
Copyright

by

Ahmad Issa Khalid Issa

2019



The Dissertation Committee for Ahmad Issa Khalid Issa
certifies that this is the approved version of the following dissertation:

On Seifert fibered spaces embedding in 4-space,

bounding definite manifolds and quasi-alternating

Montesinos links

Committee:

Cameron Gordon, Supervisor

Robert Gompf

Tye Lidman

John Luecke



On Seifert fibered spaces embedding in 4-space,

bounding definite manifolds and quasi-alternating

Montesinos links

by

Ahmad Issa Khalid Issa,

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2019



Acknowledgments

First and foremost, I would like to express my sincere gratitude towards

Cameron Gordon. It is a great privilege to have had such an excellent adviser.

Thank you for all the enjoyable conversations, for your encouragement and

generous support. Next, I’d like to thank my collaborator and good friend

Duncan McCoy. Chapter 2 and most of Chapter 4 is joint work with Duncan.

It has been a pleasure working with you over the last few years. I’m very

grateful to Bob Gompf, Tye Lidman and John Luecke for taking the time and

effort to serve as part of my dissertation committee. During my time here, UT

Austin has been an excellent place to study topology. I’d like to thank everyone

who helped foster such a great working environment, particularly my fellow

grad students in junior topology. Special thanks goes to Kyle Larson for many

enjoyable conversations. Finally, thank you to my parents for supporting me

to pursue my dreams so far away from home, and thank you to all my friends

at UT who made my time here an enjoyable one.

iv



On Seifert fibered spaces embedding in 4-space,

bounding definite manifolds and quasi-alternating

Montesinos links

Publication No.

Ahmad Issa Khalid Issa, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Cameron Gordon

This dissertation is concerned with the question of which Seifert fibered

spaces smoothly embed in the 4-sphere and the related question of which

Seifert fibered spaces bound both a positive definite and a negative definite

smooth 4-manifold. Using Donaldson’s diagonalization theorem we derive

strong obstructions in both of these settings. We construct new embeddings

of Seifert fibered spaces in S4 out of old ones, giving many new examples of

Seifert fibered spaces which embed in S4. Our results allow us to classify pre-

cisely when a Seifert fibered space over an orientable base surface smoothly

embeds in S4 provided e > k/2, where e is the normalized central weight

and k is the number of singular fibers. Based on these results and an analy-

sis of the Neumann-Siebenmann invariant µ, we make some conjectures con-

cerning Seifert fibered spaces which embed in S4. Finally, we classify the
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quasi-alternating Montesinos links, showing that a Montesinos link L is quasi-

alternating if and only if its double branched cover is an L-space which bounds

definite manifolds of both signs with torsion-free first homology.
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Chapter 1

Introduction

Let M be a connected, closed, oriented 3-manifold. It is a well-known

fact that M bounds a smooth, oriented 4-manifold [Tho54]. However, one

can ask more refined questions such as whether M bounds a smooth rational

homology 4-ball, i.e. a 4-manifold W with H∗(W ;Q) = H∗(B
4;Q), or whether

it bounds a smooth negative definite 4-manifold. Answers to such questions,

in addition to being interesting in their own right, have important implications

for a number of important problems in 3- and 4-manifold topology and knot

theory. As an example, suppose K ⊂ S3 is a smoothly slice knot, that is, K

bounds a smoothly embedded disk D in the 4-ball. The double branched cover

of the 4-ball branched over D is a rational homology 4-ball with boundary

Σ2(K), the double branched cover of S3 branched over the knot K. Thus,

one can obstruct a knot from being slice by showing that its double branched

cover does not bound a rational homology 4-ball. One of the great triumphs

of this strategy is the beautiful work of Lisca [Lis07a], where he shows that a

2-bridge knot is smoothly slice if and only if its double branched cover bounds

a rational homology ball.

The obstruction used by Lisca is based on Donaldson’s diagonalization
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theorem [Don87], which is one of the landmark results in smooth 4-manifold

topology. Donaldson’s theorem states that the intersection form of a smooth

closed definite 4-manifold is diagonalizable, a fact which can be used to detect

subtle topological information not accessible through classical methods. For

example, it can be used in conjunction with work of Freedman and Quinn

[Fre82a,FQ90] to show that there exist knots which are topologically slice, but

not smoothly slice. This fact can be used to prove the existence of smooth

4-manifolds homeomorphic but not diffeomorphic to R4.

This thesis is primarily concerned with applications of Donaldson’s the-

orem to understanding Seifert fibered spaces and the types of 4-manifolds

which they bound. We consider the problem of determining which Seifert

fibered spaces smoothly embed in S4. If a rational homology 3-sphere Y

smoothly embeds in S4, it splits S4 into two rational homology 4-balls. Thus,

obstructions to Y bounding a rational homology 4-ball are obstructions to

embedding in S4. When Y is a Seifert fibered space one can use Donaldson’s

theorem to analyse this problem. In fact, one can obtain stronger obstructions

using Donaldson’s theorem by exploiting the fact that Y must in fact bound

two rational homology 4-balls and that they must glue to give S4. Donald in-

vestigated this obstruction and used it to determine precisely which connected

sums of lens spaces smoothly embed in S4 [Don15]. In this thesis we analyse

the case when Y is a Seifert fibered space. Our investigation naturally leads to

a number of interesting results concerning which Seifert fibered spaces bound

smooth definite 4-manifolds of both signs, which turns out to be related to the
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classification of quasi-alternating Montesinos links.

In Chapter 2, we use Donaldson’s theorem to establish an inequal-

ity which gives strong restrictions on when the standard definite plumbing

intersection lattice of a Seifert fibered space over S2 can embed into a stan-

dard diagonal lattice, and give some applications. First, we answer a ques-

tion of Neumann-Zagier on the relationship between Donaldson’s theorem and

Fintushel-Stern’s R-invariant. As a corollary, we answer a question of Lidman-

Tweedy concerning the non-vanishing of the Ozsváth-Szabó d-invariant for cer-

tain Seifert fibered integral homology spheres. We also characterise the Seifert

fibered spaces Y with b1(Y ) = 1 which bound both positive and negative defi-

nite 4-manifolds. This in particular gives a short proof of the characterisation

of Seifert fibered spaces which bound smooth rational homology S1 ×D3’s.

In Chapter 3, we complete the classification of quasi-alternating Mon-

tesinos links. We show that the quasi-alternating Montesinos links are precisely

those identified independently by Qazaqzeh-Chbili-Qublan and Champanerkar-

Ording. A consequence of our proof is that a Montesinos link L is quasi-

alternating if and only if its double branched cover is an L-space, and bounds

both a positive definite and a negative definite 4-manifold with torsion-free

first homology. This also leads to a classification of the Seifert fibered spaces

which are formal L-spaces. The key to these classification results is a re-

finement of the inequality from Chapter 2 for Seifert fibered space bounding

definite manifolds with torsion-free first homology.

In Chapter 4, using an obstruction based on Donaldson’s theorem, we
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derive strong restrictions on when a Seifert fibered space Y = F (e; p1

q1
, . . . , pk

qk
)

over an orientable base surface F can smoothly embed in S4. As is often

the case, an analysis of the lattice theoretic obstructions suggests interesting

topological constructions. In the present case this leads us to show that if

Y embeds in S4 then the Seifert fibered spaces F (e; p1

q1
, . . . , pk

qk
,−pi

qi
, pi
qi

), where

1 ≤ i ≤ k, also embeds in S4. This allows us to classify precisely when Y

smoothly embeds provided e > k/2, where e is the normalized central weight

and k is the number of singular fibers. Based on these results and an analysis

of the Neumann-Siebenmann invariant µ, we make some conjectures concern-

ing Seifert fibered spaces which embed in S4. Finally, we also provide some

applications to doubly slice Montesinos links, including a way to construct new

doubly slice links out of old ones and a classification of the smoothly doubly

slice odd pretzel knots up to mutation.
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Chapter 2

Seifert fibered spaces bounding definite

manifolds1

2.1 Introduction

Donaldson’s diagonalization theorem [Don87] has led to many great

successes in understanding several important questions in low dimensional

topology, and in knot theory in particular. For example, Donaldson’s theorem

can often be used to answer questions concerning sliceness, unknotting number,

3-manifolds bounding rational homology balls, and surgery questions. In these

cases, one typically uses Donaldson’s theorem to obstruct a certain 3-manifold

from bounding a certain type of smooth negative definite 4-manifold, with the

obstruction taking the form of the existence of a certain map of intersection

lattices. However, understanding this obstruction for large families of examples

is often highly non-trivial, and can require combinatorial ingenuity.

One appealing application of Donaldson’s theorem is to prove the well-

known fact that the Poincaré homology sphere P = S2(2; 2, 3
2
, 5

4
) does not

bound a smooth integral homology 4-ball. This fact can, of course, be proved

1This chapter consists of joint work with Duncan McCoy, and is based on our preprint On
Seifert fibered spaces bounding definite manifolds, https://arxiv.org/abs/1807.10310,
2018.
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in many other ways, for example by using Rokhlin’s theorem, Fintushel-Stern’s

R-invariant, or by using the d-invariant coming from Heegaard Floer homology.

Assuming that P is oriented to bound the positive E8 plumbing, the proof

by Donaldson’s theorem is as follows. If P were the boundary of a smooth

integral homology 4-ball W , then we could form a closed positive definite

manifold by gluing −W to the positive E8 plumbing. Donaldson’s theorem

would then imply that the E8 intersection form is diagonalizable, which is,

of course, untrue. In fact, as the E8 intersection form does not embed into

any positive definite diagonal lattice, this argument shows that P does not

bound any smooth negative definite 4-manifold. The purpose of this chapter

is to generalize this argument to other Seifert fibered spaces. We prove the

following theorem.

Theorem 2.1.1. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over S2 in

standard form, that is, with e ≥ 0, pi
qi
> 1 for all i ∈ {1, 2, . . . , k} and ε(Y ) ≥ 0.

Suppose that Y bounds a smooth 4-manifold W such that σ(W ) = −b2(W ) and

the inclusion induced map H1(Y ;Q) → H1(W ;Q) is injective. Then there is

a partition of {1, 2, . . . , k} into at most e classes such that for each class C,∑
i∈C

qi
pi
≤ 1.

We note that the condition that ε(Y ) := e −
∑k

i=1
qi
pi
≥ 0 in Theorem

2.1.1 guarantees that Y is oriented to bound a positive (semi-)definite plumb-

ing 4-manifold. When Y is a rational homology sphere the map H1(Y ;Q) →

H1(W ;Q) is automatically injective so in this case we are simply obstructing
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the existence of a negative definite manifold bounding Y . Although we do

not discuss the details in this chapter, one can easily obtain analogous results

for Seifert fibered spaces over any orientable base surface. In our notation,

the Poincaré homology sphere oriented to bound the positive E8 plumbing

is P = S2(2; 2, 3
2
, 5

4
), see Figure 2.2. The reader can easily verify that The-

orem 2.1.1 obstructs P from bounding a negative definite manifold. When

k < 3, the Seifert fibered spaces are lens spaces which are well known to

bound both positive and negative definite smooth 4-manifolds. Finally, we

note that the converse to Theorem 2.1.1 is not true. The integer homology

sphere S2(1; 3, 5, 13
6

) passes the obstruction, but does not bound a negative

definite manifold as it bounds a positive definite plumbing whose intersection

form does not embed in a diagonal lattice.

We give two applications of Theorem 2.1.1. First, we prove the following

theorem.

Theorem 2.1.2. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a Seifert fibered integral homol-

ogy sphere in standard form, that is, with pi
qi
> 1 for all i ∈ {1, 2, . . . , k}, e > 0

and with Y oriented to bound a smooth positive definite plumbing 4-manifold.

If Y bounds a smooth negative definite 4-manifold, then e = 1.

In the course of proving Theorem 2.1.2, we obtain a positive answer to

the following question asked by Neumann-Zagier [NZ85].

Question: Let Y be as in Theorem 2.1.2. If the intersection form of

the plumbing of Y is diagonalizable over Z, must e be equal to 1?
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The motivation for this question comes from theR-invariant. Fintushel-

Stern [FS85] used gauge theory to define an invariant R(Y ) of Seifert fibered

integral homology spheres with the property that if R(Y ) > 0 then Y does

not bound a smooth negative definite 4-manifold W with H1(W ) having no

2-torsion. Fintushel-Stern originally gave an expression for R(Y ) as a trigono-

metric sum involving the Seifert invariants of Y . Neumann-Zagier [NZ85]

proved that these sums could be simply evaluated in terms of the central

weight e of the standard positive definite plumbing bounding Y , showing that

R(Y ) = 2e − 3. Thus, if e > 1 then the R-invariant shows that Y does

not bound a smooth negative definite 4-manifold W with H1(W ) having no

2-torsion. In this light, the positive answer to Neumann-Zagier’s question im-

plies that this result obtained from the R-invariant is also a consequence of

Donaldson’s theorem.

We are in fact able to prove a more general version of Theorem 2.1.2

which holds for all |H1(Y )| ∈ {1, 2, 3, 5, 6, 7}, see Theorem 2.5.1 of Section 2.5.

Some particular cases of Theorem 2.1.2 are known. In their original paper,

Neumann-Zagier [NZ85] claimed to have proved the cases when k = 3, and

when k = 4 and e 6= 3, but do not provide a proof, remarking that their proof

was “clearly not the right proof”. The special case when e = k − 1 follows

from [LL11, Lemma 3.3].

Finally, we note that a positive answer to Neumann-Zagier’s question is

a special case of a more general conjecture made by Neumann [Neu89], stating

that if an integral homology sphere Y is given as the boundary of a positive

8



definite plumbing tree Γ and the intersection lattice of Γ is isomorphic to a

diagonal lattice, then some vertex of Γ has weight 1. This general form of

Neumann’s conjecture for graph manifolds remains open.

Lidman-Tweedy [LT18, Remark 4.3] asked whether a Seifert fibered

integral homology sphere with central weight different from 1 must have non-

vanishing Heegaard-Floer d-invariant. As a corollary of Theorem 2.1.2, we

answer their question positively.

Corollary 2.1.3. Let Y be a Seifert fibered integral homology sphere, and let

e ∈ Z be the central weight in the standard definite plumbing graph for Y . If

|e| 6= 1, then d(Y ) 6= 0.

As a second application, we give a short proof of the following theorem

which, in particular, gives a classification of the Seifert fibered spaces bounding

rational homology S1 ×D3’s.

Theorem 2.1.4. Let Y be a Seifert fibered space over S2 with H∗(Y ;Q) ∼=

H∗(S
1 × S2;Q). The following are equivalent:

1. Y is of the form S2(k; p1

q1
, p1

p1−q1 , . . . ,
pk
qk
, pk
pk−qk

), where k ≥ 0 and pi
qi
> 1

for all i ∈ {1, . . . , k}.

2. Y = ∂W , where W is a smooth 4-manifold with H∗(W ;Q) ∼= H∗(S
1 ×

D3;Q).

9



3. Y is the boundary of smooth 4-manifolds W+ and W− such that σ(W±) =

±b2(W±) and each of the inclusion-induced maps H1(Y ;Q)→ H1(W±;Q)

is injective.

Seifert fibered spaces bounding rational homology S1 ×D3’s naturally

arise in two contexts. First, a Seifert fibered space rational homology S1× S2

which embeds in S4 necessarily bounds a rational homology S1×D3. Indeed,

in this context Donald [Don15, Proof of Theorem 1.3] proved the implication

(2) implies (1) of Theorem 2.1.4. Second, a smoothly slice 2-component Mon-

tesinos link has double branched cover a Seifert fibered space over S2 bounding

a rational homology S1 × D3. Motivated by trying to determine the slice 2-

component Montesinos links, Aceto [Ace15, Theorem 1.2] also classified Seifert

fibered spaces bounding rational homology S1 ×D3’s.

Much like the proofs by Donald and Aceto, our proof also proceeds by

means of Donaldson’s theorem. However, their proofs rely on the work of Lisca

[Lis07b] which gives a detailed analysis on sums of linear lattices embedding in

a full-rank lattice. We give a short proof of Theorem 2.1.4 circumventing the

reliance on Lisca’s work. We obtain the additional equivalent condition (3) in

Theorem 2.1.4, since our method does not require the lattice embeddings to

have full-rank.

Finally, we note that Theorem 2.1.1 also plays a key role in Chapter 4,

where we analyse which Seifert fibered spaces smoothly embed in S4, and in

particular, completely determine the Seifert fibered spaces Y = S2(e; r1, . . . , rk)

10



with ri ∈ Q>1 for all i, ε(Y ) > 0 and e > k/2 which smooothly embed in S4.

In Section 2.2, we recall some standard facts and establish notation

and conventions. In Section 2.3, we prove the key technical theorem used

to prove Theorem 2.1.1. In Section 2.4, we analyse when gluing compact 4-

manifolds with boundary results in a definite 4-manifold and give a proof of

Theorem 2.1.1. In Section 2.5, we prove Theorem 2.5.1 answering Neumann-

Zagier’s question, as well as prove Corollary 2.1.3. Finally, in Section 2.6

we prove Theorem 2.1.4 determining the Seifert fibered spaces which bound

rational homology S1 ×D3’s.

2.2 Preliminaries

In this section we briefly recall some standard facts about Seifert fibered

spaces and intersection lattices, and establish notation and conventions. See

[NR78] for a more indepth treatment on Seifert fibered spaces and plumbings.

Given r ∈ Q>1, there is a unique (negative) continued fraction expan-

sion

r = [a1, . . . , ah]
− := a1 −

1

a2 −
1

. . .
ah−1 −

1

ah

,

where h ≥ 1 and ai ≥ 2 are integers for all i ∈ {1, . . . , h}. We associate to

r the weighted linear graph (or linear chain) given in Figure 2.1. We call the

vertex with weight labelled by ai the ith vertex of the linear chain associated

to r, so that the vertex labelled with weight a1 is the first, or starting vertex

11



of the linear chain.

a1 a2 a3 ah

Figure 2.1: Weighted linear chain representing r = [a1, . . . , ah]
−.

We denote by Y = S2(e; p1

q1
, . . . , pk

qk
) the Seifert fibered space over S2

given in Figure 2.2, where e ∈ Z, and pi
qi
∈ Q is non-zero for all i ∈ {1, . . . , k}.

The generalised Euler invariant of Y is given by ε(Y ) = e −
∑k

i=1
qi
pi

. Every

Seifert fibered space Y is (possibly orientation reversing) homeomorphic to

one in standard form, i.e. such that ε(Y ) ≥ 0 and pi
qi
> 1 for all i ∈ {1, . . . , k}.

We henceforth assume that Y is in standard form. If ε(Y ) 6= 0 then Y is a

rational homology sphere with |H1(Y )| = |p1 · · · pkε(Y )|, and if ε(Y ) = 0 then

Y is a rational homology S1 × S2.

e

p1

q1

p2

q2

pk
qk

Figure 2.2: Surgery presentation for the Seifert fibered space S2(e; p1

q1
, . . . , pk

qk
).

For each i ∈ {1, . . . , k}, we have the unique continued fraction ex-

pansion pi
qi

= [ai1, . . . , a
i
hi

]− where hi ≥ 1 and aij ≥ 2 are integers for all

j ∈ {1, . . . , hi}. We associate to Y = S2(e; p1

q1
, . . . , pk

qk
) the weighted star-shaped

graph in Figure 2.3. The ith leg of the star-shaped graph is the weighted linear

subgraph for pi/qi generated by the vertices labelled with weights ai1, . . . , a
i
hi

.

The degree k vertex labelled with weight e is called the central vertex.

12



e

a1
1

a1
2

a1
h1

a2
1

a2
2

a2
h2

ak1

ak2

akhk

Figure 2.3: The weighted star-shaped plumbing graph Γ.

Let Γ be either the weighted star-shaped graph for Y , or a disjoint

union of weighted linear graphs. There is an oriented smooth 4-manifold XΓ

given by plumbing D2-bundles over S2 according to the weighted graph Γ.

We denote by |Γ| the number of vertices in Γ. Let N = |Γ| and denote the

vertices of Γ by v1, v2, . . . , vN . The zero-sections of the D2-bundles over S2

corresponding to each of v1, . . . , vN in the plumbing together form a natural

spherical basis for H2(XΓ). With respect to this basis, which we call the vertex

basis, the intersection form of XΓ is given by the weighted adjacency matrix

QΓ with entries Qij, 1 ≤ i, j ≤ N given by

Qij =


w(vi), if i = j

−1, if vi and vj are connected by an edge

0, otherwise

,

where w(vi) is the weight of vertex vi. Denoting by QXΓ
the intersection

form of XΓ, we call (H2(XΓ), QXΓ
) ∼= (ZN , QΓ) the intersection lattice of XΓ

13



(or of Γ). We denote the intersection pairing of two elements x, y ∈ ZN by

x · y = xT QΓ y. Now assume that Γ is the star-shaped plumbing for Y . If

ε(Y ) > 0 then XΓ is a positive definite 4-manifold and Γ is the standard

positive definite plumbing graph for Y . If ε(Y ) = 0, then XΓ is a positive

semi-definite manifold.

Let ι : (ZN , QΓ) → (Zm, Id), m > 0, be a map of lattices, i.e. a Z-

linear map preserving pairings, where (Zm, Id) is the standard positive diagonal

lattice. We call ι a lattice embedding if it is injective. We adopt the following

standard abuse of notation. First, for each i ∈ {1, . . . , N}, we identify the

vertex vi with the corresponding ith basis element of (ZN , QΓ). Moreover, we

shall identify an element v ∈ (ZN , QΓ) with its image ι(v) ∈ (Zm, Id).

2.3 The embedding inequality

In this section, we prove Theorem 2.3.2 below, which is the key technical

result of this chapter. In particular, it will be used in the next section to prove

Theorem 2.1.1. We begin with some continued fraction identities which we

will need.

Lemma 2.3.1. Let {ai}i≥1 be a sequence of integers with ai ≥ 2 for all i, and

let pk/qk = [a1, . . . , ak]
− for all k ≥ 1. Then we have the following identities:

(a) qnpn−1 − pnqn−1 = 1 for all n ≥ 2.

(b) [a1, . . . , an, x]− = xpn−pn−1

xqn−qn−1
, for all n ≥ 2 and x ∈ R such that both sides

are well defined.
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(c) pn = det


a1 −1 0 0
−1 a2 −1 0

0 −1
. . . −1

0 0 −1 an

 and qn = det


a2 −1 0 0
−1 a3 −1 0

0 −1
. . . −1

0 0 −1 an

 for

all n ≥ 2.

Proof. For a ∈ R, let Ma denote the matrix Ma =

(
a −1
1 0

)
. If q/r =

[a2, . . . , an]−, then pn
qn

= a1 − r
q
. In particular, we have(
pn
qn

)
= Ma1

(
q
r

)
Thus, one can inductively show that(

pn
qn

)
= Ma1 · · ·Man

(
1
0

)
, (2.3.1)

and furthermore that (
pn −pn−1

qn −qn−1

)
= Ma1 · · ·Man . (2.3.2)

Identity (a) follows by taking determinants of (2.3.2) and observing that

detMa = 1 for any a. Identity (b) follows from combining (2.3.1) and (2.3.2)

to get

Ma1 · · ·ManMx

(
1
0

)
=

(
pn −pn−1

qn −qn−1

)(
x
1

)
=

(
xpn − pn−1

xqn − qn−1

)
.

The identities in (c) can easily be proven by induction using the observation

that

det

 a1 −1 0

−1
. . . −1

0 −1 an

 = a1 det

 a2 −1 0

−1
. . . −1

0 −1 an

− det

 a3 −1 0

−1
. . . −1

0 −1 an

 .
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The following theorem is the key technical result of this chapter.

Theorem 2.3.2. Let ι : (Z|Γ|, QΓ) → (Zm, Id) be a map of lattices, where

m > 0 and Γ is a disjoint union of weighted linear chains representing fractions

p1

q1
, . . . , pk

qk
∈ Q>1. Suppose that there is a unit vector w ∈ (Zm, Id) which pairs

non-trivially with (the image of) the starting vertex of each linear chain. Then

k∑
i=1

qi
pi
≤ 1.

Moreover, if we have equality then w has pairing ±1 with the starting vertex

of each linear chain. More precisely, if we have equality then for each linear

chain either

(a) the unit vector w has pairing ±1 with the first vertex of the chain and

has trivial pairing with every other vertex in the chain, or

(b) the starting vertex of the chain has weight 2, (w · v1, w · v2) = (±1,∓1),

where v1, v2 are the first two vertices of the chain, and w pairs trivially

with every other vertex of the chain.

Proof. Let {e1, . . . , em} denote the orthonormal basis of coordinates vectors

of (Zm, Id). Since the unit vectors in (Zm, Id) are precisely those vectors of

the form ±ei where i ∈ {1, . . . ,m}, by a change of basis if necessary, we

may assume that w = e1 ∈ (Zm, Id). Write ι : (Z|Γ|, QΓ) → (Zm, Id) as an

integer matrix with respect to the vertex basis of (Z|Γ|, QΓ), and let M be

the transpose of this matrix. Since ι preserves intersection pairings we have,
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uTQΓv = ι(u)T ι(v) = (MTu)T (MTv) = uTMMTv for all u, v ∈ (Z|Γ|, QΓ).

Thus,

MMT = QΓ =

A1 0 0

0
. . . 0

0 0 Ak

 ,

where for each i ∈ {1, . . . , k}, Ai on the diagonal represents a block matrix of

the form

Ai =


ai1 −1 0 0
−1 ai2 −1 0

0 −1
. . . −1

0 0 −1 aihi


where [ai1, . . . , a

i
hi

]− is the continued fraction expansion for pi/qi. If a matrix

A can be written as a product M ′M ′T , then2

detA ≥ 0. (2.3.3)

We will prove the theorem by applying (2.3.3) to a matrix of the form A =

M ′M ′T , where M ′ is a suitable modification of M .

We may write M in the form

M =

M1
...
Mk


where for all i ∈ {1, . . . , k}, Mi is a matrix such that MiM

T
i = Ai. By the

assumption that e1 pairs non-trivially with each of the starting vertices of the

linear chains, we may assume that each matrix Mi is non-zero in its top left

2Let v 6= 0 be an eigenvector of A with eigenvalue λ. We have vTAv = λ‖v‖2 =
‖M ′T v‖2 ≥ 0, thus λ ≥ 0. Since detA is a product of eigenvalues, this implies that
detA ≥ 0 as required.
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entry. For each i ∈ {1, . . . , k}, let pi/qi = [ai1, . . . , a
i
hi

]− be the standard con-

tinued fraction expansion and choose M ′
i to be the submatrix of Mi obtained

by taking the first li rows, where li is chosen so that the first column wi of M ′
i

takes one of the two forms as follows:

(Form 1) If ai1 = 2 and the first column of Mi is of the form ±
(
1 −1 · · ·

)T
then we may take wi = ±

(
1 −1 0 · · · 0 v

)T
, where v = 0 only if

M ′
i = Mi.

(Form 2) Otherwise, we may take wi to be of the form wi =
(
u 0 · · · 0 v

)T
,

where v = 0 only if M ′
i = Mi.

Let M ′ be the matrix

M ′ =


1 0 · · · 0
M ′

1
...
M ′

k

 .

Then the product A = M ′M ′T takes the form of the block matrix

M ′M ′T =


1 wT1 · · · wTk
w1 A′1 0
...

. . .

wk 0 A′k

 .

Claim. detA can be written in the form

detA = (P1 · · ·Pk)(1−
k∑
i=1

Qi

Pi
),

where Pi = detA′i > 0 and Qi = − det

(
0 wTi
wi A′i

)
is a quantity depending only

on A′i and wi.
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Proof. Since Γ represents a positive definite lattice, Pi > 0 for all i. By the

multi-linearity of the determinant in both rows and columns we have

det


1 wT1 . . . wTk
w1 A′1 0
...

. . .

wk 0 A′k

 = det


1 0 . . . 0
0 A′1 0
...

. . .

0 0 A′k

+
∑

1≤i,j≤k

detBij,

where Bij is the matrix

Bij =


0 · · · wTj · · · 0
... A′1

wi
. . . 0

... 0
. . .

0 A′k

 .

Since A′i has full rank, wi can be expressed as a rational linear combination

of the columns of A′i, and hence detBij = 0 for all i 6= j. For i ∈ {1, . . . , k},

by row and column operations, we can put Bii into the form of a diagonal

block matrix with diagonal blocks

(
0 wTi
wi A′i

)
, A′1, . . . , A

′
i−1, A

′
i+1, . . . , A

′
k with-

out changing the determinant. Hence, detBii is the product of the determi-

nants of these blocks, that is, detBii = −(P1 · · ·Pk)Qi

Pi
.

Since Pi > 0 for all i, the previous claim combined with detA ≥ 0 (see

(2.3.3)) shows that
k∑
i=1

Qi

Pi
≤ 1. (2.3.4)

So to prove the inequality in the theorem it suffices to show that Qi/Pi ≥

qi/pi for each i ∈ {1, . . . , k}. To do this it suffices to consider some fixed

i ∈ {1, . . . , k}. For convenience, let P/Q = Pi/Qi and p/q = pi/qi =
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[a1, a2, . . . , ah]
− where aj ≥ 2 for all j ∈ {1, . . . , h}, and let l = li be the

number of rows of A′i.

Consider the following identity obtained by adding the second row to

the first row, and the second column to the first column:

det


0 −1 1 · · · v
−1 2 −1 0
1 −1 a2 −1
... −1

. . . −1
v 0 −1 al

 = det


0 1 0 · · · v
1 2 −1 0
0 −1 a2 −1
... −1

. . . −1
v 0 −1 al

 . (2.3.5)

Recall that wi takes one of two possible forms. By applying the above identity

if wi takes the form (Form 1), we see that regardless of the form that wi takes,

Q is equal to the determinant of a matrix of the following form

Q = − det


0 u 0 · · · v
u a1 −1 0
0 −1 a2 −1
... −1

. . . −1
v 0 −1 al

 , (2.3.6)

where if (u, v) = (±1,∓1) then either l > 2 or a1 > 2. If wi takes the form

(Form 1), we define u ∈ {±1} via Equation (2.3.6) by applying the identity in

(2.3.5).

For j ∈ {1, . . . , h}, let rj/sj denote the continued fraction [a1, . . . , aj]
−.

Note that P = rl.

Claim.

Q = u2sl + 2uv + v2rl−1
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Proof. Applying cofactor expansion along the first column and first row in

(2.3.6) gives

Q = u2C1 + (−1)l+1uvC2 + (−1)l+1uvC3 + v2C4,

where C1 = det


a2 −1 · · · 0
−1 a3 −1
... −1

. . . −1
0 −1 al

, C2 = det


−1 a2 −1 · · · 0
0 −1 a3 −1
... −1

. . . −1
−1 al−1

0 −1

,

C3 = det


−1 0 · · · 0
a2 −1
−1 a3 −1

−1
. . . −1

0 al−1 −1

 and C4 = det


a1 −1 · · · 0
−1 a2 −1
... −1

. . . −1
0 −1 al−1

 .

Using the continued fraction identities in Lemma 2.3.1, we see that

C1 = sl and C4 = rl−1. Finally, notice that C2 (resp. C3) is the determinant

of an upper (resp. lower) triangular matrix with l − 1 diagonal entries all of

which are −1, hence C2 = C3 = (−1)l−1.

Claim. We have Q
P
≥ q

p
with equality only if u = ±1 and v = 0.

Proof. Recall that if v = 0 then rl/sl = p/q. Thus if v = 0, Q/P = u2q/p.

Since u 6= 0, we clearly have Q/P ≥ q/p with equality only if u2 = 1, as

required. Thus assume that v 6= 0. In this case, if l = h, or equivalently,

p/q = rl/sl then P = p and Q = u2sl + 2uv + v2rl−1 > sl = q and thus

Q/P > q/p. Hence, we assume that p/q 6= rl/sl and, in particular, that

p/q = [a1, . . . , al, x]− where x = [al+1, . . . , ah]
− > 1. Thus, by Lemma 2.3.1 we
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have

p

q
=
xrl − rl−1

xsl − sl−1

.

Note that since u and v are both non-zero we have that

Q = (sl − 1)u2 + (u+ v)2 + (rl−1 − 1)v2 ≥ sl + rl−1 − ε,

where we take ε = 2 if u = −v ∈ {±1} and ε = 1 otherwise. Note that if

rl−1 = 2, then ε = 1, as l = a1 = 2 implies we cannot have u = −v ∈ {±1}

by the condition stated immediately following Equation (2.3.6). In either case

we always have

rl−1 − ε ≥ 1.

Thus we obtain

Q

P
− q

p
≥ sl + rl−1 − ε

rl
− xsl − sl−1

xrl − rl−1

=
(rl−1 − ε)(xrl − rl−1) + rlsl−1 − slrl−1

rl(xrl − rl−1)

=
(rl−1 − ε)(xrl − rl−1)− 1

rl(xrl − rl−1)

≥ (xrl − rl−1)− 1

rl(xrl − rl−1)

> 0,

(2.3.7)

where we used the identity rlsl−1 − slrl−1 = −1 from Lemma 2.3.1 to obtain

the third line, rl−1 − ε ≥ 1 to obtain the fourth line, and finally that p =

xrl − rl−1 > 1. This gives the desired inequality, proving the claim.

The claim together with (2.3.4) proves that
∑k

i=1
qi
pi
≤ 1 with equality

only if w = e1 has pairing ±1 with each starting vertex. Moreover, equality

22



implies that we equality in the above claim, which depending on whether

wi takes form (Form 1) or (Form 2), implies either (a) or (b) holds in the

statement of the theorem.

2.4 Definite 4-manifolds and the Seifert fibered space
inequality

Now we consider when gluing two 4-manifolds can result in a closed

definite 4-manifold.

Proposition 2.4.1. Let U1 and U2 be connected 4-manifolds with ∂U1 =

−∂U2 = Y . Then the closed 4-manifold X = U1 ∪Y U2 is positive definite

if and only if

(a) the inclusion-induced map (i1)∗⊕(i2)∗ : H1(Y ;Q)→ H1(U1;Q)⊕H1(U2;Q)

is injective and

(b) for i = 1, 2, Ui is positive semi-definite, or equivalently has signature

σ(Ui) = b2(Ui) + b1(Ui)− b3(Ui)− b2(Y ).

Proof. In this proof all homology groups will be taken with rational coeffi-

cients. First, for i = 1, 2, consider the following segment of the long exact

sequence in homology of the pair (Ui, Y ):

0→ H3(Ui)→ H3(Ui, Y )→ H2(Y )→ H2(Ui)
Q−→ H2(Ui, Y ), (2.4.1)
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where Q can be represented by the intersection form matrix with respect to

suitable bases. Hence, the null space of Q is precisely the image of H2(Y ) →

H2(Ui). By exactness and Lefschetz duality, the rank of the map H2(Y ) →

H2(Ui) is b2(Y )− b1(Ui) + b3(Ui). This gives an upper bound on the signature

of Ui:

σ(Ui) ≤ b2(Ui) + b1(Ui)− b3(Ui)− b2(Y ), (2.4.2)

with equality if and only if Ui is positive semi-definite. Now consider the

segment of the Mayer-Vietoris sequence

0→H3(U1)⊕H3(U2)→ H3(X)→ H2(Y )→ H2(U1)⊕H2(U2)→

→H2(X)→ H1(Y )→ H1(U1)⊕H1(U2)→ H1(X)→ 0.
(2.4.3)

The last three terms in this sequence show that

b1(U1) + b1(U2) ≤ b1(Y ) + b1(X), (2.4.4)

with equality if and only if the map induced by the inclusions

(i1)∗ ⊕ (i2)∗ : H1(Y )→ H1(U1)⊕H1(U2)

is injective.

Since the Euler characteristic of an exact sequence is zero, (2.4.3) shows

that

b2(X) = 2b1(X) +
2∑
i=1

(b2(Ui)− b1(Ui)− b3(Ui)), (2.4.5)

where we also used that b1(Y ) = b2(Y ) and b1(X) = b3(X).
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By Novikov additivity, we have that σ(X) = σ(U1) + σ(U2). So by

summing the inequalities in (2.4.2) for i = 1, 2 and comparing with (2.4.5) we

obtain

b2(X) ≥ 2(b1(X) + b2(Y )− b1(U1)− b1(U2)) + σ(X), (2.4.6)

with equality if and only if we have equality in (2.4.2) for both i = 1, 2. Hence,

X can be positive definite if and only if

b1(U1) + b1(U2) = b2(Y ) + b1(X) (2.4.7)

and we have equality in (2.4.2) for i = 1, 2. However we have already seen

that equality occurs in (2.4.4) if and only if (i1)∗ ⊕ (i2)∗ is injective.

This allows us to prove the main theorem.

Theorem 2.1.1. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over S2 in

standard form, that is, with e ≥ 0, pi
qi
> 1 for all i ∈ {1, 2, . . . , k} and ε(Y ) ≥ 0.

Suppose that Y bounds a smooth 4-manifold W such that σ(W ) = −b2(W ) and

the inclusion induced map H1(Y ;Q) → H1(W ;Q) is injective. Then there is

a partition of {1, 2, . . . , k} into at most e classes such that for each class C,

∑
i∈C

qi
pi
≤ 1.

Proof. Let X be the standard positive (semi-)definite plumbing 4-manifold

with ∂X = Y , and let Z = X ∪Y −W . It follows from Proposition 2.4.1

that Z is positive definite. Condition (b) of Proposition 2.4.1 holds, since
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σ(W ) = −b2(W ) implies that −W is positive definite. Thus, Z is a smooth

positive definite 4-manifold, so by Donaldson’s theorem Z has standard posi-

tive diagonal intersection form. The inclusion X ⊂ Z induces a map H2(X)→

H2(Z) which preserves the intersection pairing. Thus, there is a map of lattices

(H2(X), QX)→ (Zm, Id) for some m > 0.

We construct a partition of {1, 2, . . . , k} into at most e classes as follows.

Denote the orthonormal basis of coordinate vectors of (Zm, Id) by {e1, . . . , em}.

For v ∈ (H2(X), QX), we call {ei : 1 ≤ i ≤ m, ei · v 6= 0} the support of

v. Without loss of generality, we may assume that the central vertex has

support {e1, e2, . . . , en} where n ≤ e. Let v1, v2, . . . , vk be the vertices of the

plumbing adjacent to the central vertex, so that vi is a vertex belonging to

the ith leg of the plumbing graph (with fraction pi
qi

). For i ∈ {1, . . . , n}, let

Bi = {1 ≤ j ≤ k | vj · ei 6= 0} and define B0 = ∅. Let Ci = Bi\ ∪j<i Bj

for i ∈ {1, . . . , n}. Then C1, . . . , Cn are disjoint and ∪iCi = {1, . . . , k}. Thus

the non-empty classes {Ci : Ci 6= ∅} form a partition of {1, 2, . . . , k} into at

most e classes. By definition for each i ∈ {1, 2, . . . , n}, the starting vertices of

the linear chains indexed by Ci all have support containing the common unit

vector ei. Hence, by Theorem 2.3.2, we have that
∑

j∈Ci

qj
pj
≤ 1.

2.5 Neumann-Zagier’s question

We prove Theorem 2.5.1 below which, when combined with Donaldson’s

theorem, immediately implies Theorem 2.1.2. Note that the following theorem

also positively answers Neumann-Zagier’s question stated in the introduction.
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Theorem 2.5.1. Let Y = S2(e; p1

q1
, . . . , pk

qk
), k ≥ 3, be in standard form, that

is, with pi
qi
> 1 for all i ∈ {1, 2, . . . , k}, e > 0 and with Y bounding a smooth

positive definite plumbing X. Suppose that |H1(Y )| ∈ {1, 2, 3, 5, 6, 7} and the

intersection lattice (H2(X), QX) embeds into a positive standard diagonal lat-

tice. Then e = 1.

Proof of Theorem 2.5.1. For sake of contradiction, assume that e > 1. We

may apply Theorem 2.1.1, noting that the existence of W in the hypothesis

of Theorem 2.1.1 is only required to ensure that there is a map of lattices

of (H2(X), QX) into a positive standard diagonal lattice. Hence, there is a

partition {C1, . . . , Cn} of {1, . . . , k} into n ≤ e classes. Moreover, for each

class C, 1−
∑

i∈C
qi
pi
≥ 0, and we call C complementary if equality occurs, and

non-complementary otherwise.

We have

|H1(Y )| = p1 · · · pk · ε(Y ) = p1 · · · pk(e−
k∑
i=1

qi
pi

)

= p1 · · · pk

(
(e− n) +

n∑
i=1

(1−
∑
j∈Ci

qj
pj

)

)

= p1 · · · pk(e− n) +
n∑
i=1

ai
∏

1≤l≤k
l 6∈Ci

pl, (2.5.1)

where ai = (
∏

j∈Ci
pj) ·(1−

∑
l∈Ci

ql
pl

) is an integer for all i ∈ {1, . . . , n}. Notice

that all terms in (2.5.1) are non-negative integers. Since we are assuming that

|H1(Y )| ∈ {1, 2, 3, 5, 6, 7}, we must have n = e, otherwise |H1(Y )| ≥ p1 · · · pk ≥

2 · 2 · 2 = 8 since k ≥ 3.
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We claim that |Ci| ≤ k − 2 for some i ∈ {1, . . . , e} with Ci non-

complementary. To see this, we argue as follows. There are n = e ≥ 2 classes

in the partition, and at least one non-complementary class since |H1(Y )| > 0.

If there are two non-complementary classes then at least one has size at most

k − 2 since k ≥ 3. If there is only one non-complementary class, then there

is a complementary class which necessarily has size at least 2, and hence the

non-complementary class satisfies the claim.

Combining the above claim with (2.5.1), we see that |H1(Y )| is a sum

of integers greater than 1, and at least one of these integers is not prime.

For |H1(Y )| ∈ {1, 2, 3, 5, 6, 7}, this is only possible for |H1(Y )| = 7 with

decomposition 7 = 3 + 2 · 2, and for |H1(Y )| = 6 with the two decompo-

sitions |H1(Y )| = 2 + 2 · 2 = 2 · 3. We address these cases in turn. For

|H1(Y )| = 7 = 3+2 ·2, comparing this decomposition with (2.5.1), we see that

there must exist some non-complementary Ci with |Ci| = 2 and pj = 2 for all

j ∈ Ci. However, such a Ci must be complementary since 1− 1
2
− 1

2
= 0, a con-

tradiction. A similar argument rules out the decomposition |H1(Y )| = 2+2 ·2.

Finally, in the case |H1(Y )| = 2 ·3, the decomposition implies that there exists

a complementary class Ci = {a, b} with pa = 2 and pb = 3, which is impossible.

We obtain the following corollary, answering a question of Lidman-

Tweedy [LT18, Remark 4.3].

28



Corollary 2.1.3. Let Y be a Seifert fibered integral homology sphere, and let

e ∈ Z be the central weight in the standard definite plumbing graph for Y . If

|e| 6= 1, then d(Y ) 6= 0.

Proof. We prove the contrapositive. Assume that d(Y ) = 0. Note that revers-

ing the orientation of Y simply changes the sign of the weight of the central

vertex in the definite plumbing bounding Y . Thus, by reversing the orientation

of Y if necessary we assume that Y bounds a smooth negative definite plumb-

ing X4. Let C = {ξ ∈ H2(X;Z) | ξ ·v = v ·v (mod 2) for all v ∈ H2(X;Z)} be

the set of characteristic vectors, and let n = rk(H2(X)). Elkies [Elk95] proved

that 0 ≤ n+maxξ∈C ξ·ξ, with equality if and only ifQX is diagonalizable over Z.

However, it follows from [OS03, Theorem 9.6] that n+maxξ∈C ξ·ξ ≤ 4d(Y ) = 0.

Therefore QX is diagonalizable over Z, in particular (H2(−X), Q−X) embeds

into a positive standard diagonal lattice. Hence, Theorem 2.5.1 implies that

|e| = 1.

2.6 Seifert fibered spaces bounding rational homology
S1 ×D3’s

In this section we prove Theorem 2.1.4, which in particular gives a

classification of the Seifert fibered spaces which smoothly bound rational ho-

mology S1 × D3’s. We note that the implication (2) implies (1) was proved

by Donald [Don15, Proof of Theorem 1.3], and the equivalence of (1) and (2)

was shown by Aceto [Ace15, Theorem 1.2].
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Theorem 2.1.4. Let Y be a Seifert fibered space over S2 with H∗(Y ;Q) ∼=

H∗(S
1 × S2;Q). The following are equivalent:

1. Y is of the form S2(k; p1

q1
, p1

p1−q1 , . . . ,
pk
qk
, pk
pk−qk

), where k ≥ 0 and pi
qi
> 1

for all i ∈ {1, . . . , k}.

2. Y = ∂W , where W is a smooth 4-manifold with H∗(W ;Q) ∼= H∗(S
1 ×

D3;Q).

3. Y is the boundary of smooth 4-manifolds W+ and W− such that σ(W±) =

±b2(W±) and each of the inclusion-induced maps H1(Y ;Q)→ H1(W±;Q)

is injective.

Proof. First suppose that (1) holds, that is, Y = S2(k; p1

q1
, p1

p1−q1 , . . . ,
pk
qk
, pk
pk−qk

),

where k ≥ 0 and pi
qi
∈ Q>1 for all i ∈ {1, . . . , k}. By Rolfsen twisting, Y can

be put into the form S2(0; p1

q1
,−p1

q1
, . . . , pk

qk
,−pk

qk
). Let M = S2(0; p1

q1
, p2

q2
, . . . , pk

qk
),

let M◦ be the 3-manifold with torus boundary given by removing a tubular

neighbourhood of a regular fiber of M and let W = M × [0, 1]. Then ∂W =

M◦ ∪∂ −M◦ is the double of M◦, which is precisely Y . Finally, notice that

H∗(W ;Q) = H∗(M
◦;Q) = H∗(S

1×D3;Q), where the last equality follows from

the fact that M is a rational homology S3 and M◦ is obtained by removing a

neighbourhood of a simple closed curve from M . This proves (2).

The implication (2) implies (3) holds by taking W± = W and noting

that H1(Y ;Q)→ H1(W ;Q) is injective by the long exact sequence of the pair

(Y,W ).
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Finally assume that (3) holds. Hence, Y is the boundary of smooth 4-

manifolds W+ and W− satisfying σ(W±) = ±b2(W±) and such that the inclu-

sion induced mapsH1(Y )→ H1(W±) are injective. Write Y as S2(e; p1

q1
, . . . , pk

qk
)

with k ≥ 3 and pi
qi
∈ Q>1 for all i ∈ {1, . . . , k}. Notice that −Y = S2(k −

e; p1

p1−q1 , . . . ,
pk

pk−qk
), and Y is of the form given in (1) if and only if −Y is of

this form. Thus, by reversing the orientations of both Y and W± if necessary,

we may assume that e ≥ k
2
.

By Theorem 2.1.1, there is a partition {C1, . . . , Cn} of {1, . . . , k} into

n ≤ e classes such that for each class C, 1−
∑

i∈C
qi
pi
≥ 0. Since Y is a rational

homology S1 × S2, we thus have

0 = p1 · · · pk · ε(Y ) = p1 · · · pk(e−
k∑
i=1

qi
pi

)

= p1 · · · pk

(
(e− n) +

n∑
i=1

(1−
∑
j∈Ci

qj
pj

)

)
,

where all terms in the sum are non-negative. Hence, we must have n = e

and 1 −
∑

i∈C
qi
pi

= 0, for all i ∈ {1, . . . , n}. This implies that |Ci| ≥ 2 for

all i ∈ {1, . . . , n}. Thus, there are at least 2n = 2e legs, so e ≤ k
2
. However,

by assumption e ≥ k
2

so e = k
2

and |Ci| = 2 for all i ∈ {1, . . . , n}. Thus,

C1, . . . , Cn partition {1, . . . , k} into pairs of indices indexing pairs of fractions

of the form p
q
, p
p−q ∈ Q>1, and thus (1) holds.
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Chapter 3

The classification of quasi-alternating

Montesinos links1

3.1 Introduction

Quasi-alternating links were defined by Ozsváth-Szabó [OS05, Defini-

tion 3.1] as a natural generalisation of the class of alternating links.

Definition 3.1.1. The set Q of quasi-alternating links is the smallest set of

links satisfying the following:

1. The unknot U belongs to Q.

2. If L is a link with a diagram containing a crossing c such that

(a) both smoothings L0 and L1 of the link L at the crossing c, as in

Figure 3.1, belong to Q,

(b) det(L0), det(L1) ≥ 1, and

(c) det(L) = det(L0) + det(L1),

then L is in Q. The crossing c is called a quasi-alternating crossing.

1This chapter is based on the paper: Ahmad Issa. The classification of quasi-alternating
Montesinos links. Proc. Amer. Math. Soc., 146(9):4047–4057, 2018. The contents appear
here by kind permission by the publisher.
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L L0 L1

Figure 3.1: L and its two resolutions L0 and L1 in a neighbourhood of c.

Ozsváth-Szabó showed that the class of non-split alternating links is

contained in Q [OS05, Lemma 3.2]. Moreover, quasi-alternating links share

a number of properties with alternating links, we list a few of these. For a

quasi-alternating link L:

(i) L is homologically thin for both Khovanov homology and knot Floer

homology [MO08].

(ii) The double branched cover Σ(L) of L is an L-space [OS05, Proposition

3.3].

(iii) The 3-manifold Σ(L) bounds a smooth negative definite 4-manifold W

with H1(W ) = 0 [OS05, Proof of Lemma 3.6].

For some further properties see [LO15], [QC15], [Ter15] and [ORS13, Remark

after Proposition 5.2].

Due to their recursive definition, it is difficult in general to determine

whether or not a link is quasi-alternating. For example, there still remain

examples of 12-crossing knots with unknown quasi-alternating status [Jab14].

Champanerkar-Kofman [CK09] showed that the quasi-alternating property is
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preserved by replacing a quasi-alternating crossing with an alternating rational

tangle extending the crossing. They used this to determine an infinite family

of quasi-alternating pretzel links, which Greene later showed is the complete

set of quasi-alternating pretzel links [Gre10].

Qazaqzeh-Chbili-Qublan [QCQ15] and Champanerkar-Ording [CO15]

independently generalised the sufficient conditions on pretzel links to obtain

an infinite family of quasi-alternating Montesinos links. This family includes

all examples of quasi-alternating Montesinos links found by Widmer [Wid09].

Furthermore, it was conjectured by Qazaqzeh-Chbili-Qublan that this family

is the complete set of quasi-alternating Montesinos links. We mention that

Watson [Wat11] gave an iterative surgical construction for constructing all

quasi-alternating Montesinos links.

Some necessary conditions to be quasi-alternating in terms of the ra-

tional parameters of a Montesinos link were obtained in [QCQ15] and [CO15]

based on the fact that a quasi-alternating link is homologically thin. Fur-

ther conditions are described in [CO15] coming from the fact that the double

branched cover of a quasi-alternating link is an L-space. Some additional

restrictions were found in [QC15].

Our main result is the following theorem which states that the quasi-

alternating Montesinos links are precisely those found by Qazaqzeh-Chbili-

Qublan [QCQ15] and Champanerkar-Ording [CO15]. See Figure 3.2 for our

conventions on Montesinos links.
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Theorem 3.1.2. Let L = M(e; t1, . . . , tp) be a Montesinos link in standard

form, that is, where ti = αi

βi
> 1 and αi, βi > 0 are coprime for all i = 1, . . . , p.

Then L is quasi-alternating if and only if

(a) e < 1, or

(b) e = 1 and βi
αi

+
βj
αj
> 1 for some i, j with i 6= j, or

(c) e > p− 1, or

(d) e = p− 1 and βi
αi

+
βj
αj
< 1 for some i, j with i 6= j.

As a corollary of our proof we obtain the following characterisation of

the Montesinos links L which are quasi-alternating in terms of their double

branched covers Σ(L):

Corollary 3.1.3. A Montesinos link L is quasi-alternating if and only if

(a) Σ(L) is an L-space, and

(b) there exist a smooth negative definite 4-manifold W1 and a smooth pos-

itive definite 4-manifold W2 with ∂Wi = Σ(L) and H1(Wi) torsion-free

for i = 1, 2.

Note that in Corollary 3.1.3 and throughout this chapter, we assume

all homology groups have Z coefficients.

In light of this corollary, Theorem 3.1.2 can also be seen as a classifica-

tion of the L-space Seifert fibered spaces over S2 which bound both positive
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and negative definite 4-manifolds with torsion-free first homology. To what ex-

tent Corollary 3.1.3 generalises to non-Montesinos links remains an interesting

question.

This work also gives a classification of the Seifert fibered space formal

L-spaces. The notion of a formal L-space was defined by Greene and Levine

[GL16] as a 3-manifold analogue of quasi-alternating links. In fact, the double

branched cover of a quasi-alternating link is an example of a formal L-space. In

[LS17], Lidman and Sivek classified the quasi-alternating links of determinant

at most 7. In fact, they show that the formal L-spaces M3 with |H1(M)| ≤ 7

are precisely the double branched covers of quasi-alternating links with deter-

minant at most 7. In this same direction, as a consequence of Corollary 3.1.3,

we have the following.

Corollary 3.1.4. A Seifert fibered space over S2 is a formal L-space if and

only if it is the double branched cover of a quasi-alternating link.

Corollary 3.1.3 also seems significant given the recent independent char-

acterisations of alternating knots by Greene [Gre17] and Howie [How17]. A

non-split link is alternating if and only if it bounds negative definite and pos-

itive definite spanning surfaces (which are the checkerboard surfaces). The

double branched cover of B4 over such a surface is a definite 4-manifold of

the appropriate sign. Generalising this, a quasi-alternating link has the prop-

erty that it bounds a pair of surfaces in B4 with double branched covers a

positive definite and a negative definite simply connected 4-manifold (these
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surfaces cannot be embedded in S3 in general). Corollary 3.1.3 shows that

among Montesinos links with double branched covers which are L-spaces, this

property characterises those which are quasi-alternating.

Our approach to proving Theorem 3.1.2 follows that of Greene [Gre10]

on the determination of quasi-alternating pretzel links. One of Greene’s main

strategies is as follows. Suppose L is a quasi-alternating Montesinos link such

that Σ(L) is the oriented boundary of the standard negative definite plumbing

X4. Since the property of being quasi-alternating is closed under reflection, by

property ((iii)) above, −Σ(L) = Σ(L) bounds a negative definite 4-manifold

W with H1(W ) = 0. By Donaldson’s theorem [Don87], the smooth closed neg-

ative definite 4-manifold X ∪W has diagonalisable intersection form. Hence,

H2(X)/Tors ↪→ H2(X∪W )/Tors is an embedding of the intersection lattice of

X into the standard negative diagonal lattice. Moreover, using that H1(W ) is

torsion-free, it is shown that if A is an integer matrix representing the lattice

embedding then AT must be surjective over the integers.

When L is a pretzel link of a certain form, Greene analyses the possible

embeddings of the intersection lattice of X into a negative diagonal lattice and

shows that the aforementioned surjectivity condition cannot hold, and hence

the link cannot be quasi-alternating. We analyse this surjectivity condition

more generally and prove Theorem 3.1.5 below, which provides a strengthen-

ing of Theorem 2.1.1. In particular Theorem 3.1.5 when applied to Y = Σ(L),

combined with the condition that Y is an L-space, leads to the precise neces-

sary conditions to complete the determination of quasi-alternating Montesinos
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links. Finally, we remark that our analysis of the surjectivity condition is

rather different to, and much more general than the original argument given

in the published article [Iss18] this chapter is based on. The original argument

relied on some lattice embedding results by Lecuona-Lisca [LL11]. See Section

2.2 for our conventions on Seifert fibered spaces in Theorem 3.1.5 below.

Theorem 3.1.5. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a rational homology sphere

Seifert fibered space over S2 with e > 0, pi
qi
> 1 for all i ∈ {1, 2, . . . , k}

and ε(Y ) := e −
∑k

i=1
qi
pi
> 0. Suppose that Y bounds a negative definite

smooth 4-manifold W with H1(W ) torsion-free. Then there is a partition P of

{1, 2, . . . , k} into at most e classes such that for each class C ∈ P ,

∑
i∈C

qi
pi
< 1.

3.2 Preliminaries

We briefly recall some material on Montesinos links and plumbings. See

[CO15] or [BZH14] for further detail on Montesinos links, and [NR78] for more

on plumbings. The Montesinos link M(e; t1, . . . , tp), where ti = αi

βi
∈ Q with

αi > 1 and βi coprime integers, and e is an integer, is given by the diagram

in Figure 3.2. In the figure, each box labelled ti represents the corresponding

rational tangle. The 0 rational tangle is shown in Figure 3.3. Introducing an

additional positive (resp. negative) half-twist to the bottom of an a/b rational

tangle produces a rational tangle represented by a/b + 1 (resp. a/b − 1), see

Figure 3.3. Rotating (in either direction) a rational tangle represented by
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t ∈ Q ∪ {1/0} by π/2 produces the rational tangle represented by −1/t. The

rational tangle represented by any a/b ∈ Q ∪ {1/0} can be obtained from the

0 rational tangle by a sequence of these two operations. See [Cro04] for a more

thorough treatment of rational links. Note however that an a/b rational tangle

with our conventions corresponds to a b/a rational tangle in [Cro04].

We also note that with our conventions for a Montesinos linkM(e; t1, . . . , tp),

the integer e has opposite sign to that used by Champanerkar-Ording [CO15],

and agrees with that of Qazaqzeh-Chbili-Qublan [QCQ15] and Greene [Gre10].

{

|e| crossings
e < 0 (e = −3)

e > 0 (e = 3)

t1 t2 tp

Figure 3.2: The Montesinos link M(e; t1, . . . , tp) where a box labelled ti rep-
resents a rational tangle corresponding to ti. The crossing type of the |e|
crossings depends on the sign of e, with the two possibilities shown on the left.
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0 a/b

a/b

(a/b) + 1

a/b

−b/a

a
/b

Figure 3.3: From left to right: the 0 rational tangle, an abstract representation
of a a/b rational tangle, the a

b
+1 rational tangle, and the −b/a rational tangle.

The double branched cover of M(e; t1, . . . , tp) is the Seifert fibered space

Y := S2(e; t1, . . . , tp), cf. Section 2.2. By [Sav02, Section 1.2.3], we have that

det(L) = |H1(Y )| =
∣∣∣α1 . . . αp

(
e−

∑p
i=1

βi
αi

)∣∣∣ , where |H1(Y )| = 0 means that

the homology group is infinite.

The Montesinos linkM(e; t1, . . . , tp) is isotopic toM(e+1; t1, . . . , ti−1, t
′
i, ti+1, . . . , tp)

where t′i = αi

βi+αi
, and is also isotopic to M(e − 1; t1, . . . , ti−1, t

′
i, ti+1, . . . , tp),

where t′i = αi

βi−αi
. Hence, a Montesinos link is isotopic to one in standard form,

that is, of the form M(e; t1, . . . , tp) where ti > 1 for all i.

Let L = M(e; t1, . . . , tp) where ti < −1 for all i. Note that any Mon-

tesinos link can be put into this form. For each i, there is a unique continued

fraction expansion

ti = [ai1, . . . , a
i
hi

] := ai1 −
1

ai2 −
1

. . .
aihi−1 −

1

aihi

,

where hi ≥ 1 and aij ≤ −2 for all j ∈ {1, . . . , hi}.
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e

a1
1

a1
2

a1
h1

a2
1

a2
2

a2
h2

ap1

ap2

aphp

Figure 3.4: The (negative) weighted star-shaped plumbing graph Γ.

The double branched cover Σ(L) of L is the oriented boundary of the

4-dimensional plumbing XΓ of D2-bundles over S2 described by the weighted

star-shaped graph Γ shown in Figure 3.4. We call Γ the standard negative

star-shaped plumbing graph for L. The ith leg of Γ corresponding to ti is

the linear subgraph generated by the vertices labelled with weights ai1, . . . , a
i
hi

.

The degree p vertex labelled with weight e is called the central vertex. Denote

the vertices of Γ by v1, v2, . . . , vk. The zero-sections of the D2-bundles over S2

corresponding to each of v1, . . . , vk in the plumbing together form a natural

spherical basis for H2(XΓ). With respect to this basis, the intersection form of

XΓ is given by the weighted adjacency matrix QΓ with entries Qij, 1 ≤ i, j ≤ k

given by

Qij =


w(vi), if i = j

1, if vi and vj are connected by an edge

0, otherwise

,

41



where w(vi) is the weight of vertex vi. We call (Zk, QΓ) the intersection lattice

of XΓ (or of Γ).

3.3 Results

Equivalent sufficient conditions for a Montesinos link to be quasi-alternating

were given in [CO15, Theorem 5.3] and [QCQ15, Theorem 3.5]. The goal of this

section is to prove Theorem 3.1.2 which states that these sufficient conditions

for a Montesinos link to be quasi-alternating are also necessary conditions.

Lemma 3.3.1. Let L = M(e; t1, . . . , tp), p ≥ 3, be a Montesinos link in

standard form, i.e. where ti = αi

βi
> 1 and αi, βi > 0 are coprime for all i.

Suppose that e ≤ p − 2 and e −
∑p

i=1
1
ti
> 0 (in particular e ≥ 1). Then the

double branched cover Σ(L) is not an L-space, and therefore L is not quasi-

alternating.

Proof. The reflection of L is given by L = M(e′; t′1, . . . , t
′
p) = M(−e;−t1, . . . ,−tp).

The space Σ(L) is the oriented boundary of a plumbing XΓ corresponding

to the standard star-shaped plumbing graph Γ for L. Since e′ −
∑p

i=1
1
t′i

=

−
(
e−

∑p
i=1

1
ti

)
< 0, by [NR78, Theorem 5.2], XΓ has negative definite inter-

section form.

Since XΓ is negative definite and Γ is almost-rational, by [Ném05, The-

orem 6.3] we have that Σ(L) is an L-space if and only if XΓ is a rational surface

singularity (more generally, see [Ném15]). Note that Γ is almost-rational since

by sufficiently decreasing the weight of the central vertex we obtain a plumb-
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ing graph satisfying −w(v) ≥ deg(v) for all vertices v, where w(v) denotes

the weight of v, and such a graph is rational (for details see [Ném05, Example

8.2(3)]).

Laufer’s algorithm [Lau72, Section 4] can be used to determine whether

the negative definite plumbing XΓ is a rational surface singularity as follows.

Let v1, . . . , vk be the vertices of Γ and for i ∈ {1, . . . , k}, let [Σvi ] ∈ H2(XΓ) be

the spherical class naturally associated to vi. The algorithm is as follows (see

[Sti08, Section 3] for a similar formulation).

1. Let K0 =
∑k

i=1[Σvi ] ∈ H2(XΓ).

2. In the ith step, consider the pairings 〈PD[Ki], [Σvj ]〉, for j ∈ {1, . . . , k}.

Note that these pairings may be evaluated using the adjacency matrix

Q. If for some j the pairing is at least 2 then the algorithm stops and XΓ

is not a rational surface singularity. If for some j, the pairing is equal

to 1, then set Ki+1 = Ki + [Σvj ] and go to the next step. Otherwise

all pairings are non-positive, the algorithm stops and XΓ is a rational

surface singularity.

Applying Laufer’s algorithm to XΓ, we claim that the algorithm ter-

minates at the 0th step. To see this, note that for v the central vertex of Γ,

〈PD[K0], [Σv]〉 = p − e (each vertex adjacent to v contributes 1, the central

vertex contributes −e). By assumption e ≤ p−2 so 〈PD[K0], [Σv]〉 = p−e ≥ 2.

Hence, the algorithm terminates, we conclude that XΓ is not a rational sur-
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face singularity and hence Σ(L) is not an L-space. Therefore Σ(L) is not an

L-space.

The following lemma will provide an obstruction to a Montesinos link

being quasi-alternating.

Lemma 3.3.2 ([Gre10, Lemma 2.1]). Suppose that X and W are a pair of

4-manifolds, ∂X = −∂W = Y is a rational homology sphere, and H1(W ) is

torsion-free. Express the map H2(X)/Tors→ H2(X∪W )/Tors with respect to

a pair of bases by the matrix A. This map is an inclusion, and AT is surjective.

We now use Lemma 3.3.2 to prove the following strengthening of The-

orem 2.1.1.

Theorem 3.1.5. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a rational homology sphere

Seifert fibered space over S2 with e > 0, pi
qi
> 1 for all i ∈ {1, 2, . . . , k}

and ε(Y ) := e −
∑k

i=1
qi
pi
> 0. Suppose that Y bounds a negative definite

smooth 4-manifold W with H1(W ) torsion-free. Then there is a partition P of

{1, 2, . . . , k} into at most e classes such that for each class C ∈ P ,

∑
i∈C

qi
pi
< 1.

Proof. Note that Theorem 2.1.1 implies the weaker conclusion with the in-

equality in Theorem 3.1.5 not strict. We will use that H1(W ) torsion-free to

rule out the equality case. For what follows it may be helpful for the reader

to recall standard facts about Seifert fibered spaces from Section 2.2.
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Let X = XΓ be the standard positive definite plumbing 4-manifold with

∂X = Y , where Γ is the (positive) weighted star-shaped graph. We recall the

construction of the partition of {1, . . . , k} from the proof of Theorem 2.1.1.

Inclusion X → X∪Y −W induces a map of lattices ι : (H2(X), QX)→ (Zm, Id)

for some m > 0, where we have used Donaldson’s theorem. We may assume

that the (image of the) central vertex is supported in the coordinate vectors

e1, . . . , en ∈ Zm for some n ≤ e. Let v1, v2, . . . , vk be the vertices of the

plumbing adjacent to the central vertex, so that vi is a vertex belonging to

the ith leg of the plumbing graph (with fraction pi
qi

). For i ∈ {1, . . . , n}, let

Bi = {1 ≤ j ≤ k | vj · ei 6= 0} and define B0 = ∅. Let Ci = Bi\ ∪j<i Bj

for i ∈ {1, . . . , n} be the “disjointification” of the Bi’s. Then C1, . . . , Cn are

disjoint and ∪iCi = {1, . . . , k}. Thus the non-empty classes {Ci : Ci 6= ∅}

form a partition of {1, 2, . . . , k} into at most e classes.

Suppose that for some class C,
∑

i∈C
qi
pi

= 1. We may write the map of

lattices ι as an integer matrix. Denote the transpose of this matrix by A, so

that the image of vertices of the plumbing are represented by rows of A. By

Lemma 3.3.2, H1(W ) torsion-free implies that A is surjective over the integers.

Our goal will be to find a non-zero row vector x ∈ Z|b2(X)| with coprime integer

entries such that xA ≡ 0 (mod p) for some integer p > 1. Supposing the

existence of x we argue as follows. Since x has coprime entries, there exists a

column vector y ∈ Z|b2(X)| with xy = 1. Since A is surjective, Au = y for some

u ∈ Zm. Hence, 0 ≡ (xA)u = xy = 1 (mod p), a contradiction.

We now construct such a vector x. By construction, there exists some
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ei ∈ Zm such that the starting vertex of each leg of Γ indexed by an element

of C pairs non-trivially with ei. We may assume that ei = e1. Let B be the

matrix with first row (1, 0, . . . , 0) ∈ Zm and remaining rows given by the rows

of A representing vertices of Γ belonging to legs indexed by C. Let r be the

number of rows of B. By ordering the vertices of Γ, we may assume that the

first r rows of A and B agree except for the first row. Denote the elements of

C by c1, . . . , c|C|. By reordering if necessary, we may assume that QB := BBT

takes the form 
1 wT1 · · · wT|C|
w1 A1 0
...

. . .

w|C| 0 A|C|,


where each Ai is the standard intersection form matrix of the cith leg of Γ.

Since QB = BBT and the first row of B equals (1, 0, . . . , 0), we get that the

first column of QB and B agree. Thus, wi encodes the pairings of e1 with the

vertices in the cith leg of Γ. Since
∑

i∈C
qi
pi

= 1, the equality case of Theorem

2.3.2 applied to the legs indexed by C, together with w = e1, implies that each

wi takes one of two forms:

(1) wi = (±1, 0, . . . , 0)T or,

(2) wi = ±(1,−1, 0, . . . , 0)T ,

where form (2) occurs only if the starting vertex of the cith leg has weight 2.

Claim. detQB = 0.
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Proof of Claim. Suppose that wi has form (1) for all 1 ≤ i ≤ |C|. Then QB

represents the intersection form of a star shaped plumbing graph with central

weight 1 and legs given by fractions
pc1
qc1
, . . . ,

pc|C|
qc|C|

. The boundary of this star

shaped plumbing is the space S2(1;
pc1
qc1
, . . . ,

pc|C|
qc|C|

) which has generalised Euler

invariant ε := 1 −
∑

i∈C
qi
pi

= 0. Since QB presents the first homology of this

Seifert fibered space, this implies detQB = 0. Now suppose that, say, w1 has

form (2) with wi = (−1, 1, 0, . . . , 0)T . Consider the following identity obtained

by adding the second row to the first row, and the second column to the first

column:

det


1 −1 1 · · · v
−1 2 −1 0
1 −1 a2 −1
... −1

. . . −1
v 0 −1 al

 = det


1 1 0 · · · v
1 2 −1 0
0 −1 a2 −1
... −1

. . . −1
v 0 −1 al

 ,

where pc1/qc1 = [2, a2, . . . , al], aj ≥ 2 for all j. We may use the above identity

to modify QB, without changing the determinant, so that it is identical to

the case where w1 has form (1). Similarly, if w1 has form (2) with w1 =

(1,−1, 0, . . . , 0) we can apply a similar identity (now subtracting the second

row from the first row, and second column from the first column). By applying

such an identity for each wi of form (2), the claim then follows by the previous

case with wi of form (1) for all i.

Motivated by the proof of the above claim, let P be obtained from the

r × r identity matrix by adding ±1 times row i + 1 to the first row for each

wi of form 2 with wi = ±(−1, 1, 0, . . . , 0), and let Q = PQBP
T . So Q can be
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thought of as the intersection form matrix of the star-shaped plumbing with

central vertex 1 and legs given by fractions
pc1
qc1
, . . . ,

pc|C|
qc|C|

. Then detQ = 0, so

there exists a non-zero row vector x = (x1, . . . , xr) ∈ Zr such that xQ = 0.

By dividing out by gcd(x1, . . . , xr) we may assume that the entries of x are

coprime.

Claim. The first entry x1 of x is divisible by an integer p > 1.

First assume the claim. Since xQ = 0 we get that xPQBP
TxT = 0

and so (xPB)(xPB)T = 0. Hence, xPB = 0. Let x′ = xP and write x′ =

(x′1, . . . , x
′
r). Since P is upper triangular with 1’s on the diagonal, x′1 = x1 is

also divisible by p. Let x = (x′1, . . . , x
′
r, 0, . . . , 0) ∈ Z|Γ|. Then xA ≡ x′B = 0

(mod p), since A and B agree on the first r rows except for the first row, but

x′1 = 0 (mod p). Thus, x is the required row-vector which finishes the proof.

Proof of Claim. For simplicity let p
q

=
pc1
qc1

and write p
q

as the standard (nega-

tive) continued fraction expansion p
q

= [a1, . . . , aρ−1] where ai ≥ 2 are integers

for all i. We will show that p divides x1. By appropriately ordering the vertices

when we first defined B, we may assume that the first ρ rows of B are ordered

so that the top-left ρ× ρ submatrix of Q = PBBTP T is

1 ±1 0 0 · · · 0 0
±1 a1 −1 0 · · · 0 0
0 −1 a2 −1 · · · 0 0
...

. . .
...

0 0 0 0 · · · aρ−2 −1
0 0 0 0 · · · −1 aρ−1


.
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Let Q′ =

(
±1 0 · · ·

Qp/q

)
be the matrix obtained from the above matrix by

removing the first column, where Qp/q is the intersection matrix of the linear

chain representing p/q. We have

(x1, . . . , xρ) ·Q′ = 0,

since xQ = 0 and the corresponding columns 2, . . . , ρ of Q are supported in the

first ρ rows. This implies that (x2, . . . , xρ) · Qp/q = (∓x1, 0, . . . , 0). Thus, we

can change the last row of Qp/q to (∓x1, 0, . . . , 0), by first multiplying the last

row of Qp/q by xρ, then for each j ∈ {1, . . . , ρ−1} adding xj multiples of the jth

row to the last row. The determinant of this new matrix is xρ−1 · det(Qp/q) =

xρ−1 · p. However, by expanding the determinant along the final row we see

that ∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 ±1 0 0 · · · 0 0
±1 a2 −1 0 · · · 0 0
0 −1 a3 −1 · · · 0 0

. . .

0 0 0 0 · · · aρ−2 −1
x1 0 0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ∓x1.

Thus x1 = ∓xρ−1p is a multiple of p, proving the claim and completing the

proof.

Theorem 3.1.2. Let L = M(e; t1, . . . , tp) be a Montesinos link in standard

form, that is, where ti = αi

βi
> 1 and αi, βi > 0 are coprime for all i = 1, . . . , p.

Then L is quasi-alternating if and only if
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(a) e < 1, or

(b) e = 1 and βi
αi

+
βj
αj
> 1 for some i, j with i 6= j, or

(c) e > p− 1, or

(d) e = p− 1 and βi
αi

+
βj
αj
< 1 for some i, j with i 6= j.

Proof. If one of the conditions (a)-(d) is satisfied then L is quasi-alternating

by either of [CO15, Theorem 5.3] or [QCQ15, Theorem 3.5]. Now assume that

L is quasi-alternating. If p = 1 then the conditions are automatically satisfied.

Recall that det(L) =
∣∣∣α1 . . . αp

(
e−

∑p
i=1

βi
αi

)∣∣∣ . Hence, for p = 2, con-

ditions (a)-(d) are equivalent to det(L) 6= 0 which is satisfied since L is quasi-

alternating.

For the remainder of the argument we assume that p ≥ 3. The reflection

of L is given by

L = M

(
−e,−α1

β1

, . . . ,−αp
βp

)
= M

(
p− e, α1

α1 − β1

, . . . ,
αp

αp − βp

)
,

where the latter is written in standard form. Notice that L satisfies (b) if

and only if its reflection L satisfies (d), and similarly with conditions (a) and

(c). Thus, conditions (a)-(d) are unchanged by a reflection. Moreover, we see

that a reflection reverses the sign of e −
∑p

i=1
βi
αi

and thus by a reflection if

necessary we may assume that e−
∑p

i=1
βi
αi
> 0 (we cannot have equality since

det(L) 6= 0). By Lemma 3.3.1, if e ≤ p− 2 then Σ(L) is not an L-space, so L

is not quasi-alternating. Thus it remains to consider when e = p− 1.
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Let Y = Σ(L) = S2(p− 1; α1

β1
, . . . , αp

βp
). If L is quasi-alternating then Y

bounds a negative definite manifold W with H1(W ) torsion-free [OS05, Proof

of Lemma 3.6]. Theorem 3.1.5 implies that there is a partition P of {1, . . . , p}

into at most p − 1 classes such for each class C ∈ P ,
∑

i∈C
βi
αi
< 1. By the

pigeonhole principle there must be some class C ∈ P of size at least two. Let

i, j ∈ C be distinct. Then we in particular have that βi
αi

+
βj
αj

< 1. Hence,

condition (d) is satisfied.

Corollary 3.1.3. A Montesinos link L is quasi-alternating if and only if

(a) Σ(L) is an L-space, and

(b) there exist a smooth negative definite 4-manifold W1 and a smooth pos-

itive definite 4-manifold W2 with ∂Wi = Σ(L) and H1(Wi) torsion-free

for i = 1, 2.

Proof. This is a corollary of the proof of Theorem 3.1.2. Suppose first that L

is quasi-alternating. By [OS05, Proposition 3.3], Σ(L) is an L-space. Further-

more, Σ(L) must bound a negative definite 4-manifold W1 with H1(W1) = 0

[OS05, Proof of Lemma 3.6]. Applying this to the reflection of L which is also

quasi-alternating, we get that Σ(L) also bounds a positive definite 4-manifold

W2 with H1(W2) = 0. For the converse, note that these two necessary condi-

tions are the only conditions used to obstruct a Montesinos link from being

quasi-alternating in the proof of Theorem 3.1.2.
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As a consequence, we obtain a classification of the Seifert fibered spaces

which are formal L-spaces. Before stating it, we recall the definition of a formal

L-space. We say that a triple (Y1, Y2, Y3) of closed, oriented 3-manifolds form

a triad if there is a 3-manifold M with torus boundary, and three oriented

curves γ1, γ2, γ3 ⊂ ∂M at pairwise distance 1, such that Yi is the result of

Dehn filling M along γi, for i = 1, 2, 3.

Definition 3.3.3. The set F of formal L-spaces is the smallest set of rational

homology 3-spheres such that

(1) S3 ∈ F , and

(2) if (Y, Y0, Y1) is a triad with Y0, Y1 ∈ F and

|H1(Y )| = |H1(Y0)|+ |H1(Y1)|,

then Y ∈ F .

Corollary 3.1.4. A Seifert fibered space over S2 is a formal L-space if and

only if it is the double branched cover of a quasi-alternating link.

Proof. Let L be a quasi-alternating Montesinos link. Then the double branched

cover of L is a Seifert fibered space over S2. Ozsváth and Szabó show that the

double branched cover of a quasi-alternating link is an L-space [OS05, Propo-

sition 3.3]. Their proof in fact shows that the double branched cover of a

quasi-alternating link is a formal L-space. Hence Σ(L) is a formal L-space

Seifert fibered space over S2.
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Now let M be a formal L-space Seifert fibered space over S2. Then

M is the double branched cover of a Montesinos link L. Ozsváth and Szabó’s

in [OS05, Proof of Lemma 3.6] show that the double branched cover of a

quasi-alternating link bounds both a positive definite, and a negative definite

4-manifold with vanishing first homology. However, their proof in fact shows

this for all formal L-spaces. Hence M = Σ(L) is a formal L-space bounding

positive and negative definite 4-manifolds with vanishing first homology. Thus,

Corollary 3.1.3 implies that L is quasi-alternating.
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Chapter 4

Embedding Seifert fibered spaces in 4-space1

4.1 Introduction

It is known that every closed 3-manifold smoothly embeds in S5 [Roh65,

Wal65,Hir61]. However, the question of which closed 3-manifolds embed in S4

is far more subtle. Not every 3-manifold embeds in S4 and, in fact, the exis-

tence of embeddings often depends on whether one is working in the smooth

or topological category. The question of which closed orientable 3-manifolds

embed in S4 appears as Problem 3.20 on Kirby’s list. Over the years many

different techniques and obstructions have been developed to address the ques-

tion. For example, Hantzsche [Han38] proved that if Y embeds in S4 then the

torsion part of H1(Y ) must split as a direct double, that is, torH1(Y ) ∼= G⊕G

for some abelian group G. There have also been applications of topological

obstructions based on linking forms [Hil09], Casson-Gordon signatures [GL83]

and the G-index theorem [CH98], as well as smooth obstructions based on

Rokhlin’s theorem, the Neumann-Siebenman invariant, Furuta’s 10/8 theo-

rem, Donaldson’s theorem and the Ozsváth-Szabó d-invariants, see e.g. [BB12]

1This chapter is primarily based on the preprint Smoothly embedding Seifert fibered spaces
in S4, https://arxiv.org/abs/1810.04770, 2018 which is joint work with Duncan McCoy.
Lemma 4.9.2, Proposition 4.9.3 and Proposition 4.9.7 are not part of the aforementioned
preprint, and consists entirely of work of my own.
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and [Don15]. For a nice introduction to the subject of embedding 3-manifolds

in S4 see [BB12].

In this chapter we study the question of which Seifert fibered spaces over

an orientable base surface smoothly embed in S4. We use Y = F (e; p1

q1
, . . . , pk

qk
)

to denote the Seifert fibered space over orientable base surface F which is

obtained by surgery as in Figure 4.2. After possibly changing orientation,

Y may be assumed to be in standard form, where pi
qi
> 1 for all i and with

non-negative generalized Euler invariant ε(Y ) := e−
∑k

i=1
qi
pi
≥ 0.2

By using an obstruction based on Donaldson’s theorem [Don87], we

show that if Y embeds smoothly in S4 then e ≤ k+1
2

and classify precisely

which embed when e = k+1
2

.

Theorem 4.1.1. Let Y = F (e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over ori-

entable base surface F with ε(Y ) > 0 and pi
qi
> 1 for all i. If Y embeds smoothly

in S4, then e ≤ k+1
2

. Moreover, if e = k+1
2

then Y smoothly embeds in S4 if

and only if Y takes the form

Y = F

(
e;

a

a− 1
,

{
a,

a

a− 1

}×(e−1)
)

= F

(
k + 1

2
;

a

a− 1
, a,

a

a− 1
, a, . . . ,

a

a− 1

)
where e ≥ 1 and a ≥ 2 is an integer.

This upper bound is one example of the difference between smooth and

topological embeddings. The optimal upper bound for topological embeddings

is e ≤ k − 1 (see Proposition 4.4.6).

2With these conventions the Poincaré homology sphere oriented to bound the positive
definite E8 plumbing is S2(2; 2, 32 ,

5
4 ).
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Classifying which Seifert fibered spaces embed smoothly in S4 becomes

increasingly difficult as e decreases relative to k. For e = k
2
, we are able to

obtain a partial classification.

Theorem 4.1.2. Let Y = F (k
2
; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over ori-

entable base surface F with pi
qi
> 1 for all i, k even and ε(Y ) > 0. If Y

smoothly embeds in S4 then there exist positive integers p, q, r, s with p
q
, r
s
> 1,

(p, q) = (r, s) = 1 and s
r

+ q
p

= 1− 1
pr

such that Y takes the form

1.

Y = F

(
k

2
;
p

q
,
r

s
,

{
p

p− q
,
p

q

}≥0

,

{
r

r − s
,
r

s

}≥0
)
, or

2.

Y = F

(
k

2
;
p

q
,
r

s
,

{
pr,

pr

pr − 1

}≥1

,

{
p

q
,

p

p− q

}≥0

,

{
r

s
,

r

r − s

}≥0
)
.

Moreover, in case (1) Y embeds smoothly in S4. Here the notation {a
b
, a
a−b}

≥m

means that there are at least m pairs of fractions of this form.

Both Theorem 4.1.1 and Theorem 4.1.2 are derived from a more gen-

eral result, Theorem 4.1.4 below, stating that a Seifert fibered space which

smoothly embeds in S4 must satisfy a strong condition which we call parti-

tionable.

Definition 4.1.3. Let Y = F (e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over

orientable base surface F with ε(Y ) > 0 and pi
qi
> 1 for all i. We say that Y is

partitionable if torH1(Y ) ∼= G⊕G for some finite abelian group G, and there
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exist partitions P1 and P2 of {1, . . . , k}, each into precisely e classes, such that

the following hold. For each partition P ∈ {P1, P2}:

(a) There exists a unique class C ∈ P such that
∑
j∈C

qj
pj

= 1− 1

lcm(p1, . . . , pk)
.

(b) For each other class C ′ ∈ P ,
∑
j∈C′

qj
pj

= 1.

(c) No non-empty union of a proper subset of classes in P1 is equal to a

union of classes in P2.

The classes satisfying condition (b) are said to be complementary.

With this definition in place, the general obstruction we derive from

Donaldson’s theorem can be stated as the following.

Theorem 4.1.4. Let Y = F (e; p1

q1
, . . . , pk

qk
) with F an orientable surface, pi

qi
> 1

for all i, and ε(Y ) > 0. If Y smoothly embeds in S4 then Y is partitionable.

In this chapter we focus on Seifert fibered spaces over an orientable

base surface and with non-zero generalized Euler invariant, i.e. ε 6= 0. We

point out that there are already relatively strong results known when ε = 0

or the base surface is non-orientable. For orientable base surface and ε = 0,

Donald showed that if Y smoothly embeds in S4 then it can be written in the

form Y = F (0; p1

q1
,−p1

q1
, . . . , pk

qk
,−pk

qk
) [Don15, Theorem 1.3], see also [Hil09].

Donald also obtained similar results when the base surface is non-orientable

[Don15, Theorem 1.2] and further results in the non-orientable case can be

found in [CH98].
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In the course of applying Theorem 4.1.4 it becomes natural to define

an operation on Seifert fibered spaces, which we call expansion.

Definition 4.1.5. Let Y = F (e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space with

k ≥ 1. The Seifert fibered space Y ′ is obtained from Y by expansion if it takes

the form

Y ′ = F

(
e;
p1

q1

, . . . ,
pk
qk
,−pj

qj
,
pj
qj

)
= F

(
e+ 1;

p1

q1

, . . . ,
pk
qk
,

pj
pj − qj

,
pj
qj

)
,

for some j in the range 1 ≤ j ≤ k.

With this definition, notice that the spaces in Theorem 4.1.1 and Theo-

rem 4.1.2 are precisely those obtained by a sequence of expansions from spaces

of the form F (1; a
a−1

), F (1; p
q
, r
s
), or F (2; p

q
, r
s
, pr, pr

pr−1
). In fact, we prove these

results by showing that whenever e is large relative to k, any space which is

partitionable is obtained by expansion from some other space which is also

partitionable.

In the opposite direction, the notion of expansion also proves to be

useful for constructing embeddings into S4.

Lemma 4.1.6. If Y ′ is obtained by expansion from Y , then Y ′ smoothly em-

beds in Y × [0, 1]. In particular, if Y embeds smoothly in S4, then so does

Y ′.

This easily shows that the Seifert fibered spaces in Theorem 4.1.1 and

Theorem 4.1.2(1) smoothly embed in S4. Since Seifert fibered spaces of the
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form S2(1; a
a−1

) and S2(1; p
q
, r
s
), where s

r
+ q

p
= 1− 1

pr
and a > 1 is an integer,

are homeomorphic to S3, they embed in S4. When the base surface is S2 the

spaces we wish to embed are precisely those obtained by expansion from these

descriptions of S3, so their embeddings can be constructed via Lemma 4.1.6.

The higher genus base surface case follows from this case by a result of Crisp-

Hillman [CH98, Lemma 3.2], see Proposition 4.7.2.

The family of Seifert fibered spaces in Theorem 4.1.2(2) which we are

unable to completely resolve arises when Y is partitionable with a partition

containing a complementary class of size three. When the base surface is F =

S2, we have further tools at our disposal, namely the Neumann-Siebenmann

invariant µ. An analysis of this invariant gives further restrictions.

Proposition 4.1.7. In Theorem 4.1.2 with F = S2, if the space Y smoothly

embeds in S4 then in family (2) p and r must both odd.

We conjecture that for Y to smoothly embed, not only must Y be par-

titionable as in Theorem 4.1.4, but that each complementary class in the parti-

tions must have size two. This would rule out the spaces in Theorem 4.1.2(2)

from embedding. It would also imply that if e > 1 and Y smoothly em-

beds in S4, then Y is necessarily an expansion of a partitionable space (see

Lemma 4.6.1(i)). This suggests the following conjecture.

Conjecture 4.1.8. A Seifert fibered space Y over S2 with ε(Y ) > 0 smoothly

embeds in S4 if and only if it is obtained by a (possibly empty) sequence of
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expansions from some Y ′ of the form Y ′ = S2(1; p1

q1
, . . . , pl

ql
) with pi

qi
> 1 for all

i which also smoothly embeds in S4.

Notice that the “if” direction of this conjecture is provided by Lemma 4.1.6.

Since expansion preserves the generalized Euler invariant, the space Y ′ in this

conjecture necessarily satisfies ε(Y ′) = ε(Y ) > 0.

As well as the behaviour in the case e ≥ k
2

discussed above, we have

further evidence for the “only if” direction. We find that expansions naturally

arise from the partitionable condition. For example, when e ≥ 2k+3
5

a parti-

tionable space is obtained by expansion from some smaller partitionable space

(see Lemma 4.6.1). We also consider the case of Y with all exceptional fibers

of even multiplicity. For such spaces the µ invariant is particularly effective

and shows that if Y smoothly embeds in S4, then in the induced partitions

there can only be one complementary class of size larger than two and this

class has size three (see Proposition 4.8.8). It may be possible that further

analysis can rule out the existence a complementary class of size three.

If true, Conjecture 4.1.8 would reduce the problem of which Y (over

base surface S2) smoothly embed in S4 to the case when e = 1, which we

now briefly discuss. When k = 3 and Y is an integer homology sphere several

infinite families of examples, as well as some sporadic examples, are known to

bound Mazur manifolds and thus to embed in S4 [AK79, CH81, FS81, Fic84].

Donald showed that the rational homology sphere S2(1; 4, 4, 12
5

) smoothly em-

beds in S4 [Don15, Example 2.14]. In Section 4.9, we give two further examples
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of Seifert fibered spaces which embed, namely S2(1; 7
2
, 7

2
, 7

2
) and S2(1; 3, 15

4
, 3).

Despite the many examples known to embed, a conjectural picture of precisely

which Seifert fibered spaces embed in the k = 3 case remains unclear. It is an

interesting open question whether there exist any examples which embed with

k ≥ 4 and e = 1. There appears to be some evidence towards a negative answer

to this question, particularly when Y is an integer homology sphere. Note that

an integral homology sphere which embeds in S4 necessarily bounds an acyclic

manifold. The question of which Seifert fibered integral homology spheres can

bound integral homology balls has arisen in relation to the Montgomery-Yang

problem on pseudo-free circle actions on S5 [FS87]. In this setting it is con-

jectured that a Seifert fibered homology sphere bounding an acyclic manifold

can have at most three exceptional fibers. More recently, consideration of al-

gebraic geometry led Kollár to make a similar conjecture [Kol08, Conjecture

20]. These considerations along with the upper bound from Theorem 4.1.1

lead us to a further conjecture, which in particular, implies a negative answer

to the aforementioned question.

Conjecture 4.1.9. If Y = S2(e; p1

q1
, . . . , pk

qk
) smoothly embeds in S4, where

pi
qi
> 1 for all i and ε(Y ) > 0, then e ∈ {k+1

2
, k

2
, k−1

2
}.

We prove this conjecture in the special case where every exceptional

fiber has even multiplicity. More generally, using the Neumann-Siebenmann

invariant we prove a lower bound on e, which complements the upper bound

given in Theorem 4.1.1.
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Theorem 4.1.10. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space with

ε(Y ) > 0 and pi
qi
> 1 for all i. If Y smoothly embeds in S4 then dimH1(Y ;Z2) ≤

2e.

If pi is even for precisely N ≥ 1 different values of i ∈ {1, . . . , k},

then dimH1(Y ;Z2) = N − 1 (see Lemma 4.4.5). So when pi is even for

all i, Theorem 4.1.10 provides the lower bound e ≥ k−1
2

as stipulated by

Conjecture 4.1.9.

It is worth noting that the obstructions considered in this chapter use

only the fact that S4 is an integer homology sphere. So all of our results

could be be restated in terms of Seifert fibered spaces embedding in integer

homology 4-spheres. It is an interesting open question whether there is a 3-

manifold which does not embed in S4, but does embed in some other integer

homology sphere.

In another direction, we give a construction for doubly slice links anal-

ogous to the “expansion” construction in Lemma 4.1.6 (see Proposition 4.9.3),

which in particular shows that the Seifert fibered spaces over S2 in Theo-

rem 4.1.1 and Theorem 4.1.2(1) are double branched covers of doubly slice

Montesinos links. A link in S3 is (smoothly) doubly slice if it arises as the

cross-section of an unknotted smoothly embedded 2-sphere in S4. It is an easy

consequence of this definition that the double branched cover of a doubly slice

link smoothly embeds in S4.

Note, however, that not every embedding of Seifert fibered spaces can
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arise in this manner. The integer homology sphere S2(1; 3, 5
2
, 34

9
) bounds a

Mazur manifold and therefore smoothly embeds in S4 [Fic84]. However, it is

the double branched cover of precisely one Montesinos knot, and this knot is

not doubly slice (in fact, it is not even slice as it fails the Fox-Milnor condition).

As a consequence of Theorem 4.1.1 and these constructions of doubly

slice links, we obtain a classification of the smoothly doubly slice odd pretzel

knots up to mutation. An odd pretzel knot is one of the form P (c1, . . . , cn),

where the ci are odd integers, see Figure 4.17.

Theorem 4.1.11. If K is an odd pretzel knot, then the following are equiva-

lent:

(i) Σ(K) embeds smoothly in S4,

(ii) K is a mutant of a smoothly doubly slice odd pretzel knot,

(iii) and K is a mutant of P (a,−a, . . . , a) for some odd a with |a| ≥ 3.

In the special case where the odd pretzel knot has 3 or 4 strands,

Theorem 4.1.11 follows from earlier work of Donald [Don15, Theorem 1.5]. We

note that a very recent preprint of Clayton [McD19] shows that all mutants in

Theorem 4.1.11(iii) are doubly slice. Together with Theorem 4.1.11, this gives

a complete classification of the doubly slice odd pretzels.

We also note one further easy application of our results to doubly slice

Montesinos links. Although we were unable to find it stated in the literature,
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it seems possible that the following result was already known in the alternating

case.

Proposition 4.1.12. A quasi-alternating Montesinos link is never topologi-

cally doubly slice.

Structure

The first three sections of this chapter are primarily background ma-

terial. Section 4.2 discusses background material on Seifert fibered spaces

and the plumbings they bound. Section 4.3 recounts some homological conse-

quences of embedding 3-manifolds into S4. Section 4.4 is devoted to calculating

various homological properties of Seifert fibered spaces. The analysis of the ob-

struction based on Donaldson’s theorem is given in Section 4.5, where we prove

Theorem 4.1.4. In Section 4.6, we study partitionable spaces and show that

under various circumstances partitionable spaces can be obtained by expan-

sion from smaller partitionable spaces. This allows us to prove the obstruction

part of Theorem 4.1.1 and Theorem 4.1.2. The proofs of Theorem 4.1.1 and

Theorem 4.1.2 are completed in Section 4.7 by providing embeddings of the

necessary spaces. The proof of Lemma 4.1.6 is contained in this section, as

well as some observations about the ε = 0 case. In Section 4.8 our attention

turns to the µ invariant, allowing us to prove Theorem 4.1.10, as well as give

various restrictions in the presence of exceptional fibers of even multiplicity.

Finally, Section 4.9 contains the results relating to doubly slice links.
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Conventions and notation

Throughout this chapter F will always denote an orientable surface.

We will sometimes use Zn to denote the cyclic group Zn = Z/nZ. Unless

explicitly stated otherwise all homology and cohomology groups are assumed

to have integer coefficients.

4.2 Seifert fibered spaces and plumbings

In this section we briefly recall some standard facts on Seifert fibered

spaces and definite manifolds which they bound, as well as establish notation

and conventions. See [NR78] for a more in depth treatment on Seifert fibered

spaces and plumbings.

Given a rational number r > 1, there is a unique (negative) continued

fraction expansion

r = [a1, . . . , an]− := a1 −
1

a2 −
1

. . .
an−1 −

1

an

,

where n ≥ 1 and ai ≥ 2 are integers for all i ∈ {1, . . . , n}. We associate to

r the weighted linear graph (or linear chain) given in Figure 4.1. We call the

vertex with weight labelled by ai the ith vertex of the linear chain associated

to r, so that the vertex labelled with weight a1 is the first, or starting vertex

of the linear chain.

We denote by Yg = F (e; p1

q1
, . . . , pk

qk
) the Seifert fibered space over the
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a1 a2 a3 an

Figure 4.1: Weighted linear chain representing r = [a1, . . . , an]−.

closed orientable genus g surface F given in Figure 4.2, where e ∈ Z, and

pi
qi
∈ Q is non-zero for all i ∈ {1, . . . , k}. When g = 0, this is the usual

surgery presentation for a Seifert fibered space over S2. In general, each of the

g pairs of 0-framed components increases the genus of the base space by one,

see [CH98, Appendix]. {e

p1

q1

p2

q2

pk
qk

g copies

0

0

0

0

Figure 4.2: Surgery presentation of the Seifert fibered space F (e; p1

q1
, . . . , pk

qk
),

where F is an orientable genus g surface.

The generalised Euler invariant of Yg is given by ε(Y ) = e −
∑k

i=1
qi
pi

.

Every Seifert fibered space Yg is (possibly orientation reversing) homeomorphic

to one in standard form, i.e. such that ε(Yg) ≥ 0 and pi
qi
> 1 for all i ∈

{1, . . . , k}. When in standard form, we call e the normalized central weight of

Yg.

We henceforth assume that Yg is in standard form. Then Yg bounds
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a positive semi-definite 4-manifold which we now describe. We first describe

the case Y0 where the base surface is S2. If ε(Y0) 6= 0 then Y0 is a rational

homology sphere with |H1(Y0)| = |(p1 · · · pk)ε(Y0)|, and if ε(Y0) = 0 then Y0 is

a rational homology S1 × S2.

For each i ∈ {1, . . . , k}, we have the unique continued fraction ex-

pansion pi
qi

= [ai1, . . . , a
i
hi

]− where hi ≥ 1 and aij ≥ 2 are integers for all

j ∈ {1, . . . , hi}. We associate to Y0 = S2(e; p1

q1
, . . . , pk

qk
) the weighted star-

shaped graph in Figure 4.3. The ith leg (sometimes also called the ith arm)

of the star-shaped graph is the weighted linear subgraph for pi/qi generated

by the vertices labelled with weights ai1, . . . , a
i
hi

. The degree k vertex labelled

with weight e is called the central vertex.

e

a1
1

a1
2

a1
h1

a2
1

a2
2

a2
h2

ak1

ak2

akhp

Figure 4.3: The weighted star-shaped plumbing graph Γ.

Let Γ be either the weighted star-shaped graph for Y0, or a disjoint

union of weighted linear graphs. There is an oriented smooth 4-manifold XΓ

given by plumbing D2-bundles over S2 according to the weighted graph Γ.

We denote by |Γ| the number of vertices in Γ. Let m = |Γ| and denote the
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vertices of Γ by v1, v2, . . . , vm. The zero-sections of the D2-bundles over S2

corresponding to each of v1, . . . , vm in the plumbing together form a natural

spherical basis for H2(XΓ). With respect to this basis, which we call the vertex

basis, the intersection form of XΓ is given by the weighted adjacency matrix

QΓ with entries Qij, 1 ≤ i, j ≤ m given by

Qij =


w(vi), if i = j

−1, if vi and vj are connected by an edge

0, otherwise

,

where w(vi) is the weight of vertex vi. Denoting by QX the intersection form

of X, we call (H2(X), QX) ∼= (Zm, QΓ) the intersection lattice of XΓ (or of Γ).

We denote the intersection pairing of two elements x, y ∈ Zm by x·y = xT QΓ y

and the norm x · x by ‖x‖2. Now assume that Γ is the star-shaped plumbing

for Y0. If ε(Y ) > 0 then XΓ is a positive definite 4-manifold and Γ is the

standard positive definite plumbing graph for Y0. If ε(Y0) = 0, then XΓ is a

positive semi-definite manifold.

Generalising the case above for Yg over an orientable genus g surface,

we have that Yg is the boundary of the 4-manifold XΓ,g in Figure 4.4. Since

the 2-handles do not homologically link any 1-handles, the intersection form

of XΓ,g is independent of g. In particular, (H2(XΓ,g), QXΓ,g
) ∼= (Zm, QΓ) where

Γ is the weighted star-shaped graph in Figure 4.3.

Let ι : (Zm, QΓ) → (Zr, Id), r > 0, be a map of lattices, i.e. a Z-

linear map preserving pairings, where (Zr, Id) is the standard positive diagonal
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{e
g copiesa1

1

a1
2

a1
h1

a2
1

a2
2

a2
h2

ak1

ak2

akhk

Figure 4.4: Kirby diagram for the positive semi-definite 4-manifold XΓ,g with
boundary the Seifert fibered space Yg = F (e; p1

q1
, . . . , pk

qk
) over the orientable

genus g surface F . Recall that pi
qi

= [ai1, . . . , a
i
hi

]− for all i ∈ {1, . . . , k}. The

intersection form of XΓ,g is isomorphic to (Zm, QΓ) where Γ is the weighted
star-shaped graph in Figure 4.3.

lattice. We denote the orthonormal coordinate vectors of (Zr, Id) by e1, . . . , er.

We call ι a lattice embedding if it is injective. We adopt the following standard

abuse of notation. First, for each i ∈ {1, . . . ,m}, we identify the vertex vi with

the corresponding ith basis element of (Zm, QΓ). Moreover, we shall identify

an element v ∈ (Zm, QΓ) with its image ι(v) ∈ (Zr, Id).

4.3 Homological consequences of embedding in S4

We recall some well-known consequences of a 3-manifold embedding

into S4.

Proposition 4.3.1. Let Y be a closed orientable 3-manifold topologically lo-
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cally flatly embedded in S4. Then S4 can be decomposed as S4 = U1 ∪Y −U2,

where ∂U1 = ∂U2 = −Y , such that

1. the restriction map H2(U1;Z) ⊕ H2(U2;Z) → H2(Y ;Z) is an isomor-

phism,

2. H3(U1;Z) ∼= H3(U2;Z) ∼= 0,

3. torH2(U1;Z) ∼= torH2(U2;Z), and

4. σ(Ui) = b2(Ui) + b1(Ui)− b3(Ui)− b2(Y ) = 0.

Proof. Since S4 has trivial first homology, any embedded connected 3-manifold

must separate S4 into two submanifolds which we call U1 and U2. Consider

the Mayer-Vietoris sequence for S4 = U1 ∪Y −U2. This contains within it the

exact sequence,

0→ H2(U1;Z)⊕H2(U2;Z)→ H2(Y ;Z)→ 0,

which proves the restriction map in (1) is an isomorphism. It also contains

the exact sequence,

0→ H3(U1;Z)⊕H3(U2;Z)→ H3(Y ;Z)→ H4(S4;Z)→ 0.

Since the map H3(Y )→ H4(S4) is surjective from Z to Z it is an isomorphism,

implying (2).

As U1, U2 are subsets of S4, Alexander duality shows that H1(U1;Z) ∼=

H2(U2;Z). However by the universal coefficient theoremsH1(U1;Z) andH2(U1;Z)
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have isomorphic torsion subgroups. We have σ(Ui) = 0 since both Ui and −Ui

can be glued to form a positive-definite manifold, but the required value for

σ(Ui) given by Proposition 2.4.1 is invariant under change of orientations.

The following corollary, first due to Hantzsche [Han38], follows imme-

diately from (1) and (3) of Proposition 4.3.1.

Corollary 4.3.2. If a 3-manifold Y embeds topologically locally flatly in S4,

then torH1(Y ;Z) splits as a direct double, that is, torH1(Y ;Z) ∼= G ⊕ G for

some finite abelian group G.

In Section 4.8, the following well-known variant of Proposition 4.3.1

will also be useful.

Lemma 4.3.3. Let Y be a rational homology sphere smoothly embedded in

S4 which decomposes S4 as S4 = U1 ∪Y −U2 with U1 and U2 as in Proposi-

tion 4.3.1. Then

1. |Spin(Y )| = d2 for some integer d ≥ 1, and

2. for i = 1, 2, the manifold Ui is a spin rational homology ball with |Spin(Ui)| =

d and the restriction map Spin(Ui)→ Spin(Y ) is injective.

Proof. First notice that U1 and U2 are spin since they are submanifolds of S4.

As Y is a rational homology sphere, it follows immediately from the relevant

Mayer-Vietoris sequence that U1 and U2 are rational homology balls.
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By Proposition 4.3.1(3) we see that H2(U1;Z) ∼= H2(U2;Z) and hence

that H1(U1;Z) ∼= H1(U2;Z). Applying the universal coefficient theorem shows

that H1(U1;Z2) ∼= H1(U2;Z2). The Mayer-Vietoris sequence with Z2 coeffi-

cients shows that the restriction maps yield an isomorphism

H1(U1;Z2)⊕H1(U2;Z2)→ H1(Y ;Z2).

Since spin structures on a spin manifold M form a torsor over the group

H1(M ;Z2), this shows that |Spin(Y )| = d2 where d = |Spin(U1)| = |Spin(U2)|.

The restriction map Spin(Ui)→ Spin(Y ) is injective since the restriction map

H1(Ui;Z2)→ H1(Y ;Z2) is injective.

4.4 Homology of Seifert fibered spaces

In this section we prove several useful statements about the homology

of Seifert fibered spaces over orientable base surfaces.

Lemma 4.4.1. The Seifert fibered space Y = F (e; p1

q1
, . . . , pk

qk
), where F is an

orientable genus g surface, has homology

H1(Y ;Z) ∼= Z2g ⊕
k⊕
i=1

Z
DiZ

,

where for i ∈ {1, . . . , k}, Di = di+1/di where

dj =


1 if j = 1, 2

gcd{pσ(1)pσ(2) · · · pσ(j−2) | σ ∈ Sk} if 3 ≤ j ≤ k

(p1 · · · pk)ε(Y ) if j = k + 1.
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Proof. From the surgery description of Y in Figure 4.2, we see that H1(Y ) has

a presentation matrix given by a diagonal block matrix with g blocks of the

form ( 0 0
0 0 ), and a block of the form

A :=


e 1 . . . 1
q1 p1 0
...

. . .

qk 0 pk

 .

This shows that H1(Y ;Z) ∼= Z2g ⊕ cokerA. For each i ∈ {1, . . . , k + 1},

let di be the ith determinantal divisor of A, that is, the greatest common

divisor of all i × i minors of A. Then it is a standard algebraic fact that

cokerA ∼=
⊕k

i=1
Z
DiZ , where Di = di+1/di for all 1 ≤ i ≤ k. We will compute

d1, . . . , dk for our particular A. Since A contains an entry equal to one, we

have d1 = 1. Since A has a 2× 2 minor with determinant one, we have d2 = 1.

Let i ∈ {3, 4, . . . , k}. The i× i submatrices of A
1 1 . . . 1 1
p1 0 0 0

0 p2
...

...
...

...
. . . 0 0

0 0 pi−1 0

 and


e 1 . . . 1 1
q1 p1 0 0 0

q2 0
. . .

...
...

...
... pi−2 0

qi−1 0 · · · 0 0


show that (up to signs) p1p2 · · · pi−1 and p1p2 · · · pi−2qi−1 appear as i× i minors

of A, and so di divides their greatest common divisor, which is p1p2 · · · pi−2.

Similarly, one can get that di divides pσ(1) · · · pσ(i−2) for any permutation

σ ∈ Sk. However, notice that in any i × i submatrix A′ of A, a non-zero

product of i entries of A′, one from each column and row, must necessarily be

a multiple of a product of i − 2 of p1, . . . , pk. Hence, det(A′) is a multiple of
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gcd{pσ(1)pσ(2) . . . pσ(j−2) | σ ∈ Sk}. Thus, di = gcd{pσ(1)pσ(2) . . . pσ(j−2) | σ ∈

Sk}.

The final statement in the lemma follows by observing that dk+1 =

p1 · · · pkε(Y ), and so Dk = dk+1/dk is non-zero for ε(Y ) 6= 0.

For a positive prime p we use Vp(α) to denote the p-adic valuation of

α.3 Recall that any finitely generated abelian group can be decomposed as a

direct sum

G ∼= Zm ⊕
⊕
p prime

Gp,

where Gp is the p-primary part of G. For a cyclic group Z/nZ the p-primary

part is cyclic of order pVp(n). It will be useful to consider such a decomposition

for the homology of Seifert fibered spaces.

Lemma 4.4.2. Let Y = F (e; p1

q1
, . . . , pk

qk
) with F an orientable surface and

ε(Y ) 6= 0. For a prime p, let v1 ≤ · · · ≤ vk denote the p-adic valuations

Vp(p1), . . . , Vp(pk) ordered so as to be increasing. Then the p-primary part of

H1(Y ;Z) is isomorphic to

Z
pvZ
⊕

k−2⊕
i=1

Z
pviZ

,

where v = vk + vk−1 + Vp(ε(Y )). Moreover we have v ≥ vk−1 and if vk > vk−1,

then v = vk−1.

3That is Vp(α) = n if α can be written in the form α = pn a
b with a, b ∈ Z both coprime

to p.
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Proof. We can write

H1(Y ;Z) = Z2g ⊕
k⊕
i=1

Z
DiZ

,

with the Di = di+1/di as defined in Lemma 4.4.1. By definition the dj are

such that

Vp(dj) =


0 if j = 1 or 2,

v1 + · · ·+ vj−2 if 3 ≤ j ≤ k,

v1 + · · ·+ vk + Vp(ε(Y )) if j = k + 1.

Therefore we have that

Vp(Dj) =


0 if j = 1,

vj−1 if 1 < j < k,

vk−1 + vk + Vp(ε(Y )) if j = k.

The statements about the p-primary part is immediate from these p-adic val-

uation computations. Notice that ε(Y ) 6= 0 can be expressed as a fraction

with denominator lcm(p1, . . . , pk). Since Vp(lcm(p1, . . . , pk)) = vk, this shows

that Vp(ε(Y )) ≥ −vk, which shows that v = Vp(Dk) ≥ vk−1. Finally suppose

that vk > vk−1. In this case when we write each summand of ε(Y ) = e−
∑ qi

pi

as a fraction over the common denominator lcm(p1, . . . , pk), the numerators

will all be divisible by p with the exception of the numerator of corresponding

to the unique summand
qj
pj

where Vp(pj) = vk, which will not be divisible by

p. Thus when we write ε(Y ) as a fraction over lcm(p1, . . . , pk), the numerator

will not be divisible by p and hence Vp(ε(Y )) = −Vp(lcm(p1, . . . , pk)) = −vk.

So v = vk−1 as required, in this case.

We use this to determine the effect of expansion on homology. Although
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we only deal with the ε(Y ) 6= 0 case, it is not hard to see that a similar result

holds when ε(Y ) = 0.

Lemma 4.4.3. Let Y = F (e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over ori-

entable base surface F with ε(Y ) 6= 0. If Y ′ = F (e+ 1; p1

q1
, . . . , pk

qk
, pk
pk−qk

, pk
qk

) is

obtained from Y by expansion, then

H1(Y ′;Z) ∼= H1(Y ;Z)⊕ Z
pkZ
⊕ Z
pkZ

.

In particular torH1(Y ;Z) is a direct double if and only if torH1(Y ′;Z) is a

direct double.

Proof. Since expansion preserves the generalized Euler invariant, we have

ε(Y ) = ε(Y ′). For a fixed prime p, let v1 ≤ · · · ≤ vk denote the p-adic valu-

ations of p1, . . . , pk ordered to be increasing. By Lemma 4.4.2 the p-primary

part of H1(Y ;Z) is

Z
pv1Z

⊕ · · · ⊕ Z
pvk−2Z

⊕ Z
pvZ

,

where v = vk + vk−1 + Vp(ε(Y )). Now let w1 ≤ · · · ≤ wk+2 be the p-adic

valuations of p1, . . . , pk, pk, pk in increasing order. Notice that this sequence is

obtained from the vi by inserting two extra copies of Vp(pk) at the appropriate

point. First suppose that Vp(pk) = vj for some j ≤ k − 1. Calculating the

p-primary part of H1(Y ′;Z) using Lemma 4.4.2 we obtain

Z
pv1Z

⊕ · · · ⊕ Z
pvk−2Z

⊕ Z
pvZ
⊕ Z
pvjZ

⊕ Z
pvjZ

,

since wk+2 = vk, wk+1 = vk−1 and ε(Y ) = ε(Y ′). Thus consider the case that

vk = Vp(pk) > vk−1. In this case, we showed in Lemma 4.4.2 that v = vk−1
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and Vp(ε(Y )) = −vk. Thus calculating the p-primary part of H1(Y ′;Z) yields

Z
pv1Z

⊕ · · · ⊕ Z
pvk−1Z

⊕ Z
pvkZ

⊕ Z
pvkZ

,

since v = vk−1 = wk−1, wk = vk and wk+2 + wk+1 + Vp(ε(Y
′)) = vk. In either

case, the p-primary part of H1(Y ′;Z) is obtained from the p-primary part of

H1(Y ;Z) by adding a Z
pVp(pk)Z ⊕

Z
pVp(pk)Z summand. Since this is true for all

primes we see that

H1(Y ′;Z) ∼= H1(Y ;Z)⊕ Z
pkZ
⊕ Z
pkZ

,

as required.

The following is a key ingredient in the proof of Theorem 4.1.4.

Lemma 4.4.4. Let Y = F (e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over ori-

entable base surface F with ε(Y ) > 0 and pi/qi > 1 for all i. Suppose that

torH1(Y ) ∼= G⊕G for some finite abelian group G. If P = {C1, . . . , Cn} is a

partition of {1, . . . , k} into n ≤ e classes such that

∑
j∈Ci

qj
pj
≤ 1 (4.4.1)

for all i ∈ {1, . . . , n}, then n = e and there is precisely one value i ∈ {1, . . . , n}

for which the inequality in (4.4.1) is strict and this satisfies

1−
∑
j∈Ci

qi
pi

=
1

lcm(p1, . . . , pk)
.

Moreover, if k is even then gcd(p1, . . . , pk) = 1.
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Proof. Since torH1(Y ;Z) is a direct double, then for each prime p the p-

primary part of torH1(Y ;Z) must also be a direct double. Let v1 ≤ · · · ≤ vk

be the p-adic valuations of the pi in increasing order. By Lemma 4.4.2 the

relevant p-primary part is isomorphic to

Z
pv1Z

⊕ · · · ⊕ Z
pvk−2Z

⊕ Z
pvZ

, (4.4.2)

where v = vk + vk−1 + Vp(ε(Y )) ≥ vk−1. Since the vi are increasing, this can

be a direct double only if v = vk−1 = vk−2. This implies that

Vp(ε(Y )) = −vk = −Vp(lcm(p1, . . . , pk)).

Notice also that we must have an even number of non-trivial summands in

(4.4.2). Thus if k is even, we necessarily have v1 = Vp(gcd(p1, . . . , pk)) = 0.

Since our choice of prime was arbitrary, it follows that

ε(Y ) =
1

lcm(p1, . . . , pk)

and, if k is even, that

gcd(p1, . . . , pk) = 1.

Now suppose that we have a partition P as in the statement of the lemma.

We may split ε(Y ) up as follows:

ε(Y ) = e− n+
n∑
k=1

(
1−

∑
i∈Ck

qi
pi

)
=

1

lcm(p1, . . . , pk)
,

where 1−
∑

i∈Ck

qi
pi
≥ 0 for all k. Thus we see immediately that e = n. However

notice that if 1−
∑

i∈Ck

qi
pi
> 0, then

1−
∑
i∈Ck

qi
pi
≥ 1

lcm(p1, . . . , pk)
.
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Consequently we must have 1 −
∑

i∈Ck

qi
pi

= 0 for all but one k for which we

have the required equality.

The following will be useful in Section 4.8.

Lemma 4.4.5. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space with ε(Y ) 6=

0 and N exceptional fibers of even multiplicity. If N ≥ 1, then

dimH1(Y ;Z2) = N − 1.

If N = 0, then

dimH1(Y ;Z2) ≤ 1.

Proof. Since Z2 is a field dimH1(Y ;Z2) = dimH1(Y ;Z2). Thus we will com-

pute dimH1(Y ;Z2). By the universal coefficient theorem, dimH1(Y ;Z2) is

equal to the number of summands in the 2-primary part of H1(Y ;Z). Let

0 ≤ v1 ≤ · · · ≤ vk be the 2-adic valuations of the pi ordered to be increasing.

By Lemma 4.4.2 this 2-primary part can be written as

Z
2v1Z

⊕ · · · ⊕ Z
2vk−2Z

⊕ Z
2vZ

,

where v ≥ vk−1. By assumption precisely N of v1, . . . , vk are non-zero. So if

N ≥ 2, then N −1 values of v1, . . . , vk−1 are non-zero, giving the desired num-

ber of summands. If N ≤ 1, then only v can be non-zero, so dimH1(Y ;Z2) ≤ 1

in this case. However, if N = 1, then vk > vk−1 = 0, so Lemma 4.4.2 also

shows that v = vk−1 = 0 in this case, as required.
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We end the section with one easy topological application of Propo-

sition 4.4.4, which is the topological analogue of the upper bound in Theo-

rem 4.1.1.

Proposition 4.4.6. Let Y = F (e; p1

q1
, . . . , pk

qk
) with pi

qi
> 1 for all i and ε(Y ) >

0. If Y embeds topologically in S4, then e ≤ k − 1.

Proof. If Y embeds into S4, then Proposition 4.3.1 shows that torH2(Y ) ∼=

torH1(Y ) is a direct double. This implies that e ≤ k − 1. For if e ≥ k, the

partition {{1}, {2}, . . . , {k}} would violate the conditions of Lemma 4.4.4 since

there would be k > 1 classes for which the inequality (4.4.1) of Lemma 4.4.4

is strict.

Remark 4.4.7. The bound in Proposition 4.4.6 is sharp. It follows from

the work of Freedman that every integer homology sphere embeds topologically

locally flatly in S4 [Fre82b]. For a given k ≥ 3, there exist Seifert fibered

integer homology spheres for any value of e in the range 1 ≤ e ≤ k − 1.

4.5 Obstruction to smoothly embedding Seifert fibered
spaces

In this section we analyse an obstruction to smoothly embedding a

Seifert fibered space Y over an orientable base surface in S4 coming from

Donaldson’s theorem, culminating in a proof of Theorem 4.1.4.

For the duration of this section we will use the following notation. Let

Y = F

(
e;
p1

q1

, . . . ,
pk
qk

)
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be a Seifert fibered space over an orientable base surface of genus g with

ε(Y ) > 0 and pi
qi
> 1 for all i. As in Figure 4.4, there is a positive-definite

X with boundary Y and intersection form (Zn, QΓ), where Γ is a weighted

star-shaped graph as in Figure 4.3 and n = |Γ| is the number of vertices in Γ.

Before embarking on the proof, we summarise the idea behind the ob-

struction based on Donaldson’s theorem as follows. A smooth embedding of

Y into S4 splits S4 into two 4-manifolds U1 and U2 with boundary −Y . The

smooth manifold Wi = X ∪Ui is positive definite, so Donaldson’s theorem im-

plies that it has standard diagonal intersection form. The inclusion map X ↪→

Wi induces maps of intersection lattices ιi : (H2(X), QX) → (H2(Wi), Id),

which we can write as the transpose of an integer matrix Ai. Following

Greene-Jabuka [GJ11], Donald proved that the image of the restriction map

H2(Wi) → H2(Y ) is isomorphic to imAi

imQX
[Don15, Theorem 3.6]. Combining

this with the fact that the restriction-induced map H2(U1)⊕H2(U2)→ H2(Y )

is an isomorphism, he showed that imA1

imQX
⊕ imA2

imQX
= cokerQX . This condition

implies that the augmented matrix (A1|A2) is surjective over the integers, see

Theorem 4.5.1.

Using the fact that H1(Y ) must split as a direct double, we are able to

prove some structural results about the form any lattice embedding (H2(X), QX)→

(Zb2(X), Id) must take. An important ingredient in this proof is the lattice in-

equality given in Theorem 2.3.2. It is this result which makes an analysis of

the obstruction based on Donaldson’s theorem feasible.

The following theorem is the key obstruction to smoothly embedding
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Seifert fibered spaces in S4 derived from Donaldson’s theorem. It is a slight

variation of [Don15, Corollary 3.9].

Theorem 4.5.1. If Y embeds smoothly into S4, then there exist lattice em-

beddings

ιi : (Zn, QΓ)→ (Zn, Id)

for i = 1, 2, such that the augmented matrix (A1|A2) is surjective, where Ai is

the transpose of the integer matrix representing ιi for i = 1, 2.

Proof. Unless explicitly stated otherwise, all homology and cohomology groups

in this proof are taken with coefficients in Z. If Y embeds smoothly into S4,

then Proposition 4.3.1 shows that it splits into two 4-manifolds U1 and U2, with

∂U1
∼= ∂U2

∼= −Y . Let Wi be the closed manifold Wi = X ∪Y Ui. We claim

that Proposition 2.4.1 implies this is positive definite with b2(Wi) = b2(X).

To see this, note that in Proposition 2.4.1 injectivity condition (a) is satisfied

since the map H1(Y ;Q)→ H1(X;Q) is injective, and the signature condition

(b) follows from b1(X) + b2(X) − b3(X) − b2(Y ) = 2g + n − 0 − 2g = n =

σ(X), together with Proposition 4.3.1(4). Thus, Donaldson’s diagonalization

theorem implies that the intersection form of Wi is diagonalizable. Hence, the

inclusion H2(X) → H2(Wi) induces an embedding of lattices ιi : (Zb2 , QΓ) →

(Zb2 , I), for i ∈ {1, 2}.

Now fix i ∈ {1, 2}. By considering the long exact sequences of pairs and

the inclusion (X, Y ) ↪−→ (Wi, Ui), we have the following commutative diagram
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with exact rows:

H2(Wi, Ui)

∼=i1
��

α // H2(Wi)

i2
��

β // H2(Ui)

i3
��

// H3(Wi, Ui)

∼=i4
��

H2(X, Y )
γ // H2(X) δ // H2(Y ) ε // H3(X, Y ).

It follows by excision that the maps i1 and i4 are isomorphisms.

Recall that we have a basis for H2(X) for which the intersection form of

X is given by the matrixQΓ. By the universal coefficient theorems, torH2(X) ∼=

torH1(X) = 0, so we may choose the dual basis for H2(X) ∼= Hom(H2(X),Z).

We choose the Poincaré dual basis for H2(X, Y ). With respect to these

bases the map γ is represented by QΓ. By Donaldson’s theorem, we can

choose a basis for H2(Wi)/ tor ∼= Hom(H2(Wi),Z) for which QW = Id. The

map H2(Wi)/ tor → H2(X) is dual to the inclusion induced map H2(X) →

H2(W )/ tor, and is therefore given by Ai with respect to these choices of bases.

Now notice that H3(X, Y ) ∼= H1(X) is torsion free. Thus torH2(Y ) ⊆

ker ε. However since H3(X) = 0, the map ε is surjective. Since H2(Y ) and

H3(X, Y ) have the same rank we see that im δ = torH2(Y ) = ker ε. This

allows us to identify torH2(Y ) with coker γ via δ. Since i1 is an isomorphism,

we see that im γ ⊂ im i2. In turn this shows that δ induces an injective map

im i2
im γ
→ torH2(Y ). We have that im(i3 ◦ β) = im(δ ◦ i2) ⊂ torH2(Y ), which

we may identify with im i2
im γ

via δ. Since H2(X) is torsion free, i2 maps finite

order elements of H2(W ) to 0. Thus, in coordinates with respect to the bases

given earlier im i2
im γ

is given by imAi

imQΓ
.
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We claim that im(i3 ◦ β) = im(i3). It suffices to check these finite

groups have the same order. By Proposition 4.3.1(1), the order of im(i3) is the

square root of | torH1(Y )| = | cokerQΓ|, where in this last equality uses the

fact that QΓ presents torH1(Y ). Using the fact that QΓ = AiA
T
i we see that

this is also the order of im(i3 ◦ β) ∼= imAi

imQΓ
, proving the claim. Thus, we can

identify torH2(Y ) with Zb2/ imQΓ, and under this identification the image of

torH2(Ui)→ torH2(Y ) is imAi/ imQΓ.

By Proposition 4.3.1(3) the map torH2(U1)⊕ torH2(U1)→ torH2(Y )

is an isomorphism. Thus

Zb2
imQX

∼=
imA1

imQX

⊕ imA2

imQX

, (4.5.1)

where the direct sum is an internal direct sum as subspaces of cokerQX .

It suffices to show that (4.5.1) implies im(A1 | A2) = Zb2(X). Let

x ∈ Zb2(X) and let q : Zb2(X) → cokerQX be the quotient map. By Equation

(4.5.1), q(a1)+q(a2) = q(x) for some a1 ∈ im(A1) and a2 ∈ im(A2). Thus, a1 +

a2 = x+k for some k ∈ im(QX). Since QX = A1A
T
1 , we have imQX ⊂ im(A1).

Therefore (a1 − k) + a2 = x shows that x ∈ im(A1 | A2), as required.

With Y , X and Γ as defined at the beginning of this section, we have

the following lemma which in particular shows that from an embedding of

lattices we can define a partition.

Lemma 4.5.2. Let ι : (Z|Γ|, QΓ)→ (ZN , Id), where N > 0 be a lattice embed-

ding. Let {e1, . . . , eN} be an orthonormal basis for (ZN , Id). If torH1(Y ;Z) =
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G ⊕ G for some abelian group G, then upto an automorphism of ZN we may

assume the following. The image of the central vertex is e1 + · · · + ee. For

each i ∈ {1, . . . , e} let Ci be the subset of {1, . . . , k} consisting of j such that

the first vertex of the linear chain pj/qj pairs non-trivially with ei. Then

1. {C1, . . . , Ce} is a partition of {1, . . . , k} such that

∑
j∈Ci

qi
pi

= 1

for i = 1, . . . , e− 1 and

∑
j∈Ce

qi
pi

= 1− 1

lcm(p1, . . . , pk)

2. and for i ∈ {1, . . . , e} the vertices with which ei pairs non-trivially are

precisely the leading vertices of the arms in Ci and the central vertex.

Proof. Let pi/qi = [ai1, . . . , a
i
li
]−, where aij ≥ 2. Let vij denote the image of the

jth vertex in the linear chain corresponding to pi/qi. So ‖vij‖2 = aij. Let ν be

the image of the central vertex. By applying an automorphism of ZN we may

assume that ν takes the form ν = α1e1 + · · · + αnen with αi > 0 and n ≤ e.

Let C1, . . . , Cn be the sets defined by

Ci = {j ∈ {1, . . . , k} | ei · vj1 6= 0}

as in the statement of the lemma. Since ν · vj1 = −1, each j in the range

1 ≤ j ≤ k is contained in at least one Ci. A priori the Ci may not be a

partition, since they may not be pairwise disjoint and some Ci’s may be empty.
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However by discarding repetitions, we can obtain C ′i such that C ′i ⊆ Ci and

the non-empty C ′i form a genuine partition of {1, . . . , k}.

By Theorem 2.3.2 we can conclude that for each i we have∑
j∈C′i

qj
pj
≤
∑
j∈Ci

qj
pj
≤ 1.

Thus by Lemma 4.4.4 the partition consisting of the C ′i has precisely e non-

empty classes. It follows that ν must take the form ν = e1+· · ·+ee as required.

Furthermore Lemma 4.4.4 also implies that after permuting the ei if necessary,

we can assume that ∑
j∈C′i

qj
pj

=
∑
j∈Ci

qj
pj

= 1 (4.5.2)

for i = 1, . . . , e− 1 and

1− 1

lcm(p1, . . . , pk)
=
∑
j∈C′e

qj
pj
≤
∑
j∈Ce

qj
pj
≤ 1. (4.5.3)

This shows that Ci = C ′i for i = 1, . . . , e − 1. To show that the Ci form a

partition, it remains to verify that Ce = C ′e. We will use the following claim

to complete the proof.

Claim. Let vjs be a vertex such that j 6∈ C ′l but vjs · el 6= 0 for some l in the

range 1 ≤ l ≤ e. Then s = 1, l = e and vjs · ee = ±1.

Proof. Since j 6∈ C ′l the vector vjs is orthogonal to all vertices in the linear

chains corresponding to elements of C ′l . As we can consider a single vertex as

a linear chain in its own right, Theorem 2.3.2 applies to show that

1

‖vjs‖2
+
∑
i∈C′l

qi
pi
≤ 1.
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By (4.5.2) and (4.5.3) we see that this is only possible if l = e and ‖vjs‖2 ≥

lcm(p1, . . . , pk). However since ‖vjs‖2 = ajs appears in the continued fraction

expansion for pj/qj, we see that ‖vjs‖2 ≤ pj with equality only if pj/qj = ‖vjs‖2

is an integer, in which case s = 1. As lcm(p1, . . . , pk) ≥ pj, this implies

that s = 1 and ‖vjs‖2 = lcm(p1, . . . , pk). However, by (4.5.3) we have that

1

‖vjs‖2
+
∑

i∈C′l
qi
pi

= 1. Thus we can apply the equality case of Theorem 2.3.2

to conclude that vjs · ee = ±1.

We will now check that C ′e = Ce. If not, then there would be a vertex

vj1 for some j 6∈ C ′e such that vj1 · ee 6= 0. By the claim, such a vertex satisfies

vj1 · ee = ±1. However we have j ∈ Cl for some unique 1 ≤ l < e. By

the equality case of Theorem 2.3.2, this implies that vj1 · el = ±1. Thus

ν · vj1 = vj1 · el + vj1 · ee must be even, contradicting vj1 · ν = −1 . Thus we can

conclude that C ′e = Ce completing the proof that C1, . . . , Ce are a partition.

Finally, we check that the non-leading vertices cannot pair non-trivially

with el for any l ∈ {1, . . . , e}. Since the non-leading vertices have trivial pairing

with the central vertex ν, it suffices to check that a non-leading vertex can

pair non-trivially with el for at most one l ∈ {1, . . . , e}. However, this follows

easily from the above claim, which shows that for s > 1 a vertex vjs can pair

non-trivially with el only if j ∈ C ′l = Cl. This completes the proof.

For the following lemma let Y , X and Γ as defined at the beginning of

this section, and recall that a class C ⊂ {1, . . . , k} is called complementary if∑
i∈C

qi
pi

= 1.
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Lemma 4.5.3. Suppose that torH1(Y ) ∼= G ⊕ G for some abelian group G.

For i = 1, 2, let ιi : (Zn, QΓ) → (Zn, Id), where n = |Γ|, be a map of lattices,

and represent ιi as an integer matrix by the transpose of Ai. Let A = (A1|A2),

and suppose that the column space of A is all of Zn. For i ∈ {1, 2}, let Pi be the

partition of {1, . . . , k} induced by ιi as in Lemma 4.5.2. Then, no non-empty

union of complementary classes of P1 is a union of complementary classes of

P2.

Proof. We are assuming that both ι1 and ι2 satisfy the conclusions of Lemma 4.5.2.

For i ∈ {1, 2}, let Ci
1, . . . , C

i
`i

be a non-empty collection of complementary

classes in Pi. Suppose for sake of contradiction that ∪`1i=1C
1
i = ∪`2i=1C

2
i and

denote their common union by H ⊂ {1, . . . , k}. Since
∑

i∈C
qi
pi

= 1 for a com-

plementary class C, we have `1 =
∑

i∈H
qi
pi

= `2 and we denote their common

value by `. Our goal will be to find a non-zero row vector x with coprime

integer entries and an integer p > 1 such that xAi ≡ 0 mod p for both i = 1

and i = 2. Given such a vector we will use that xA ≡ 0 mod p to show that

A is not surjective over Z.

Let R be the weighted star-shaped graph with central weight ` and legs

given by the legs of Γ indexed by elements of H. For i = 1, 2, there is a map

of lattices qi : (Z|R|, QR) → (Zn, Id) which is the restriction of ιi on the non-

central vertices of R and maps the central vertex of R to e1 + · · · + e`. That

qi is a map of lattices follows from the structure imposed by Lemma 4.5.2.

The classes Ci
1, . . . , C

i
` are precisely the ones whose leading vertices pair non-

trivially with exactly one of the unit vectors e1, . . . , e` and this non-trivial
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pairing is necessarily −1 in all cases. Furthermore no non-leading vertex pairs

non-trivially with any of e1, . . . , e`.

Recall that the image of the vertices of Γ under ιi are given by the

rows of Ai. By ordering the vertices, we may assume that the first row of Ai

corresponds to the central vertex ν, and the next |R| − 1 rows correspond to

the non-central vertices of Γ that appear in R. Let Bi be the transpose of the

integer matrix representing qi. With the above choice of vertex ordering, Bi is

obtained by taking the first |R| rows of Ai, and replacing the first row by the

vector (1, 1, . . . , 1︸ ︷︷ ︸
` ones

, 0, . . . 0).

For both i = 1, 2, we have BiB
T
i = Q, where Q = QR is the matrix

representing the intersection lattice (Z|R|, QR) with respect to the vertex basis.

Since the classes Ci
1, . . . , C

i
` are complementary, the boundary of the plumbing

with weighted graph R is a Seifert fibered space Y ′ with ε(Y ′) = 0. Thus

detQ = 0, implying that there exists a non-zero row vector x = (x1, . . . , x|R|) ∈

Z|R| such that xQ = 0. Hence, (xBi)(xBi)
T = xQxT = 0, implying xBi = 0 ∈

Zn. Thus we have obtained x such that xB1 = xB2 = 0 ∈ Zn. By dividing

out by any common factors we may assume that gcd(x1, . . . , x|R|) = 1.

Claim. The entry x1 is divisible by an integer p > 1.

With this claim, the proof concludes as follows. Consider the vector

x̄ = (x1, . . . , x|R|, 0, . . . , 0) ∈ Zn. Since Bi is obtained from Ai by taking the

first |R| rows and modifying the first row, we see that every entry of x̄Ai is a
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multiple of x1. This shows that x̄A = x̄ · (A1 | A2) ≡ 0 (mod p), where p is

the integer from the claim.

Since gcd(x1, . . . , x|R|) = 1, we can write 1 as an integer combination

of the xi. This implies there is a column vector v ∈ Zn such that x̄v = 1. If A

were surjective, then there would be a vector u such that v = Au. This would

show 0 ≡ x̄Au = x̄v = 1 (mod p), which is a contradiction. We complete the

proof by proving the claim.

Proof of Claim. Consider a leg in R with corresponding fraction p/q. We will

show that p divides x1. Suppose that the continued fraction expansion of p/q

is p
q

= [a1, . . . , aρ−1]−, where aj ≥ 2 are integers for all j. By ordering the

vertices we may assume that the first ρ rows of Bi correspond to the central

vertex followed by the vertices of our chosen leg in R. Thus, the top-left ρ× ρ

submatrix of Q = BiB
T
i is

` −1 0 0 · · · 0 0
−1 a1 −1 0 · · · 0 0
0 −1 a2 −1 · · · 0 0
...

. . .
...

0 0 0 0 · · · aρ−2 −1
0 0 0 0 · · · −1 aρ−1


.

Let Q′ =

(
−1 0 · · ·

Qp/q

)
be the matrix obtained from the above matrix by

removing the first column, where Qp/q is the intersection matrix of the linear

chain representing p/q. We have

(x1, . . . , xρ) ·Q′ = 0,
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since xQ = 0 and the corresponding columns 2, . . . , ρ of Q are supported in the

first ρ rows. This implies that (x2, . . . , xρ) ·Qp/q = (x1, 0, . . . , 0). Thus, we can

change the last row of Qp/q to (x1, 0, . . . , 0), by first multiplying the last row of

Qp/q by xρ, then for each j ∈ {1, . . . , ρ−1} adding xj multiples of the jth row to

the last row. The determinant of this new matrix is xρ−1 ·det(Qp/q) = xρ−1 ·p.

However, by expanding the determinant along the final row we see that∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 −1 0 0 · · · 0 0
−1 a1 −1 0 · · · 0 0
0 −1 a2 −1 · · · 0 0

. . .

0 0 0 0 · · · aρ−2 −1
x1 0 0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= x1.

Thus x1 = xρ−1p is a multiple of p, proving the claim.

This allows us to prove our main obstruction to embedding Seifert

fibered spaces in S4.

Theorem 4.1.4. Let Y = F (e; p1

q1
, . . . , pk

qk
) with F an orientable surface, pi

qi
> 1

for all i, and ε(Y ) > 0. If Y smoothly embeds in S4 then Y is partitionable.

Proof. Suppose that Y smoothly embeds in S4. By Corollary 4.3.2, torH1(Y )

splits as a direct double. Theorem 4.5.1 implies that there are lattice em-

beddings ιi : (Z|Γ|, QΓ) → (Z|Γ|, Id), where i ∈ {1, 2} and Γ is the weighted

star-shaped graph describing the intersection lattice of the standard positive-

definite 4-manifold bounding Y . Moreover, (A1|A2) is surjective, where Ai
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is the transpose of the integer matrix representing ιi for i ∈ {1, 2}. As in

Lemma 4.5.2, for i ∈ {1, 2}, there is a partition Pi induced by ιi satisfying

properties (a) and (b) of Definition 4.1.3. Lemma 4.5.3 shows that no non-

empty union of any subset of complementary classes of P1 is a union of any

subset of complementary classes of P2.

For i = 1, 2, let Ci be a non-empty proper subset of Pi. For sake of

contradiction suppose that ∪C∈C1C = ∪C∈C2C, and let H ⊂ {1, . . . , k} be

their common union. Properties (a) and (b) imply that for i ∈ {1, 2}, Ci

contains a non-complementary class if and only if
∑

j∈H
qi
pi

is not an integer.

Thus, C1 and C2 either both contain a non-complementary class or both do

not. Thus either P1 and P2, or P1\C1 and P2\C2 contain only complementary

classes. This shows that property (c) of Definition 4.1.3 holds.

4.6 Applications of Theorem 4.1.4

Now we consider which spaces can pass the obstruction given by Theo-

rem 4.1.4 when e ≥ k
2
. We will prove the obstruction halves of Theorem 4.1.1

and Theorem 4.1.2, leaving the construction of the embeddings into S4 to

Section 4.7.

Theorem 4.1.1. Let Y = F (e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over ori-

entable base surface F with ε(Y ) > 0 and pi
qi
> 1 for all i. If Y embeds smoothly

in S4, then e ≤ k+1
2

. Moreover, if e = k+1
2

then Y smoothly embeds in S4 if
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and only if Y takes the form

Y = F

(
e;

a

a− 1
,

{
a,

a

a− 1

}×(e−1)
)

= F

(
k + 1

2
;

a

a− 1
, a,

a

a− 1
, a, . . . ,

a

a− 1

)
where e ≥ 1 and a ≥ 2 is an integer.

Proof. Let P1 and P2 of {1, . . . , k} be the partitions from Theorem 4.1.4, each

into e classes. For each partition, there are e classes and at most one class of

size one, since a size one class must be non-complementary. Thus, k ≥ 1+2(e−

1), and so e ≤ k+1
2

. Now assume that e = k+1
2

, in particular k is odd. For each

partition all but one class has size 2, and the remaining class has size 1. Using

that no non-empty proper subset of classes in P1 is a union of classes in P2, we

without loss of generality assume that P1 = {{1}, {2, 3}, {4, 5}, . . . , {k−1, k}}

and P2 = {{1, 2}, {3, 4}, . . . , {k − 2, k − 1}, {k}}. By Lemma 4.4.4, 1 − q1
p1

=

1
lcm(p1,...,pk)

, and thus p1

q1
= a

a−1
where a = lcm(p1, . . . , pk). For a complementary

classes {i, j} we have qi
pi

+
qj
pj

= 1. Applying this to the complementary classes

in P1 and P2 allows us to write the remaining fractions in terms of a, which

shows that M is of the required form.

Finally, the fact that the Seifert fibered spaces of this form smoothly

embed in S4 follows from Proposition 4.7.3 proved in Section 4.7.

We now analyse the e = k
2

case. The reader may find it helpful to recall

definitions of expansion (Definition 4.1.5) and partitionable (Definition 4.1.3)

stated in the introduction. We first prove the following lemma.
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Lemma 4.6.1. Let Y = F (e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over ori-

entable base surface F with k ≥ 3, pi
qi
> 1 for all i, and ε(Y ) > 0. Suppose

that Y is partitionable with partitions P1 and P2 such that either

(i) m1 + m2 ≥ e where mi is the number of complementary pairs in Pi for

i ∈ {1, 2}, or

(ii) both P1 and P2 contain a class of size one, or

(iii) e ≥ 2k+3
5

.

Then Y is an expansion of a partitionable Seifert fibered space Y ′.

Proof. By Lemma 4.4.3 the property that torH1 is a direct double is not

changed by expansions. Thus, in order to show that Y ′ is partitionable it

suffices to come up with partitions satisfying the three remaining conditions

in Definition 4.1.3.

Suppose first that (i) holds. We claim that there are complementary

pairs {a, b} ∈ P1 and {b, c} ∈ P2 with a, b, c distinct. Suppose otherwise,

then
∑k

i=1
qi
pi
≥ m1 + m2 ≥ e since each complementary pair contributes one

and there are m1 + m2 disjoint complementary pairs, but this contradicts

Definition 4.1.3 which implies that
∑k

i=1
qi
pi
< e.

By permuting the fractions p1

q1
, . . . , pk

qk
, we may assume that b = k, a =

k−1, c = k−2. Since {k−1, k} and {k−2, k} are complementary, we have that

pk−2

qk−2
= pk−1

qk−1
= pk

pk−qk
. Thus Y is an expansion of Y ′ = F (e−1; p1

q1
, . . . , pk−2

qk−2
). Let
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P ′1 = P1\{{k−1, k}} and let P ′2 be obtained from P2\{{k−2, k}} by replacing

k−1 with k−2 in the class C containing k−1, and call this new class C ′. We

claim that P ′1 and P ′2 satisfy the conditions in Definition 4.1.3, showing that Y ′

is partitionable. These conditions follow from the corresponding conditions for

P1 and P2. Conditions (a) and (b) follow immediately. To see condition (c) let

S1 ( P ′1 and S2 ⊂ P ′2 be non-empty with the union of classes in S1 equal to the

union of classes in S2. We denote their common union by H ⊂ {1, . . . , k−2}. If

k−2 6∈ H then this would contradict condition (c) for P1, P2 since S1 ⊂ P1 and

S2 ⊂ P2. Similarly, if k − 2 ∈ H then S1 ∪ {{k − 1, k}} and (S2 ∪ {C}) \ {C ′}

would contradict condition (c) for P1, P2. This proves the conclusion if (i)

holds.

Now suppose that (ii) holds. If k = 3 then P1 and P2 each contain a

complementary class of size two and (i) holds. Thus we can assume that k ≥ 4

and by permuting the fractions we may assume that {k} ∈ P1 and {k − 2} ∈

P2. In particular these are the non-complementary classes so pk
qk

= pk−2

qk−2
=

m/(m − 1), where m = lcm(p1, . . . , pk). Let C ∈ P2 be the complementary

class containing k, and let i ∈ C with i 6= k. Since C is complementary

m−1
m

+ qi
pi
≤ 1 with equality only if C has size two. Rearranging this gives

qi
pi
≤ 1

m
. However, qi

pi
≥ 1

m
since m = lcm(p1, . . . , pk) ≥ pi. Thus we must have

equality and so |C| = 2. Similarly the complementary class in P1 containing

k − 2 has size two. Since k > 3, this implies that we can assume that P1 and

P2 take the form

P1 = {. . . , {. . . , k − 3}, {k − 2}, {k − 1, k}},
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P2 = {. . . , {. . . , k − 1}, {k − 3, k − 2}, {k}}.

Then Y is an expansion of Y ′ = F (e − 1; p1

q1
, . . . , pk−2

qk−2
) with partitions P ′1 =

P1 \ {{k − 1, k}} and P ′2 obtained from P2 \ {{k}} by replacing the class

C containing k − 1 by C ′ := C \ {{k − 1}}. We check the conditions of

Definition 4.1.3. First (a) and (b) are immediate, noting that C ′ ∈ P ′2 is the

non-complementary class. To verify (c), let S1 ( P ′1 and S2 ⊂ P ′2 be non-

empty with the union of classes in S1 equal to the union of classes in S2. If S2

does not contain C ′ then S1 ⊂ P1, S2 ⊂ P2 contradicting (c) for P1, P2. If S2

contains C ′ then S1 ∪ {{k − 1, k}} and (S2 ∪ {{k}, {k − 3, k − 2}, C}) \ {C ′}

would contradict (c) for P1, P2. This completes the proof if (ii) holds.

Now suppose that (iii) holds, so e ≥ 2k+3
5

. If (ii) holds then we are done,

so we may assume that the non-complementary class of P2 has size at least

two. We now show that (i) holds. Let mi be the number of complementary

pairs in Pi for i ∈ {1, 2}. Thus there are e−mi − 1 complementary classes in

Pi of size at least 3, for i ∈ {1, 2}. Hence,

k ≥ 1 + 2m1 + 3(e−m1 − 1), and

k ≥ 2 + 2m2 + 3(e−m2 − 1).

Adding these inequalities give 2k ≥ 6e − (m1 + m2) − 3. Rearranging

gives

m1 +m2 ≥ 6e− 2k − 3 ≥ e+ (5e− 2k)− 3 ≥ e,

since e ≥ 2k+3
5

. This completes the proof.
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Now we are ready to analyze the e = k
2

case.

Theorem 4.1.2. Let Y = F (k
2
; p1

q1
, . . . , pk

qk
) be a Seifert fibered space over ori-

entable base surface F with pi
qi
> 1 for all i, k even and ε(Y ) > 0. If Y

smoothly embeds in S4 then there exist positive integers p, q, r, s with p
q
, r
s
> 1,

(p, q) = (r, s) = 1 and s
r

+ q
p

= 1− 1
pr

such that Y takes the form

1.

Y = F

(
k

2
;
p

q
,
r

s
,

{
p

p− q
,
p

q

}≥0

,

{
r

r − s
,
r

s

}≥0
)
, or

2.

Y = F

(
k

2
;
p

q
,
r

s
,

{
pr,

pr

pr − 1

}≥1

,

{
p

q
,

p

p− q

}≥0

,

{
r

s
,

r

r − s

}≥0
)
.

Moreover, in case (1) Y embeds smoothly in S4. Here the notation {a
b
, a
a−b}

≥m

means that there are at least m pairs of fractions of this form.

Proof. We will prove that if Y embeds then it takes the desired form. We

leave the proof that the family in (1) smoothly embeds to the next section,

see Proposition 4.7.3.

Suppose that Y = F (e; p1

q1
, . . . , pk

qk
) with k = 2e is partitionable. Since

the property that k = 2e is preserved under expansions, we can assume that Y

is obtained by a (possibly empty) sequence of expansions from a partitionable

space that is minimal in the sense that it is not obtained by expansion from

any other partitionable space. Assume that Y is such a minimal space. By
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Lemma 4.6.1(iii) minimality implies that e ≤ 2k+2
5

= 4e+2
5

. This shows that

e ≤ 2.

If e = 1, then Y = F (1; p
q
, r
s
) for some p

q
, r
s

such that q
p

+ s
r

= 1− 1
lcm(p,r)

.

However Lemma 4.4.4 implies that p and r are coprime so lcm(p, r) = pr.

If e = 2, then Y = F (2; p1

q1
, . . . , p4

q4
). We consider the possible partitions,

P1 = {C1, C2} and P2 = {D1, D2} of such a Y . We assume that C1 and D1

are the complementary classes and C2 and D2 are the non-complementary

classes. By Lemma 4.6.1 the minimality of Y shows that we cannot have

|C2| = |D2| = 1 or |C1| = |C2| = 2. Thus we can assume that |C1| = 3,

|C2| = 1, |D1| = 2 and |D2| = 2. Suppose that C2 = {1}. This implies

that q1
p1

= 1 − 1
lcm(p1,...,p4)

. We may assume that {1, 2} is a class in P2. Since

p2

q2
≤ lcm(p1, . . . , p4), we have that q1

p1
+ q2

p2
≥ 1. Thus D1 = {1, 2} is the

complementary class and p2

q2
= lcm(p1, . . . , p4). By Lemma 4.4.4, we have

gcd(p1, . . . , p4) = 1. Since p1 = p2 = lcm(p1, . . . , p4), it follows that p3 and p4

must be coprime. Since the complementary class C1 is C1 = {2, 3, 4}, it follows

that q3
p3

+ q4
p4

+ 1
lcm(p1,...,p4)

= 1. This implies that lcm(p1, . . . , p4) = p3p4. Thus by

taking p3

q3
= p

q
and p4

q4
= r

s
we see that Y takes the form Y = F (2; p

q
, r
s
, pr
pr−1

, pr),

where q
p

+ s
r

+ 1
pr

= 1.

Thus if Y is partitionable and e = k
2
, then Y is obtained by a sequence

of expansions from either F (1; p
q
, r
s
) or F (2; p

q
, r
s
, pr
pr−1

, pr), where q
p
+ s

r
+ 1

pr
= 1.

By Theorem 4.1.4, this shows that if Y smoothly embeds in S4, then it is of

the form required by the theorem.

98



Remark 4.6.2. We remark that the family (2) in Theorem 4.1.2 arises only

when one of the partitions has a complementary class indexing fractions of the

form p
q
, r
s
, pr. The above proof shows this when e = 2, and it follows inductively

for larger e from the way the partitions for Y ′ are obtained from P1 and P2 in

the proof of Lemma 4.6.1.

4.7 Constructing embeddings of Seifert fibered spaces

In this section we construct embeddings of the families of Seifert fibered

spaces in Theorem 4.1.1 and Theorem 4.1.2(1). We also recall what is known

in the ε(Y ) = 0 case and make some observations which give some new em-

beddings.

Lemma 4.1.6. If Y ′ is obtained by expansion from Y , then Y ′ smoothly em-

beds in Y × [0, 1]. In particular, if Y embeds smoothly in S4, then so does

Y ′.

Proof. Let Y = F (e; p1

q1
, . . . , pk

qk
) and Y ′ = F (e; p1

q1
, . . . , pk

qk
,−pk

qk
, pk
qk

) a space

obtained by expansion from Y . We will explicitly find a subset of Y × [0, 1]

which is homeomorphic to Y ′. Let N1 ⊂ Y be a Seifert fibered neighbourhood

of the exceptional fiber corresponding to pk/qk, that is, a set homeomorphic

to S1 × D2 whose boundary is a union of regular fibres. Consider the set

M = N1 × [1
4
, 3

4
]. The boundary ∂M is homeomorphic to S1 × S2 and it

naturally inherits a Seifert fibred structure of the form ∂M = S2(0;−pk
qk
, pk
qk

).

On N1×{1
4
} and N1×{3

4
} this structure is a translate of the one on N1, giving
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the two exceptional fibres, and is the obvious product structure on ∂N1×[1
4
, 3

4
].

Now let N2 ⊆ N1 be a Seifert fibred neighbourhood of a regular fiber. We take

X to be the subset

X = (Y \ intN2)× {0} ∪ ∂N2 × [0,
1

4
] ∪ (∂M \ int(N2 × {

1

4
})).

As a manifold, X is obtained by taking Y and M , deleting open fibred neigh-

bourhoods of regular fibers in both and gluing the two resulting manifolds

along their boundaries so that the boundary fibers match up. From this de-

scription X is clearly homeomorphic to Y ′. Thus by smoothing the corners of

X we can obtain a smooth embedding of Y ′ into Y × [0, 1].

Remark 4.7.1. Although all our applications are for Seifert fibered spaces

over orientable surfaces, both the definition of expansion and Lemma 4.1.6

work perfectly well over non-orientable surfaces.

The following proposition is due to Crisp-Hillman [CH98, Lemma 3.2].

Proposition 4.7.2. Let Yg = Fg(e;
p1

q1
, . . . , pk

qk
) where Fg is an orientable genus

g ≥ 0 surface. If Yg smoothly embeds in S4, then Yg+1 smoothly embeds in S4.

Proof. We follow the approach due to Donald [Don13, Lemma 2.23]. We prove

that Yg+1 smoothly embeds in Yg × [0, 1] via Kirby calculus. Start with a

surgery presentation for Yg as in Figure 4.2. Take a relative handle decom-

position of Yg × [0, 1] by attaching handles around the meridian of the curve

representing the central vertex (the e framed curve) as shown in Figure 4.5.
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To see the embedding of Yg+1 in this manifold observe that the dotted circle

and one of the 0-framed unknots form a Whitehead double, so their bound-

ary along with the surgery presentation for Yg provide the embedding into

Yg × [0, 1]. To see that the Kirby diagram is Yg × [0, 1], observe that 0-framed

handle in the Whitehead double can be unlinked from the dotted curve by

sliding over the meridional 0-framed unknot. This curve can then be cancelled

with the 3-handle, leaving the 1-handle and 2-handle which form a cancelling

pair.

0

0

e

∪ 3-handle

Figure 4.5: Increasing the genus

Together these allow us to find the embeddings required for Theo-

rem 4.1.1 and Theorem 4.1.2.

Proposition 4.7.3. Let Y be a Seifert fibered space over orientable base sur-

face F , with k > 2 exceptional fibers, in either of the following two families:

(a) F
(
k+1

2
; a
a−1

, a, . . . , a
a−1

)
= F (0;−a, a, . . . ,−a), where a > 1 is an integer,

or

(b) F
(
k
2
; p
q
, p
p−q , · · · ,

p
q
, r
s
, r
r−s , · · · ,

r
s

)
= F

(
0; p

q
,−p

q
, . . . , p

q
, r
s
,− r

s
, . . . , r

s

)
where

p
q
, r
s
> 1 and q

p
+ s

r
= 1− 1

pr
.
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Then Y smoothly embeds in S4.

Proof. Observe that S3 admits Seifert fibered structures of the form S2(1; a
a−1

)

and S2(1; p
q
, r
s
), where q

p
+ s

r
= 1− 1

pr
. Since S3 smoothly embeds in S4 and each

of the families is obtained from one of these structures on S3 by a sequence of

expansions and possibly increasing the genus of the base surface, Lemma 4.1.6

and Proposition 4.7.2 allow us to build the necessary embeddings.

Remark 4.7.4. Some of the Seifert fibered spaces in Proposition 4.7.3 were

already known to embed in S4. Crisp-Hillman [CH98, Section 3a] showed that

the manifolds in (a) embed in S4. Donald [Don15] showed that for k = 3, 4,

the manifolds in family (a) and a subfamily of those in (b) embed in S4 as the

double branched cover of doubly slice links.

We now recall what is known about and make some brief observations

on smoothly embedding Seifert fibered spaces Y over an orientable base surface

with ε(Y ) = 0.

Donald [Don15, Theorem 1.3] used Donaldson’s theorem to prove that

in order for Y to smoothly embed the Seifert invariants must occur in com-

plementary pairs. More precisely, he shows the following.

Theorem 4.7.5. Let Y be a Seifert fibered space over a closed orientable

surface F with ε(Y ) = 0. If Y smoothly embeds in S4 then Y is of the form

F

(
0;
p1

q1

,−p1

q1

, . . . ,
pk
qk
,−pk

qk

)
= F

(
k;
p1

q1

,
p1

p1 − q1

, . . . ,
pk
qk
,

pk
pk − qk

)
,

where k ≥ 0 and pi
qi
> 1 for all i ∈ {1, . . . , k}.
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We remark that a proof of Theorem 4.7.5 also follows from Theorem

2.1.4. It is still not known precisely which Seifert fibered spaces Y of the form

given in Theorem 4.7.5 smoothly embed in S4. Crisp-Hillman [CH98, Remark

following Lemma 3.1] showed that if pi is odd for all i ∈ {1, . . . , k} then

Y smoothly embeds. Donald [Don15] showed that S2(0; a,−a, b,−b), where

a, b ∈ Z are non-zero, embeds if a is even and b is odd. If a and b are both even

and a 6= b, then he used Furuta’s 10/8 theorem to show that the Seifert fibered

space does not embed. It turns out that embedding Seifert fibered spaces with

ε = 0 is closely related to embedding Seifert fibered spaces over D2. We will

make use of the following easy observation.

Lemma 4.7.6. Let Y = F (e; p1

q1
, . . . , pk

qk
), then for any subset {i1, . . . , il} ⊆

{1, . . . , k}, Y contains a submanifold homeomorphic to D2(
pi1
qi1
, . . . ,

pil
qil

).

Proof. Consider the projection of Y onto its base orbifold F̂ . Choose a disk

in F̂ containing the cone points corresponding to the exceptional fibers given

by the fractions
pi1
qi1
, . . . ,

pil
qil

in its interior. The pre-image of this disk in Y is

the desired submanifold.

This allows us to characterize when a Seifert fibered space with ε = 0

embeds in S4 in terms of the existence of an embedding for a Seifert fibered

space over D2. This characterization shows that existence of an embedding

is independent of the genus of the base surface. This is in contrast to the

situation for spaces with ε 6= 0, where it is unknown how important the genus

of the base surface is to the existence of an embedding into S4.
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Proposition 4.7.7. The Seifert fibered space Y = F (0; p1

q1
,−p1

q1
, . . . , pk

qk
,−pk

qk
)

over orientable base surface F embeds smoothly in S4 if and only if the Seifert

fibered space Ỹ = D2(p1

q1
, . . . , pk

qk
) smoothly embeds in S4.

Proof. By Lemma 4.7.6, Y contains Ỹ as a submanifold, so an embedding of Y

gives an embedding of Ỹ . This proves the “only if” direction. In the opposite

direction notice that the manifold Y ′ = Ỹ ∪∂−Ỹ we obtain by doubling Ỹ along

its boundary is homeomorphic to S2(0; p1

q1
,−p1

q1
, . . . , pk

qk
,−pk

qk
). If Ỹ embeds in

S4 then it has a tubular neighbourhood Ỹ × [0, 1] ⊆ S4. The boundary of this

tubular neighbour is homeomorphic to Y ′ ∼= S2(0; p1

q1
,−p1

q1
, . . . , pk

qk
,−pk

qk
). By

applying Proposition 4.7.2 to raise the genus of the base surface if necessary,

this shows that Y embeds smoothly in S4.

We also extend the result of Crisp-Hillman described above.

Proposition 4.7.8. Let Y = S2(0; p1

q1
,−p1

q1
, . . . , pk

qk
,−pk

qk
) where pi is even for

at most one i. Then Y smoothly embeds in S4.

Proof. If precisely one of the pi is even, then let Y ′ = S2(0; p1

q1
, . . . , pk

qk
). If all

the pi are odd, then define Y ′ by

Y ′ =

{
S2(0; p1

q1
, . . . , pk

qk
) if q1 + · · ·+ qk ≡ 1 mod 2

S2(1; p1

q1
, . . . , pk

qk
) if q1 + · · ·+ qk ≡ 0 mod 2

These are chosen to ensure that |H1(Y ′)| is odd. Therefore Y ′ is the double

branched cover of a Montesinos knot K, and Zeeman’s twist-spinning theorem

[Zee65] implies that Y ′ \ {pt} smoothly embeds in S4 as a fiber of the com-

plement of the 2-twist spin of K. However Lemma 4.7.6 shows that Y ′ \ {pt}
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contains a submanifold homeomorphic to D2(p1

q1
, . . . , pk

qk
). Therefore Y embeds

in S4 by Proposition 4.7.7.

Further variations on these ideas are also possible.

Example 4.7.9. There is a smooth embedding of S2(0; 4,−4, 12
5
,−12

5
) into

S4. In [Don15, Example 2.14], Donald showed that S2(1; 4, 4, 12
5

) embeds

smoothly in S4. This contains a D2(4, 12
5

) submanifold, giving an embedding

of S2(0; 4,−4, 12
5
,−12

5
).

4.8 The Neumann-Siebenmann invariant

In this section, we apply the µ invariant to the question of when a

Seifert fibered space can embed smoothly into S4. The main result of this

section is Proposition 4.8.8, which allows us to add further conditions to par-

titions arising from Theorem 4.1.4 when there is an exceptional fiber of even

multiplicity. This allows us to prove Theorem 4.1.10 and Proposition 4.1.7.

Throughout this section let Y = S2(e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space

with ε(Y ) > 0 and pi
qi
> 1 for all i. Let Γ be the canonical plumbing graph

corresponding to Y with vertex set V and X the positive definite manifold

obtained by plumbing according to Γ.

We say that a subset C ⊆ V is characteristic if x =
∑

v∈C v is charac-

teristic when considered as a vector in the intersection lattice (Z|Γ|, QΓ). Recall

that a vector x in an integer lattice is characteristic if

x · z ≡ z · z mod 2
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for all z in the lattice. It is well known that there is a bijective correspondence

between characteristic subsets of Γ and Spin(Y ) [GS99, Proposition 5.7.11]4.

The following definition of the µ invariant is due to Neumann [Neu80].

Siebenmann also gave an equivalent definition in [Sie80].

Definition 4.8.1. Given a spin structure s on Y , the Neumann-Siebenmann

invariant µ(Y, s) is defined as

µ(Y, s) = |Γ| − ‖w‖2,

where w =
∑

v∈C v and C is the characteristic subset corresponding to s and

|Γ| = |V | is the number of vertices in Γ.

Remark 4.8.2. Some comments on this definition are in order:

1. We have chosen to define µ in terms of the positive definite plumbing.

There is a more general definition that allows µ to be calculated from any

plumbing cobounding Y .

2. It is not hard to see that any characteristic subset of C ⊂ V must consist

of isolated vertices,5 that is, no pair of adjacent vertices are both in C.

So we can equivalently define

µ(Y, s) = |Γ| −
∑
v∈C

‖v‖2.

4This correspondence is much more general than we are using here: it applies whenever
we have a 3-manifold with a given surgery presentation. It is usually described in terms of
characteristic sublinks of a surgery diagram.

5The characteristic condition implies that any vertex in a characteristic set must have an
even number of neighbours in the set. Since Γ is a tree this forces the subset to be isolated.
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It is known that for Seifert fibered spaces over S2, µ is a spin rational

homology cobordism invariant [Ue05] and that µ(Y, s) = 0 whenever (Y, s) is

the boundary of a spin rational homology ball.

In order to apply µ effectively we need to understand which characteris-

tic subsets correspond to spin structures which extend over a given cobounding

spin rational homology ball. We can do this by studying lattice embeddings.

Proposition 4.8.3. Suppose that Y bounds a smooth spin rational homology

4-ball W with H3(W ;Z) = 0. The inclusion map X ↪−→ X ∪ −W induces a

map on second homology, which we identify with ι : (Z|Γ|, QΓ)→ (Z|Γ|, Id). Let

e1, . . . , e|Γ| be an orthonormal basis for (Z|Γ|, Id). Let s be a spin structure on

Y with corresponding characteristic subset C ⊂ V . Then s extends over W if

and only if
∑

v∈C ι(v) is characteristic in Z|Γ|, that is∑
v∈C

ι(v) · ei ≡ 1 mod 2

for all basis elements ei.

Proof. Let Z = X ∪−W . Since H3(W ;Z) = 0 and H1(X;Z) = 0, the Mayer-

Vietoris sequence and Poincaré-Lefschetz duality imply that H1(Z;Z) = 0,

and thus H2(Z;Z) is torsion free. Hence, H2(Z;Z) ∼= Z|Γ|. Since Z is positive

definite, Donaldson’s theorem implies that (H2(Z;Z), QZ) ∼= (Z|Γ|, Id).

Let F ⊂ X be a closed connected oriented surface, such that [F ] ∈

H2(X;Z) represents
∑

v∈C v ∈ (Z|Γ|, QΓ) ∼= H2(X;Z). Then F is the obstruc-

tion to extending s over X, that is, s extends to a spin structure sX on X\F

which does not extend across F .
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Suppose that s extends to a spin structure sW on W . Then gluing the

spin structures sW and sX along Y gives a spin structure sZ on Z\F which does

not extend across F . Thus, the mod 2 reduction of [F ] ∈ H2(Z;Z) is Poincaré

dual to the second Stiefel-Whitney class w2(Z) ∈ H2(Z;Z2). However, the Wu

formula states that PD(w2(Z)) ∈ H2(Z;Z2) is the unique element satisfying

PD(w2(Z)) · x = x · x for all x ∈ H2(Z;Z2). Thus, we see that PD(w2(Z))

is the mod 2 reduction of a characteristic element of H2(Z;Z). This implies

that
∑

v∈C ι(v) · ei ≡ 1 mod 2, as required.

Conversely, suppose that
∑

v∈C ι(v) ·ei ≡ 1 mod 2 for all ei. This shows

that
∑

v∈C ι(v) reduced mod 2 is Poincaré dual to w2(Z). Then Z\F admits

a spin structure sZ . The bijection between characteristic sublinks and spin

structures on Y then shows that sZ restricts to s on Y . Restricting sZ to

W ⊂ Z then shows that s extends to a spin structure on W .

This allows us to obtain further restrictions on the image of the charac-

teristic subsets corresponding to spin structures that extend over a homology

ball.

Proposition 4.8.4. Suppose that Y bounds a spin rational homology ball W

with H3(W ;Z) = 0. Let ι : (Z|Γ|, QΓ) → (Z|Γ|, Id) be the lattice embedding

induced by the inclusion X ↪−→ X ∪ −W . For any choice of orthonormal basis

{ei}, the following are true:

1. Let C be a characteristic subset corresponding to a spin structure which

extends over W . Then for all v ∈ C, we have |ι(v) · ei| ≤ 1 for all ei and
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for each ei there is precisely one v ∈ C with |ι(v) · ei| = 1.

2. For any m ∈ {1, . . . , |Γ|}, there are at most two distinct vertices with the

property that the image of each vertex under ι pairs non-trivially with

em and each vertex belongs to a characteristic subset corresponding to a

spin structure that extends over W .

Proof. We will abuse notation by identifying each vertex of Γ with its image

under ι. If the spin structure corresponding to C extends over W , then the

corresponding µ invariant vanishes. This implies that∑
v∈C

v =
∑
v∈C

|Γ|∑
i=1

(v · ei)2 = |Γ|.

By Proposition 4.8.3, we have
∑

v∈C ei ·v is odd for all i. Thus there is at least

one vertex in C satisfying v · ei 6= 0. However by the above equation we see

that there is at most one such v and it satisfies |v · ei| = 1. This verifies (1).

Now suppose that we have characteristic subsets C1, C2 and C3 corre-

sponding to spin structures that extend over W . Suppose that v1, v2 and v3

are distinct vertices satisfying vi · em 6= 0 and vi ∈ Ci for i ∈ {1, 2, 3}. It

follows from (1) that vi ∈ Cj if and only if i = j. Now define C4 to be the set

of vertices such that v is in C4 if and only it is contained in precisely one or

three of C1, C2 or C3. We have that v1, v2 and v3 are all in C4. It is easy to

verify that not only is C4 a characteristic subset, but that for any unit basis

vector ei, we have∑
v∈C4

v · ei ≡
∑
v∈C1

v · ei +
∑
v∈C2

v · ei +
∑
v∈C3

v · ei ≡ 1 mod 2.
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So by Proposition 4.8.3 we see that C4 also corresponds to a spin structure

that extends over W . Thus by (1) we see that at most one of v1 · em, v2 · em

and v3 · em can be non-zero, a contradiction. This proves (2).

We now need to understand the characteristic subsets of Γ. When

pi is even for at least one i, these are determined by choosing characteristic

subsets on the linear chains corresponding to the fibers of Y . Thus we need

to understand the characteristic subsets on linear chains first.

Lemma 4.8.5. Let ∆ be the linear chain corresponding to p/q = [a1, . . . , al]
−,

where aj ≥ 2 for all j.

1. If p is odd, then ∆ has a unique characteristic subset.

2. If p is even, then ∆ has two characteristic subsets, where one contains

the first vertex and the other does not.

Proof. The characteristic subsets on ∆ are in bijection with spin structures

on the lens space L(p, q). Thus there is precisely one if p is odd and precisely

two if p is even. Now suppose that p is even and we will justify the statement

concerning the leading vertex. Consider the matrix

M =

 a1 −1

−1
. . . −1
−1 al

 mod 2.

We can think of a characteristic subset of ∆ as a vector w ∈ Zl2 such that

Mw ≡

a1
...
al

 mod 2.
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Thus if w and w′ are the vectors in Zl2 corresponding to the two distinct

characteristic subsets, then the vector w − w′ is a non-zero element of kerM

mod two. However, if v =

v1
...
vl

 is a non-zero element of the kernel of M

mod two, then v1 is non-zero. Otherwise, suppose that v1 = · · · = vk−1 = 0

and vk 6= 0 for some k ≤ l, this would imply that the (k − 1)-st row of Mv

is non-zero. Thus precisely one of the two characteristic subsets contains the

first vertex.

Remark 4.8.6. Although we will not need this fact, one can show that if p is

odd, then the unique characteristic subset on ∆ contains the leading vertex if

and only if q is odd.

This allows us to construct the characteristic subsets on Γ when at least

one pi is even.

Lemma 4.8.7. Suppose that pi is even for at least one i. Then no character-

istic subset of Γ contains the central vertex and any characteristic subset on Γ

is uniquely determined by the set of the vertices adjacent to the central vertex

it contains. In fact, it suffices to determine which of the leading vertices on

arms corresponding to even pi it contains.

Proof. We prove this by constructing all characteristic subsets. Suppose that

N ≥ 1 of the pi are even. By Lemma 4.4.5, Y admits |H1(Y ;Z2)| = 2N−1 spin

structures. We may construct a characteristic subset C as follows. For each

arm of Γ corresponding to pi/qi with pi odd include the vertices corresponding
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to the unique characteristic subset on that linear chain. Suppose that α of

these chains include the leading vertex. Now choose a subset S of the arms

corresponding to even pi such that |S| ≡ α + e mod 2. For each arm in S

choose the characteristic subset containing its leading vertex. For all other

arms choose the characteristic subset on the linear chain not containing the

leading vertex. This defines a characteristic subset since it is characteristic on

the arms by construction and does not contain the central vertex. Moreover, it

is chosen so that it contains |S|+α ≡ e mod 2 vertices adjacent to the central

vertex. Notice however that of the set of N arms corresponding to even pi,

there are 2N−1 even subsets and 2N−1 odd subsets. Thus we can construct all

the characteristic subsets this way irrespective of the parity of α.

We can now add further conditions to the partitions in Theorem 4.1.4.

The following proposition, although sufficient for our applications, is certainly

not the most general statement that can be proven. For example, using Re-

mark 4.8.6, one could also add further conditions relating to the parity of the

qi.

Proposition 4.8.8. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space with

ε(Y ) > 0, pi
qi
> 1 for all i and pj even for at least one j. Suppose that Y

smoothly embeds in S4 and let P be one of the partitions of {1, . . . , k} given

by Theorem 4.1.4. Then the following further conditions apply to P .

1. There is precisely one class containing an odd number of i for which pi

is even and there are one or three such i.
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2. In all other classes there are zero or two values of i such that pi is even.

Moreover suppose that C = {1, . . . , l} is a complementary class such that p1

and p2 are even and pi is odd for all 3 ≤ i ≤ l, then

dp1/q1e ≤ 1 +
l∑

i=2

(pi − 1). (4.8.1)

Proof. Recall that these partitions are constructed by taking the splitting S4 =

U1 ∪Y −U2 and ι1 : (Z|Γ|, QΓ) → (Z|Γ|, Id) be the lattice embedding induced

by the inclusion X ↪−→ X ∪ −Ui for i = 1 or 2. Without loss of generality, we

will work with ι = ι1. We will abuse notation and identify each vertex of Γ

with its image under ι. As shown in Lemma 4.5.2 we may assume that the

central vertex is given by ν = e1 + · · · + ee and for i = 1, . . . , e the class Ci

is taken to be the subset of {1, . . . , k} such that the first vertex of the linear

chain corresponding to pi/qi pairs non-trivially with ei.

Suppose that Y has N ≥ 1 exceptional fibers of even order, so that

dimH1(Y ;Z2) = N−1 by Lemma 4.4.5. Let ni be the number of fibers of even

order in each class of the partition. Let C be a characteristic set corresponding

to a spin structure which extends over the ball U1. By Proposition 4.3.1(2)

we have H3(U1;Z) = 0, so Proposition 4.8.4(1) applies, implying that for each

class there is precisely one arm from each class whose leading vertex is in C.

Moreover Proposition 4.8.4(2) shows that for each class in the partition there

are at most two choices for the arm whose leading vertex can appear in any such

C. However since characteristic subsets all coincide on arms corresponding to
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odd pi, we see that two choices for the leading vertex from arms in a class

Ci can only be realized if ni ≥ 2. Thus, if there are m values of ni such

that ni ≥ 2, then at most 2m spin structures extend over U1. However by

Lemma 4.3.3, we know that 2(N−1)/2 spin structures extend over U1. This

shows that

2m ≥ N − 1 = n1 + · · ·+ ne − 1.

This shows that with exactly one exception ni ∈ {0, 2} and for this exception

we must have ni ∈ {1, 3}, which completes the count of even pi in each class.

Now we establish (4.8.1). Suppose that we have the class C1 = {1, . . . , l}

is complementary with p1 and p2 even and all other pi is this class odd, that

is n1 = 2. The argument in the previous paragraph shows that the leading

vertices of both the arms corresponding to p1/q1 and p2/q2 must appear in

characteristic subsets corresponding to spin structures that extend over U1. In

particular if v is the leading vertex of the arm corresponding to p1/q1, then

v satisfies |v · ei| ≤ 1 for all i by Proposition 4.8.4(2) and ‖v‖2 = dp1/q1e

by definition. So to bound ‖v‖2 above it suffices to bound above the num-

ber of basis elements ei for which |v · ei| 6= 0. To do this notice that if

|v · ei| 6= 0, then w · ei 6= 0 for some other vertex w appearing in one of

the other chains in the class C1. Otherwise we could consider the vector

v′ = v − (v · ei)ei to obtain an embedding of linear chains with corresponding

fractions dp1/q1e − 1, p2/q2, . . . , pl/ql. Since dp1/q1e − 1 < p1/q1, this would

contradict Theorem 2.3.2. However, by inducting on the length of the contin-

ued fraction, one can see that an embedding of the linear chain corresponding
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to r/s can use at most r distinct orthonormal basis vectors. Thus we see that

dp1/q1e = ‖v‖2 ≤ 1 +
l∑

i=2

(pi − 1),

where pi−1 terms come from observing that by definition all the linear chains in

C1 have at least one common basis element with which they pair non-trivially.

This is the required upper bound.

We now have the tools to establish our lower bound on e.

Theorem 4.1.10. Let Y = S2(e; p1

q1
, . . . , pk

qk
) be a Seifert fibered space with

ε(Y ) > 0 and pi
qi
> 1 for all i. If Y smoothly embeds in S4 then dimH1(Y ;Z2) ≤

2e.

Proof. First note that if Y has no exceptional fibers of even order and Y

embeds in S4, then H1(Y ;Z2) = 0. So we may suppose that Y has at least

one exceptional fiber of even order. Proposition 4.8.8 shows that there can

be at most 2e + 1 = 3 + 2(e − 1) such fibers. Thus by Lemma 4.4.5 we have

H1(Y ;Z2) ≤ 2e in this case too.

Remark 4.8.9. Donald showed that S2(1; 4, 4, 12
5

) smoothly embeds in S4

[Don15, Example 2.14]. This Seifert fibered space and its expansions show

that the bound in Theorem 4.1.10 is sharp.

We conclude with the following lemma which justifies Proposition 4.1.7.

To see this, note that the Seifert fibered spaces in Theorem 4.1.2(1) only

arise when applying Theorem 4.1.4 when there is a partition containing a
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complementary class of the form {p
q
, r
s
, rp} (cf. Remark 4.6.2). The following

lemma shows that rp must be odd.

Lemma 4.8.10. If Y = S2(e; p1

q1
, . . . , pk

qk
) embeds smoothly into S4, then nei-

ther of the partitions given by Theorem 4.1.4 can contain a complementary

class of the form {p
q
, r
s
, rp} with rp even.

Proof. Suppose that we had such a class. Since the class is complementary,

we have s
r

+ q
p

+ 1
rp

= 1. This implies that p and r are coprime so precisely

one of r or p is even. Thus (4.8.1) from Proposition 4.8.8 applies to show that

rp ≤ r + p− 1. This is easily seen to be impossible as r, p > 1.

4.9 Doubly slice Montesinos links

In this section we turn our attention to doubly slice links. We prove

that the Seifert fibered spaces over S2 in Theorem 4.1.1 and Theorem 4.1.2(1)

are double branched covers of Montesinos links. We also prove Theorem 4.1.11

which provides a classification of the smoothly doubly slice odd pretzel knots

up to mutation. We then prove Proposition 4.1.12 showing that no non-trivial

quasi-alternating Montesinos link is doubly slice. Finally, we show that the

Seifert fibered spaces S2(1; 7
2
, 7

2
, 7

2
), S2(1; 4, 12

5
, 4) and S2(1; 3, 15

4
, 3) are double

branched covers of doubly slice Montesinos links.

Proposition 4.9.1. Let Y be a Seifert fibered space over S2, with k > 2

exceptional fibers, in either of the following two families:
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(a) S2
(
k+1

2
; a
a−1

, a, . . . , a
a−1

)
= S2(0;−a, a, . . . ,−a), where a > 1 is an inte-

ger, or

(b) S2
(
k
2
; p
q
, p
p−q , · · · ,

p
q
, r
s
, r
r−s , · · · ,

r
s

)
= S2

(
0; p

q
,−p

q
, . . . , p

q
, r
s
,− r

s
, . . . , r

s

)
where

p
q
, r
s
> 1 and s

r
+ q

p
= 1− 1

pr
.

Then Y is the double branched cover of a smoothly doubly slice Montesinos

link.

As discussed in Remark 4.7.4, some special cases of Proposition 4.9.1

were previously known by work of Donald [Don15]. We give two proofs of

Proposition 4.9.1. The first proof gives a method for constructing new doubly

slice links out of old ones. The second proof uses a doubly slice criterion due

to Donald [Don15].

The first proof

At the heart of our first proof of Proposition 4.9.1 is the following

lemma which allows us to modify a doubly slice link to construct new doubly

slice links.

Lemma 4.9.2. Let L ⊂ S3 be a link with planar diagram DL and suppose that

the diagram DL contains a disk D intersecting the link in a 2-tangle T . Let L′

be the link obtained by modifying DL inside of D as shown in Figure 4.6. If L

is smoothly doubly slice then L′ is also smoothly doubly slice.
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L

D T

L′

T TT̃

Figure 4.6: The 2-tangle T̃ is the mirror image of T . More precisely, T̃ is
obtained from T by first doing a π-rotation (in R3) about the vertical axis
which cuts through the center of T and lies on the projection plane, and then
changing every crossing of the resulting tangle.

Proof. Since L is doubly slice, there is an embedded 2-sphere F ⊂ S4 with

F ∩S3 = L. Hence, we can find a neighbourhood of (S3, L) in (S4, F ) homeo-

morphic to (S3 × [0, 1], L× [0, 1]). We will show that we can isotope S3 × {0}

inside this neighbourhood to intersect L × [0, 1] in precisely L′, thus showing

that L′ is doubly slice.

It may be helpful to refer to Figure 4.8 while reading the following

construction. We may assume that L sits inside S2 × [0, ε] ⊂ S3, with planar

projection onto S2 giving the diagram DL. Let BL = D× [0, ε] ⊂ S2× [0, ε] ⊂

S3. Then BL × [1
2
, 3

4
] ⊂ S3 × [0, 1] is a 4-ball.

TD D′

Figure 4.7: The disk D′ ⊂ D with boundary shown in green.

LetD′ ⊂ D be the disk as shown in Figure 4.7, and letB′L = D′×[0, ε] ⊂
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S2 × [0, ε] ⊂ S3. Consider the 4-manifold

X = (S3 × [0,
1

4
]) ∪ (B′L × [

1

4
,
1

2
]) ∪ (BL × [

1

2
,
1

4
])

sitting inside S3 × [0, 1]. It has two boundary components, namely S3 × {0}

and another boundary component Y homeomorphic to S3. The intersection

of Y with L × [0, 1] is precisely L′, see Figure 4.8. Finally, note that X is

homeomorphic to S3× [0, 1] as it is obtained from S3× [0, 1
4
] by gluing on a 4-

ball along a 3-ball in its boundary. Hence Y and S3×{0} are ambient isotopic

in S4. This argument also works in the smooth category by appropriately

rounding corners.

Proposition 4.9.3. If the Montesinos link L := M(e; p1

q1
, . . . , pk

qk
) is doubly

slice then Li := M(e; p1

q1
, . . . , pi−1

qi−1
, pi
qi
,−pi

qi
, pi
qi
, pi+1

qi+1
, . . . , pk

qk
) is also doubly slice,

for 1 ≤ i ≤ k.

Proof. This follows immediately by applying Lemma 4.9.2 to the standard

Montesinos diagram of L (see Figure 3.2) and taking D to be the disk con-

taining precisely the rational tangle pi
qi

.

Proof of Proposition 4.9.1. It suffices to prove that the Montesinos links

1. M(0;−a, a, . . . ,−a), where a > 1 is an integer and,

2. M
(

0; p
q
,−p

q
, . . . , p

q
, r
s
,− r

s
, . . . , r

s

)
where p

q
, r
s
> 1 and s

r
+ q

p
= 1− 1

pr
,
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{S3 × {1
4
}

B′L × [1
4
, 1

2
]

BL × [1
2
, 3

4
]

L′

Figure 4.8: Schematic diagram of L′ = Y ∩ F . The link L′ is shown in blue.

are doubly slice. We prove this by induction on k (the number of rational

parameters). If k = 1 or k = 2 then every Montesinos link in families (1) and

(2) is the unknot (they are 2-bridge links with determinant 1) and hence is

doubly slice. The induction step then follows by applying Proposition 4.9.3.

The second proof

We now give a second proof of Proposition 4.9.1. We will use the

following doubly slice criterion of his [Don15, Corollary 2.5] to prove Proposi-
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tion 4.9.1.

Theorem 4.9.4. Suppose L is a link in S3 and there are two sets of band

moves {Ai}1≤i≤k and {Bj}1≤j≤l such that performing the moves:

• {Ai}1≤i≤k ∪ {Bj}1≤j≤l gives the unknot,

• {Ai}1≤i≤k ∪ {Bj}1≤j≤l−n gives an (n + 1)-component unlink for all n ∈

{1, 2, . . . , l},

• {Ai}1≤i≤k−n ∪ {Bj}1≤j≤l gives an (n+ 1)-components unlink for all n ∈

{1, 2, . . . , k}.

Then L is smoothly doubly slice.

The collection of band moves that we will use can be quite compli-

cated when viewed in (S3, L). Instead, these band moves can be more natu-

rally viewed as corresponding to certain 2-handle attachments in the double

branched cover of (S3, L). The following theorem of Montesinos will allow us

to make this correspondence.

Theorem 4.9.5 (Theorem 3 of [Mon78]). Consider a handle representation

W 4 = H0∪nH2 of a 4-manifold with boundary given by attaching n 2-handles

to the 4-ball. If the n 2-handles are attached along a strongly invertible link in

S3, then W is a 2-fold cyclic covering space of D4 branched over a 2-manifold.

Montesinos [Mon78] describes how to obtain the branched surface in

D4 from the attaching link and involution. We now describe this construction
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in the case of interest to us. This is also described in [Lec12], where Lecuona

used similar ideas to show certain Montesinos knots are ribbon.

Suppose that the 2-handles in Theorem 4.9.5 are attached along a

framed link L ⊂ S3, where the strong involution is a rotation by π about

an axis in S3. Suppose furthermore that each component of L is an unknot

which is given by a trivial arc above and below the rotation axis, see left of

Figure 4.9. The branch surface in Theorem 4.9.5 has a simple description as

follows. Replace each arc below the rotation axis with a twisted band following

the arc, with twisting such that the signed number of crossings in the band is

equal to the framing of the link component containing the arc, see Figure 4.9.

These bands are attached to a rectangular disc with an edge lying on the axis

of rotation. The bands and rectangular disc form a surface in S3. Pushing

this surface into D4 gives the branch surface in Theorem 4.9.5.

Observe that if L = L′∪{K} as framed links then the branched surface

S for L is obtained from the branched surface S ′ for L′ by a band attachment.

In particular, the link ∂S is obtained from ∂S ′ by a band or ribbon move.

If L is the integer surgery presentation of a Seifert fibered space Y over S2

coming from the plumbing graph, then the boundary of the branch surface S

is a Montesinos link.

Example 4.9.6. Consider the Seifert fibered space Y = S2(0; 3,−3, 2) with

surgery presentation and strong involution as in Figure 4.9. Interpreting the

surgery presentation as a Kirby diagram for the plumbing 4-manifold X, we

see that X is the double branched cover of (D4, S), where S is the surface in the
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−3 3

0

2

π

Figure 4.9: Left: Kirby diagram of a 4-manifold with boundary S2(0; 3,−3, 2).
Right: corresponding branch surface with boundary a Montesinos knot.

right of Figure 4.9 pushed into the 4-ball. The knot ∂S ⊂ S3 is the Montesinos

knot with double branched cover Y .

Attaching an additional 2-handle to X which respects the strong invo-

lution, as shown in bold in the left of Figure 4.10, gives a 4-manifold X ′ which

is the double branched cover of the surface S ′ in the right of Figure 4.10. We

see that S ′ is obtained from S by attaching a 2-dimensional 1-handle. Hence,

the link ∂S ′ is obtained from ∂S ′ by a band, or ribbon move. One can check

that ∂X ′ = S2 × S1. Since the 2-component unlink is the only link in S3 with

double branched cover S2 × S1 [KT80], we get that ∂S ′ is the 2-component

unlink (one can also see this directly) and the Montesinos knot ∂S is ribbon.

We are now ready to prove Proposition 4.9.1.

Proof of Proposition 4.9.1((a)). Let Y = S2(0;−a, a, . . . ,−a) with k fibers,

where k ≥ 1 is odd and a > 2 is an integer. If k = 1 then Y is S3 which is the

double branched cover of the unknot which is trivially doubly slice. Assume

that k > 1. Then Y is the boundary of the 4-manifold X given by attaching
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0

−3 3
0

2

Figure 4.10: Left: The Kirby diagram with the extra 2-handle. Right: The
corresponding band in the link.

2-handles to the 4-ball, as shown in Figure 4.11 for k = 5 (ignoring for now

the 2-handles with labels A1, A2, B1 and B2). The 2-handles are attached

along a strongly invertible link in Figure 4.11, where the involution is given

by a π rotation about the dotted axis. Thus, Theorem 4.9.5 implies that X is

the double branched cover of D4 over a properly embedded surface S where

L = ∂S ⊂ S3 is the Montesinos link with double branched cover Σ(L) = Y .

In Figure 4.11, there are 2m := k−1 (k = 5 shown) additional 0-framed

4-dimensional 2-handles, shown in bold, which are attached equivariantly with

respect to the strong involution. By the discussion above Example 4.9.6, there

are 2m := k − 1 disjoint bands A1, A2, . . . , Am, B1, B2, . . . , Bm defining band

moves on L such that doing any subset S of these band moves changes L 7→

L′ in such a way that Σ(L′) = ∂XS, where XS is the 4-manifold given by

attaching the correspondingly labeled subset of 0-framed 2-handles to X, as

in Figure 4.11, or by an isotopy, as in Figure 4.12.

We now show that the two sets of bands {Ai}1≤i≤m and {Bi}1≤j≤m

satisfy the doubly slice hypotheses of Theorem 4.9.4, thereby showing that

124



−a a −a a −a

A2 A1
B1 B2

0

Figure 4.11: Ignoring the curves in bold, Y = S2(0;−a, a, . . . ,−a) is the
doubly branched cover of the link L ⊂ S3 given by quotienting out by the
involution given by rotating about the dotted axis. The case where Y has 5
exceptional fibers is shown.

0 −a a −a a −a

A1 A2

Bm Bm−1 B1

Figure 4.12: Ignoring 2-handles in bold, this is a Kirby diagram of 4-manifold
with boundary S2(0;−a, a,−a, . . . ,−a) containing k = 2m+ 1 fibers.

L is doubly slice. First, let Sn = {Ai}1≤i≤m ∪ {Bj}1≤j≤m−n, where n ∈

{0, 1, 2, . . . ,m}. We can realise XSn as a union of linear plumbings, by handles-

liding the central 0-framed 2-handle over each of the handles labeledA1, . . . , Am

as shown in Figure 4.13.

We claim that ∂XSn is a connected sum of n copies of S1×S2. Assuming

the claim, by [KT80], the (n+1)-component unlink is the unique link in S3 with
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double branched cover #n(S1×S2). This implies that performing band moves

Sn results in the (n+ 1)-component unlink, for all n ∈ {1, 2, . . . ,m}. To show

that ∂XSn = #n(S1×S2), note that ∂XSn consists of n+1 disjoint linear chains

of unknots, where n of these chains have length 3 with components having

framings (in linear order) −a, 0, a giving an S1 × S2 summand. Similarly,

the remaining chain has framings 0,−a, 0, a, . . . ,−a, 0, a which represents S3.

Thus, ∂XSn = #n(S1 × S2).

By symmetry we may interchange the roles of the {Ai} and {Bi}

bands in the argument given above, which shows that the remaining hy-

pothesis of Theorem 4.9.4 is satisfied, where band moves are performed on

S ′n = {Ai}1≤i≤m−n ∪ {Bj}1≤j≤m, for n ∈ {1, 2, . . . ,m}.

Proof of Proposition 4.9.1((b)). Let Y = S2(0; p
q
,−p

q
, . . . , p

q
, r
s
,− r

s
, . . . , r

s
) with

k fibers, where k is even and s
r

+ q
p

= 1− 1
pr

. When k = 2, we have that Y is a

lens space with trivial first homology, so Y = S3 and Y is the doubly branched

cover of the unknot, which is doubly slice. Assume that k > 2 and let ` be

the number of fibers of the form ±p
q

and b = n− ` be the number of fibers of

the form ± r
s
. Observe that ` and b are both odd. Let [a1, a2, . . . , ag]

− (resp.

[b1, b2, . . . , bh]
−) be the continued fraction expansion for p

q
(resp. r

s
).

We follow the same strategy as in the proof of Proposition 4.9.1(a)

above to show that Y is the double branched cover of a doubly slice link.

The Seifert fibered space Y is the boundary of a star-shaped plumbing 4-
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0 −a a −a a −a

A1
An+1

Bm−n
B1

0

−a a −a a −a

A1
An+1

Bm−n B1

m handle slides

Figure 4.13: The 4-manifold XSn . Handleslide the 0-framed central 2-handle
over each of the handles labelled A1, . . . , Am.

manifold X as shown in Figure 4.15 (ignoring the 2-handles in bold). By

Theorem 4.9.5, X is the double branched cover of (D4, S) where S is a surface.

Then Y = ∂X is the double branched cover of S3 branched over the Montesinos

link L = ∂S. There are bands A1, . . . , Am, B1, . . . , Bm which may be attached

to L, where m = k
2
− 1, such that performing a subset S of these band moves

changes L 7→ L′ such that Σ(L′) = ∂XS, where XS is the 4-manifold obtained

by attaching the 0-framed 2-handles with labels in S to X in Figure 4.15.

Figure 4.14, obtained by an isotopy of the link in Figure 4.15, shows that the

2-handles may be attached equivariantly with respect to the involution.

We check the hypotheses of Theorem 4.9.4. First let Sn = {Ai}1≤i≤m ∪
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{Bj}1≤j≤m−n, where n ∈ {0, 1, 2, . . . ,m}. We can realise XSn as a plumbing

of a union of linear chains, by handle sliding the central 0-framed handle over

each of the handles labeled A1, . . . , Am in Figure 4.15. This union of linear

chains consists of:

1. n linear chains of one of two forms, either with framings−a1,−a2, . . . ,−ag,

0, ag, . . . , a1 or with framings b1, b2, . . . , bh, 0,−bh, . . . , b1, and

2. a linear chain with framings

ag, . . . , a1, 0,−a1, . . . ,−ag, . . . , 0, ag, . . . , a1, 0, b1, . . . , bh, 0,

. . . ,−bh, . . . ,−b1, 0, b1 . . . , bh.

Each linear chain in (1) contributes an S1 × S2 summand to ∂XSn ,

and the linear chain in (2) contributes an S3 summand to ∂XSn . In order

to see this, we repeatedly use the fact that a subchain with framings r, 0,−r

where r ∈ Z, can be replaced by a single 0 framed component. This fact

follows by handlesliding the r framed component over the −r framed compo-

nent, then cancelling the −r framed component and its 0 framed meridian.

Repeatedly applying this fact, in case (2), we will be left with a linear chain

ag, . . . , a1, 0, b1, . . . , bh representing the Seifert fibered space S2(0; p
q
, r
s
) which

is homeomorphic S3 since the condition s
r

+ q
p

= 1− 1
pr

implies that it is a lens

space with trivial first homology. This verifies that ∂XSn = #n(S1 × S2).

Now let S ′n = {Ai}1≤i≤m−n ∪ {Bj}1≤j≤m, for n ∈ {1, 2, . . . ,m}. Each

2-handle attached to X corresponding to a band of the form Bj links two
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a1ag

B1

−ag
−a1

a1

0

A1 A2

−b1

b1

−b1 −bh

B2

bh −bhag

Figure 4.14: Kirby diagram for XS′n . Ignoring the components in bold gives
a Kirby diagram for X with boundary Y . For simplicity only the case with
k = 6 and ` = 3 is shown. The strong involution is rotation by π about the
dotted axis.

unknotted components with framings −ag and ag. We use the same fact as

above, that is, handlesliding the ag framed component over the −ag framed

component leads to the Bj labelled 2-handle linking the ag framed component

as a meridian, and hence we can cancel these two components without changing

∂XS′n . We see a 0-framed unknot linking components with framings −ag−1 and

−ag−1 and we can again handleslide the ag−1 component over the −ag−1 and

remove the −ag−1 framed components and its 0-framed meridian. Repeating

this procedure leads to the surgery presentation for ∂XS′n shown in Figure 4.16.

Next, we handleslide the 0-framed central curve in Figure 4.16 over the

m 0-framed components as indicated by the arrows (note that the handleslides

here are thought of merely as a move on surgery presentations for ∂XS′n). This

gives a presentation for ∂XS′n from which, by an analogous computation to the

previous case, one can check that ∂XS′n = #n(S1 × S2).
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0

a1

a2

ag−1

ag

−a1

−a2

−ag−1

−ag

B1

A1

B2

A `−1
2

B `+1
2

A `+1
2

B `+3
2

Am

a1

a2

ag−1

ag

a1

a2

ag−1

ag

b1

b2

bh−1

bh

−b1

−b2

−bh−1

−bh

b1

b2

bh−1

bh

−b1

−b2

−bh−1

−bh

Figure 4.15: Kirby diagram for XS′n. Ignoring the components in bold gives
a Kirby diagram for X with boundary Y .

Doubly slice odd pretzels up to mutation

Our constructions of doubly slice Montesinos links along with the ob-

structions from earlier in the chapter allows us to prove the following theorem

which classifies the smoothly doubly slice odd pretzel knots up to mutation.

For 3 or 4-strand odd pretzel knots this was proved by Donald [Don15, Theo-

rem 1.5].

Theorem 4.1.11. If K is an odd pretzel knot, then the following are equiva-

lent:

(i) Σ(K) embeds smoothly in S4,

(ii) K is a mutant of a smoothly doubly slice odd pretzel knot,

(iii) and K is a mutant of P (a,−a, . . . , a) for some odd a with |a| ≥ 3.
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0

a1 −a1
0

A1
0

A `−1
2

0
A `+1

2 0
Am

a1

a1

a2

ag−1

ag

b1 −b1 b1

−b1

−b2

−bh−1

−bh

Figure 4.16: Surgery presentation for XS′m . In the next step, we handleslide the
central 0-framed component over each of the m 0-framed components indicated
by the arrows. The general case XS′n , 1 ≤ n ≤ m, is analogous.

(a)

c1 c2 cm. . .

(b)

c′1 c′2 . . . c′m′ e

Figure 4.17: Two diagrams for pretzel knots, where the labelled boxes are
used to denote twist regions with the corresponding number of crossings. In
the right hand side, we may assume |c′i| > 1 for all i.

Proof. The implication (iii)⇒(ii) follows from the proof of Proposition 4.9.1.

In order to see this, following Example 4.9.6, one can check that the doubly

slice pretzel knot corresponding to quotienting out Figure 4.11 by the strong

involution indicated is precisely P (−a, a, . . . ,−a). The implication (ii)⇒(i) is

well-known. The content of this proof is in the implication (i)⇒(iii), which we

prove now.
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Consider a pretzel knot K = P (c1, . . . , ck) as depicted in Figure 4.17(a),

where the ci are all odd. Notice that if |ci| = 1, for some i, then the cor-

responding twist region is just a single crossing. By performing flypes and

Reidemeister II moves if necessary we can assume that these crossings are in

a single twist region as in Figure 4.17(b). That is, we can assume K takes the

form

K = P (c′1, . . . , c
′
m′ , ε, . . . , ε︸ ︷︷ ︸

|e|

),

where |c′i| > 1 for all i and e = ε|e| is an integer. For such a K double branched

cover Σ(K) takes the form

Σ(K) = S2(e; a1, . . . , an,−b1, . . . ,−bm).

Assume, by reflecting K if necessary, that ε(Σ(K)) > 0. So writing Σ(K) in

standard form we obtain,

Σ(K) = S2(m+ e; a1, . . . , an,
b1

b1 − 1
, . . . ,

bm
bm − 1

).

Now assume that Σ(K) embeds smoothly in S4. First consider a partition as

given by Theorem 4.1.4. Note that since bi−1
bi

> 1
2

for all i, each class in the

partition contains at most one of the fibers corresponding to bi
bi−1

. This shows

that there are at least m such classes, implying that e ≥ 0.

Now consider the condition that µ(Σ(K)) = 0. Consider the standard

positive definite plumbing for Σ(K). Since bi
bi−1

has continued fraction

bi
bi − 1

= [2, . . . , 2︸ ︷︷ ︸
bi−1

]−,
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each of the arms corresponding to bi
bi−1

has bi− 1 vertices. Thus the plumbing

has 1 −m + n +
∑m

i=1 bi vertices. Now it is easily checked that the (unique)

characteristic subset on this plumbing is obtained by taking the central vertex

along with bi−1
2

vertices of norm two from each of the arms corresponding to

bi
bi−1

. Thus the sum of norms in the characteristic subset is e+m+
∑m

i=1(bi−

1) = e+
∑m

i=1 bi. Thus we have

µ(Σ(K)) = n−m+ 1− e = 0.

Thus e = n −m + 1 ≥ 0. However notice that Σ(K) has n + m exceptional

fibers. Thus by Theorem 4.1.1 we have m+ e ≤ n+m+1
2

. Altogether this shows

0 ≤ e ≤ n−m+ 1

2
=
e

2
,

which implies that e = 0. Thus Σ(K) has n+m = 2m− 1 exceptional fibers.

Thus Theorem 4.1.1 implies that bi = aj > 1 for all i and j. Thus K is of the

desired form.

Doubly slice quasi-alternating Montesinos links

We now prove the following result on doubly slice quasi-alternating

Montesinos links.

Proposition 4.1.12. A quasi-alternating Montesinos link is never topologi-

cally doubly slice.

Proof. Let K be a quasi-alternating Montesinos link. The double branched

covers of quasi-alternating Montesinos links have been classified in Chapter 3.
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After possibly reflecting K, we can assume that

Σ(K) = S2(e;
p1

q1

, . . . ,
pk
qk

),

where ε(Σ(K)) > 0 and pi
qi
> 1 and either

1. e ≥ k or

2. e = k − 1 and qk−1

pk−1
+ qk

pk
< 1

holds. However notice that in the first case we have a partition

P = {{1}, . . . , {k}}

violating Lemma 4.4.4, and in the second case we have a partition

P = {{1}, . . . , {k − 2}, {k − 1, k}}

violating Lemma 4.4.4. Thus in neither case can H1(Σ(K)) split as a direct

double. This shows that Σ(K) cannot embed topologically locally flatly in S4

and hence that K is not topologically doubly slice.

A few sporadic examples

Finally, we show that the Seifert fibered spaces S2(1; 7
2
, 7

2
, 7

2
), S2(1; 4, 12

5
, 4)

and S2(1; 3, 15
4
, 3) are double branched covers of doubly slice Montesinos links.

We note that S2(1; 4, 12
5
, 4) is known to embed by work of Donald [Don15, Ex-

ample 2.14], however his proof is via a Kirby calculus argument. We refer the

reader to Figure 3.2 for our conventions for Montesinos links in the following

proposition.
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Proposition 4.9.7. The Montesinos links M(1; 7
2
, 7

2
, 7

2
), M(1; 4, 12

5
, 4) and

M(1; 3, 15
4
, 3) are doubly slice.

Proof. For each link, we demonstrate a pair of bands, an A-band and a B-band

such that performing either of the two band moves results in the 2-component

unlink, and performing both band moves simultaneously results in the unknot.

Theorem 4.9.4 then implies that the link is doubly slice. We now demonstrate

the bands, it is straightforward to check that they have the required properties,

see Figures 4.18, 4.19 and 4.20.

A B

Figure 4.18: The Montesinos knot M(1; 7
2
, 7

2
, 7

2
).
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A

B

Figure 4.19: The Montesinos knot M(1; 3, 15
4
, 3).

A B

Figure 4.20: The Montesinos link M(1; 4, 12
5
, 4).
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