, which resembles

a sinusoid with twice the spatial periodicity along the X1-direction (see de-

formation plot in Fig. 2.5(b)), when a specified external uni-axial pre-strain

in the X2 direction is attained [80]. In general, the elastic response of the

NSH can be tuned through a few simple geometric parameters of the lattice,

as shown in Fig. 2.4. The stored internal energy Π of the pre-curved beams

as a function of an external pre-strain β is plotted in Fig. 2.5(a). For small

pre-strains, Π is locally quadratic. At the instability of the beams, the energy

curve has an inflection point and changes curvature past the instability point.

The resulting normalized force is plotted in Fig. 2.5(b), and is the derivative of

the energy function, Fig. 2.5(a). The beams are initially stiff, and approaches

zero stiffness at the buckling instability. Beyond the instability point is a re-

gion of negative stiffness. In this work, only the range of pre-strains before the

instability point are considered. The ratio Q = hb/tb most directly affects the

elastic stored energy in the unit cell; large ratios will yield a more pronounced

snapping behavior [83]. In this work, a ratio of 4 is chosen to increase tun-

ability, while it is noted that the unit cell will be bistable when Q is greater

than 2.41 [83]. Previous work has made use of the tunability of the lattice via

these geometric features to produce NSH that isolate vibration and mechan-
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ical impacts [81]. However, the strongly nonlinear elastic behavior of NSH

materials suggest that linear wave propagation in these materials has a strong

dependence on an externally imposed pre-strain. Further, because the large

deformations are associated with buckling phenomena, NSH can be fabricated

from high-stiffness non-lossy materials without loss of the types of tunability

described in this work. This is a significant difference from most other tunable

metamaterials in the literature, which make use of soft materials like silicon

rubber, and consequently are very lossy [26, 27, 42]. NSH are therefore of in-

terest as candidate structures for elastic metamaterials that can control wave

propagation by tailoring the dispersive nature of wave propagation through

uniaxial pre-strain.

2.3.1 Unit Cell Selection

The NSH shown in Fig. 2.3 can be geometrically decomposed into a

fundamental unit cell with a set of basis vectors in which the whole lattice

can be reconstructed through translations of this fundamental unit cell along

the basis vectors [84]. The unit cell chosen for this work is the shaded region

in Fig. 2.3 and Fig. 2.4, which is spanned by the direct lattice vectors a1,a2.

Any spatially-varying function in these materials must also obey the unit cell

periodicity

f(X +R) = f(X), (2.1)

where,

R = p1a1 + p2a2, (2.2)
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Figure 2.6: The first Brillouin zone, defined with basis vectors b1, b2. The
irreducible Brillouin zone is traced in black.

and p1, p2 are integers that represent the unit cell location relative to the fun-

damental unit cell located at the position defined by p1, p2 = 0. In Cartesian

coordinates, the direct lattice vectors are

a1 =
Lx
2
e1 +

Ly
2
e2, (2.3)

a2 =
Lx
2
e1 −

Ly
2
e2. (2.4)

2.3.2 Brillouin Zone

For periodic media, all unique propagating modes lie within the first

Brillouin zone [85]. Therefore the values of the Bloch wave vector K are

restricted to this region. The basis vectors in the reciprocal (wavenumber)
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space are obtained through the following relationships

b1 = 2π
a2 × z
‖z‖2

, (2.5)

b2 = 2π
z × a1

‖z‖2
, (2.6)

where z = a1 × a2. From Eqns. (2.3)-(2.4), the reciprocal basis vectors are

b1 =
2π

Lx
e1 +

2π

Ly
e2, (2.7)

b2 =
2π

Lx
e1 −

2π

Ly
e2. (2.8)

The first Brillouin zone is then found graphically by creating a Wigner-Seitz

cell with the above basis vectors, which is constructed as follows [84]:

1. Select a lattice point in the reciprocal lattice and connect it to

neighboring points.

2. Draw the perpendicular bisectors of these lines. The area en-

closed by these lines is the first Brillouin zone.

Figure 2.6 shows the Brillouin zone overlaid on the NSH. Due to symmetry

about the X1 and X2 axes, K can be reduced to vectors that lie within the

irreducible Brillouin zone, traced in black. It is assumed throughout this dis-

sertation that the Brillouin zone is constant for all deformation configurations

of the lattice, which is consistent with other studies on the dispersion compu-

tation of tunable metamaterials [26, 42].
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Chapter 3

Wave Phenomena in Modulated Continuous

Metamaterials

3.1 Introduction

The main focus of the present work is to develop a computational ap-

proach to study elastic wave propagation in a medium whose material proper-

ties are either modulated in space or time independently or simultaneously in

space and time. Modeling waves in a modulated medium presents a challenge

due to the unique wave phenomena present since one commonly assumes con-

ditions of spatial homogeneity or time-invariance in the medium of interest. In

order to study wave propagation in a modulated medium, it is first important

and informative to identify and characterize the wave phenomena present in

a medium with space-only or time-only modulation, and determine how these

concepts generalize to a spatiotemporally-modulated medium. Furthermore,

the solution techniques used to solve the space-only and time-only modulation

can be leveraged to handle the more general case, which is the ultimate in-

terest of the present work. This chapter therefore endeavors to introduce and

study these concepts for the one-dimensional case, which will be later applied

to the general three-dimensional elastodynamic equations.
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The equation of interest in this chapter is the one-dimensional wave

equation of the form

∂

∂x

(
a(x, t)

∂u

∂x

)
− b∂

2u

∂t2
= 0, −∞ < x <∞, t ≥ 0, (3.1)

which is a second-order hyperbolic partial differential equation with coefficient

a(x, t) > 0 that is a non-constant function of time and space, and coefficient

b > 0 that is assumed to be constant. Equation (3.1) can be used to represent

various well-studied physical systems. For example, Eq.(3.1) can be used to

model wave propagation in a string, where u(x, t) is the transverse displace-

ment of the string, in which case a(x, t) = T (x, t) is the string tension that

may vary in time and space due to external processes, and b = ρ0 is the mass

per unit length. Equation (3.1) can also be used to model the longitudinal

wave propagation in a thin bar, where u(x, t) is the longitudinal particle dis-

placement of the bar, a(x, t) = E(x, t) is the Young’s modulus, and b = ρ0

is the mass per unit volume of the bar. In both of these examples, u(x, t)

represents a displacement about an equilibrium configuration, a(x, t) is a gen-

eral descriptor of the medium associated with the potential energy changes

when the system is deformed from equilibrium, and b is a general descriptor

associated with the kinetic energy changes when particles of the system are in

motion. The elastodynamic equations presented in the later chapters have a

similar form to Eq. (3.1), though it is of higher dimensionality. Therefore, the

wave physics that can be modeled with Eq. (3.1) and the solution strategies

used for the simpler one-dimensional example can be generalized to the general

elastodynamic case in multiple dimensions.
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Conservation laws require continuity conditions on the function u(x, t)

and its derivative at each point in space x = x0. Those continuity conditions

are written as

lim
x→x−0

u(x, t) = lim
x→x+0

u(x, t), ∀t, (3.2)

lim
x→x−0

a(x, t)
∂u

∂x
= lim

x→x+0
a(x, t)

∂u

∂x
, ∀t. (3.3)

In elastodyamics, Eq. (3.2) represents continuity of displacement between two

neighboring points that are separated by a vanishingly small distance and

Eq. (3.3) represents continuity of stress at a material point. These relations

are useful when deriving boundary and interface conditions.

Equation (3.1) usually does not admit an explicit analytical solution

for a general functional form a(x, t), in which case a direct numerical simu-

lation must be performed. However, in the context of wave propagation in

metamaterials considered in this work, a(x, t) is a periodic function of space

and time. In other words, it is assumed that there is a reference modulation

length, λm, in which a(x, t) is periodic in space for all time,

a(x+ λm, t) = a(x, t), (3.4)

and a reference time Tm with angular frequency ωm = 2π/Tm in which a(x, t)

is periodic in time for all locations in space

a(x, t+ Tm) = a(x, t). (3.5)

Therefore, Bloch-Floquet wave theory can be utilized to derive differential

equations which can be solved for the allowable traveling-wave modes that can
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propagate and their respective dispersion behavior, or frequency-wavenumber

spectrum [86]. Solution procedures for Eq. (3.1) with space-only, time-only,

and space-time modulation of a(x, t) are now derived that are computationally

feasible and yield accurate calculations of the Bloch wave modes and dispersion

relations.

3.2 Space-Dependent Modulus

Consider a modulus which is a function of space only, a(x, t) → a(x).

This case physically represents a periodic heterogeneous medium, which is a

common acoustic metamaterial structure and is frequently referred to as a

phononic crystal [87, 88]. Equation (3.1) then becomes

∂

∂x

(
a(x)

∂u

∂x

)
− b∂

2u

∂t2
= 0. (3.6)

Despite having non-constant coefficients, the separation of variables method

can be utilized, which assumes a product solution of the form u(x, t) =

X(x)T (t) to relation Eq. (3.6). The assumed solution form is substituted

into Eq. (3.6), which yields the expression

T (a(x)X ′)
′ − bXT ′′ = 0, (3.7)

where the explicit dependence on x and t for functions X(x) and T (t) has been

removed for simplicity. After division by XT , Eq. (3.7) becomes

(a(x)X ′)′

X
= b

T ′′

T
, (3.8)

24



where the left-hand side is a function of space and the right-hand side is a

function of time. The only way for the equality to hold is for both sides to

equal the separation constant,

(a(x)X ′)′

bX
=
T ′′

T
= −ω2, (3.9)

where ω is the angular frequency. The time-dependent part of the total solution

is then found by solving the ordinary differential equation

T ′′ + ω2T = 0, (3.10)

which has the general solution of the form

T = A1e
iωt + A2e

−iωt, (3.11)

where A1 and A2 are arbitrary constants that depend on initial conditions. The

time convention −iωt is assumed in this work, therefore A1 = 0 is assumed

without loss of generality. The space-dependent portion of the total solution

reduces to the following ordinary differential equation with non-constant coef-

ficients,

(a(x)X ′)
′
+ bω2X = 0. (3.12)

Since a(x) is assumed to be a periodic function, Bloch-Floquet theory states

that the general solution has the form

X = B1û(x)eikx +B2û
∗(x)e−ikx, (3.13)

where û is the Bloch mode and is a periodic function with period λm, k is the

Bloch wavenumber [86], and the superscript ∗ denotes complex-conjugation.
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Since a traveling-wave mode solution is desired, B2 = 0 and the sign of k

represents the propagation direction in accordance with the assumed time

convention. In the e−iωt time convention, positive k values correspond to Bloch

modes that propagate in the +x direction, and negative k values correspond

to Bloch modes that propagate in the −x direction. The solution for u(x, t) is

then

u(x, t) = Cû(x)ei(kx−ωt), (3.14)

where C is the amplitude constant. However, the Bloch mode û and the

dispersion relation ω(k) must be determined from this general solution and

the PDE provided in Eq. (3.6). Substitution of Eq. (3.14) into Eq. (3.6) yields

the following ordinary differential equation for û that is valid within the unit

cell length L = λm centered at x = 0,

d

dx

[
a(x)

(
dû

dx
+ ikû

)]
+ ika(x)

dû

dx
− k2a(x)û+ bω2û = 0,

− L

2
≤ x ≤ L

2
. (3.15)

The periodic boundary conditions necessary to uniquely determine û are de-

rived using Eqns. (3.2)-(3.3) to yield

û(−L/2) = û(L/2), (3.16)

lim
x→L/2−

a(x)

(
dû

dx
+ ikû

)
= lim

x→−L/2+
a(x)

(
dû

dx
+ ikû

)
. (3.17)

3.2.1 Variational Statement

A variational statement is an integral formulation of a PDE that is

useful for finding solutions of boundary-value problems. A solution is sought

26



that satisfies the PDE in the sense of “weighted averages” of a suitable class

of weight, or test, functions [89]. This particular solution technique has two

advantages for this work: i) variational statements can be used to find solu-

tions of PDEs with boundary conditions on arbitrary domains, ii) the coeffi-

cient a(x, t) is allowed to be non-smooth and even contain discontinuities. A

variational approach can be utilized to obtain accurate approximations of the

dispersion relation and the Bloch mode [90, 91]. This is derived by multiplying

Eq. (3.15) by an arbitrary test function v̂∗ and integrating over the periodic

interval [−L/2, L/2] to yield the following integral equation,∫ L/2

−L/2

d

dx

[
a(x)

(
dû

dx
+ ikû

)]
v̂∗ dx+ ik

∫ L/2

−L/2
a(x)

dû

dx
v̂∗ dx

− k2

∫ L/2

−L/2
a(x)ûv̂∗ dx+ bω2

∫ L/2

−L/2
ûv̂∗ = 0. (3.18)

Integration by parts is applied on the first integral to yield[
a(x)

(
dû

dx
+ ikû

)]
v̂∗
∣∣∣∣L/2
−L/2

−
∫ L/2

−L/2
a(x)

dv̂∗

dx

dû

dx
dx

+ ik

∫ L/2

−L/2
a(x)

(
dû

dx
v̂∗ − dv̂∗

dx
û

)
dx− k2

∫ L/2

−L/2
a(x)ûv̂∗ dx

+ bω2

∫ L/2

−L/2
ûv̂∗ dx = 0. (3.19)

A symmetric variational statement, in which û and v̂ can be interchanged

without modifying the variational statement, is obtained if the functions v̂ are

chosen such that they exist in the same function space as the solution û [89].

In other words, v̂ has the same functional form as the solution with identical

parameters to be determined and satisfies the periodic boundary condition
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provided in Eqn. (3.16). Therefore, the first term on the LHS of Eq. (3.19),

which is a boundary term, is identically zero, which yields the symmetric

variational statement, or weak form, which is written as∫ L/2

−L/2
a(x)

dv̂∗

dx

dû

dx
dx− ik

∫ L/2

−L/2
a(x)

(
dû

dx
v̂∗ − dv̂∗

dx
û

)
dx

+ k2

∫ L/2

−L/2
a(x)ûv̂∗ dx = bω2

∫ L/2

−L/2
ûv̂∗ dx. (3.20)

The solution is approximated using Galerkin’s method by expanding the trial

solution û in a complete set of N basis functions φi with coefficients ci that

satisfy periodic boundary conditions [89],

û =
N∑
i=0

ciφi(x). (3.21)

Likewise, the test function v̂ is expanded with the same set of basis functions

with coefficients βj

v̂ =
N∑
j=0

βjφj(x). (3.22)

Substitution of the above expansions for û and v̂ into the weak form Eq. (3.20)

yields
N∑
i=0

N∑
j=0

β∗i
[
Kij − ω2Mij

]
cj = 0, (3.23)

where

Kij =

∫ L/2

−L/2
a(x)

dφi
dx

dφj
dx

dx− ik

∫ L/2

−L/2
a(x)

(
dφj
dx

φi −
dφi
dx

φj

)
dx

+ k2

∫ L/2

−L/2
a(x)φiφj dx, (3.24)
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and is termed the stiffness matrix, and

Mij =

∫ L/2

−L/2
bφiφj dx, (3.25)

and is termed the mass matrix. For Eq. (3.23) to hold for any set of coefficients

βi, the equations in the brackets must be zero, or[
Kij − ω2Mij

]
cj = 0. (3.26)

This is a generalized eigenvalue problem which can be solved numerically for

the coefficients cj and angular frequency ω2. Since K is a Hermitian matrix as

a result of the symmetric variational statement, the eigenvalues are real-valued,

and the eigenvectors are orthogonal. In other words, if ûi is the eigenfunction

with eigenvalue ωi, and ûj is the eigenfunction with distinct eigenvalue ωj,

then ∫ L/2

−L/2
bû∗i ûj dx = 0, i 6= j. (3.27)

Due to linearity of the PDE in Eq. (3.6), the eigenfunction û is known up to a

multiplicative constant. Therefore, it is standard procedure to normalize the

eigenfunctions such that they satisfy the following integral statement∫ L/2

−L/2
bû∗i ûi dx = 1. (3.28)

While the variational statement and the Galerkin approximation pro-

vides an elegant framework for solving boundary-value problems, the choice

of basis functions seems arbitrary and problem-dependent [89]. For example,

since û is a periodic function, û, v̂ can be expanded as a Fourier series

û =
∞∑

n=−∞

cne
in(2π/L)x. (3.29)
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Figure 3.1: Second order finite element shape functions defined in a mesh
element.

If this basis set is chosen, the mass matrix, M, becomes a diagonal matrix

due to the orthogonality of the Fourier series. However, depending on the

regularity of a(x) convergence may be quite poor, i.e. many terms may be

necessary to accurately represent û. Consequently, the stiffness matrix, K,

will be fully-populated, which can significantly increase computational time

if many terms are necessary. Moreover, in multiple dimensions this choice in

basis functions is not ideal to fit boundary conditions on complex geometric

domains and can lead to ill-conditioned matrices [89]. A more common ap-

proach is to subdivide the interval of x ∈ [−L/2, L/2] into N subdivisions,

termed the computational mesh, where each subdivision is an element of the

mesh with nodes xj, j = 0, 2, ..., N . Each basis function is then constructed by
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defining piecewise polynomials on each element. In this work, the basis func-

tions are generated by using second-order polynomials. This is accomplished

by including an additional node xj+1/2 at the midpoint of each element. Then,

basis functions are chosen that satisfy the following at each node, or degree of

freedom,

φi(xj) =

{
1 if i = j,

0 if i 6= j,
, i, j = 0,

1

2
, 1, ..., N. (3.30)

Basis functions that satisfy Eq. (3.30) can be generated at an element level

using second-order Lagrange polynomials as shape functions defined over a

mesh element

ψ1(x̄j) = 2(x̄j − 0.5)(x̄j − 1), (3.31)

ψ2(x̄j) = −4x̄j(x̄j − 1), (3.32)

ψ3(x̄j) = 2x̄j(x̄j −
1

2
), (3.33)

where

x̄j =
x− xj
xj+1 − xj

, xj ≤ x ≤ xj+1. (3.34)

These shape functions are plotted in Fig. 3.1. Finally, the basis functions can

be defined from the following relation

φj(x) =


ψ1(x̄j), xj ≤ x ≤ xj+1 and j ∈ [0, 1, 2, ..., N ],

ψ3(x̄j−1), xj−1 ≤ x ≤ xj and j ∈ [0, 1, 2, ..., N ],

ψ2(x̄j), xj ≤ x ≤ xj+1 and j ∈ [0, 1
2
, 1, ..., N − 1

2
],

0, otherwise.

(3.35)

This method is the basis of the finite element method [40, 89] and has two main

benefits. First, this choice in basis functions makes the mass and stiffness ma-

trix sparse, which increases computational efficiency. Second, the coefficients
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of the basis functions ci in Eq. (3.21) are the values of the function û at the

nodes of the mesh. Therefore, better approximations to û can be obtained by

subdividing the interval into smaller partitions.

3.2.2 Eigenvalue Accuracy

In the previous subsection, it was shown that the variational statement

leads to an eigenvalue problem which can be solved numerically for the Bloch

mode and the eigenfrequency for a specified Bloch wavenumber, k. However,

since the Bloch mode is approximated by a finite set of basis functions, the

computed eigenfrequency is also approximate. This section therefore seeks to

quantify the error of the computed eigenvalue with respect to the error of the

Bloch mode.

Let L(v̂, û) and M(v̂, û) be the integral operators on the left-hand and

right-hand side of Eq. (3.20), respectively. Since v̂ is in the same function

space as the solution û, let v̂ = û. Equation (3.20) then becomes

ω2M(û, û) = L(û, û). (3.36)

Assume that the computed solution is close to the exact solution, ûE, with a

small error, û(x) = ûE(x) + εe(x), where e(x) is residual error between the

computed and exact solution at the point x, and ε is the magnitude of the

error. Substitution of this expansion into Eq. (3.36) yields

ω2
[
M(ûE, ûE) + εM(e, ûE) + εM(ûE, e) + ε2M(e, e)

]
= L(ûE, ûE) + εL(e, ûE) + εL(ûE, e) + ε2L(e, e). (3.37)
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The variation of the eigenfrequency about the exact eigenvalue is found by

taking the derivative of Eq. (3.37) with respect to ε at ε = 0. Using the fact

that M is symmetric, i.e. M(v̂, û) = M(û, v̂), and L is Hermitian, i.e. L(v̂, û) =

L∗(û, v̂), the eigenvalue derivative is given by the following

dω2

dε

∣∣∣∣
ε=0

= 2<
(
L(e, ûE)− ω2

EM(e, ûE)
)
. (3.38)

Since (ωE, ûE) is the exact eigenvalue-eigenvector pair to Eq. (3.20), then

dω2/dε = 0. This means that the estimate of the eigenvalue is second-order

accurate with respect to the eigenvector error ε,

ω2 = ω2
E + O(ε2). (3.39)

3.2.3 Example: Alternating Material Layers in a Bar

As an example case, consider longitudinal wave propagation in a bar

composed of two periodically-alternating material layers with identical density

b = ρ0. The first layer has Young’s modulus E1 and thickness L1, and the

second layer has Young’s modulus E2 and thickness L2. The periodic interval

has length L = L1 + L2 = λm and unit cell defined at −L/2 ≤ x ≤ L/2.

Assume, without loss of generality of the method, that the two layers have the

same thickness, L1 = L2. The modulus a(x) = E(x) is therefore defined as

the piecewise function

E(x) =

{
E1, if −L

2
≤ x < 0,

E2, if 0 ≤ x < L
2
.

(3.40)
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Figure 3.2: (a) Finite element computation of the dispersion relation for prop-
agating longitudinal waves in a bar with periodic alternating layers. Since the
dispersion relation is periodic, the complete dispersion relation can be obtained
by restricting k to lie within the first Brillouin zone (black dashed lines). (b)
Comparison of the finite element computation in the first Brillouin zone from
(a) with the exact dispersion relation (orange lines), Eq. (3.41).
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The exact dispersion relation in this case is the equation

cos (kL) = cos

(
ω

c1

L1

)
cos

(
ω

c2

L2

)
− 1

2

(
z1

z2

+
z2

z1

)
sin

(
ω

c1

L1

)
sin

(
ω

c2

L2

)
,

(3.41)

where c1,2 =
√
E1,2/ρ0 is the sound speed in each layer, and z1,2 = ρ0c1,2 is the

impedance of each layer. The dispersion relation can also be calculated numer-

ically using the variational statement described above. This is accomplished

by assigning the value for the Bloch wavenumber k and solving Eq. (3.26) for

the eigenfrequencies and Bloch modes. Second-order Lagrange polynomials

are used as the finite element basis functions, and N = 20 is sufficient for all

of the plotted eigenfrequencies to converge. Figure 3.2(a) shows the result-

ing eigenfrequencies from the finite element calculation using the properties

E1 = 1, E2 = 2, ρ0 = 1, L = 1, and Fig. 3.2(b) compares the finite element

results with the exact dispersion relation provided by Eq. (3.41). Excellent

agreement is attained between the exact dispersion relation and the finite ele-

ment simulation. As a consequence of the Bloch-Floquet theory, the dispersion

relation is also periodic with wavenumber periodicity ω(k+kL) = ω(k), where

kL = 2π/L. The complete dispersion curve can therefore be obtained by lim-

iting k to the first Brillouin zone, which is the range k ∈ [−π/L, π/L] and is

denoted by the vertical dashed lines in Fig. 3.2(a) [86]. In addition, the period-

icity of the layers gives rise to Bragg scattering, in which the scattered waves

caused by the impedance mismatch between the layers destructively interferes

with the traveling wave at certain frequency bands [92, 93]. This interference

creates bandgaps in the dispersion relation, which prohibits traveling waves
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with frequencies within the gap. The widths of the bandgaps are a function

of the contrast of the material moduli ∆E = E2 − E1.

3.3 Time-Dependent Modulus

Now consider the case where the modulus is a periodic function of time,

a(x, t)→ a(t). For this case, Eq. (3.1) reduces to

a(t)
∂2u

∂x2
− b∂

2u

∂t2
= 0, (3.42)

which can be rewritten as

∂2u

∂x2
− 1

c2(t)

∂2u

∂t2
= 0, (3.43)

where c2(t) = a(t)/b is the time-varying sound speed. As with the case of a

spatially-varying modulus, the separation of variables approach can be utilized,

which assumes a product solution u(x, t) = X(x)T (t) for the PDE provided in

Eq. (3.43). The assumed solution form is substituted into Eq. (3.43), yielding

X ′′T − 1

c2(t)
T ′′X = 0, (3.44)

or, after division by XT ,

X ′′

X
=

T ′′

c2(t)T
. (3.45)

Since the left-hand side is a function of space and the right-hand side is a

function of time, the only way for the equality to hold is if each side is equal

to a separation constant

X ′′

X
=

T ′′

c2(t)T
= −k2, (3.46)
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where k is identified as the wavenumber. The spatial ordinary differential

equation is the Helmholtz equation

X ′′ + k2X = 0, (3.47)

which has the general solution

X = A1e
ikx + A2e

−ikx. (3.48)

The time-dependent ordinary differential equation is

T ′′ + k2c2(t)T = 0, (3.49)

which can be rewritten as

T ′′ +
k2

b
a(t)T = 0. (3.50)

Since a(t) is assumed to be periodic with frequency ωm = 2π/Tm, a(t) can be

written as a Fourier series

a(t) =
∞∑

n=−∞

âne
−inωmt, (3.51)

whose coefficients ân are determined by the Fourier integral

ân =
ωm

2π

∫ π/ωm

−π/ωm

a(t)einωmt. (3.52)

Since a(t) is a real-valued function, the negative index coefficients are complex-

conjugates of the positive index coefficients, i.e. â−m = â∗m. Substitution of

the Fourier series for a(t) into Eq. (3.50) yields the Hill differential equation

T ′′ +
k2

b

(
∞∑

n=−∞

âne
−inωmt

)
T = 0. (3.53)
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Due to the periodicity of a(t), Floquet’s theorem can be utilized, which states

that the general solution to Eq. (3.53) has the form

T = B1Φ(t)eiωt +B2Φ∗(t)e−iωt, (3.54)

where Φ(t) is a periodic function with period Tm.

The −iωt time convention is assumed in this work, and therefore B1 = 0

without loss of generality. Since a traveling wave solution is desired, A2 = 0 in

accordance with the assumed time convention. Therefore, the total solution

u(x, t) has the form

u(x, t) = CΦ(t)ei(kx−ωt), (3.55)

where positive k waves correspond to waves propagating in the +x direction,

and negative k values correspond to waves propagating in the −x direction.

Note that Eq. (3.55) has the same form as Eq. (3.14), except the Bloch function

in Eq. (3.55) is now a periodic function of time. The Bloch function Φ(t) and

the dispersion relation ω(k) can be determined by substituting Eq. (3.55) into

Eq. (3.43) to yield the following differential equation for Φ(t),

Φ′′ + 2iωΦ′ − ω2Φ +
k2

b

(
∞∑

n=−∞

âne
−inωmt

)
Φ = 0. (3.56)

Due to the periodicity of Φ(t), it can also be expanded as a Fourier series,

Φ(t) =
∞∑

m=−∞

Φ̂me
−imωmt, (3.57)

and thus Eq. (3.56) yields the following

∞∑
m=−∞

(ω +mωm)2Φ̂me
imωmt =

k2

b

(
∞∑

n=−∞

âne
−inωmt

)(
∞∑

q=−∞

Φ̂qe
−iqωmt

)
.

(3.58)
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The Cauchy product of two series can be utilized on the right-hand side to

yield

∞∑
m=−∞

(ω +mωm)2Φ̂me
−imωmt =

k2

b

∞∑
n=−∞

∞∑
q=−∞

ân−qΦ̂qe
−inωmt. (3.59)

By utilizing the orthogonality of the Fourier series, the above equation can be

written by the following infinite system of algebraic equations

(ω + pωm)2Φ̂p =
k2

b

∞∑
m=−∞

âp−mΦ̂m, p ∈ [−∞,∞]. (3.60)

It is assumed that a(t) can be well represented with 2P + 1 terms and there-

fore the number of solution harmonics Φ̂m and the sum in Eq. (3.60) can be

truncated, i.e. p,m ∈ [−P, P ]. Finally, expanding the term (ω + pωm)2 yields

the quadratic eigenvalue problem [94]

ω2MΦ̂ + ωCΦ̂ + KΦ̂ = 0, (3.61)

where Φ̂ = [Φ̂−P , Φ̂−P+1, ..., Φ̂P ]T , M is the identity matrix, C depends on

ωm, and K depends on â, ωm, and k. The solution u(x, t) can therefore be

written using Eq. (3.55) as

u(x, t) = ei(kx−ωt)
P∑

p=−P

Φ̂pe
−ipωmt, (3.62)

which can be rewritten as

u(x, t) = eikx

P∑
p=−P

Φ̂pe
−i(ω+pωm)t. (3.63)

Equation (3.63) is very important to observations of time-modulated and

spatiotemporally-modulated media. Specifically, one can interpret the effect
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Figure 3.3: (a) Comparison of the frequency-wavenumber spectrum of Hill’s
equation using Eq. (3.61) (open circles) with the exact dispersion solution,
Eq. (3.66). (b) Dispersion relation from (a) weighted by the magnitude of the
fundamental plane wave component in decibels, 20 log10(||Φ̂0||/||Φ̂||).

of temporal modulation of the modulus as a perturbation to the medium that

excites plane waves with wavenumber k at frequencies (ω+pωm) having ampli-

tudes Φ̂p. Note that the wavelength of each plane wave is the same; however,

each plane wave propagates with the speed (ω + pωm)/k. Further, the ampli-

tude of each plane wave is dependent on the magnitude of the harmonics of

a(t).

3.3.1 Example: Hill’s Equation

As an example, consider the propagation of longitudinal waves in a bar

with constant density b = ρ0 and a time-varying Young’s modulus a(t)→ E(t)

that varies as a square wave with minimum value E1 and maximum value E2,
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which is written as

E(t) = E1 + ∆EH[cos(ωmt)], (3.64)

where H is the Heaviside function, and ∆E = E2−E1. The Fourier coefficients

in Eq. (3.51) are then

Ên = E2δn0 −
∆E

2
sinc(

nπ

2
), (3.65)

where sinc(x) = sin(x)/x and δn0 is the Kronecker delta. The exact dispersion

relation in this case is the equation

cos(ωT ) = cos(kc1T1) cos(kc2T2)

− 1

2

(
c1T1

c2T2

+
c2T2

c1T1

)
sin(kc1T1) sin(kc2T2), (3.66)

where T1 = T2 = π/ωm, T = T1 + T2, and c1,2 =
√
E1,2/ρ0 [86]. This partic-

ular case has a similar dispersion form to the space-only dispersion relation,

Eq. (3.41). Figure 3.3(a) compares the dispersion relation computed using

Eq. (3.61) with parameters P = 5, ωm = 1, E1 = 1, E2 = 3, ρ0 = 1 and

two branches of the exact dispersion relation, Eq.(3.66). Note that the dis-

persion curves in Fig. 3.3(a) are periodic in frequency, which is the analogue

to wavenumber periodicity in the case of a spatially-varying modulus. The

computed dispersion relation using Eq. (3.61) agrees well with the exact dis-

persion curves, and better agreement is obtained, particularly in the higher

frequencies, by retaining more terms in the sum in Eq. (3.60). It is observed

from Fig. 3.3(a) that this system exhibits wavenumber gaps, which is the ana-

log of bandgaps in frequency for the the case of a spatially-varying modulus.
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However, propagating waves within the wavenumber bandgaps are unstable

and exhibit infinite growth in amplitude in the lossless case [95]. While this

result is relevant to applications using modulated media, it is noted that in

the case where the modulus is a general function of space and time, it is as-

sumed that the modulation frequency is much smaller than the frequencies of

the propagating waves. Therefore, wavenumber bandgaps will not be present

in the frequency-wavenumber spectrum.

The elements from the computed eigenvector Φ̂ are the amplitudes of

the plane waves in Eq. (3.63). One also notes that the total energy of the

propagating waves, which is related to the squared magnitude of the plane

wave amplitudes, are not evenly distributed across each frequency. This can

be represented on a frequency-wavenumber spectrum by weighting each curve

by the magnitude of the fundamental plane wave amplitude ||Φ̂0||2. Figure

3.3(b) depicts the same results as Fig. 3.3(a), but each curve is now assigned

a color that represents the normalized magnitude of the fundamental (p =

0) plane wave component in decibels, specifically 20 log10(||Φ̂0||/||Φ̂||). The

main dispersion branch is now easily identifiable, as well as the branches that

interact with the main branch near the wavenumber gaps.

3.4 Space- and Time-Dependent Modulus

Finally, consider the case where now a(x, t) is a periodic function of

time and space. Unfortunately, separation of variables does not apply to this

particular problem. However, the solution techniques discussed for the time-
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only and space-only modulus cases can be leveraged. First, a(x, t) is expanded

as a Fourier series in time

a(x, t) =
∞∑

n=−∞

ân(x)e−inωmt (3.67)

where ân(x) are the harmonic amplitudes and are periodic functions of space.

As in the previous sections, a Bloch wave solution is assumed, where the Bloch

mode U(x, t) is now a periodic function of time and space

u(x, t) = ei(kx−ωt)U(x, t). (3.68)

Therefore, U(x, t) can also be expanded as a Fourier series in time with har-

monic amplitudes that are a function of space

U(x, t) =
∞∑

m=−∞

ûm(x)e−imωmt. (3.69)

Equations (3.67) and (3.69) are substituted into Eq. (3.1) to yield the differ-

ential equation for the harmonic amplitudes ûm

∞∑
p=−∞

∞∑
m=−∞

[
d

dx

(
âp−m

(
dûm
dx

+ ikûm

))
+ ikap−m

dûm
dx

− k2âp−nûm + b(ω + pωm)2ûm

]
ei(ω+pωm)t = 0. (3.70)

Utilizing harmonic balance from the orthogonality of the Fourier series yields

the infinite system of coupled differential equations

∞∑
m=−∞

d

dx

[
âp−m

(
dûm
dx

+ ikûm

)]
+ ikap−m

dûm
dx
− k2âp−nûm

+ b(ω + pωm)2ûp = 0, p ∈ [−∞,∞]. (3.71)
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Equation (3.71) implies that the one must solve a set of ODEs for each Fourier

amplitude associated with the time solution. Therefore, a variational approach

similar to the space-only modulus approach can be used by multiplying each

equation in Eq. (3.71) by its respective test function, v̂p, and integrating over

the periodic interval, x ∈ [−λm/2, λm/2]. Integration by parts is used on the

bracketed terms in Eq. (3.71) to yield the symmetric weak form

p=∞∑
p=−∞

∞∑
m=−∞

[ ∫ λm/2

−λm/2
âp−m

dûm
dx

dv̂p
dx

dx+ k2

∫ λm/2

−λm/2
âp−nûmv̂p dx

− ik

∫ λm/2

−λm/2
ap−m

(
ûm

dv̂p
dx
− dûm

dx
v̂p

)
dx− b(ω + pωm)2

∫ λm/2

−λm/2
ûpv̂p dx

]
= 0.

(3.72)

The integration domain x ∈ [−λm/2, λm/2] is subdivided into N intervals and

ûm, v̂m are expanded in the usual manner as piecewise Lagrange polynomials

ûm =
N∑
j=0

ûmj φj(x), (3.73)

v̂m =
N∑
i=0

v̂mi φi(x), (3.74)

where ûmj is the value of ûm at node j. Substitution of the above basis ex-

pansions for ûm, v̂m yields the following set of equations for any suitable test

function v̂m

ω2Mup + ω2ωmpMup + (ωmp)
2Mup +

P∑
m=−P

Kp−mum = 0, p ∈ [−P, P ],

(3.75)

where up = [ûp0, ..., û
p
N ]T and

44



Mij = b

∫ L/2

−L/2
φiφj dx, (3.76)

Kn
ij =

∫ L/2

−L/2

(
−ân

dφi
dx

dφj
dx

+ ikân

(
φi
dφj
dx
− dφj

dx
φi

)
− k2ânφiφj

)
dx. (3.77)

Equation (3.75) can be assembled as a global system

ω2M̄u+ ωC̄u+ K̄u = 0 (3.78)

where u = [û−P0 , ..., û−PN , û−P+1
0 , ..., û−P+1

N , ..., ûP0 , ..., û
P
N ]T , M̄ is the global as-

sembly of the first term, C̄ is the global assembly of the second term, and K̄ is

the global assembly of the third and fourth terms of Eq. (3.75), respectively.

3.4.1 Example: Translating Material Layers

As an example, consider the case of longitudinal wave propagation in a

bar with constant density b = ρ0 composed of periodic alternating layers from

Sec. 3.2.3 now translating in the +x direction at speed cm = ωm/km, where

km = 2π/λm is the modulation wavenumber. Therefore, the Young’s modulus

a(x, t)→ E(x, t) has the following functional form, which was recently studied

using a different approach by Trainiti and Ruzzene [31]

E(x, t) = E1 + ∆EH [cos (kmx− ωmt)] , (3.79)

which is a generalization of the time-varying Young’s modulus, Eq. (3.64).

The Fourier coefficients in Eq. (3.67) are thus given by [31]

Ên =

(
E2δn0 −

∆E

2
sinc

[πn
2

])
einkmx. (3.80)
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Figure 3.4: (a) Finite element computation of the dispersion relation for the
case of translating material layers with modulation speed cm = 0.159 (ωm = 1).
Due to the bias in the +x direction, the dispersion curves are not symmetric
about k = 0, i.e. reciprocity is broken. (b) The dispersion curves shown in (a)
but with each point colored by the magnitude of the fundamental component
in decibels, 20 log10(||u0||/||u||). The dashed line is the first branch of the
exact dispersion relation for this case, which is obtained using Eq. (3.83) and
Eq. (3.41).
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The exact dispersion relation in this case can be obtained by shearing the

dispersion relation for the case of spatial variation of the Young’s modulus,

Eq. (3.41). This is accomplished by replacing k with k̂, ω with ω̂, and c1, c2

with ĉ1, ĉ2, where

ĉ1 = c1 −
c2

m

c1

, (3.81)

ĉ2 = c2 −
c2

m

c2

. (3.82)

and solving Eq. (3.41) with these transformed variables [96]. The variables

(k̂, ω̂) can be transformed back to (k, ω) with the following transformation

k = k̂ +
ω̂cmL1

L(c2
1 − c2

m)
+

ω̂cmL2

L(c2
2 − c2

m)
, (3.83)

ω = ω̂ + cmk̂ +
ω̂c2

mL1

L(c2
1 − c2

m)
+

ω̂c2
mL2

L(c2
2 − c2

m)
. (3.84)

Figure 3.4(a) shows the dispersion calculation from the finite element

model using the parameters E1 = 1, E2 = 1.5, ρ0 = 1, L = 1, P = 2, and

ωm = 1. As in the time-only modulation case, the entire frequency spectrum

can be generated by translating the fundamental (p = 0) branch by ±pωm. A

bias in space-time has now been introduced in the +x direction which breaks

time-reversal symmetry, and the dispersion relation is no longer symmetric

about the k = 0 axis. Therefore, reciprocity is broken. Figure 3.4(b) shows

the same dispersion curves as in Fig. 3.4(a), but with each point assigned a

color determined by the magnitude of the fundamental component in deci-

bels, specifically 20 log10(||u0||/||u||). As in the time-only modulation case, it

is evident from this plot that the harmonic amplitudes for each plane wave
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Figure 3.5: Dispersion relations for the translating layers case as a function
of the modulation speed cm. (a) No translation, cm = 0, (b) cm = 0.05, (c)
cm = 0.1, (d) cm = 0.3.

in Eq. (3.69) are not equal. This representation now shows what appears

to be directional bandgaps in the −x direction that do not exist in the +x

direction. These bandgaps are not identical to bandgaps in a system with

only a spatially-varying modulus, since modes with small amplitudes do exist

within the bandgap. It can be seen from Fig. 3.4(b) that the fundamental

branch (p = 0) agrees with the exact dispersion relation computed using the

transformed variables, Eq. (3.83), and Eq. (3.41).
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The frequency ranges of the directional bandgaps can be tuned with the

speed of the modulation, cm. Figure 3.5 depicts the changes in the dispersion

relation as cm is increased. For low modulation speed, mode splitting occurs

and the spatial-only dispersion solution splits into the ±ωm curves [97]. For a

modulation speed of cm = 0.1, the band gap in the +x direction closes, and

the band gap in the −x direction splits into two directional band gaps, where

the lowest directional band gap translates down as the modulation speed is

increased, and the higher directional band gap translates up in frequency as

the modulation speed is increased. The width of the band gap can be tuned in

the same way as the spatial-only modulation case, by increasing the contrast

(∆E) between layers.

3.4.2 Harmonic Mode Coupling

Though the full numerical solution in Eq. (3.78) provides a means to

calculate the frequency-wavenumber spectrum for arbitrary time and space

modulation of the modulus, it does not offer any clear insight into the cou-

pling strength between two modes and the width of the directional bandgap.

It is therefore informative to find approximate relationships to calculate the

frequency-wavenumber spectrum. The coupling between two modes and the

resulting directional bandgap created from their interaction is now investi-

gated.

In a spatiotemporally-modulated medium, the modes are no longer or-

thogonal as in the spatial-only case, which implies that the modes can interact
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and couple to each other. Previous work has shown that directional bandgaps

occur when two or more modes interact [31, 32]. This is illustrated by rewriting

Eq. (3.75) in the following form

(
K0 − (ω + pωm)2M

)
up = −

P∑
n=−P
n6=p

Kp−nun, p ∈ [−P, P ], (3.85)

which mathematically states that each mode p with natural frequency (ω +

pωm) is being driven by the other modes, in which the magnitude of the cou-

pling strength between mode p and another mode n is related to the norm of

the matrix Kp−n. Without loss of generality, consider the interaction of the

p = 0 and p = 1 modes

(
K0 − ω2M

)
Au0 = −K−1Bu1, (3.86)(

K0 − (ω + ωm)2M
)
Bu1 = −K1Au0, (3.87)

where A and B are the amplitudes of the modes u0,u1, respectively. The

eigenvalue is expanded as the following

ω = ω̄i + δω, (3.88)

where ω̄i is an eigenvalue to the right-hand side of Eq. (3.86),

(
K0 − ω̄2

iM
)
ūi = 0, (3.89)

with eigenvector ūi. Assume without loss of generality that ω̄0 is the eigenfre-

quency of the mode of interest, ū0, and that the mode ū1 lies on the dispersion
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branch which contains (ω̄0 +ωm). Substitution of Eq. (3.88) into Eqns. (3.86)-

(3.87) yields the coupled system(
K0 − ω̄2

0M
)
Au0 = (2ω̄0δω + δω2)MAu0 −K−1Bu1, (3.90)(

K0 − (ω̄0 + ωm)2M
)
Bu1 = (2δω(ω̄0 + ωm) + δω2)MBu1 −K1Au0. (3.91)

Taking the inner product of Eq. (3.90) with ū0 and the Eq. (3.91) with ū1

yields

−(2ω̄0δω + δω2)ūH
0 Mu0A− ūH

0 K−1u1B = 0, (3.92)

−ūH
1 K1u0A+

[
(2δω(ω̄0 + ωm) + δω2)ūH

1 Mu1 −Q
]
B = 0, (3.93)

where

Q = ūH
1

(
K0 − (ω̄0 + ωm)2M

)
u1, (3.94)

and it was made use of the fact that ū0 is also the left eigenvector of Eq. (3.88),

ūH
0

(
K0 − ω̄0M

)
= 0, (3.95)

where the superscript H denotes Hermitian transpose. In order to solve Eqns.

(3.92)-(3.93), the modes u0, u1 need to be determined. However, they can be

approximated as

u0 ≈ ū0, u1 ≈ ū1. (3.96)

The determinant of Eqns. (3.92)-(3.93) is set to zero, which yields the equation

for δω

δω4 + (4ω̄0 + ωm)δω3 + (4ω̄2
0 + ω̄0ωm −Q)δω2 − 2ω̄0Qδω

= (ūH1 K1ū0)(ūH0 K−1ū1). (3.97)
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Figure 3.6: (a) Approximate dispersion relation using Eq. (3.97) (open circles)
compared to Fig. 3.4(a). (b) Zoom-in plot of the lowest directional bandgap.
The dashed line represents the solution ω̄0 from Eq. (3.89).

The roots of the above quartic equation can be solved using a numerical poly-

nomial root-finding algorithm. The mode amplitude ratio B/A can then be

determined from Eq. (3.92)

B

A
=

2ω̄0δω + δω2

ūH
0 K−1ū1

. (3.98)

Figure 3.6(a) shows the results of using Eq. (3.97) to calculate the ap-

proximate dispersion relation on the first branch, and Fig. 3.6(b) shows the

approximate dispersion relation at the first directional bandgap. The root

with the smallest magnitude in Eq. (3.97) captures the fundamental disper-

sion branch and the directional bandgap, while the other roots capture the

features further away from the fundamental dispersion branch. The approxi-

mate dispersion relation agrees well with the full solution, Eq. (3.78). Figure
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3.7 compares the modal amplitudes of mode u0 and u1 from the full solution,

Eq. (3.78), and the approximate solution, Eq. (3.98), at the lowest bandgap.

Note that even with the mode approximations made (Eq. (3.96)) the amplitude

ratios are in good agreement.

The main advantage of this approximate method is that the frequency-

wavenumber spectrum can be generated by solving the generalized eigenvalue

problem Eq. (3.89), which is computationally less demanding than solving

the full quadratic eigenvalue problem, Eq. (3.78). The computational sav-

ings is even more noticeable for larger degree-of-freedom systems, such as

the negative stiffness honeycomb case in Chapter 5. However, Eq. (3.78)

is more useful when generating the frequency-wavenumber spectrum over a
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large frequency band, as each branch must be constructed individually us-

ing Eq. (3.97) by considering each possible mode coupling combination. The

quadratic eigenvalue solver that is used to compute solutions to Eq. (3.78) can

also take advantage of distributed parallel computing (discussed in Sec. 5.3) for

large problems, which significantly reduces computation runtime. Therefore,

it is recommended to use Eq. (3.78) when exploring directional bandgaps in

spatiotemporally-modulated systems, and Eq. (3.97) when optimizing partic-

ular directional bandgap widths of interest in a design setting for applications.

3.5 Summary

In this chapter, wave phenomena in a one-dimensional medium were

studied for space-only, time-only, and spatiotemporal modulations of the ma-

terial modulus. The spatial modulation of the material modulus was first in-

vestigated. A variational approach was utilized to determine the Bloch mode

and dispersion relation, and the finite element method was chosen to numer-

ically discretize the resulting integrals, which led to a generalized eigenvalue

problem for the Bloch modes and eigenfrequencies. It was shown with an ex-

ample problem that considered longitudinal wave propagation in a bar with

periodic layers that frequency bandgaps exist, which prohibits traveling waves

with frequencies within the gap.

The time modulation of the material modulus was then analyzed. A

Fourier series expansion was utilized to reduce the differential equations into a

coupled set of algebraic expressions, which resulted in a quadratic eigenvalue
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problem. It was shown with an example problem concerning periodic time

variations of the material modulus that wavenumber gaps exist, which is the

analogue to frequency bandgaps in the case of spatial-only modulation of the

material modulus.

Finally, the spatiotemporally-modulated material modulus case was in-

vestigated. The solution technique utilized the Fourier transform method pre-

sented for the time-only modulation case and the variational technique used

in the space-only modulation case, which resulted in a quadratic eigenvalue

problem for the Bloch wave modes and eigenfrequencies. The case of propa-

gating longitudinal waves in a bar with translating material layers was then

analyzed. Due to the bias of the modulation in the +x direction, the disper-

sion relation was no longer symmetric about the k = 0 axis and reciprocity

is therefore broken. Approximate relations for the dispersion relation and the

modal amplitudes were derived by considering the interaction of two coupled

modes. This approximate method agreed well with the full quadratic eigen-

value computation and can be used to generate guesses on directional bandgaps

of interest.

The solution techniques discussed in this chapter will be utilized in

Chapters 4 and 5 to model elastic wave propagation in two dimensions. The

variational technique has the added benefit that it can be used on a domain

with arbitrary shape. The computational methods described in this chapter

are therefore well-suited for studying elastic wave propagation in a metama-

terial composed of unit cells with complex geometry, such as the negative
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stiffness honeycomb.
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Chapter 4

Negative Stiffness Honeycombs as Tunable

Elastic Metamaterials1

4.1 Introduction

The finite element method introduced in Chapter 3 is now generalized

and employed to solve the equations of motion in a pre-strained negative stiff-

ness honeycomb (NSH), which is reproduced for convenience in Fig. 4.1. This

chapter introduces the small-on-large approximation, which is used to sepa-

rate the calculation of the total displacement into a nonlinear model which

accounts for the large deformation from an applied pre-strain, and a linear

elastic wave model linearized about the prescribed deformation. The disper-

sion curves are then calculated using the Bloch wave formulation introduced

in Chapter 3. All calculations are performed on the unit cell (shaded region

in Fig. 4.1), by making use of periodic boundary conditions. The longitudinal

and shear modes are identified using a modal filter technique, and the modal

bandgaps and anisotropic propagation properties are studied as a function of

the applied pre-strain.

1Reproduced from B. M. Goldsberry and M. R. Haberman, “Negative stiffness honey-
combs as tunable elastic metamaterials,” J. Appl. Phys., vol. 123, no. 9, p. 091711, 2018,
with the permission of AIP publishing. The present author derived and implemented the
presented methods and created all figures.

57



Figure 4.1: Negative stiffness honeycomb (NSH) metamaterial with the fun-
damental unit cell shaded and direct lattice vectors a1,a2 (reproduced from
Fig. 2.3 for convenience).
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This chapter is organized as follows. The small-on-large approximation

is introduced in Sec. 4.2, and the resulting nonlinear deformation model and

elastic wave propagation model is derived. Finite element formulations for

the dispersion curve computation and group velocity are presented. Section

4.3 shows the resulting dispersion curves in the irreducible Brillouin zone as a

function of an applied external pre-strain, which uses a modal filter technique

to identify modes on each dispersion branch. The tunability of the modal

bandgaps and anisotropic properties are discussed, and it is shown that NSH

exhibits metafluid behavior in a large frequency range.

4.2 Small-on-Large Approximation

The total displacement field ut in the NSH is assumed to be of the form

ut = ud + ua, (4.1)

where ud is the displacement due to the pre-strain, and ua is the propagat-

ing acoustic wave, which is assumed to consist of small perturbations about

the pre-strained displacement field, i.e. ‖ua‖/‖ud‖ � 1. This is the so-called

“small-on-large” approximation, which allows for the computation of ud and

ua in two sequential steps. First, ud is found by solving the nonlinear static

equation for a given pre-strain applied to the lattice. Then, ua is computed

using a linearized dynamic equation about the statically deformed state. A

Lagrangian formulation is adopted in order use the same computational mesh

for both modeling steps. Due to the periodicity of the lattice, only the dis-
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placements within a unit cell need to be computed for both problems, which

greatly reduces the computational complexity.

The theory described in Secs. 4.2.1, 4.2.2 is exact for pre-strain levels

up to the point of instability [43]. Due to the geometric complexity, a finite

element method is utilized for both the deformation and wave propagation

studies. In this work, the open source code FEniCS is used to numerically

perform the finite element algorithm [98, 99]. To the present authors knowl-

edge, current commercial finite element software do not have the ability to

study Bloch wave problems in a pre-strained medium. FEniCS translates

weak forms provided by the user into discrete matrices for linear algebra rou-

tines. Therefore, most of the theory in this section is dedicated to deriving

the appropriate weak forms. The plane-strain approximation is used, reducing

the computational domain to a two-dimensional surface.

4.2.1 Deformation

Let Ω ⊂ R2 be the material domain of a representative unit cell in the

undeformed configuration with coordinate X and boundary Γ = Γp∪Γi, where

Γp are the shared boundaries between Ω and the unit cell region in Fig. 2.3

and consists of the boundaries Γ+
A, Γ−A, Γ+

B , Γ−B , Γ+
C, Γ−C shown in Fig. 4.2, and

Γi are the inner boundaries. Then, let ϕ(X) be the deformation mapping,

such that the displacement field is defined as

u = ϕ(X)−X. (4.2)

60



The deformation gradient F is then defined as

Fij =
∂ϕi
∂Xj

. (4.3)

An affine, uni-axial strain is applied to the NSH in the X2 direction by appli-

cation of a macroscopic deformation gradient F̄ , defined in matrix notation

as [58]

F̄ij =

[
1 0
0 1− β

]
, (4.4)

where β is the macroscopic engineering pre-strain, and the macroscopic strain

Ē = F̄T F̄ − I = β2/2 − β for β < 0. The microscopic deformation field is

then given by the linear combination of the homogeneous deformation and a

non-homogeneous deformation field w(X) [43]

ϕ(X) = F̄X +w(X). (4.5)

The microscopic deformation gradient is therefore given by

F(X) = F̄ +∇w(X). (4.6)

The micro- to macroscopic mapping of the deformation gradient leads to a

constraint on w [43] ∫
Γp

w ⊗ n dΓp = 0, (4.7)

where n is the normal vector on the unit cell surface Γp. This constraint can

be satisfied by requiring that w satisfy periodic boundary conditions on the

unit cell surfaces

w(X)
∣∣∣
Γ+
r

= w(X)
∣∣∣
Γ−
r

, (4.8)
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Figure 4.2: Computational domain, Ω, of NSH. The boundary pairs (Γ+
A,Γ

−
A),

(Γ+
B ,Γ

−
B), (Γ+

C,Γ
−
C) are the locations where periodic boundary conditions are

applied to the computational domain.

where r = A,B,C and the surfaces are specified in Fig. 4.2.

A variational formulation suited for a finite element algorithm is then

needed to solve for w, which is derived using the principle of stationary po-

tential energy, written in integral form as [100]

Π =

∫
Ω

W (F) dΩ−
∫
Γ

t ·ϕ dΓ, (4.9)

where Π is the total potential energy, W (F) is the strain energy density, and t

is the traction vector on the boundary. The interior boundaries Γi are assumed

to be stress-free, and t is assumed to be anti-periodic on Γp. Therefore, the

boundary integral in Eq. (4.9) vanishes, leaving only the domain integral.

The particular strain energy density function chosen in this work is the Saint

Venant-Kirchhoff model, which takes into account the finite displacement but
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Figure 4.3: Deformation of the pre-strained lattice for β = 0.05.

assumes small local strain values, and is written as [101]

W =
λ

2
tr (E)2 + µtr

(
E2
)
, (4.10)

E =
1

2

(
FTF− I

)
, (4.11)

where λ and µ are the first and second Lamé parameters, respectively, E is the

Green strain tensor, and I is the identity tensor. The use of this strain energy

density function is acceptable for these lattices given the fact that NSH have

been designed to undergo elastic buckling and repeatable large deformation

behavior of these systems has been experimentally demonstrated [80, 82].

The equilibrium position is found by findingw that minimizes Eq. (4.9).

The minimum of Π can be found by defining a functional L that is equal to the

directional derivative of Π with respect to an arbitrary vector v, the so-called
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test vector in finite elements, and finding the root:

L(w;v) =
d

dη
Π(w + ηv)

∣∣∣
η=0

= 0, ∀v ∈ V, (4.12)

where V is a suitable vector space with periodicity enforced. Equation (4.12)

is discretized into a system of algebraic equations using FEniCS and Newton’s

method is used to find the root. This requires the Jacobian, J , which is defined

as

J(w; δw,v) =
d

dε
L(w + εδw;v)

∣∣∣
ε=0
, (4.13)

where δw is a virtual displacement vector. Figure 4.3 shows the displacement

in the lattice for β = 0.05, which was solved using the approach described

above.

4.2.2 Elastic Wave Propagation

Once the displacement field ud is determined from the variational prin-

ciples discussed above, the acoustic displacement ua is found by linearizing

the nonlinear equations of motion about ud. One way of accomplishing this is

the use of Lyapunov’s indirect method, which results in a linear wave equation

with non-constant coefficients [100]

(Lijkluk,l),j = ρ
∂2ui
∂t2

, (4.14)

Lijkl =
∂2W

∂Fij∂Fkl

∣∣∣
u=ud

, (4.15)

where L is a spatially-varying tensor known as the tangent modulus tensor,

and ρ is the mass density, which is assumed to be uniform in the medium. Due
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to the periodicity of the geometry and the coefficients L, the Floquet theorem

is utilized to restrict the computational domain to the representative unit cell

[26]. The assumed form of the solution is thus given by

ua(X) = U(X)eiK·X , (4.16)

where U(X) is a periodic function of the unit cell, and eiK·X accounts for the

phase change across each unit cell [26]. The weak form of Eq. (4.14) is derived

by taking the Hermitian inner product of the left- and right- hand sides with

a test vector v, written as

v = V ∗(X)e−iK·X , (4.17)

Application of Green’s first identity then yields the following integral equation∫
Ω

[
Lijkl

(
Uk,lV

∗
i,j +KlKjUkV

∗
i

)]
dΩ + i

∫
Ω

[
Lijkl

(
UkKlV

∗
i,j − Uk,lKjV

∗
i

)]
dΩ

= ρω2

∫
Ω

UiV
∗
i dΩ. (4.18)

4.2.2.1 Dispersion Computation

Modes propagating in the NSH is then determined by discretizing Eqn.

(4.18) into a system of equations, resulting in the matrix system

A(K)U = ω2BU , (4.19)

where the stiffness matrix A is a Hermitian matrix that is a function of the

wavenumber K, and the mass matrix B is positive-definite. Iso-frequency sur-

faces ω(kx, ky) are generated by treating Eq. (4.19) as a generalized eigenvalue
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Figure 4.4: Total potential energy within the unit cell as a function of the
pre-strain. The points represent where the wave propagation is studied and
reported in Sec. 4.3.

problem, where ω2
n and Un are the eigenvalues and eigenvectors, respectively.

For slowness and group velocity calculations, it is more useful to specify the

frequency ω and calculate all wave vectors that exist as is shown in the fol-

lowing paragraph.

Let the wavenumber be expressed in polar form

K = ‖K‖[cos(θ) sin(θ)]T , (4.20)

where θ is the direction of propagation and ‖K‖ is the wavenumber magnitude.

Equation (4.19) can then be rewritten as:

q2MU + qCU + KU = 0, (4.21)
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where q = i‖K‖, and

M = cos2(θ)

∫
Ω

Li0k0UkV
∗
i dΩ + sin2(θ)

∫
Ω

Li1k1UkV
∗
i dΩ

+ sin(θ) cos(θ)

∫
Ω

Li0k1UkV
∗
i dΩ +

∫
Ω

Li1k0UkV
∗
i dΩ

 , (4.22)

C = cos(θ)

∫
Ω

[
Lijk0UkV

∗
i,j − Li0klUk,lV ∗i

]
dΩ

+ sin(θ)

∫
Ω

[
Lijk1UkV

∗
i,j − Li1klUk,lV ∗i

]
dΩ, (4.23)

K = −
∫
Ω

LijklUk,lV
∗
i,j dΩ + ρω2

∫
Ω

UiV
∗
i dΩ. (4.24)

The 0 and 1 subscripts in the above equations are to separate the kx and ky

components of the sum in Eq. (4.18). Equation (4.21) is a quadratic eigen-

value problem for q, and can be solved by specifying ω and θ. The matrices in

Eq. (4.19) and Eq. (4.21) are large and sparse. Therefore, it is not practical

to solve for all eigenfrequencies and eigenvectors. The software library SLEPc

[102] (the Scalable Library for Eigenvalue Problem Computations) is used to

perform the calculations, where a Krylov-schur method is used to calculate

the eigenfrequencies and eigenvectors of Eq. (4.19), and a two-level orthogonal

Arnoldi (TOAR) algorithm is used to calculate the eigenfrequencies and eigen-

vectors of Eq. (4.21). For both methods, a shift-and-invert transformation is

used to extract eigenfrequencies near a target magnitude value.

67



4.2.2.2 Group Velocity

Once ωn and Un are obtained by solving Eq. (4.19), the group velocity

vector cg, with components

cg,x =
∂ω

∂kx
, (4.25)

cg,y =
∂ω

∂ky
, (4.26)

can be computed by taking the derivative of Eq. (4.14) with respect to kx and

ky. The group velocity components are then given by [103]

cg,x =
UH
n A,kxUn

2ωn
, (4.27)

cg,y =
UH
n A,kyUn

2ωn
, (4.28)

where A,kx and A,ky are the derivatives of the stiffness matrix with respect to

the components of the wavenumber, which are given by

A,kx = 2kx

∫
Ω

Li0k0UkV
∗
i dΩ

+ ky

∫
Ω

Li0k1UkV
∗
i dΩ +

∫
Ω

Li1k0UkV
∗
i dΩ


+ i

∫
Ω

[
Lijk0UkV

∗
i,j − Li0klUk,lV ∗i

]
dΩ, (4.29)

68



Parameter Description Value
Lx Horizontal length 55.88
Ly Vertical length 43.18
tb Beam thickness 1.27
ts Beam separation 1.27
hb Beam apex height 5.08
hc Center height 1.90
wc Center width 3.8
hcb Center beam height 3.8
wcb Center beam width 2.54
thb Horizontal beam thickness 1.27

Table 4.1: Geometric parameter values depicted in Fig. 2.4. All values are in
mm.

and

A,ky = 2ky

∫
Ω

Li1k1UkV
∗
i dΩ

+ kx

∫
Ω

Li0k1UkV
∗
i dΩ +

∫
Ω

Li1k0UkV
∗
i dΩ


+ i

∫
Ω

[
Lijk1UkV

∗
i,j − Li1klUk,lV ∗i

]
dΩ. (4.30)

4.3 Results

In this work, a NSH with geometric parameters given in Table 4.1 is

investigated. The NSH is made of Nylon 11, with material properties shown

in Table 4.2 [80]. Bloch wave solutions are found for four pre-strain values,

β = 0.0, 0.0101, 0.0207, 0.0252, which are illustrated in Fig. 4.4. These pre-

69



Property Value Unit
Density 1040 kg/m3

Poisson’s ratio 0.33 -
Young’s modulus 1582 MPa

Table 4.2: Material properties of NSH

strains were chosen such that the elastic wave propagation was stable for all

wavenumbers. For higher pre-strain values, wave propagation may be unstable

for one or more wavenumbers and thus is not considered. For each pre-strain,

the tangent modulus tensor in Eq. (4.15) is computed, and the Bloch modes

and natural frequencies are found by specifying the wave vector K in the irre-

ducible Brillouin zone and solving Eq. (4.19). To give insight on the physical

vibration of the lattice, the modes are categorized into either a longitudinal,

transverse, or higher order mode (H.O.M.). Once categorized, the modes can

be tracked as a function of pre-strain, giving insight into the tunability of the

phase speed of each mode, the allowable directions of wave propagation, and

the direction of the propagation of energy carried by each mode.

4.3.1 Modal Characterization

The modes in the low wavenumber regime (near the Γ point) represent

propagating plane waves whose wavelengths are very large when compared to

the dimensions of the lattice. At the unit cell level, these modes correspond

to the bulk motion of the unit cell moving either parallel to the wave front

(longitudinal), perpendicular to the wavefront (transverse), or out-of-phase
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with neighboring unit cells (higher order modes). For a wave vector in this

regime with a propagation angle of θ and a small but finite magnitude δk,

these modes form a complete mass-orthogonal set [UΓ,0(θ)UΓ,1(θ) · · ·UΓ,N(θ)],

where the subscript Γ corresponds to modes near Γ, and are a function of the

propagation direction, and N is the total number of degrees of freedom in

the finite element model. In this work, δk = 0.01 is chosen to ensure good

separation of the longitudinal and transverse modes. Any mode φ at a larger

wavenumber in the first Brillouin zone in the direction θ can be decomposed

into a sum of Γ-point modes

φ =
N∑
i=0

ciUΓ,i, (4.31)

where ci are the modal coefficients. These coefficients are determined using

the mass-orthogonality of the Γ-point modes using the relation

ci = UΓ,i
TMφ. (4.32)

For the results presented below, the classification of φ is made using the Γ

mode with the highest modal coefficient.

4.3.2 Dispersion

Figure 4.5(a) shows the dispersion branches on the outline of the irre-

ducible Brillouin zone in Fig. 2.6 (repeated here in Fig. 4.6 for convenience)

for the undeformed configuration (β = 0). The mode on each branch is catego-

rized using the modal decomposition technique discussed in Sec. 4.3.1. From

Fig. 4.5(a) it is evident that the mode categorization is not constant on a
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Figure 4.5: Mode dispersion in the irreducible Brillouin zone for: (a) β = 0
(undeformed configuration), (b) β = 0.0101, (c) β = 0.0207, (d) β = 0.0252.
The shaded regions indicate frequency ranges where only unimodal longitudi-
nal wave motion is permitted in the lattice.
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Figure 4.6: The first Brillouin zone, defined with basis vectors b1, b2. The
irreducible Brillouin zone is traced in black (Reproduced from Fig. 2.6 for
convenience.)

branch. This is due to mode coupling when two branches interact, which

is common in an anisotropic media with high wavenumbers [104]. Figures

4.5(b)-4.5(d) show the evolution of the dispersion curves as the pre-strain is

increased. Overall, all branches decrease in frequency which is indicative of a

strain-softening material, which is expected for NSH materials based on both

models and experimental observations. The result is that the effective phase

speeds of each mode is reduced for increasing pre-strain. The most apparent

changes are the decrease of the high-frequency higher order mode branches to

a lower frequency range. The modes whose motion is parallel to the pre-strain

loading direction are the most sensitive to the pre-strain, due to the decrease

in the effective stiffness of the transversely-loaded beam-like elements. This
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behavior is most noticeable with the transverse mode in the X1 direction,

whose displacement is parallel to the pre-strain loading. In addition, the lon-

gitudinal mode in the X2 direction (whose displacement is also parallel to the

pre-strain) is more sensitive to the pre-strain than the longitudinal mode in

the X1 direction. This can be seen by examining the ratio of the modal phase

speed at a pre-strain level over the phase speed in the undeformed configu-

ration at a set frequency. Figure 4.7(a) shows this in the X1 direction at a

frequency of 200 Hz, and Fig. 4.7(b) shows this with the same frequency in

the X2 direction. Indeed, the transverse wave phase speed in the X1 direction

changes by about 80% from the undeformed state to a pre-strain of 0.025,

while the longitudinal wave only changes 4% over the same pre-strain range.

The modal phase speeds in the X2 direction exhibit a change of approximately

20% for the same range of pre-strains. Note that the transverse mode in the X2

direction is also sensitive to the pre-strain, even though the motion is perpen-

dicular to the loading direction. It is interesting to note that the longitudinal

mode in the X1 direction is the least sensitive of all modes. Also of significant

interest is that for certain frequency ranges only unimodal longitudinal wave

motion is permitted in the lattice. For these frequency ranges, the lattice

acts as a pentamode elastic material, or meta-fluid [22]. The frequency range

where this meta-fluid behavior occurs changes with pre-strain as discussed in

Sec. 4.3.3. The evolution of NSH anisotropy can be examined by investigating

the slowness contours at a set frequency, which is calculated from the following
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relationships

c−1
x =

kx
ω
, (4.33)

c−1
y =

ky
ω
. (4.34)

Figure 4.8(a) shows the slowness contours for the first three propagating modes

in the first Brillouin zone for the undeformed configuration at a frequency

of 1100 Hz. A horizontal dashed line at that frequency is provided for ref-

erence in Fig. 4.5. The undeformed configuration exhibits directional wave

propagation at this frequency, namely the higher order branches are confined

to propagate in directions nearly parallel to the X2 direction while the trans-

verse modes propagate at all angles except approximately [32◦ 78◦], [102◦ 148◦],

[212◦ 258◦], and [282◦ 328◦]. As the pre-strain is increased to β = 0.0101, shown

in Fig. 4.8(b), the higher order modes can propagate in the X1 direction, while

the transverse mode can no longer propagate in the X2 direction. Note that

in Fig. 4.8, the longitudinal mode is very insensitive to pre-strain. The normal

vector to these slowness curves specifies the magnitude and direction of the

group velocity, which is the direction of energy propagation, and is shown in

Fig. 4.9. Figure 4.9(a) shows that pre-strain has little effect on the energy

propagation of the longitudinal modes as pre-strain is increased. However,

the group velocity does becomes slower in the X2 direction. Figure 4.9(b)

is the transverse and higher order modes for the undeformed configuration.

For this frequency, the shear waves carry energy in all directions, while higher

order modes only carry energy near the X2 direction. When a pre-strain of
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β = 0.0101 is applied, the higher order modes can now carry energy in the

X1 direction, while the transverse mode can no longer carry energy in the X2

direction.

4.3.3 Meta-Fluid Behavior

The mode that is least sensitive to the pre-strain is the longitudinal

mode. Because of this, the lattice can act as a meta-fluid for a specific range

of frequencies and pre-strains in all directions. In the undeformed state, a

meta-fluid region exists between approximately 1250 to 1750 Hz, shown in

Fig. 4.5(a). As pre-strain is applied, the center frequency and bandwidth of

this region decreases, as shown in Figs. 4.5(b)-(d). The existence of meta-fluid

behavior at all directions is confirmed by the slowness curve in Fig. 4.8(c).

Pre-strained NSH can therefore mimic pentamode metamaterials, which are

of interest for application of concepts from transformation acoustics such as

acoustic cloaking [10] and impedance-match gradient index lenses [22]. In

addition, the frequencies where this occurs as well as the degree of anisotropy

can be tuned through the design of the unit cell and the pre-strain level, which

will be reserved for future research.

4.4 Conclusion

In this chapter, a negative stiffness honeycomb is investigated as a

potential elastic wave metamaterial that can be tuned through mechanical

deformation. A small-on-large formulation is employed to model the total
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displacement in the NSH, which requires the solution of two sequential prob-

lems. First, the unit cell deformation due to an applied uni-axial pre-strain is

computed. Once the new equilibrium configuration is found, a linearized wave

equation about this equilibrium point is solved using a Bloch wave formulation,

which yields the modes and frequencies of propagation. Due to the geometric

complexity of the unit cell, a finite element method using the FEniCS code

was utilized for both solution steps.

This lattice was shown to exhibit a large degree of tunability without

requiring large pre-strains or strains that approach buckling instability con-

figurations. The high-frequency higher order modes and the transverse mode

in the X1 direction were the most sensitive to the pre-strain. However, the

longitudinal and transverse modes in the X2 direction did exhibit a change

of phase speeds of around 20%. In addition to the modal phase speeds, the

direction of propagation for each mode was analyzed by investigating the slow-

ness contours at a frequency of interest. The direction of energy propagation

was inspected at the same frequency by calculating the group velocity. It was

shown that the transverse and optical modes were highly directional, and their

direction of propagation can be tuned by changing the pre-strain amount. In

contrast, the longitudinal modes propagated at all angles and was not sensitive

to the applied pre-strain. One of the most interesting aspects of this NSH is

its ability to act as a meta-fluid, supporting only longitudinal wave motion at

all angles of propagation within a frequency band, which can be tuned with

the pre-strain amount. NSH can therefore mimic pentamode metamaterials
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in select frequency bands, which can be used in applications where an elastic

material must be efficiently impedance-matched to an exterior fluid, such as

an acoustic cloak or an elastic gradient index lens. The ability to tailor the

geometric parameters and pre-strain amount, as well as its ability to recover to

the initial configuration when unloaded, makes NSH a versatile metamaterial

that can be used in numerous applications.
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Chapter 5

Non-reciprocal Wave Propagation in

Mechanically-Modulated Continuous Elastic

Metamaterials

5.1 Introduction

In this chapter, the finite element approach from Chapter 4 is gen-

eralized to study non-reciprocal wave propagation in NSH. The “small-on-

large” approximation is rederived from Chapter 4 to include the effects of a

spatiotemporally-varying pre-strain. The generalized Bloch wave solution form

discussed in Sec. 3.4 is then applied to the resulting linear elastic wave equa-

tion to obtain the frequency-wavenumber spectrum for modes of interest and

compared with prior works. The generality of the finite element approach is

then demonstrated by investigating the changes in the frequency-wavenumber

spectrum when geometric asymmetry is introduced. This method provides a

framework for modeling non-reciprocal waves in spatiotemporally modulated

media when simple, analytical models are not feasible.

This chapter is organized as follows. The small-on-large approximation

is revisited in Sec. 4.2 to include the effects of a spatiotemporally-varying pre-

strain. The conditions for which this approximation holds is then detailed. The

weak forms necessary for the implementation of the finite element method are
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Figure 5.1: Negative stiffness element with geometric parameters.

then derived in Sec. 5.3 using the techniques outlined in Chapter 3. In Sec. 5.4,

the derived finite element approach is benchmarked with known solutions to

a thin Kirchhoff plate, and the degree of non-reciprocity for longitudinal and

transverse waves in a negative stiffness chain, a quasi-one-dimensional chain

composed of negative stiffness elements, is investigated. The effects of geo-

metric asymmetry on the degree of non-reciprocity of the longitudinal and

transverse modes are then explored. This chapter then concludes in Sec. 5.5

with final remarks.

5.2 Theory

In this section, the small-on-large approximation is rederived from

Chapter 4 for elastic waves in a general time-varying pre-strained medium
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[105]. As in Chapter 4, the plane-strain approximation is assumed, reducing

the material dynamics to two dimensions. To simplify the computational mod-

eling and to easily observe non-reciprocity, a quasi-one-dimensional chain of

negative stiffness elements (termed negative stiffness chain hereafter) is con-

sidered, whose unit cell is the rectangular unit cell depicted in Fig. 2.4 and

is reproduced for convenience in Fig. 5.1. In order to capture the spatially

varying pre-strain, a supercell must be modeled, which is constructed by re-

peating the unit cell in Fig. 5.1 along the x direction, as shown in Fig. 5.2(a).

While the negative stiffness chain is considered here as a case example, this

method can be applied to any material structure of interest using the methods

developed in this chapter.

5.2.1 Small-On-Large Theory Revisited

The following equations of motion and tensor definitions are repeated

here for convenience. Let Ω ∈ R2 be the material domain of a representative

supercell in the undeformed configuration with coordinate X = [x, y]T . The

equations of motion with respect to the reference configuration for the elastic

medium are

Div S = ρ0
∂2u

∂t2
, (5.1)

where u is the displacement, ρ0 is the density, and S is the first Piola-Kirchhoff

stress tensor. S is related to the strain energy density function, W , by

S =
∂W

∂F
, (5.2)
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(a)

(b)

Figure 5.2: (a) Supercell computational domain with displacement boundaries
Γu and periodic boundary pairs (Γ+,Γ−). (b) Nonlinear deformation of the
negative stiffness chain due to the external pre-strain β(x, t) with parameters
β0 = 0.01 and ∆β = 0.3β0. The external pre-strain is applied as displace-
ment boundary conditions on the faces depicted by the arrows. The applied
displacement in the y direction, uy(x, t), are composed of a static displace-
ment term denoted by the dashed line whose value is β0Ly, and an oscillating
component depicted by the sine wave with amplitude ∆βLy (not drawn to
scale).
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where F is the deformation gradient, which is defined in relation to the dis-

placement as

F =
∂u

∂X
+ I, (5.3)

where I is the identity tensor. As in Ch .4, the particular strain energy density

function is chosen to be the St. Venant-Kirchhoff model, which accounts for

finite displacements but assumes small local strain values, and is written as

[101]

W =
λ

2
tr (E)2 + µtr

(
E2
)
, (5.4)

E = FTF− I, (5.5)

where λ and µ are the first and second Lamé parameters of the elastic medium,

respectively, and E is the Green-Lagrangian strain tensor.

The total displacement u is assumed to be of the form

u(X, t) = ud(X, t) + ua(X, t), (5.6)

where ud is the displacement due to the external pre-strain, and ua is the

displacement field associated with the propagating elastic wave, which can be

thought of as a perturbation, or incremental motion, about ud. The deforma-

tion gradient can thus be decomposed by substituting Eq.(5.6) into Eq.(5.3),

which yields

F = Fd + Fa, (5.7)
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where Fd is the geometrically nonlinear deformation gradient due to the ex-

ternal pre-strain and is written as

Fd =
∂ud

∂X
+ I, (5.8)

and Fa is the deformation gradient due to the elastic wave motion, which is

found to be

Fa =
∂ua

∂X
. (5.9)

The first Piola-Kirchhoff stress tensor can be approximated as a Taylor series

expansion about the pre-strained state

S ≈ Sd + Sa, (5.10)

where Sd = S(Fd) is the stress due to the external pre-strain, and the incre-

mental stress Sa can be written in index notation as

(Sa)ij = Lijkl(Fa)kl, (5.11)

where Lijkl is the fourth-order tangent modulus tensor, which is defined for

any given value of initial deformation as

Lijkl =
∂2W

∂Fij∂Fkl

∣∣∣
u=ud

. (5.12)

Equation (5.1) can therefore be decomposed into the deformation and incre-

mental terms using Eqns. (5.6) and (5.10) to yield a set of differential equations

for the nonlinear deformation due to an external pre-strain,

Div Sd = ρ0
∂2ud

∂t2
, (5.13)
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and for the linear elastic wave propagation

Div (L∇ua) = ρ0
∂2ua

∂t2
. (5.14)

In the presence of spatiotemporally-modulated pre-strain, Eq. (5.14) is a wave

equation with non-constant coefficients that are functions of space and time.

The deformation due to an external pre-strain therefore acts as an effective

stiffness change relative to the reference configuration that can be tuned by

selection of the lattice geometry and the externally imposed initial deforma-

tion.

5.2.2 Applied Deformation (Large Wave)

The displacement field due to an applied pre-strain is modeled using

Eq. (5.13). The applied pre-strain, β, is assumed to have the following periodic

traveling wave form

β(x, t) = ∆β sin (kmx− ωmt) + β0, (5.15)

where β0 is the static pre-strain, ∆β is the amplitude of the strain modulation,

km = 2π/λm is the modulation wavenumber with wavelength λm, and ωm is the

modulation angular frequency. For computational simplicity, the modulation

wavelength λm is restricted to to be equal to an integer number of unit cells.

In this work, a supercell composed of six unit cells is considered, such that the

supercell length and modulation wavelength are λm = 6LX. This restriction

limits the Bloch wavelengths to be ≥ 6LX in the acoustic branches within the

first Brillouin zone. The computational geometry is shown in Fig. 5.2(a), with

88



boundaries Γu indicating where the external pre-strain is applied via displace-

ment boundary conditions, and the boundary pairs (Γ+,Γ−) indicating where

periodic boundary conditions are applied. The displacements on the top and

bottom faces are ud = (0,−Lyβ) and ud = (0, Lyβ), respectively. The result-

ing deformation of the lattice due to the applied pre-strain with parameters

β0 = 0.01 and ∆β = 0.3β0 at one instant in time is shown in Fig. 5.2(b).

Note that the static pre-strain value has been chosen to place the elements of

the negative stiffness chain into a strain state where small perturbations will

lead to sufficiently significant variations in the local tangent modulus without

approaching the point of instability. Further, the magnitude of the traveling

modulation strain is small, 0.3% strain relative to the un-deformed configura-

tion, and thus the effects on reciprocity reported here are associated with a

small mechanical modulation leading to observable asymmetry of elastic wave

propagation. The sine wave depicted in Fig. 5.2(b) represents Eq. (5.15), and

the arrows indicate where the displacements are applied. The external pre-

strain then translates with time in the positive x direction according to the

imposed modulation speed cm = ωm/km.

The numerical modeling is greatly simplified and the displacement so-

lutions are guaranteed to be periodic in time and space by requiring that

there is significant separation of time scales [44]. This is achieved by requiring

the pre-strain modulation speed, cm, to be slow with respect to the slow-

est material sound speed in the medium (shear wave speed). To investigate

the consequences of a slow modulation, it is illustrative to rewrite Eq. (5.13)
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as a non-dimensional equation. By choosing the normalization X̄ = kmX,

ūd = ud/U , S̄d = Sd/(µUkm), t̄ = ωmt, Eq. (5.13) is rewritten as

Div S̄d = γ
∂2ūd

∂t̄2
, (5.16)

where U = β0Ly is a reference displacement, γ = c2
m/c

2
s provides a measure

of the modulation speed to the shear wave speed in the bulk material from

which the negative stiffness chain is fabricated, and cs =
√
µ/ρ0 is the shear

wave speed of the material. If the modulation speed is much slower than the

shear wave speed (γ � 1), the inertial term can be discarded and Eq. (5.13)

simplifies to

Div Sd = 0. (5.17)

Solutions for ud(X, t) are constructed by discretizing t and incrementally solv-

ing Eq. (5.17) by updating the displacement boundary conditions. Conse-

quently, nonlinear propagation effects such as harmonic generation or shock

formation are absent in the limit of γ � 1..

5.2.3 Elastic Wave Propagation (Small Wave)

Once the displacements ud are found, the tensor L is constructed for

each material point and time increment using Eq. (5.12). Each element of L

can then be written as a Fourier series in time,

Lijkl(X, t) =
∞∑

n=−∞

L̂nijkl(X)e−inωmt, (5.18)
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where the Fourier components, L̂nijkl(X), are determined from the set of solu-

tions to Eq. (5.17) for all time increments of the modulation, using

L̂nijkl(X) =
ωm

2π

π/ωm∫
−π/ωm

Lijkl(X, t)einωmt dt. (5.19)

The Bloch wave procedure from Chapter 3 is utilized to find the periodic

traveling wave solutions of Eq. (5.14) using the ansatz

ui = ei(K·X−ωt)
∞∑

p=−∞

ûpi (X)e−ipωmt, (5.20)

where K = [kx, ky]
T is the Bloch wavenumber, and the Bloch wave mode

is written as a Fourier series in time. Physically speaking, the fundamental

mode and frequency (û0, ω) is interpreted as an incident mode propagating

in the medium, and the harmonics with mode and frequency (ûp, ω + pωm)

are modes scattered by the modulation in the forward (p > 0) and backward

(p < 0) direction [32].

The series in Eqns. (5.18) and (5.20) are truncated to 2P + 1 terms,

and substituted into Eq. (5.14). The orthogonality of the Fourier series is then

utilized to eliminate one of the summations, yielding a system of differential

equations for the harmonic amplitudes ûp, which is written in index notation

as

P∑
n=−P

[(
L̂p−nijkl û

n
k,l + iL̂p−nijklKlû

n
k

)
,j

+ iL̂p−nijkl û
n
k,lKj − L̂p−nijkl û

n
kKlKj

]
= −ρ0(ω + pωm)2ûpi , p ∈ [−P, P ]. (5.21)
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Figure 5.3: (a) Computational mesh. (b) The resulting time dependence and
FFT solution of the L1100 component from a prescribed pre-strain at the node
marked in (a). Note that the time solution contains more than one Fourier
component.

This set of equations is then solved subject to homogeneous Dirichlet boundary

conditions on the faces where the external pre-strain was applied,

ûp(X ∈ Γu) = 0, (5.22)

periodic boundary conditions on the left and right edges as indicated in Fig.

5.2(a),

ûp(X ∈ Γ+) = ûp(X ∈ Γ−), (5.23)

and stress-free boundary conditions on the remaining faces.

5.3 Numerical Implementation

The finite element method is used to solve both the nonlinear deforma-

tion and elastic wave equations derived in Sec. 5.2 by implementing the finite
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element method using the open source software FEniCS [99]. The modulation

deformation problem for each time step is solved using the nonlinear finite

element model derived in 4.2.1. The following steps are demonstrated with an

example shown in Fig. 5.3. Once ud is computed, the tangent modulus tensor

L is created using an automatic differentiation algorithm available in FEniCS.

The Fourier components L̂ijkl are then found by taking the time solution of

Lijkl at each node in the mesh (diamond marker in Fig. 5.3(a)), performing a

numerical Fast Fourier Transform (FFT) in time (Fig. 5.3(b)), and reconstruct-

ing the harmonic results of the FFT into a set of tensors {L̂−P , L̂−P+1, ..., L̂P}.

In order to implement Eq. (5.21) in a finite element algorithm, the

appropriate weak forms must be derived. This is accomplished in the same

manner as described in Chapter 3 for the general case of a 1D medium with

space- and time-dependent modulus. First, one takes the Hermitian inner

product over the supercell domain Ω of the left- and right- hand sides of

Eq. (5.21) with the respective harmonic test vector v̂p. Application of Green’s

identity on the divergence term and summing the equations yields the integral

equation

P∑
p,n=−P

[
−
∫
Ω

L̂p−nijkl

(
ûnk,lv̂

p
i,j +KlKjû

n
k v̂

p
i

)
dΩ

− i

∫
Ω

L̂p−nijkl

(
ûnkKlv̂

p
i,j − ûnk,lKj v̂

p
i

)
dΩ

+ ρ0 (ω + pωm)2

∫
Ω

ûpi v̂
p
i dΩ

]
= 0, (5.24)
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which is discretized following standard finite element procedures [40] to yield

a quadratic eigenvalue problem

ω2MU + ωCU + K(K)U = 0, (5.25)

where U = [u−P ,u−P+1, ...,uP ]T. The frequency-wavenumber spectrum is

generated by assigning a value ofK and solving the quadratic eigenvalue prob-

lem provided by Eq. (5.25) for the frequency and harmonic amplitudes. In this

work, the Bloch wavenumber K = [kx, 0]T is restricted to be a vector point-

ing in the x direction and are thus concerned with a quasi-one-dimensional

problem. Due to the periodicity of the supercell, kx is restricted to the first

Brillouin zone of the supercell kx ∈ [−π/(6Lx), π/(6Lx)]. Positive values of

kx refer to waves that propagate in the positive x direction (in the direction

of pre-strain modulation), and negative values of kx refer to waves that prop-

agate in the negative x direction (in the opposite direction of the pre-strain

modulation).

The matrices resulting from the finite element discretization are large

and sparse. Specifically, the total matrix size is DOFSC(2P+1)×DOFSC(2P+

1), where DOFSC is the number of degrees of freedom of the supercell with

boundary conditions applied. For example, a typical supercell mesh in this

work contained on the order of DOFSC = 100, 000. Therefore, it is not practi-

cal to solve for all eigenfrequencies and eigenvectors. The computational chal-

lenges associated with this problem are addressed by using the software library

SLEPc [102] (the Scalable Library for Eigenvalue Problem Computations) to
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Figure 5.4: Geometry of the thin plate Kirchhoff benchmark system.

solve Eq. (5.25), which takes advantage of distributed-memory parallelization

and can be executed on a computer cluster. Further, a two-level orthogo-

nal Arnoldi (TOAR) algorithm is used in combination with a shift-and-invert

transformation to extract eigenfrequencies near a target magnitude value.

5.4 Results

The finite element approach described in Sec. 5.3 can be used to com-

pute the frequency-wavenumber spectrum for any geometry of interest, which

is the primary contribution of the present work. Before solving the nega-

tive stiffness chain problem, the accuracy of the finite element model is first

assessed by comparing the frequency-wavenumber spectrum calculated with

this technique to flexural wave propagation in a thin Kirchhoff plate with a

spatiotemporally-modulated Young’s modulus [31], which is different than the

longitudinal wave problems investigated in Chapter 3. Note that while the

flexural wave mode is compared, the finite element model captures both the

flexural and longitudinal waves in a thin Kirchhoff plate. The use of the finite

element model is then demonstrated by investigating transverse and longitudi-

nal wave propagation in the negative stiffness chain with a spatiotemporally-
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modulated external pre-strain.

5.4.1 Numerical Benchmark

To verify the implementation of the finite element model presented in

Sec. 5.3, elastic wave dispersion is investigated in a thin Kirchhoff plate with a

spatiotemporally-modulated Young’s modulus and compared with the model

presented in Trainiti et al. [31] The geometry is shown in Fig. 5.4, where

h/L = 0.01. The plate is assigned the material properties of static Young’s

modulus E0 = 1 GPa, density ρ0 = 7700 kg/m3, and Poisson’s ratio ν = 0.1.

These values are chosen such that Kirchhoff plate theory remains valid for all

wavenumbers of interest. The Young’s modulus is modulated with the form

E(x, t) = E0 + Em cos(ωmt− kmx). (5.26)

For this case, the tangent modulus tensor in Eq. (5.12) simplifies to the stiffness

tensor since no geometric nonlinearity is present and the material is assumed

isotropic a priori

Lijkl = λδijδkl + µ (δikδjl + δilδjk) , (5.27)

where δij is the Kronecker delta function, and λ, µ are the first and second

Lamé parameters of the plate material, respectively. Recall that the Lamé

parameters are related to the Young’s modulus and Poisson’s ratio through

the relations

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (5.28)

The modulation parameters are chosen to be Em = 0.4E0 and ωm/km = cm =

0.002. The transverse mode branch with P = 1 is shown in Fig. 5.5(a), where
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(a)

(b)

Figure 5.5: (a) Frequency-wavenumber spectrum of the transverse wave in a
thin Kirchhoff plate. Open circles are the results from Trainiti et al., and
filled circles are results obtained from the finite element model. (b) The finite
element results presented in (a) but with each point colored by its normalized
magnitude of the fundamental component in decibels, 20 log10(||û0||/||U ||).
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c0 =
√
E0/ρ is the longitudinal wave speed of the plate. As seen in Fig. 5.5(a),

the finite element model shows excellent agreement with the model presented

in Trainiti et al. [31] and thus the numerical approach has been appropriately

benchmarked.

This system is non-reciprocal since the frequency- wavenumber spec-

trum is not symmetric about kx = 0. However, band gaps do not occur

in the same way as a stationary periodic medium, where kx becomes purely

imaginary in certain frequency regions. Rather, due to the existence of har-

monics in a spatiotemporal medium, all frequencies are associated with least

one real-valued kx that represents a propagating mode. However, the am-

plitudes of the harmonic modes (p 6= 0 in Eq. (5.20)) may be significantly

less in magnitude than the fundamental mode (p = 0 term). The amplitude

differences are indicated in Fig. 5.5(b), where the finite element results in

Fig. 5.5(a) are plotted and assigned a color that is determined by the mag-

nitude of the fundamental component of the Bloch wave solution in decibels,

specifically 20 log10(||û0||/||U ||). In the example case considered here, the

fundamental mode couples to the harmonic modes in the frequency range

fL/c0 ∈ [0.003, 0.006]. However, this coupling is direction-dependent, creat-

ing directional band gaps. The amplitudes of the harmonic modes within the

fundamental mode band gaps are significantly lower in magnitude than the

amplitude of the fundamental mode propagating in the −x direction.
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Figure 5.6: (a) Frequency-wavenumber spectrum of the negative stiffness chain
with a static pre-strain of β0 = 0.01. The transverse mode is highlighted. (b)
The transverse mode spectrum with the vertical lines and numerals indicating
the supercell Brillouin zone number. The mode shape is shown in the inset
image.
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Table 5.1: Geometric parameter values depicted in Fig. 5.1. All numerical
values have units of mm.

Parameter Description Value
Lx Horizontal length 55.88
Ly Vertical length 40.64
tb Beam thickness 1.27
ts Beam separation 3.81
hb Beam apex height 5.08
hc Center height 1.90
wc Center width 3.8
hcb Center beam height 2.54
wcb Center beam width 2.54
thb Horizontal beam thickness 1.27

5.4.2 Negative Stiffness Chain

The negative stiffness chain depicted in Fig. 5.2(a) is now investigated

in order to demonstrate the generality of the finite element method and to

investigate mechanical modulation as a means to generate non-reciprocal wave

phenomena. The values assigned to the geometric parameters shown in Fig. 5.1

are provided in Table 5.1, which is identical to Table 4.1 except the beam

separation parameter ts is chosen to be 3.81 mm, rather than 1.27 mm which

was the case for the NSH studied in Chapter 4. The negative stiffness chain is

assumed to be fabricated from laser sintered Nylon 11 with material properties

ρ0 = 1040 kg/m3, Poisson’s ratio of 0.33, and Young’s modulus of 1582 MPa.

The frequency-wavenumber spectrum of the negative stiffness element depicted

in Fig. 5.1 is first studied using the finite element approach in Chapter 4

with a static pre-strain of β0 = 0.01. The dispersion curves for the unit cell
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(a) (b)

Figure 5.7: Frequency-wavenumber spectra of the transverse mode of the neg-
ative stiffness chain. (a) Comparison of spatial modulation (open circles) and
static pre-strain only (diamonds; same data as in Fig. 5(b), but folded at
the Brillouin zone boundaries). (b) Comparison of spatial modulation (open
circles; same as in (a)) and spatiotemporal modulation (filled circles), where
the color scale is defined in the same way as Fig. 5.5(b).

Brillouin zone is shown in Fig. 5.6(a). Note that the presence of displacement

boundary conditions on the top and bottom faces of the negative stiffness

chain eliminates “plane wave” modes that propagate down to zero frequency.

The transverse mode, which is highlighted in Fig. 5.6(a) and repeated with

an enlarged view in Fig. 5.6(b), is first investigated in the present work. The

vertical dashed lines and numbers in Fig. 5.6(b) represent the Brillouin zones

of the supercell shown in Fig. 5.2(a), which will aid in the interpretation of

the band-folded supercell results detailed below.

Next, the frequency-wavenumber spectrum is obtained for modula-

tion of the external pre-strain in space only by setting ωm = 0 and ∆β =
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0.3β0 in Eq. (5.15). The results of this case are shown in Fig. 5.7(a).

The frequency-wavenumber spectrum of the transverse mode in a spatially-

modulated negative stiffness chain is nearly identical to the folded frequency-

wavenumber spectrum of the static pre-strain case shown in Fig. 5.6(b),

with band gaps forming near 990 Hz and 1410 Hz at the edge of the su-

percell Brillouin zone due to Bragg scattering from the spatial periodicity.

Finally, the frequency-wavenumber spectrum of the transverse mode in the

spatiotemporally-modulated pre-strain case with eight of the generated har-

monics present (P = 4) is shown in Fig. 5.7(b) with cm = 0.02cs. The trans-

verse mode fundamental branch is similar to the results from the spatially-

modulated negative stiffness chain except at frequencies near the band gaps.

Here, directional band gaps are now present in the spatiotemporally-modulated

negative stiffness chain and are highlighted with shaded boxes in Fig. 5.7(b).

The approximate dispersion relation derived in Sec. 3.4.2, Eq. (3.97),

is used to obtain the lowest directional bandgap in Fig. 5.7(b), which is shown

in Fig. 5.8. This is computed by considering the coupling of the mode that

exists on the dispersion branch that passes through the bandgap (red dashed

line in Fig. 5.8) and the mode on the next branch in ascending frequency

(orange dashed line in Fig. 5.8). A large amount of coupling between these

two mode exist at the wavenumber where the two branches are separated

by fm = ωm/(2π). The approximate dispersion curve agrees well with the

frequency-wavenumber results from Fig. 5.7(b) at the bandgap and in the +k

region, and is less accurate in the −k region. This is most likely attributed to
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Figure 5.8: Comparison of the approximate dispersion relation, Eq. (3.97),
(open diamonds) with the frequency-wavenumber spectrum of the transverse
mode from Fig. 5.7. The red dashed line represents the reference eigenvalue
branch, which is the solution to Eq. (3.89), and the orange dashed line rep-
resents the coupling branch. The two modes exhibit strong coupling at the
wavenumber where the two curves are separated by fm.
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(a) (b)

Figure 5.9: (a) Dispersion of the negative stiffness chain with a static pre-
strain of β0 = 0.01. A region that constains he longitudinal and a higher-order
transverse mode is highlighted. (b) Zoom-in plot of the shaded region in (a),
where the ongitudinal and transverse modes are identified using the modal
filter technique discussed in Sec. 4.3.1. The respective mode shapes are shown
in the inset image.

the approximation of the mode eigenvector.

Another frequency region of interest is highlighted in Fig. 5.9(a), which

shows the unit cell response of the negative stiffness chain with a static pre-

strain of β0 = 0.01. A longitudinal and higher-order transverse mode exists

in this range, and is shown in Fig. 5.9(b) using the modal filter technique

discussed in Sec. 4.3.1. Note that this is the lowest-order longitudinal mode

due to the displacement boundary conditions. This region is investigated us-

ing identical modulation parameters of the previous case (∆β = 0.3β0 and

cm = 0.02cs). The resulting frequency-wavenumber spectrum is shown in

Fig. 5.10, along with the dispersion curves that results from the spatial mod-

ulation of the pre-strain. Three frequency ranges of interest are highlighted
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Figure 5.10: Frequency-wavenumber spectrum of the region highlighted in
Fig. 5.9(a). The dispersion curves of the transverse mode (blue open circles)
and the longitudinal mode (red open circles) for a spatial modulation of the
pre-strain are also plotted.
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in Fig. 5.10. Region 1 shows that the transverse mode displays a large degree

of non-reciprocity, while the longitudinal mode is mostly identical to the case

of space-only modulation of the pre-strain and therefore exhibits only a small

degree of non-reciprocity. These results are in agreement with the conclusions

made in Chapter 4, where the transverse mode is very sensitive to variations of

the pre-strain while the longitudinal mode is considerably less sensitive. This

property gives the flexibility to tune the degree of non-reciprocity, including

directional bandgap locations, of the transverse mode without affecting the lon-

gitudinal mode. The longitudinal mode exhibits non-reciprocity in a narrow

frequency band highlighted in regions 2 and 3 of Fig. 5.10, where directional

bandgaps form. The effect of increasing the modulation speed to cm = 0.04cs

while maintaining the modulation depth is shown in Fig. 5.11. In region 1,

the increase in the modulation speed further shears the frequency-wavenumber

spectrum of the transverse mode, while the frequency-wavenumber spectrum

of the longitudinal mode remains the same. The change in the modulation

speed however can be used to tune the frequency ranges of the longitudinal

mode directional bandgaps in regions 2 and 3. Specifically, increasing the

modulation speed results in region 2 shifting down in frequency and region 3

shifting up in frequency. The width of the bandgap, however, does not change

significantly.
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Figure 5.11: Frequency-wavenumber spectrum of the region highlighted in
Fig. 5.9(a) for a modulation speed of cm = 0.04cs. The highlighted regions
and spatial-only modulation results are identical to Fig. 5.10.
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Figure 5.12: Chiral configuration of the negative stiffness element with a beam
thickness change of 10% (geometry is exaggerated for visualization purposes).

5.4.3 Geometric Asymmetry

One of the primary advantages of the finite element framework de-

veloped here is that changes in the geometry can be accounted for without

significant difficulty. The ability to modify the unit cell geometry results in a

large design space to tailor the degree of non-reciprocity, including directional

bandgaps, for each mode of interest. As an illustrative example, consider the

modified negative stiffness element shown in Fig. 5.12, where the thickness of

the pre-curved beams in the top-left and bottom-right quadrants are decreased

by 10% (a higher value is used in Fig. 5.12 for ease of visualization), and the

thickness of the pre-curved beams in the top-right and bottom-left quadrants

are increased by 10%. This unit cell displays chirality, i.e. mirror symmetry

about the horizontal and vertical axes is broken while retaining 180◦ rotational

symmetry. The dispersion curves for the transverse and longitudinal modes

in a chain composed of the chiral negative stiffness element in Fig. 5.12 for a
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Figure 5.13: Transverse and longitudinal modes of the chiral negative stiffness
chain with a static pre-strain of β = 0.01.

static pre-strain of β0 = 0.01 are shown in Fig. 5.13. Compared to Fig. 5.9,

the chiral asymmetry causes the transverse and longitudinal modes to couple,

resulting in a bandgap around 2500 Hz. This coupling is due to the introduc-

tion of a rotational motion of the center of the unit cell brought on by the

differences of the force responses of the two different sets of pre-curved beams,

which is present in both modes. The frequency-wavenumber spectrum of the

chiral negative stiffness chain with space-only and spatiotemporal modulation

of the pre-strain with modulation parameters ∆β = 0.3β0, cm = 0.04cs is

shown in Fig. 5.14(a). The longitudinal mode bandgaps in regions 2 and 3

from Fig. 5.11 remain mostly unaltered. However, the longitudinal mode now

shows a greater sensitivity to the pre-strain modulation in the region shown in
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(a) (b)

Figure 5.14: (a) Frequency-wavenumber spectrum of the chiral negative stiff-
ness chain for a modulation speed of cm = 0.04cs. The dispersion curves of the
transverse mode (blue open circles) and longitudinal mode (red open circles)
for the space-only modulation of the pre-strain are also shown. (b) Zoom-in
of the highlighted region in (a). The longitudinal mode directional bandgap is
highlighted.
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Fig. 5.14(b) compared to the symmetric geometry case in Fig. 5.11. Specifi-

cally, an additional directional bandgap in the longitudinal mode now appears,

which is highlighted in Fig. 5.14(b). Though the uni-directional bandgap is

very narrow for this specific geometry, this simple example illustrates that chi-

ral asymmetry can be used as a means to increase the degree of non-reciprocity

of the longitudinal mode.

5.5 Conclusion

In this chapter, the finite element approach developed in Chapter 4,

along with the numerical approach discussed in Chapter 3, was generalized to

study non-reciprocal elastic wave propagation in a pre-strained elastic meta-

material. A quasi-one dimensional chain that resembles the negative stiffness

honeycomb studied in Chapter 4 was investigated as an example metamaterial

that displays a large degree of non-reciprocity for small external pre-strain

modulations in time and space. The utility of this finite element approach

was further demonstrated by investigating a modified version of the negative

stiffness chain with unit cell chirality. In general, this model can be used to

study any sub-wavelength geometries or modulations that are difficult or im-

possible to model with analytic techniques. Therefore, this approach can be

used to design and optimize realistic devices that benefit from a large degree of

non-reciprocity, such as acoustic communication devices with increased data

throughput and improved vibration isolation devices.
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Chapter 6

Conclusion

6.1 Summary and Contributions

Acoustic and elastic wave metamaterials have received significant at-

tention as a means to directly control the propagation of waves through a

synthetic elastic material. However, current metamaterial designs suffer from

a few drawbacks that limit their usefulness. Specifically, passive metamaterials

that rely on subwavelength resonances show high performance behavior only at

narrow bands of frequency and are limited by the presence of absorption. Fur-

thermore, their dynamic properties cannot be altered after construction. It is

therefore highly desirable to study metamamaterials that show extraordinary

effective behavior in a wide frequency band without relying on resonances

that can also be tuned to exhibit high performance at a desired frequency

range. Tunable elastic metamaterials that exhibit large changes in the ef-

fective stiffness via geometric nonlinearity from an applied external pre-strain

shows promise in overcoming these limitations, and is therefore the main study

of this work.

Recently, research on using metamaterials as a non-reciprocal medium

has enabled even greater control over the propagation direction of waves, in-
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cluding the ability to generate conditions for one-way wave propagation. This

work focused on modulating the material properties of a metamaterial in space

and time using mechanical deformation to induce non-reciprocity, which has

been unexplored. This dissertation therefore also studied the adaptation of

tunable elastic materials for the creation of nonreciprocal elastic metamateri-

als.

In order to unify the present studies of tunable and non-reciprocal meta-

materials, a negative stiffness honeycomb (NSH) was used as a representative

metamaterial. Negative stiffness honeycombs exhibit non-monotonic force-

displacement response when subjected to an externally-applied pre-strain.

Previous studies have made use of NSH for vibration isolation and impact

absorption. However, the strong geometric nonlinearity present in NSH sug-

gest that linear elastic wave propagation in this structure exhibit a strong

dependence on the externally-imposed pre-strain. The effect of a static pre-

strain on the dispersive wave behavior in NSH was therefore studied in this

work, as well as the non-reciprocal effects that arise when modulating the

pre-strain imposed on the NSH as a function of space and time.

In Chapter 1, two research questions were posed as the motivation of

this work. Each of these questions are now addressed along with the contri-

butions of this dissertation.

1. How are the bandgaps and anisotropic properties of the

transverse and longitudinal waves in a metamaterial with
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strong geometric nonlinearity affected by an externally-

applied static pre-strain?

To begin answering this question, a modeling approach must be derived

that includes geometric nonlinearity and the effect of the resulting deforma-

tion on the superimposed propagating elastic waves. The complex geometry

present in unit cells that exhibit large geometric nonlinearity severely limits

any analytical study, which necessarily motivates the development of a compu-

tational technique. The finite element method (FEM) is the numerical method

of choice due to its numerical accuracy in solving the equations of motion as

well as its ability to handle complex geometries.

In this dissertation, the small-on-large approximation was introduced

and derived in Chapter 4, which decomposes the solution for the total displace-

ment in an elastic metamaterial structure into a nonlinear finite element model

which captures the large deformation from an external pre-strain, and an elas-

tic wave finite element model linearized about the deformation. The Bloch

wave formalism introduced in Chapter 3 was then utilized on the resulting lin-

ear elastic wave equations to formulate an eigenvalue problem to calculate the

dispersion curves and mode shapes, as well as the group velocity to study the

anisotropic wave propagation behavior. The contributions from this particular

work with respect to the numerical modeling include a systematic procedure

to model both the nonlinear deformation and elastic Bloch wave problems in

an open-source computational environment. Further, a mode filtering tech-

nique was implemented that uses modal information in the long-wavelength
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regime to identify modes of interest on the dispersion curves at higher Bloch

wavelengths. This was shown to be particularly useful in identifying modal

bandgaps as well as the correct slowness curves for determining the anisotropic

propagation behavior of each mode.

These numerical tools were then used to answer question 1 for NSH.

In particular it was found that there exists a frequency region where there

is only longitudinal wave propagation, which can be tuned by applying an

external pre-strain. In general, the dispersion and slowness curves for the

transverse mode displayed significant tunability given a small amount of pre-

strain. In addition, the transverse mode was observed to be highly directional,

and the direction of propagation can be tuned by changing the pre-strain

amount. Conversely, the longitudinal mode propagates in all directions and is

significantly less sensitive to the pre-strain than the transverse modes. This

work therefore contributes to current metamaterials research by demonstrating

that NSH is a veratile metamaterial that can be used in numerous applications,

such as transformation acoustics or as an elastic gradient index lens.

2. What non-reciprocal effects are observed when the ex-

ternal pre-strain imposed on a metamaterial with strong

geometric nonlinearity is modulated in space and time?

Currently, there is a significant need for numerical tools to study non-

reciprocal wave dispersion behavior in a spatiotemporally-modulated elastic

media. In Chapter 3, the wave phenomena present when the modulus of a

115



medium is varied in space and time individually, and simultaneously in space

and time was discussed. The mathematical and computational techniques

used to solve each of these pre-strain modulation cases, which includes the

finite element method, were derived in a geometrically simple one-dimensional

setting which was then generalized to the general elastodynamic case in mul-

tiple dimensions in Chapter 5. The small-on-large approximation introduced

in Chapter 4 was revisited to include the effects of a spatiotemporally-varying

pre-strain. A quadratic eigenvalue problem was then derived to generate the

frequency-wavenumber spectrum. This computational approach is one of the

main contributions of this dissertation, which now enables researchers to fur-

ther study and design non-reciprocal metamaterials for practical applications

when considering arbitrarily complex unit cell and super cell geometries.

The spatiotemporal finite element approach was used to answer ques-

tion 2 for a negative stiffness chain, which is a quasi-one-dimensional version

of NSH. In particular, the transverse modes exhibit a high degree of non-

reciprocity for a small amount of pre-strain modulation, including the for-

mation of several directional bandgaps. Conversely, the longitudinal mode

displayed a small degree of non-reciprocity except for two narrow frequency

bands of directional bandgaps. The utility of the finite element approach was

further demonstrated by investigating a modification of the negative stiffness

chain with chiral geometric asymmetry. It was shown that the longitudinal

mode is more sensitive to the pre-strain modulation for the case of a chi-

ral unit cell, and exhibits an additional directional bandgap that is lower in
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frequency than the two that existed in the symmetric unit cell case. This in-

vestigation contributes to current work in non-reciprocal wave propagation by

demonstrating a mechanical metamaterial that displays a high degree of non-

reciprocity given a small amount of externally-modulated pre-strain, and that

geometric asymmetry can be used to couple longitudinal and transverse wave

motion and thereby increase the degree of non-reciprocity of the longitudinal

and transverse modes.

6.2 Future Work

The computational approaches developed in this dissertation provide

a means to study elastic wave propagation in a general pre-strained medium.

While these methods were successfully implemented and used to study wave

propagation in NSH, further work is necessary in exploring the further utility

of these computational methods and NSH. Below are a few suggestions for

further research:

1. Unit Cell Design: The finite element approach derived in

this work opens a large design space to create optimal or tailored

non-reciprocal elastic wave devices. Specifically, the constituent

material properties and the geometric parameters of the unit cell

can all be varied to yield designs that exhibit directional bandgaps

at target frequency ranges of interest. Therefore, this finite ele-

ment approach, in addition to the approximate dispersion relation

derived in Chapter 3, can be used with design algorithms to inves-

tigate the design space for specific applications of interest.
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2. Experimental Validation: While the finite element ap-

proaches derived in this work all numerically solve the equations of

motion to a high degree of accuracy, ultimately all of the results in

this dissertation on the strain-modulated negative stiffness honey-

comb must be experimentally verified. In particular, the effects of

a finite lattice on measuring the frequency-wavenumber spectrum

needs to be investigated. Ultimately, the design of a successful

experiment presents its own challenges and opportunities and will

require a significant effort for completion.

3. Negative Stiffness Honeycomb Metamaterial: The re-

sults presented in this dissertation show that the negative stiffness

honeycomb geometry exhibits many useful dynamic properties in

addition to its ability to absorb impacts. Specific examples in-

clude the meta-fluid region reported here and the ability to inde-

pendently control the propagation of transverse and longitudinal

modes. Applications where this metamaterial can be integrated

to meet the challenges of transformation elastodynamics, such as

acoustic cloaking and meta-lens, are therefore of significant inter-

est.
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