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The fundamental ingredients of stochastic optimization problems are

the horizon, the payoff and the model. The horizon may be finite, [0, T ] or

infinite [0,∞) (and even random) while the objective may be terminal, UT (·)

or “running”, U0,T (·). The model, denoted by M[0,T ], amounts in choosing a

probability space and the dynamics of the controlled and uncontrolled state

processes.

For convenience, we take T <∞ and a terminal payoff UT (·) depending

exclusively on the terminal values of the state processes. We will think of a

stochastic optimization problem as a triplet P
(
M[0,T ], [0, T ] , UT (·)

)
and we

note that this triplet is chosen at initial time t = 0. The objective is then to

find the optimal polices and the maximal expected utility (value function).
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A widely used approach for finding the optimal policies is based on

the celebrated Dynamic Programming Principle (DPP) which yields a “semi-

group”-type optimality property for the value function. It also allows us to

interpret the latter as the “intermediate utility” in arbitrary sub-horizons.

In Markovian models, the DPP allows us to work with the associated

Hamilton-Jacobi-Bellman (HJB) equation, which is a fully non-linear and pos-

sibly degenerate partial differential equation. In most such models, under

strong regularity assumptions, the first order conditions in the HJB equation

are used to give the optimal policies in feedback form. Still, a general approach

in establishing uniqueness, existence and regularity of the value function as well

as a verification theorem for the candidate optimal polcies are missing, due

to lack of compactness of the set of controls, degeneracies, state and control

constraints, and others.

In general settings, the elegant duality approach is being used (in par-

ticular, in models with dynamics linear in controls) to study the dual instead

of the primal problem. The dual problem has a much richer structure and may

be easier to analyze.

Other approaches to study such problems rely on backward stochastic

differential equations (especially problems with homogeneous payoffs), numer-

ical approximations and others.

By far, the most challenging task in building accurate models to study

real world applications is selecting the correct model. This is a tantamount
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task as it is well accepted that there is always model error and model decay.

The most popular approach to deal with model uncertainty is based

on “robust optimization”, where instead of choosing a specific model, one

chooses a family G[0,T ] of possible models, together with penalty functionals

that measure the plausibility of each member of this family (see, for example,

[20], [29]). The HJB equation then characterizes a stochastic differential game.

Another approach is based on the so-called “adaptive control”, where

dynamic, “real-time” changes of the model are taken into account, by es-

sentially “re-starting” the optimization problem for the remaining horizon(s)

(see, among others, [37], [38]). This approach is quite popular in more applied

aspects of optimization and in the engineering literature. It is, also, very pop-

ular in reinforcement learning where (near) optimal control policies are learned

through adaptive interactions with the environment ([32], [58]).

These two approaches have distinct features. Robust optimization

problems amount in choosing at initial time t = 0 a triplet P
(
G[0,T ], [0, T ] , UT (·)

)
,

instead of a single P
(
M[0,T ], [0, T ] , UT (·)

)
. The problems are challenging due

to their max-min features but are, nevertheless, amenable to the aforemen-

tioned stochastic optimization solutions approaches. Among others, they give

rise to time-consistent policies across [0, T ]. On the other hand, time consis-

tency comes with a price, as no model revisions can be incorporated beyond

t = 0. In other words, the choice P
(
G[0,T ], [0, T ] , UT (·)

)
is rather rigid and

predominantly very conservative, as one tries to incorporate all the adverse

scenaria in the modeling family.
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Adaptive optimization is, by nature, time-inconsistent. Between revi-

sion times, time-consistency is naturally preserved since one deals with a single

(locally in time valid) model. However, there is no global time-consistency, as

sequential “real-time” model revisions occur, and the previously chosen model

is abandoned. As a result, adaptive control is, from the one hand, not con-

strained to rigid, a priori model(s) commitment but, on the other, the associate

solutions violate, by nature, the time-consistency property.

Both approaches are widely used, and have been extensively analyzed

in a plethora of interesting theroetical and applied papers.

The goal of this thesis is to introduce a new, alternative approach to

deal with model unceratinty and “real-time” model revisions and, in turn,

develop a comparative study with existing approaches in the context of various

applications in financial mathematics.

This new approach is based on the forward performance criteria which

adapt in a time-consistent way to “real-time” model revisions. The novelty

is that these revisions are genuinely “model-free” in that they occur in “real-

time”, without any modeling pre-commitment. For example, in the context of

optimal liquidation (see Chapter 3 and Chapter 4), there is no a priori model

for the evolution of the market impact parameter λ. It is rather assumed that

this parameter switches at predictable times, to values only observable at the

switching times. As such, the model revisions capture the evolving reality and

allow for considerable flexibility.
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This forward approach thus incorporates “real-time” model revisions

and is, therefore, close to adaptive optimization. On the other hand, it pro-

duces, by construction, time-consistent policies and is, thus, close to the clas-

sical optimization with model(s) pre-commitment. In other words, it can be

thought as a hybrid approach that accommodates dynamic model changes

while preserving time-consistency.

We apply the forward approach with “real-time” model revisions in four

distinct problems: portfolio management in discrete and continuous settings

(binomial and lognormal, respectively), indifference valuation in lognormal

models and optimal liquidation in the continuous time Almgren-Chriss model.

We produce closed form solutions and characterize the optimal policies and

optimal criteria. As the analysis shows, one needs to solve various sequential

“inverse” optimal investment problems with random coefficients, correspond-

ing to model revisions in real-time.

We develop a comparative study with the classical settings. A main

novelty is the introduction of two performance metrics which measure the

discrepancies between the actual performance, and the projected or the true

optimal performances under the various criteria and behavior. We study these

metrics for various scenaria, related to favorable and non-favorable market

changes, and compare their performance. These metrics resemble the notion of

“regret”, which is now considered in a more dynamic and “real-time” manner.

Among others, we show that the regret of the forward decision maker is always

zero, independently of the upcoming model changes.
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In what follows, we describe each application separately. For each ap-

plication, we introduce the model, the forward and classical criteria, construct

the corresponding solutions and policies, and compare them in detail.
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Chapter 1

Real-time model adaptation and investment

behavior: the binomial case

1.1 Introduction

Classical stochastic optimization relies heavily on a pre-specified model

(or a family of models) chosen at initial time, say t = 0. In turn, the solution

is constructed with the full model (or a family of models) commitment for the

entire optimization horizon [0, T ] or [0,∞) . The main tool for this construction

is the Dynamic Programming Principle (DPP), which yields the value function

and the optimal policies via a backward-in-time recursive algorithm.

A direct consequence of this backward construction is that for each

optimization period (discrete or infinitesimally small in continuous time) this

a priori model commitment is fully embedded in both the value function and

the optimal policies. Indeed, in discrete models, the solution is constructed

from the last time step to the one before it and, then, recursively backwards till

the initial time. In continuous time Markovian models, the Hamilton-Jacobi-

Bellman (HJB) equation is a backward parabolic partial differential equation
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with a given terminal condition. Finally, in non-Markovian models, the value

function process is constructed via backward stochastic differential equations,

also reflecting the backward nature of the construction.

In practice, however, it is quite unrealistic to pre-commit to a model

setting, especially if the horizon is long. Model revision is very often inevitable

when the controller is interacting in real-time with the controlled system. In-

deed, more accurate information about the underlying model typically becomes

available while the controller exercises the control policies, and such informa-

tion should be, thus, incorporated and exploited in upcoming times.

As a result, an important question arises, namely, how to incorporate

this new information in a meaningful and tractable way. By far, the most

popular approach is to work, from the beginning, with richer models aiming

at incorporating most of the plausible future events and/or to involve criteria

that minimize the effects of using the wrong model. Such methods involve

robust criteria, models with many factors, hidden variables, linear or non-

linear filtering and others. Still, however, all these choices for the involved

model setting are done at the very beginning. For example, one needs to

pre-commit to a stochastic process on which filtering is being carried out.

Another equally imperative consideration when real-time model changes

occur is whether, in the “information-adjusted” optimization problem, time-

consistency must be preserved. In some settings, like for example, in mean-

variance optimization, time-consistency is inherently absent due to the path

dependent target. In the majority of the stochastic optimization problems,
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however, time-consistency follows directly from the DPP. As a matter of fact,

time-consistency is the most important direct consequence of the DPP.

How does then one incorporate real-time model changes? Should time-

consistency be a requirement for the new setting or not? Or shall one just

“restart” the model, using the current value of the state processes, optimize

in the remaining horizon and maintain the same terminal criterion that was

chosen form the beginning? Clearly, one cannot in general achieve both real-

time model revision and preservation of time-consistency under the original

objective. What is then more important for real-time decision making? Shall

one optimize the original criterion and violate the time-consistency, or preserve

the time-consistency and revise the criterion?

Herein, the aim is not to defend one behavior in relation to the other.

Rather, the aim is to initiate a comparative study among possible optimization

behavior under real-time model revision with or without adaptation of the

optimization criterion. This comparison is first cast in an investment problem

with a single stock, represented by a simple yet rich enough binomial model.

It is then extended to the Merton’ s optimal investment problem setting in the

next chapter. The “model knowledge” is revealed in real-time in the sense that,

at the beginning of each decision making period, the investors only knows the

one-period ahead conditional distribution of the stock return under the true

physical measure. Such model assumption is in direct contrast with the typical

classical formulation, where a full model (or a family of full models) needs to

be specified at t = 0. We also note that we do not incorporate any other
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model component to describe how the stock return parameters would change,

but solely require that these parameters are observable only at the time they

change.

We consider four types of investors, and will refer to them as the “oblivi-

ous” investor, the “stubborn” investor, the “robust” investor and the “forward”

investor.

i) Oblivious investor : he is ignorant of any future model changes. He

perceives that the market environment over the investment horizon will not

change and will remain as prescribed by the original (at t = 0) binomial model.

He solves the optimization problem at t = 0 and applies the associated optimal

policy for the entire horizon. Clearly, there will be a mismatch between the

parameters entering in the calculation of the optimal feedback policy and the

new, updated market parameters at later periods. Naturally, time-consistency

is preserved but this is virtual since the involved market input is not accurate.

Such type of investment behavior might correspond to the group of investors

in the market who are less efficient in acquiring updated market information.

ii) Stubborn investor : she is able to observe the intermediate model

change but chooses to optimize under the original criterion. Obviously, time-

inconsistency occurs in this case, and the optimal investment performance

before and after the model switching can be quite different. Such stubborn be-

havior is actually the most common way to incorporate model changes within

the field of adaptive control, and represents the type of investors who revise

their model very frequently in practice.
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iii) Robust investor : she works under the classical robust control paradi-

gm, where at t = 0 a family of possible models over the investment horizon is

chosen. It is assumed that this family contains the true underlying (unknown)

physical probability measure. However, like the oblivious investor, the robust

investor, although already taking into account at t = 0 all possible scenarios

of future model changes, does not revise this family of models once investment

is initiated. The robust investor might give excessive weight to the worst

case scenario even if the actual market model parameters turn out to be very

distinct from the worst scenario.

iv) Forward investor : like the stubborn investor, she takes into account

the model change at the intermediate time. However, contrary to the stubborn

investor, she chooses to revise the terminal criterion for the remaining horizon

in order to maintain the intertemporal consistency of the value function and

the optimal policies. As a result, she is forced to revise the terminal criterion

for the new shorter horizon according to a (predictable) forward performance

process.

Comparisons among the four different types of investment behavior

demonstrate their respective response to model changes. For instance, the

stubborn behavior solely focuses on the optimization problem over the re-

maining horizon and can lead to increased or decreased ultimate performance,

depending on the revealed new parameters. On the other hand, the forward

behavior, regardless of the underlying (unknown) true model, preserves the

same average performance when evaluated across times. This stability can be
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actually connected to regret, an important concept in real-time/on-line learn-

ing and optimization. Indeed, when assessed in retrospect, it is shown that

the forward behavior has achieved zero regret with respect to the true model

over the entire investment horizon. Due to the flexibility and the forward in

time recursive construction of the optimization criteria, the forward approach

allows dynamically revising the terminal criterion in real-time to minimize the

regret. In contrast, zero regret is typically not attainable under the other three

types of investment behavior.

1.2 Classical and forward views

Before getting into the comparative study on the four types of invest-

ment behavior, we would first present a very informal discussion of the clas-

sical and forward views for solving an optimal investment problem in a two-

period binomial model. The classical backward reasoning underlies the first

three types of investment behavior introduced above, whereas the forward op-

timization view gives rise to the forward behavior. The main purpose of this

discussion is to highlight the model commitment issue that is ubiquitous in

classical formulation through a motivation example, while at the same time,

advocating the flexibility of the forward optimization approach in terms of

model specification. Such model flexibility is one (and probably the most im-

portant one) property of the forward approach that distinguishes it from the

classical approach.
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We consider a market with a riskless asset whose interest rate is zero,

and a risky asset whose return is modeled by the random variables R1, R2 at

t = T1 and t = T2. We denote by (Ω,F) the measurable space that supports

R1, R2, and (Ft)t=0,T1,T2 the filtration that represents the information available

at the corresponding times. The investor would rebalance her portfolio at two

times t = 0 and t = T1, starting with initial wealth x ∈ R at t = 0. The

investment strategies satisfy the usual self-financing condition, and lead to the

wealth equations

XT1 = X0 + π1(R1 − 1), and XT2 = XT1 + π2(R2 − 1), (1.1)

with X0 = x.

We first consider the optimal investment problem for the backward

investor with a terminal utility U(x), set at t = 0 for the end of the horizon

t = T2. To better expose the idea and avoid unnecessary complexity, we assume

that all possible values of the returns are known at time t = 0, and denote by

Ru
1 , Rd

1 the two values of the random return R1, and Ruu
2 , Rud

2 , Rdu
2 , and Rdd

2

the four possible values for R2. At t = 0, the backward investor perceives the

stock return dynamics under the measure P̂, namely, P̂(R1 = Ru
1) = p1,

P̂(R2 = Ruu
2 |R1 = Ru

1) = p̂uu2 ,

and

P̂(R2 = Rdu
2 |R1 = Rd

1) = p̂du2 .

We also assume that the standard no-arbitrage condition satisfies, i.e., 0 <

p1, p̂
uu
2 , p̂du2 < 1, 0 < Rd

1, R
ud
2 , R

dd
2 < 1 < Ru

1 , R
uu
2 , Rdu

2 .
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The optimal investment problem the backward investor intends to solve

at t = 0 is

V̂0(x) = sup
π1,π2

EP̂ [U(XT2)|X0 = x] ,

where the expectation is taken under the (t = 0) perceived measure P̂. To

solve such problem based on the classical view, the backward investor first

solves

V̂T1(x) = esssup
π2

EP̂

[
U(XT2)

∣∣∣XT1 = x, FT1

]
∈ FT1 . (1.2)

Expanding the conditional expectation at the right hand side of above equation

yields

EP̂ [U(XT2)|XT1 = x, FT1 ]

=
(
U(x+ π2(Ruu

2 − 1))p̂uu2 + U(x+ π2(Rud
2 − 1))(1− p̂uu2 )

)
1{R1=Ru1 }

+
(
U(x+ π2(Rdu

2 − 1))p̂du2 + U(x+ π2(Rdd
2 − 1))(1− p̂du2 )

)
1{R1=Rd1}.

Hence, if R1 = Ru
1 is realized at t = T1, the investor with the current wealth

XT1 = x would follow the policy (if it exists)

π̂∗2,Ru1 (x) ∈ argmax
π2∈ARu1 (x)

(
U(x+ π2(Ruu

2 − 1))p̂uu2 + U(x+ π2(Rud
2 − 1))(1− p̂uu2 )

)
,

with ARu1 (x) being the admissible set for an investor with arbitrary wealth

x at t = T1, under the market condition that R1 = Ru
1 . Similar argument

associated to the market condition R1 = Rd
1 yields the optimizer π̂∗2,Rd1 (x), and

we hence arrive at the optimal strategy at t = T1 for an investor with wealth

XT1 = x

π̂∗2(x) = π̂∗2,Ru1 (x)1{R1=Ru1 } + π̂∗2,Rd1
(x)1{R1=Rd1} ∈ FT1 . (1.3)
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Plugging the optimal control π̂∗2(x) into the optimization problem (1.2), we

obtain the value function at t = T1 as

V̂T1(x) = V̂T1,Ru1
(x)1{R1=Ru1 } + V̂T1,Rd1

(x)1{R1=Rd1} ∈ FT1 ,

where the deterministic function

V̂T1,Ru1
(x) := U

(
x+ π̂∗2,Ru1 (x)(Ruu

2 − 1)
)
p̂uu2 +U

(
x+ π̂∗2,Ru1 (x)(Rud

2 − 1)
)

(1−p̂uu2 ),

and

V̂T1,Rd1
(x) := U

(
x+ π̂∗2,Rd1

(x)(Rdu
2 − 1)

)
p̂du2 +U

(
x+ π̂∗2,Rd1

(x)(Rdd
2 − 1)

)
(1−p̂du2 ).

Note that both the optimal control π̂∗2(x) and the value function V̂T1(x) depend

on the time t = 0 specified model dynamics for the second period, i.e., p̂uu2 ,

p̂du2 , Ruu
2 , Rud

2 , Rdu
2 and Rdd

2 , in addition to the realization of the random return

R1 at t = T1.

Now having found the value function V̂T1(x), the backward induction

procedure implies that

V̂0(x) = sup
π1

EP̂

[
V̂T1(XT1)

∣∣∣X0 = x
]

= sup
π1

EP̂

[
V̂T1(x+ π1(R1 − 1))

∣∣∣X0 = x
]

= sup
π1

((
V̂T1,Ru1

(x+ π1(Ru
1 − 1))

)
p1 +

(
V̂T1,Rd1

(x+ π1(Rd
1 − 1))

)
(1− p1)

)
.

(1.4)

Suppose there exists an maximizer π̂∗1(x) to equation (1.4) that is admissible

for any initial wealth X0 = x, then the value function V̂0(x) can be calculated

9



by plugging π̂∗1(x) into (1.4). Note that V̂T1,Ru1
(·) and V̂T1,Rd1

(·) are present

in the optimization problem (1.4), and they were computed earlier under the

optimization problem (1.2). In turn, the optimal control π̂∗1(x) and the value

function V̂0(x) would inevitably depend on the second period model dynamics

under the t = 0 perceived measure P̂, in addition to the first period model itself.

We refer to this feature of the backward approach as model commitment.

We now turn to the forward approach in the same binomial setting,

except that at time t = 0, we do not require any knowledge about the model

characteristics of the second period stock return. Indeed, we follow the recent

work in [3] on predictable forward performance processes. It is assumed that

both the possible values and the probability distribution for R2 ∈ FT2 are only

known at t = T1. In other words, the values of return Ruu
2 , Rud

2 , Rdu
2 and

Rdd
2 are FT1-measurable random variables, and p2 = EP[1{R2=Ru2 }|FT1 ], with

Ru
2 := Ruu

2 1{R1=Ru1 } + Rdu
2 1{R1=Rd1}, denotes the conditional probability of the

second period stock return going up under the true underlying measure P.

Different from the classical setting, however, in the forward setting,

the forward investor only needs to know the model characteristics of the first

period return in order to make investment decision at t = 0. Specifically,

at time t = 0, she is aware of Ru
1 and Rd

1, and p1 under the true measure

P. In addition, she chooses an initial (deterministic) utility function U0(x),

and looks for a deterministic utility UT1(x) at t = T1, such that the following

10



intertemporal consistency property

U0(x) = sup
π1

EP
[
UT1 (XT1)

∣∣∣X0 = x
]
, (1.5)

for each initial wealth X0 = x holds. This is the inverse of the classical optimal

investment problem discussed earlier, and the existence and uniqueness of its

solution for completely monotonic cases have been extensively studied in [3].

If the inverse problem (1.5) indeed has a solution, one can readily see that

the optimal allocation π∗1(·) (with its resulting optimal wealth X∗T1) and the

utility function UT1(·) depend exclusively on the first period model which is

accurately known at t = 0, when problem (1.5) is solved. This is in direct

contrast with the previous classical setting where we have shown that model

commitment in [0, T2] is inevitable.

To solve the second period forward problem, we look for a random

utility function UT2(· ;ω) ∈ FT1 , with the analogous intertemporal consistency

property to hold

UT1 (x) = esssup
π2

EP

[
UT2(XT2)

∣∣∣X∗T1 = x,FT1

]
, a.s.. (1.6)

Here, X∗T1 = x is the optimal wealth at t = T1 obtained by following the

optimal allocation π∗1(·) over [0, T1]. Notice that at t = T1, the conditional

probability p2 under the true measure P is known, and the same holds for the

possible values Ruu
2 , Rud

2 , Rdu
2 and Rdd

2 of the random return R2. Condition

(1.6) implies that given FT1 , on the set {R1 = Ru
1} ∈ FT1 , we look for a

11



(deterministic) utility function UT2,Ru1
(·), such that

UT1(x) = sup
π2

(
UT2,Ru1

(
x+ π2(Ruu

2 − 1)
)
p2 + UT2,Ru1

(
x+ π2(Rud

2 − 1)
)

(1− p2)
)
,

(1.7)

with p2, Ruu
2 and Rud

2 now being known as constants, conditional on FT1 .

This is an optimization problem similar to the first period problem (1.5), and

the existence and uniqueness results from [3] readily apply. If such solution

UT2,Ru1
(·) exists, then it would depend on the second period model character-

istics as shown in the optimization problem (1.7), as well as the first period

model through the presence of UT1(·). A similar argument can be made to

obtain UT2,Rd1
(·) on the set {R1 = Rd

1} ∈ FT1 by solving an analogous inverse

optimization problem as (1.7). The predictable forward utility is hence given

by

UT2(x) = UT2,Ru1
(x)1{R1=Ru1 } + UT2,Rd1

(x)1{R1=Rd1} ∈ FT1 .

It is now easy to see that both the forward utility UT2(·) and the optimal

allocation π∗2(·) (with its resulting optimal wealth X∗T2) depend on the model

for the first and second periods under the true measure P, whereas UT1(·) and

and the optimal allocation π∗1(·) (with its resulting optimal wealth X∗T1) only

depend on the true model for the first period. The intuition behind such model

flexibility is the compatibility between the sequential model revision and the

utility process construction, both of which proceed forward in real-time.
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1.3 Investment behavior in discrete time

In the previous section, we provided the (informal) discussion of the

model commitment issue arising in the classical backward optimization paradigm,

as well as how the forward approach can allow for model flexibility. This dis-

tinction between the two approaches has fundamental effects, one of which is

on the performance measurement of the associated investment strategies. In

this section, we introduce two metrics to quantitatively examine the perfor-

mance for various investors following the backward approach (i.e., the oblivious

investor, the stubborn investor and the robust investor), and for the investor

adopting the forward approach. One of the observations is that, by adaptively

revising the terminal criterion and seeking consistent investment behavior, the

forward approach produces rather stable actual performance even under ex-

treme unforeseen changes in the model. This stability is however not achievable

for any of the investors within the backward approach paradigm.

1.3.1 Model setup and the two metrics

We work under the two-period binomial framework introduced in pre-

vious section. For completeness, we recall that (Ω,F ,P) is the probability

space that supports the random variables R1, R2, and that the filtration

(Ft)t=0,T1,T2 represents the information available at the corresponding times.

We denote by E the (conditional) expectation operator under the physical

measure P. The evolution of the stock return over the first period is modeled

13



by P(R1 = Ru
1) = p1, and by

P (R2 = Ruu
2 |R1 = Ru

1) = puu2 and P
(
R2 = Rud

2 |R1 = Ru
1

)
= 1−puu2 , (1.8)

and

P
(
R2 = Rdu

2 |R1 = Rd
1

)
= pdu2 and P

(
R2 = Rdd

2 |R1 = Rd
1

)
= 1−pdu2 , (1.9)

for the second period. Let pu2 := puu2 1{R1=Ru1 } + pdu2 1{R1=Rd1} ∈ FT1 be the

conditional probability of the second period stock return going up under the

true model P. The standard non-arbitrage assumption further implies that

0 < p1, p
uu
2 , pdu2 < 1, and that 0 < Rd

1, R
ud
2 , R

dd
2 < 1 < Ru

1 , R
uu
2 , Rdu

2 .

Notice that in reality, the underlying physical measure P is typically

not fully known at t = 0. For a reasonable comparative study among different

investors, we assume that they share the same amount of the initial knowl-

edge about the underlying model. Specifically, all the investors are aware of

the possible values for the stock returns R1, R2, and in addition, the true

probability parameter p1 at t = 0. The true parameters puu2 and pdu2 , however,

only reveal to all the investors at t = T1, conditional on FT1 . For instance,

if R1 = Ru
1 has occurred over the first period, then the investors would know

the model (1.8) at t = T1. It is worth noting that by our assumption, the

true parameters puu2 and pdu2 are not known to any of the investors at time

t = 0. Such assumption corresponds to the investment practice where the

prediction power of any model typically decays as time moves into the future,

and instead, more accurate model knowledge is actually updated in real-time.
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The wealth equation under self-financing policies is given by (1.1) as

in the previous section. For the three investors under the classical backward

framework (i.e., the oblivious, the stubborn and the robust investors), we as-

sume that they have exponential utility U(x) = −e−γx, γ > 0. The forward

investor, on the other hand, takes a predictable forward criterion UF
T2(x) ∈ FT1

that would be constructed in the sequel. To quantitatively compare the invest-

ment performance of the four types of investors in the true market (governed

by the measure P), we introduce two metrics as follows. For a generic type of

investor, we define her actual performance under the true measure P as

V Actual
0 (x) = E

[
UT2

(
X
π̂∗1 ,π̂

∗
2

T2

) ∣∣∣X0 = x
]
, (1.10)

where UT2(·) is the terminal utility, and π̂∗1, π̂
∗
2 are the investment policies

derived under the associated type of investment behavior. The terminal wealth

X
π̂∗1 ,π̂

∗
2

T2 follows from the wealth equation (1.1), when the policies π̂∗1, π̂∗2 are

applied at the two rebalancing times t = 0, t = T1, respectively. Another

quantity of interest is the t = 0 targeted average performance denoted by

V Targeted
0 (x) for a generic type of investor who starts with initial wealth X0 = x.

This value function measures the t = 0 perceived optimal performance under

various investment behavior, and hence, it is in general not achievable. The

discrepancy between the two quantities

m0,T2(x) := V Actual
0 (x)− V Targeted

0 (x)

is the first metric we introduce to measure the stability of investment perfor-

mance under both the backward and forward framework. The second metric
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is the discrepancy

M0,T2(x) := V Actual
0 (x)− V True

0 (x),

where

V True
0 (x) := sup

π1,π2
E
[
UT2(Xπ1,π2

T2 )
∣∣∣X0 = x

]
, (1.11)

is the t = 0 true optimal performance, given the correct model P for the entire

horizon [0, T2]. We notice that V True
0 (x) is also not achievable in reality, as

it is computed in hindsight with the full knowledge of the underlying model.

The metric M0,T2(x) is directly motivated in spirit by the fundamental concept

of regret from the online learning/optimization research field (see, e.g. [55]).

Intuitively, it measures how much regret the investor undergoes for not having

taken the genuine optimal policies under the true measure P, which is not

known at t = 0. It is expected that a stable investment process produce as

minimal regret as possible, under various market conditions (i.e., correspond-

ing to different P).

Before we start discussing in detail the four types investment behav-

ior, it is worth noting that many arguments would relate to the solution of a

single-period binomial model investment problem under exponential type of

utility/value functions. We hence consider such problem separately and ana-

lyze the existence and uniqueness of the optimal policy. Let Ru, Rd denote the

two possible values of the stock return with 0 < Rd < 1 < Ru, and 0 < p < 1

denote the probability of the event {R = Ru}. Then, under an exponential

type of terminal utility U(x) = −e−γx, γ > 0, the optimization problem is to
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solve

V0(x) = sup
π

(
−e−γ(x+π(Ru−1))p− e−γ(x+π(Rd−1))(1− p)

)
, (1.12)

for each initial wealth x ∈ R. Direct computation yields the unique maximizer

π∗(x) = − 1
γ(Ru −Rd) ln

(
1−Rd

Ru − 1
1− p
p

)
,

for all x ∈ R, following from the first order condition and the second order

condition for global concavity.

1.3.2 Oblivious investor (model non-adaptive/goal persistent)

We first consider the oblivious investor who is also known as the model

non-adaptive/goal persistent investor. As discussed earlier, the backward ap-

proach requires a full model (or a family of full models, see section 2.4 for the

robust investor) for both periods ahead. We refer to this model as the perceived

model under the perceived measure P̂, a measure that may not necessarily co-

incide with the genuine physical measure P. The oblivious investor holds onto

such perceived model P̂ specified at t = 0 for the entire horizon [0, T2] without

revising the model at t = T1 (i.e. non-adaptive), and pre-commits to the t = 0

specified terminal utility function U(x) = −e−γx (i.e. goal persistent). The

time t = 0 model he adopts under the perceived measure P̂ is given by

P̂(R1 = Ru
1) = p1, P̂(R1 = Rd

1) = 1− p1,

for the first period, and

P̂ (R2 = Ruu
2 |R1 = Ru

1) = p̂uu2 , P̂
(
R2 = Rud

2 |R1 = Ru
1

)
= 1− p̂uu2 ,
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and

P̂
(
R2 = Rdu

2 |R1 = Rd
1

)
= p̂du2 , P̂

(
R2 = Rdd

2 |R1 = Rd
1

)
= 1− p̂du2 ,

for the second period. We also denote by p̂u2 := p̂uu2 1{R1=Ru1 } + p̂du2 1{R1=Rd1} ∈

FT1 the conditional probability for the second period return going up under

P̂. The parameters 0 < p̂uu2 , p̂du2 < 1 are known at time t = 0 to the obliv-

ious investor, who would solve the stochastic optimization problem at t = 0

under the perceived measure P̂. Different from the stubborn and the forward

investors, he would follow the t = 0 optimal policies π̂∗1, π̂∗2 all the way through

the two periods, being oblivious (i.e. non-adaptive) to the accurate knowledge

for the second period at t = T1.

We now solve the classical optimization problem under the perceived

measure P̂ for the oblivious investor with the exponential utility U(x) = −e−γx.

At t = T1, given any wealth XT1 = x ∈ R, equation (1.2) yields the optimiza-

tion problem

sup
π2∈R

(
−e−γ(x+π2(Ruu2 −1))p̂uu2 − e−γ(x+π2(Rud2 −1))(1− p̂uu2 )

)
, if R1(ω) = Ru

1 ,

and

sup
π2∈R

(
−e−γ(x+π2(Rdu2 −1))p̂du2 − e−γ(x+π2(Rdd2 −1))(1− p̂du2 )

)
, if R1(ω) = Rd

1.

According to (1.12), the unique optimal policy at t = T1 is given by

π̂∗2 = − 1
γ(Ruu

2 −Rud
2 ) ln

(
1−Rud

2
Ruu

2 − 1
1− p̂uu2
p̂uu2

)
1{R1=Ru1 }
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− 1
γ(Rdu

2 −Rdd
2 ) ln

(
1−Rdd

2
Rdu

2 − 1
1− p̂du2
p̂du2

)
1{R1=Rd1}

= − 1
γ(Ru

2 −Rd
2) ln

(
q2

1− q2

1− p̂u2
p̂u2

)
∈ FT1 , (1.13)

whereRu
2 := Ruu

2 1{R1=Ru1 }+R
du
2 1{R1=Rd1} ∈ FT1 , Rd

2 := Rud
2 1{R1=Ru1 }+R

dd
2 1{R1=Rd1} ∈

FT1 and the risk neutral probability

q2 := qu21{R1=Ru1 } + qd21{R1=Rd1}

= 1−Rud
2

Ruu
2 −Rud

2
1{R1=Ru1 } + 1−Rdd

2
Rdu

2 −Rdd
2
1{R1=Rd1}.

The optimal value function at t = T1 under perceived measure P̂ is hence given

by

V̂T1(x) =

−e−γx

p̂uu2

(
1−Rud

2
Ruu

2 − 1
1− p̂uu2
p̂uu2

) Ruu2 −1

Ruu2 −R
ud
2 + (1− p̂uu2 )

(
1−Rud

2
Ruu

2 − 1
1− p̂uu2
p̂uu2

) Rud2 −1

Ruu2 −R
ud
2

1{R1=Ru1 }

−e−γx

p̂du2

(
1−Rdd

2
Rdu

2 − 1
1− p̂du2
p̂du2

) Rdu2 −1

Rdu2 −R
dd
2 + (1− p̂du2 )

(
1−Rdd

2
Rdu

2 − 1
1− p̂du2
p̂du2

) Rdd2 −1

Rdu2 −R
dd
2

1{R1=Rd1}

= −e−γx
(
p̂u2
q2

)q2 (1− p̂u2
1− q2

)1−q2

∈ FT1 . (1.14)

By backward induction, we now need to solve the optimization problem (1.4)

under the perceived measure P̂, once we have computed V̂T1(x) from (1.14).

Indeed, according to (1.12), the unique optimal policy at t = 0 is

π̂∗1 = − 1
γ(Ru

1 −Rd
1)
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× ln
 q1

p1

1− p1

1− q1

(
p̂du2
qd2

)qd2 ( qu2
p̂uu2

)qu2 (1− p̂du2
1− qd2

)1−qd2 ( 1− qu2
1− p̂uu2

)1−qu2
 , (1.15)

where q1 := 1−Rd1
Ru1−R

d
1

is the risk neutral probability for the first period.

The oblivious investor would follow π̂∗1 over the first period and then π̂∗2
for the second period, both in the underlying market whose genuine dynamics

are described by the true measure P. Since both policies π̂∗1, π̂∗2 are admissible

in the genuine market, the oblivious investor, starting from X0 = x, achieves

terminal wealth

X
π̂∗1 ,π̂

∗
2

T2 = x+ π̂∗1(R1 − 1) + π̂∗2(R2 − 1),

and hence, his actual t = 0 average performance under the physical measure

P is given by V Actual
0 (x), x ∈ R, as in (1.10). On the other hand, under the

t = 0 perceived measure P̂, the targeted optimal performance of the oblivious

investor is

V Targeted
0 (x) = EP̂

[
U
(
X
π̂∗1 ,π̂

∗
2

T2

) ∣∣∣X0 = x
]
.

The value function V True(x) is defined as in (1.11), given the full knowledge

of the measure P. We are now ready to provide the following quantitative

comparison result for the oblivious investor under the two introduced metrics.

Proposition 1.3.1. For any probability parameters puu2 , pdu2 under P (see

(1.8), 1.9), the regret of the oblivious investor is always nonpositive, i.e.,

M0,T2(x) = V Actual
0 (x)− V True

0 (x) ≤ 0.
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The discrepancy

m0,T2(x) = V Actual
0 (x)− V Targeted

0 (x) < 0,

if

• puu2 > p̂uu2 , when qu2
1−qu2

1−p̂uu2
p̂uu2

> 1;

• puu2 < p̂uu2 , when qu2
1−qu2

1−p̂uu2
p̂uu2

< 1;

• pdu2 > p̂du2 , when qd2
1−qd2

1−p̂du2
p̂du2

> 1;

• pdu2 < p̂du2 , when qd2
1−qd2

1−p̂du2
p̂du2

< 1.

Respectively, m0,T2(x) = V Actual
0 (x) − V Targeted

0 (x) > 0, if the above inequality

in each regime is reversed.

Proof. We first compute the optimal strategy π∗1, π∗2 and the associated value

function V True
0 (x), given the true model P for both periods. The computation

is essentially the same as for solving the problem under the perceived model

P̂, and we hence only present the corresponding optimal controls and value

functions under P. The unique optimal policy at t = T1 is

π∗2 = − 1
γ(Ru

2 −Rd
2) ln

(
q2

1− q2

1− pu2
pu2

)
∈ FT1 . (1.16)

It follows that the value function at t = T1 under the true model P is

VT1(x) = −e−γx
(
pu2
q2

)q2 (1− pu2
1− q2

)1−q2

∈ FT1 . (1.17)
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In turn,

π∗1 = − 1
γ(Ru

1 −Rd
1)

× ln
 q1

p1

1− p1

1− q1

(
pdu2
qd2

)qd2 ( qu2
puu2

)qu2 (1− pdu2
1− qd2

)1−qd2 ( 1− qu2
1− puu2

)1−qu2
 , (1.18)

Therefore, for each x ∈ R,

V True
0 (x) = E

[
U(Xπ∗1 ,π

∗
2

T2 )
]

= −e−γxE
[
e−γ(π∗1(R1−1)+π∗2(R2−1))

]

= −e−γxE
[
e−γπ

∗
1(R1−1)E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]]
,

where the conditional expectation

E
[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
=
(
e−γπ

∗
2(Ruu2 −1)puu2 + e−γπ

∗
2(Rud2 −1)(1− pud2 )

)
1{R1=Ru1 }

+
(
e−γπ

∗
2(Rdu2 −1)pdu2 + e−γπ

∗
2(Rdd2 −1)(1− pdu2 )

)
1{R1=Rd1}

is indeed minimized by the unique minimizer π∗2 given in (1.16), according

to (1.12). On the other hand, the t = 0 actual performance of the oblivious

behavior under π̂∗1, π̂∗2 is

V Actual
0 (x) = E

[
U(X π̂∗1 ,π̂

∗
2

T2 )
]

= −e−γxE
[
e−γ(π̂∗1(R1−1)+π̂∗2(R2−1))

]

= −e−γxE
[
e−γπ̂

∗
1(R1−1)E

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]]
,

with the conditional expectation

E
[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
≥ E[e−γπ∗2(R2−1)

∣∣∣FT1 ].

As the consequence,

V Actual
0 (x) = −e−γx

(
p1e
−γπ̂∗1(Ru1−1)E

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
1{R1=Ru1 }
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+(1− p1)e−γπ̂∗1(Rd1−1)E
[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
1{R1=Rd1}

)
≤ −e−γx

(
p1e
−γπ̂∗1(Ru1−1)E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
1{R1=Ru1 }

+(1− p1)e−γπ̂∗1(Rd1−1)E
[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
1{R1=Rd1}

)
≤ −e−γx

(
p1e
−γπ∗1(Ru1−1)E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
1{R1=Ru1 }

+(1− p1)e−γπ∗1(Rd1−1)E
[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
1{R1=Rd1}

)
= V True

0 (x),

where the last inequality follows, since π∗1 from (1.18) is indeed the unique

minimizer according to (1.12). Next, we compute the targeted optimal perfor-

mance under P̂

V Targeted
0 (x) = EP̂

[
U(X π̂∗1 ,π̂

∗
2

T2 )
]

= −e−γxEP̂

[
e−γ(π̂∗1(R1−1)+π̂∗2(R2−1))

]

= −e−γxEP̂

[
e−γπ̂

∗
1(R1−1)EP̂

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]]
,

where the conditional expectation is

EP̂

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
=
(
e−γπ̂

∗
2(Ruu2 −1)p̂uu2 + e−γπ̂

∗
2(Rud2 −1)(1− p̂uu2 )

)
1{R1=Ru1 }

+
(
e−γπ̂

∗
2(Rdu2 −1)p̂du2 + e−γπ̂

∗
2(Rdd2 −1)(1− p̂du2 )

)
1{R1=Rd1}.

To compare V Targeted
0 (x) with V Actual

0 (x), we notice that over the first period,

the same control π̂∗1 and the same probability 0 < p1 < 1 would be ap-

plied in the computation of the two value functions. It hence follows that

if EP̂

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
< E

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
, for all ω ∈ Ω, then V Actual

0 (x) <

V Targeted
0 (x), and vice versa. We next look at the case when qu2

1−qu2
1−p̂uu2
p̂uu2

> 1.
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Direct computation based on (1.13) yields −γπ̂∗2(Ruu
2 − 1) > −γπ̂∗2(Rud

2 − 1),

and hence,

e−γπ̂
∗
2(Ruu2 −1)p̂uu2 +e−γπ̂∗2(Rud2 −1)(1−p̂uu2 ) < e−γπ̂

∗
2(Ruu2 −1)puu2 +e−γπ̂∗2(Rud2 −1)(1−puu2 ),

if p̂uu2 < puu2 < 1. Similarly, the case qd2
1−qd2

1−p̂du2
p̂du2

> 1 gives rise to −γπ̂∗2(Rdu
2 −

1) > −γπ̂∗2(Rdd
2 − 1), and consequently,

e−γπ̂
∗
2(Rdu2 −1)p̂du2 +e−γπ̂

∗
2(Rdd2 −1)(1− p̂du2 ) < e−γπ̂

∗
2(Rdu2 −1)pdu2 +e−γπ̂

∗
2(Rdd2 −1)(1−pdu2 ),

if p̂du2 < pdu2 < 1. The above results further lead to EP̂

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
<

E
[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
, and hence m0,T2(x) = V Actual

0 (x) − V Targeted
0 (x) < 0. The

other two cases in the proposition can be similarly derived.

The conclusions in Proposition 1.3.1 are rather intuitive regarding the

assessment of performance under both metrics. The regret metric M0,T2(x) is

nonpositive for all x ∈ R, due to the fact that the oblivious investor made his

decision fully based on the perceived measure P̂ rather than the true measure

P, while his performance is evaluated in the true market under the measure P.

The comparison between V Actual
0 (x) and V Targeted

0 (x) for the first metric

m0,T2(x), on the other hand, is more subtle. For fixed risk neutral probabili-

ties, when the perceived probabilities p̂uu2 , p̂du2 are sufficiently higher than the

true probabilities puu2 , pdu2 , corresponding to the second and fourth cases in the

proposition, the targeted performance is higher than the actual performance,

as the oblivious investor overestimates the return of the market. However,
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when the perceived probabilities are significantly lower than the true proba-

bilities, the targeted performance is also higher than the actual performance,

corresponding to the first and third cases in the proposition. In these scenarios,

one can notice that π̂∗2 given by (1.13) is negative with a large absolute value,

indicating substantial withdrawal from the investment in the stock. Failing to

exploit the actually favorable investment opportunity over the second period

in the market, the oblivious investor’s actual performance is indeed worse than

his t = 0 target.

1.3.3 Stubborn investor (model adaptive/goal persistent)

Like the oblivious investor, the stubborn investor also needs to specify

the perceived measure for the entire horizon [0, T2] at t = 0, in order to compute

the first period optimal strategy. For comparison purposes, we assume that

the same perceived measure P̂ is adopted by the stubborn investor at t = 0

and her terminal utility is also U(x) = −e−γx, x ∈ R, for γ > 0. However,

different from the oblivious investor, she is “model adaptive” in the sense that

she reconsiders the optimization problem for the remaining horizon at t = T1,

as soon as she learns the accurate model for the second period at t = T1.

Therefore, conditional on FT1 , the stubborn investor solves the optimization

problem

VT1(x) = esssup
π2

E [U(XT1 + π2(R2 − 1))|XT1 = x,FT1 ] ,
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under the true measure P, and obtains the optimal control π∗2 given by (1.16).

The terminal wealth is hence represented by X π̂∗1 ,π
∗
2

T2 = x+ π̂∗1(R1−1)+π∗2(R2−

1), with π̂∗1 being derived at t = 0 under the perceived measure P̂ as in (1.15).

We have the following result on the performance of the stubborn investor under

the two metrics.

Proposition 1.3.2. For any probability parameters puu2 , pdu2 under P (see

(1.8), 1.9), the regret of the stubborn investor is always nonpositive, i.e.,

M0,T2(x) = V Actual
0 (x)− V True

0 (x) ≤ 0.

The discrepancy

m0,T2(x) = V Actual
0 (x)− V Targeted

0 (x) < 0,

if puu2 ∈ (p̂uu2 , qu2 ] or puu2 ∈ [qu2 , p̂uu2 ), and if pdu2 ∈ (p̂du2 , q
d
2 ] or pdu2 ∈ [qd2 , p̂du2 ).

Proof. Working as in the proof of Proposition 1.3.1, we obtain that the t = 0

true optimal performance under measure P is

V True
0 (x) = E

[
U(Xπ∗1 ,π

∗
2

T2 )
]

= −e−γxE
[
e−γπ

∗
1(R1−1)E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]]
,

whereas the t = 0 actual average performance of the stubborn investor is

V Actual
0 (x) = E

[
U(X π̂∗1 ,π

∗
2

T2 )
]

= −e−γxE
[
e−γπ̂

∗
1(R1−1)E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]]
.

According to (1.12), π∗1 from (1.18) is the unique minimizer of the quantity

min
π1

E
[
e−γπ1(R1−1)E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]]
,
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given the second period optimizer π∗2 from (1.16). It hence leads to that

M0,T2(x) = V Actual
0 (x) − V True

0 (x) ≤ 0 under the genuine probability measure

P. To examine the metric m0,T2(x), we notice that the t = 0 value function

under the perceived measure P̂ remains as

V Targeted
0 (x) = EP̂

[
UT2(X π̂∗1 ,π̂

∗
2

T )
]

= −e−γxEP̂

[
e−γπ̂

∗
1(R1−1)EP̂

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]]
.

Recall that over the first period, the probability measures P̂ and P share the

same model parameter p1, and the same policy π̂∗1 is used. Hence, in order to

compare V Targeted
0 (x) and V Actual

0 (x), if suffices to compare EP̂

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
and E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
. Substituting the corresponding optimal policies π̂∗2,

π∗2 into the two conditional expectations, respectively, we obtain

EP̂

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
=
(
p̂uu2
qu2

)qu2 (1− p̂uu2
1− qu2

)1−qu2
1{R1=Ru1 }

+
(
p̂du2
qd2

)qd2 (1− p̂du2
1− qd2

)1−qd2
1{R1=Rd1},

and

E
[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
=
(
puu2
qu2

)qu2 (1− puu2
1− qu2

)1−qu2
1{R1=Ru1 }

+
(
pdu2
qd2

)qd2 (1− pdu2
1− qd2

)1−qd2
1{R1=Rd1}.

Therefore, we need to examine the monotonicity of the functions f(p; qu2 ) :=

pq
u
2 (1 − p)1−qu2 and f(p; qd2) := pq

d
2 (1 − p)1−qd2 for 0 < p < 1, under fixed risk

neutral probabilities 0 < pu2 , p
d
2 < 1. Clearly, these functions have maximum

values attained at qu2 , qd2 , respectively. We therefore easily conclude that if

puu2 ∈ (p̂uu2 , qu2 ] or puu2 ∈ [qu2 , p̂uu2 ), and if pdu2 ∈ (p̂du2 , q
d
2 ] or pdu2 ∈ [qd2 , p̂du2 ),
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then EP̂

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
< E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
, which leads to m0,T2(x) <

0. Analogously, m0,T2(x) > 0 if the second period stock return probabilities

puu2 , pdu2 under the true model P stay outside the above regimes.

Proposition 1.3.2 provides an intuitively correct comparison between

the targeted performance and the actual performance. It shows that if the

genuine market condition for the future period [T1, T2], compared to the t = 0

perceived market condition for [T1, T2], deviates substantially from the risk

neutral case , then proper reaction by immediately taking into account such

unanticipated deviation can lead to better overall performance than initially

targeted. On the other hand, if the true market condition turns out to be close

to the risk neutral case than initially expected, then even direct response to

this correct knowledge at time t = T1 can not enable the stubborn investor to

achieve the targeted performance under the measure P̂.

1.3.4 Robust investor (model robust/goal persistent)

In the context of optimization under model ambiguity, different formu-

lations and solutions have been proposed within the paradigm of backward

approach, among which the readers can find the seminal works including the

(backward) robust approach in [29] and the multiple priors formulation in

[20]. A more unified discussion in the dynamic setting is provided in [40]. The

robust control approach takes into account a family of possible models and

typically leads to conservative investment behavior for an ambiguity averse in-
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vestor. This attitude is reflected in the underlying mathematical formulation

that solves a maxmin problem; an optimal control law is sought to mainly re-

spond the worst scenario that the decision maker can ever possibly encounter

from the (presumed malevolent) nature. As a consequence, the robust ap-

proach provides an insurance on the investor’s performance against the most

unfavorable market condition by not exploring other investment opportuni-

ties that may also possibly occur. In particular, if the true market condition

turns out not to be so adverse, or even favorable for investment, then the

conservative behavior implied by the robust approach may, in retrospect, in-

duce large losses. The regret concept we introduced earlier turns out to be

an appropriate metric to gauge the loss of the investor being too conservative

when facing model uncertainty. Indeed, under the current two-period bino-

mial model setting, we show that the well documented non-participation effect

could occur for the second period if the ambiguity set of the investor is large

enough. Such conservative behavior leads to zero allocation in the risky asset.

Although the robust approach protects the investor from potentially harmful

market scenarios in this way, it can in turn cause more regret in hindsight if

the genuine market opportunity turns out to be actually favorable for more

active investment behavior.

As before, we focus on the representative two-period binomial model

with uncertainty on the second period stock return probabilities, with only

the first period probability revealed to the robust investor at t = 0. Different

from how the other investors respond to model uncertainty, the robust investor
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would impose a family of probabilities for the second period stock return going

up, conditional on the first period return going up or down. We denote the

assocaited ambiguity sets as p̂uu2 ∈ [εu, 1−εu] and p̂du2 ∈ [εd, 1−εd], respectively.

We emphasize that not only the second period stock return probabilities can

be conditioned on the first period return movement, but also the ambiguity

sets may be dependent on the outcome of the first period stock return. The

latter captures adaptive learning incorporated into the robust framework (see,

e.g. [7], or [21]). As time evolves, the ambiguity sets may shrink ([7]) or

expand depending on the nature of the signal and the underlying quantity to

learn ([21]), while if learning is not applied, the ambiguity sets would remain

constant bandwidth across different periods. Although adaptive learning can

be included in the robust control framework, we note that this seemingly

online attribute of such model-based learning does not change the backward

reasoning nature of the robust approach. Still, the issue of model commitment

prevails even with such kind of learning, as decision made for today is still

contingent on the t = 0 prescribed reaction rule to the future stock returns

through the model-based learning. In fact, one can soon recognize that the

learning rule is actually part of the model state dynamics, and that it has

been taken into account by the backward induction method in discrete time

to generate time-consistent optimal strategy.

To avoid the unnecessary complexity due to the model-based learning

that does not genuinely change the backward reasoning nature, we formulate

the robust control problem in its original form without the component of learn-
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ing. The t = 0 problem to solve is the maxmin problem under the exponential

utility U(x) = −e−γx,

V Targeted
0 (x) = sup inf

π1,π2 Q∈Q
EQ

[
UT2(Xπ1,π2

T2 )|X0 = x
]
, (1.19)

where the family of possible measures Q is defined as

Q :=
{
Q : Q(R2 = Ruu

2 |R1 = Ru
1) = p̂uu2 , Q(R2 = Rdu

2 |R1 = Rd
1) = p̂du2 ,

with p̂uu2 ∈ [εu, 1− εu], p̂du2 ∈ [εd, 1− εd], and Q(A) = P(A), ∀A ∈ FT1

}
.

In the above formulation, we assume 0 < εu, εd < 1
2 to be constants known

at t = 0. Note that such assumption complies with the model commitment

discussed earlier, which requires the pre-specification of one or a family of

possible models for the future stock returns at t = 0.

To solve problem (1.19), we first solve

V Targeted
T1 (XT1) = esssup essinf

π2 Q∈Q
EQ

[
−e−γ(XT1 +π2(R2−1))

∣∣∣XT1 , FT1

]
(1.20)

= max
π2

min
εu≤p̂uu2 ≤1−εu
εd≤p̂du2 ≤1−εd

(− exp (−γ (XT1 + π2(Ruu
2 − 1))) p̂uu2

− exp
(
−γ

(
XT1 + π2(Rud

2 − 1)
))

(1− p̂uu2 )
)
1{R1=Ru1 }

+
(
− exp

(
−γ

(
XT1 + π2(Rdu

2 − 1)
))
p̂du2

− exp
(
−γ

(
XT1 + π2(Rdd

2 − 1)
))

(1− p̂du2 )
)
1{R1=Rd1}

.
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The above maxmin problem can be separately considered on the sets {R1 =

Ru
1} and {R1 = Rd

1}; for instance, the problem conditional on {R1 = Ru
1} is

to solve

max
π2

min
εu≤p̂uu2 ≤1−εu

f(π2, p̂
uu
2 ) := max

π2
min

εu≤p̂uu2 ≤1−εu

(
−exp (−γ (XT1 + π2(Ruu

2 − 1))) p̂uu2

− exp
(
−γ

(
XT1 + π2(Rud

2 − 1)
))

(1− p̂uu2 )
)
,

with the function f(π2, p̂
uu
2 ) clearly being a convex-concave function, and con-

ditions for applying the Minmax theorem can be easily verified (see e.g. [41]).

Hence, we turn to solve

min
εu≤p̂uu2 ≤1−εu

max
π2

(
− exp

(
− γ (XT1 + π2(Ruu

2 − 1))
)
p̂uu2

− exp
(
−γ

(
XT1 + π2(Rud

2 − 1)
))

(1− p̂uu2 )
)
. (1.21)

For any fixed p̂uu2 ∈ [εu, 1− εu], according to (1.12), the unique maximizer π̂∗2
on the set {R1 = Ru

1} is given by

π̂∗21{R1=Ru1 } = − 1
γ(Ruu

2 −Rud
2 ) ln

(
1−Rud

2
Ruu

2 − 1
1− p̂uu2
p̂uu2

)
. (1.22)

Similar argument on the set {R1 = Rd
1} yields

π̂∗21{R1=Rd1} = − 1
γ(Rdu

2 −Rdd
2 ) ln

(
1−Rdd

2
Rdu

2 − 1
1− p̂du2
p̂du2

)
, (1.23)

for any fixed p̂du2 ∈ [εd, 1 − εd]. It remains to solve the outer minimization

problem in (1.21) after we substitute (1.22) into the objective function to be

minimized. Direct computation leads to the minimization problem

min
εu≤p̂uu2 ≤1−εu

−e−γx
( qu2

1− qu2
1− p̂uu2
p̂uu2

)1−qu2
p̂uu2 +

(
qu2

1− qu2
1− p̂uu2
p̂uu2

)−qu2
(1− p̂uu2 )


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with XT1 = x ∈ R, whose minimizer is

p̂uu∗2 =


1− εu, if qu2 ≥ 1− εu;

εu, if qu2 ≤ εu;

qu2 , if εu < qu2 < 1− εu.

Accordingly, from (1.22), we can conclude that, conditional on {R1 = Ru
1},

• if 0 < qu2 < εu, then p̂uu∗2 = εu and

π̂∗21{R1=Ru1 } = − 1
γ(Ruu

2 −Rud
2 ) ln

(
1−Rud

2
Ruu

2 − 1
1− εu
εu

)
> 0,

i.e., the robust investor would long the risky asset during the second

period;

• if 0 < 1− εu < qu2 , then p̂uu∗2 = 1− εu and

π̂∗21{R1=Ru1 } = − 1
γ(Ruu

2 −Rud
2 ) ln

(
1−Rud

2
Ruu

2 − 1
εu

1− εu

)
< 0,

i.e., the robust investor would short the risky asset during the second

period;

• if εu ≤ qu2 ≤ 1− εu, then p̂uu∗2 = qu2 and

π̂∗21{R1=Ru1 } = 0,

i.e., the robust investor would hold zero position in the risky asset during

the second period.
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Similar conclusions hold on the set {R1 = Rd
1}. The above results

derived under the robust control framework have rather intuitive interpreta-

tions. Indeed, the first two scenarios correspond to a not too large ambiguity

set (bounded from above or below by the risk neutral probability), and hence

the investor would be relatively confident about what action to take. When all

the perceived probabilities for the stock return going up over the second period

exceed the risk neutral probability, the investor should long the risky asset.

On the other hand, if the investor perceives the probability of future return

going up to be definitely lower than the risk neutral probability, she should

short the risky asset. In the third scenario where the ambiguity set is too

large (containing the risk neutral probability), the ambiguity averse investor

has not accumulated sufficient information to make investment decisions and,

hence, the non-participation effect occurs. Such conservative behavior under

robust control framework has been well documented in both theoretical and

empirical studies (see e.g. [17], [13]).

When the ambiguity set is large enough to induce the non-participation

behavior over the second period, the value function V Targeted
T1 (·) coincides with

the terminal exponential utility, since all wealth would be put into the riskless

asset with zero interest rate for the second period. Accordingly,

V Targeted
0 (x) = max

π1
EP
[
V Targeted
T1 (XT1)

∣∣∣X0 = x
]

= max
π1

EP

[
−e−γ(x+π1(R1−1))

∣∣∣X0 = x
]
,

where we have applied the fact Q(A) = P(A), for any Q ∈ Q and any A ∈ FT1 .
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Direct computation then gives the first period optimal policy

π̂∗1 = − 1
γ(Ru

1 −Rd
1) ln

(
1−Rd

1
Ru

1 − 1
1− p1

p1

)
, (1.24)

as well as the t = 0 targeted value function

V Targeted
0 (x) = −e−γx

( q1

1− q1

1− p1

p1

)1−q1

p1 +
(

q1

1− q1

1− p1

p1

)−q1

(1− p1)


= −e−γx
(

q1

1− q1

1− p1

p1

)−q1 1− p1

1− q1
. (1.25)

The non-participation effect guarantees that the robust investor can

still do relatively well even under the worst scenario, but typically at the cost

of giving up the opportunity to exploit possibly beneficial market conditions.

In the next proposition, we quantitatively measure the loss in terms of regret

after showing that the regret for the robust investor is also nonpositive. Our

result demonstrates that the conservative behavior under the robust control

approach can produce more regret if the reality turns out to be further from

the worst scenario.

Proposition 1.3.3. For any probability parameters puu2 , pdu2 under P (see (1.8),

(1.9)), that satisfy puu2 ∈ [εu, 1− εu], pdu2 ∈ [εd, 1− εd], the regret of the robust

investor is nonpositive, i.e.,

M0,T2(x) = V Actual
0 (x)− V True

0 (x) ≤ 0.

Furthermore, if qu2 ∈ [εu, 1 − εu] and qd2 ∈ [εd, 1 − εd], then there exists a

function C : [εu, 1− εu]× [εd, 1− εd] 7→ R+, such that the discrepancy

M0,T2(x) = m0,T2(x) = V Actual
0 (x)− V True

0 (x)
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= V Targeted
0 (x)− V True

0 (x) = (1− C(puu2 , pdu2 ))V Actual
0 (x),

for all initial wealth x ∈ R, with

min
εu≤puu2 ≤1−εu
εd≤pdu2 ≤1−εd

C(puu2 , pdu2 )→ 0, as εu, εd → 0. (1.26)

Proof. The regret of the robust investor being nonpositive follows easily from

the fact that the optimal robust controls π̂∗1, π̂∗2 are in general only admissible

controls, rather than the genuine optimal controls that yield the value function

V True
0 (x). Indeed, let π∗1 and π∗2 be the optimal controls of the classical stochas-

tic optimization problem in hindsight under the exponential utility, with the

full knowledge of the true measure P given. Then clearly,

V True
0 (x) = E

[
−e−γ(x+π∗1(R1−1)+π∗2(R2−1))

]

≥ E
[
−e−γ(x+π̂∗1(R1−1)+π̂∗2(R2−1))

]
= V Actual

0 (x),

for all x ∈ R, since both strategies (π∗1, π∗2) and (π̂∗1, π̂∗2) are evaluated under

the same true measure P, with the former being the optimizer under P. To

quantify the loss in regret, we notice that under the additional assumption

εu ≤ qu2 ≤ 1− εu and εd ≤ qd2 ≤ 1− εd, the optimal robust controls π̂∗1 is given

by (1.24) while π̂∗2 = 0. It hence yields that

V Actual
0 (x) = E

[
−e−γ(x+π̂∗1(R1−1)+0(R2−1))

]
= V Targeted

0 (x),

for any x ∈ R. On the other hand,

V True
0 (x) = E

[
−e−γ(x+π∗1(R1−1)+π∗2(R2−1))

]
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= E
[
−e−γ(x+π∗1(R1−1))E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]]
.

According to (1.12), we have

E
[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]
= min

π2
E
[
e−γπ2(R2−1)

∣∣∣FT1

]

=
( qu2

1− qu2
1− puu2
puu2

)1−qu2
puu2 +

(
qu2

1− qu2
1− puu2
puu2

)−qu2
(1− puu2 )

1{R1=Ru1 }

+
( qd2

1− qd2
1− pdu2
pdu2

)1−qd2
pdu2 +

(
qd2

1− qd2
1− pdu2
pdu2

)−qd2
(1− pdu2 )

1{R1=Rd1}.

Let

Au :=
( qu2

1− qu2
1− puu2
puu2

)1−qu2
puu2 +

(
qu2

1− qu2
1− puu2
puu2

)−qu2
(1− puu2 )

 , (1.27)

and

Ad :=
( qd2

1− qd2
1− pdu2
pdu2

)1−qd2
pdu2 +

(
qd2

1− qd2
1− pdu2
pdu2

)−qd2
(1− pdu2 )

 . (1.28)

It then follows that

V True
0 (x) = max

π1

[
−e−γ(x+π1(Ru1−1))Aup1 − e−γ(x+π1(Rd1−1))Ad(1− p1)

]
.

Again, by (1.12), we obtain

π∗1 = − 1
γ(Ru

1 −Rd
1) ln

(
q1

1− q1

1− p1

p1

Ad

Au

)
, (1.29)

and

V True
0 (x) = −e−γx

(
q1

1− q1

1− p1

p1

)−q1 1− p1

1− q1

(
Ad

Au

)−q1

Ad. (1.30)
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Now recalling V Targeted
0 (x) as in (1.25), we then have

M0,T2(x) = V Actual
0 (x)− V True

0 (x)

= V Targeted
0 (x)− V True

0 (x) = (1− C(puu2 , pdu2 ))V Actual
0 (x), (1.31)

with the function C(puu2 , pdu2 ) given by

C(puu2 , pdu2 ) = C(puu2 , pdu2 ; qu2 , qd2) =
(
Ad

Au

)−q1

Ad.

Note that V Actual
0 (x) does not depend on the second period true probability

parameters puu2 , pdu2 , nor the ambiguity sets parameters εu, εd. It is therefore

sufficient to analyze the single quantity C(puu2 , pdu2 ) to determine when the

robust investor would experience the most regret. Direct computation shows

C(puu2 , pdu2 ) =
(
1− puu2

)q1(1−qu2 )(
puu2

)q1qu2
(
1− pdu2

)(1−q1)(1−qd2) (
pdu2

)(1−q1)qd2
C1(qu2 , qd2), (1.32)

where C1(qu2 , qd2) is some known constant that depends only on the fixed risk

neutral probabilities qu2 , qd2 . Minimization of C(puu2 , pdu2 ) over the ambiguity

sets yields

arg min
εu≤puu2 ≤1−εu
εd≤pdu2 ≤1−εd

C(puu2 , pdu2 ) =



1− εu, 1− εd, if 0 < qu2 <
1
2 , 0 < qd2 <

1
2 ,

εu, εd, if 1
2 < qu2 < 1, 1

2 < qd2 < 1,

1− εu, εd, if 0 < qu2 <
1
2 ,

1
2 < qd2 < 1,

εu, 1− εd, if 1
2 < qu2 < 1, 0 < qd2 <

1
2 .

In all of these cases, it is easy to verify that as εu, εd → 0,

min
εu≤puu2 ≤1−εu
εd≤pdu2 ≤1−εd

C(puu2 , pdu2 )→ 0,
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and hence, according to (1.31), the regret of the robust investor approaches

its largest negative value V Actual
0 (x), as εu, εd → 0.

In the proof of Proposition 1.3.3, we can actually see that the largest

negative regret occurs if reality is most distinct from the worst scenario that

the robust control approach originally intended to tackle. Notice that the

distinctiveness between reality and the worst scenario is characterized by the

Euclidean distance between their associated probability parameters, or equiv-

alently the distance between the vectors (puu2 , pdu2 ) and (qu2 , qd2), in the current

finite-dimensional parametric binomial model setting. Indeed, the minimizer

of the quantity C(puu2 , pdu2 ) will be always attained at one of the boundaries of

the ambiguity set that is furthest from the risk neutral probability. It hence

implies that if reality turns out to be the most favorable scenario (i.e., fur-

thest from the risk neutral probabilities), then the robust investor would feel

most regretful for her non-participation in the stock market during the second

period, an intuitive result that complies with most investors’ investment psy-

chology. It might be interesting to study in more general settings when the

robust control approach can induce the most regret, under some appropriate

distance metric (e.g., Wasserstein distance) on the infinite-dimensional space

of measures.

When non-participation behavior occurs, the robust investor should

typically experience more regret than the stubborn investor in the same back-

ward paradigm, as a consequence of the excessive weight put on the worst

scenario by the robust control approach. Another interesting observation from
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Proposition 1.3.3 is that more regret would be induced for a non-participating

robust investor who is less confident in the second period stock return pro-

file (corresponding to larger ambiguity sets, as εu, εd → 0). Hence, it might

be recommended that the investors take some actions rather than completely

withdraw from investing in the risky asset when there is too much ambiguity,

if the investment goal is to have less regret in hindsight.

1.3.5 Forward investor (model adaptive/goal consistent)

The forward investor, unlike any of the backward investors, does not

pre-commit at t = 0 to a perceived measure (or a family of perceived mea-

sures) for the entire horizon [0, T2]. Rather, at t = 0, he starts with some

admissible initial performance, and solves for the optimal policy π̂∗1 based only

on the probablity model over the first period under the genuine measure P.

At the begining of the second period, however, a consistent terminal criterion,

denoted by UF
T2(·), together with the corresponding optimal polciy π̂∗2 would

be determined based on the genuine sub-model (1.8) or (1.9) under P, which

is fully knwon to the forward investor at t = T1. For reasonable compara-

tive analysis, we choose the initial performance to be the targeted optimal

value function at t = 0 under the same perceived measure P̂ of the oblivious

and stubborn investors, i.e., UF
0 (x) = V Targeted

0 (x), but we emphasize that in

general, the forward approach can be applied to a much larger class of ini-

tial performances (see [3] for more details). Such flexibility for initial datum

accounts for both subjective optimistic and pessimistic views (corresponding
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to different perceived measures P̂) at initial time t = 0. The strength of the

forward approach, as depicted in the sequel, is the ability to deliver the per-

formance that is on the average consistent with the initial view, even if reality

turns out to be rather different from the subjective belief in the beginning.

Time-consistency of performance process in dynamic setting has been

studied in the context of model ambiguity. For example, in the work of [40],

the nature is allowed to choose any probability model from a family but un-

der certain cost. Their result shows that the (backward) dynamic variational

performance process is time-consistent if and only if the cost functions satisfy

the so called no-gain condition and Bayes Rule is applied for model update.

In other words, a decision maker in their context is dynamically consistent if

and only if she has a way to impose (hypothetical) costs on the nature’s choice

of probability measures such that (she thinks that) the nature is also dynami-

cally consistent. Our formulation under the forward approach differs in several

aspects. First of all, consistency of model choice of the nature is essential to

the time-consistency of the decision making process in the classical backward

framework, as demonstrated in the Dynamic Programming Principle, for in-

stance. In the current two-period binomial model setting, model consistency

amounts to claiming that if the nature has chosen the true measure P over

[0, T2], then the model for the second period is the conditional probability

P|FT1
. However, the decision maker/investor in our setting knows for sure

that she would experience time-inconsistency at t = T1, since her subjective

belief P̂ (or a family of subjective beliefs of her) would in general differ from the
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true conditional probability measure over the second period. Such inconsis-

tency is unavoidable and is due to the discrepancy between the investor’s view

and the nature’s true consistent behavior. The forward investor, on the other

hand, does not assume any subjective or objective cost on the nature’s choice,

but adaptively revises her goal and beliefs forward in real-time, knowing that

such model inconsistency is due to the other backward investors’ initial limited

knowledge. This also gives rise to the second difference between the forward

approach and the existing backward methods; namely, the forward investor

only needs to react in real-time to the single model that is actually chosen

by the nature, whereas the existing robust control framework takes into ac-

count a priori a family of possible measures that can be selected by the nature

and neglects the subsequent interactions between the decision maker and the

nature. In this sense, we can view the classical backward approach as being

proactive to model ambiguity while the forward approach has a clear reactive

perspective in real-time. Lastly, Bayes formula typically serves as the funda-

mental update rule in the classical backward framework, which leads to the

time-consistent decision making process by augmenting the state space with a

belief state. Being one of the model-based learning rules, it however does not

genuinely resolve the model commitment issue inherent in the backward frame-

work (see the discussion in section 2.3). In contrast, the learning mechanism

that is compatible with the forward approach can be rather general; in par-

ticular, unlike the Bayesian update, it is not necessary to prescribe at t = 0

how to learn the second period model under the forward framework. Such
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flexibility makes it possible for us to resort to other sophisticated model-free

learning mechanisms for which analytic update rules may not be available (e.g.

deep learning). Also, as pointed out in [19], the classical backward framework,

with or without model-based learning, cannot successfully incorporate both

time-consistent planning and surprising events, a fact in accordance with the

backward model commitment issue bought up earlier. The forward approach,

relieved from the pre-commitment to the future model or learning rule, can

capture the unforeseen “surprises” into the revised decision making criterion

in real-time and, still, generate consistent performance process.

The forward performance process theory is rather general. Here, we

choose to work with a specific family known as the predictable forward per-

formance processes introduced in [3]. Starting from UF
0 (x) = V Targeted

0 (x), the

forward investor seeks a criterion UF
T1(·) ∈ F0 that is consistent with UF

0 (x) in

the sense

V Targeted
0 (x) = sup

π1
E
[
UF
T1

(
Xπ1
T1

) ∣∣∣X0 = x
]
, (1.33)

with Xπ1
T1 = x+ π1(R1 − 1). Notice that in the above formulation (1.33), only

the knowledge of first period stock return distribution P(R1 = Ru
1) = p1 is

needed, and recall that it is known to all investors at t = 0, including the

forward investor. This gives the fundamental difference in decision making

between the forward investor and the other three investors who adopts the

backward approach. To solve the forward problem (1.33), since the t = 0

targeted performance has the form V Targeted
0 (x) = −e−γxA, for some known

constant A > 0, we look for UF
T1(·) in the similar form UF

T1(x) = −e−γxB, for
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some B > 0 to be determined. Equation (1.33) gives that

V Targeted
0 (x) = max

π1

(
p1U

F
T1(x+ π1(Ru

1 − 1)) + (1− p1)UF
T1(x+ π1(Rd

1 − 1))
)
,

(1.34)

whose maximizer is unique and is given by

π̂∗1 = − 1
γ(Ru

1 −Rd
1) ln

(
q1

1− q1

1− p1

p1

)
. (1.35)

Upon substituting the maximizer (1.35) into the equation (1.33), we obtain

B =
A p1

1−p1

1−q1
q1

p1e1−q1 + (1− p1)e−q1
∈ F0,

and hence the consistent criterion UF
T1(·). Then, at t = T1, the genuine sub-

model (1.8) or (1.9) for the second period stock return is fully available (con-

ditional on the first period stock return), and the goal is to find a UF
T2(·) ∈ FT1

such that

UF
T1(x) = esssup

π2
E
[
UF
T2(x+ π2(R2 − 1))

∣∣∣XT1 = x, FT1

]
, a.s.. (1.36)

Assuming such terminal criterion has the form UF
T2(x) = −e−γxC, for some

random variable C ∈ FT1 that is almost surely positive under the true measure

P, we have

−e−γxB = max
π2

( (
−e−γ(x+π2(Ruu2 −1))puu2 − e−γ(x+π2(Rud2 −1))(1− puu2 )

)
C1{R1=Ru1 }

+
(
−e−γ(x+π2(Rdu2 −1))pdu2 − e−γ(x+π2(Rdd2 −1))(1− pdu2 )

)
C1{R1=Rd1}

)
. (1.37)

As before, we determine the unique optimal policy for the second period as

π̂∗2 = − 1
γ(Ru

2 −Rd
2) ln

(
q2

1− q2

1− pu2
pu2

)
, (1.38)
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and the random quantity C ∈ FT1 is determined after we substitute the optimal

policy π̂∗2 back to (1.36),

C =
B

pu2
1−pu2

1−q2
q2

e1−q2pu2 + e−q2(1− pu2) ∈ FT1 .

We recall that here pu2 and q2 are the genuine physical probability and the risk

neutral probability for the second period stock return defined as before by

pu2 = puu2 1{R1=Ru1 } + pdu2 1{R1=Rd1},

q2 = qu21{R1=Ru1 } + qd21{R1=Rd1},

respectively.

From above real-time construction of the forward criteria UF
0 (·), UF

T1(·),

UF
T2(·), we can see how the gradually acquired knowledge of the true underlying

model P enters into the forward optimization problem. Indeed, as shown next,

the appropriate real-time modification of the optimization criteria results in

both the two metrics M0,T2(x) and m0,T2(x) being identically zero, regardless

of the true measure P.

Proposition 1.3.4. For any probability parameters puu2 , pdu2 under P (see

(1.8), (1.9)), the regret of the forward investor is identically zero, i.e.,

M0,T2(x) = V Actual
0 (x)− V True

0 (x) = 0.

Moreover, the discrepancy

m0,T2(x) = V Actual
0 (x)− V Targeted

0 (x) = 0.
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Proof. We start by computing the t = 0 actual average performance under the

true measure P for the forward investor. We have

V Actual
0 (x) = E

[
UF
T2(X π̂∗1 ,π̂

∗
2

T2 )
]

= −e−γxE
[
e−γ(π̂∗1(R1−1)+π̂∗2(R2−1))C

]
= −e−γxE

[
e−γπ̂

∗
1(R1−1)CE

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]]
.

Recall that the random variable C ∈ FT1 is determined such that the equa-

tion (1.37) is satisfied by the unique optimizer (1.38). We hence have B =

CE
[
e−γπ̃

∗
2(R2−1)

∣∣∣FT1

]
from (1.37). Using that B ∈ F0, we get

V Actual
0 (x) = −e−γxE

[
e−γπ̂

∗
1(R1−1)

]
B = −e−γxA = V Targeted

0 (x),

where the second equality follows because π̂∗1 is the unique optimizer to the

equation (1.34). This concludes that m0,T2(x) = 0, for any puu2 , pdu2 under

P. We now consider the t = 0 optimal performance under the true model, in

hindsight, for the forward investor with terminal utility UF
T2(x). Notice that

we are essentially solving the classical backward problem under UF
T2(x) with

full knowledge of the true measure P. It follows that

VT1(x) = esssup
π2

E
[
UF
T2(x+ π2(R2 − 1))

∣∣∣XT1 = x, FT1

]
= −e−γxC essinf

π2
E
[
e−γπ2(R2−1)

∣∣∣FT1

]
= −e−γxB,

where we used that C ∈ FT1 satisfies (cf. (1.37))

C essinf
π2

E
[
e−γπ2(R2−1)

∣∣∣FT1

]
= C E

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]
= B.

By backward induction,

V True
0 (x) = sup

π1
E
[
VT1(x+ π1(R1 − 1))

∣∣∣X0 = x
]
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= −e−γxB inf
π1

E
[
e−γπ1(R1−1)

]
= −e−γxA,

where we used that B ∈ F0 satisfies (cf. (1.34))

B inf
π1

E
[
e−γπ1(R1−1)

]
= B E

[
e−γπ̂

∗
1(R1−1)

]
= A.

We hence obtain that M0,T2(x) = 0, for any puu2 , pdu2 under P.

1.4 Comparison of regret for various types of investors

In previous sections, we examined four types of possible investment be-

havior under model uncertainty, from the perspective of the metric M0,T2(x)

that characterizes the regret in hindsight, and the metric m0,T2(x) that char-

acterizes the discrepancy from the targeted performance. It was shown that

all three investors adopting the backward approach, the oblivious, stubborn

and robust investors, endure negative regret in general, while the forward in-

vestor always achieves zero regret regardless of the true underlying measure

P. It is thus interesting to quantify and compare the negative regret for the

three backward investors. Intuitively, each of the three investment types has

its relative strength facing different realities and, hence, the regret of one type

of investor can dominate or stay underneath the regret of the others. For

instance, we expect the stubborn investor to experience less regret in most

scenarios of reality, since he has taken into account the new model when it is

available at t = T1. On the other hand, the robust investor should be able

to benefit from the conservative non-participation strategy if reality coincides

with the worst scenario. In this section, we provide detailed analysis on the
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magnitude of regret for the three types of investors belonging to the classical

backward paradigm.

We first recall that the value function V True
0 (x) for the three backward

investors in the regret metric M0,T2(x) does not change. It is the true optimal

performance in hindsight, computed under the terminal utility U(x) = −e−γx

and the true measure P,

V True
0 (x) = sup

π1,π2
E
[
U(Xπ1,π2

T2 )
∣∣∣X0 = x

]
,

for any initial wealth x ∈ R. From (1.30), we recall that

V True
0 (x) = −e−γx

(
q1

1− q1

1− p1

p1

)−q1 1− p1

1− q1

(
Ad

Au

)−q1

Ad,

with Au, Ad given in (1.27) and (1.28), respectively. The model parameters p1,

q1, qu2 and qd2 in Au, Ad are fixed and known to all backward investors at t = 0,

while puu2 , pdu2 are generic probability parameters for the second period stock

return under the true measure P. The value function V True
0 (x) hence would

solely depend on puu2 and pdu2 that correspond to different realities. Following

from (1.32), we obtain that for fixed initial wealth x ∈ R,

V True
0 (x) = O

((
1− puu2

)q1(1−qu2 )(
puu2

)q1qu2
(
1− pdu2

)(1−q1)(1−qd2) (
pdu2

)(1−q1)qd2
)
.

(1.39)

We next quantify the term V Actual
0 (x) in the regret metric for the oblivious,

stubborn and robust investors. According to Proposition 1.3.3, it is easy to see

that for the robust investor who favors non-participation in the second period

(corresponding to the case with large ambiguity sets), the regret is given by

M0,T2(x) = V Actual
0 (x)− V True

0 (x)
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= −e−γx
(

q1

1− q1

1− p1

p1

)−q1 1− p1

1− q1
− V True

0 (x) = O(1),

where O(1) denotes a constant, as puu2 , pdu2 goes to 0 or 1. For the oblivious

investor, we have

V Actual
0 (x) = E

[
U(X π̂∗1 ,π̂

∗
2

T2 )
∣∣∣X0 = x

]
,

where the expectation is taken under the true measure P. Applying now the

(perceived) optimal policies π̂∗1, π̂∗2, given by (1.15) and (1.13), under the true

measure P yields

V Actual
0 (x) = −e−γxE

[
e−γπ̂

∗
1(R1−1)E

[
e−γπ̂

∗
2(R2−1)

∣∣∣FT1

]]

= −e−γx
(
p1

q1

)q1 (1− p1)1−q1

(1− q1)−q1

(
p̂uu2
qu2

)q1qu2
(
p̂du2
qd2

)(1−q1)qd2 (1− p̂du2
1− qd2

)q1qd2−q1−qd2

×
(

1− qu2
1− p̂uu2

)q1qu2−q1
( q1

1− q1

1− p̂du2
1− qd2

qu2 − p̂uu2
p̂uu2 (1− p̂uu2 )

)
puu2

+
(

qd2 − p̂du2
(1− qd2)p̂du2

)
pdu2 +

(
q1

1− q1

1− p̂du2
1− qd2

1− qu2
1− p̂uu2

+ 1
).

Noticing that the last term in the above expression is a strictly positive quan-

tity independent of puu2 , pdu2 , we obtain V Actual
0 (x) = O(1), which yields that

the regret of the oblivious investor is also of order O(1) as the robust investor.

We now turn to the stubborn behavior whose actual average perfor-

mance is given by

V Actual
0 (x) = E

[
U(X π̂∗1 ,π

∗
2

T2 )
∣∣∣X0 = x

]
,
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where, again, the expectation is taken under the true measure P and π̂∗1 is

obtained under the perceived measure P̂, while π∗2 is the optimal control (1.16)

revised under the true sub-models (1.8), (1.9) at t = T1. Further computation

then gives

V Actual
0 (x) = −e−γxE

[
e−γπ̂

∗
1(R1−1)E

[
e−γπ

∗
2(R2−1)

∣∣∣FT1

]]

= −e−γx(1− p1)
(
p1

q1

)q1 (qd2)(q1−1)qd2

(p̂du2 )q1qd2

(
p̂uu2
qu2

)q1qu2 (1− qd2)(q1−1)(1−qd2)

(1− p̂du)q1(1−qd2)

×
(

1− p̂uu2
1− qu2

)q1(1−qu2 )
 q1

1− q1

(puu2 )qu2 (1− puu2 )1−qu2

(p̂uu2 )qu2 (1− p̂uu2 )1−qu2
+ (pdu2 )qd2 (1− pdu2 )1−qd2

.
Denote Z1 := (puu2 )q

u
2 (1− puu2 )1−qu2 and Z2 :=

(
pdu2

)qd2 (1− pdu2

)1−qd2 . Then, for

any fixed initial wealth x ∈ R, the regret for stubborn investor is of order

V Actual
0 (x)− V True

0 (x) = O
(

(puu2 )q
u
2 (1− puu2 )1−qu2 +

(
pdu2

)qd2 (1− pdu2

)1−qd2
)

−O
((

1− puu2

)q1(1−qu2 )(
puu2

)q1qu2
(
1− pdu2

)(1−q1)(1−qd2) (
pdu2

)(1−q1)qd2
)

= O (Z1 + Z2)−O
(
Zq1

1 Z
1−q1
2

)
= O (Z1 + Z2) ,

where we have used the fact that the (lower) limit of the quantity

Z1 + Z2

Zq1
1 Z

1−q1
2

=
(
Z1

Z2

)1−q1

+
(
Z2

Z1

)q1

approaches infinity if Z1 6= O(Z2), and approaches a positive constant if

Z1 = O(Z2), as Z1, Z2 → 0, both leading to O (Z1 + Z2) − O
(
Zq1

1 Z
1−q1
2

)
=

O (Z1 + Z2). Table 1.1 summarizes the regret comparison results for different

investment behavior types.
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Table 1.1: Regret Comparison of Different Investment Behavior

Investment Behavior Sign/Magnitude of Regret

Oblivious Nonpositive O(1)−O
(
Zq1

1 Z
1−q1
2

)
= O(1)

Stubborn Nonpositive O (Z1 + Z2)−O
(
Zq1

1 Z
1−q1
2

)
= O (Z1 + Z2)

Robust Nonpositive O(1)−O
(
Zq1

1 Z
1−q1
2

)
= O(1)

Forward Zero Zero

Z1 := (puu2 )q
u
2 (1− puu2 )1−qu

2 and Z2 :=
(
pdu2
)qd

2
(
1− pdu2

)1−qd
2

We now can see that the stubborn behavior generally induces less regret

compared to the oblivious and robust behavior, especially when the reality

of the future turns out to be extreme. This is when Z1 and Z2 are close

to zero, corresponding to extremely good future market conditions (i.e., puu2 ,

pdu2 close to 1), or extremely adverse conditions (i.e., puu2 , pdu2 close to 0), or

the combination of the two (e.g., puu2 close to 1, but pdu2 close to 0). The

stubborn investor would unsurprisingly benefit from these extreme scenarios,

thanks to prompt reaction to the new model knowledge at t = T1. Hence, she

experiences less regret in retrospect when facing extreme cases. On the other

hand, depending on the interlinked connections between puu2 , pdu2 and the rest

of model parameters, the stubborn behavior may cause less or more regret than

the oblivious and robust behavior in moderate scenarios. In particular, if the

genuine probabilities puu2 , pdu2 for the second period stock return are close to

the risk neutral probabilities, then the worst scenario indeed happens, and less

regret would be induced if the investor follows the robust behavior (see Figure
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1.1). This is another interesting observation, which suggests that, in moderate

scenarios, incorporating the true knowledge “half way through” the decision

making process becomes less important than being initially conservative and

cautious when facing model ambiguity.
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Figure 1.1: Regret comparison of various types of investment behavior (initial

wealth x = 0). Model parameters: p1 = 1
2 , q1 = 1

500 , q
u
2 = 4

5 , q
d
2 = 4

5 , p̂
uu
2 =

1
100 , and p̂du2 = 1

100 . The absolute regret of oblivious and robust investors

generally dominate that of the stubborn investor. Nevertheless, the stubborn

behavior can induce more regret than the robust behavior, especially when the

true probabilities for the second period stock return puu2 , pdu2 are close to the

risk neutral probabilities qu2 , qd2 .
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1.5 A unified discussion

Under the setting of model ambiguity and real-time learning, we dis-

cussed various types of investors in previous sections. The stubborn investor

and the forward investor take the advantage of the progressively revealed

knowledge of the underlying model in real-time, and produce their respec-

tive optimal strategies accordingly over each period. The other two types of

investors, the oblivious and the robust investor, neglect the further acquisition

of new (unexpected) knowledge about the true model after t = 0. In this sense,

we may not view the associated strategies as solutions to the real-time opti-

mal investment problem, although they can still be considered as alternative

solutions when an investor faces model ambiguity.

In this section, we will provide a unified analysis of the real-time opti-

mal investment problems under general criteria UT1(·) ∈ FT1 and UT2(·) ∈ FT2 .

The measurability condition for the criteria imposed here is flexible enough to

incorporate most investment behavior including the stubborn and forward be-

havior. Indeed, UT1(·) = VT1( · ; P̂) and UT2(·) = U(·) in the stubborn case,

where U(·) is a classical (deterministic) terminal utility function specified at

t = 0, and VT1( · ; P̂) is the associated value function under U(·) and the (t = 0)

perceived measure P̂. In the forward behavior setting, UT1(·) = UF
T1(·) and

UT2(·) = UF
T2(·), with UF

T1(·) and UF
T2(·) being the predictable forward perfor-

mance at t = T1 and t = T2, respectively. Herein, the two forward criteria

are restricted to be predictable, but in general, forward performance process

(in discrete time or continuous time) needs not to be necessarily predictable a
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priori. Our unified framework includes the general forward processes as well

as other (state-dependent or independent) performance criteria derived based

on possible approaches under model uncertainty.

We next introduce the decision making process under the generic cri-

teria UT1(·) ∈ FT1 and UT2(·) ∈ FT2 set for the first period and the second

in the current binomial model setting. To emphasize the real-time feature of

the decision making process, we assume as before that the genuine underlying

measure P is only known to the investor/decision maker progressively. Pre-

cisely, only one-period ahead probability under P would be revealed at each

decision making time, conditional on the information up to that time (see

(1.8), (1.9)). Under this assumption, the first period policy selected is any

admissible π∗1 that optimizes (assuming it exists)

sup
π1

E
[
UT1

(
Xπ1
T1

) ∣∣∣X0 = x
]

= sup
π1

E
[
UT1 (x+ π1(R1 − 1))

∣∣∣X0 = x
]
, (1.40)

where the probability over the first period under P is sufficient and used for

the computation of the above expectations. The second period decision mak-

ing process yields, similarly, the optimal admissible policy π∗2 that maximizes

(assuming it exists)

esssup
π2

E
[
UT2

(
X
π∗1 ,π2
T2

) ∣∣∣Xπ∗1
T1 , FT1

]

= esssup
π2

E
[
UT2

(
X
π∗1
T1 + π2(R2 − 1)

) ∣∣∣Xπ∗1
T1 , FT1

]
. (1.41)

Here, Xπ∗1
T1 ∈ FT1 is the wealth at t = T1 obtained by following the optimal

control π∗1 in (1.40), and the one-period ahead conditional probability under
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the true measure P, given FT1 , is applied for the computation of the above

conditional expectations.

The criteria UT1(·) ∈ FT1 and UT2(·) ∈ FT2 that produce the optimal

policies π∗1 and π∗2, respectively, in general have no intertemporal connections

a priori, as the investor/decision maker can have arbitrary (short-term) ob-

jectives based on her own preference and personal view of the future market

at each time. However, as we will show in the next theorem, in order to

achieve zero regret, the criterion UT1(·) has to satisfy certain consistency con-

dition with its successor UT2(·), a condition we refer to as forward consistency.

Before stating the precise result, we first introduce the following stochastic

optimization problem in hindsight at t = T2. In retrospect at t = T2, the

underlying measure P is assumed to be fully known to the investor, and the

problem is to solve

sup
π1,π2

E
[
UT2(Xπ1,π2

T2 )
]

= sup
π1,π2

E [UT2 (x+ π1(R1 − 1) + π2(R2 − 1))] , (1.42)

where the expectation is computed under the true measure P on [0, T2]. We

note that in general UT2(·) ∈ FT2 . Assuming that problem (1.42) can be solved

via backward induction, we can then define the value function (in hindsight)

at t = T1 as

VT1(x) = esssup
π2

E
[
UT2 (XT1 + π2(R2 − 1))

∣∣∣XT1 = x, FT1

]
, a.s., (1.43)

and, in general, VT1(x) ∈ FT1 , for all admissible x. The value function at t = 0

(in hindsight) is

V0(x) = sup
π1

E
[
VT1 (x+ π1(R1 − 1))

∣∣∣X0 = x
]
, (1.44)
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and backward induction gives that V0(x) is the optimal value of the problem

(1.42).

Theorem 1.5.1 (Forward consistency). The criteria pair (UT1 , UT2) together

with the corresponding optimal controls π∗1, π∗2 obtained in real-time by (1.40)

and (1.41), respectively, generate zero (total) regret if and only if π∗1 is also

the maximizer of the first period problem in hindsight, i.e.,

π∗1(x) ∈ argmax
π1

E
[
VT1 (x+ π1(R1 − 1))

∣∣∣X0 = x
]
, (1.45)

for any admissible initial wealth x. In particular, the (not necessarily pre-

dictable) forward performance criteria pair
(
UF
T1 , U

F
T2

)
yields zero regret.

Proof. (=⇒) Assume that the pair (UT1 , UT2) and the optimal controls π∗1, π∗2
generate zero regret; that is, by definition of the regret, the t = 0 genuine

value function in hindsight coincides with the actual average performance,

V0(x) = E [UT2 (x+ π∗1(R1 − 1) + π∗2(R2 − 1))] .

We note that π∗1 is not necessarily the optimizer to the hindsight problem (1.44)

a priori. For example, within the forward behavior setting we considered in

section 2.5, π∗1 is solely determined by the first period model under P, together

with the admissible initial criterion UF
0 (·). However, in general, the optimizer

of the hindsight problem (1.44) depends not only on the first period model,

but also on VT1(·) which in turn depends on the second period conditional

model. It follows from the assumption of zero regret that

V0(x) = E [UT2 (x+ π∗1(R1 − 1) + π∗2(R2 − 1))]
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= E
[
E
[
UT2

(
X
π∗1
T1 + π∗2(R2 − 1)

) ∣∣∣Xπ∗1
T1 , FT1

]]
= E

[
VT1

(
X
π∗1
T1

)]
= E [VT1 (x+ π∗1(R1 − 1))] ≤ V0(x),

where we used the fact that π∗2 is the optimizer for both the real-time problem

(1.41) and the hindsight problem (1.43)1, while π∗1 from the real-time problem

(1.40) is in general only one admissible policy for the first period hindsight

problem. We hence conclude that π∗1 is the maximizer to the hindsight problem

sup
π1

E
[
VT1 (x+ π1(R1 − 1))

∣∣∣X0 = x
]
.

(⇐=) Suppose the criteria pair (UT1 , UT2) is determined such that the first

period optimal control π∗1 which solves the real-time problem (1.40) also solves

the hindsight problem (1.45). It is then straightforward to see that the ac-

tual average performance by following such π∗1 from (1.40) and π∗2 from (1.41)

satisfies

E [UT2 (x+ π∗1(R1 − 1) + π∗2(R2 − 1))]

= E
[
E
[
UT2

(
X
π∗1
T1 + π∗2(R2 − 1)

) ∣∣∣Xπ∗1
T1 , FT1

]]
= E

[
VT1

(
X
π∗1
T1

)]
= V0(x),

where, again, we used that π∗2 is the optimizer for both the real-time problem

(1.41) and the hindsight problem (1.43), as well as the assumption that π∗1 also

1When solving the last period problem in real-time or in hindsight, the available knowl-

edge of the probability model for the decision maker is identical and correct. In other words,

the regret of the last period is always zero by problem formulation.
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maximizes the hindsight problem (1.45). This completes the proof of showing

zero regret under the forward consistency condition (1.45).

It remains to show that the general (not necessarily predictable) for-

ward performance criteria pair
(
UF
T1 , U

F
T2

)
achieves the forward consistency,

and hence generates zero regret. Indeed, by the definition of forward perfor-

mance processes, UF
T1 and UF

T2 are directly connected through the equation

UF
T1 (XT1) = esssup

π2
E
[
UF
T2 (XT1 + π2(R2 − 1))

∣∣∣FT1

]
, a.s.. (1.46)

It therefore yields, by the uniqueness of the (essential) supremum, UF
T1 (XT1) =

VT1 (XT1) a.s., with XT1 = x + π1(R1 − 1) for any admissible control π1 over

the first period. A direct consequence is that any π∗1 that solves the real-

time problem (1.40) under UF
T1 also solves the hindsight problem (1.45), i.e.,

the forward consistency condition (1.45) holds. We hence conclude that the

generic forward criteria pair
(
UF
T1 , U

F
T

)
generates zero total regret.

Theorem 1.5.1 basically states that the decision maker can achieve zero

regret if and only if the past decision made at t = 0 for the first period

remains valid when viewed in hindsight under the full model knowledge, an

intuitive result that is almost self-explanatory. Obviously, to have such forward

consistency, certain connection between the intermediate criterion UT1 and its

successor UT2 has to be established. An interesting fact, however, is that such

connection does not to need to be as strong as the classical definition for

the froward performance process as given in (1.46). The reason is, although

forward consistency requires that π∗1 optimizes both the real-time problem
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(1.40) and the hindsight problem (1.44), it does not necessarily require the

same optimal value for the two problems, in order to have zero regret. In

other words, it may be true that for some admissible x,

sup
π1

E
[
UT1 (x+ π1(R1 − 1))

∣∣∣X0 = x
]
6= sup

π1
E
[
VT1 (x+ π1(R1 − 1))

∣∣∣X0 = x
]
,

but zero regret still holds for all admissible x. On the other hand, since

the definition of the forward performance process (1.46) is certainly stronger

than the forward consistency (1.45), the forward criteria pair
(
UF
T1 , U

F
T2

)
gen-

erates zero regret, regardless of the underlying measure P, with the special

case of predictable forward performance process already discussed separately

in Proposition 1.3.4.

It is easy to see that the unified framework in Theorem 1.5.1 can ac-

count for both the stubborn behavior and the forward behavior described in

previous sections. It nails down the fundamental reason, i.e., the violation

of forward consistency, that causes the classical (backward) adaptive control

approach to generally yield non-zero regret (see Proposition 1.3.2 for more

details). It also addresses why the other decision making behavior, the for-

ward behavior, can eliminate any regret induced by model knowledge that is

revealed in real-time. This theorem can also incorporate classical stochastic

optimization problems when model knowledge is fully available at t = 0, i.e.,

the scenario when decision is made under the known unknowns instead of the

unknown unknowns. There, the regret is clearly always zero, and the forward

consistency is certainly satisfied as soon as one recognizes that the criteria pair
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(UT1(·), UT2(·)) coincides with (VT1(· ;P), U(·)), where VT1(· ;P) is the classical

value function under the known true measure P and the terminal utility U(·).
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Chapter 2

Real-time model adaptation and investment

behavior: the Merton case

2.1 Introduction

As disucssed in the previous chapter, model commitment is ubiquitous

in the classical stochastic optimization framework, and therefore, excludes the

flexibility of allowing dynamic model revision, a concept by nature incom-

patible with any preassigned commitment at t = 0. However, from practi-

cal point of view, model revision is inevitable as one may obtain updated

information that leads to more accurate estimates of the underlying model.

Such new knowledge accumulated in real-time should be exploited to solve the

control problem at hand. In other scenarios, the environment itself may be

non-stationary and has changed after some time, making it necessary for the

decision maker to closely track the environment in order to make better deci-

sions. No consensus, however, has been reached regarding the best approach to

handle the dynamic (unanticipated) model changes in control theory and prac-

tice. Adaptive control methodology is probably the main tool in theory and
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practice to address this problem (see, e.g., [38], [12]). It basically at each time

re-solves the control problem for remaining horizon, given the updated esti-

mates of the parameters in the model dynamics. It is clearly time-inconsistent

and could induce fluctuations in the performance of the decision maker as time

enfolds. The same idea is employed for more practical applications of control

theory; for instance, in reinforcement learning (RL) field, the learning agent

would typically re-adapt to the changed environment through continuing inter-

action, while fixing the original t = 0 optimization objective. This behavior in

turn leads to volatile performance, as a steep decrease of learning performance

usually occurs in such non-stationary learning contxt (see, e.g., [16]).

In this work, we aim to compare two control approaches arising under

the circumstance of real-time model revision in a “Merton type” investment

setting. The first one is rooted in the adaptive control paradigm, which we call

the “stubborn” method in view of the fixed terminal criterion regardless of any

changes to the market environment. The advantage of this method is clearly

the preservation of the original goal, which motivates the name “stubborn”, as

well as the adaptation to progressively realized market conditions in real-time.

However, it violates the time-consistency that is not only fundamental to the

sound definition of classical optimality, but also crucial to have a non-volatile

overall performance. The second approach we consider is the forward perfor-

mance approach. This methodology, by relaxing the stringent commitment to

a fixed terminal criterion (and/or a fixed terminal horizon), introduces greater

flexibility to control problems under real-time model revision. Intertemporal
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consistency is guaranteed directly due to the construction of the forward per-

formance process. Moreover, when evaluated in retrospect, the performance

of the forward investor would maintain unchanged on average even after the

unanticipated change of the market environment, yielding less variability for

the actual performance. Whether sticking to a fixed terminal criterion leads to

different degree of model choice flexibility (specifically for the long-term), and

distinguishes the two fundamentally different optimization approaches. Nev-

ertheless, the stubborn and forward methods are comparable in some aspects,

and it is one of the goals of this work to conduct a comprehensive compar-

ison analysis. As the forward performance process theory is rather general,

we choose to work with a specific family, namely the zero volatility forward

performance process. In addition to the comparisons, we also seek to reconcile

the two approaches in the last section. Precisely, we would construct a forward

“bridge” process to preserve both the original t = 0 objective and intertem-

poral consistency in a real-time model revision setting. As we shall see, this

in general could only be possible if we go beyond the zero volatility forward

processes, and introduce a none-zero volatility to the performance process.

2.2 Classical approach

In this section we consider the classical adaptive control approach,

which is “stubborn” to a fixed t = 0 optimization objective under real-time

model revision. For simplicity, we focus on the Merton’s optimal investment
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problem in a single stock market over a fixed horizon [0, T ], assuming that

interest rate is zero. The stock price under the genuine but unknown physical

measure P is modeled by

dSt = St(µtdt+ σtdWt),

with S0 > 0. The process Wt, 0 ≤ t ≤ T , is a standard Brownian motion

on a filtered probability space (Ω,F ,P), with the filtration Ft, 0 ≤ t ≤ T ,

satisfying the usual conditions. The coefficients µt, σt, 0 ≤ t ≤ T , are Ft-

adapted processes, and assumed for simplicity to be

µt = µ1{0≤t≤τ1} + µ11{0<τ1≤T},

and

σt = σ1{0≤t≤τ1} + σ11{0<τ1≤T},

with µ, σ ∈ F0 and µ1, σ1 ∈ Fτ1 . It is assumed that σ, σ1 > 0 almost surely

under the true measure P. We further define the Sharpe ratio as λ = µ
σ

for

[0, τ1] and λ1 = µ1
σ1

for (τ1, T ]. The model parameters for the stock price hence

only change at t = τ1 ∈ F0, with 0 < τ1 < T . It is worth noting that, different

form most other works, we do not specify another (hyper-) model at t = 0 to

describe how those parameters may actually change in the future. In other

words, the investor is unaware of the full model under the true measure P at

t = 0, and new parameters can only be observed at the model revision time

t = τ1.

We next formulate the knowledge of the stubborn investor under her

subjective belief at t = 0. Knowing that the market parameters would certainly
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shift at t = τ1 (e.g., due to scheduled announcement in the market or self-

planned market condition reassessment, etc), but unclear about the genuine

switching dynamics in advance, the investor at t = 0 is assumed for simplicity

to perceive the model parameters for the whole horizon as piecewise constants

M[0,τ1] = {µ, σ, λ} and M̂(τ1,T ] = {µ̂, σ̂, λ̂}, with σ̂ > 0 and λ̂ = µ̂
σ̂
. Precisely,

the stock price under her perceived measure P̂ is given by

dŜt = Ŝt(µ̂tdt+ σ̂tdŴt),

with Ŝ0 = S0, where Ŵt, 0 ≤ t ≤ T , is a standard Brownian motion on a

filtered probability space (Ω̂, F̂ , P̂), with the filtration F̂t, 0 ≤ t ≤ T , satisfying

the usual conditions and F̂0 = F0. The coefficients under her perceived model

are hence assumed to be correct only over the first sub-horizon [0, τ1], and differ

from the truth in the remaining horizon (τ1, T ]. This assumption complies with

most prediction mechanism in investment practice whose prediction power

typically decays as time moves into the far future.

It is important to note that the very reason for the investor to have a

model for the whole horizon at t = 0 is clearly due to the backward model

commitment of the classical approach discussed in previous chapter. This

feature of the classical approach inevitably and undesirably forces the investor

at t = 0 to commit to a probably vague model for probably remote future time

period (τ1, T ]. We stress, however, that such t = 0 perceived model under the

measure P̂ is introduced only for the purpose of computing the optimal policy

over the first sub-horizon [0, τ1]. Once arriving at the intermediate time t = τ1,
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Figure 2.1: Classical approach with model revision.

the investor has a chance to review the model for the remaining horizon (τ1, T ]

and obtains the revised (true) model parametersM1
(τ1,T ] = {µ1, σ1, λ1} ∈ Fτ1 .

She is then able to take corresponding actions under the revised model, but the

terminal objective is not allowed to change, i.e., the terminal utility function

is fixed to be a F0-measurable function UT : R+ → R, a strictly increasing

and strictly concave function satisfying Inada’s conditions limx↓0 U
′
T (x) = ∞

and limx↑∞ U
′
T (x) = 0. The inverse marginal of the terminal utility is defined

as usual I : R+ → R+, with I(x) = (U ′T )(−1)(x). The problem setting is

summarized in Figure 2.2.

The investor at t = 0 would then solve a classical optimal control

problem with the backward induction argument, under the perceived model.

In particular, for τ1 < t ≤ T , the wealth process under the standard self-
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financing condition has the dynamics given by

dX̂s = µ̂πsds+ σ̂πsdŴs,

for t ≤ s ≤ T , with X̂t = x. The set of admissible strategies under the

perceived model is defined as

Â[0,T ] =
{
π : self-financing with πt ∈ F̂t and EP̂

[ ∫ T

0
π2
t dt
]
<∞

}
.

To solve the t = 0 problem following the backward induction, let the value

function over the sub-horizon (τ1, T ] be defined as

V̂ (x, t; λ̂) = sup
π

EP̂

[
UT (X̂T )|X̂t = x

]
,

where the expectation is taken under the (τ1, T ] marginal probability measure

of P̂ associated to the perceived model M̂(τ1,T ]. It is then well known that the

function V̂ (x, t; λ̂) is the strictly increasing and strictly concave solution (in

the spatial variable) to the HJB equation (see, e.g., [35])

V̂t −
λ̂2

2
V̂ 2
x

V̂xx
= 0, (2.1)

with terminal condition V̂ (x, T ) = UT (x). The optimal portfolio process is

given by

π̂∗(X̂∗t , t) = − λ̂
σ̂

V̂x(X̂∗t , t)
V̂xx(X̂∗t , t)

,

for τ1 < t ≤ T . It is also convenient to define the local absolute risk tolerance

function r̂(x, t) = − V̂x(x,t)
V̂xx(x,t)

to write the optimal portfolio process as

π̂∗(X̂∗t , t) = λ̂

σ̂
r̂(X̂∗t , t).
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We now consider the following transformation that is essential for the analyt-

ical representation of the above quantities

V̂x
(
Ĥ(x, t), t

)
= exp

(
− x− 1

2 λ̂
2(T − t)

)
. (2.2)

It is then well known (see [33]) that the function Ĥ(x, t) is the solution to the

classical backward heat equation

Ĥt + λ̂2

2 Ĥxx = 0, (2.3)

for τ1 < t ≤ T , with terminal condition Ĥ(x, T ) = I(e−x). The local absolute

risk tolerance function can then be rewritten as r̂(x, t) = Ĥx(Ĥ(−1)(x, t), t),

and the optimal portfolio process as well as the optimal wealth process are

π̂∗t = λ̂

σ̂
Ĥx

(
Ĥ(−1)(x, τ1) + λ̂2(t− τ1) + λ̂(Ŵt − Ŵτ1), t

)
, (2.4)

and

X̂∗t = Ĥ
(
Ĥ(−1)(x, τ1) + λ̂2(t− τ1) + λ̂(Ŵt − Ŵτ1), t

)
, X̂∗τ1 = x, (2.5)

for τ1 < t ≤ T , respectively.

The backward induction reasoning implies, knowing that the value func-

tion V̂
(
Xτ1 , τ1; λ̂

)
is the best achievable performance over (τ1, T ] under the

perceived measure P̂ starting from any admissible wealth level Xτ1 at t = τ1,

the investor would take it as the “short-term” objective and solve the opti-

mization problem for 0 ≤ t ≤ τ1 as following

V̂ (x, t;λ, λ̂) = sup
π

EP̂

[
V̂
(
X̂τ1 , τ1; λ̂

)
|X̂t = x

]
, (2.6)
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where the expectation is taken under the [0, τ1] marginal of P̂ associated to the

accurate modelM[0,τ1]. To solve this first sub-horizon problem, we can derive

a similar HJB equation as (2.1), i.e., for 0 ≤ t ≤ τ1,

V̂t −
λ2

2
V̂ 2
x

V̂xx
= 0, (2.7)

with terminal condition being V̂ (x, τ1) = V̂
(
x, τ1; λ̂

)
, for all admissible x. If a

strictly increasing and strictly concave classical solution (in the state variable)

can be found, we can derive the optimal portfolio as

π̂∗(X̂∗t , t) = −λ
σ

V̂x(X̂∗t , t)
V̂xx(X̂∗t , t)

, (2.8)

where X̂∗t , 0 ≤ t ≤ τ1, is the corresponding optimal wealth process over the

first sub-horizon.

The above existing results correspond to the t = 0 classical Merton’s

problem without any unanticipated model parameter changes. However, the

true model indeed changes at t = τ1 as we have formulated under the phys-

ical measure P, and such change cannot be captured by the investor’s t = 0

subjective belief under P̂. The investor would hence only follow the opti-

mal feedback policy (2.8) derived under the t = 0 perceived measure P̂ up

to time t = τ1 in the true market governed by the physical measure P.

Then at the interface t = τ1 of the two investment sub-horizons, the investor

would recognize that the true realized model for the second sub-horizon is

M1
(τ1,T ] = {µ1, σ1, λ1} ∈ Fτ1 . It is reasonable for her to reconsider the decision

by taking into account this (unanticipated) new knowledge about the market,
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i.e., under the adaptive control framework, she would solve the (conditional)

optimal control problem over (τ1, T ]

V (x, t;λ1) = esssup
π

E
[
UT (XT )

∣∣∣Fτ1 , Xt = x
]
∈ Fτ1 , a.s., (2.9)

where the conditional expectation is taken under the true measure P. The

terminal utility is not changed, since in this section we focus on the “stubborn”

behavior. Conditional on Fτ1 , the problem (2.9) is still a Merton’s problem for

a shorter horizon. Standard argument therefore yields that the random value

function V (x, t;λ1) is the strictly increasing and strictly concave solution (in

the spatial variable) to the HJB equation with random coefficient

Vt −
λ2

1
2
V 2
x

Vxx
= 0, a.s., (2.10)

for τ1 < t ≤ T with terminal condition V (x, T ;λ1) = UT (x), a.s. under P.

The solution to equation (2.10) as well as the associated optimal portfolio

process and optimal wealth process are analogous to their previous counter-

parts (2.1), (2.4) and (2.5). Indeed, such problem is known as the adaptive

control problem, for which two phases are typically involved, the optimization

phase and adaptation phase (see, e.g., [12]). In the optimization phase, the

control problem with the unknown model parameters is solved and the asso-

ciated optimal strategy is obtained. Then one would complete the adaptation

phase by substituting the estimated model parameters into the optimal strat-

egy at each model reassessment time. We now illustrate the details in the

following example under a terminal power utility.
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2.2.1 Classical approach: the power utility case

Consider the power utility UT (x) = 1
γ
xγ, with 0 < γ < 1. Then the

strictly increasing and strictly concave solution to the HJB equation (2.1)

associated to the second sub-horizon model M̂(τ1,T ] is

V̂ (x, t; λ̂) = xγ

γ
exp

(
λ̂2γ

2(γ − 1)(t− T )
)
,

for all (x, t) ∈ [0,∞) × (τ1, T ]. By backward induction, the value function

corresponding to the first sub-horizon model M[0,τ1] is the strictly increasing

and strictly concave solution to HJB equation (2.7)

V̂ (x, t;λ, λ̂) = xγ

γ
exp

(
γ

2(γ − 1)
(
λ2(t− τ1) + λ̂2(τ1 − T )

))
,

for all (x, t) ∈ [0,∞)×[0, τ1]. We stress that since the investor would eventually

realize at t = τ1 that the model for the second sub-horizon is M1
(τ1,T ] rather

than M̂(τ1,T ], the time t = 0 perceived optimal portfolio process would only

be followed up to t = τ1 in the true market under the physical measure P.

This process is given by π̂∗t = λ
σ(1−γ)X

∗
t , for 0 ≤ t ≤ τ1, according to (2.8), and

the resulting optimal wealth process under the true measure P is the unique

strong solution to the stochastic differential equation (SDE)

dX∗t = λ2

1− γX
∗
t dt+ λ

1− γX
∗
t dWt, (2.11)

with X∗0 = x > 0, and 0 ≤ t ≤ τ1. The solution is given by

X∗t = xexp
((1− 2γ)λ2

2(1− γ)2 t+ λ

1− γWt

)
,
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for 0 ≤ t ≤ τ1. We also compute the value function process along this genuine

wealth process for later discussion

V̂ (X∗t , t;λ, λ̂) = xγ

γ
exp

(
γ

2(γ − 1)

(
γλ2

1− γ t+ (λ̂2 − λ2)τ1 − λ̂2T

)
+ λγ

1− γWt

)
,

(2.12)

for 0 ≤ t ≤ τ1. At time t = τ1, knowing that the true realized model for

the second sub-horizon is M1
(τ1,T ] = {µ1, σ1, λ1} ∈ Fτ1 , the investor solves the

(conditional) HJB equation (2.10) and obtains the solution

V (x, t;λ1) = xγ

γ
exp

(
λ2

1γ

2(γ − 1)(t− T )
)
∈ Fτ1 ,

for τ1 < t ≤ T . The optimal portfolio process is given by π∗t = λ1
σ1(1−γ)X

∗
t for

τ1 < t ≤ T . The SDE for the optimal wealth process under the true measure

P now becomes

dX∗t = λ2
1

1− γX
∗
t dt+ λ1

1− γX
∗
t dWt, (2.13)

with X∗τ1 = xexp
(

(1−2γ)λ2

2(1−γ)2 τ1 + λ
1−γWτ1

)
. Conditional on Fτ1 , this is an SDE

with (conditionally) independent initial condition, and the solution yields

X∗t = xexp
(

1− 2γ
2(1− γ)2

(
(λ2 − λ2

1)τ1 + λ2
1t
)

+ λ− λ1

1− γ Wτ1 + λ1

1− γWt

)
,

(2.14)

for τ1 < t ≤ T . The value function process over (τ1, T ] at the optimum hence

can be computed as

V (X∗t , t;λ1) = xγ

γ
exp

 γ

2(1− γ)2

(
(1− 2γ)(λ2 − λ2

1)τ1 − (γ − 1)λ2
1T − γλ2

1t
)

+ γ(λ− λ1)
1− γ Wτ1 + γλ1

1− γWt

. (2.15)
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Finally, we note that the above solutions corresponding to the t = 0 and t = τ1

optimization problems can also be recovered through the transformation (2.2).

For example, at t = 0, it yields the function

Ĥ(x, t) = exp
(

x

1− γ + λ̂2

2(1− γ)2 (T − t)
)
,

for τ1 < t ≤ T . Then, the t = 0 perceived optimal portfolio and wealth

processes follow from the analytic representations (2.4), (2.5).

2.3 Forward approach

At the intermediate model revision time t = τ1, the classical adap-

tive control method basically lets the stubborn investor forget what she has

achieved during [0, τ1], and restart solving a stochastic optimization problem

for the remaining horizon, given the market informationM1
(τ1,T ] = {µ1, σ1, λ1} ∈

Fτ1 and the achieved optimal wealth X∗τ1 . It is clearly time-inconsistent over

the whole horizon [0, T ], and it simply puts together two optimization problems

without establishing any intertemporal connection. The forward approach, on

the other hand, is based on the forward performance process theory which is

built to maintain time-consistency and to achieve less volatile optimal perfor-

mance along the time. At t = 0, the forward investor has the same correct

view as the stubborn investor about the market for the first sub-horizon, i.e.,

M[0,τ1] = {µ, σ, λ} ∈ F0, and also at t = τ1, she has the same correct view

for the second sub-horizon M1
(τ1,T ] = {µ1, σ1, λ1} ∈ Fτ1 . The main difference

is that the forward investor is allowed to choose a revised terminal utility at
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t = τ1, based on her correct view of the market for the remaining sub-horizon,

so that certain intertemporal consistency can be preserved across the first and

second sub-horizons. We will see that although both investors have access to

the same true information, the extra flexibility to the forward investor for not

being “stubborn” will give rise to consistent investment behavior and more

stable performance processes. Another flexibility of the forward approach is

that it allows to start with a family of admissible initial utility, corresponding

to different initial views about the market (e.g., optimistic or pessimistic), but

in this work we choose the initial utility to be V̂ (x, 0;λ, λ̂), the initial value

function of the t = 0 problem of the stubborn investor based on her t = 0

belief P̂, in order to have a comparable analysis between the two types of

investment behavior. By choosing V̂ (x, 0;λ, λ̂), the forward investor intends

to achieve the same level of performance as the stubborn investor at t = 0,

but different from the stubborn investor, she can maintain the same level of

performance even at later times through the preservation of optimality and

time-consistency under model revision. In terms of model specification, the

forward investor enjoys a third flexibility that allows her to only commit to a

model for the current sub-horizon in real-time, i.e., a model only for [0, τ1] at

t = 0 and a model for (τ1, T ] once at t = τ1. There is hence no model commit-

ment issue present in the forward framework, and the impact of a misspecified

model for remote future is minimal1. A summary of the model revision under

1The inaccurate model M̂(τ1,T ] = {µ̂, σ̂, λ̂} still affects the forward solution through the

initial condition V̂ (x, 0;λ, λ̂). However, such long-term model is not necessary to specify in

75



M[0,τ1] = {µ, σ, λ} ∈ F0

UF
0 ∈ F0

T0
| ||

τ1

At t = 0:

|

0

|

τ1

|

T

At t = τ1:
UF
T ∈ Fτ1

M1
(τ1,T ] = {µ1, σ1, λ1} ∈ Fτ1

Figure 2.2: Forward approach with model revision.

the forward approach is given in Figure 2.3.

At t = 0, the forward investor starts with UF
0 (x) = V̂ (x, 0;λ, λ̂), and

the true model for the first sub-horizon M[0,τ1] = {µ, σ, λ} ∈ F0. The goal

is to construct a forward performance process UF
t (x), 0 ≤ t ≤ τ1, such that

UF
t (X∗t ), 0 ≤ t ≤ τ1, is a martingale along the forward optimal wealth process

X∗, and UF
t (Xt), 0 ≤ t ≤ τ1, is a supermartingale along any admissible

wealth process. In this section, we would concentrate on a specific family

of forward processes, namely the zero volatility forward performance process,

which may be seen as the closet analogue of the classical counterpart. In the

next section, the non-zero volatility forward processes will be discussed for the

general, as we remind the reader that a generic forward process does not need to start from

V̂ (x, 0;λ, λ̂). This choice is only for comparable analysis in the current work.
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reconciliation of the two approaches. Similar to the classical scenario, for the

first sub-horizon problem, the zero volatility forward process satisfies the same

HJB equation (2.1), but with an initial condition UF
0 (x) = V̂ (x, 0;λ, λ̂), which

in turn makes it an ill-posed problem. Existing result about zero volatility

forward processes (see [45]) shows that if the function u(x, t) is a strictly

increasing and strictly concave solution (in the spatial variable) to the fully

nonlinear partial differential equation (PDE)

ut −
1
2
u2
x

uxx
= 0, (2.16)

with u(x, 0) = V̂ (x, 0;λ, λ̂), then the process UF
t (x) = u(x, λ2t), 0 ≤ t ≤ τ1, is

a forward performance process over the first sub-horizon [0, τ1]. By virtue of

the transformation

ux(h(x, t), t) = e−x+ t
2 , (2.17)

it is known that the function h : R× [0,∞)→ R+ is the strictly increasing in

x solution to the ill-posed heat equation

ht + 1
2hxx = 0, (2.18)

with initial condition defined through h(x, 0) = I
V̂

(e−x), where I
V̂

: R+ → R+,

with I
V̂

(x) = (V̂x)(−1)(x, 0;λ, λ̂) being the inverse marginal of the initial value

function V̂ (x, 0;λ, λ̂). The optimal portfolio and wealth processes under the

forward performance process can then be represented by

π∗t = λ

σ
hx
(
h(−1)(X∗t , λ2t), λ2t

)
, (2.19)
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and

X∗t = h
(
h(−1)(x, 0) + λ2t+ λWt, λ

2t
)
, X∗0 = x, (2.20)

respectively, for 0 ≤ t ≤ τ1. Notice the difference between (2.4), (2.5) and

(2.19), (2.20) are twofold, i.e., the Ĥ(x, t) function for the classical problem

is constructed with a normalization time T implicitly embedded, and no time

rescaling is involved in the classical optimal portfolio and wealth processes.

The forward problem over the first sub-horizon [0, τ1] would be com-

pletely solved once the function h(x, t) is found. At t = τ1, the forward investor

has access to the true model for the remaining horizonM1
(τ1,T ] = {µ1, σ1, λ1} ∈

Fτ1 . Given this new information and her optimal wealth X∗τ1 obtained by fol-

lowing the forward optimal strategy over sub-horizon [0, τ1], she would seek a

terminal criterion UF
T (x) at t = τ1 in order to achieve intertemporal consis-

tency. Recall that by committing to the initial condition UF
0 (x) = V̂ (x, 0;λ, λ̂),

the forward investor at t = 0 has indirectly committed to the terminal utility

UT (x) and the initial subjective belief P̂ of the stubborn investor. From this

perspective, the forward investor can be seen as revising her original invest-

ment objective, UT (x) that she implicitly shares with the stubborn investor at

t = 0, after receiving real-time updated information from the market at t = τ1.

Such revised objective would be a terminal utility UF
T (x) that is determined

through

UF
τ1

(
X∗τ1

)
= esssup

π
E
[
UF
T (XT )

∣∣∣Fτ1

]
, a.s., (2.21)

for any X∗τ1 ∈ Fτ1 , yielding from the forward optimal strategy π∗t , 0 ≤ t ≤ τ1,

given by (2.19) and all admissible X∗0 = x. Conditional on Fτ1 , the question
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boils down to looking for a forward performance process UF
t (x), τ1 < t ≤ T ,

with initial condition UF
τ1(x), such that UF

t (X∗t ), τ1 < t ≤ T , is a martingale

along the forward optimal wealth process and that UF
t (Xt), τ1 < t ≤ T , is

a supermartingale along any admissible wealth process. It can be similarly

shown as for the first sub-horizon problem that

UF
t (x) = u

(
x, (λ2 − λ2

1)τ1 + λ2
1t
)
,

τ1 < t ≤ T , is a forward performance process where the function u(x, t) is the

strictly increasing and strictly concave solution to PDE (2.16)2. We conclude

this section by revisiting the power utility scenario under the forward approach.

2.3.1 Forward approach: the power utility case

Recall that the value function for the stubborn investor over the first

sub-horizon [0, τ1], given the full perceived model M[0,τ1], M̂(τ1,T ] and the

terminal utility UT (x) = xγ

γ
, for 0 < γ < 1, is

V̂ (x, t;λ, λ̂) = xγ

γ
exp

(
γ

2(γ − 1)
(
λ2(t− τ1) + λ̂2(τ1 − T )

))
,

2Unlike the existing results as in [45], where a forward performance process can be

constructed by UFt (x) = u(x,
∫ t

0 λ
2
sds) for the whole horizon [0, T ] with time-varying λs,

0 ≤ s ≤ T , we instead construct it locally forward in real-time, since at t = 0, we only have

the knowledge of the true model up to t = τ1. Nevertheless, due to the forward recursive

nature of the forward performance process, the two constructions coincide as expected.

This is not valid though for classical stochastic optimization problems because of model

commitment.
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for all (x, t) ∈ [0,∞)× [0, τ1]. Hence, the forward investor takes

UF
0 (x) = V̂ (x, 0;λ, λ̂) = xγ

γ
exp

(
γ

2(γ − 1)
(
(λ̂2 − λ2)τ1 − λ̂2T

))

as the initial condition. The function u(x, t) therefore solves the PDE (2.16)

with initial condition u(x, 0) = UF
0 (x). A strictly increasing and strictly con-

cave solution (in spatial variable) is given by

u(x, t) = xγ

γ
exp

(
γ

2(γ − 1)
(
t+ (λ̂2 − λ2)τ1 − λ̂2T

))
.

The zero volatility (or the time-monotone) forward performance process is

UF
t (x) = xγ

γ
exp

(
γ

2(γ − 1)
(
λ2t+ (λ̂2 − λ2)τ1 − λ̂2T

))
, (2.22)

for 0 ≤ t ≤ τ1, and

UF
t (x) = xγ

γ
exp

(
γ

2(γ − 1)
(
λ2

1t+ (λ̂2 − λ2
1)τ1 − λ̂2T

))
, (2.23)

for τ1 < t ≤ T . We also notice that the function h(x, t) defined by (2.17) is

h(x, t) = exp
(
− x

γ − 1 −
1

2(γ − 1)2

(
t+ γ(λ̂2 − λ2)τ1 − γλ̂2T

))
,

which is clearly a strictly positive solution to the ill-posed heat equation (2.18).

The forward optimal portfolio process and optimal wealth process over the first

sub-horizon [0, τ1] in turn are

π∗t = − λ

σ(γ − 1)X
∗
t ,

X∗t = xexp
(
−(2γ − 1)λ2

2(γ − 1)2 t−
λ

γ − 1Wt

)
, X∗0 = x,
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respectively. The forward performance along the optimal wealth process over

[0, τ1] can be computed as

UF
t (X∗t ) = xγ

γ
exp

(
γ

2(1− γ)

(
γλ2

γ − 1t+ (λ̂2 − λ2)τ1 − λ̂2T

)
+ λγ

1− γWt

)
,

and hence it coincides pointwise in (t, ω) with its counterpart (2.12) derived

under the classical approach. We can see that based on the zero volatility for-

ward performance process that starts from V̂ (x, 0;λ, λ̂), the forward investor

achieves exactly the same optimal portfolio, optimal wealth and optimal per-

formance processes as the stubborn investor over the first sub-horizon [0, τ1].

For the second sub-horizon (τ1, T ], the construction of the optimal portfolio

and wealth process is still through the function h(x, t). Indeed, as shown in

[45], the optimal wealth process under the zero volatility forward performance

process UF
t (x), for τ1 < t ≤ T , is given by

X∗t = h
(
h(−1)(x, 0) +

∫ t

0
λ2
sds+

∫ t

0
λsdWs,

∫ t

0
λ2
sds

)

= xexp
(

(1− 2γ)
2(γ − 1)2

(
λ2

1t+ (λ2 − λ2
1)τ1

)
− λ− λ1

γ − 1 Wτ1 −
λ1

γ − 1Wt

)
, (2.24)

where λs := λ1{0≤s≤τ1}+λ11{τ1<s≤T}. The corresponding forward performance

along the optimal wealth is therefore

UF
t (X∗t ) = xγ

γ
exp

(
γ

2(γ − 1)2

(
− γλ2

1t+
(
γλ2

1 + (1− 2γ)λ2 + (γ − 1)λ̂2
)
τ1

+(1− γ)λ̂T
)
− γ(λ− λ1)

γ − 1 Wτ1 −
γλ1

γ − 1Wt

)
,

for τ1 < t ≤ T . Several observations then follow after we obtain the above

explicit expressions. First, due to the choice of the predictable modelM1
(τ1,T ] =
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{µ1, σ1, λ1} ∈ Fτ1 over (τ1, T ], the terminal utility UF
T (x) implied form the

zero volatility forward performance process (2.23) is actually Fτ1-measurable.

Hence, the forward investor is indeed aware of the consistent revised objective

at t = τ1 based on the updated information about the market; in other words,

the zero volatility forward performance leads to a predictable forward utility

UF
T (x) ∈ Fτ1 . However, it is clear that UF

T (x) is different from UT (x), showing

that the zero volatility forward family cannot reconcile with the stubborn

approach. Second, for sub-horizon (τ1, T ], the forward performance along the

optimum UF
t (X∗t ) does not coincide with the t = 0 (perceived) optimal value

along the optimum V̂ (X∗t , t; λ̂), τ1 < t ≤ T , neither would it agree with the

t = τ1 (genuine) optimal value along the optimum V (X∗t , t;λ1), τ1 < t ≤ T ,

given by (2.15). Nevertheless, conditional on Fτ1 , due to the fact λ1 ∈ Fτ1 , it

is straightforward to show that

E
[
UF
t (X∗t )

∣∣∣Fτ1

]
= V̂

(
X∗τ1 , τ1;λ, λ̂

)
, a.s.,

for τ1 < t ≤ T . On the other hand,

E
[
UF
t (X∗t )

]
= E

[
E
[
UF
t (X∗t )

∣∣∣Fτ1

]]
= E

[
UF
τ1

(
X∗τ1 , τ1;λ, λ̂

)]
= V̂ (x, 0;λ, λ̂),

(2.25)

for τ1 < t ≤ T , following from the construction of the forward performance

process. We now can conclude that whether assessed at t = 0 or at t = τ1,

the forward investor in the second sub-horizon (τ1, T ] performs equally well on

average under the genuine model P as the stubborn investor under the t = 0

perceived model P̂. This is one of the stability properties we observed for the
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forward approach, which is mainly due to the selection of the t = 0 classical

value function as the initial condition as well as the consistent construction of

the performance process afterwards. Such stability is obviously not achievable

in general by the time-inconsistent stubborn approach, as one can compute

its time t = τ1 average performance, which typically holds that with positive

probability under P,

E
[
V (X∗t , t;λ1)

∣∣∣Fτ1

]
6= V̂

(
X∗τ1 , τ1;λ, λ̂

)
,

for τ1 < t ≤ T , where V (X∗t , t;λ1) is the genuine performance along optimum

of the stubborn approach under P over the second sub-horizon (i.e., (2.15)).

Similar inequality

E [V (X∗t , t;λ1)] 6= V̂
(
x, 0;λ, λ̂

)
,

for τ1 < t ≤ T , holds as well for the t = 0 average performance comparison.

Indeed, to compute explicitly the above (conditional) expectations, we need

to know the exact probability correlation between λ1 ∈ Fτ1 and the Brownian

motion Wt, 0 ≤ t ≤ T , under the genuine physical measure P. In the special

case where the model parameter is independent of the underlying Brownian

motion, we can compute the t = 0 actual performance of the stubborn investor

under power utility as

E
[(
X∗T
γ

)γ]
= E

[
E
[(
X∗T
γ

)γ ∣∣∣∣λ1

]]

= E
[
xγ

γ
exp

(
γ

2(1− γ)
(
λ2τ1 + λ2

1(T − τ1)
))]

, (2.26)
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where X∗T is the genuinely achieved terminal wealth (2.14) by the stubborn

investor. Indeed, the equality (2.26) follows from the fact that

E
[(
X∗T
γ

)γ ∣∣∣∣λ1

]

= E
[
xγ

γ
exp

(
(1− 2γ)γ
2(1− γ)2

(
(λ2 − λ2

1)τ1 + λ2
1T
)

+ (λ− λ1)γ
1− γ Wτ1 + λ1γ

1− γWT

) ∣∣∣∣λ1

]

= xγ

γ
exp

(
(1− 2γ)γ
2(1− γ)2

(
(λ2 − λ2

1)τ1 + λ2
1T
))

×E
[
exp

(
λγ

1− γWτ1

)
E
[
exp

(
λ1γ

1− γ (WT −Wτ1)
) ∣∣∣∣Fτ1 , λ1

] ∣∣∣∣λ1

]

= xγ

γ
exp

(
(1− 2γ)γ
2(1− γ)2

(
(λ2 − λ2

1)τ1 + λ2
1T
))

exp
(

γ2

2(1− γ)2

(
λ2τ1 + λ2

1(T − τ1)
))

= xγ

γ
exp

(
γ

2(1− γ)
(
λ2τ1 + λ2

1(T − τ1)
))

, (2.27)

by the independence of λ1 ∈ Fτ1 and the Brownian motion Wt, 0 ≤ t ≤ T .

Now if we recall that the targeted time t = 0 performance under the perceived

model P̂ is given by

V̂ (x, 0;λ, λ̂) = xγ

γ
exp

(
γ

2(1− γ)
(
λ2τ1 + λ̂2(T − τ1

))
, (2.28)

then a comparison between (2.26) and (2.28) yields the intuitive conclusion:

the stubborn investor should perform better than originally perceived (at

t = 0), if λ1 ∈ Fτ1 has a high probability outweighing its counterpart λ̂

over the same sub-horizon (τ1, T ], corresponding to a higher Sharpe ratio, or

if the model correction from the inaccurate λ̂ to the true parameter λ1 hap-

pens earlier, corresponding to a smaller τ1. We also stress that the difference

between (2.27) and (2.28) is actually the first metric m[0,T ](x) we introduced
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in previous chapter to gauge the discrepancy between the actual and targeted

investment performance, given the realization of the parameter λ1 in the cur-

rent Merton’s case. The above observation clearly extends to the comparison

between (2.27) and (2.28), when each λ1(ω), for ω ∈ Ω, is considered rather

than on the average.

2.4 Regret of investment behavior

We have introduced two different types of investment behavior based

on the classical and the forward approaches, in face of the same model change

at t = τ1. By following their respective optimal strategies, the two appraoches

typically generate different terminal wealth, denoted by XS,∗
T and XF,∗

T at

t = T , in the true underlying market. It is hence reasonable to review the

performance according to a suitable baseline in retrospect at t = T . Moti-

vated by the important concept regret in online learning/optimization liter-

ature (see, e.g., [55]), we introduce the similar performance regret as in the

previous chapter to examine the two types of investment behavior under real-

time (unanticipated) model changes.

Definition 2.4.1 (Performance Regret). Suppose that M1
(τ1,T ] is the set of

realized model parameters over (τ1, T ], and let UA
T (·), XA,∗

T be the terminal

utility and the corresponding terminal wealth, respectively, associated to the

investment behavior of type A in the true market. The performance regret

(PR) of behavior type A is defined as the discrepancy between the expected
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utility of the genuine terminal wealth XA,∗
T and that of the optimal terminal

wealth in hindsight3, given the knowledge of M1
(τ1,T ], i.e.,

M[0,T ](x) = E
[
UA
T

(
XA,∗
T

) ∣∣∣M1
(τ1,T ]

]
− esssup

π
E
[
UA
T (Xπ

T )
∣∣∣M1

(τ1,T ]

]
, a.s.,(2.29)

with XA,∗
0 = Xπ

0 = x, for every x that is admissible.

In the above definition, the two conditional expectations in (2.29) are

taken with respect to the true underlying physical measure P, assumed to be

completely known at t = T in retrospect. The performance regret M[0,T ](x) is

in general a random variable, as it obviously depends on the realized model

parameters M1
(τ1,T ] whose distribution are governed by P (e.g., the stochas-

tic factors model). Nonetheless, we would next show that for the forward

behavior, the performance regret M[0,T ](x) is zero ω-almost surely, for each

admissible x. This demonstrates the path-wise robustness in terms of zero

regret for the forward behavior, a property that is typically not attainable for

other types of investment behavior within the classical (backward) stochastic

optimization paradigm.

Recall that the forward approach yields the consistent terminal utility

given by

UF
T (x) = xγ

γ
exp

(
γ

2(γ − 1)(λ2
1 − λ̂2)(T − τ1)

)
, (2.30)

3Alternatively, this can be interpreted as the discrepancy between the t = 0 performance

of two type A investors (i.e., the mortal and the genie), with one being an expert (i.e.,

the genie) who has the accurate knowledge about what parameters would be realized over

(τ1, T ] at t = 0.
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according to (2.23). Similar to (2.25), it can be further shown that for any

realized λ1 ∈ Fτ1 ,

E
[
UF
T

(
XF,∗
T

) ∣∣∣λ1
]

= E
[
E
[
UF
T

(
XF,∗
T

) ∣∣∣Fτ1

] ∣∣∣λ1
]

= E
[
UF
τ1

(
XF,∗
τ1

) ∣∣∣λ1
]

= E
[
UF
τ1

(
XF,∗
τ1

)]
= V̂ (x, 0;λ, λ̂), (2.31)

where we have resorted to the fact that the first sub-horizon forward process

along optimum UF
t (XF,∗

t ), 0 ≤ t ≤ τ1, is constructed independently of λ1 ∈

Fτ1 . To compute the performance regret for the forward behavior, we only need

to solve the classical backward stochastic optimization problem under UF
T (·)

in hindsight at t = T , knowing that the true realized parameters areM1
(τ1,T ] =

{µ1, σ1, λ1}. To make the hindsight problem tractable, we assume, given any

realized model parametersM(τ1,T ], the underlying log-normal dynamics remain

valid over [0, T ]. This could include the case, for example, when the model

parameters are driven by a Markov chain that is independent of the Brownian

motion Wt, 0 ≤ t ≤ T , under the true physical measure P.

At terminal time t = T , the solution to the classical Merton’s problem

under the utility function UF
T (·) in hindsight can be obtained through DPP over

the two sub-horizons (τ1, T ] and then [0, τ1] with the corresponding parameters

applied. Indeed, over the period (τ1, T ], the value function Ṽ (x, t) is the

unique strictly increasing and strictly concave (in the spatial variable) classical

solution to the HJB equation

Ṽt −
λ2

1
2
Ṽ 2
x

Ṽxx
= 0, a.s.,
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with the terminal condition Ṽ (x, T ) = UF
T (x) given by (2.30). The value

function is easily obtained as

Ṽ (x, t) = xγ

γ
exp

(
γ

2(γ − 1)
(
λ2

1(t− τ1)− λ̂2(T − τ1)
))

,

for τ1 ≤ t ≤ T . By DPP, the value function Ṽ (x, t) over [0, τ1] satisfies

Ṽ (x, t) = sup
π

E
[
Ṽ (Xτ1 , τ1)

∣∣∣Xt = x
]
,

with λ being applied over this first sub-horizon. Here,

Ṽ (x, τ1) = xγ

γ
exp

(
− γλ̂2

2(γ − 1)(T − τ1)
)
, (2.32)

according to the solution for the second sub-horizon problem. We hence have

the following HJB equation over [0, τ1]

Ṽt −
λ2

2
Ṽ 2
x

Ṽxx
= 0,

with terminal condition given by (2.32). Again, this is the classical HJB equa-

tion for the Merton’s problem over [0, τ1] and it completely coincides with the

HJB equation (2.7) in terms of both the equation and the terminal condition

at t = τ1. Uniqueness result on its classical solution hence leads to that

Ṽ (x, 0) = V̂ (x, 0;λ, λ̂).

Recalling (2.31), we conclude that the performance regret of the forward

behavior achieves zero regret given any realized parameter set M(τ1,T ], i.e.,

M[0,T ](x) = 0, a.s. under P, for any admissible x. This remarkable robustness

in terms of path-wise zero regret is mainly due to the forward performance
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process that completely incorporates any unexpected model changes along

real-time, a stability not shared by the stubborn behavior in general.

The stubborn investor, on the other hand, sticks to the fixed terminal

criterion US
T (x) = xγ

γ
, for 0 < γ < 1, when she makes decisions in real-time.

At terminal time t = T , the Merton’s problem in hindsight is also solved under

US
T (·). The procedure to obtain the the value functions is almost the same as

that for the forward behavior demonstrated earlier, with the only difference

arising in the terminal criterion. Indeed, the value function over (τ1, T ], given

M1
(τ1,T ] = {µ1, σ1, λ1} ∈ Fτ1 , is

Ṽ (x, t) = xγ

γ
exp

(
λ2

1γ

2(γ − 1)(t− T )
)
,

whereas the value function over [0, τ1] is

Ṽ (x, t) = xγ

γ
exp

(
γ

2(γ − 1)
(
λ2t+ (λ2

1 − λ2)τ1 − λ2
1T
))

.

We hence obtain

Ṽ (x, 0) = xγ

γ
exp

(
γ

2(γ − 1)
(
(λ2

1 − λ2)τ1 − λ2
1T
))

, (2.33)

a quantity depending on both λ and λ1 due to the backward model com-

mitment nature of classical approach as expected. On the other hand, the

first term E[US
T (XS,∗

T )|M1
(τ1,T ]] in definition (2.29) is computed under the true

physical measure P, given the knowledge of realized parameters M(τ1,T ]. Un-

less we have more specific knowledge about the correlation between λ1 and

the underlying Brownian motion under the true physical measure P, we can-

not have explicit result for such quantity. Nonetheless, it is easy to see that
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M[0,T ](x) as defined in (2.29) is indeed a random variable with M[0,T ](x) ≤ 0

a.s. under P, for all x ≥ 0, since the policy that yields XS,∗
T based on the

stubborn behavior is only one admissible policy, and it does not necessarily

coincide with the optimal policy in general, except for special situations. One

of such situations is when λ1 is independent of the Brownian motion under

the genuine measure P, for which we can actually conclude, based on the ex-

plicit computation (2.27) and (2.33), that M[0,T ](x) = 0, a.s., for all x ≥ 0.

This can be seen as a degenerated case, since the optimal strategy induced

by the stubborn behavior over [0, T ] is the same as that of the optimization

problem with full knowledge in hindsight. Such degeneracy arises due to the

optimality of myopic strategy for Merton’s problem under power utility, as

well as the current formulation of model knowledge that is revealed locally in

real-time. In general, however, by the definition for the performance regret

(2.29), it is expected that M[0,T ](x) ≤ 0, a.s. under P, for each admissible x,

under the stubborn behavior, whereas for the forward behavior, as we have

shown, M[0,T ](x) = 0, a.s..

2.5 The forward bridge problem

In the previous two sections, we have seen the respective advantages

and disadvantages of the two approaches in the model revision setting. Specif-

ically, the stubborn approach maintains a fixed objective UT (x) ∈ F0, re-

gardless of any unanticipated model changes in the future. This commitment
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may be sometimes desirable when an investor targets at a certain investment

goal. However, this stubbornness gives rise to time-inconsistent investment

behavior with ill-defined optimality across different time periods, and volatile

investment performance as shown in previous sections. The ill-posedness of the

stochastic optimization problem depicts as the following. The t = 0 optimal

control rule for the second sub-horizon (τ1, T ] is no longer optimal when the

investor reconsiders the optimization problem at t = τ1, and also, at t = τ1, the

t = 0 optimal control rule for the first sub-horizon [0, τ1], reassessed under the

updated model knowledge at t = τ1, turns out to be actually suboptimal. Such

future and past inconsistency indicate the failure of classical optimization ap-

proach, in that a decision made today for the remote future would inevitably

be revised when the future comes, and an investor would inevitably regret

both her decisions for the past and those for the future at each time instant.

The forward approach, on the other hand, leads to a well-defined optimization

problem as time enfolds, i.e., the decision made in the past is still optimal

as the investor gains more new information. It also relieves the investor from

making decisions for the remote future, as she is no longer committed to an

optimization objective at the future time T , and therefore, the (probably vague

and inaccurate) specification of any inflexible model for the far future becomes

unnecessary. The forward approach, however, achieves these desirable flexibil-

ities at the cost of abandoning a fixed target UT (x) ∈ F0 that is specified at

t = 0. Dynamically changing one’s objective in a consistent way may be rea-

sonable in real world where model knowledge at t = 0 is typically insufficient
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for decision making for long-term, but as mentioned earlier, stubbornness is

required in some scenarios. It is the purpose of this section to reconcile the two

approaches, and therefore, to have the advantages of both the two optimization

approaches. Specifically, we will construct a consistent forward performance

process that ultimately recovers the original objective UT (x) ∈ F0 when time

reaches t = T . As we have seen in the previous section, the zero volatility for-

ward process in general cannot achieve such reconciliation (except for special

cases, e.g., see Remark 2.5.2), and hence, it is necessary to consider general

non-zero volatility forward processes. We will provide results for constructing

such forward performance processes in the power, exponential and logarithmic

utility scenarios under suitable conditions on the market parameters.

2.5.1 Power utility case

As demonstrated in section 3, the forward investor starts at t = 0

from the value function V̂ (x, 0;λ, λ̂) and fully recovers the performance and

optimal portfolio and wealth processes of the stubborn investor up to t = τ1. In

particular, the forward criterion at t = τ1 is UF
τ1(x) = V̂

(
x, τ1;λ, λ̂

)
for all x ≥

0. Similar as before, at t = τ1, the goal is to determine a forward performance

process UF
t (x), for τ1 < t ≤ T , that satisfies the martingale (supermartingale,

respectively) property along the optimal wealth process (along any admissible

wealth process, respectively), as well as the two “bridge” conditions UF
τ1(x) =

V̂
(
x, τ1;λ, λ̂

)
and UF

T (x) = UT (x). We refer to this problem as the forward

bridge problem. In this section, we restrict the filtration Ft, 0 ≤ t ≤ T , to
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be the filtration generated by the Brownian motion Wt, 0 ≤ t ≤ T , satisfying

the usual conditions. The following proposition gives a sufficient condition to

construct such a forward performance process in the power utility scenario.

Proposition 2.5.1. Let µt, σt and λt, τ1 ≤ t ≤ T , be the (conditional) model

parameter processes for the second sub-horizon [τ1, T ], and denote by W̃t =

Wt −Wτ1 the standard Brownian motion for τ1 ≤ t ≤ T , conditional on Fτ1.

Suppose there exists a progressively measurable process aft , τ1 ≤ t ≤ T , such

that the (conditional) stochastic differential equation (SDE)

dft =
(

γ

2(γ − 1)(λt + aft )2 − (aft )2

2

)
dt+ aft dW̃t, τ1 < t < T, (2.34)

with fτ1 = γλ̂2

2(1−γ)(T − τ1) and fT = 0 is well defined and has a strong solution

ft ∈ Ft, for τ1 ≤ t ≤ T . Then the forward bridge problem for a terminal power

utility UF
T (x) = xγ

γ
has a solution

UF
t (x) = xγ

γ
eft ,

for τ1 ≤ t ≤ T .

Proof. In the Itô’s diffusion market considered herein, it is reasonable to con-

jecture that the forward performance process with non-zero volatility satisfies

dUF
t (x) = b(x, t)dt+ a(x, t)dW̃t,

for τ1 < t < T , conditional on Fτ1 . Recall also the wealth dynamics

dXt = µtπtdt+ σtπtdW̃t,
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with Xτ1 = x ≥ 0 over the same sub-horizon, conditional on Fτ1 . Then, under

suitable conditions, standard argument (see, e.g., [46]) suggests that UF
t (x)

is the solution to the fully nonlinear stochastic partial differential equation

(SPDE)

dUF
t (x) =

(
µt

∂UFt (x)
∂x

+ σt
∂a(x,t)
∂x

)2

2σ2
t
∂2Ut(x)
∂x2

dt+ a(x, t)dW̃t, (2.35)

with initial condition UF
τ1(x) = V̂

(
x, τ1;λ, λ̂

)
= xγ

γ
exp

(
γλ̂2

2(1−γ)(T − τ1)
)

and

terminal condition UF
T (x) = xγ

γ
. The power utility types of boundary condi-

tions suggest the scaling property in the spatial variable, leading to a candidate

forward performance process UF
t (x) = xγ

γ
eft for some Ft-adapted process ft,

τ1 ≤ t ≤ T . Notice that such forward performance process is indeed strictly

increasing and strictly concave in x at each time τ1 ≤ t ≤ T , satisfying In-

ada’s conditions. Now we further assume that the process ft has the Itô’s

decomposition

dft = bft dt+ aft dW̃t,

for some admissible processes aft and bft such that the above diffusion process

is well defined. Then direct computation yields that

dUF
t (x) = xγ

γ

(
eftdft + 1

2e
ft
(
aft
)2
dt
)

= xγ

γ
eft
((
bft + 1

2(aft )2
)
dt+ aft dW̃t

)
(2.36)

=

(
xγ−1eftµt + ax(x, t)σt

)2

2(γ − 1)xγ−2eftσ2
t

dt+ a(x, t)dW̃t. (2.37)

Now comparing the volatility parts of expressions (2.36) and (2.37), we obtain

a(x, t) = xγ

γ
eftaft ,

94



and comparison of the drift parts yields

xγ

γ
eft
(
bft + 1

2(aft )2
)

= xγ

2(γ − 1)e
ft
(
λt + aft

)2
,

which leads to bft = γ
2(γ−1)

(
λt + aft

)2
− (aft )2

2 . The construction of the solution to

the forward bridge problem therefore boils down to looking for aft , τ1 ≤ t ≤ T ,

an admissible volatility process for the process ft, such that the SDE (2.34) has

an Ft-adapted well defined strong solution, with the two boundary conditions

fτ1 = γλ̂2

2(1−γ)(T − τ1) and fT = 0 being satisfied. This completes the proof for

the power utility scenario.

Proposition 2.5.1 claims that, once a solution to the SDE (2.34) is

found, a forward performance process that recovers UT (x) at t = T exists, and

therefore, the stubborn approach and the forward approach reconcile. We next

provide sufficient conditions on the parameter processes to prove the existence

and uniqueness of the strong solution to the SDE (2.34), and therefore give

a full characterization of the solution to the forward bridge problem in the

power utility scenario.

Proposition 2.5.2. Let the (conditional) SDE for the forward bridge problem

be given by (2.34), and the process λt, τ1 ≤ t ≤ T , be uniformly bounded in

(t, ω) and satisfy

exp
(

γλ̂2

2(1− γ)2 (T − τ1)
)

=

EP

[
exp

(
γ

2(1− γ)

∫ T

τ1
λ2
sds+ γ

1− γ

∫ T

τ1
λsdW̃s

) ∣∣∣Fτ1

]
. (2.38)
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Then, the SDE (2.34) has a unique uniformly bounded strong solution given

by

ft = (1− γ) lnEP

[
exp

(
γ

2(1− γ)

∫ T

t
λ2
sds+ γ

1− γ

∫ T

t
λsdW̃s

) ∣∣∣∣Ft
]
, (2.39)

for τ1 ≤ t ≤ T , with
∫ t
τ1
afsdW̃s, τ1 ≤ t ≤ T , being a BMO (Bounded Mean

Oscillation) martingale under the measure P.

Proof. The SDE (2.34) can be seen as a quadratic backward stochastic differ-

ential equaiton (BSDE) with an extra initial condition. Well established result

on the existence and uniqueness of the solution (f, af ) to quadratic BSDEs ap-

plies here (see, e.g., Chapter 10 of [59]). Indeed, by the assumption that the

process λt, τ1 ≤ t ≤ T , is uniformly bounded, conditional on Fτ1 , there exists

a unique solution (f, af ) to the BSDE

dft =
(

γ

2(γ − 1)(λt + aft )2 − (aft )2

2

)
dt+ aft dW̃t, τ1 < t < T, fT = 0,

such that f is uniformly bounded and
(∫ .
τ1
aft dW̃t

)
is a BMO martingale under

P. Our next step is to identify the process f with the explicit representation in

(2.39). To this end, we first, by a change of measure, reduce the (conditional)

SDE (2.34) to

dft =
(

γ

2(γ − 1)λ
2
t + γ

γ − 1λta
f
t + 1

2(γ − 1)
(
aft
)2
)
dt+ aft dW̃t

=
(

γ

2(γ − 1)λ
2
t + 1

2(γ − 1)
(
aft
)2
)
dt+ aft dW̃

Q
t ,

where dW̃Q
t = dW̃t + γ

γ−1λtdt. Under the assumption that λt, τ1 < t ≤ T , is

uniformly bounded, the Novikov’s condition applies, and the process W̃Q
t =
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W̃t +
∫ t
τ1

γ
γ−1λsds, τ1 ≤ t ≤ T , is a Brownian motion under the measure Q

defined by

dQ
dP

∣∣∣∣
FT

= exp
− ∫ T

τ1

γ

γ − 1λsdW̃s −
1
2

∫ T

τ1

(
γ

γ − 1

)2

λ2
sds

 , (2.40)

with W̃Q
τ1 = 0. Next, we define the process f̃t = ft −

∫ t
τ1

γ
2(γ−1)λ

2
sds. Then, the

new process f̃ is also uniformly bounded and satisfies the quadratic BSDE

df̃t = 1
2(γ − 1)

(
aft
)2
dt+ aft dW̃

Q
t , (2.41)

with terminal condition f̃T = −
∫ T
τ1

γ
2(γ−1)λ

2
sds. Notice that f̃T is bounded, and

hence by the property of quadratic BSDE with bounded terminal condition

(see, e.g., Lemma 10.2 of [59]), we can claim that
(∫ .
τ1
aft dW̃

Q
t

)
is a BMO

martingale under the measure Q, due to that f̃ is uniformly bounded and it

solves the BSDE (2.41) by construction. Applying Itô’s lemma then yields

d
(
e

1
1−γ f̃t

)
= 1

1− γ e
1

1−γ f̃t

(
1

2(r − 1)
(
aft
)2
dt+ aft dW̃

Q
t

)
+ 1

2(1− γ)2 e
1

1−γ f̃t
(
aft
)2
dt

= 1
1− γ e

1
1−γ f̃taft dW̃

Q
t .

Since f̃ is uniformly bounded and
(∫ .
τ1
aft dW̃

Q
t

)
is a BMO martingale under Q

(hence also square integrable), we claim that the process e
1

1−γ f̃t , τ1 ≤ t ≤ T ,

is a genuine (square integrable) martingale under Q. It hence follows that

e
1

1−γ f̃t = EQ

[
e
∫ T
τ1

γ

2(1−γ)2 λ
2
sds
∣∣∣∣Ft
]

= EP

[
e
∫ T
τ1

γ

2(1−γ)2 λ
2
sdse−

∫ T
t

γ
γ−1λsdW̃s− 1

2

∫ T
t

( γ
γ−1)2

λ2
sds
∣∣∣∣Ft
]
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= EP

[
exp

(
γ

2(1− γ)

∫ T

t
λ2
sds+ γ

1− γ

∫ T

t
λsdW̃s + γ

2(1− γ)2

∫ t

τ1
λ2
sds

) ∣∣∣∣Ft
]
,

which gives rise to

f̃t = (1− γ) lnEP

[
exp

(
γ

2(1− γ)

∫ T

t
λ2
sds+ γ

1− γ

∫ T

t
λsdW̃s

+ γ

2(1− γ)2

∫ t

τ1
λ2
sds

)∣∣∣∣Ft],
for τ1 ≤ t ≤ T . Under assumption (2.38) on the parameter process λt, τ1 ≤

t ≤ T , we can easily verify that the initial condition f̃τ1 = γλ̂2

2(1−γ)(T − τ1)

is automatically satisfied by the process f̃ . Finally, the unique uniformly

bounded strong solution can be derived as

ft = (1− γ) lnEP

[
exp

(
γ

2(1− γ)

∫ T

t
λ2
sds+ γ

1− γ

∫ T

t
λsdW̃s

) ∣∣∣∣Ft
]
.

Remark 2.5.1. A further look at the condition (2.38) for the parameter process

λ yields that, under the measure Q defined in (2.40),

EP

[
exp

(
γ

2(1− γ)

∫ T

τ1
λ2
sds+ γ

1− γ

∫ T

τ1
λsdW̃s

) ∣∣∣∣Fτ1

]

= EQ

[
exp

(
γ

2(1− γ)2

∫ T

τ1
λ2
sds

) ∣∣∣∣Fτ1

]
= exp

(
γλ̂2

2(1− γ)2 (T − τ1)
)
.

It hence leads to that

EQ

[
exp

(
γ

2(1− γ)2

∫ T

τ1

(
λ2
s − λ̂2

)
ds

) ∣∣∣∣Fτ1

]
= 1. (2.42)

The equivalent condition (2.42) implies that, under the measure Q, the dis-

crepancy process ∆s := λ2
s − λ̂2, τ1 ≤ s ≤ T , conditional on Fτ1 , should not
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deviate from zero too much on average under exponential weighting. See a

more detailed discussion for the deterministic parameter case in Remark 2.5.2.

We now summarize the results for the forward bridge problem in the

power utility setting, and also provide the verification theorem to show that

the process UF
t (x), τ1 ≤ t ≤ T , we have constructed is indeed a forward

performance process.

Theorem 2.5.3. Suppose that the process λt, τ1 ≤ t ≤ T , is uniformly bounded

and satisfies the condition (2.38). Let (f, af ) be the unique solution to the

(conditional) SDE (2.34) with f being uniformly bounded. Then, the process

UF
t (x) = xγ

γ
eft, τ1 ≤ t ≤ T , is a forward performance process that achieves

power utility UF
T (x) = xγ

γ
at terminal time t = T , where ft, τ1 ≤ t ≤ T ,

is given by (2.39). The forward performance process in addition satisfies the

following Itô’s decomposition

dUF
t (x) =

xγeft
(
λt + aft

)2

2(γ − 1) dt+ xγeftaft
γ

dW̃t, τ1 < t < T, (2.43)

with initial and terminal conditions being UF
τ1(x) = xγ

γ
exp

(
γλ̂2

2(1−γ)(T − τ1)
)

and UF
T (x) = xγ

γ
, respectively. The optimal investment strategy is

π∗t = − λt + aft
(γ − 1)σt

X∗t , τ1 ≤ t ≤ T, (2.44)

with the optimal wealth process being

X∗t = X∗τ1 exp
∫ t

τ1

(
(1− 2γ)λs − afs

) (
λs + afs

)
2(1− γ)2 ds+

∫ t

τ1

λs + afs
1− γ dW̃s

 ,
(2.45)
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for τ1 ≤ t ≤ T . Here, X∗τ1 = x exp
(

(1−2γ)λ̂2

2(1−γ)2 τ1 + λ̂
1−γWτ1

)
is the optimal wealth

at t = τ1.

Proof. It is easy to see that UF
t (x) = xγ

γ
eft is Ft-adapted, and also, for each

fixed t ∈ [τ1, T ], the mapping x 7→ UF
t (x) is strictly increasing and strictly

concave, almost surely, with Inada’s conditions being satisfied. One can also

directly verify that the initial and terminal conditions for the bridge problem

are satisfied by the process UF
t (x) at time t = τ1 and t = T , respectively,

based on the expression (2.39) for ft and the condition (2.38) on λt. It hence

remains to prove that for any wealth process Xt generated by admissible policy

πt, E
[
UF
s (Xs)|Ft

]
≤ UF

t (Xt), for τ1 ≤ t ≤ s ≤ T , and for the wealth process

X∗t given by (2.45), E
[
UF
s (X∗s )|Ft

]
= UF

t (X∗t ), for τ1 ≤ t ≤ s ≤ T . To this

end, we first notice that the process UF
t (x) = xγ

γ
eft has the Itô’s decomposition

dUF
t (x) = xγ

γ
eft
(

γ

2(γ − 1)
(
λt + aft

)2
)
dt+ xγ

γ
eftaft dW̃t,

since the process ft is the unique uniformly bounded solution to the SDE (2.34)

by Proposition 2.5.2. Moreover, the process UF
t (x) is smooth enough so that

the Itô-Ventzel’s formula can be applied to yield, for any wealth process Xt

generated by admissible policy πt ∈ A,

dUF
t (Xt) = Xγ

t

γ
eft
(

γ

2(γ − 1)
(
λt + aft

)2
)
dt+ Xγ

t

γ
eftaft dW̃t

+Xγ−1
t eftdXt + 1

2(γ − 1)Xγ−2
t eft 〈dXt〉+

〈
∂

∂x

(
xγ

γ
eftaft

)
dW̃t, dXt

〉 ∣∣∣∣
x=Xt

=
(
−1− γ

2 σ2
t π

2
t +

(
µt + σta

f
t

)
Xtπt + X2

t

2(γ − 1)
(
λt + aft

)2
)
Xγ−2
t eftdt
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+X
γ−1
t eft

γ

(
Xta

f
t + γσtπt

)
dW̃t

= −1− γ
2

(
σtπt + λt + aft

γ − 1 Xt

)2

Xγ−2
t eftdt+ Xγ−1

t eft

γ

(
Xta

f
t + γσtπt

)
dW̃t.

Note that −1−γ
2 < 0 and hence the drift of the process UF

t (Xt), τ1 ≤ t ≤ T ,

would achieve maximum value zero at π∗t = − λt+aft
(γ−1)σtX

∗
t , where X∗t is the

wealth process generated under such policy π∗t , for τ1 ≤ t ≤ T . Define

τn := inf
{
s ≥ t :

∫ s

t

∣∣∣Xγ−1
u efu

γ

(
Xua

f
u + γσuπu

) ∣∣∣2du ≥ n
}
∧ T.

Then, it holds that for any admissible πt ∈ A,

E
[
UF
s∧τn(Xs∧τn)

∣∣∣Ft] ≤ UF
t (Xt), τ1 ≤ t ≤ s ≤ T. (2.46)

Notice that E
[
supτ1≤t≤T |Xt|γ

]
≤ E

[
supτ1≤t≤T |Xt|2

]
+ (T − τ1), and the fact

that for any admissible πt ∈ A, the following estimate holds

E
[

sup
τ1≤t≤T

|Xt|2
]
≤ E

[
sup

τ1≤t≤T

∣∣∣∣X∗τ1 +
∫ t

τ1
µtπtdt+

∫ t

τ1
σtπtdW̃t

∣∣∣∣2
]

≤ 3
(
E|X∗τ1|

2 + (T − τ1)E
[∫ T

τ1
|µtπt|2dt

]
+ E

[
sup

τ1≤t≤T

∣∣∣∣ ∫ t

τ1
σtπtdW̃t

∣∣∣∣2
])

≤ 3
(
E|X∗τ1|

2 + (T − τ1)E
[∫ T

τ1
|µtπt|2dt

]
+ 4E

[∫ T

τ1
|σtπt|2dt

])
,

where we have applied Doob’s maximal inequality. Since

πt ∈ A :=
{
π : πt is self-financing and Ft − progressively measurable

with E
[∫ T

τ1
|σtπt|2dt

]
<∞ and Xt ≥ 0, τ1 ≤ t ≤ T

}
,
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we have shown that E
[
supτ1≤t≤T |Xt|2

]
< ∞, under the assumption that

the process λt, τ1 ≤ t ≤ T , is uniformly bounded. It hence follows that

E
[
supτ1≤t≤T |Xt|γ

]
< ∞ as well. Let n → ∞ in (2.46), and by dominated

convergence theorem and recalling that the process ft, τ1 ≤ t ≤ T , is uni-

formly bounded, we obtain E
[
UF
s (Xs)

∣∣∣Ft] ≤ UF
t (Xt), τ1 ≤ t ≤ s ≤ T , for any

admissible πt ∈ A, and equality holds when Xt is replaced by X∗t in (2.45)

that is generated by the policy π∗t in (2.44). The admissibility of the policy π∗t
given in (2.44) can be easily verified, following from the assumption that the

parameter process λt is uniformly bounded, and the conclusion from Proposi-

tion 2.5.2 that
∫ t
τ1
afsdW̃s is a BMO martingale (hence square integrable) under

P.

Remark 2.5.2. In the case when the process λt, τ1 ≤ t ≤ T , is deterministic,

conditional on Fτ1 , then condition (2.38) reduces to

1
T − τ1

∫ T

τ1
λ2
tdt = λ̂2, a.s., (2.47)

indicating that the average of the process λt over the second sub-horizon should

not be very different from the perceived parameter λ̂ for the same sub-horizon.

Within this setting, the forward performance process that achieves power util-

ity at terminal time t = T is given by

UF
t (x) = xγ

γ
exp

(
γ

2(1− γ)

∫ T

t
λ2
sds

)
, τ ≤ t ≤ T,

whose Itô’s decomposition is

dUF
t (x) = xγeftλ2

t

2(γ − 1)dt, τ ≤ t ≤ T
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by (2.43). Notice that this is a time-decreasing zero volatility forward perfor-

mance process, and it includes the special case when there is no unanticipated

model switch at t = τ1, i.e., the case when λt(ω) = λ̂, τ1 ≤ t ≤ T , for almost

all ω ∈ Ω.

2.5.2 Exponential utility case

The forward bridge problem and the solution for the exponential util-

ity U(x) = −e−γx, γ > 0, basically state in the same way as for the power

utility case, except for a different constant appearing in the drift of the SDE

(2.34). Indeed, following the similar argument as in the power utility set-

ting, one can derive that at the model switching time t = τ1, an expo-

nential utility investor has the forward criterion UF
τ1(x) = V̂

(
x, τ1;λ, λ̂

)
=

− exp
(
−γx− λ̂2

2 (T − τ1)
)

. The goal is then to construct the forward perfor-

mance process UF
t (x), for τ1 < t ≤ T , conditional on Fτ1 , while recovering the

terminal exponential utility UF
T (x) = −e−γx as time reaches t = T . Argument

similar to Proposition 2.5.1 states as following.

Proposition 2.5.4. Let µt, σt and λt, τ1 ≤ t ≤ T , be the (conditional) model

parameter processes for the second sub-horizon [τ1, T ], and denote by W̃t =

Wt −Wτ1 the standard Brownian motion for τ1 ≤ t ≤ T , conditional on Fτ1.

Suppose there exists a progressively measurable process aft , τ1 ≤ t ≤ T , such

that the (conditional) stochastic differential equation

dft = 1
2
(
λ2
t + 2λtaft

)
dt+ aft dW̃t, τ1 < t < T, (2.48)
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with fτ1 = − λ̂2

2 (T − τ1) and fT = 0 is well defined and has a strong solution

ft ∈ Ft, for τ1 ≤ t ≤ T . Then the forward bridge problem for a terminal

exponential utility UF
T (x) = −e−γx has a solution

UF
t (x) = −e−γxeft ,

for τ1 ≤ t ≤ T .

Proof. The proof for the exponential utility case is mostly identical to that of

Proposition 2.5.1. Recall that in the current case, the SPDE satisfied by the

forward performance process is given by (2.35), for τ1 < t < T , with initial and

terminal conditions being UF
τ1(x) = V̂

(
x, τ1;λ, λ̂

)
= − exp

(
−γx− λ̂2

2 (T − τ1)
)

and UF
T (x) = −e−γx, respectively. The exponential scaling in the bound-

ary conditions suggests a candidate forward performance process UF
t (x) =

−e−γxeft for some Ft-adapted process ft, τ1 ≤ t ≤ T . Notice that such for-

ward performance process is indeed strictly increasing and strictly concave in

x and satisfies Inada’ s conditions at each time τ1 ≤ t ≤ T . Now we further

assume that the process ft has the Itô’s decomposition

dft = bft dt+ aft dW̃t,

for some admissible processes aft and bft such that the above diffusion process

is well defined. Then direct computation yields that

dUF
t (x) = −e−γx

(
eftdft + 1

2e
ft
(
aft
)2
dt
)

= −e−γxeft
((
bft + 1

2(aft )2
)
dt+ aft dW̃t

)
(2.49)

=

(
γe−γxeftµt + ax(x, t)σt

)2

−2γ2e−γxeftσ2
t

dt+ a(x, t)dW̃t. (2.50)
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Now comparing the volatility parts of expression (2.49) and (2.50), we obtain

a(x, t) = −e−γxeftaft ,

and comparison of the drift parts yields

−e−γxeft
(
bft + 1

2(aft )2
)

= −e
−γxeft

2
(
λt + aft

)2
,

which gives rise to bft = 1
2

(
λ2
t + 2λtaft

)
. The construction of the forward

bridge problem solution therefore boils down to looking for aft , τ1 ≤ t ≤ T , an

admissible volatility process for the process ft, such that the SDE (2.48) has

an Ft-adapted well defined strong solution, with the two boundary conditions

fτ1 = − λ̂2

2 (T − τ1) and fT = 0 being satisfied. This completes the proof for

the exponential utility scenario.

The existence and uniqueness of solution to the SDE (2.48) can be

similarly handled as in Proposition 2.5.2. It is actually slightly easier in the

current exponential utility case, since the involved BSDE has the affine gener-

ator instead of a quadratic generator. We hence resort to the well established

results on such BSDEs (see, e.g., Chapter 9 of [59]) and obtain the following

proposition.

Proposition 2.5.5. Let the (conditional) SDE for the forward bridge problem

be given by (2.48), and the process λt, τ1 ≤ t ≤ T , be uniformly bounded in

(t, ω) and satisfy

EP

[∫ T

τ1

λ2
s

2 ds exp
(
−
∫ T

τ1

λ2
s

2 ds−
∫ T

τ1
λsdW̃s

) ∣∣∣∣Fτ1

]
= λ̂2

2 (T − τ1). (2.51)
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Then, the SDE (2.48) has a unique solution that satisfies EP
[
supτ1≤t≤T |ft|

2|Fτ1

]
<

∞ and it is given by

ft = EP

[
−
∫ T

τ1

λ2
s

2 ds exp
(
−
∫ T

t
λsdW̃s −

∫ T

t

λ2
s

2 ds
) ∣∣∣∣Ft

]
, (2.52)

for τ1 ≤ t ≤ T , with
∫ t
τ1
aft dW̃t, τ1 ≤ t ≤ T , being a square integrable martin-

gale under the measure P.

Proof. As in the proof of Proposition 2.5.2, we first examine the BSDE

dft = 1
2
(
λ2
t + 2λtaft

)
dt+ aft dW̃t, fT = 0,

which has an affine generator. Under the assumption that λt, τ1 ≤ t ≤ T , is

uniformly bounded, well established existence and uniqueness result leads to

that there is a unique solution (f, af ), with EP

[
supτ1≤t≤T |ft|

2|Fτ1

]
< ∞ and∫ t

τ1
aft dW̃t, τ1 ≤ t ≤ T , being a square integrable martingale under P. Our next

step is to identify this solution ft with the expression in (2.52). We first, by a

change of measure, turn the BSDE into

dft = λ2
t

2 dt+ aft dW̃
Q
t , fT = 0,

with W̃Q
t := W̃t +

∫ t
τ1
λsds being a standard Brownian motion under Q, with

W̃Q
τ1 = 0. Here, the equivalent measure Q is defined by, on FT ,

dQ
dP

∣∣∣∣
FT

= exp
(
−
∫ T

τ1
λsdW̃s −

1
2

∫ T

τ1
λ2
sds

)
.

Next, let f̃t := ft −
∫ t
τ1

λ2
s

2 ds, then f̃t, τ1 ≤ t ≤ T , solves the BSDE

df̃t = aft dW̃
Q
t , f̃T = −

∫ T

τ1

λ2
s

2 ds.
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By existence and uniqueness of solution to the above BSDE, we claim that

(f̃ , af ) is the unique solution with
∫ .
τ1
aft dW̃

Q
t being a square integrable mar-

tingale under measure Q. Thus, f̃ is a genuine martingale, and it has repre-

sentation

f̃t = EQ

[
−
∫ T

τ1

λ2
s

2 ds
∣∣∣∣Ft

]

= EP

[
−
∫ T

τ1

λ2
s

2 ds exp
(
−
∫ T

t
λsdW̃s −

∫ T

t

λ2
s

2 ds
) ∣∣∣∣Ft

]
.

Direct verification gives that under assumption (2.51), the initial condition

fτ1 = − λ̂2

2 (T − τ1) is satisfied.

Remark 2.5.3. Similar to Remark 2.5.1, we could rewrite the condition (2.51)

under the measure Q, and hence obtain

EP

[∫ T

τ1

λ2
s

2 ds exp
(
−
∫ T

τ1

λ2
s

2 ds−
∫ T

τ1
λsdW̃s

) ∣∣∣∣Fτ1

]

= EQ

[∫ T

τ1

λ2
s

2 ds
∣∣∣∣Fτ1

]
= λ̂2

2 (T − τ1),

which leads to

EQ

[∫ T

τ1

λ2
s − λ̂2

2 ds
∣∣∣∣Fτ1

]
= 0, a.s.. (2.53)

The interpretation of the condition (2.53) is similar to that of (2.42), i.e., the

discrepancy process ∆s = λ2
s − λ̂2, τ1 ≤ s ≤ T , on average should be zero.

Note that, however, it is different from the power utility case (2.42), as there is

no exponential weighting due to the risk aversion parameter on such average.

We next summarize the results for the exponential utility forward bridge

problem in the following theorem, whose proof is similar to that of Theorem

2.5.3 and hence is omitted.
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Theorem 2.5.6. Suppose that the process λt, τ1 ≤ t ≤ T , is uniformly bounded

and satisfies the condition (2.51). Let (f, af ) be the unique solution to the

(conditional) SDE (2.48) with f being given by (2.52). Then, the process

UF
t (x) = −e−γxeft, τ1 ≤ t ≤ T , is a forward performance process that achieves

exponential utility UF
T (x) = −e−γx at terminal time t = T . The forward

performance process in addition satisfies the following Itô’s decomposition

dUF
t (x) = −e−γxeft (λt + aft )2

2 dt− e−γxeftaft dW̃t, τ1 < t < T, (2.54)

with initial and terminal conditions being UF
τ1(x) = − exp

(
−γx− λ̂2

2 (T − τ1)
)

and UF
T (x) = −e−γx, respectively. The optimal investment strategy is

π∗t = λt + aft
γσt

, τ1 ≤ t ≤ T, (2.55)

with the optimal wealth process being

X∗t = X∗τ1 +
∫ t

τ1

λ2
s + λsa

f
s

γ
ds+

∫ t

τ1

λs + afs
γ

dW̃s, (2.56)

for τ1 ≤ t ≤ T . Here, X∗τ1 is the optimal wealth at t = τ1.

2.5.3 Logarithmic utility case

In the next proposition, we provide the result for the logarithmic utility

scenario, where a condition for the parameter process λt, τ1 ≤ t ≤ T , based

on the Martingale Representation Theorem is also needed.

Proposition 2.5.7. Let µt, σt and λt, τ1 ≤ t ≤ T , be the (conditional) model

parameter processes for the second second sub-horizon [τ1, T ], and denote by
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W̃t = Wt −Wτ1 the standard Brownian motion for τ1 ≤ t ≤ T , conditional on

Fτ1. If
∫ T
τ1

λ2
t

2 dt is square integrable, and that

E
[∫ T

τ1

λ2
t

2 dt
∣∣∣∣Fτ1

]
= λ̂2

2 (T − τ1), a.s.. (2.57)

Then the forward bridge problem for a terminal logarithmic utility UF
T (x) =

ln x, x > 0, has a solution

UF
t (x) = ln x+ λ̂2

2 (T − τ1)−
∫ t

τ1

λ2
s

2 ds+
∫ t

τ1
afsdW̃s, (2.58)

for τ1 ≤ t ≤ T , with
∫ t
τ1
afsdW̃s, τ1 ≤ t ≤ T , being a square integrable martin-

gale under the measure P.

Proof. The proof is mostly similar to the one for Proposition 2.5.1. We there-

fore only highlight the main differences. First, similar to the power and ex-

ponential utility scenarios, over the first sub-horizon [0, τ1], the zero volatility

forward performance process fully recovers the value function process given

by the stubborn approach under the t = 0 perceived model P̂. In particu-

lar, UF
τ1(x) = V̂

(
x, τ1;λ, λ̂

)
= ln x + λ̂2

2 (T − τ1), following from the similar

computations for the power utility scenario. The same SPDE (2.35) is satis-

fied by UF
t (x) for τ1 < t < T , with the initial and terminal conditions being

UF
τ1(x) = ln x + λ̂2

2 (T − τ1) and UF
T (x) = ln x, respectively. The logarithmic

scaling in the boundary conditions suggests a candidate forward performance

process given by UF
t (x) = ln x+ft for some Ft-adapted process ft, τ1 ≤ t ≤ T .

Notice that such forward performance process is indeed strictly increasing and

strictly concave in x and satisfies Inada’s conditions at each time τ1 ≤ t ≤ T .
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Let the Itô’s decomposition for ft be dft = bft dt+ aft dW̃t, for some admissible

processes aft and bft such that this diffusion process is well defined. Direct

computation then leads to

dUF
t (x) = dft = bft dt+ aft dW̃t (2.59)

=

(
µt
x

+ σtax(x, t)
)2

−2σ2
t

x2

dt+ a(x, t)dW̃t. (2.60)

Comparing the volatility parts of expression (2.59) and (2.60), we have aft =

a(x, t), and comparison of drift parts gives rise to bft = −λ2
t

2 . Therefore, the

construction of the forward performance process UF
t (x) for the bridge problem

boils down to looking for an admissible volatility process aft , such that the SDE

dft = −λ
2
t

2 dt+ aft dW̃t, (2.61)

with fτ1 = λ̂2

2 (T−τ1) and fT = 0 has a well defined Ft-adapted strong solution

for τ1 ≤ t ≤ T . Clearly, the solution to (2.61) is

ft = λ̂2

2 (T − τ1)−
∫ t

τ1

λ2
s

2 ds+
∫ t

τ1
afsdW̃s.

The terminal condition fT = 0 implies

∫ T

τ1
aft dW̃t =

∫ T

τ1

λ2
t

2 dt−
λ̂2

2 (T − τ1). (2.62)

Under the conditions on the process λt, τ1 ≤ t ≤ T , given in the assumption,

a unique admissible volatility process aft , τ1 ≤ t ≤ T , exists, by virtue of the

Martingale Representation Theorem.
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Example 2.5.8. We give an example to explicitly construct the solution to

equation (2.62), and hence obtain the forward bridge solution (2.58). Given

a specific market parameter process λt, τ1 ≤ t ≤ T , we will find the volatility

process aft , τ1 ≤ t ≤ T , such that equation (2.62) is satisfied. Recall that con-

ditional on Fτ1, the process W̃t, τ1 ≤ t ≤ T , is a standard Brownian motion.

Let Yt = W̃ 2
t − t, then dYt = 2W̃tdW̃t. Let also Xt = t3

3 . Integrating by parts,

we obtain

T 3

3 (W̃ 2
T − T ) = XTYT = Xτ1Yτ1 +

∫ T

τ1
XtdYt +

∫ T

τ1
YtdXt

= −τ1
4

3 +
∫ T

τ1

2
3t

3W̃tdW̃t +
∫ T

τ1
t2(W̃ 2

t − t)dt

= −
(
T 4

4 + τ1
4

12

)
+
∫ T

τ1

2
3t

3W̃tdW̃t +
∫ T

τ1
t2W̃ 2

t dt.

We also note that

T 3

3 (W̃ 2
T − T ) = T 3

3

(∫ T

τ1
2W̃tdW̃t − τ1

)
.

It hence follows that

∫ T

τ1

2
3(T 3 − t3)W̃tdW̃t =

∫ T

τ1
t2W̃ 2

t dt−
3T 4 + τ 4

1 − 4T 3τ1

12 . (2.63)

Now, if λt =
√

2CtW̃t, for τ1 ≤ t ≤ T , where C := 6λ̂2(T−τ1)
3T 4+τ4

1−4T 3τ1
, then equation

(2.63) yields ∫ T

τ1
aft dW̃t =

∫ T

τ1

λ2
t

2 dt−
λ̂2

2 (T − τ1),

with

aft = 2
3C(T 3 − t3)W̃t ∈ Ft,

111



for τ1 ≤ t ≤ T . We can also easily verify that the constant C ≥ 0 and the

condition (2.57) is satisfied, since E
[
W̃ 2
t |Fτ1

]
= t− τ1, for all τ1 ≤ t ≤ T .

Remark 2.5.4. In section 3 where the model parameter process λt ≡ λ1 ∈ Fτ1 ,

a.s. under P, for all τ1 < t ≤ T , we can actually see from condition (2.57)

that λ1 = λ̂, a.s., must hold in order to construct the forward bridge process.

This basically corresponds to a market without any intermediate unanticipated

model changes, as the model specified at t = 0 will remain valid for the whole

horizon [0, T ]. It is then obvious that one can have a forward bridge solution

starting with V̂ (x, 0;λ, λ̂) by just following the classical value function process

for 0 ≤ t ≤ T . This result also implies that it is typically not possible to

construct a forward bridge solution under the predictable model assumption,

except for some degenerated scenario.

Remark 2.5.5. Beyond the predictable model assumption, we can consider

more general model parameter process λt for the second sub-horizon [τ1, T ].

For instance, consider the stochastic volatility model for τ1 ≤ t ≤ T

dSt
St

= µ(Yt)dt+ σ(Yt)dW̃ 1
t ,

dYt = b(Yt)dt+ d(Yt)
(
ρdW̃ 1

t +
√

1− ρ2dW̃ 2
t

)
,

with |ρ| < 1. Here, the process Yt is the stochastic factor that drives the stock

price process St over the sub-horizon [τ1, T ], and W̃t = (W̃ 1
t , W̃

2
t ), conditional

on Fτ1 , is the two-dimensional Brownian motion with its natural filtration Ft

satisfying the usual conditions. The deterministic functions µ(·), σ(·), b(·), d(·)
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are such that the two SDEs have unique strong solutions. Then in this in-

complete Itô’s diffusion market, it is reasonable to consider the forward per-

formance process with the decomposition

dUF
t (x) = b(x, t)dt+ a1(x, t)dW̃ 1

t + a2(x, t)dW̃ 2
t = b(x, t)dt+ a(x, t) · dW̃t,

where a(x, t) = (a1(x, t), a2(x, t)). The argument then follows exactly as that

given in the proof of Proposition 2.5.7; namely, the question boils down to

looking for an admissible volatility process aft =
(
af,1t , af,2t

)
such that the SDE

dft = −λ
2(Yt)
2 dt+ aft · dW̃t,

with fτ1 = λ̂2

2 (T − τ1) and fT = 0 has a well defined Ft-adapted solution for

τ1 ≤ t ≤ T . Then similar as before, under the conditions that
∫ T
τ1

λ2(Yt)
2 dt is

square integrable under P and that

E
[∫ T

τ1

λ2(Yt)
2 dt

∣∣∣∣Fτ1

]
= λ̂2

2 (T − τ1), a.s.,

the Martingale Representation Theorem guarantees the existence and unique-

ness of such volatility process aft , for τ1 < t ≤ T , and therefore also the exis-

tence of a solution to the forward bridge problem with the terminal logarithmic

utility.

113



Chapter 3

Forward optimal liquidation with market

parameter shift: the quadratic case

3.1 Introduction

Trade execution has been taken as an important component of the

investment process ([23], [18]), since a poorly executed large order can consume

profits from investment in an illiquid market. It is well known that institutional

traders typically face a dilemma of trading speed. A trading that completes

quickly may yield lower revenue due to the insufficient liquidity provided by

the market. However, the trader is relieved from uncertainty of future asset

price movement ([2], [18]). On the other hand, a slow trading may bear more

uncertainty as the execution horizon extends, but benefits from low trading

cost. A possible approach to address the best trade-off between fast and slow

trading resorts to the expected utility optimization paradigm, where the trade-

off between risk and return is characterized by a single utility function. Various

criteria have already been considered in the optimal execution literature, see

[6], [48] for the risk-neutral criterion; [2], [39] for the mean-variance criterion;

114



[53] for exponential utility and [52] for more general utility functions.

The optimal liquidation problem, as any other classical expected utility

optimization problems, basically requires two inputs: a model specified by the

investor and a criterion set for the end of a fixed trading horizon. Most ex-

isting works assume that these two elements are given a priori and, therefore,

they can determine the optimal execution strategy (adapted or deterministic)

at time t = 0. In principle, the agent should follow this strategy until the end

of the trading horizon, but in practice, an unexpected market event or new

trading opportunity may occur at any intermediate time, and this should lead

the agent to revise the underlying model specification, trading volume as well

as trading horizon specification. In other words, intermediate reoptimization

due to unexpected model changes is a more realistic and necessary issue to

address. The first contribution of this work is to propose a consistent and rea-

sonable extension of the classical single-optimization problem by following the

forward performance processes theory. More precisely, through incorporating

the unanticipated market information, we determine the updated trading hori-

zon and the updated performance criterion in real-time; together the two yield

a revised optimal trading strategy that is consistent with previous strategies.

When it comes to model specification, typically two price impact com-

ponents are considered in the optimal execution literature. The permanent

impact is independent of current trading rate and can encompass asymmetric

information or the total order flow from other agents, while the temporary

impact measures instantaneous premium of liquidity and has been interpreted
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as a transaction cost ([8], [11], [49]). It is well known that the intraday pattern

of trading volume, liquidity and volatility is time-varying, and the variability

over different days within a week also exists ([15], [14]). [1] further pointed out

that smaller capitalization stocks are generally more difficult to trade as their

liquidity and volatility profiles, unlike those of the large capitalization stocks,

are generally hard to model in advance. To address the evolution of market

parameters, [26], [36], [29] proposed deterministic functions of time to charac-

terize the change of these parameters, while [2] and [8] imposed a probability

distribution over possible updated values of the parameters at a single future

time. Still within the Markovian framework, [25] and [1] considered market

parameters driven by various stochastic processes and essentially worked with

stochastic factor models. More general non-Markovian model can be found in

[4], where the optimal liquidation problem was solved by analyzing a backward

stochastic differential equation with a singular terminal condition. See also [28]

for the inclusion of an uncontrolled factor process in the dynamics of liquidity

and volatility, as well as the associated stochastic Hamilton-Jacobi-Bellman

equation with a singular terminal condition.

Our work contributes in this direction. Different from the works men-

tioned above where the deterministic or stochastic market profiles are pre-

specified and committed to through the entire trading horizon, however, our

framework based on the forward approach can accommodate the sequentially

updated model knowledge that is unanticipated. Empirical findings in [24]

suggest the low predictability of market impact models (typically < 5% R2),
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which in turn points to the necessity of updating the parameters in real-time

to compensate for the low accuracy1. However, the classical expected utility

optimization problem (including all the works mentioned above) are commit-

ted to the pre-specified model at t = 0 for the entire horizon, and cannot

accommodate such model revision procedure with intertemporal consistent

trading behavior. Nonetheless, we consider a trading behavior in the classical

framework that naively re-optimizes based on the revised model and violates

time-consistency. Under suitable metrics we introduced, it can be shown that

compared to the naive behavior, the performance of execution under the for-

ward approach is more stable, and remains higher especially in unanticipated

adverse market scenarios (e.g., the Flash Crash). We also present a conver-

gence result of the forward performance process when the model revision is

done continuously in the limit.

3.2 Classical full-liquidation problem

For completeness, we first review the classical optimal liquidation prob-

lem studied in [53]. For easy exposition, we focus on the liquidation of a single

stock. Assume an arbitrary but prechosen finite liquidation time, say T <∞.

The stock price process solves

Pt = P0 + σ0Wt + γ0(Xt −X0) + λ0Ẋt, (3.1)

1See [15] for a robust regression model that holds locally for short time interval and

changes along with the well-known intraday seasonality effects.
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t ∈ [0, T ] , where Wt is a standard Brownian motion defined on a probability

space (Ω,F , {Ft} ,P) with {Ft} being the natural filtration satisfying the usual

conditions. Without loss of generality, it is assumed that σ0 = 1. The parame-

ters λ0, γ0 model the temporary and permanent price impacts and are positive

constants chosen at t = 0. The inventory process Xt models the amount of

stock shares held at time t. It is taken to be absolutely continuous and solves,

for t ∈ [0, T ] ,

Xt = x−
∫ t

0
ξudu, (3.2)

with initial inventory X0 = x > 0. The control process ξt represents the rate

of liquidation.

The revenue process Rt is, in turn, given by

Rt =
∫ t

0
ξuPudu = P0x−

γ0

2 x
2 +

∫ t

0
XudWu − λ0

∫ t

0
ξ2
udu. (3.3)

The control set A[0,T ] is defined as the set of Ft-progressively measurable pro-

cesses ξt such that x =
∫ T

0 ξsds, ξt ≥ 0, t ∈ [0, T ] and
∫ T

0 ξ2
sds < ∞, a.s., and

the associated process Xt is bounded uniformly in (t, ω) , with upper and lower

bounds possibly depending on ξt (see [53], [51]).

The manager is risk averse and seeks, from the one hand, to maximize

the expected utility of terminal revenue and, from the other, to fully liquidate

by T. The authors in [53] considered the stochastic optimization problem

V (x, r, 0;T ) := sup
A[0,T ]

E (v (XT , RT )) , (3.4)
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with r = P0x− γ0
2 x

2 and singular terminal datum

v (x, r) =


−e−r, if x = 0,

−∞, if x > 0.
(3.5)

We will be using the self-evidient notation L (λ0; 0, T ) to denote the above

liquidation problem.

The related Hamilton-Jacobi-Bellman (HJB) equation is

Vt + 1
2x

2Vrr + sup
ξ

(
−λ0ξ

2Vr − ξVx
)

= 0, (3.6)

(x, r, t) ∈ R+ × R× [0, T ] , with V (x, r, T ;T ) = v (x, r) . It turns out that the

value function is given by

V (x, r, t;T ) = − exp
−r +

√
λ0

2 x
2 coth T − t√

2λ0

 , (3.7)

and the optimal feedback liquidation control function is given by

ξ∗ (x, r, t) = 1√
2λ0

x coth T − t√
2λ0

.

Therefore, at initial time,

V (x, r, 0;T ) = − exp
−r +

√
λ0

2 coth T√
2λ0

x2

 ,
and, for t ∈ [0, T ] , the optimal liquidation and inventory processes are given

explicitly by

X∗t = x
sinh T−t√

2λ0

sinh T√
2λ0

and ξ∗t = 1√
2λ0

x
cosh T−t√

2λ0

sinh T√
2λ0

. (3.8)
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From (3.8), it is easy to see that the optimal process ξ∗t indeed leads

to full liquidation, as X∗T = 0. It is worth noticing that this full liquidation

is implicitly ”forced” through the singular form of the terminal datum (3.5).

Note also that both X∗t and ξ∗t are deterministic, and they depend on the t = 0

pre-specified temporary price impact parameter λ0.

A variation of the above problem has been solved in an infinite horizon

setting (T = ∞), using a similar stochastic optimization approach in [52].

Therein, when the terminal utility is the same exponential utility, the optimal

inventory process is X∗t = xe
− t√

2λ0 , where, again, λ0 is the t = 0 pre-specified

price impact parameter for the entire horizon [0,∞). We denote such infinite

horizon liquidation problem by L (λ0; 0,∞).

3.2.1 Inverse liquidation problem

In this section, we introduce a new problem which will serve as the

building block in the method we propose herein. As in the classical case,

the manager starts at t = 0 with a given liquidation model, as in (3.2) and

(3.3), for some arbitrary but fixed price impact parameters. To facilitate the

discussion later on, we only focus on the temporary price impact parameter,

and denote it by λ. Then, we have the model dynamics

dXζ
t = −ζtdt and dRζ

t = −λζ2
t dt+Xζ

t dWt, (3.9)

with X0 = x > 0 and R0 = r ∈ R. Here, Wt is a standard Brownian motion

defined for all t ≥ 0 on a probability space (Ω,F , {Ft} ,P) with {Ft} being
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the natural filtration satisfying the usual conditions. We work with the set of

admissible policies A that consists of all Ft-progressively measurable processes

ζ, with ζt ≥ 0, for all t ∈
[
0, T ζ

)
, T ζ = inf

{
t > 0 : x =

∫ t
0 ζsds

}
,
∫ T ζ

0 ζ2
sds <

L (ζ), and E
∫ T ζ

0 (Xζ
s )2ds <∞. Here, L (ζ) > 0 is a constant that only depends

on ζ.

We now introduce the new liquidation problem.

Problem P (λ, k; 0): Let λ > 0, and assume that the inventory and

revenue processes satisfy (3.9). Let k > 0 and introduce the function u :

R+ × R −→ R−,

u (x, r, 0) := −e−r+kx2
. (3.10)

Find the longest deterministic time T (λ, k) ≥ 0 and a deterministic

function U (x, r, t) : R× R+ × [0, T (λ, k))→ R−, of the separable form

U (x, r, t) = −e−r+h(x,t), (3.11)

for h ∈ C1,1 (R+ × [0, T (λ, k))), with the following properties:

i) U (x, r, 0) = u(x, r, 0),

ii) for any ζ ∈ A, the process U
(
Xζ
t , R

ζ
t , t
)

is a supermartingale, for

t ∈
[
0, T (λ, k) ∧ T ζ

)
,

iii) there exists ζ∗ ∈ A such that the process U
(
Xζ∗

t , R
ζ∗

t , t
)

is a mar-

tingale, for t ∈
[
0, T (λ, k) ∧ T ζ

)
.
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In other words, the manager trades in a similar market environment

as in the classical case but she does not pre-determine a time at which full

liquidation must occur. Rather, she chooses an initial datum of form (3.10)

and seeks the longest time such that the conditions (i)-(iii) are satisfied.

While this problem might for now look artificial, we will show in the

sequel that such problem becomes the building block for constructing the

forward performance process under real-time model revision. Moreover, the

aforementioned classical settings can be also recast as P (λ, k; 0) problems with

suitable initial conditions.

We proceed with the solution of the above problem. Let the parameter

m := k

√
2
λ
, (3.12)

and the auxiliary functions F,G : R+ → R,

F (t;m,λ) := cosh t√
2λ
−m sinh t√

2λ
, G (t;m,λ) := cosh t√

2λ
− 1
m

sinh t√
2λ
.

(3.13)

Clearly, F (t; 1, λ) = G (t; 1, λ) and, more generally, F (t;m,λ) = G
(
t; 1
m
, λ
)
,

m > 0. Also, F (0;m,λ) = G (0;m,λ) = 1.

Furthermore, direct calculations yield that

G

√λ
2 ln 1 +m

1−m ;m,λ
 = 0 and F

√λ
2 ln 1 +m

1−m ;m,λ
 > 0, (3.14)

if m ∈ (0, 1), and F
(√

λ
2 ln m+1

m−1 ;m,λ
)

= 0, if m > 1.

We start with a result about the candidate function(s) h (x, t) that will

appear in (3.11).
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Lemma 3.2.1. Let λ > 0, k > 0 and m = k
√

2
λ

(cf. (3.12)). Define

T (λ, k) :=



√
λ
2 ln 1+m

1−m , if m < 1,

∞, if m = 1,√
λ
2 ln 1+m

m−1 , if m > 1.

(3.15)

Then, for t ∈ [0, T (λ, k)) , the Hamilton-Jacobi equation

ht −
1

4λh
2
x + 1

2x
2 = 0, (3.16)

with h (x, 0) = kx2, x > 0 and h (0, t) = 0, has a unique non-decreasing in x

solution, given by

h (x, t) = kx2G (t;m,λ)
F (t;m,λ) , (3.17)

with F,G as in (3.13). Furthermore, for x ≥ 0,

lim
t↑T (λ,k)

h (x, t) =


0, if m < 1,

kx2, if m = 1,

∞1{x>0} + 01{x=0}, if m > 1.

(3.18)

Proof. We solve equation (3.16) using the method of characteristics. These

curves, denoted by X (t) , P (t) , satisfy

dX(t)
dt

= − 1
2λP (t), dP (t)

dt
= −X(t), (3.19)

and
dh(X(t), t)

dt
= − 1

4λP
2(t)− 1

2X
2(t), (3.20)

with P (t) = hx(X(t), t), X (0) = x. Therefore, for t ≥ 0,

X(t) = C1e
t√
2λ + C2e

− t√
2λ and P (t) =

√
2λ
(
−C1e

t√
2λ + C2e

− t√
2λ

)
.

(3.21)

123



The initial condition of (3.16) yields P (0) = hx(x, 0) = 2kx. Thus, we must

have

C1 = x

2

1− k
√

2
λ

 and C2 = x

2

1 + k

√
2
λ

 (3.22)

and, in turn, for t ≥ 0,

X (t) = x

(
cosh t√

2λ
−m sinh t√

2λ

)
= xF (t;m,λ) . (3.23)

Therefore, for t ≥ 0,

h(X (t) , t) = h(x, 0)−
∫ t

0

( 1
4λP

2(s) + 1
2X

2(s)
)
ds

= kx2 +
√
λ

2

(
C2

2e
−
√

2
λ
t − C2

1e
√

2
λ
t
)

+
√
λ

2
(
C2

1 − C2
2

)

= x2

k cosh
√2

λ
t

−
√
λ

2

(
1
2 + k2

λ

)
sinh

√2
λ
t


We then seek the maximal time T (λ, k) such that a well defined solution h (x, t)

exists, for each x ≥ 0 and t ∈ [0, T (λ, k)) , that is also nondecreasing in x and

satisfies h (0, t) = 0. For this, we first need to invert the characteristic curve

(3.23), insuring that for each X (t) > 0, with t ∈ [0, T (λ, k)) , there exists a

unique x > 0 that satisfies (3.23).

We look at the following cases:

If m = 1, then F (t; 1, λ) = e
− t√

2λ while, if m < 1, then F (t;m,λ) >

e
− t√

2λ . Thus, for m ≤ 1, F (t;m,λ) > 0, t ≥ 0 and therefore, (3.23) can be

inverted for all times t > 0.
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If, on the other hand, m > 1, curve (3.23) can be inverted only up to

the first zero of F (t;m,λ) , which occurs at the (finite) time, say T1, given by

T1 =
√

2λarc cothm =
√
λ

2 ln m+ 1
m− 1 .

Therefore, if (with a slight abuse of notation) we define time T1 (λ, k) as

T1 (λ, k) =∞, if m ≤ 1 and T1 (λ, k) =
√
λ

2 ln m+ 1
m− 1 , if m > 1, (3.24)

we deduce that a well-defined solution is given, for t ∈ [0, T1 (λ, k)) , by

h (x, t) = x2k cosh
√

2
λ
t−

√
λ
2

(
1
2 + k2

λ

)
sinh

√
2
λ
t(

cosh t√
2λ − k

√
2
λ

sinh t√
2λ

)2

= kx2

(
cosh t√

2λ −
1
m

sinh t√
2λ

)
(
cosh t√

2λ −m sinh t√
2λ

) = kx2G(t;m,λ)
F (t;m,λ) .

Note, however, that the above function might not be spatially increasing.

It remains to insure the spatial monotonicity of h (x, t). To this end,

let

T2 (λ, k) :=
√
λ

2 ln 1 +m

1−m, if m < 1 and T2 (λ, k) :=∞, if m ≥ 1.

(3.25)

Then both F (t;m,λ), G(t;m,λ) > 0, for t ∈ [0, T2 (λ, k)), and combining

(3.24) and (3.25), we easily conclude.

To show uniqueness, we assume that there are two solutions that are

non-decreasing in x, h ∈ C1,1 (R+ × [0, T )) and h̃ ∈ C1,1
(
R+ ×

[
0, T̃

))
, with
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T̃ > T, satisfying h (x, 0) = h̃ (x, 0) = kx2, x > 0, h (0, t) = h̃ (0, t) , t ∈ [0, T ) .

Then, H := h− h̃ satisfies, for (x, t) ∈ R+ × [0, T ) ,

Ht −
1
4
(
h2
x − h̃2

x

)
= Ht −

1
4Hx

(
hx + h̃x

)
= 0,

with H (x, 0) = 0 and H (0, t) = 0. For the characteristics we have dX(t)
dt

=

−hx(X(t),t)+h̃x(X(t),t)
4λ0

, with hx (X (t) , t) + h̃x (X (t) , t) ≥ 0. It hence implies that

for any X(t) = x ≥ 0, t ∈ [0), the initial value X(0) = x0 ≥ x ≥ 0. We

conclude, using H(X(t), t) = H(x0, 0) = 0, with x0 ≥ 0, that H ≡ 0 is the

unique solution up to time T. It then follows T = T̃ , and h(x, t) = h̃(x, t), for

(x, t) ∈ R+ × [0, T ) .

It remains to show (3.18). The case m = 1 is trivial. If m < 1, then

lim
t↑T (λ,k)

h (x, t) = lim
t↑
√

λ
2 ln 1+m

1−m

kx2G(t;m,λ)
F (t;m,λ) ,

and using that G
(√

λ
2 ln 1+m

1−m ;m,λ
)

= 0 and F
(√

λ
2 ln 1+m

1−m ;m,λ
)
> 0, we

conclude. The case m > 1, follows similarly.

The next result states that in the class of separable functions (3.11),

the inverse liquidation problem P (λ, k; 0) has, for each pair (λ, k) ∈ R+×R+,

a unique solution, which is also explicitly constructed.

Theorem 3.2.2. Let (λ, k) ∈ R+×R+ and m := k
√

2
λ
. Let also F and G as in

(3.13), T (λ, k) as in (3.15) and h as in (3.17). Then, the following assertions

hold:
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i) The problem P (λ, k; 0) has a solution, given by the pair (T (λ, k) , U (x, r, t))

with U (x, r, t) : R+ × R× [0, T (λ, k)) −→ R− given by

U (x, r, t) := −e−r+h(x,t). (3.26)

This solution is unique in the class of separable functions (3.11).

Furthermore, for each (x, r) ∈ R+ × R,

lim
t↑T (λ,k)

U (x, r, t) =


−e−r, if m < 1,

−e−r+kx2
, if m = 1,

−∞1{x>0} − e−r1{x=0}, if m > 1.

(3.27)

ii) The optimal policy ζ∗ and optimal inventory X∗, are given, respec-

tively, by

ζ∗t = 1
2λhx(X

∗
t , t) = x

k

λ

G (t;m,λ)
F (t;m,λ) , (3.28)

and

X∗t = xF (t;m,λ) . (3.29)

iii) For each x > 0,

lim
t↑T (λ,k)

X∗t =


x
√

(1−m) (1 +m), if m < 1,

0, if m ≥ 1.
(3.30)

Therefore, if m ≥ 1, the optimal policy ζ∗ is also a full liquidation policy at

the solvability time T (λ, k) .

Proof. It follows trivially that U (x, r, 0) = u(x, r, 0).

To show property (ii) and (iii), we work as follows.
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Let ζ ∈ A. Then for t ∈ [0, T (λ, k)), the functions h (x, s) and U (x, r, s)

are well defined for s ∈ [0, t] . On the other hand, Ito’s formula yields

U(Xζ
t∧T ζ , R

ζ
t∧T ζ , t ∧ T

ζ) = u(r, x, 0)+
∫ t∧T ζ

0

(
Ut
(
Xζ
s , R

ζ
s, s
)
− ζsUx

(
Xζ
s , R

ζ
s, s
)
− λUr

(
Xζ
s , R

ζ
s, s
)
ζ2
s + 1

2Urr
(
Xζ
s , R

ζ
s, s
) (
Xζ
s

)2
)
ds

+
∫ t∧T ζ

0
Ur(Xζ

s , R
ζ
s, s)Xζ

sdWs

=
∫ t∧T ζ

0

(
ζs −

1
2λhx

(
Xζ
s , s

))2
U
(
Xζ
s , R

ζ
s, s
)
ds+

∫ t∧T ζ

0
Ur(Xζ

s , R
ζ
s, s)Xζ

sdWs

= −
∫ t∧T ζ

0

(
ζs −

1
2λhx

(
Xζ
s , s

))2
e−R

ζ
s+h(Xζ

s ,s)ds+
∫ t∧T ζ

0
Ur(Xζ

s , R
ζ
s, s)Xζ

sdWs,

(3.31)

where we used (3.26). Next, we show that the process
∫ t∧T ζ

0
Ur(Xζ

s , R
ζ
s, s)Xζ

sdWs =
∫ t∧T ζ

0
e−R

ζ
s+h(Xζ

s ,s)Xζ
sdWs

is a genuine martingale, for t ∈ [0, T (λ, k)). To this end, we have

E
∫ t

0

(
e−R

ζ
s+h(Xζ

s ,s)Xζ
s

)2
ds ≤ x2E

∫ t

0
e−2Rζs+2kx2 G(s;m,λ)

F (s;m,λ)ds.

Furthermore, if m ≥ 1, (3.13) yields G(s;m,λ)
F (s;m,λ) ≤

G(t;m,λ)
F (t;m,λ) , while if m < 1,

G(s;m,λ)
F (s;m,λ) ≤

G(0;m,λ)
F (0;m,λ) = 1.

Therefore, it suffices to show that E
∫ t∧T ζ

0 e−2Rζsds <∞. By admissibil-

ity of ζ ∈ A, there exist constants L(ζ), K(ζ) > 0, such that
∫ T ζ

0 ζ2
sds < L(ζ),

a.s., and E
∫ T ζ

0 (Xζ
s )2ds < K(ζ). Hence, using the dynamics (3.9) for Rζ , we

obtain

E
∫ t∧T ζ

0
e−2Rζsds = E

∫ t∧T ζ

0
exp

(
−2r − 2

∫ s

0
Xζ
udWu + 2λ

∫ s

0
ζ2
udu

)
ds
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≤ e−2r+2λL(ζ)E
∫ t∧T ζ

0
e−2

∫ s
0 Xζ

udWuds = e−2r+2λL(ζ)
∫ t

0
E
[
e−2

∫ s∧Tζ
0 Xζ

udWu
]
ds

≤ e−2r+2λL(ζ)
∫ t

0
e2K(ζ)ds = e−2r+2λL(ζ)+2K(ζ)t < e−2r+2λL(ζ)+2K(ζ)T (λ, k) ≤ ∞,

where we have used the fact that
∫ s∧T ζ

0 Xζ
udWu, for s ∈ [0, t], is a square

integrable martingale with quadratic variation at most K(ζ).

Next, consider for t ∈ [0, T (λ, k)) the feedback policy ζ∗t = 1
2λhx (X∗t , t) >

0. Then, (3.13) and (3.17) give

dX∗t = −k
λ
X∗t

cosh t√
2λ −

1
m

sinh t√
2λ

cosh t√
2λ −m sinh t√

2λ
, X∗0 = x.

We claim that the solution (3.29) follows. In turn, ζ∗t is given by the determin-

istic function in (3.28). Note that for t ∈ [0, T (λ, k)) , all involved quantities

are well defined. We then easily deduce that this policy is admissible. Its

optimality then follows from (3.31).

We now look at limt↑T (λ,k) X
∗
t . If the parameters (λ, k) are such that

m < 1, then (3.29), (3.13) and (3.15) give

lim
t↑T (λ,k)

X∗t = x
(
cosh

(
tanh−1 m

)
−m sinh

(
tanh(−1) m

))

= x
(
1−m2

)
cosh

(
tanh(−1) m

)
= x

(
1−m2

)
cosh

ln
√

1 +m

1−m


= 1

2x
(
1−m2

)√1 +m

1−m +
√

1−m
1 +m

 = x
√

(1−m) (1 +m) > 0.

If m = 1, then T (λ, k) = ∞ and (3.29) gives limt↑∞X
∗
t = limt↑∞ xe

− k
λ
t = 0,

and thus T ζ∗ = T (λ, k) =∞.
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Finally, if m > 1, direct calculations in (3.29) yield that limt↑T (λ,k) X
∗
t =

0, and that T ζ∗ = T (λ, k) <∞. Therefore, the optimal policy is also a perfect

liquidation policy at time T (λ, k) .

Corollary 3.2.3. For x > 0 and t ∈ [0, T (λ, k)) , we have

ht (x, t) ≷ 0, m ≷ 1 and ht (x, t) = 0, m = 1. (3.32)

Moreover, the optimal liquidation policy ζ∗ satisfies

d

dt
ζ∗t = 1

2
k (m2 − 1)
F 2 (t;m,λ) . (3.33)

Therefore, if m > 1 (m < 1), then ζ∗ is strictly increasing (resp. decreasing)

in time.

As shown in Theorem 3.2.2, the inverse liquidation problem P (λ0, k; 0)

gives rise to different liquidation strategies and different horizons, for various

market conditions characterized by λ. The classical liquidation problems, on

the other hand, lacks in such flexibility, once a fixed terminal singular condition

and the horizon were pre-specified. Beyond this, we will also compare the

solutions of the two problems under suitable metrics, and show that the trading

behavior given by the problem P (λ0, k; 0) is indeed superior.

3.2.2 Reconciling the classical and the inverse liquidation problems

We conclude this section by showing that the classical full-liquidation

problems L (λ0; 0, T ) or L (λ0; 0,∞) are special instances of the inverse liqui-

dation problem P (λ0, k; 0) .
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As we saw earlier, every classical liquidation problem is parametrized

by the market parameter λ0 and the targeted full-liquidation horizon T (finite

or not). We now show that for each such problem, L (λ0; 0, T ) or L (λ0; 0,∞) ,

there exists an inverse liquidation problem P (λ0, k; 0) that has the same op-

timal policies and same full-liquidation times.

3.2.2.1 Problem L (λ0; 0, T ) - finite full-liquidation horizon

With λ0 and T <∞ given, introduce the constant

k0 :=
√
λ0

2 coth T√
2λ0

, (3.34)

and consider the inverse liquidation problem P (λ0, k0; 0) . Then, (3.12) gives

m0 = coth T√
2λ0

> 1. In turn, (3.15) yields

T (λ0, k0) =
√

2λ0 ln
√

1 +m0

1−m0
= T.

Therefore, the full liquidation time T of the classical problem L (λ0; 0, T ) co-

incides with the solvability time T (λ0, k0) of the inverse problem P (λ0, k0; 0).

Furthermore, for t ∈ [0, T ) , (3.28) and (3.34) give,

ζ∗t = x
k0

λ0

cosh t√
2λ0
− sinh t√

2λ0

cosh t√
2λ0
− coth T√

2λ0
sinh t√

2λ0

= x
k0

λ0

coth T√
2λ0

cosh t√
2λ0
− sinh t√

2λ0

coth T√
2λ0

(
cosh t√

2λ0
− coth T√

2λ0
sinh t√

2λ0

) = x
1√
2λ0

cosh T−t√
2λ0

sinh T√
2λ0

= ξ∗t .

Obviously X∗,Pt = X∗,Lt , with full liquidation at T.
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Notice that full liquidation at T (λ0, k0) for P (λ0, k0; 0) is expected

since m0 > 1, which further implies that λ0 is relatively small and favorable

for liquidation of the asset.

Tedious but direct calculations also show that, for t ∈ [0, T ) , U (x, r, t) =

V (x, r, t;T ) and limt↑T (λ0,k) U (x, r, t) = limt↑T V (x, r, t) .

Remark 3.2.1. The choice of the constant k0 in (3.34) is not the only one

that yields T (λ0, k0) = T. Indeed, for k′0 :=
√

λ0
2 tanh T√

2λ0
, we also have

T (λ0, k0) = T. In this case, however, m′0 = tanh T√
2λ0

< 1, and as we have seen

in (3.30), the optimal policy for P (λ0, k
′
0; 0) does not lead to full liquidation.

Therefore, the problems L (λ0; 0, T ) and P (λ0, k
′
0; 0) do not have the same

solution.

3.2.2.2 Problem L (λ0; 0,∞) - infinite full-liquidation horizon

With λ0 given, let k0 :=
√

λ0
2 and consider the inverse liquidation prob-

lem P (λ0, k0; 0) . Then (3.12) gives m0 = 1 and, thus, T (λ0, k0) = T =∞. In

turn, for t ≥ 0,

ζ∗t = x
1√
2λ0

= x
k0

λ0
= ξ∗t .

Furthermore, h (x, t) =
√

λ0
2 x

2 and, thus, U (x, r, t) = − exp
(
−r +

√
λ0
2 x

2
)
.

We easily deduce that the problems L (λ0; 0,∞) and P
(
λ0,

√
λ0
2 ; 0

)
have the

same solution.

Note that, contrary to the previous case of finite full-liquidation hori-

zon, there is a unique choice of the constant k that gives T (λ0, k) = T =∞.
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3.3 “Real-time” single parameter shift

We now consider the following extension of the classical liquidation

setting. At t = 0, we allow for the market impact parameter to change at a

given (deterministic) time, say τ1 < T. While, however, we know a priori that

a change in this parameter will occur at τ1, we do not know a priori its new

value, say λ1, nor its probability distribution at t = 0. In other words, τ1 ∈ F0

and λ1 ∈ F1.

We also consider two trading agents, whom we, respectively, call ”naive”

and ”forward”. They both have access to the information that the parameter

λ0 will change at τ1, and will take (an unknown at t = 0) value λ1.

The two agents exhibit different behavior with regards to this knowl-

edge. We describe this behavior below and analyze the differences and similar-

ities. Essentially, the naive and the forward agents will solve the (conditional)

variants of the problem L (λ; 0, T ) and problem P(λ, k; 0), respectively. It is

worth noting that the basic form of the problem P(λ, k; 0), with the analysis

presented in Theorem 3.2.2, is interesting on its own right.

3.3.1 The naive agent

At t = 0, the agent pre-determines a full-liquation time T and assumes

terminal utility (3.5). In order to solve the related optimization problem (3.4),

he needs to pre-specify at t = 0 a model for the entire horizon [0, T ] , for both

periods [0, τ1) and [τ1, T ] . Since he is aware that the market parameter λ0 will
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be revised at the deterministic time τ1, he chooses dynamics,

dXλ0
t = −ξtdt and dRλ0

t = −λ0ξ
2
t dt+Xλ0

t dWt, for t ∈ [0, τ1) (3.35)

with X0 = x,R0 = r, and

dX λ̂
t = −ξtdt and dRλ̂

t = −λ̂ξ2
t dt+X λ̂

t dWt, for t ∈ [τ1, T ] , (3.36)

with X λ̂
τ1 = Xλ0

τ1 , R
λ̂
τ1 = Rλ

τ1 .

The value λ̂ can be interpreted as his best, at t = 0, estimate for the

future new value of the market impact parameter, to be realized at τ1 and to

remain accurate in [τ1, T ] . In general, of course, λ̂ might not be the correct

revised value, λ1(ω), since the latter will be realized only at τ1.

The agent starts trading at t = 0 till the predictable revision time

τ1. Then, once the true value λ1(ω) is revealed, he starts a new liquidation

problem in [τ1, T ] , still committed to fully liquidate at the originally chosen

(i.e. at t = 0) time T .

For the remaining trading period (τ1, T ] , he now uses the accurately

revised model dynamics

dXλ1
t = −ξtdt and dRλ1

t = −λ1ξ
2
t dt+Xλ1

t dWt, for t ∈ (τ1, T ] , (3.37)

with Xλ1
τ1 = X∗τ1 > 0 and Rλ1

τ1 = R∗τ1 , where X∗τ1 , R
∗
τ1 are the optimal inventory

and revenue realized at τ1. Naturally, the values X∗τ1 and R∗τ1 have inherited

the model mispecification error, λ̂ instead of λ1 in [τ1, T ] , as the explicit ex-

pressions below show.
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To construct the solution in [0, τ1) , the agent needs to first solve prob-

lem L
(
λ̂; τ1, T

)
, as required by backward induction. Of course, a posteriori,

this will be a “virtual” problem, since the agent will never encounter it, for he

will switch to the correct model (3.37) at the model revision time τ1. How-

ever, the solution in [0, τ1) does depend on L
(
λ̂; τ1, T

)
due to the backward

construction, and, thus, on the initial choice of the model input λ̂, which at τ1

will turn out to be inaccurate.

To apply the backward induction, we first solve L
(
λ̂; τ1, T

)
. In analogy

to (3.7), the value function and optimal policy are given, for (x, r) ∈ R+ × R

and t ∈ [τ1, T ] , by

V̂ (x, r, t;T ) = −e−r+
√

λ̂
2 x

2 coth T−t√
2λ̂ and ξ̂∗t = X∗τ1

cosh T−t√
2λ̂

sinh T−τ1√
2λ̂

. (3.38)

In [0, τ1] , we solve an analogous optimal liquidation problem - but without

requiring full liquidation at time τ1 - with dynamics as in (3.35) and terminal

utility

V (x, r, τ1; τ1) = V̂ (x, r, τ1;T ) = −e−r+x
2
√

λ̂
2 coth T−τ1√

2λ̂ .

The associated HJB equation is the same as (3.6) with the above ter-

minal condition (instead of (3.5)). We again look for separable solutions of

the form V (x, r, t; τ1) = −e−r+h(x,t), with h (x, t) = x2g (t) , for some func-

tion g. Then, for t ∈ [0, τ1) , h will satisfy (3.16) with terminal condition
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h (x, τ1) =
√

λ̂
2x

2 coth T−τ1√
2λ̂

and, thus, g must solve

g′ (t) = 1
λ0
g2 (t)− 1

2 with g (τ1) =

√
λ̂

2 coth T − τ1√
2λ̂

.

Let c :=
√

λ̂
λ0

coth T−τ1√
2λ̂

=
√

2
λ0
g (τ1) . We have the following cases:

i) Let c > 1, or equivalently, g (τ1) >
√

λ0
2 . Then, setting C1 := τ1 +

√
2λ0 coth(−1)

(√
λ̂
λ0

coth T−τ1√
2λ̂

)
, we have

g (t) =
√
λ0

2 coth C
1 − t√
2λ0

=
√
λ0

2 coth

τ1 − t√
2λ0

+ coth(−1)


√√√√ λ̂

λ0
coth T − τ1√

2λ̂




=
√
λ0

2 coth
(
τ1 − t√

2λ0
+ coth(−1)

(√
2
λ0
g (τ1)

))
.

Then,

V (x, r, t; τ1) = −e−r+x
2
√

λ0
2 coth C1−t√

2λ0 ,

and the feedback control function is given by ξ∗ (x, t) = x√
2λ0

coth C1−t√
2λ0
.

The optimal inventory and revenue processes are given by

X∗t = x
sinh C1−t√

2λ0

sinh C1√
2λ0

,

R∗t = r −
∫ t

0
λ0 (ξ∗s )

2 ds+
∫ t

0
X∗sdWs

= r − x2

4
(
sinh C1√

2λ0

)2

t+
√
λ0

2

(
sinh

(√
2
λ0
C1
)
− sinh

(√
2
λ0

(C1 − t)
))

+ x

sinh C1√
2λ0

∫ t

0
sinh C

1 − s√
2λ0

dWs,
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for t ∈ [0, τ1).

ii) Let c < 1, or, equivalently, g (τ1) <
√

λ0
2 . Then, setting C1 :=

τ1 +
√

2λ0 tanh(−1)
(√

λ̂
λ0

coth T−τ1√
2λ̂

)
, we have

g (t) =
√
λ0

2 tanh
(
C1 − t√

2λ0

)
=
√
λ0

2 tanh

τ1 − t√
2λ0

+ tanh(−1)


√√√√ λ̂

λ0
coth T − τ1√

2λ̂




=
√
λ0

2 tanh
(
τ1 − t√

2λ0
+ tanh(−1)

(√
2
λ0
g (τ1)

))
.

Then,

V (x, r, t; τ1) = −e−r+x
2
√

λ0
2 tanh C1−t√

2λ0

and the feedback control ξ∗ (x, t) = x√
2λ0

tanh C1−t√
2λ0

. Then,

X∗t = x
cosh C1−t√

2λ0

sinh C1√
2λ0

,

R∗t = r −
∫ t

0
λ0 (ξ∗s )

2 ds+
∫ t

0
X∗sdWs

= r + x2

4
(
sinh C1√

2λ0

)2

t−
√
λ0

2

(
sinh

(√
2
λ0
C1

)
− sinh

(√
2
λ0

(C1 − t)
))

+ x

sinh C1√
2λ0

∫ t

0
cosh C1 − s√

2λ0
dWs,

for t ∈ [0, τ1).

iii) Let c = 1, or equivalently, g (τ1) =
√

λ0
2 .

Then, V (x, r, t; τ1) = −e−r+x
2
√

λ0
2 and ξ∗ (x, t) = x√

2λ0
. It follows that

X∗t = xe
− t√

2λ0 , and

R∗t = r −
∫ t

0
λ0 (ξ∗s )

2 ds+
∫ t

0
X∗sdWs

137



= r + x2

√
λ3

0
2

e−
√

2
λ0
t
− 1

+ x
∫ t

0
e
− s√

2λ0 dWs,

for t ∈ [0, τ1).

At time τ1, the true value λ1 ∈ Fτ1 is revealed. If λ1 = λ̂, then the

solution in [τ1, T ] is given by V̂ and the the optimal policy in (3.38).

If, on the other hand, λ1 6= λ̂, the agent adjusts his model dynamics to

(3.37) and starts a new liquidation problem L (λ1; τ1, T ) with initial inventory

and revenue given by X∗τ1 , R
∗
τ1 obtained above for each case.

For this new problem, L (λ1; τ1, T ) , we have, for t ∈ [τ1, T ] ,

V 1 (x, r, t; τ1, T ) = − exp
−r +

√
λ1

2 x
2 coth T − t√

2λ1

 , (3.39)

with V 1 (x, r, T ; τ1, T ) = v (x, r) , v as in (3.5), and

ξ1,∗
t = 1√

2λ1
X∗t coth T − t√

2λ1
and X1,∗

t = X∗τ1

sinh T−t√
2λ1

sinh T−τ1√
2λ1

.

As expected, X1,∗
T = 0.

Notice that even though the agent considers an entirely new liquida-

tion model in [τ1, T ] , the initial wrong assessment λ̂ - instead of the true, in

hindsight, λ1 - still enters in the solution of L (λ1; τ1, T ) through the initial

condition X∗τ1 , as it depends on g (·), which itself depends on λ0, λ̂ through

g (τ1) above.

In summary, if λ̂ 6= λ1, the realized strategy of the naive agent, denoted

by ξa, is given by

ξat = ξ∗t 1{t<τ1} + ξ1,∗
t 1{τ1≤t≤T}.
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It is discontinuous at τ1, with the discontinuity ∆∗τ1

(
λ0, λ̂, λ1

)
:= limt↓τ1 ξ

1,∗
t −

limt↑τ1 ξ
∗
t given by

∆∗τ1

(
λ0, λ̂, λ1

)
= X∗τ1

(
1√
2λ1

coth T − t√
2λ1
− 1√

2λ
coth T − t√

2λ0

)
,

with X∗τ1 being given as in each case considered above. Naturally, if λ̂ = λ1,

∆∗τ1 (λ0, λ1, λ1) = 0. Also, it is easy to check that

∆∗τ1

(
λ0, λ̂, λ1

)
≷ 0, if λ0 ≷ λ1,

which indicates the intuitive behavior of accelerating (decelerating) liquida-

tion if the unanticipated market condition becomes favorable (unfavorable,

respectively).

The realized inventory is given by

Xa
t =



x
sinh C1−t√

2λ0

sinh C1√
2λ0

, if c > 1, 0 ≤ t < τ1,

x
cosh C1−t√

2λ0
sinh C1√

2λ0

, if c < 1, 0 ≤ t < τ1,

xe
− t√

2λ0 , if c = 1, 0 ≤ t < τ1,

Xa
τ1

sinh T−t√
2λ1

sinh T−τ1√
2λ1

, if τ1 ≤ t ≤ T.

with Xa
T = 0. It is continuous in [0, T ] .

The value function process associated to the above strategy ξat is given

by

V a (x, r, t) = V (x, r, t; τ1, T ) 1{0≤t<τ1} + V 1 (x, r, t; τ1, T ) 1{τ1≤t≤T}
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with V computed for each case above, and V 1 as in (3.39).

Naturally, for λ̂ 6= λ1, V
a (x, r, t) is discontinuous at τ1, which results

from the fact that the agent totally discards the previously realized perfor-

mance as soon as the model dynamics change at time τ1. Indeed,

lim
t↑τ1

V a (x, r, t; τ1, T ) = lim
t↑τ1

V (x, r, t; τ1, T )

= lim
t↓τ1

V̂ (x, r, t;T ) = − exp
−r +

√
λ̂

2x
2 coth T − τ1√

2λ̂

 ,
while

V 1 (x, r, τ1; τ1, T ) = − exp
−r +

√
λ1

2 x
2 coth T − τ1√

2λ1

 .

3.3.2 The forward agent

The forward agent starts at t = 0 with initial inventory x. She also

assesses the level of the market impact parameter, λ0, and, like the pre-

committed management, she is aware that λ0 will change at τ1 without knowing

at (t = 0) its upcoming new level.

However, at t = 0, she neither pre-specifies a value for the market

parameter in [τ1, T ] nor a full-liquidation time. Rather, she only specifies an

initial criterion U(x, r, 0) = −e−r+kx2 of form (3.11), for some constant k > 0,

and solves the inverse liquidation problem P (λ0, k; 0).

One interpretation of the choice U(x, r, 0) follows from the result of

Theorem 3.2.2. Indeed, according to (3.28), the optimal trading rate under
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the performance criterion U(x, r, 0) at t = 0 is ζ∗0 = k
λ0
x. Therefor, for fixed

λ0 > 0 and total inventory x > 0 to liquidate at t = 0, the initial performance

criterion has a one to one correspondence to the initial trading rate. In other

words, by specifying a criterion U(x, r, 0) to the forward trading agent, the

client proposes an initial trading profile through the trading rate that she

seeks to consistently preserve in the future.

The fact that k is, for now, arbitrary is only for mere generality and

for showing how we can construct the solution for any given initial condition.

In the sequel, when we compare the performance of the two managers, we will

choose k accordingly, for meaningful comparisons.

Let T (λ0, k) be the solvability time of problem P (λ0, k; 0) and let m :=

k
√

2
λ0

.

Case 1: Model parameter is revised before the solvability time: τ1 <

T (λ0, k)

If m < 1, then no full liquidation occurs in [0, T (λ0, k)) and, thus,

neither in [0, τ1] . Then, equations (3.29), (3.9) and (3.17) yield, with F,G as

in (3.13), that, for t ∈ [0, τ1] ,

X∗t = xF (t;m,λ0) > 0 and R∗t = r−λ0

∫ t

0

(
ζ
∗

s

)2
ds+

∫ t

0
X∗sdWs, (3.40)

and

U (x, r, t) = − exp
(
−r + k

G (t;m,λ0)
F (t;m,λ0)x

2
)
.
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Therefore, U (x, r, τ1) can be written as

U (x, r, τ1) = −e−r+k1x2 with k1 := k
G (τ1;m,λ0)
F (τ1;m,λ0) .

At τ1, the agent learns the true value λ1 ∈ Fτ1 and considers a new

inverse liquidation problem, in complete analogy to P (λ0, k; 0). Specifically,

she solves problem P (λ1, k1; τ1) with initial datum U (x, r, τ1) , setting x = X∗τ1

and r = R∗τ1 , where (cf. (3.40)),

X∗τ1 = xF (τ1;m,λ0) > 0 and R∗τ1 = r − λ0

∫ τ1

0

(
ζ
∗

s

)2
ds+

∫ τ1

0
X∗sdWs.

Observe that this new inverse liquidation problem P (λ1, k1; τ1) , intro-

duced at time τ1, captures the “real-time” change λ1 at τ1, but also incorpo-

rates the “past”, since its initial condition U
(
X∗τ1 , R

∗
τ1 , τ1

)
depends, through

its form and each of its arguments, on the model input (k, λ0, τ1), which was

chosen at initial time t = 0.

We can now solve P (λ1, k1; τ1) using arguments similar to the ones in

the proof of Theorem 3.2.2.

To this end, let

m1 := k1

√
2
λ1

= k0
G (τ1;m0, λ0)
F (τ1;m0, λ0)

√
2
λ1

= k0
cosh τ1√

2λ0
− 1

m0
sinh τ1√

2λ0

cosh τ1√
2λ0
−m0 sinh τ1√

2λ0

√
2
λ1
.

If m1 < 1, the solvability time T (λ1, k1; τ1) of the new problem is given

(cf. (3.15)) by T (λ1, k1; τ1) =
√

2λ1 ln
√

1+m1
1−m1

.
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For convenience, we set

T1 := τ1 + T (λ1, k1; τ1) = τ1 +
√

2λ1 ln
√

1 +m1

1−m1
. (3.41)

Then, for t ∈ [τ1, T1) , the solution U1 is given by

U1 (x, r, t) = − exp
(
−r + k1x

2G (t− τ1;m1, λ1)
F (t− τ1;m1, λ1)

)
∈ Fτ1 ,

which, by construction, satisfies at revision time τ1 the pasting condition

U (x, r, τ1) = U1 (x, r, τ1) .

Furthermore, the optimal inventory X1,∗
t and liquidation strategy ζ1,∗

t are

given, for t ∈ [τ1, T1) , by

X1,∗
t = xF (τ1;m,λ0)F (t− τ1;m1, λ1) ∈ Fτ1

and

ζ1,∗
t = X∗τ1

k1

λ1

G (t− τ1;m1, λ1)
F (t− τ1;m1, λ1) = xF (τ1;m,λ0) k1

λ1

G (t− τ1;m1, λ1)
F (t− τ1;m1, λ1) .

Combining the above and (3.30), we deduce that there is non-zero optimal

inventory left at T1, given by

X1,∗
T1 = xF (τ1;m,λ0)

√
(1−m1) (1 +m1) > 0.

If m1 = 1, then T (λ1, k1; τ1) =∞ and, for t ∈ [τ1,∞) ,

X1,∗
t = X∗τ1e

− k1
λ1

(t−τ1) = xF (τ1;m,λ0)F (t− τ1; 1, λ1) ∈ Fτ1
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and

ζ1,∗
t = X∗τ1

k1

λ1
= xF (τ1;m,λ0)F (t− τ1; 1, λ1) .

Finally, if m1 > 1, then T (λ1, k1; τ1) =
√

2λ1 ln
√

1+m
m−1 . Setting

T1 := τ1 + T (λ1, k1; τ1) = τ1 +
√

2λ1 ln
√

1 +m1

m1 − 1 ,

then, the results in Theorem 3.2.2 yield that the optimal inventory and liqui-

dation policies are given, for t ∈ [τ1, T1) by

X1,∗
t = xF (τ1;m,λ0)F (t− τ1;m1, λ1) ∈ Fτ1

and

ζ1,∗
t = X∗τ1

k1

λ1

G (t− τ1;m1, λ1)
F (t− τ1;m1, λ1) = xF (τ1;m,λ0) k1

λ1

G (t− τ1;m1, λ1)
F (t− τ1;m1, λ1) .

We deduce that full-liquidation occurs at T1, i.e., X1,∗
T1 = 0.

Case 2: Model parameter is revised after or at the solvability time:

T (λ0, k) ≤ τ1 <∞

This case is viable only if m 6= 1. The parameter revision per se is

irrelevant, for the inverse liquidation problem P (λ0, k; 0) is not well defined

beyond time T (λ0, k). Trading stops at T (λ0, k) , and the final inventory is

given by (3.30).

Therefore, if m < 1, there is non-zero inventory left, given by X∗T (λ0,k) =

x
√

(1−m) (1 +m).

On the other hand, if m > 1, problem P (λ0, k; 0) is not well defined for

times beyond T (λ0, k) . However, full-liquidation does occur at time T (λ0, k) ,

X∗T (λ0,k) = 0.
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3.4 Comparative analysis for the naive and forward liq-

uidation strategies

Both agents start at t = 0, having the same initial inventory, same

assessement and knowledge about the upcoming change of the market impact

parameter.

The pre-committed agent chooses to liquidate at T, and thus he is

obliged to choose at t = 0 a specific model for the entire [0, T ] . As mentioned

earlier, he chooses (3.35) and (3.36), with λ̂ reflecting his best guess at t = 0

for the value of the parameter in the future period (τ1, T ].

The forward agent exhibits different behavior, choosing not to commit

at t = 0 to any parameter selection beyond the (a priori known) revision time

τ1. Furthermore, she does not impose any full-liquidation horizon but, rather,

chooses an initial criterion U (x, r, 0).

To draw meaningful comparisons for the two agents, we assume that

their initial conditions coincide, i.e. for (x, r) ∈ R+ × R,

U (x, r, 0) = V (x, r, 0;T ) ,

with V (x, r, 0;T ) as in previous section for the cases (i)-(iii), corresponding

to different regimes of λ̂. In other words, the forward agent chooses as her

initial datum to be the value function of the naive one. Note that this initial

choice for the forward agent does induce indirect dependence on both λ̂ and T,

since V (x, r, 0;T ) is the solution of the backward optimization problem over
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[0, T ] for model (3.35), (3.36). This is unavoidable, if we want to compare the

behaviors and policies of the two agents.

3.4.1 Comparative performance metrics

To draw comparisons between the naive and the forward agents, we

introduce two performance metrics, denoted by R1
0(x, r) and R2

0(x, r).

• Metric R1
0(x, r) is defined as

R1
0(x, r) := E

[
Uτ (Xζa

τ , R
ζa

τ )
]
− V (x, r, 0) ,

and measures the discrepancy between the actual average performance

and the perceived optimal performance at t = 0.

• Metric R2
0(x, r) is defined as

R2
0(x, r) := E

[
Uτ (Xζa

τ , R
ζa

τ )
]
− sup

ζ
E
[
Uτ (Xζ

τ , R
ζ
τ )
]
,

and measures the discrepancy between the actual average performance

and the true optimal performance in hindsight, with the full knowledge

of the underlying model. The metric R2
0(x, r) can be interpreted as the

“regret” of the trading agent for not having taken the genuine optimal

policy under the true measure P that is not fully known at t = 0.

Here, the expectation is taken with respect to P, under which λ1 ∈ Fτ1 is

correctly modeled. The criterion Uτ (x, r) and the evaluation horizon τ vary
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for different problems. For instance, for the naive agent, τ = T is the pre-

specified liquidation horizon, and Uτ (x, r) = −e−r, since Xζ
τ = 0 always holds

for any admissible ζ, under the singular terminal condition v(x, r) in (3.5).

On the other hand, for a forward agent with model revision time

τ1 < T (λ0, k), the evaluation horizon τ = T1 ∈ Fτ1 is the revised liquidation

horizon, whereas the criterion Uτ (x, r) = U1(x, r, T1) ∈ Fτ1 is the correspond-

ing forward performance criterion at T1.

We first examine R1
0(x, r) for the naive agent. Recall that the per-

ceived value function V (x, r, 0) is calculated for cases (i)-(iii) under the t = 0

perceived model (3.35) and (3.36).

To compute the actual average performance of the naive agent, we

notice that under the true measure P,

E
[
−e−R

ζa

T

]
= E

[
E
[
−e−R

ζa

T

∣∣∣Fτ1

]]
= E

[
V 1
(
Xζa

τ1 , R
ζa

τ1 , τ1
)]

= E

−exp
−Rζa

τ1 +
√
λ1

2
(
Xζa

τ1

)2
coth

(
T − τ1√

2λ1

) , (3.42)

where Rζa

T is the terminal revenue generated by the strategy ζa over [0, T ], and

Rζa

τ1 , X
ζa

τ1 are the revenue and remaining inventory to liquidate at τ1.

The exact value of the expectation in (3.42) is in general unknown,

unless we further specify how the Brownian motion over [0, τ1) (as it appears

in Rζa

τ1 ) is correlated with λ1 under the true measure P.

Nevertheless, we can make qualitative comparisons between this true

average performance and the perceived performance. For instance, if λ1 = λ̂
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a.s., under P, then, the true performance coincides with the perceived one, as

expected.

Another intuitive observation is that, since the function

f(λ1) =
√
λ1

2
(
Xζa

τ1

)2
coth

(
T − τ1√

2λ1

)

is increasing in λ1 (notice that Xζa

τ1 is a deterministic constant that does not

depend on λ1), we can conclude that if λ1 ≥ λ̂ a.s., the actual performance

would be dominated by the perceived performance on average, and vice versa.

This is an intuitive fact, as in a market with unfavorable liquidation

condition (e.g., price impact would increase with high probability), even if

the agent makes direct response to the realized market condition λ1 ∈ Fτ1 , he

may still undergo tremendous loss compared to what he has perceived at t = 0.

Such instability of performance is due to the “stubbornness to a fixed criterion”

that cannot incorporate the unexpected market changes along real-time in a

consistent manner.

3.4.2 Regret and the forward approach

As it was shown in the previous section, the metric R1
0(x, r) for the

naive agent can be positive or negative, depending on whether the true future

market condition is sufficiently better or worse than initially perceived in a

reasonable way.

Next, we consider the forward liquidation behavior under the two in-

troduced metrics and eventually demonstrate its stability property under both
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of the two metrics.

For a forward agent who revises the model parameter before the solv-

ability time, i.e., τ1 < T (λ0, k), we have derived the actual strategy she would

follow, ζ∗t for t ∈ [0, τ1) and ζ1,∗
t for t ∈ [τ1, T1). Denote such strategy by ζa,∗,

with

ζa,∗t := ζ∗t 1{t<τ1} + ζ1,∗
t 1{τ1≤t<T1}.

We first consider the metric R1
0(x, r) for the forward liquidation behav-

ior. Recall that we have chosen U(x, r, 0) = V (x, r, 0),

On the other hand, the actual average performance of the forward agent

is

E
[
U
(
Xζa,∗

T1 , Rζa,∗

T1 , T1
)]

= E
[
E
[
U
(
Xζa,∗

T1 , Rζa,∗

T1 , T1
) ∣∣∣ Fτ1

]]
= E

[
U
(
Xζa,∗

τ1 , Rζa,∗

τ1 , τ1
) ∣∣∣ Xζa,∗

0 = x, Rζa,∗ = r
]

= U(x, r, 0).

It hence follows that R1
0(x, r) = 0 for the forward agent.

To examine the regret metric, we now focus on the hypothetical value

function V True(x, r, t), which can be computed based on the true full model

under P.

We solve this virtual problem with backward induction, as it is appli-

cable in the current scenario; i.e., we first solve the problem

V True (x, r, τ1;λ1) := esssup
ζ

E
[
U
(
Xζ
T1 , R

ζ
T1 , T1

) ∣∣∣ Xζ
τ1 = x, Rζ

τ1 = r, Fτ1

]
.

(3.43)
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Here, the forward utility U(x, r, T1) is constructed forward in time, such

that

U(x, r, τ1) = esssup
ζ

E
[
U
(
Xζ
T1 , R

ζ
T1 , T1

) ∣∣∣ Xζ
τ1 = x, Rζ

τ1 = r, Fτ1

]
, a.s..

(3.44)

According to Theorem 3.2.2, conditional on Fτ1 , the solution U(x, r, T1)

to problem (3.44) exists, and the essential supremum is attained by ζ1,∗. It

follows, by the uniqueness of essential supremum, V true(x, r, τ1) = U(x, r, τ1)

a.s, under P.

By backward induction, solving the problem over [0, τ1) using such

intermediate value function V true(x, r, τ1) gives the true optimal value at t = 0,

namely,

V True(x, r, 0) = sup
ζ

E
[
V True

(
Xζ
τ1 , R

ζ
τ1 , τ1

)∣∣∣ Xζ
0 = x, Rζ

0 = r
]

= sup
ζ

E
[
U
(
Xζ
τ1 , R

ζ
τ1 , τ1

)∣∣∣ Xζ
0 = x, Rζ

0 = r
]

= U(x, r, 0),

with the last equality, again, follows from Theorem 3.2.2. Hence, we have

shown zero regret for the forward liquidation behavior.

The study of the regret metric R2
0(x, r) for the naive agent, similar to

that of R1
0(x, r), requires more specific knowledge of the interaction between

the Brownian motion and λ1, under the true measure P. Nonetheless, it is

clear that although the naive agent reacts promptly at τ1 to the true model

when it is revealed, the overall policy ζa implemented is only one admissible

policy. Therefore, in general, such policy cannot outperform the optimal policy
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computed under the true measure P, which leads to R2
0(x, r) ≤ 0 for the naive

agent, in contrast with the zero regret stability under the forward approach.

3.4.3 Comparison under adverse market conditions

The forward approach has demonstrated sound stability under the two

metrics R1
0(x, r) and R2

0(x, r), which is generally lacking under the classical

optimization framework. In this section, we will further show that the for-

ward agent outperforms the naive agent in terms of the liquidation revenue,

under unanticipated adverse market condition that mostly concerns the trad-

ing agents (e.g., the 2010 Flash Crash). Such unfavorable market condition

corresponds to that a large price impact λ1 ∈ Fτ1 is realized at t = τ1. The

naive agent would nonetheless have a full liquidation at T , regardless of the

adverse market condition. The forward agent, on the other hand, has the abil-

ity to endogenously determine the revised liquidation horizon and the volume

to trade, which allows her to obtain higher expected liquidation revenue with

comparable variance, as we will show next.

Recall that we have taken U(x, r, 0) = V (x, r, 0) for the forward agent.

Then, for case 1 in section 3.2 (i.e., τ1 < T (λ0, k)), direct computation yields

that the forward and the naive agents have the same optimal policy , i.e.,

ζ∗t = ξ∗t , for t ∈ [0, τ1). Moreover, both of them execute their policies over

[0, τ1) in the underlying market with the common parameter λ0. It follows

that the two agents have the same (non-zero) inventory and revenue at t = τ1,

denoted by X∗τ1 and R∗τ1 , respectively. We also denote their terminal revenue
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by Rn,∗
T and Rf,∗

T1 , with T1 given as in (3.41) corresponding to m1 < 1 (i.e., λ1

large). Notice that

Rn,∗
T = R∗τ1 − λ1

∫ T

τ1

(
ξ1,∗
t

)2
dt+

∫ T

τ1
Xn,∗
t dWt,

and

Rf,∗
T = R∗τ1 − λ1

∫ T1

τ1

(
ζ1,∗
t

)2
dt+

∫ T1

τ1
Xf,∗
t dWt,

with Xn,∗
t , Xf,∗

t being the inventory processes for the naive and forward agent,

after the model revision time τ1. As the revenue at τ1 is the same for both

agents, we aim to compare the conditional mean revenue E[Rn,∗
T |Fτ1 ] and

E[Rf,∗
T1 |Fτ1 ], as well as the conditional variance Var[Rn,∗

T |Fτ1 ] and Var[Rf,∗
T1 |Fτ1 ].

For the former, due to λ1, T1 ∈ Fτ1 , we obtain

E
[
Rf,∗
T1 |Fτ1

]
−E

[
Rn,∗
T |Fτ1

]
= E

[
λ1

∫ T

τ1

(
ξ1,∗
t

)2
dt
∣∣∣Fτ1

]
−E

[
λ1

∫ T1

τ1

(
ζ1,∗
t

)2
dt
∣∣∣Fτ1

]

= 1
2
(
X∗τ1

)2
∫ T

τ1

cosh2 T−t√
2λ1

sinh2 T−τ1√
2λ1

dt−
∫ T1

τ1

sinh2 T1−t√
2λ1

cosh2 T1−τ1√
2λ1

dt


=
√

2λ1

4
(
X∗τ1

)2
coth T − τ1√

2λ1
− tanh T1 − τ1√

2λ1
+

T−τ1√
2λ1

sinh2 T−τ1√
2λ1

+
T1−τ1√

2λ1

cosh2 T1−τ1√
2λ1

 .
Using that

T1 = τ1 +
√

2λ1 tanh(−1)


√√√√ λ̂

λ1
coth T − τ1√

2λ̂

 , (3.45)

from (3.41), for the case m1 < 1, we conclude with

E
[
Rf,∗
T1 |Fτ1

]
− E

[
Rn,∗
T |Fτ1

]
→∞, as λ1 →∞.
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Therefore, the (conditional) mean revenue of the forward agent is higher than

that of the naive agent, if the unanticipated price impact is large. To examine

the (conditional) variance, we first notice that, due to λ1, T1 ∈ Fτ1 ,

Var[Rf,∗
T1 |Fτ1 ] = E

[∫ T1

τ1

(
Xf,∗
t

)2
dt
∣∣∣∣Fτ1

]
=
(
X∗τ1

)2 ∫ T1

τ1

cosh2 T1−t√
2λ1

cosh2 T1−τ1√
2λ1

dt

= 1
2
(
X∗τ1

)2
√2λ1 tanh T1 − τ1√

2λ1
+ T1 − τ1

cosh2 T1−τ1√
2λ1

 .
Again, by (3.45), we obtain the limit

Var[Rf,∗
T1 |Fτ1 ]→

(
X∗τ1

)2
√

2λ̂ coth T − τ1√
2λ̂

, as λ1 →∞.

On the other hand, for the naive agent, we have

Var[Rn,∗
T |Fτ1 ] = E

[∫ T

τ1
(Xn,∗

t )2
dt
∣∣∣∣Fτ1

]
=
(
X∗τ1

)2 ∫ T

τ1

sinh2 T−t√
2λ1

sinh2 T−τ1√
2λ1

dt

−→
(
X∗τ1

)2 T − τ1

3 , as λ1 →∞,

by dominated convergence theorem. The above results suggest that the for-

ward agent outperforms the naive agent in unanticipated catastrophic market

conditions (i.e., λ1 → ∞), by achieving higher expected liquidation revenue

with comparable variance. The variance of her revenue as well as that of

the naive agent both approach to some pre-determined constants, as the new

market price impact becomes significantly large.

One intuitive explanation for such superiority of the forward approach

is based on the metric R1
0(x, r) = 0, as shown before. Regardless of the the

future market condition, the forward agent can always deliver a pre-chosen
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performance V (x, r, 0), by consistently revising the liquidation criterion, the

liquidation horizon and the volume to trade. However, the naive agent typi-

cally experiences R1
0(x, r) < 0 when facing unanticipated adverse market con-

ditions, due to the stringent commitment to the terminal criterion (3.5) set at

t = 0.

Another possible explanation relates to the discontinuity of the realized

strategy ζa,∗ at τ1 for the forward agent. Indeed, similar to the discontinuity

∆∗τ1(λ0, λ̂, λ1) defined for the naive agent, we define

∆f,∗
τ1 (λ0, λ̂, λ1) = lim

t↓τ1
ζ1,∗
t − lim

t↑τ1
ζ∗t ,

for the forward agent. It follows from direct computation that

∆f,∗
τ1 (λ0, λ̂, λ1) ≷ ∆∗τ1

(
λ0, λ̂, λ1

)
≷ 0, if λ0 ≷ λ1.

This result implies that, compared to the naive agent, the forward agent can

take more advantage of the new market conditions, by increasing (decreasing)

the trading rate with a larger magnitude if the market turns out to be favorable

(adverse, respectively) for the liquidation activity.

3.5 Sequential “real-time” model updating and forward

liquidation

We now present the construction of the forward performance process in

general multi-period setting. It is a direct extension of the previous two-period

setting where the market parameter shifts once at τ1.
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• At t = 0, the trading agent starts with an initial criterion U (x, r, 0) ,

and assesses the market impact parameter λ0 for [0, τ1) , with τ1 ∈ F0.

The time τ1 is the first time that the market impact parameter will be

reassessed, and it is known at t = 0. The time period [0, τ1) is subjective,

as it reflects how long the agent would remain confident in the t = 0

estimated market parameter λ0.

The initial criterion is taken to be of the form

U (x, r, 0) = − exp
(
−r + k0x

2
)
,

(x, r) ∈ R+ × R, for some k0 > 0.

The choice of such initial criterion is flexible enough to cover several

interesting scenarios. For instance, it may be taken to coincide with the initial

condition V (x, r, 0), indicating that the client would like to achieve a pre-

specified performance. The forward approach allows the agent to deliver such

performance to the client, due to the first metric R1
0(x, r) = 0 as we have

shown. It is also possible for the criterion U(x, r, 0) to have implicit dependence

on some pre-chosen liquidation time T , through the parameter k0 > 0. This

follows from the reconciliation of the forward and the classical liquidation

problems discussed earlier. A third interesting choice for U(x, r, 0), as we

have observed, is to take into account the initial trading profile the client

preferred. Indeed, given λ0 > 0 and x > 0 at t = 0, k0 (hence U(x, r, 0)) is

uniquely determined by the initial (preferred) trading rate ζ∗0 of the client (cf.

(3.28)). The forward agent then takes it as an input and outputs a consistent
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trading pattern for later times, by solving sequentially the forward liquidation

problems in real-time.

Starting at t = 0, the agent solves the first inverse liquidation problem

P (λ0, k0; 0) . According to Theorem 3.2.2, if its solvability time T (λ0, k0) ≤ τ1,

then trading stops at T (λ0, k0) . Let m0 = k0
√

2
λ0
, then, if m0 < 1, there is

non-zero inventory left, X∗T (λ0,k0) > 0, while if m0 ≥ 1, full liquidation occurs

optimally with X∗T (λ0,k0) = 0, and the liquidation program stops.

The more interesting case is when model revision happens before the

liquidation problem stops. That is T (λ0, k0) > τ1, then clearly X∗τ1 > 0. and

there will be non-zero inventory left at the first model revision time τ1 at which

the market parameter λ1 ∈ Fτ1 is revealed. We will continue with this case.

• At t = τ1 ∈ F0, the agent considers the inverse liquidation problem

P (λ1, k1; 0) , with λ1 ∈ Fτ1 being the actual, realized value of the market

impact parameter and constant k1 = k0
G(τ1;m0,λ0)
F (τ1;m0,λ0) ∈ F0.

From Theorem 3.2.2, we have that conditional on Fτ1 , the solution is given,

for t ∈ [τ1, τ1 + T (λ1, k1)) , by

U1 (x, r, t;ω) = − exp
(
−r + h1 (x, t;ω)

)
∈ Fτ1 ,

where h1 solves, for t ∈ [τ1, τ1 + T (λ1, k1)) the HJ equation

ht −
1

4λ1
h2
x + 1

2x
2 = 0,
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with h1 (x, τ1) = k1x
2. Denote m1 := k1

√
2
λ1

, then, according to Lemma 3.2.1,

h1 (x, t) = k1x
2G (t− τ1;m1, λ1)
F (t− τ1;m1, λ1) ,

for t ∈ [τ1, τ1 + T (λ1, k1)). The solvability horizon T (λ1, k1) ∈ Fτ1 is given by

(3.15) in Lemma 3.2.1.

At t = τ1, the agent also needs to choose the next model revision time

τ2 ∈ Fτ1 . If m1 ≥ 1, and τ2 ≥ τ1 + T (λ1, k1), then full liquidation occurs

with X∗τ1+T (λ1,k1) = 0, and the liquidation program stops. Notice that m1 ≥ 1

implies that λ1 is relatively small, while τ2 being large indicates that the agent

is confident that the current market condition with small price impact would

last. It is hence intuitively reasonable to complete the liquidation program in

such long-standing favorable market conditions.

On the other hand, if m1 < 1, we assume that the agent chooses τ2 <

τ1 + T (λ1, k1) and, therefore, the forward liquidation program continues, with

the remaining inventory

X∗τ2 = X∗τ1F (τ2 − τ1;m1, λ1) > 0.

This assumption is reasonable, since m1 < 1 corresponds to a relatively large

λ1 that indicates adverse market condition for liquidation. The agent typically

would not commit to such λ1 for a long time, but rather, revise it before the

solvability horizon.

The forward liquidation program continues for n ≥ 3 as depicted above,

whenever at each model revision time τn ∈ Fτn−1 , there exists non-zero inven-

tory X∗τn > 0 left.
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3.6 Continuous time forward liquidation with market

parameters update

In this section, we consider the continuous time forward performance

process for the liquidation problem. Le Wt, t ≥ 0 be a standard Brownian

motion defined on the filtered probability space (Ω,F ,P) with the filtration Ft

satisfying the usual conditions.We consider the forward performance process,

as well as the inventory and revenue processes, given by, for t ≥ 0,

dU(x, r, t) = b(x, r, t)dt+ a(x, r, t)dWt,

and

dXζ
t = −ζtdt, dRζ

t = σtX
ζ
t dWt − λtζ2

t dt, (3.46)

with U(x, r, 0) = u(x, r, 0), Xζ
0 = x ∈ R+, and Rζ

0 = r ∈ R. The pro-

cesses λt > 0 and σt > 0 are Ft-progressively measurable price impact pro-

cess and volatility process, respectively. We also assume that a(x, r, t) is Ft-

progressively measurable and continuously differentiable in the variable r.

Assuming that U(x, r, t) is smooth enough so that the Itô-Ventzell for-

mula can be applied to U(Xζ
t , R

ζ
t , t), for each admissible policy ζ, we then

obtain

dU(Xζ
t , R

ζ
t , t) = b(Xζ

t , R
ζ
t , t)dt+ a(Xζ

t , R
ζ
t , t)dWt − Ux(Xζ

t , R
ζ
t , t)ζtdt

+Ur(Xζ
t , R

ζ
t , t)σtXtdWt − Ur(Xζ

t , R
ζ
t , t)λtζ2

t dt

+1
2Urr(X

ζ
t , R

ζ
t , t)σ2

tX
2
t dt+ ar(Xζ

t , R
ζ
t , t)σtXtdt
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=
(
b− Uxζt − Urλtζ2

t + 1
2Urrσ

2
tX

2
t + arσtXt

)
dt+

(
UrσtXt + a

)
dWt,

where we have suppressed the arguments in the last equality.

For the process U(x, r, t) to be a forward performance process, we need

to further assume that the mapping r 7→ U(x, r, t) is strictly concave and

increasing, for fixed (x, t) ∈ R+ × [0, τ), almost surely, with t = τ being

the solvability horizon to be determined. By the first and the second order

condition (since Ur > 0), we calculate the optimal trading rate as

ζ∗t = − Ux(X∗t , R∗t , t)
2λtUr(X∗t , R∗t , t)

, (3.47)

and it should be nonnegative in a liquidation program. Since Ur > 0, we hence

obtain the constraint that Ux ≤ 0. Note that such constraint already exists in

the construction of the forward performance process in discrete time, through

the condition hx(x, t) ≥ 0, for all (x, t) ∈ R+ × [0, T (λ, k)).

Unlike the backward scenario, with the forward formulation, we are al-

lowed to choose the volatility process a(x, r, t) which determines the drift pro-

cess b(x, r, t) and, in turn, the dynamics of the performance process U(x, r, t).

Indeed, based on the (local) martingale property of U(X∗t , R∗t , t) and the (lo-

cal) supermartingale property of U(Xζ
t , R

ζ
t , t), we can deduce that the drift

satisfies

b(x, r, t) = − Ux(x, r, t)2

4λtUr(x, r, t)
− 1

2Urr(x, r, t)σ
2
t x

2 − ar(x, r, t)σtx2.

Therefore, the forward performance process U(x, r, t) satisfies the stochastic
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partial differential equation (SPDE)

dU(x, r, t) =
(
− Ux(x, r, t)2

4λtUr(x, r, t)
−
(
σt
2 Urr(x, r, t)+ar(x, r, t)

)
σtx

2
)
dt+a(x, r, t)dWt,

(3.48)

with the terminal datum U(x, r, 0) = u(x, r, 0). The first natural step is to con-

sider the zero volatility case, i.e., a(x, r, t) ≡ 0. In this case, the SPDE(3.48)

reduces to

dU(x, r, t) = −
(
Ux(x, r, t)2

4λtUr(x, r, t)
+ 1

2Urr(x, r, t)σ
2
t x

2
)
dt. (3.49)

It is easy to see that the zero volatility case does not necessarily yield a time

monotone forward performance process. Another observation is that in the

constant parameters scenario, i.e., λt ≡ λ > 0 and σt ≡ σ > 0, the solution to

equation (3.48) is the deterministic function satisfying the HJB equation

Ut(x, r, t) + Ux(x, r, t)2

4λUr(x, r, t)
+ 1

2Urr(x, r, t)σ
2x2 = 0, (3.50)

with initial datum U(x, r, 0) = u(x, r, 0), whose solvability has been studied

in Theorem 3.2.2. Next, we present another scenario where the SPDE (3.48)

has a unique well defined solution, under suitable conditions on the involved

parameter processes.

3.6.1 The coordinated variation parameters case

[1] studied the coordinated variation case, namely when σ2
t λt = constant,

a case typically considered normal for periods where largest fraction of the

trading happens. Without loss of generality, we assume that σ2
t λt = 1. Also,
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to make reasonable connection to the classical liquidation problem, we choose

the initial datum for the forward performance process to be the t = 0 value

function of the classical liquidation problem with λ = σ = 1. It is easy to see

that the following result holds for any u(x, r, 0) = −e−r+kx2 , k > 0, as usual.

Proposition 3.6.1. Suppose that the coefficients in equation (3.49) satisfy

the coordinated variation condition

σ2
t λt = 1,∀ t > 0 a.s., (3.51)

and the initial datum is given by

u(x, r, 0) = − exp
(
−r + x2

√
2

coth
(
T√
2

))
, (3.52)

for some constant T > 0. Then, for 0 < t < τ := inf{s > 0|
∫ s

0
1
λu
du = T},

U(x, r, t) = − exp
−r + x2

√
2

coth
T − ∫ t0 1

λs
ds

√
2

 (3.53)

is the unique solution to the equation (3.48) with the separable form, and the

optimal admissible inventory process is

X∗t = x exp
(
−
∫ t

0

1√
2λs

coth
(T − ∫ s0 1

λu
du

√
2

)
ds

)
. (3.54)

Proof. We consider rescaling of time, i.e., let U(x, r, t) = u(x, r,
∫ t

0 σ
2
sds), for

a smooth deterministic function u(x, r, t) that satisfies (3.52). The equation

(3.49) and the coordinated variation condition (3.51) direct yield that

ut + u2
x

4ur
+ 1

2urrx
2 = 0,
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with initial condition (3.52). Within the separable family u(x, r, t) = −e−r+h(x,t),

we obtain the unique solution according to Lemma 3.2.1

u(x, r, t) = −e−r+
x2
√

2
coth(T−t√

2
)
,

with T > 0 being the solvability horizon. The solution (3.53) then follows

easily. The optimal trading rate can be derived from (3.47), i.e,

ζ∗t = − Ux(X∗t , R∗t , t)
2λtUr(X∗t , R∗t , t)

= X∗t√
2λt

coth
T − ∫ t0 1

λs
ds

√
2

 ,
which is admissible as it is clearly nonnegative. This leads to the optimal

inventory process given in (3.54).

It is easy to see from (3.54) that the optimal trading strategy of the

forward agent does not necessarily lead to a full liquidation before or at the

desired calender time T , which is set by the client based on the information

(i.e., λ = σ = 1) at t = 0, and the solution of the classical problem (cf. (3.52)).

This is actually reasonable in a market with stochastic market coefficients.

Indeed, if ∫ t

0

1
λs
ds < T − ε, ∀t > 0, a.s., (3.55)

for some small ε > 0. Then, τ =∞, a.s., and we obtain a forward performance

process defined for all time. It is easy to show that there exists a positive

constant C, such that X∗t > C > 0,∀t > 0, a.s., based on (3.54). The

condition (3.55) may hold in a market with large price impact where the

consistent (optimal) strategy aiming to complete liquidation in finite time is

no longer available. On the other hand, if 0 < C1 < λt < C2 uniformly in
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(t, ω)), then τ < ∞, and we can show X∗τ = 0. This implies, with moderate

market impact, it is always possible to complete liquidation in finite time and

maintain intertemporal consistency. However, τ may no longer coincide with

the pre-determined time T .

3.6.2 Convergence to the continuous time zero volatility forward

process

The multi-period forward performance process constructed in section

5 gives the criteria U(x, r, τn), n ≥ 1, provided that each model revision time

τn ∈ Fτn−1 is strictly before the solvability horizon T (λn−1, kn−1) ∈ Fτn−1 .

Notice that the initial condition and the solution to the HJ equation (3.16)

are both quadratic in the spatial variable within the solvability horizon and,

hence, such desirable construction of the performance criteria for all n ≥ 1

becomes feasible.

The continuing construction of the forward criteria allows us to study

the limiting process, as the update of the price impact parameters λn at each

τn is done more and more frequently. Indeed, we will show that under suitable

conditions on the parameter processes in the continuous time problem (3.46),

the discrete time forward criteria sequence U(x, r, τn) converges to the zero

volatility forward performance process that solves the equation (3.49). Recall

that U(x, r, τn) ∈ Fτn−1 , for n ≥ 1. Our convergence result hence shows the

close connection between the discrete time predictable forward performance

process and the continuous time zero volatility forward performance process,
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as the model revision period vanishes.

To establish such connection, we assume σt = 1, t ≥ 0, as in the multi-

period setting. It follows that in analogy to Proposition 3.6.1, the equation

(3.49) with the initial datum U(x, r, 0) = −e−r+k0x2 , k0 > 0, has an admissible

solution given by U(x, r, t) = −e−r+k(t;ω)x2 , if the nonegative function k(t;ω)

solves the (random) Riccati equation almost surely

dk(t)
dt

= k2(t)
λt
− 1

2 , (3.56)

with k(0) = k0. We make the following assumption for λt in equation (3.56).

Assumption 1. λt, t ≥ 0, is continuous and satisfies inft≥0 λt > 0, a.s..

We next introduce the sequence of strictly increasing model revision

times τNn , n ≥ 0, that satisfies

lim
N→∞

sup
n≥0
|τNn+1 − τNn | = 0,

and τN0 ≡ 0, for all N ≥ 1. Indeed, for each N ≥ 1 and each n ≥ 0, let

τNn+1 ∈ FτNn be given by

τNn+1 = τNn + T (λNn , kNn ) ∧ 1
N + 1 ,

with T (λNn , kNn ) being the solvability horizon for the (n + 1)-th period. Here,

λNn = λτNn ∈ FτNn is the value of the price impact process λt at time τNn , while

kNn is constructed recursively forward in real-time through mN
n = kNn

√
2
λNn

and

kNn+1 = kNn
G(τNn+1 − τNn ;mN

n , λ
N
n )

F (τNn+1 − τNn ;mN
n , λ

N
n ) ,
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for n ≥ 0, with kN0 ≡ k0, for all N ≥ 1. Note that because each τNn is strictly

before the corresponding solvability horizon, it follows that kNn > 0 is well

defined, for all N ≥ 1, n ≥ 0. Finally, for each N ≥ 1, denote by kN the

mapping form [0, limn→∞ τ
N
n ) into R+, obtained as the the linear interpolation

of the function τNn 7→ kNn , n ≥ 0. Then, we have the following convergence

result.

Theorem 3.6.2. Let Assumption 1 hold. Then, there exist T ∗ > 0 and a

continuous function k : [0, T ∗) 7→ R+, such that, for any t ∈ (0, T ∗),

lim sup
N→∞ s∈[0,t]

|kN(s)− k(s)| = 0, a.s..

Moreover, k is uniquely determined by the Riccati equation (3.56) for t ∈

[0, T ∗), and

T ∗ = sup{t > 0 : there exists a bounded nonnegative solution

to equation (3.56) for s ∈ [0, t]}. (3.57)

Proof. We conduct the proof for each fixed ω ∈ Ω that does not belong to the

null set. Let C1 > k0 be a constant, and for each N ≥ 1, we construct the

sequence {k̂Nn }n≥0 as follows

k̂Nn = kNn∧τN , τN = inf{l ≥ 0 : kNl > C1},

with the convention inf ∅ = ∞. Then, it easily follows that 0 ≤ k̂Nn ≤ C1, for

all N ≥ 1 and n ≥ 0. Notice also that k̂Nn = k̂Nn−1 for n > τN . Hence, we only
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consider 1 ≤ n ≤ τN , and obtain

∣∣∣k̂Nn − k̂Nn−1

∣∣∣ =
∣∣∣∣∣k̂Nn−1

G(τNn − τNn−1;mN
n−1, λ

N
n−1)

F (τNn − τNn−1;mN
n−1, λ

N
n−1) − k̂

N
n−1

∣∣∣∣∣

= k̂Nn−1

∣∣∣∣∣∣∣∣
cosh τNn −τNn−1√

2λNn−1
− 1

mNn−1
sinh τNn −τNn−1√

2λNn−1

cosh τNn −τNn−1√
2λNn−1

−mN
n−1 sinh τNn −τNn−1√

2λNn−1

− 1

∣∣∣∣∣∣∣∣
= k̂Nn−1

∣∣∣∣∣mN
n−1 −

1
mN
n−1

∣∣∣∣∣
sinh τNn −τNn−1√

2λNn−1

cosh τNn −τNn−1√
2λNn−1

−
√

2k̂Nn−1√
λNn−1

sinh τNn −τNn−1√
2λNn−1

≤

√2(k̂Nn−1)2√
λNn−1

+
√
λNn−1

2

 sinh τNn −τNn−1√
2λNn−1

cosh τNn −τNn−1√
2λNn−1

−
√

2k̂Nn−1√
λNn−1

sinh τNn −τNn−1√
2λNn−1

.

Hence, we can find some constant C > 0 that only depends on C1 and inft≥0 λt,

such that |k̂Nn − k̂Nn−1| ≤ C(τNn − τNn−1), for all n ≥ 0, as N → ∞. Denote

δ1 := lim infN→∞ τN . Then, since we have shown that the linear interpolation

functions {kN}N≥1 are uniformly Lipschitz, it follows that δ1 > 0. We assume

for now that δ1 < ∞. By Arzelà-Ascoli Theorem, we conclude that {kN}N≥1

is compact in C([0, δ1]), and kN(δ1)→ C1, as N →∞.

Now consider any convergent subsequence of {kN}N≥1, and denote its

limit function by k(t), for t ∈ [0, δ1]. For any fixed t ∈ (0, δ1) and N ≥ 1 that

is sufficiently large, denote j(N) = max{n ≥ 0 : τNn < t}. Then, we divide by

τNj(N)+1 − τNj(N) on both sides of the recursive equation that connects k̂Nj(N+1)

166



and k̂Nj(N)

k̂Nj(N+1) − k̂Nj(N) = k̂Nj(N)


cosh τN

j(N)+1−τ
N
j(N)√

2λN
j(N)

− 1
mN
j(N)

sinh τN
j(N)+1−τ

N
j(N)√

2λN
j(N)

cosh
τN
j(N)+1−τ

N
j(N)√

2λN
j(N)

−mN
j(N) sinh

τN
j(N)+1−τ

N
j(N)√

2λN
j(N)

− 1

 ,

and let N → ∞, to obtain that k(t) satisfies the Riccati equation (3.56)

at t. Therefore, we conclude that k(t) solves the equation (3.56) for t ∈

[0, δ1]. Notice that the solution to equation (3.56) is unique in the family

of bounded nonnegative functions, as follows from the standard contraction

argument. Therefore, we conclude that kN converges to k in C([0, δ1]), the

unique bounded nonnegative solution to equation (3.56), as N →∞.

Choosing an increasing sequence {Cm}m≥1, with limm→∞Cm =∞, and

repeating the above constructions, we obtain an increasing sequence {δm}m≥1,

such that kN converges to k in C([0, δm]), as N → ∞, and k satisfies equa-

tion (3.56) for t ∈ [0, δm]. Let T ∗ := limm→∞ δm, we conclude that k satisfies

equation (3.56), for t ∈ [0, T ∗). Assume that there exists a bounded non-

negative solution to equation (3.56) for t ∈ [0, T ′], with T ′ > T ∗. Then, it

follows that T ∗ < ∞ and hence, δm < ∞, for all m ≥ 0, and such solution

has to coincide with k on every [0, δm], due to the uniqueness of a bounded

nonnegative solution to equation (3.56). However, when δm < ∞, we have

kN(δm)→ k(δm) = Cm, which converges to infinity as m→∞. This leads to

a contradiction and thus, T ∗ satisfies (3.57). It is clear that T ∗ is also uniquely

determined by (3.57).
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Chapter 4

Forward optimal liquidation with market

parameter shift: the general case

4.1 Introduction

In this chapter, we provide the companion work to the forward optimal

liquidation problem discussed in the previous chapter. The contributions of

the current work are twofold. In terms of the solution to the forward liqui-

dation problem, we present more general results that fully accommodate the

quadratic case in the previous chapter for various formulations, namely, the

single inverse problem formulation, the multi-period forward optimal liquida-

tion formulation and finally, the continuous time forward performance process

formulation. These generalizations reveal that the initial performance crite-

rion in the previous work, which includes the t = 0 value function of the

classical optimal liquidation problem, is only one specific choice from a much

larger family of admissible initial conditions presented in this work for the the

forward processes.

The second contribution of this work is to present new insights on clas-
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sical optimal liquidation problem that has been studied extensively in recent

years. The literature on the liquidation problem has shown various interests,

including both the single agent optimal liquidation in rather general market

settings ([1],[4], [11], [26] and [28]) and the mean filed game formulation ([9],

[31]). In the classical optimal liquidation setting, it becomes almost conven-

tional to impose a singular terminal condition to guarantee full liquidation

by a fixed time T , which yields an optimal strategy that unwinds all possible

shares by T . However, in reality, the total amount of shares of any stock is

finite in the market, and hence an agent should only be concerned about full

liquidation of initial inventory with a finite upper bound. Under the condition

that the initial inventory is bounded from above, the forward optimal liqui-

dation formulation gives rise to a classical optimal liquidation problem with a

regular terminal condition to guarantee full liquidation by any fixed time T .

Moreover, the t = 0 value function is higher under the regular terminal con-

dition than that under the singular terminal condition. This is a reasonable

consequence, since choosing to fully liquidate any amount of initial inventory,

even it is virtual, is a stringent requirement on the agent’s optimal strategy

and, hence, decreases the optimal value. Another interesting fact under the

forward formulation is that the liquidation horizon is endogenously determined

by the initial normalized trading rate and the market price impact parameter.

We obtained the intuitive result that liquidation can be complete earlier if the

initial trading is relatively fast, and if the market is relatively liquid. It is in

contrast with the typical classical setting (see e.g., [52], [53]) where liquidation
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horizon coincides with the pre-determined T for any initial inventory and any

market condition.

Our analysis is based on the study of the existence and uniqueness of

the classical solution to a Hamilton-Jacobi equation with a state dependent

Hamitonian that is concave in the gradient, and with a not necessarily convex

initial condition. In particular, we examine in detail under what conditions the

method of characteristics can be applied to give a smooth solution. Obviously,

a global solution (up to any finite time T ) does not exist in general, and

one contribution of the current paper is to give a class of admissible initial

datum under which the HJ equation has a unique classical solution up to an

explicitly determined time horizon. This time horizon for solvability depends

on both the shape of the initial datum and the parameters in the HJ equation.

Moreover, in the special case of quadratic initial datum, including the finite

and infinite horizon classical optimal liquidation problems as in [53] and [52],

we obtain the tight bound on the solvability horizon, and fully recover the

existing results. Working with the suitable class of initial conditions, we can

also show that the classical solution to the HJ equation has the same properties

as its initial condition at any time within the solvability horizon. This self-

similarity enables us to provide a continuing construction of the multi-period

forward performance process recursively forward in real-time, similar to the

quadratic case discussed in the previous chapter.

The organization of this chapter is as follows. In section 4.2, we restate

the results of the classical finite horizon liquidation problem for completeness
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and also set up the model dynamics for later discussion. Section 4.3.1 provides

the main result for the single inverse liquidation problem and the its connec-

tion to the classical liquidation problem with non-singular terminal condition.

In section 4.3.2, we incorporate real-time model updating and recursively con-

struct the intertemporally consistent forward performance process in discrete

time. Finally, section 4.3.3 discusses the convergence of the discrete time

forward performance process to the continuous time zero volatility forward

performance process, in the limit case as the model revision period shrinks to

zero.

4.2 Classical approach

The optimal liquidation problem in continuous time has been analyzed

for finite and infinite horizon by Schied et al. [53] and [52], respectively. In

this section, we briefly recall the results in [53], and will address more on the

connections between the classical (backward) scenario and the forward scenario

in the sequel. For simplicity, we consider liquidation of only one single asset

within a finite horizon T > 0. Given a probability space (Ω,F ,P) equipped

with a filtration Ft, 0 ≤ t ≤ T , that satisfies the usual conditions, the price

follows the dynamics

Pt = P0 + σWt + γ(Xt −X0) + λẊt,

where Wt, 0 ≤ t ≤ T , is the standard Brownian motion, while γ and λ are

the permanent and temporary price impact parameters, respectively. Under
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the assumption that the inventory process Xt is absolutely continuous, i.e.,

Xt = x −
∫ t

0 ξsds for some admissible trading rate ξ, and that the liquidation

completes at T , the terminal revenue RT (ξ) can be calculated as

RT (ξ) =
∫ T

0
ξtPtdt = P0x−

γ

2x
2 + σ

∫ T

0
XtdWt − λ

∫ T

0
ξ2
t dt.

Therefore, the two processes involved in the stochastic control problem are

Xξ
t := x−

∫ t

0
ξsds, (4.1)

Rξ
t := r + σ

∫ t

0
Xξ
sdWs − λ

∫ t

0
ξ2
sds, (4.2)

where 0 ≤ t ≤ T , x > 0 is the initial inventory and r ∈ R is the initial revenue.

Now consider the exponential utility U(r) = −e−r, and we want to maximize

the expected utility of terminal revenue, i.e., define

V (x, r, 0;T ) = sup
ξ

E
[
− e−R

ξ
T

∣∣∣∣Xξ
0 = x,Rξ

0 = r
]
.

Applying Dynamic Programming Principle and Itô’s lemma to the process

V (Xξ
t , R

ξ
t , t;T ), we derive that the deterministic function V (x, r, t) satisfies

the Hamilton-Jacobi-Bellman (HJB) equation

Vt + 1
2σ

2x2Vrr + sup
ξ

(−λξ2Vr − ξVx) = 0, (4.3)

with the terminal conditions
V (0, r, T ) = −e−r,

V (x, r, T ) = −∞, for x > 0.
(4.4)

The first condition is due to definition of value function V , whereas the second

condition follows from the fact that the liquidation should be completed before
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T ; otherwise an infinite penalty will be imposed. The HJB equation (4.3) gives

the value function (setting σ = 1)

V (x, r, t;T ) = − exp
(
− r +

√
λ

2x
2 coth T − t√

2λ

)
. (4.5)

In addition, the optimal trading rate in the classical setting is given by

ξ∗t = − Vx(X∗t , R∗t , t)
2λVr(X∗t , R∗t , t)

= 1√
2λ
X∗t coth T − t√

2λ
.

This quantity is positive for 0 ≤ t ≤ T , a desired property of the trading rate

in the liquidation problem. Solving (4.1), we get the optimal inventory process

X∗t =
x sinh

(
T−t√

2λ

)
sinh

(
T√
2λ

) . (4.6)

It satisfies the condition XT = 0.

We notice that the above classical backward problem is a single evalua-

tion problem, in the sense that at t = 0 the agent is given the trading horizon

T , the terminal utility function and the dynamics of the market parameter

processes (deterministic or stochastic), all of which are fixed over the entire

horizon [0, T ]. The optimal trading rule and the intermediate value functions

are then completely determined a priori at t = 0, as a consequence of the back-

ward reasoning of the classical approach. Such framework would fail in the

case where the agent is in a volatile market with unanticipated time-varying

market parameters, or his estimates of the market parameters are not correct

at t = 0 even if their true values stay unchanged.
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To overcome the model commitment issue under the single evaluation

backward formulation, we adopt the forward performance process approach

in the following sections. The forward approach allows to incorporate the

real-time updates of the unanticipated market information into the trading

criterion, and gives rise to interteomparrly consistent trading behavior.

4.3 Forward approach

4.3.1 Single inverse problem

We present the idea, formulation and results regarding the optimal

liquidation problem under the forward performance process. In the first part,

we focus on the first period of the liquidation activity. In contrast to the

classical backward formulation, we aim to find a consistent terminal utility

for a given initial perfomance, and hence the problem considered herein can

be seen as the inverse of the classical problem. This problem also serves

as the foundation of the multi-period problem. Indeed, the general forward

optimal liquidation problem under discrete time model revision boils down to

addressing how to solve each single inverse liquidation problem, and how to

concatenate them to obtain a multi-period forward performance process. The

next theorem states the main result of the first inverse problem. For simplicity,

we take σ ≡ 1 henceforth.

Theorem 4.3.1. Assume that U(x, r, 0) = −e−r+g(x), with the function g ∈

C2(R+) satisfying g′(0), g′′(0) ∈ R, and that there exist positive constants a ≥
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b > 0 1 such that

sup
x>0

g′′(x) ≤ a and inf
x>0

g′(x)
x
≥ b. (4.7)

Then, the initial condition U(x, r, 0) is admissible in the sense that an optimal

pure liquidation policy exists under the forward performance process, for 0 ≤

t < T g(λ), where

T g(λ) :=
√

2λmin
(

tanh(−1)
( b√

2λ
∧ 1

)
, coth(−1)

( a√
2λ
∨ 1

))
, (4.8)

with the convention that tanh(−1)(1) = coth(−1)(1) =∞.

Proof. The time T g(λ) is the solvability horizon for the inverse liquidation

problem under the initial condition U(x, r, 0) = −e−r+g(x) and the price impact

parameter that would appear in the HJB equation. To characterize T g(λ)

more specifically, we note that in the current formulation, the (deterministic)

forward performance process satisfies

U(x, r, t) = sup
ξ

E
[
U(Xξ

s , R
ξ
s, s)|X

ξ
t = x,Rξ

t = r
]
,

with U(0, x, r) = −e−r+g(x), for 0 ≤ t ≤ s < T g(λ). Since the initial condition

U(x, r, 0) is of exponential form, it is reasonable to expect a similar function

form for the forward process U(x, r, t) = −e−r+h(x,t), with some function h to

be determined. Based on the definition for the forward performance process,

U(x, r, t) satisfies the HJB equation (4.3) with the initial condition U(0, x, r) =

1a ≥ b must hold; otherwise the condition g′(0) ∈ R would be violated
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−e−r+g(x). Hence, the function h(x, t) is the solution to the following Hamilton-

Jacobi equation
ht − 1

4λh
2
x + 1

2x
2 = 0, x > 0, 0 < t < T g(λ),

h(x, 0) = g(x), x > 0.
(4.9)

First order condition yields the optimal strategy ξ∗t = hx(X∗t ,t)
2λ , for 0 ≤ t <

T g(λ), and it is expected to be nonnegative in a liquidation program. There-

fore, we aim to look for the solvability horizon T g(λ) up to which the Hamilton-

Jacobi equation (4.9) has a unique C1,1 (R+ × [0, T g (λ))) solution with non-

negative spatial derivative for all 0 ≤ t < T g(λ).

We apply the method of characteristics (see, e.g., section 3.2.5 in [22])

to system (4.9), and obtain the following characteristic ODEs

dX(s)
ds

= − 1
2λP (s);

dP (s)
ds

= −X(s);
dh(X(s),s)

ds
= − 1

4λP
2(s)− 1

2X
2(s),

(4.10)

where P (s) = hx(X(s), s), which yields that
X(s) = C1e

s√
2λ + C2e

− s√
2λ ,

P (s) = −
√

2λC1e
s√
2λ +

√
2λC2e

− s√
2λ .

(4.11)

Now, since P (0) = hx(X(0), 0) = g′(X(0)) = g′(x0) following from the initial

condition of (4.9), let s = 0 in (4.11), and we can get the two constants C1

and C2 
C1 =

x0−
g′(x0)√

2λ
2 ,

C2 =
x0+ g′(x0)√

2λ
2 .

(4.12)
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Then for any (x, t) ∈ R+×(0, T g(λ)), integration along the characteristic curve

gives

h(x, t) = h(x0, 0) +
∫ t

0

(
− 1

4λP
2(s)− 1

2X
2(s)

)
ds

= g(x0) +
√

2λ
2

(
C2

2e
− 2t√

2λ − C2
1e

2t√
2λ

)
+
√

2λ
2

(
C2

1 − C2
2

)

= g(x0)−
√

2λ
2

(
x2

0
2 + g′(x0)2

4λ

)
sinh

( 2t√
2λ

)
+ x0g

′(x0)
2

(
cosh

( 2t√
2λ

)
− 1

)
.

(4.13)

We notice that in expression (4.13), to have a solution for any (x, t) ∈ R+ ×

(0, T g(λ)), it is necessary to represent the initial state x0 ∈ R+ by a unique

function of (x, t) ∈ R+× (0, T g(λ)). Under the assumption (4.7), we can prove

the existence and uniqueness of such a function. Indeed, following from (4.11)

and (4.12), the characteristic curve is

X(s) =
x0 − g′(x0)√

2λ
2 e

s√
2λ +

x0 + g′(x0)√
2λ

2 e
− s√

2λ ,

and to have X(t) = x for a given pair of (x, t), it is clear that

x0 cosh
(

t√
2λ

)
− g′(x0)√

2λ
sinh

(
t√
2λ

)
= x. (4.14)

Now it remains to show that for any given (x, t) ∈ R+ × (0, T g(λ)), x0 ∈ R+

is uniquely determined through the equation

G(x0, t) = x,

where the function

G(x0, t) := x0 cosh
(

t√
2λ

)
− g′(x0)√

2λ
sinh

(
t√
2λ

)
,
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for any x0 ∈ R+, 0 < t < T g(λ).

Let 0 < t < T g(λ) be fixed. We consider the single variable function

G(·, t) : R+ −→ R defined above. From supx>0 g
′′(x) ≤ a in condition (4.7)

and T g(λ) defined in (4.8), we know for x0 ∈ R+, 0 < t < T g(λ),

Gx0(x0, t) = cosh
(

t√
2λ

)
− g′′(x0)√

2λ
sinh

(
t√
2λ

)
> 0. (4.15)

Condition (4.7) infx>0
g′(x)
x
≥ b > 0 further leads to 0 ≤ g′(0) < ∞, yielding

that G(0, t) ≤ 0. It remains to show that

G(x0, t)→∞, as x0 →∞ (4.16)

Proposition (B.1.1) in Appendix implies that for each ε > 0, there exist dε > 0,

such that g′(x) ≤ dε(x+ ε), for all x > 0. Hence,

G(x0, t) ≥ x0

(
cosh

(
t√
2λ

)
− dε√

2λ
sinh

(
t√
2λ

))
− εdε√

2λ
sinh

(
t√
2λ

)
. (4.17)

Therefore, a sufficient condition for (4.16) to be valid is

cosh
(

t√
2λ

)
≥ dε√

2λ
sinh

(
t√
2λ

)
(4.18)

for 0 < t < T g(λ). Recall from Proposition (B.1.1) dε =
√

2aK with K =

max{a2 ,
g′(0)

2ε ,−
c0
ε2}. Then for large enough ε > 0, we obtain K = a

2 and dε = a.

The sufficient condition therefore reduces to

a ≤
√

2λ coth
(

t√
2λ

)

for 0 < t < T g(λ), which is implied by the definition (4.8) of T g(λ). Therefore,

given any (x, t) ∈ R+ × (0, T g(λ)), we can find a unique x0 ∈ R+, the starting

178



point of the characteristic curve passing through (x, t), and integrate along the

characteristic curve to obtain the function h(x, t) through (4.13).

After showing that the Hamilton-Jacobi equation (4.9) has a unique

classical solution up to time T g(λ), the last constraint we need to consider is to

have nonnegative spatial derivative hx(x, t) for all (x, t) ∈ R+×(0, T g(λ)). Let

f(x, t) := hx(x, t), then the function f(x, t) is the solution to the quasilinear

equation 
ft − 1

2λffx + x = 0, x > 0, 0 < t < T g(λ),

f(x, 0) = g′(x), x ≥ 0.
(4.19)

Equation (4.19) can be solved by the method of characteristics as (4.9). Direct

calculation yields the same characteristic curve as in (4.14), and the solution

f(x(x0, t), t) = g′(x0) cosh
(

t√
2λ

)
−
√

2λx0 sinh
(

t√
2λ

)
. (4.20)

Then, a sufficient condition to have nonnegative value for f(x(x0, t), t) given

any (x, t) ∈ R+ × (0, T g(λ)) is therefore

g′(x0) cosh
(

t√
2λ

)
−
√

2λx0 sinh
(

t√
2λ

)
≥ 0. (4.21)

Definition of T g(λ) in (4.8) as well as the conditions (4.7) satisfied by the

function g(·) imply that (4.21) is valid for all (x0, t) ∈ R+ × (0, T g(λ)).

We conclude the proof by showing the uniqueness of the classical so-

lution to the Hamilton-Jacobi equation (4.9). To this end, we assume that

there are two solutions that are non-decreasing in x, h ∈ C1,1 (R+ × [0, T ))

and h̃ ∈ C1,1(R+ × [0, T̃ )), with T̃ > T, satisfying h (x, 0) = h̃ (x, 0) = g(x),
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x > 0. Then, H := h− h̃ satisfies, for (x, t) ∈ R+ × [0, T ) ,

Ht −
1
4
(
h2
x − h̃2

x

)
= Ht −

1
4Hx

(
hx + h̃x

)
= 0,

with H (x, 0) = 0. For the characteristics we have dX(t)
dt

= −hx(X(t),t)+h̃x(X(t),t)
4λ0

,

with hx (X (t) , t) + h̃x (X (t) , t) ≥ 0. It hence implies that for any X(t) =

x ≥ 0, t ∈ [0, T ), the initial value X(0) = x0 ≥ x ≥ 0. We conclude,

using H(X(t), t) = H(x0, 0) = 0, with x0 ≥ 0, that H ≡ 0 is the unique

solution up to time T. It then follows T = T̃ , and h(x, t) = h̃(x, t), for (x, t) ∈

R+ × [0, T ) .

Remark 4.3.1. The condition (4.7) can be interpreted as the following. Since

g′(x) = hx(x, 0) following from the equation (4.9), and hx(x, 0) is the trading

rate at time t = 0 with initial inventory x > 0, the condition

inf
x>0

g′(x)
x
≥ b > 0

then basically requires that the normalized initial trading rate (or the percent-

age with respect to initial inventory) should be uniformly bounded away from

zero. This is reasonable from practical point of view, as b > 0 can be taken as

δ/∆t, where δ is the minimal percentage of shares that are allowed to trade

in the market, and ∆t is the time discretization of the continuous time model.

If the initial trading rate is zero, then the starting time of trading is actually

postponed to some later time at which the above condition is satisfied.

Theorem 4.3.1 gives the condition for the ill-posed inverse liquidation

problem to be solvable over the time interval [0, T g(λ)), based on the analysis
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of the existence and uniqueness of solution to the HJ equation (4.9). In the

next proposition, we provide a verification argument to the inverse liquida-

tion problem and therefore complete the discussion for single-period forward

liquidation problem.

Theorem 4.3.2. Assume that U(x, r, 0) = −e−r+g(x), with g satisfying the

assumption in Theorem 4.3.1. Then, the process U(x, r, t) = −e−r+h(x,t) is a

forward performance process, for 0 ≤ t < T g(λ), where the function h(x, t) is

the unique classical solution to the Hamilton-Jacobi equation with nonnegative

spatial derivative
ht − 1

4λh
2
x + 1

2x
2 = 0, x > 0, 0 < t < T g(λ),

h(x, 0) = g(x), x > 0,
(4.22)

and T g(λ) is given by (4.8). Moreover, the optimal liquidation strategy under

this forward performance process is

ξ∗t = hx(X∗t , t)
2λ , (4.23)

and the corresponding optimal inventory process is

X∗t = X0 −
∫ t

0
ξ∗sds = X0 cosh t√

2λ
− g′ (X0)√

2λ
sinh t√

2λ
, (4.24)

with initial inventory X0 > 0. In particular, full liquidation can be achieved

under the forward optimal trading strategy (4.24) if and only if

T ∗ :=
√

2λ coth(−1)
(
g′(X0)√

2λX0
∨ 1

)
≤ T g(λ). (4.25)
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Proof. Let A be the admissible set that consists of all Ft-progressively mea-

surable processes ξ, such that ξt ≥ 0, for all t ∈
[
0, T ξ

)
,
∫ T ξ

0 ξ2
sds < L (ξ) a.s.,

and E
∫ T ξ

0 (Xξ
s )2ds < ∞, with T ξ = inf

{
t > 0 : X0 =

∫ t
0 ξsds

}
, and L (ξ) > 0

being a constant that only depends on ξ.

The verification argument aims to show, for any 0 < T < T g(λ) ≤ ∞

and any admissible ξ ∈ A, the process U(Xξ
t∧T ξ , R

ξ
t∧T ξ , t ∧ T

ξ), t ∈ [0, T ] is a

supermartingale, while for the specific ξ∗ and T ∗ given in (4.23) and (4.25),

respectively, the process U(X∗t∧T ∗ , R∗t∧T ∗ , t ∧ T ∗), t ∈ [0, T ] is a martingale.

The upper bound of the horizon T ξ ∧ T g(λ) or T ∗ ∧ T g(λ) for the verification

argument is needed, since the function h(x, t) in the forward performance

process U(x, r, t) is only well defined for (x, t) ∈ R+ × [0, T g(λ)). We start by

applying Itô’s lemma, and obtain, for every ξ ∈ A, and 0 ≤ t ≤ T < T g(λ),

that

U(Xξ
t∧T ξ , R

ξ
t∧T ξ , t ∧ T

ξ) = U(x, r, 0) +
∫ t∧T ξ

0
Us(Xξ

s , R
ξ
s, s)ds

−
∫ t∧T ξ

0
Ux(Xξ

s , R
ξ
s, s)ξsds− λ

∫ t∧T ξ

0
Ur(Xξ

s , R
ξ
s, s)ξ2

sds

+1
2

∫ t∧T ξ

0
Urr(Xξ

s , R
ξ
s, s)(Xξ

s )2ds+
∫ t∧T ξ

0
Ur(Xξ

s , R
ξ
s, s)Xξ

sdWs

= U(x, r, 0) +
∫ t∧T ξ

0

(
Us − Uxξs − λUrξ2

s + 1
2Urr(X

ξ
s )2
)
ds+

∫ t∧T ξ

0
UrX

ξ
sdWs

where we have suppressed the arguments of U in the last equality. It follows

from the last equality and the fact h(x, t) solves the HJ equation (4.22) that

for ξ∗t = hx(X∗t ,t)
2λ , the drift vanishes. For any other ξ ∈ A, the drift remains

nonpositive, giving the supermartingale property away from the optimum once

182



we have shown the stochastic integral is a true martingale. We next show the

stochastic integral

∫ t∧T ξ

0
Ur(Xξ

s , R
ξ
s, s)Xξ

sdWs =
∫ t∧T ξ

0
e−R

ξ
s+h(Xξ

s ,s)Xξ
sdWs,

is a true martingale, for 0 ≤ t ≤ T < T g(λ). It suffices to show the square

integrability

E
∫ T∧T ξ

0
e−2Rξs+2h(Xξ

s ,s)(Xξ
s )2ds <∞,

for each admissible ξ ∈ A. Notice that for any 0 ≤ s ≤ T ξ, the inventory

process |Xξ
s | ≤ X0 uniformly in (s, ω), and

∣∣∣h(Xξ
s∧T ξ , s ∧ T

ξ)
∣∣∣ ≤ max

(x,s)∈[0,X0]×[0,T ]
|h(x, s)| <∞,

as T < T g(λ). It hence remains to show E
∫ T∧T ξ

0 e−2Rξsds <∞. By admissibility

of ξ ∈ A, there exist constants Lξ, Kξ > 0, such that
∫ T g(λ)

0 ξ2
s∧T ξds < Lξ, a.s.,

and E
∫ T g(λ)

0 (Xξ
s∧T ξ)2ds < Kξ. Therefore, we obtain

E
∫ T∧T ξ

0
e−2Rξsds = E

∫ T∧T ξ

0
exp

(
−2r − 2

∫ s

0
Xξ
udWu + 2λ

∫ s

0
ξ2
udu

)
ds

≤ e−2r+2λLξE
∫ T∧T ξ

0
e−2

∫ s
0 Xξ

udWuds = e−2r+2λLξ
∫ T

0
E
[
e
−2
∫ s

0 Xξ

u∧Tξ
dWu

]
ds

≤ e−2r+2λLξ
∫ T

0
e2Kξds = e−2r+2λLξ+2KξT <∞,

where we have used the fact that the process
∫ s

0 X
ξ
u∧T ξdWu, 0 ≤ s ≤ T < T g(λ)

is a square integrable martingale with quadratic variation at most Kξ.

This completes the proof of showing the genuine martingality of the

stochastic integral for any ξ ∈ A. We next complete the verification argument
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by deriving the candidate optimal strategy ξ∗ and showing its admissibility.

Indeed, recall from the characteristic ODEs (4.10) that

X(t)−X(0) = − 1
2λ

∫ t

0
P (s)ds = −

∫ t

0

hx(X(s), s)
2λ ds. (4.26)

The proof of Theorem 4.3.1 guarantees that for any 0 ≤ t < T g(λ) and any

X(t) = x ≥ 0, there exists a unique initial value X(0) = x0 ≥ 0, such that

X(t) in (4.26) can be alternatively obtained through the characteristic curve

x = G(x0, t) as following

X(t) = X(0) cosh t√
2λ
− g′ (X(0))√

2λ
sinh t√

2λ
. (4.27)

On the other hand, the above verification argument has shown that the (can-

didate) optimal inventory process X∗t starting from initial inventory X∗0 = X0

should satisfy, for 0 ≤ t ≤ T ≤ T ∗ ∧ T g(λ), that

X∗t −X0 = −
∫ t

0
ξ∗sds = −

∫ t

0

hx(X∗s , s)
2λ ds. (4.28)

A comparison of (4.26) and (4.28) therefore yield that the optimal inventoryX∗t
can be represented by (4.27) with a uniquely determined initial inventory X∗0 =

X(0) ≥ 0. Conversely, given any initial inventory X0 > 0, the process defined

by (4.27) with X(0) = X0 is the unique optimal inventory process under the

forward performance process U(x, r, t) = −e−r+h(x,t). Hence, we obtain the

conclusion (4.24) and in particular (4.25) after we show the admissibility of ξ∗

for generic initial function g(x) satisfying (4.7). When T g(λ) = T ∗ =∞ for a

specific function g(x) and a specific initial inventory X0 > 0, we can directly

check by (4.24) that ξ∗ = X0√
2λe
− t√

2λ and, hence, admissibility easily follows.
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For any other choices of g(x) and inventory X0 > 0, we have T ∗ ∧T g(λ) <∞.

If T ∗ < T g(λ) ≤ ∞ or T ∗ = T g(λ) < ∞, then according to (4.24), both

X∗ and ξ∗ are uniformly bounded over the finite interval [0, T ∗], and hence∫ T ∗
0 ξ∗t

2dt <∞ and E
∫ T ∗

0

(
X∗t
)2
dt <∞. On the other hand, if T ∗ > T g(λ), it

follows from (4.24) that T ∗ = ∞, and that X∗ and ξ∗ are only defined over

the finite interval [0, T g(λ)) and remain uniformly bounded. The conditions∫ T ∗
0 ξ∗t

2dt =
∫ T g(λ)

0 ξ∗t
2dt < ∞ and E

∫ T ∗
0

(
X∗t
)2
dt = E

∫ T g(λ)
0

(
X∗t
)2
dt < ∞ are

also satisfied. Finally, in all above cases, ξ∗t ≥ 0 for 0 ≤ t < T ∗ is guaranteed

by (4.24) and the construction of T g(λ) as in Theorem 4.3.1.

Remark 4.3.2. A simple scenario is when g′(0) = 0, which leads to T ∗ ≥ T g(λ).

Indeed, if g′(0) = 0, we have g′(x) ≤ ax, for all x > 0 and all a ≥ supx>0 g
′′(x).

Comparing the expressions (4.8) and (4.25), we obtain

T ∗ =
√

2λ coth(−1)
(
g′(X0)√

2λX0
∨ 1

)
≥
√

2λ coth(−1)
(

a√
2λ
∨ 1

)
≥ T g(λ).

The scenario g′(0) = 0 includes both the classical finite and infinite horizon

liquidation problems under exponential utility ([53], [52]), as well as other

possible choices for the function g(x), for example, g(x) = ax2 + 1
x2+c , with

c > 0, or g(x) = ax2 − x2e−cx, with c > 0 and properly chosen constant a,

among others. In such scenario, there would be non-zero inventory at any time

strictly before the solvability horizon of the inverse liquidation problem.

In classical finite and infinite horizon liquidation problems, the full

liquidation time is independent of the initial inventory X0. This is also obvious

from (4.25), as for quadratic function g(x) = ax2, we have g′(X0)
X0

= 2a being a
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constant. However, intuitively, the quantity to liquidate should have an effect

on the liquidation time. In the forward framework, this is true, since the full

liquidation time T ∗ depends on the normalized initial trading rate g′(X0)
X0

(see

Remark 4.3.1) and its magnitude relative to the price impact parameter λ. It

is easy to see that the higher the normalized initial trading rate, the sooner

the liquidation would be completed. This is in compliance with the widely

observed “front-loaded” characteristic of most trading strategies. From the

perspective of market liquidity conditions, (4.25) indicates that the higher the

price impact parameter λ, i.e., less liquidity available in the market, the longer

the liquidation horizon would be, and full liquidation would only be possible

if T ∗ ≤ T g(λ). In the forward framework, these qualitative properties agree

well with practical intuition.

As shown by (4.25), it is possible to have T ∗ < T g(λ) or T ∗ ≥ T g(λ) by

properly choosing g(·), X0 and λ. An interesting consequence of the scenario

T ∗ < T g(λ) is that it is not necessary to impose a singular terminal condition

to guarantee a full liquidation as in most existing works (e.g., [53], [4], [28],

etc). Indeed, we may take U(x, r, T ∗) = −e−r+h(x,T ∗) as the terminal utility

function where h(x, t) is the solution to the Hamilton-Jacobi equation (4.22)

with an appropriate initial condition g(·). This is a classical expected utility

maximization problem with the same optimal trading strategy (4.24) that fully

unwinds a range of initial inventory at T ∗. The terminal utility is non-singular

since Theorem 4.3.1 guarantees well-posedness of h(x, t) up to T g(λ) > T ∗. In

fact, the possibility of full liquidation under non-singular terminal condition
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basically results from g′(0) > 0 (see Remark 4.3.2 for otherwise). In the

next proposition, we examine the maximum initial inventory that could be

fully unwound by the associated time horizon T g(λ), given an admissible g(·)

function and a fixed market impact λ.

Another interesting observation is that specifying a function g(·) is

equivalent to specifying an initial trading rate (see Remark 4.3.1), which is

practically meaningful as a client may only know her preferred trading profile

at t = 0 when she comes to the trading agent, rather than being fully aware

of her future utility function. The agent can then come up with the consistent

trading behavior following this initial profile by solving the inverse liquidation

problem, and as a side result, we can also infer the non-singular terminal

criterion that is consistent with the client’s initial preference.

Proposition 4.3.3. Assume that the function g satisfies the assumption in

Theorem 4.3.1, and in addition, g′(0) > 0. Then, there exist 0 < X ≤ ∞

and an increasing function Z : [0, T g(λ)) → [0, X), such that, for any 0 <

T < T g(λ), and any initial inventory X0 ∈ [0, Z(T )], the full liquidation

can be achieved under the classical non-singular terminal utility U(x, r, T ) =

−e−r+h(x,T ) .

Proof. For a given admissible g(x) with g′(0) > 0, we define the function

f(X0) := X0 cosh T√
2λ
− g′(X0)√

2λ
sinh T√

2λ
,

for any X0 ≥ 0, 0 ≤ T < T g(λ). Then clearly, f(0) ≤ 0 and f(X0) is

strictly increasing in X0 due to the construction of T g(λ) in Theorem 4.3.1
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and that T g(λ) > T . Next, we show f(X0) → ∞, as X0 → ∞. Indeed,

since (4.8) implies a ≤
√

2λ coth T g(λ)√
2λ , we can find a constant d > 0 such that

a < d <
√

2λ coth T√
2λ for 0 ≤ T < T g(λ). We also know from Proposition

(A.1) that g′(x) ≤ dε(x+ ε), for all x > 0, ε > 0, and for large enough ε0 > 0,

we obtain g′(x) ≤ a(x + ε0). Now it is easy to check for x > aε0
d−a , we have

g′(x) ≤ a(x+ ε0) < dx. Hence, for X0 sufficiently large, we have

f(X0) ≥ X0

(
cosh T√

2λ
− d√

2λ
sinh T√

2λ

)
→∞

as X0 → ∞, for 0 ≤ T < T g(λ). We therefore conclude that there exists a

unique function Z(T ; g) ∈ [0,∞), such that f(Z(T ; g)) = 0 for any 0 ≤ T <

T g(λ), and any admissible g(x) with g′(0) > 0. Hence, Z(·; g) : [0, T g(λ)) →

[0,∞) is well defined, and Z(0; g) = 0. Also, due to the implicit function

theorem and the fact f ′(X0) > 0 for all 0 ≤ T < T g(λ), we know dZ(T ;g)
dT

exists.

Differentiation of the equation f(Z(T ; g)) = 0 with respect to T gives rise to

dZ(T ; g)
dT

(
cosh T√

2λ
− g′′(Z(T ; g))√

2λ
sinh T√

2λ

)

= 1√
2λ

(
g′(Z(T ; g))√

2λ
cosh T√

2λ
− Z(T ; g) sinh T√

2λ

)
.

Direct check of the terms in the two parentheses shows that they are strictly

positive for 0 ≤ T < T g(λ), giving that dZ(T ;g)
dT

> 0, for any 0 ≤ T < T g(λ),

and any admissible g(·) with g′(0) > 0. Therefore, limT↑T g(λ) Z(T ; g) exists.

Finally, we notice by (4.24) that for fixed admissible g(·) with g′(0) > 0 and

fixed λ, if the initial inventory X̂0 > 0 can be fully unwound by some time

horizon T < T g(λ) under the optimal strategy (4.24), then for any initial
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inventory 0 < X0 ≤ X̂0, its corresponding full liquidation time stays within

[0, T ].

Obviously, in Proposition 4.3.3, X = limT↑T g(λ) Z(T ; g) is the max-

imum initial inventory that could be liquidated under the pre-chosen func-

tion g(·) and the market condition λ > 0. This maximum initial inventory

can be infinite in some scenarios, indicating that any initial inventory can be

fully liquidated by 0 < T < T g(λ), under the non-singular terminal utility

U(x, r, T ) = −e−r+h(x,T ). For instance, taking g(x) = x2 + x and 0 < λ < 2,

then

Z(T ; g) = 1√
2λ coth T√

2λ − 2
,

and clearly, limT↑T g(λ) Z(T ; g) =∞. Nevertheless, our finding does not contra-

dict with the classical results under the singular terminal condition. Indeed,

in our framework, the full liquidation time T ∗ increases as the initial inven-

tory X0 increases, whereas in the classical setting, a fixed common liquidation

horizon T̂ is imposed for all initial inventory X0 > 0. If there exists such fixed

horizon T̂ > 0 in our framework, such that T ∗ ≤ T̂ < T g(λ) for all X0 > 0,

then this amounts to imposing a finite penalty to achieve full liquidation for

any inventory by a fixed time. If this could happen, then a comparison of

(4.8) and (4.25) yields infx>0
g′(x)
x

> supx>0 g
′′(x). Taking two constants C1,

C2, such that infx>0
g′(x)
x

> C1 > C2 > supx>0 g
′′(x), it is then easy to see

C1x− g′(0) < g′(x)− g′(0) < C2x,
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which leads to (C1−C2)x < g′(0), for all x > 0. This violates the assumption

that g′(0) is finite in Theorem 4.3.1 and Proposition 4.3.2.

Our results bring new insights to the classical optimal liquidation prob-

lem, in that, instead of specifying a singular terminal criterion, we can specify

an initial trading profile, and infer from that the consistent trading horizon

and the (possibly non-singular) consistent terminal criterion. The flexibility

to choose an initial trading profile is rooted in the flexibility of forward per-

formance process in terms of the initial condition, which is not possible in the

classical framework due to the backward construction.

Another interesting question related to the classical problem under the

forward formulation is as follows. Given any fixed time horizon T > 0, and any

initial inventory X0 ∈ [0, X], with X being the finite total number of shares in

the market, determine whether it is possible to choose a non-singular terminal

criterion at T , such that on one hand, full liquidation is guaranteed by T for

any X0 ∈ [0, X], and on the other, this criterion yields higher t = 0 value

compared to that under the classical singular terminal criterion. We provide

a positive answer following Proposition 4.3.3. First recall the fact that if an

initial inventory X̂0 can be fully liquidated by some time 0 < T < T g(λ)

following the forward optimal strategy (4.24), then any other initial inventory

0 < X0 ≤ X̂0 can also be fully liquidated by T following the strategy (4.24).

This observation implies that we can look for an admissible function g(·), such
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that the given pair (X,T ) satisfies both

X cosh T√
2λ
−
g′
(
X
)

√
2λ

sinh T√
2λ

= 0 (4.29)

and 0 < T < T g(λ), simultaneously. With such admissible function g(·),

according to Theorem (4.3.1) and Proposition (4.3.2), we have a unique non-

singular terminal criterion U(x, r, T ) = −e−r+h(x,T ) for all x ≥ 0 at the fixed

time T . Moreover, the corresponding optimal inventory process (4.24) achieves

full liquidation for any X0 ∈ [0, X] by T .

The solution g(·) to (4.29) is clearly not unique, and we only focus

on the quadratic case g(x) = ax2 + bx + c, with a, b > 0 and c ∈ R. The

condition b = g′(0) > 0 is necessary, as discussed in Remark 4.3.2. Notice

this case is fundamentally different from the quadratic case considered in the

previous chapter and the existing works (e.g., [53], [52]), due to the condition

g′(0) > 0. With the function g(·), the condition (4.29) reduces to 2a + b
X

=
√

2λ coth
(

T√
2λ

)
. This together with the condition 0 < T < T g(λ) gives rise to

one family of solutions among others, provided that

√
2λ < 2a <

√
2λ coth T√

2λ
,

2a+ b

X
=
√

2λ coth T√
2λ
,

and b > 0 are satisfied simultaneously. It is easy to check the above system

of equations are compatible and solutions exist. We next compare the t = 0

performance under the the non-singular terminal criterion associated to the

solution g(·) and the classical singular terminal criterion (4.4). First, for any
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initial inventory X0 ∈ [0, X], the full liquidation time under the optimal trad-

ing trajectory (4.24) is a deterministic time T ∗(X0) ≤ T < T g(λ) due to (4.25)

and the condition (4.29). The martingale property along the optimum under

the forward performance process therefore implies the t = 0 optimal value is

−e−r+g(x) = E
[
−e−R

∗
T∗(X0)+h(0,T ∗(X0))

∣∣∣∣R0 = r,X0 = x
]

for all X0 = x ∈ [0, X], where we have applied the fact X∗T ∗(X0) = 0. On

the other hand, the classical problem takes the optimal strategy (4.6) which

unwinds all initial inventory X0 ∈ [0, X] exactly at the fixed time T . Hence,

its optimal t = 0 value is

−e−r+g̃(x) = E
[
−e−R∗T

∣∣∣∣R0 = r,X0 = x
]
,

where the function g̃(x) =
√

2λ
2 x2 coth T√

2λ , according to the classical value

function (4.5). Direct computation then shows that for any solution (a, b)

that satisfies the system of equations, if

c ≤ b2

4a−
√

2λ coth
(

T√
2λ

) < 0,

then g(x) ≤ g̃(x), which yields that given the same initial revenue and inven-

tory, the t = 0 optimal value under the non-singular terminal criterion exceeds

the optimal value under the classical singular terminal criterion, while both

criteria lead to full liquidation of all initial inventory X0 ∈ [0, X] by a common

fixed time T .
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4.3.2 Multi-period problem

Following [3], once we have the result for the single inverse liquidation

problem, the multi-period forward performance process can be constructed

recursively forward in time. In the multi-period setting, we also incorporate

model revision as in the previous chapter. The success of a continuing con-

struction of the forward performance process in the previous chapter is based

on the nice property that the Hamilton-Jacobi equation (4.9) with quadratic

initial condition g(·) has a quadratic solution h(·, t), for any 0 ≤ t < T g(λ).

This self-similarity makes it possible to concatenate each single inverse liqui-

dation problem after a conditioning argument. In this section, we show that

for general initial datum g(·) that is not necessarily quadratic, the same self-

similarity property holds as well. More precisely, the unique classical solution

to the Hamilton-Jacobi equation (4.9) stays in the same class as its initial

datum, which leads to a feasible concatenation of the solution to the single

inverse liquidation problem.

Proposition 4.3.4. Assume that the function g satisfies the conditions in

Theorem 4.3.1. Then, the unique classical solution h of the Hamilton-Jacobi

equation (4.9) with nonnegative spatial derivative satisfies, for every 0 ≤ t <

T g(λ), that

inf
x>0

hx(x, t)
x

≥
b cosh

(
t√
2λ

)
−
√

2λ sinh
(

t√
2λ

)
cosh

(
t√
2λ

)
− b√

2λ sinh
(

t√
2λ

) > 0, (4.30)

and also that

sup
x>0

hxx(x, t) ≤
a cosh

(
t√
2λ

)
−
√

2λ sinh
(

t√
2λ

)
cosh

(
t√
2λ

)
− a√

2λ sinh
(

t√
2λ

) > 0. (4.31)
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Proof. In Theorem 4.3.1, we have shown that for each 0 ≤ t < T g(λ), the

mapping G(·, t) : R+ → R is well defined and strictly increasing, where

G(x0, t) = x0 cosh
(

t√
2λ

)
− g′(x0)√

2λ
sinh

(
t√
2λ

)
,

for all x0 ∈ R+. Denote the spatial inverse of G(·, t) by x0 = x0(x, t), for

each x > 0, and 0 ≤ t < T g(λ), then the mapping x0(·, t) : R+ → R+ is well

defined and continuously differentiable with ∂x0
∂x

> 0, due to the construction of

T g(λ) in Theorem 4.3.1. Differentiating both sides of the characteristic curve

equation G(x0, t) = x with respect to x, we obtain

∂x0

∂x
= 1

cosh
(

t√
2λ

)
− g′′(x0)√

2λ sinh
(

t√
2λ

) ≤ 1
cosh

(
t√
2λ

)
− a√

2λ sinh
(

t√
2λ

) .
(4.32)

Now, recall that hx(x, t) = f(x, t) in the proof of Theorem 4.3.1, with

f(x(x0, t), t) = g′(x0) cosh
(

t√
2λ

)
−
√

2λx0 sinh
(

t√
2λ

)
, (4.33)

and the same characteristic curve equation as for h(x, t)

x(x0, t) = x0 cosh
(

t√
2λ

)
− g′(x0)√

2λ
sinh

(
t√
2λ

)
,

for all x0 ∈ R+, and 0 ≤ t < T g(λ). Therefore, for all x > 0, and 0 ≤ t <

T g(λ), we have x0 > 0 and

hx(x, t)
x

=
g′(x0) cosh

(
t√
2λ

)
−
√

2λx0 sinh
(

t√
2λ

)
x

= x0

x

(
g′(x0)
x0

cosh
(

t√
2λ

)
−
√

2λ sinh
(

t√
2λ

))
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≥
b cosh

(
t√
2λ

)
−
√

2λ sinh
(

t√
2λ

)
cosh

(
t√
2λ

)
− b√

2λ sinh
(

t√
2λ

) > 0, (4.34)

following from g′(x0) ≥ bx0, for all x0 ∈ R+, and that

0 < x

x0
= cosh

(
t√
2λ

)
− g′(x0)
x0
√

2λ
sinh

(
t√
2λ

)
≤ cosh

(
t√
2λ

)
− b√

2λ
sinh

(
t√
2λ

)

from the characteristic curve equation. The numerator

b cosh
(

t√
2λ

)
−
√

2λ sinh
(

t√
2λ

)
> 0

is due to the construction of T g(λ) (cf. (4.8)). The denominator

cosh
(

t√
2λ

)
− b√

2λ
sinh

(
t√
2λ

)
> 0

follows from the fact a ≥ b > 0 and, hence,

cosh
(

t√
2λ

)
− b√

2λ
sinh

(
t√
2λ

)
≥ cosh

(
t√
2λ

)
− a√

2λ
sinh

(
t√
2λ

)
> 0,

again due to the construction of T g(λ). The proof for (4.30) is therefore

complete. We next prove (4.31). Indeed, differentiating both sides of equation

(4.33) with respect to x, we obtain

hxx(x, t) = ∂x0

∂x

(
g′′(x0) cosh

(
t√
2λ

)
−
√

2λ sinh
(

t√
2λ

))

≤
a cosh

(
t√
2λ

)
−
√

2λ sinh
(

t√
2λ

)
cosh

(
t√
2λ

)
− a√

2λ sinh
(

t√
2λ

) > 0,
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following from g′′(x0) ≤ a, for all x0 ∈ R+, and the inequality (4.32). The

denominator

cosh
(

t√
2λ

)
− a√

2λ
sinh

(
t√
2λ

)
> 0

is due to the construction of T g(λ), while the numerator

a cosh
(

t√
2λ

)
−
√

2λ sinh
(

t√
2λ

)
> 0

follows from the fact a ≥ b > 0 and, hence,

a cosh
(

t√
2λ

)
−
√

2λ sinh
(

t√
2λ

)
≥ b cosh

(
t√
2λ

)
−
√

2λ sinh
(

t√
2λ

)
> 0,

again due to the construction of T g(λ).

4.3.2.1 General result

In this section, we provide the result for constructing the general for-

ward performance process in a model switching scenario. The model revision

is the same as in the previous chapter, but we allow more general initial perfor-

mance datum for the forward process. The argument of Theorem 4.3.5 is based

on the desirable self-similarity property of the solution to the Hamilton-Jacobi

equation discussed in Proposition 4.3.4.

Theorem 4.3.5. Assume that U(x, r, 0) = −e−r+g(x), with g satisfying the

assumption in Theorem 4.3.1. Then, for any predictable time τn ∈ Fτn−1,

n ≥ 1, such that τ0 = 0, and τn−1 < τn < τn−1 + T g(λ1, · · · , λn), with

T g(λ1, · · · , λn) :=
√

2λn min
 tanh(−1)

(
bn−1(λ1, · · · , λn−1)√

2λn
∧ 1

)
,
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coth(−1)
(
an−1(λ1, · · · , λn−1)√

2λn
∨ 1

) ∈ Fτn−1 , (4.35)

the process

U(x, r, τn) = −e−r+h(n)(x,τn) ∈ Fτn−1 , (4.36)

is the unique predictable forward performance process in the separable form,

where the random function h(n) is the unique classical solution with nonnegative

spatial derivative to the Hamilton-Jacobi equation with random coefficient λn ∈

Fτn−1, n ≥ 1,

h
(n)
t −

1
4λn

h(n)
x

2 + 1
2x

2 = 0, x > 0, τn−1 < t < τn−1 +T g(λ1, · · · , λn), (4.37)

with initial condition h(n)(x, τn−1) = h(n−1)(x, τn−1), for n ≥ 1, and h(0)(x, 0) =

g(x). For n ≥ 2, the positive random variables an−1, bn−1 in (4.35) are Fτn−2-

measurable, and satisfy

an−1(λ1, · · · , λn−1) ≥ sup
x>0

h(n−1)
xx (x, τn−1),

and

bn−1(λ1, · · · , λn−1) ≤ inf
x>0

h(n−1)
x (x, τn−1)

x
,

while a0 = a, and b0 = b, with a, b as in (4.7).

Proof. We prove by induction. Clearly, for n = 1, we have U(x, r, 0) =

−e−r+g(x), and Theorem 4.3.1 together with the verification argument of The-

orem 4.3.2 guarantee the existence and uniqueness of a forward performance

process in the separable form up to the deterministic time T g(λ1) given by

(4.8). Assume now the deterministic time 0 < τ1 < T g(λ1) is chosen at τ0, then
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obviously U(x, r, τ1) = −e−r+h(1)(x,τ1), with h(1)(x, t) being the unique classi-

cal solution that has nonnegative spatial derivative to the Hamilton-Jacobi

equation (4.37) with deterministic coefficient λ1 ∈ F0. The forward optimal

inventory process X∗ is given by (4.24), and we assume X∗τ1 > 0 to make

the subsequent continuation still interesting (otherwise, the forward optimal

liquidation stops at the deterministic time T ∗(X0) ≤ T g(λ1) by (4.25)).

Now assume the conclusion of the proposition is true for k = 1, 2, . . . , n,

with n ≥ 1, i.e., assume we have determined τn ∈ Fτn−1 and obtained the

forward performance criterion

U(x, r, τn) = −e−r+h(n)(x,τn)

at τn, and X∗τn > 0. Then at τn, according to the definition of the predictable

forward performance process in [3], the goal is to seek a predictable time τn+1 ∈

Fτn and a predictable utility function U(x, r, τn+1) ∈ Fτn , for (x, r) ∈ R+×R,

such that

U
(
X∗τn , R

∗
τn , τn

)
= esssup

ξ
E
[
U
(
Xξ
τn+1 , R

ξ
τn+1 , τn+1

)∣∣∣∣Fτn], a.s.. (4.38)

where R∗τn ∈ R, X∗τn > 0 are the optimal revenue and optimal inventory

at time τn, respectively, due to the previous forward optimal trading strate-

gies. Suggested by the scaling property of the criterion U(x, r, τn), we look for

U(x, r, τn+1) with a similar separable form and rewrite the above definition as

−e−R∗τn+h(n)(X∗τn ,τn)

= esssup
ξ

E
[
− e−R

ξ
τn+1 +h(n+1)

(
Xξ
τn+1 ,τn+1;ω

)∣∣∣∣Fτn], a.s.
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with some Fτn-measurable function h(n+1)(x, t;ω). By martingality and Itô’s

lemma, conditional on Fτn , the random function h(n+1)(x, t;ω) solves the fol-

lowing Hamilton-Jacobi equation almost surely
h

(n+1)
t − 1

4λn+1
(h(n+1)

x )2 + 1
2x

2 = 0, x > 0, τn < t < τn+1,

h(n+1)(x, τn) = h(n)(x, τn), x > 0.
(4.39)

By Proposition 4.3.4, the initial condition h(n)(·, τn) satisfies the desired prop-

erty to be an admissible initial condition and, hence, a repeated application

of Theorem 4.3.1 is possible, conditional on Fτn . That is, for almost ev-

ery ω ∈ Ω, a well defined unique solution h(n+1)(x, t;ω) exists for (x, t) ∈

R+ × [τn, τn+1], provided τn < τn+1 < τn + T g(λ1, . . . , λn+1). The solvability

horizon T g(λ1, . . . , λn+1) is determined by the bounds on the first and second

order derivatives of the admissible initial condition h(n)(·, τn), following Theo-

rem 4.3.1. Moreover, conditional on Fτn , the verification argument in Theorem

4.3.2 shows the optimality condition (4.38) for any sub-horizon [τn, τn+1], such

that τn+1 ∈ Fτn and τn < τn+1 < τn + T g(λ1, · · · , λn+1).

4.3.3 Continuous time problem

Theorem 4.3.5 presents the result for general multi-period forward opti-

mal liquidation problem along with discrete time model revision. The update

of the criterion and the update of the model parameter λ both take place at

the same frequency in discrete time. A natural question to ask is what the

limit would be as the updating frequency goes to infinity. It is easier to see

that, as model revision is conducted more and more often, we could observe
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a path of the realized market parameter process (λt)t≥0, instead of a sequence

of realized values of the random variables {λn}n≥1. The limit of the forward

performance process (4.36) in discrete time, however, is less clear, since we

need first to show the limit indeed exists before we can identify it with any

known process.

In the previous chapter, we have studied this problem in detail under

quadratic initial condition g(x) = kx2, k > 0, and identified the limit as the

continuous time zero volatility forward performance process in the optimal

liquidation context. The continuous time forward theory has been developed

since the initiation of the study on forward performance processes, with the

zero volatility case extensively analyzed in the work [45], among others. This

family of forward performance processes is more convenient to tackle, com-

pared to the general non-zero volatility forward processes, although it still

has the challenging ill-posedness issue for the the associated Hamilton-Jacobi-

Bellman equations. In the previous chapter, we have shown that in addition

to its tractability, the zero volatility forward process is the the limit of a se-

quence of well defined forward performance process in discrete time. Such

result brings new insight into the zero volatility forward performance process

family, beyond its sound mathematical properties.

In this section, we present a more general convergence argument under

initial condition g(·) that is not necessarily quadratic. The success of tje

similar argument in the previous chapter is partly because we have the explicit

solution for the discrete time forward performance process under quadratic
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initial condition. For general admissible g(·), such explicit representation is

no longer available. Nevertheless, based on the semi-explicit expression (4.13)

and the characteristic curve equation (4.14), we can obtain the limit that still

coincides with the zero volatility forward performance process under general

admissible g(·). For complete discussion, we recall from the previous chapter

that the zero volatility forward process in the optimal liquidation context

satisfies the equation

dU(x, r, t) = −
(
Ux(x, r, t)2

4λtUr(x, r, t)
+ 1

2Urr(x, r, t)σ
2
t x

2
)
dt, (4.40)

with initial condition U(x, r, 0) = −e−r+g(x), for admissible g(·). Here, the

market parameter processes λt and σt are assumed to be general progres-

sively measurable stochastic processes. In some very special cases, including

constant λ and σ and the coordinated variation scenario considered in the

previous chapter, the equation (4.40) has an explicit solution under quadratic

initial condition g(·), and an existence and uniqueness result under other g(·)

that satisfies the assumption in Theorem 4.3.1. For more general parame-

ter processes, the existence and uniqueness of solution to (4.40) is not clear.

Hence, we only present the heuristic argument and consider the solutions of

the separable form U(x, r, t) = −e−r+h(x,t). Direct computation yields the

Hamilton-Jacobi equation with random coefficient (taking σt = 1, t ≥ 0 for

simplicity)

ht(x, t)−
1

4λt
h2
x(x, t) + 1

2x
2 = 0, a.s.

with initial condition h(x, 0) = g(x).
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We now turn to the discrete time forward performance process defined

as follows. For each ω ∈ Ω, and each admissible initial condition g(·), define

the model revision times {τNn }n≥1 and the the functions {h(n,N)}n≥1 for every

integer N ≥ 1 as

• τNn = τNn−1 + T g(λ1,··· ,λn)∧1
N+1 , for all n ≥ 1, with T g(λ1, · · · , λn) given by

(4.35); set also τN0 = 0 for all N ;

• h(n,N)(x, t;ω) is the unique classical solution with nonnegative spatial

derivative to the Hamilton-Jacobi equation

h
(n,N)
t − 1

4λn(ω)(h(n,N)
x )2 + 1

2x
2 = 0, x > 0, τNn−1 < t < τNn , (4.41)

with initial condition h(n,N)(x, τNn−1) = h(n−1,N)(x, τNn−1), for n ≥ 1, and

h(0,N)(x, 0) = g(x) for all N .

Notice that the above recursive construction is well defined for all integer n ≥ 1

and N ≥ 1, due to the self-similarity property of the solution to the Hamilton-

Jacobi equation under admissible g(·) (cf. Proposition 4.3.4). The random

variable λn, n ≥ 1, for the n-th period is the price impact parameter given by

λn = λτNn−1
∈ FτNn−1

and, hence, the realization λn(ω) is known at the beginning

of each interval [τNn−1, τ
N
n ]. Finally, for each N ≥ 1, we denote by hN the

continuous mapping from R+× [0, TN) to R, obtained from the concatenation

of the functions {h(n,N)}n≥0 across each τn, n ≥ 1. Here, TN := limn→∞ τ
N
n is

clearly well defined for every N ≥ 1. We then have the following convergence

result.
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Theorem 4.3.6. Assume that the function g satisfies the assumption in The-

orem 4.3.1, and λt, t ≥ 0, is continuous with inft≥0 λt > 0, a.s. Then, for

any subsequence of {hN}N≥1, there exist a convergent subsequence {h̃N}N≥1,

a T ∗ > 0, and a continuous function h̃ : R+ × [0, T ∗) 7→ R, such that for any

compact subset D ⊂ R+ and any 0 < T < T ∗,

lim
N→∞

max
(x,t)∈D×[0,T ]

∣∣∣h̃N(x, t)− h̃(x, t)
∣∣∣ = 0, a.s.. (4.42)

Furthermore, if for any convergent subsequence {h̃N}N≥1, it holds that h̃Nx →

h̃x and h̃Nt → h̃t uniformly on D × [0, T ], as N → ∞. Then, convergence

in (4.42) also holds for the original sequence {hN}N≥1, and h̃ and T ∗ are

determined by

h̃t(x, t)−
1

4λt
h̃2
x(x, t) + 1

2x
2 = 0, a.s. (4.43)

with initial condition h̃(x, 0) = g(x), and

T ∗ = sup{t > 0 : The Hamilton-jacobi equation (4.43) has a unique

classical solution with nonnegative spatial derivative for s ∈ [0, t]}.

Proof. We provide the proof for each fixed ω ∈ Ω that does not belong to the

null set. First, let C1 > |g(x)| and C1 > |g′(x)| for all x ∈ D ⊂ R+. Denote

τN(ω) := inf
n≥1
{
∣∣∣h(n,N)(x, τNn )

∣∣∣ > C1 or
∣∣∣h(n,N)
x (x, τNn )

∣∣∣ > C1 for some x ∈ D},

with the convention inf ∅ =∞, and the truncated sequence

ĥ(n,N)(x, τNn ) := h(n,N)(x, τNn∧τN )
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for all N ≥ 1. Now for 1 ≤ n ≤ τN , we have that for any x, y ∈ D,

ĥ(n,N)(x, τNn )− ĥ(n−1,N)(y, τNn−1) = ĥ(n,N)(x, τNn )− ĥ(n,N)(y, τNn−1)

= ĥ
(n,N)
t · (τNn − τNn−1) + ĥ(n,N)

x · (x− y),

with the first equality following from the multi-period concatenation (cf. The-

orem 4.3.5), and the second one due to the Mean Value Theorem. Since the

function h(n,N)(x, t) satisfies the Hamilton-Jacobi equation (4.41), we have that

for 1 ≤ n ≤ τN , the temporal derivative ĥ(n,N)
t is also uniformly bounded, due

to the uniform boundedness of the spatial derivative ĥ(n,N)
x and the compact-

ness of D. Hence, the family of continuous functions {ĥN}N≥1 is uniformly

bounded and equicontinuous. Denote T 1(ω) := lim infN→∞ τN(ω) and, since

{ĥN}N≥1 is uniformly Lipschitz in (x, t), it is direct to see T 1 > 0. Finally, by

the Arcelà-Ascoli Theorem, we can conclude, up to a subsequnce, ĥN converges

uniformly on D × [0, T ] for any 0 < T < T 1, as N →∞.

Now consider a converging subsequence over some compact domain

D × [0, T ] and denote its limit as h̃. For any t ∈ (0, T ], denote j(N) =

max{n ≥ 1 : τNn−1 < t}. Then clearly, as N →∞, λj(N) → λt. Next, by (4.13),

we have over the interval [τNj(N)−1, τ
N
j(N)] that,

ĥ(j(N),N)(x, τNj(N)) = ĥ(j(N),N)(x0, τ
N
j(N)−1)

−

√
2λj(N)

2

x2
0

2 +
ĥ(j(N),N)2

x (x0, τ
N
j(N)−1)

4λj(N)

 sinh
2(τNj(N) − τNj(N)−1)√

2λj(N)



+
x0ĥ

(j(N),N)
x (x0, τ

N
j(N)−1)

2

 cosh
2(τNj(N) − τNj(N)−1)√

2λj(N)

− 1
, (4.44)

204



with x0 and x being connected through the characteristic equation (4.14), i.e.,

x0 cosh
(τNj(N) − τNj(N)−1)√

2λj(N)

− ĥ(j(N),N)
x (x0, τ

N
j(N)−1)√

2λj(N)
sinh

(τNj(N) − τNj(N)−1)√
2λj(N)

 = x.

(4.45)

Notice that

ĥ(j(N),N)(x, τNj(N))− ĥ(j(N),N)(x0, τ
N
j(N)−1)

=
[
ĥ(j(N),N)(x, τNj(N))− ĥ(j(N),N)(x0, τ

N
j(N))

]
+
[
ĥ(j(N),N)(x0, τ

N
j(N))− ĥ(j(N),N)(x0, τ

N
j(N)−1)

]
.

Dividing both sides of (4.44) by τNj(N)− τNj(N)−1 and letting N →∞, we obtain

that at t ∈ (0, T ], the limit function h̃ satisfies, due to the uniform convergence

of {ĥN}N≥1, and the assumption h̃Nx → h̃x and h̃Nt → h̃t uniformly,

lim
N→∞

ĥ(j(N),N)
x

x− x0

τNj(N) − τNj(N)−1

+ h̃t(x, t) +
(
x2

2 + h̃2
x(x, t)
4λt

)
= 0,

where we have used that x0 → x, as τNj(N) − τNj(N)−1 → 0. Moreover, we also

have

lim
N→∞

x− x0

τNj(N) − τNj(N)−1
= − h̃x(x, t)2λt

,

after an application of the characteristic curve equation (4.45), and the fact

that x0 → x, as τNj(N) − τNj(N)−1 → 0. Combining the above results, we con-

clude that, for any converging subsequence {ĥ}N≥1, the limit is a continuously

differentiable function h̃ that satisfies (4.43) with nonnegative spatial deriva-

tive. Moreover, if the Hamilton-Jacobi equation (4.43) has a unique solution,

then the original family of functions {ĥ}N≥1 (not just subsequence) converge

uniformly on any compacts to the solution of (4.43).
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More precisely, consider the above construction for an unbounded in-

creasing sequence Cm > C1 and define analogously the increasing times {Tm}m≥1

and the limit T ∗ = limm T
m. Then the above argument still holds for each

pair (Cm, Tm), and the limit function h̃ has the property that h̃(x, Tm) = Cm

or h̃x(x, Tm) = Cm, if Tm is finite. If equation (4.43) has a unique classical

solution with nonnegative spatial derivative up to some time T̂ > T ∗, then it

has to coincide with the limit function h̃ over every [0, Tm], leading to h̃(x, Tm)

or h̃x(x, Tm) exceeding Cm. This is a contradiction since Cm → ∞ as m in-

creases, while a classical solution obviously has uniformly bounded function

values and spatial derivatives on the compact domain D × [0, T ∗]. It is also

obvious that T̂ < T ∗ cannot happen, due to the assumption that a unique

classical solution with nonnegative spatial derivative exists up to T̂ , and the

fact that the limit function h̃ is such a classical solution to (4.43) up to T ∗.

Hence, we conclude T ∗ = T̂ .
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Chapter 5

Relative forward indifference valuation of

real-time incoming projects

5.1 Introduction

Options pricing/projects evaluation, as one of the core areas of math-

ematical finance, is well understood in complete market. When the market is

incomplete, there is no unique arbitrage free price as it is no longer possible

to fully eliminate the risk through replication. One approach to price options

in incomplete market, including real options, is to resort to expected utility

maximization methodology, which is commonly known as the utility indiffer-

ence valuation approach (see, e.g., [10], [50], [30]). The investor would accept

a price today such that she is indifferent to proceed optimally under the cur-

rent investment opportunity with and without a liability at the terminal time

t = T . This price is known as indifferent price of the option.

The classical backward indifference valuation methodology can apply

to the evaluation of a single real option, a portfolio of options, or a single

option relative to an existing portfolio of options, the latter of which is known
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as relative indifference valuation (see, e.g., [5], [56] and [57]). Nonetheless, as

other utility-based optimal control problems, the backward reasoning is sub-

ject to substantial commitment at t = 0, which restricts the class of projects

that can be priced. One of such restrictions is that a model that describes the

underlying market for employing (partial) hedging strategies needs to be spec-

ified to a full extent at t = 0, and fixed thereafter. In contrast, information

in reality unfolds along real-time, as the underlying market may experience

unanticipated favorable or unfavorable conditions for hedging purpose after

t = 0. Moreover, for real options pricing or projects evaluation, another com-

mitment inherent to the classical approach arises, which we refer to as projects

commitment. Since the classical optimization/valuation approach solves the

problem backwards in time, the investor has to know at t = 0 the complete

profile of all the incoming projects with their characteristics (e.g., initiation,

expiry and payoff functional, etc), and no new projects can be included once

the valuation and hedging procedures start at t = 0 in order to maintain

time-consistency and exclude pricing discrepancy. Again, this may not be re-

alistic; instead, project investors in practice decide on the risk exposure of a

new project typically based on the performance of existing ones rather than

to make an inflexible overall evaluation ahead of time. For instance, a drug

company may decide on the risk of developing another new drug only at its

initiation, based on the progress of the concurrent R&D of the drugs already

under development, or on the market conditions at that future time. All of

such information would be generally hard to know or model at the initial time
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t = 0.

In the current work, we study the indifference valuation of real options

in real-time within the forward performance process framework. The real-time

feature is in direct contrast with both the model commitment and the projects

commitment due to the backward reasoning under the classical stochastic opti-

mization methodology. The forward approach, on the other hand, can address

the unanticipated real-time changes in both the market investment opportu-

nity and the projects profile. In particular, we first consider the evaluation of

a single real option, but with unanticipated model change before the expiry of

the option. Under classical framework, such real-time model change could lead

to pricing discrepancy under the fixed terminal evaluation criterion, as well as

time-inconsistency for the underlying stochastic control problems. We develop

the forward indifference valuation scheme to overcome the model commitment

issue of the classical approach, and demonstrate that both pricing discrepancy

and time-inconsistency would not occur if the evaluation criterion is adaptive

enough to capture the unanticipated model switch along real-time.

We then examine the relative indifference valuation problem of two real

options by adopting the forward approach. To demonstrate the flexibility of

the forward approach and the absence of the projects commitment, we work

under less restrictive assumption; that is, at t = 0, we don’t assume any knowl-

edge of the full characteristics of the second option, except its initiation time.

The expiry and the payoff functional of the second option are only observable

at the initiation time of this option. In other words, different from what is
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typically assumed under the classical backward approach, the investor only

prices the first option at t = 0, without knowing the full profile of the second

option. Such relaxed assumption accounts for real world problems where mul-

tiple phases of a long-term project (e.g., R&D project, drug development, oil

exploration, etc.) can be regarded as separate real options, while the risk expo-

sures of the options in the remote future are typically difficult to be accurately

modeled/predicted at t = 0.

Due to projects commitment discussed earlier, time-inconsistency would

arise if the terminal valuation criterion is not revised after the arrival of the

second option. We hence adopt the forward performance approach to seek con-

sistent terminal criterion under which the original valuation of the first option

would remain valid even after the arrival of the second option, i.e., to exclude

intertemporal pricing discrepancy due to unanticipated incoming new options.

The revised criterion at t = T would typically depend on the characteristics

of the second option. In this work, we consider two families of forward per-

formance processes, the predictable family and the adaptive family, and also

compute their respective relative indifference prices of the first option given

the risk exposure of the second. It is interesting to notice that although the

two types of forward criteria have different measurability, they give rise to the

same relative indifference price that is consistent with the initially settled price

for the first option. Such robustness of relative indifference valuation together

with the greater flexibility to incorporate unanticipated model/projects profile

changes along real-time make the forward performance process approach more
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appealing in real world applications.

We then turn to the valuation of the second option once it is introduced

with its full profile available at the initiation time. In the classical framework

where the full profile of both options is available at t = 0, the relative indif-

ference valuation of the second option given the first is essentially the same as

that of the first option given the second. However, in the current asynchronous

information arrival setting, the relative indifference valuation of the new op-

tion requires both model extension and criterion extension, beyond the expiry

of the first option. We extend the (relative) valuation criterion following the

forward performance process theory and discuss the additivity property of the

resulting relative indifference prices, the residual optimal wealth processes and

the residual risk processes.

5.2 Single real option with model revision

In this section, we consider the indifference valuation of a single project/real

option with model revision. As we have mentioned, since the real-time model

revision is not anticipated at t = 0, following the classical backward indif-

ference valuation methodology would result in time-inconsistency and pricing

discrepancy (see also the discussion in [44]). We therefore consider indiffer-

ence valuation under the forward performance approach, aiming at achieving

intertemporal consistency along with real-time model revision. Here, we con-

sider the two-period model revision extension of the dynamic market environ-
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ment proposed in [43]. Precisely, the investment universe consists of a riskless

asset and two risky assets. We assume for simplicity that the riskless asset is

given by a zero interest Bond Bt = 1, for all t ≥ 0. The first risky asset is a

stock that can be traded, whose price follows the log-normal diffusion prior to

the model revision time t = τ1

dSs = µ1Ssds+ σ1SsdW
1
s ,

with St = s > 0, and 0 ≤ t ≤ s ≤ τ1. The second asset is a nontraded asset

whose value is modeled by the diffusion process

dYs = b(Ys, s)ds+ a(Ys, s)dWs,

with Yt = y ∈ R, and 0 ≤ t ≤ s ≤ T. The two Brownian motions W 1,W are

defined on the filtered probability space (Ω,F ,P), with the filtration Ft, 0 ≤

t ≤ T , generated by (W 1,W ) and satisfying the usual conditions. We suppose

the correlation between W 1,W is ρ ∈ (−1, 1), and that the deterministic

functions b(·, ·), a(·, ·) are such that the stochastic differential equation for Y

has a unique strong solution.

The model revision time 0 < τ1 < T is a known deterministic time at

which the investor would re-estimate the model parameters µ1 and σ1 > 0,

probably due to scheduled market information release or self-planned model

reassessment procedure. During (τ1, T ], the investor will change her view on

the market condition and hold onto µ2, σ2 ∈ Fτ1 , with σ2 > 0, a.s., under P.

We denote the respective Sharpe ratios as λ1 := µ1
σ1
∈ F0 and λ2 := µ2

σ2
∈ Fτ1 .
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A European type real option is initiated at t = 0 and expires at t = T , with

payoff being G(YT ) for a bounded function G(·).

As in the classical framework, the indifference valuation mechanism

involves two competing investors, with one being only investing optimally in

the stock market, and the other being holding the real option and proceeding

optimally in the market. We refer to the first investor as the plain investor

and the second the writer of the option (in the case she pays G(YT ) at expiry).

The plain investor maintains the following forward performance process by, on

one hand, optimally investing in the stock market, and on the other, taking

into account the unanticipated model change in real-time,

U(x, t) = −e−γx+ 1
2

∫ t
0 λ

2
sds (5.1)

with λs = λ1 for 0 ≤ s ≤ τ1 and λs = λ2 for τ1 < s ≤ T .

The writer, also starting with initial utility U0(x) = −e−γx, maintains

optimality in the stock market but with an extra liability G(YT ) at the terminal

time1. During the first period [0, τ1], she has the same correct view about the

market as the plain investor, i.e., the Sharpe ratio is λ1. To proceed optimally

from U0(x) = −e−γx, she aims to find a consistent indirect utility V W,λ1(x, τ1)

1Here, both the plain investor and the writer start with an initial utility U0(x) = −e−γx,

γ > 0, instead of a terminal utility. However, we mention that both of them can choose

the original terminal utility UT (x) = −e−γx and start with U0(x) = V (x, 0;λ1), the value

function at t = 0 with the best estimated model parameter λ1 up to the initiation time of

the option. The rest of the argument would still follow.
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such that

− e−γ(x−h0(y)) = supE
[
V W,λ1(Xτ1 , τ1)|X0 = x, Y0 = y

]
, (5.2)

where the expectation is taken under the [0, τ1] marginal of the true underlying

measure P, and we note that such marginal is known to the writer at t = 0.

The process X denotes the wealth process over the first period [0, τ1], and is

given by

dXs = µπsds+ σπsdW
1
s ,

with Xt = x ∈ R, and 0 ≤ t ≤ s ≤ τ1. The quantity h0(y) is the indifference

price of the real option at t = 0. In general, the plain investor and the

writer can agree on an initial price h0(y) ≥ 0 and then both proceed optimally

forward in time starting from a common initial utility U0(x) = −e−γx. A more

reasonable choice for h0(y) is the classical indifference price at t = 0 when

both investors view the market over the whole horizon [0, T ] with λ1 ∈ F0 and

take the common terminal utility UT (x) = −e−γx. Then after t = τ1, both

investors take into account the new realized market condition λ2 ∈ Fτ1 and

seek to determine their respective revised terminal utility that is consistent

with their individual optimal investment behavior during [0, τ1]. We follow

this reasoning and choose

h0(y) = 1
γ(1− ρ2) lnEQ̂

[
eγ(1−ρ2)G(YT )|Y0 = y

]
, (5.3)

whit Q̂ being the minimal relative entropy martingale measure with respect

to the hypothetical measure P̂ that models the market with λ1 being ap-

plied for the whole horizon (see Theorem 2 in [43]). The remaining step is to
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find V W,λ1(x, τ1) such that (5.2) is true. Notice that the procedure involves

solving an inverse problem, as in equation (5.2), the initial value function is

given while the goal is to find the (indirect) utility function V W,λ1(x, τ1). The

induced Hamilton-Jacobi-Bellman (HJB) equation is therefore ill-posed and

existence and uniqueness of solution is typically lacking. To find one solution

V W,λ1(x, τ1) in (5.2), we consider the distortion transformation as in [43]

V W,λ1(x, t) = −e−γxv(Yt, t)
1

1−ρ2 ,

for all 0 ≤ t ≤ τ1. Direct computation then yields that the deterministic

function v(y, t) solves the ill-posed linear parabolic partial differential equation

(PDE)

vt + 1
2a

2(y, t)vyy + [b(y, t)− ρλ1a(y, t)]vy = 1
2(1− ρ2)λ2

1v, (5.4)

for 0 ≤ t ≤ τ1, with initial condition v(y, 0) = er(1−ρ
2)h0(y). Although the ill-

posedness in general leads to extra difficulty in terms of obtaining existence and

uniqueness results, we can actually determine one positive classical solution to

(5.4), under the proper choice (5.3). Indeed, consider the hypothetical problem

V̂ (x, y, t) := supEP̂

[
UW,λ1(XT −G(YT ), T )|Xt = x, Yt = y

]
,

for 0 ≤ t ≤ T , where the conditional expectation is taken under the hypothet-

ical measure P̂ over [0, T ], and UW,λ1(x, T ) = −e−γx+T
2 λ

2
1 . Then by the same

distortion transformation

V̂ (x, y, t) = −e−γxv̂(y, t)
1

1−ρ2 ,
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for 0 ≤ t ≤ T , one can deduce a well-posed problem for function v̂(y, t),

i.e., v̂(y, t) solves the linear PDE (5.4) for 0 ≤ t ≤ T , with terminal condition

v̂(y, T ) = e(1−ρ2)(γG(y)+ 1
2λ

2
1T ). Classical rigorous result regarding this well-posed

problem the applies (see [60]) and a unique positive solution is obtained by

Feynman-Kac representation

v̂(y, t) = EQ̂

[
eγ(1−ρ2)(G(YT )+ 1

2λ
2
1t)|Yt = y

]
. (5.5)

It is then easy to see that v̂(y, 0) = er(1−ρ
2)h0(y) = v(y, 0), for all y ∈ R. We

therefore can take V W,λ1(x, τ1) = −e−γxv̂(Yτ1 , τ1). Also, it follows that the

indifference price over the first period [0, τ1] under V W,λ1(x, τ1) is

ht(y) = 1
γ(1− ρ2) lnEQ̂

[
eγ(1−ρ2)G(YT )|Yt = y

]
. (5.6)

As we can see, the indifference price under the forward performance process

approach before the market model revision coincides with its classical coun-

terpart, as a result of the particular choice of h0(y) in (5.3).

At the reassessment time τ1 ∈ F0, both investors change their views

on the market and realize the risk-premium has changed to λ2 ∈ Fτ1 . Up

to t = τ1, the plain investor has preserved her performance up to U(x, τ1) =

−e−γx+λ2
1

2 τ1 , while the writer, holding the real option and proceeding opti-

mally, has achieved V W,λ1(x, τ1). The goal for both investors is to choose

their respective terminal utilities, taking into account that λ2 ∈ Fτ1 , to be

consistent with their individual optimality they have preserved so far. As we

already know, the consistent terminal utility for the plain investor is given
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by (5.1) U(x, T ) = −e−γx+λ2
1

2 τ1+λ2
2

2 (T−τ1). The remaining step is to determine

UW,λ2(x, T ), such that

V W,λ1(x, τ1) = esssupE
[
UW,λ2(XT −G(YT ), T )

∣∣∣Fτ1 , Xτ1 = x
]
, a.s.. (5.7)

Notice that the conditional expectation is taken under the (τ1, T ] marginal

of the underlying physical measure P, conditional on Fτ1 , which is known to

the writer when she solves the problem (5.7) at t = τ1. To find one solution

UW,λ2(x, T ) to the inverse problem (5.7), similar as before, we define the value

function for the remaining time period (τ1, T ] as

V (x, y, t;ω) = esssupE
[
UW,λ2(XT −G(YT ), T )

∣∣∣Fτ1 , Xt = x, Yt = y
]
, a.s..

(5.8)

By the same distortion transformation V (x, y, t;ω) = −e−γxṽ(y, t;ω)
1

1−ρ2 , we

obtain that ṽ(y, t;ω) solves almost surely the ill-posed linear parabolic PDE

ṽ + 1
2a

2(y, t)ṽyy + (b(y, t)− ρλ2a(y, t)) ṽy = 1
2(1− ρ2)λ2

2ṽ (5.9)

with initial condition ṽ(y, τ1) = EQ̂[er(1−ρ2)G(YT )+ 1
2 (1−ρ2)λ2

1τ1 |Yτ1 = y]. The ini-

tial condition follows from that at t = τ1, V W,λ1(x, τ1) = V (x, Yτ1 , τ1), a.s.,

according to requirement for consistency (5.7). Again, it is not clear whether a

positive solution exists for the ill-posed equation (5.9). However, following the

same argument as before, we study a well-posed problem which produces the

initial condition ṽ(y, τ1). To be specific, suppose UW,λ2(x, T ) = −e−γx+F (τ1,T ;ω)

with F (τ1, T ;ω) ∈ Fτ1 . Then ṽ(y, t) solves the random linear PDE (5.9) over
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(τ1, T ], with a terminal condition ṽ(y, T ) = e(1−ρ2)(γG(y)+F (τ1,T )) ∈ Fτ1 . Condi-

tional on Fτ1 , by the Feynman-Kac representation, we derive for τ1 < t ≤ T ,

ṽ(y, t) = EQ̃

[
e(1−ρ2)(γG(YT )+F (τ1,T ))− 1

2 (1−ρ2)λ2
2(T−t)|Yt = y

]
,

where conditional on Fτ1 , the measure Q̃ on FT is defined by

dQ̃
dP

∣∣∣∣
FT

= e−λ2(W 1
T−W

1
τ1 )− 1

2λ
2
2(T−τ1) (5.10)

and W̃s := Ws −Wτ1 + λ2ρ(s − τ1), τ1 ≤ s ≤ T , is a standard Brownian mo-

tion under Q̃. Finally, the consistency condition (5.7) leads to V W,λ1(x, τ1) =

V (x, Yτ1 , τ1), which implies ṽ(y, τ1) = v(y, τ1). Under the predictable assump-

tion that F (τ1, T ) ∈ Fτ1 , we derive that

F (τ1, T ) = 1
2
(
λ2

1τ1 + λ2
2(T − τ1)

)
+ 1

1− ρ2 ln
EQ̂[eγ(1−ρ2)G(YT )|Yτ1 ]
EQ̃[eγ(1−ρ2)G(YT )|Yτ1 ] ∈ Fτ1 .

Hence, the consistent terminal utility for the writer would be

UW,λ2(x, T ) = − exp
(
− γx+ 1

2(λ2
1τ1 + λ2

2(T − τ1))

+ 1
1− ρ2 ln

EQ̂[eγ(1−ρ2)G(YT )|Yτ1 ]
EQ̃[eγ(1−ρ2)G(YT )|Yτ1 ]

)
∈ Fτ1 . (5.11)

The indifference price of the project during (τ1, T ] therefore follows from the

equilibrium between two investors

U(x− ht(y;ω), t;ω) = V (x, y, t;ω), a.s.,

from which we derive

ht(y;ω) = 1
γ(1− ρ2)

lnEQ̃

[
eγ(1−ρ2)G(YT )|Yt = y

]
+ ln

EQ̂

[
eγ(1−ρ2)G(YT )|Yτ1

]
EQ̃

[
eγ(1−ρ2)G(YT )|Yτ1

]
 ,

(5.12)
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for τ1 < t ≤ T . Compared with U(x, T ), the terminal utility of the plain

investor, it is clear that UW,λ2(x, T ) has an additional correction term which

is Fτ1-measurable. This is different form [44] where the forward terminal

utility U(x, T ) is used for both the plain investor and the writer. Therein, un-

der the forward criterion U(x, T ), the indifference valuation problem is solved

backwards. In particular, to solve for the first period [0, τ1], one needs to

know/commit to the dynamics of market parameters during the second period

(τ1, T ] (as shown in the HJB of Proposition 12 in [44]). However, in the sce-

nario of real-time model revision as we modeled here, the investor would not

have been able to know the necessary information of λ2 ∈ Fτ1 in order to settle

the indifference price as well as the partial hedging strategy during the first

period. The forward performance process approach when applied in real-time

therefore can allow for more flexibility in terms of model pre-specification, by

solving the valuation problem period by period forward in time.

Remark 5.2.1. A simple scenario is when λ2 = λ1, a.s., i.e., no model revision

is necessary. Then the forward indifference valuation problem should collapse

to the classical one proposed in [43]. Indeed, one can easily check that both

plain investor and the writer’s utilities reduce to U(x, T ) = −e−γx+λ2
1

2 T that

corresponds to U0(x) = −e−γx (they will reduce to U(x, T ) = −e−γx if the

initial utility U0(x) = V (x, 0;λ1)). Moreover, the indifference price (5.12) for

the second period also reduces to its classical counterpart in [43].
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5.3 Forward evaluation of a flow of real options

The classical backward indifference valuation methodology is subject

to both model commitment and projects commitment, due to the backward

reasoning used to solve the associated underlying stochastic optimization prob-

lems. In previous section, we have demonstrated how the forward performance

process approach can overcome the model commitment issue, in a real-time

model revision scenario where a single real option is evaluated. We now con-

tinue to show that the forward approach can also handle the projects commit-

ment issue, and develop the relative forward indifference valuation scheme for

a flow of real options that arrive with asynchronous information of their risk

profiles.

5.3.1 Relative forward indifference valuation of the first option

To expose the main idea, we work with two projects in a market with

a priori known probabilistic dynamics (i.e., no model revision is needed, for

simplicity) over a fixed horizon [0, T ]. The difference between our scenario

and classical multiple projects (relative) indifference valuation is that, we do

not assume full knowledge of the second project at t = 0, deterministically or

probabilistically; in particular, the expiry and payoff functional of the second

project only reveal at the its initiation time 0 < τ1 < T which we assume to

be known at t = 0. This model setup can describe more general scenarios in

practice; for instance, a drug company may know when to start developing the

second drug, but it is not clear today how long the process would take and
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how the risk of the development would be for the second drug, as these char-

acteristics may mostly depend on other factors, including the R&D outcome

of the first drug, and they are more possible to be known when the second

drug development officially starts.

Formally, we extend the one project valuation model in [43] in the

following way. Let the horizon [0, T ] be given, and assume the first project

is initiated at t = 0 with expiry at t = T . It pays H(YT ) at expiry with

H(·) ∈ F0. A second project arrives at τ1 ∈ F0 and expires at τ2 ∈ Fτ1 with

0 < τ1 < τ2 ≤ T . It pays G(Yτ2) with payoff functional G(·) ∈ Fτ1 . The

investors involved (i.e., both the plain investor and the writer) are assumed to

take exponential utility UT (x) = −e−γx at time t = 0, but they are allowed to

update this terminal criterion (and intermediate criteria) based on the arrival

of the second project. Hence, this F0-measurable terminal utility UT (x) =

−e−γx would only be used for the valuation of the first project before t = τ1;

after this time, both investors would have enough knowledge to revise their

respective performance criterion in a consistent way.

We now start with pricing the first project. During the period [0, τ1),

both the writer and the plain investor have no clue about the profile of the

second project, and they can only price the first project under the common

terminal utility UT (x) = −eγx. Therefore, essentially, a classical indifference

valuation is done for this period. We define the following classical value func-

tion processes for the plain investor and the writer over [0, τ1],

V 0(x, t) = esssupE
[
− e−γXT

∣∣∣Ft, Xt = x
]
, (5.13)
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V P1(x, t) = esssupE
[
− e−γ(XT−H(YT ))

∣∣∣Ft, Xt = x
]
, (5.14)

respectively. The classical results give that (see [43])

V 0(x, t) = −e−γx− 1
2λ

2(T−t),

and

V P1(x, t) = uP1(x, Yt, t),

with

uP1(x, y, t) := −e−γx
(
EQ

[
eγ(1−ρ2)H(YT )− 1

2 (1−ρ2)λ2(T−t)
∣∣∣Yt = y

]) 1
1−ρ2

,

for 0 ≤ t ≤ τ1, where Q is the minimal relative entropy martingale measure

with respect to P. At t = τ1, the writer has preserved her individual optimality

under the risk exposure of the first project up to V P1(x, τ1), and the plain in-

vestor has achieved V 0(x, τ1). Also, both investors realize the arrival of second

project with its profile, i.e, τ2, G(·) ∈ Fτ1 . Assuming that the investment in

the second project is for sure to happen, both investors would evaluate the first

project during the life-span of the second one following a relative indifference

valuation reasoning. More precisely, during [τ1, τ2], the goal for the writer is

to find a valuation criterion UW (x, τ2) such that consistency along the opti-

mality of investment in first project is preserved, under the extra liability to

pay G(Yτ2) at t = τ2. In particular, at t = τ1, she solves

V P1(x, τ1) = esssupE
[
UW (Xτ2 −G(Yτ2), τ2)

∣∣∣Fτ1 , Xτ1 = x
]
, a.s.. (5.15)

Similarly, the plain investor would also undertake the liability G(Yτ2) of the

second project but without the liability H(YT ) of the first one. The goal
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is to determine the valuation criterion U0(x, τ2) to maintain intertemporal

consistency along optimality and exclude pricing discrepancy. At t = τ1, the

plain investor solves

V 0(x, τ1) = esssupE
[
U0(Xτ2 −G(Yτ2), τ2)

∣∣∣Fτ1 , Xτ1 = x
]
, a.s.. (5.16)

Once the two utility functions UW and U0 are determined, we can define the

value function processes similarly as in (5.14) and (5.13) for τ1 ≤ t ≤ τ2,

conditional on Fτ1 ,

V P1,P2(x, t;ω) := esssupE
[
UW (Xτ2 −G(Yτ2), τ2)

∣∣∣Fτ1 , Xt = x
]
, (5.17)

and

V P2(x, t;ω) := esssupE
[
U0(Xτ2 −G(Yτ2), τ2)

∣∣∣Fτ1 , Xt = x
]
. (5.18)

The forward indifference price of the first project relative to the second project

during period [τ1, τ2] would be naturally defined as the “break-even” process

H
P1|P2
t , τ1 ≤ t ≤ τ2, that satisfies

V P2(Xt −HP1|P2
t , t) = V P1,P2(Xt, t), a.s..

The problem now boils down to looking for the respective forward crite-

rion UW and U0 for the writer and the plain investor, such that the con-

sistency conditions (5.15) and (5.16) hold. Notice that as in the continu-

ous time framework for the forward performance processes, the consistent

(t = τ2) forward criterion in general is not unique. In the following sec-

tions, we consider two types of forward performance criteria, namely the pre-

dictable criteria (i.e., UW (x, τ2), U0(x, τ2) ∈ Fτ1) and the adaptive criteria
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(i.e., UW (x, τ2), U0(x, τ2) ∈ Fτ2). As we will see, different class of forward cri-

teria lead to different relative indifference prices, but time-inconsistency and

pricing discrepancy are excluded in both cases.

5.3.1.1 Predictable forward criteria and relative indifference valu-

ation

We first consider the predictable forward family and the associated

relative indifference price of the first project during [τ1, τ2]. Suppose the writer

has the consistent forward criteria of the form UW (x, τ2) = −e−γx+Fτ2 with

Fτ2 ∈ Fτ1 . We apply the distortion transformation

V P1,P2(x, t;ω) = −e−γxv(Yt, t;ω)
1

1−ρ2 ,

then equation (5.17) can rewrite as

−e−γxv(y, t;ω)
1

1−ρ2 = esssupE
[
UW (XT−G(Yτ2), τ2)

∣∣∣Fτ1 , Xt = x, Yt = y
]
, a.s..

The function v(y, t;ω) solves almost surely the random linear parabolic equa-

tion

vt + 1
2a

2(y, t)vyy +
(
b(y, t)− ρλa(y, t)

)
vy = 1

2(1− ρ2)λ2v (5.19)

for τ1 < t < τ2 with terminal condition v(y, τ2;ω) = eγ(1−ρ2)G(y)+(1−ρ2)Fτ2 ∈ Fτ1 .

Conditional on Fτ1 , the solution to (5.19) has the Feynman-Kac representation

for τ1 ≤ t ≤ τ2,

v(y, t;ω) = EQ̃

[
eγ(1−ρ2)G(Yτ2 )+(1−ρ2)Fτ2−

1
2 (1−ρ2)λ2(τ2−t)

∣∣∣Fτ1 , Yt = y
]
, a.s.. (5.20)
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Conditional on Fτ1 , the measure Q̃ is defined on Fτ2 as

dQ̃
dP

∣∣∣∣
τ2

= e−λ(W 1
τ2−W

1
τ1 )− 1

2λ
2(τ2−τ1),

and W̃s = Ws−Wτ1 +ρλ(s−τ1) is a standard Brownian motion for τ1 ≤ s ≤ τ2.

In particular,

v(y, τ1) = EQ̃

[
eγ(1−ρ2)G(Yτ2 )+(1−ρ2)Fτ2−

1
2 (1−ρ2)λ2(τ2−τ1)

∣∣∣Fτ1 , Yτ1 = y
]
,

while the consistency condition (5.15) suggests on the other hand that

v(y, τ1) = EQ

[
eγ(1−ρ2)H(YT )− 1

2 (1−ρ2)λ2(T−τ1)
∣∣∣Yτ1 = y

]
. (5.21)

Under the fact Fτ2 ∈ Fτ1 , we derive from (5.21) that

Fτ2 = −1
2λ

2(T − τ2) + 1
1− ρ2 ln EQ[eγ(1−ρ2)H(YT )|Yτ1 ]

EQ̃[eγ(1−ρ2)G(Yτ2 )|Yτ1 ]
∈ Fτ1 . (5.22)

Hence, the consistent predictable forward criterion for the writer at the expiry

of the second project would be

UW (x, τ2) = − exp
(
−γx−1

2λ
2(T−τ2)+ 1

1− ρ2 ln EQ[eγ(1−ρ2)H(YT )|Yτ1 ]
EQ̃[eγ(1−ρ2)G(Yτ2 )|Yτ1 ]

)
∈ Fτ1 .

(5.23)

The next step is to determine the predictable forward criterion U0(x, τ2) for

the plain investor who only pays G(Yτ2) at t = τ2. The procedure follows

closely to the derivation of UW (x, τ2). To be specific, suppose U0(x, τ2) =

−e−γx+F̃τ2 , with F̃τ2 ∈ Fτ1 , and consider as usual the distortion transformation

V P2(x, t;ω) = −e−γxṽ(y, t;ω)
1

1−ρ2 . Then from equation (5.18), we can conclude

that the function ṽ(y, t;ω) solves almost surely the linear parabolic PDE

ṽt + 1
2a

2(y, t)ṽyy +
(
b(y, t)− ρλa(y, t)

)
ṽy = 1

2(1− ρ2)λ2ṽ (5.24)
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with terminal condition ṽ(y, τ2;ω) = eγ(1−ρ2)G(y)+(1−ρ2)F̃τ2 ∈ Fτ1 . Conditional

on Fτ1 , the Feynman-Kac representation of the solution to (5.24) is

ṽ(y, t;ω) = EQ̃

[
eγ(1−ρ2)G(Yτ2 )+(1−ρ2)F̃τ2−

1
2 (1−ρ2)λ2(τ2−t)

∣∣∣Fτ1 , Yt = y
]
, a.s., (5.25)

for τ1 ≤ t ≤ τ2. Finally, consistency condition (5.16) for the plain investor

implies on the other hand that

ṽ(y, τ1) = e−
1
2 (1−ρ2)λ2(T−τ1),

and under the assumption F̃τ2 ∈ Fτ1 , we can derive that

F̃τ2 = −1
2λ

2(T − τ2)− 1
1− ρ2 lnEQ̃

[
eγ(1−ρ2)G(Yτ2 )

∣∣∣Yτ1

]
∈ Fτ1 . (5.26)

The consistent predictable forward criterion for the plain investor therefore is

U0(x, τ2) = − exp
(
−γx− 1

2λ
2(T − τ2)− 1

1− ρ2 lnEQ̃

[
eγ(1−ρ2)G(Yτ2 )|Yτ1

])
∈ Fτ1 .

(5.27)

Next we are ready to derive the relative indifference price HP1|P2
t for the first

project given the second project over [τ1, τ2]. From the distortion transforma-

tion and the (relative) indifference price definition

V P2(Xt −HP1|P2
t , t) = V P1,P2(Xt, t), a.s.,

we have

− e−γ(x−h(y,t;ω))ṽ(y, t;ω)
1

1−ρ2 = −e−γxv(y, t;ω)
1

1−ρ2 , a.s., (5.28)
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where we have assumed H
P1|P2
t = h(Yt, t;ω), due to the exponential utility in

terms of wealth. Then it easily follows from (5.28) that for τ1 ≤ t ≤ τ2,

h(y, t;ω) = 1
γ(1− ρ2) ln v(y, t;ω)

ṽ(y, t;ω) = 1
γ(1− ρ2) ln e(1−ρ2)(Fτ2−F̃τ2 )

= 1
γ(1− ρ2) lnEQ

[
eγ(1−ρ2)H(YT )|Yτ1

]
, a.s.. (5.29)

We notice that after t = τ1, i.e., the arrival/initiation time of the second

project, the consistent price for the first project over [τ1, τ2] remains constant

(conditional on Fτ1) under the predictable assumption of the utility functions

for the two investors. The price of the first project would stay on the level

exactly before the arrival of the second project. Such constant extension of the

valuation problem over [0, τ1] is probably the simplest way to maintain pricing

consistency before and after the appearance of a new project. As we will see in

the next section, even under a different class of forward performance processes

that are not predictable, the same conditionally constant indifference price can

be derived to excludes time-inconsistency and pricing discrepancy.

5.3.1.2 Adaptive forward criteria and relative indifference valua-

tion

In this section, we work with the consistent forward criteria that are

adaptive, i.e., UW (x, τ2), U0(x, τ2) ∈ Fτ2 . The main argument will follow

closely as in the previous section, except that we consider factor form for-

ward criteria UW (x, τ2) = −e−γx+F (Yτ2 ,τ2) for the writer, and U0(x, τ2) =

−e−γx+F̃ (Yτ2 ,τ2) for the plain investor, where F (y, τ2;ω) and F̃ (y, τ2;ω) are both
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Fτ1-measurable. Under this assumption and applying the distortion transfor-

mation, we derive form (5.17) that v(y, t;ω) solves almost surely the linear

parabolic PDE (5.19) with terminal condition v(y, τ2;ω) = eγ(1−ρ2)G(y)+(1−ρ2)F (y,τ2) ∈

Fτ1 . Conditional on Fτ1 , the Feynman-Kac representation of the solution is

v(y, t;ω) = EQ̃

[
eγ(1−ρ2)G(Yτ2 )+(1−ρ2)F (Yτ2 ,τ2)− 1

2 (1−ρ2)λ2(τ2−t)
∣∣∣Fτ1 , Yt = y

]
, a.s.,

(5.30)

for τ1 ≤ t ≤ τ2, where the measure Q̃ is defined as in the previous section.

Consistency condition (5.15) for the writer then writes as

EQ̃

[
eγ(1−ρ2)G(Yτ2 )+(1−ρ2)F (Yτ2 ,τ2)− 1

2 (1−ρ2)λ2(τ2−τ1)
∣∣∣Fτ1 , Yτ1 = y

]
= EQ

[
eγ(1−ρ2)H(YT )− 1

2 (1−ρ2)λ2(T−τ1)
∣∣∣Yτ1 = y

]
, a.s.. (5.31)

One can directly verify that

F (Yτ2 , τ2) = −
(
γG(Yτ2) + 1

2λ
2(T − τ2)

)
+ 1

1− ρ2 lnEQ

[
eγ(1−ρ2)H(YT )

∣∣∣Yτ1

]
(5.32)

would satisfy the consistency condition (5.31). Hence, the writer’s adaptive

forward criterion at the expiry of the second project is

UW (x, τ2) = −e−γ(x+G(Yτ2 ))− 1
2λ

2(T−τ2)
(
EQ
[
eγ(1−ρ2)H(YT )

∣∣∣Yτ1

]) 1
1−ρ2
∈ Fτ2 .

(5.33)

We next derive the plain investor’s adaptive forward criterion U0(x, τ2) ∈

Fτ2 . Following the same argument as above, we propose the factor form

U0(x, τ2) = −e−γx+F̃ (Yτ2 ,τ2) with F̃ (y, τ2) ∈ Fτ1 . After the application of the
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distortion transformation and the (conditional) Feynman-Kac representation,

the consistency requirement (5.16) for the plain investor gives that

EQ̃

[
eγ(1−ρ2)G(Yτ2 )+(1−ρ2)F̃ (Yτ2 ,τ2)− 1

2 (1−ρ2)λ2(τ2−τ1)
∣∣∣Fτ1 , Yτ1 = y

]
= e−

1
2 (1−ρ2)λ2(T−τ1).

(5.34)

One can then verify that

F̃ (Yτ2 , τ2) = −γG(Yτ2)− 1
2λ

2(T − τ2) ∈ Fτ2 (5.35)

satisfies the consistency equation (5.34). The plain investor’s consistent for-

ward utility is therefore

U0(x, τ2) = −e−γ(x+G(Yτ2 ))− 1
2λ

2(T−τ2) ∈ Fτ2 . (5.36)

The relative indifference price of the first project given the second project over

[τ1, τ2] again follows from (5.28)

−e−γ(x−h(y,t;ω))ṽ(y, t;ω)
1

1−ρ2 = −e−γxv(y, t;ω)
1

1−ρ2 , a.s.,

where

ṽ(y, t;ω) = EQ̃

[
eγ(1−ρ2)G(Yτ2 )+(1−ρ2)F̃ (Yτ2 ,τ2)− 1

2 (1−ρ2)λ2(τ2−t)
∣∣∣Fτ1 , Yt = y

]
,

and

v(y, t;ω) = EQ̃

[
eγ(1−ρ2)G(Yτ2 )+(1−ρ2)F (Yτ2 ,τ2)− 1

2 (1−ρ2)λ2(τ2−t)
∣∣∣Fτ1 , Yt = y

]
,

respectively. It follows that

h(y, t;ω) = 1
γ(1− ρ2) ln v(y, t;ω)

ṽ(y, t;ω)
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= 1
γ(1− ρ2) lnEQ

[
eγ(1−ρ2)H(YT )

∣∣∣Yτ1

]
, a.s., (5.37)

for τ1 ≤ t ≤ τ2, which yields the same (conditionally) constant relative indif-

ference price of the first project over [τ1, τ2] as in the previous section

H
P1|P2
t = h(Yt, t) = 1

γ(1− ρ2) lnEQ
[
eγ(1−ρ2)H(YT )

∣∣∣Yτ1

]
.

5.3.2 Relative forward indifference valuation of the second real op-

tion

In this section, we discuss the relative indifference valuation of the

second real option/project given the first under the forward approach. As

before, it is assumed that the second project has an initiation time 0 < τ1 < T

with expiry τ2 ∈ Fτ1 and payoff G(Yτ2) and G(·) ∈ Fτ1 . The case we are

mainly interested in is when τ2 > T a.s., where t = T is the expiry of the first

project whose payoff is H(YT ); the other case when the second project expires

before the first project is easier to handle. We continue to work with the

log-normal model in [43] and denote the Sharpe ratio over [0, T ] by λ ∈ F0.

At t = τ1, the second project is introduced and the investor is aware of its

expiry and payoff structure. It is then necessary for her to extend the current

log-normal model at t = τ1 to cover the life-span of the new project for the

purpose of (relative) indifference valuation. We assume that conditional on

Fτ1 , the extended model over [T, τ2] still follows the log-normal dynamics with

the Sharpe ratio λ1 ∈ Fτ1 . For simplicity, we also assume that the model for

the nontraded asset Y would remain the same after extension to [T, τ2]. A
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At t = 0 : 0 T

P1 = H(YT )

At t = τ1 : τ1 T τ2

P1 = H(YT ) P2 = G(Yτ2)

project P2 introduced
and specified

project P2 matures

Figure 5.1: Model inputs for relative indifference valuation of the second real

option.

summary of the model inputs is given in Figure 5.1.

To price the second project relative to the existing first project, we

would regard the plain investor as the investor under the liability of first

project. The writer then becomes the investor who holds both the first and

second projects. Conditional on Fτ1 , we look for an extended forward perfor-

mance criterion U(x, τ2) under which the optimiality of the benchmark perfor-

mance, i.e., the performance of the investor holding only the first project, can

be preserved over [T, τ2]. Once such consistent forward evluation criterion is

found, the relative indifference price of the second project over period [τ1, τ2]

then is the classical indifference price, conditional on Fτ1 , such that the writer

is indifferent with and without the second project under U(x, τ2). Throughout
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this work, we focus on the class of forward criteria that are in factor form, i.e.

U(x, τ2) = −e−γx+F (Yτ2 ,τ2), (5.38)

for some F (y, τ2) ∈ Fτ1 , with x, y ∈ R. Conditional on Fτ1 , the optimiality of

the plain investor should be preserved over [T, τ2], indicating that

− e−γ(x−H(y)) = esssupE
[
U(Xτ2 , τ2)

∣∣∣Fτ1 , XT = x, YT = y
]
, a.s., (5.39)

where the left hand side is the (benchmark) performance of the investor with

exponential utility U(x) = −e−γx at t = T , under the liability of the first

project only. To determine the forward criterion U(x, τ2), specifically to de-

termine F (Yτ2 , τ2) in (5.38), we define the value function for T ≤ t ≤ τ2 as

V (x, t) = esssupE
[
U(Xτ2 , τ2)

∣∣∣Fτ1 , Xt = x
]
, a.s., (5.40)

and apply the distortion transformation as usual

V (x, t;ω) = −e−γxv(Yt, t;ω)
1

1−ρ2 .

Standard argument (see [43]) implies that V (x, t) in (5.40) solves a (random)

HJB PDE with v(y, t) being the solution to the (random) linear parabolic

equation

vt + 1
2a

2(y)vyy +
(
b(y)− ρλ1a(y)

)
vy = 1

2(1− ρ2)λ2
1v, a.s., T < t < τ2 (5.41)

and the terminal condition v(y, τ2) = e(1−ρ2)F (y,τ2) ∈ Fτ1 . Conditional on Fτ1 ,

the Feynman-Kac yields that

v(y, t) = EQ̃

[
e(1−ρ2)F (Yτ2 ,τ2)− 1

2 (1−ρ2)λ2
1(τ2−t)

∣∣∣Fτ1 , Yt = y
]
, a.s.,
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where the measure Q̃, conditional on Fτ1 , is defined on Fτ2 as

dQ̃
dP

∣∣∣∣
τ2

= e−λ1(W 1
τ2−W

1
T )− 1

2λ
2
1(τ2−T ).

Under the measure Q̃, the process W̃s = Ws−WT +ρλ1(s−T ), for T ≤ s ≤ τ2,

is a standard Brownian motion with W̃T = 0, and, it follows that the process

Y , conditional on Fτ1 , has the dynamics

dYs =
(
b(Ys, s)− ρλ1a(Ys, s)

)
ds+ a(Ys, s)dW̃s, (5.42)

with Yt = y ∈ R, for T ≤ t ≤ s ≤ τ2 under the measure Q̃. Then the forward

consistency condition (5.39) implies

−e−γ(x−H(y)) = −e−γx
(
EQ̃

[
e(1−ρ2)F (Yτ2 ,τ2)− 1

2 (1−ρ2)λ2
1(τ2−t)

∣∣∣Fτ1 , YT = y
]) 1

1−ρ2
, a.s.,

which yields

EQ̃

[
e(1−ρ2)F (Yτ2 ,τ2)

∣∣∣Fτ1 , YT = y
]

= eγ(1−ρ2)H(y)+ 1
2 (1−ρ2)λ2

1(τ2−T ), a.s.. (5.43)

It in turn leads to that the random function

h(y, t;ω) := EQ̃

[
e(1−ρ2)F (Yτ2 ,τ2)

∣∣∣Fτ1 , Yt = y
]

is a nonnegative solution to the random linear parabolic equation

ht + 1
2a

2(y)hyy +
(
b(y)− ρλ1a(y)

)
hy = 0, T < t < τ2, (5.44)

with initial condition h(y, T ;ω) = eγ(1−ρ2)H(y)+ 1
2 (1−ρ2)λ2

1(τ2−T ) ∈ Fτ1 , where we

have applied the fact that Y , conditional on Fτ1 , has dynamics given by (5.42)

under the measure Q̃. Equation (5.44) is ill-posed, and we refer to the work
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[47] for more detailed discussions of the nonnegative solution to the (random)

ill-posed parabolic equation. Now once we find the nonnegative solution to

(5.44), it is straightforward to get

F (y, τ2;ω) = 1
1− ρ2 ln h(y, τ2;ω), (5.45)

for y ∈ R, and we are able to define the value functions for the plain investor

and the writer over [T, τ2], respectively. Indeed, the former is given by (5.40)

as

V (x, t) = −e−γx
(
EQ̃

[
e(1−ρ2)F (Yτ2 ,τ2)− 1

2 (1−ρ2)λ2
1(τ2−t)

∣∣∣Fτ1 , Yt
]) 1

1−ρ2
, (5.46)

whereas the latter is defined in a similar way, but with the liability of the

second project taken into account,

V W (x, t) := esssupE
[
U(Xτ2 −G(Yτ2), τ2)

∣∣∣Fτ1 , Xt = x, Yt
]

a.s.. (5.47)

As before, the standard argument and the (conditional) distortion transfor-

mation give rise to, for T ≤ t ≤ τ2,

V W (x, t) =

− e−γx
(
EQ̃

[
e(1−ρ2)(γG(Yτ2 )+F (Yτ2 ,τ2))− 1

2 (1−ρ2)λ2
1(τ2−t)

∣∣∣Fτ1 , Yt

]) 1
1−ρ2

. (5.48)

The relative indifference price of the second project over [T, τ2] is then the con-

ditional “break-even” price between the value functions V (x, t) and V W (x, t).

Indeed, it is the process H2|1
t that satisfies, conditional on Fτ1 ,

V (Xt −H2|1
t , t) = V W (Xt, t), a.s., T ≤ t ≤ τ2.
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Further computation yields that, for T ≤ t ≤ τ2,

H
2|1
t = 1

γ(1− ρ2) ln
EQ̃

[
e(1−ρ2)(γG(Yτ2 )+F (Yτ2 ,τ2))∣∣∣Fτ1 , Yt

]
EQ̃

[
e(1−ρ2)F (Yτ2 ,τ2)

∣∣∣Fτ1 , Yt
] , (5.49)

with F (y, τ2) ∈ Fτ1 given by (5.45), being the nonnegative solution to the

ill-posed problem (5.44). To calculate the relative indifference price H2|1
t of

the second project over period [τ1, T ], we still need to compare the optimal

performance of the (benchmark) plain investor who holds only the first project

and that of the writer who holds both the first and the second project. At

t = T , the plain investor pays liability H(YT ) under the exponential utility

U(x) = −e−γx, whereas the writer pays both H(YT ) and H
2|1
T , with the latter

given by (5.49). The price H2|1
T can be seen as the time t = T analogue of the

terminal liability G(Yτ2) under the extended forward criterion U(x, τ2) that

has been found. Denote

Ĝ(YT ) := 1
γ(1− ρ2) lnEQ̃

[
e(1−ρ2)(γG(Yτ2 )+F (Yτ2 ,τ2))∣∣∣Fτ1 , YT

]
,

then from (5.49) we have H2|1
T = Ĝ(YT ) − H(YT ) − λ2

1
2γ (τ2 − T ). The value

function of the plain investor who is holding a single liability H(YT ) over

[τ1, T ] udner the exponential utility at t = T follows from the classical result

(see [43])

V (x, t) = −e−γx
(
EQ

[
eγ(1−ρ2)H(YT )− 1

2 (1−ρ2)λ2(T−t)
∣∣∣Yt]) 1

1−ρ2
,

where the measure Q is defined on FT by

dQ
dP

∣∣∣∣
T

= e−λW
1
T−

1
2λ

2T .
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The writer’s optimization problem is similar but with the liability H(YT )+H2|1
T

at t = T ; the value function is given by

V W (x, t) = −e−γx
(
EQ

[
eγ(1−ρ2)Ĝ(YT )− 1

2 (1−ρ2)λ2
1(τ2−T )− 1

2 (1−ρ2)λ2(T−t)
∣∣∣Yt]) 1

1−ρ2
.

The relative indifference price of the second project is again defined as the

“break-even” price between the two value functions, i.e.,

V (Xt −H2|1
t , t) = V W (Xt, t),

for τ1 ≤ t ≤ T . A further computation leads to

H
2|1
t = 1

γ(1− ρ2) ln
EQ

[
EQ̃

[
e(1−ρ2)(γG(Yτ2 )+F (Yτ2 ,τ2))∣∣∣YT ] ∣∣∣∣Yt]
EQ

[
e(1−ρ2)γH(YT )

∣∣∣Yt]

− λ2
1

2γ (τ2 − T ). (5.50)

We summarize the result in the following proposition.

Proposition 5.3.1. Suppose that the ill-posed (random) parabolic equation

ht + 1
2a

2(y)hyy +
(
b(y)− ρλ1a(y)

)
hy = 0, T < t < τ2,

with h(y, T ;ω) = eγ(1−ρ2)H(y)+ 1
2 (1−ρ2)λ2

1(τ2−T ) ∈ Fτ1, has a nonnegative classical

solution h(y, t;ω), T ≤ t ≤ τ2, almost surely. Then, conditional on Fτ1, the

relative forward indifference price of the second project given the first project

is

H
2|1
t = 1

γ(1− ρ2) ln
EQ

[
EQ̃

[
e(1−ρ2)(γG(Yτ2 )+F (Yτ2 ,τ2))∣∣∣YT ] ∣∣∣∣Yt]
EQ

[
e(1−ρ2)γH(YT )

∣∣∣Yt]
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−λ
2
1

2γ (τ2 − T ),

for τ1 ≤ t ≤ T , and

H
2|1
t = 1

γ(1− ρ2) ln
EQ̃

[
e(1−ρ2)(γG(Yτ2 )+F (Yτ2 ,τ2))∣∣∣Yt]
EQ̃

[
e(1−ρ2)F (Yτ2 ,τ2)

∣∣∣Yt] ,

for T < t ≤ τ2, where the function F (y, τ2;ω) = 1
1−ρ2 ln h(y, τ2;ω), for y ∈ R.

5.3.3 Decomposition of risk under relative forward indifference val-

uation

In this section, we demonstrate the decomposition for the relative indif-

ference price, the residual optimal wealth process and the residual risk process.

The discussion is carried out for the case of the relative forward indifference

valuation of the second project given the first project. To this end, we first

introduce

Zτ2 := 1
γ

(
F (Yτ2 , τ2)− λ2

1
2 (τ2 − T )

)
, (5.51)

where F (y, τ2) ∈ Fτ1 , for y ∈ R, is given by (5.45). Then the forward consis-

tency equation (5.39) can rewrite as

− e−γ(x−H(y)) = esssupE
[
−e−γ(Xτ2−Zτ2 )+λ2

1
2 (τ2−T )

∣∣∣Fτ1 , XT = x, YT = y

]
, a.s..

(5.52)

We can now regard the quantity Zτ2 as the future reincarnation of the first

project after its expiry t = T , in the sense that the optimality of the per-

formance of the investor who only holds the first project can be maintained
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through [T, τ2], if she pays the virtual payoff Zτ2 at t = τ2 instead of paying

the actual payoff H(YT ) at expiry t = T . Note that the payoff Zτ2 in equa-

tion (5.52) is evaluated under the forward criterion U0(x, τ2) = −e−γx+λ2
1

2 (τ2−T )

which is consistent with the criterion U0(x, T ) = −e−γx at t = T . In fact, it is

easy to recognize that the criterion U0(x, τ2) is the extended forward criterion

from U0(x, T ) for an investor who only invests in the stock and Bond markets

without taking any liability from the first and the second projects (i.e., the

genuine plain investor). We can also rewrite the relative forward indifference

pricing formula in Proposition 5.3.1 using the introduced virtual payoff Zτ2 ,

i.e., conditional on Fτ1 ,

H
2|1
t = 1

γ(1− ρ2) ln
EQ

[
EQ̃

[
eγ(1−ρ2)(G(Yτ2 )+Zτ2)∣∣∣YT ] ∣∣∣∣Yt]
EQ

[
eγ(1−ρ2)H(YT )

∣∣∣Yt] ,

for τ1 ≤ t ≤ T , and

H
2|1
t = 1

γ(1− ρ2) ln
EQ̃

[
eγ(1−ρ2)(G(Yτ2 )+Zτ2)∣∣∣ Yt]
EQ̃

[
eγ(1−ρ2)Zτ2

∣∣∣ Yt] ,

for T < t ≤ τ2.

We next define the optimal wealth processes for the writer who values

the second project in relation to the first project, and the benchmark investor

who holds only the first project. Let Π2|1,W ∗ and Π2|1,∗ be their respective op-

timal control processes by following the relative forward indifference valuation

procedure. Then, conditional on Fτ1 , the writer’s optimal wealth satisfies

dX2|1,W ∗
s = µsΠ2|1,W ∗

s ds+ σsΠ2|1,W ∗
s dW 1

s , t ≤ s ≤ τ2, (5.53)
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with initial condition X2|1,W ∗
t = x+h2|1(y, t;ω), for τ1 ≤ t ≤ τ2. Similarly, the

optimal wealth for the benchmark investor follows

dX2|1,∗
s = µsΠ2|1,∗

s ds+ σsΠ2|1,∗
s dW 1

s , t ≤ s ≤ τ2, (5.54)

with initial condition X
2|1,∗
t = x, for τ1 ≤ t ≤ τ2. Here, µs = µ, σs = σ for

τ1 ≤ s ≤ T and µs = µ1 ∈ Fτ1 , σs = σ1 ∈ Fτ1 for T < s ≤ τ2. The random

function h(y, t;ω), conditional on Fτ2 , is the relative indifference price

h2|1(y, t;ω) = 1
γ(1− ρ2) ln

EQ

[
EQ̃

[
eγ(1−ρ2)(G(Yτ2 )+Zτ2)∣∣∣YT ] ∣∣∣∣Yt = y

]
EQ

[
eγ(1−ρ2)H(YT )

∣∣∣Yt = y
] , (5.55)

for τ1 ≤ t ≤ T and

h2|1(y, t;ω) = 1
γ(1− ρ2) ln

EQ̃

[
eγ(1−ρ2)(G(Yτ2 )+Zτ2)∣∣∣ Yt = y

]
EQ̃

[
eγ(1−ρ2)Zτ2

∣∣∣ Yt = y
] , (5.56)

for T < t ≤ τ2. Motivated by the similar definition for the single project

indifference valuation in [43], we then introduce the residual optimal wealth

process and the residual risk process associated to the relative forward indif-

ference valuation of the second project given the first project

Definition 5.3.1. Let the relative forward indifference price be given by H2|1
t

for τ1 ≤ t ≤ τ2, and the optimal wealth processes for the writer and the

benchmark investor be, respectively, (5.53) and (5.54). We define the residual

optimal wealth process for the relative indifference valuation of the second

project given the first as

L2|1
s = X2|1,W ∗

s −X2|1,∗
s , t ≤ s ≤ τ2, L

2|1
t = h(y, t;ω),
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for τ1 ≤ t ≤ τ2, and the residual risk process as

R2|1
s = L2|1

s −H2|1
s , t ≤ s ≤ τ2, R

2|1
t = 0,

for τ1 ≤ t ≤ τ2.

We can similarly define the processes L1,2 and R1,2 for the total payoff

G(Yτ2) + Zτ2 , under the classical forward criterion U0(x, τ2) = −e−γ+λ2
1

2 (τ2−T ),

and regard this problem as the problem for determining the (non-relative) in-

difference price of the two projects together, with the payoff of the first project

being replaced by its future reincarnation Zτ2 at t = τ2. Also, under the same

extended forward criterion U0(x, τ2), we define the processes L1 and R1 asso-

ciated to the problem of pricing only the first project under its future virtual

payoff Zτ2 , without the liability of the second project. Then the following

proposition claims that a desirable decomposition among the risks processes

exists. Simply speaking, the residual risk due to the hedging for both projects

under the (non-relative) criterion U0(x, τ2) can be decomposed into the risk

due to the hedging for only the first project under U0(x, τ2) and the risk due

to the hedging for the second project in relation to the first project under the

relative forward criterion U(x, τ2).

Proposition 5.3.2. Let the incremental optimal hedging strategy for the rel-

ative indifference valuation under the forward criterion U(x, τ2) be

∆Π2|1,∗
t = Π2|1,W ∗

t − Π2|1,∗
t , τ1 ≤ t ≤ τ2,
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and similarly define ∆Π1,2,∗, ∆Π1,∗ for the problems under the (non-relative)

forward criterion U0(x, τ2), respectively. Let also the associated indifference

prices be given by H2|1, H1,2 and H1. Then, conditional on Fτ1,

∆Π1,2,∗
t = ∆Π1,∗

t + ∆Π2|1,∗
t , a.s.,

H1,2
t = H1

t +H
2|1
t , a.s.,

L1,2
t = L1

t + L
2|1
t , a.s.,

R1,2
t = R1

t +R
2|1
t , a.s.,

for τ1 ≤ t ≤ τ2.

Proof. We first focus on the valuation problems over [T, τ2]. Recall that the

value function of the writer under the relative forward criterion U(x, τ2) is

V W (x, t) given by (5.48). Conditional on Fτ1 , the associated HJB equation

yields the optimal control policy

π2|1,W ∗(x, y, t;ω) = ρ
a(y)
σ1

1
γ(1− ρ2)

∂

∂y

(
ln v1,2,W ∗(y, t;ω)

)
+ µ1

γσ2
1

= ρ
a(y)
σ1

h1,2
y (y, t;ω) + µ1

γσ2
1
,

for T ≤ t ≤ τ2, where

v1,2,W ∗(y, t;ω) := EQ̃

[
e(1−ρ2)(γG(Yτ2 )+F (Yτ2 ,τ2))− 1

2 (1−ρ2)λ2
1(τ2−t)

∣∣∣Fτ1 , Yt = y
]

and

h1,2(y, t;ω) := 1
γ(1− ρ2) lnEQ̃

[
eγ(1−ρ2)(G(Yτ2 )+Zτ2)∣∣∣Fτ1 , Yt = y

]
.
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We also have the benchmark investor’s value function given by (5.46) with the

associated optimal control policy given by

π2|1,∗(x, y, t;ω) = ρ
a(y)
σ1

h1
y(y, t;ω) + µ1

γσ2
1
,

and

h1(y, t;ω) := 1
γ(1− ρ2) lnEQ̃

[
eγ(1−ρ2)Zτ2

∣∣∣Fτ1 , Yt = y
]
,

for T ≤ t ≤ τ2. It hence follows that

∆Π2|1,∗
t = ρ

a(Yt)
σ1

(
h1,2
y (Yt, t;ω)− h1

y(Yt, t;ω)
)
.

On the other hand, the (non-relative) indifference valuation of the two projects

with the payoff G(Yτ2)+Zτ2 under the (non-relative) forward criterion U0(x, τ2)

can be solved following the standard argument, and we obtain

H1,2
t = 1

γ(1− ρ2) lnEQ̃

[
eγ(1−ρ2)(G(Yτ2 )+Zτ2)∣∣∣Fτ1 , Yt

]
,

as well as the hedging policy π1,2,W ∗ = π2|1,W ∗ for the writer with both projects

under U0(x, τ2). The benchmark Merton investor under the criterion U0(x, τ2)

has the optimal policy given by π1,2,∗(x, y, t;ω) = µ1
γσ2

1
, for T ≤ τ1 ≤ τ2. It

hence yields

∆Π1,2,∗
t = ρ

a(Yt)
σ1

h1,2
y (Yt, t;ω).

Finally, we can compute the (non-relative) indifference price of the first project

under the extended forward criterion U0(x, τ2), again, following the standard

argument to get

H1
t = 1

γ(1− ρ2) lnEQ̃

[
eγ(1−ρ2)Zτ2

∣∣∣Fτ1 , Yt
]
,
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and the incremental hedging strategy

∆Π1∗
t = ρ

a(Yt)
σ1

h1
y(Yt, t;ω).

It hence follows directly that ∆Π1,2,∗
t = ∆Π1,∗

t + ∆Π2|1,∗
t , a.s., and H1,2

t =

H1
t + H

2|1
t , a.s., in regard of (5.56). By the definition of the residual optimal

wealth processes L2|1, L1,2, L1, the linearity of the wealth dynamics and the

additive property ∆Π1,2,∗
t = ∆Π1,∗

t + ∆Π2|1,∗
t , we have dL1,2

s = dL1
s + dL2|1

s , for

t ≤ s ≤ τ2, with the initial condition L1,2
t = L1

t + L
2|1
t , due to the additive

property h1,2(y, t) = h1(y, t) + h2|1(y, t). This proves that L1,2
t = L1

t + L
2|1
t ,

a.s., for T ≤ t ≤ τ2. The additivity of the residual risk processes follows from

that of the residual optimal wealth processes and that of the indifference price

processes. The analysis over the interval [τ1, T ] is similar.
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Appendix A

Appendix for Chapter 3

A.1 Properties of functions F,G

If m ∈ (0, 1) , then

G

√2λ ln
√

1 +m

1−m ;m,λ
 = cosh

ln
√

1 +m

1−m

− 1
m

sinh
ln

√
1 +m

1−m



= 1
2

√1 +m

1−m +
√

1−m
1 +m

− 1
2m

√1 +m

1−m −
√

1−m
1 +m

 = 0.

Similarly, F
(√

2λ ln
√

1+m
1−m ;m,λ

)
= cosh

√
2λ ln

√
1+m
1−m

√
2λ − m sinh

√
2λ ln

√
1+m
1−m

√
2λ =

cosh
(
ln
√

1+m
1−m

)
−m sinh

(
ln
√

1+m
1−m

)

= 1
2

√1 +m
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1−m
1 +m

− m

2
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1−m
1 +m

 ,
= 1

2
1−m2
√

1−m2
= 1

2
√

1−m2 > 0.
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Appendix B

Appendix for Chapter 4

B.1 Proposition B.1.1

Proposition B.1.1. Assume that the function g satisfies the assumption in

Theorem 4.3.1. Then, for any ε > 0

sup
x>0

g′(x)
x+ ε

<∞. (B.1)

Proof. We first show that under the assumption in Theorem 4.3.1, g(0) =

limx↓0 g(x) = infx>0 g(x) > −∞. Since infx>0
g′(x)
x

= b > 0, then g′(x) ≥ bx >

0, ∀x > 0 implies g(0) = limx↓0 g(x) = infx>0 g(x) < ∞ exists. Also, since

supx>0 g
′′(x) ≤ a, then for 0 < s < t,

−∞ < g(t) ≤ g(s) + g′(s)(t− s) + a

2(t− s)2.

Under the fact 0 ≤ g′(0) < ∞, we obtain g(0) > −∞ as s → 0. We can

now, without loss of generality, assume g(0) = 0 (the initial criterion U(x, r, 0)

and the forward problem do not change except for a positive multiplicative

constant). To show (B.1), we consider three non-overlapping cases as follows.
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1. −∞ < g′′(0) ≤ a and g′(0) = 0.

It is easy to see g′(x) ≤ g′(0) + ax = ax for x > 0, and hence for any

ε > 0,

sup
x>0

g′(x)
x+ ε

≤ sup
x>0

g′(x)
x
≤ a,

giving dε = a in (4.17) and (4.18) in Theorem 4.3.1, for any ε > 0.

2. 0 < g′′(0) ≤ a and 0 < g′(0) <∞.

For this case, we consider the following extension of the current function

g(x) ∈ C2(R+) to a nonnegative C2(R) function with bounded second

order derivative. Define the constant c0 = − (g′(0))2

2g′′(0) and the function

g̃(x) := g(x) − c0 for x ≥ 0 and g̃(x) = g′(0)x + g′′(0)
2 x2 − c0 for x < 0.

Then it is easy to see that 0 ≤ g̃(x) ∈ C2(R), and g̃′′(x) ≤ a,∀ x ∈ R.

It then follows from [27] that g̃′(x) ≤
√

2ag̃(x), ∀ x ∈ R. In particular,

we have

g′(x) ≤
√

2a
√
g(x)− c0, ∀ x > 0. (B.2)

Moreover, condition (4.7) yields g(x)− c0 ≤ g′(0)x+ a
2x

2 − c0. We next

want to find K > 0, such that g′(0)x + a
2x

2 − c0 ≤ K(x + ε)2, ∀x > 0.

Direct computation shows

K(x+ ε)2 −
(
g′(0)x+ a

2x
2 − c0

)

=
(
K − a

2

)
x2 + (2Kε− g′(0))x+Kε2 + c0.

Therefore, if K > max{a2 ,
g′(0)

2ε ,−
c0
ε2}, then the above quadratic function

is strictly increasing for x > 0, with an initial value Kε2 + c0 > 0 at
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x = 0. Combining this result with (B.2), we obtain the desired result

g′(x) ≤
√

2a
√
g(x)− c0 ≤

√
2aK(x+ ε), ∀ x > 0.

3. −∞ < g′′(0) ≤ 0 and 0 < g′(0) <∞.

In this case, we also aim to give an extension of the function g(x) ∈

C2(R), maintaining the nonnegative property and the property that the

second order derivative is bounded by a > 0, to yield a similar result as

(B.2). First we consider the scenario −a ≤ g′′(0) ≤ 0 and introduce the

function g̃(x) = A arctan(Bx+ θ) + C, ∀x ≤ 0 with constants A, B, C

and θ to be determined. Direct computation yields

g̃′(x) = AB

(Bx+ θ)2 + 1
, and g̃′′(x) = −2AB2 (Bx+ θ)(

(Bx+ θ)2 + 1
)2 .

Then the continuity condition of the first and second order derivatives

at 0 imply g̃′(0) = g′(0) > 0 and g̃′′(0) = g′′(0), i.e.,

g′(0) = AB

θ2 + 1 > 0, and g′′(0) = − 2θAB2

(θ2 + 1)2 ,

respectively. Moreover, one can show the second order derivative g̃′′(x) ≤
3
√

3
8 AB2, ∀x ∈ R, if AB2 > 0. Therefore, to have the extended function

g̃′′(x) ≤ a, we impose a third condition on the parameters 0 < 3
√

3
8 AB2 ≤

a. The last step is to show the three conditions

g′(0) = AB

θ2 + 1 > 0, g′′(0) = − 2θAB2

(θ2 + 1)2 , and 0 < 3
√

3
8 AB2 ≤ a

(B.3)
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are indeed compatible and lead to solutions. Precisely, since −3
√

3
8 ≤

− 2θ
(θ2+1)2 ≤ 3

√
3

8 , and 0 < 3
√

3
8 AB2 ≤ a, it is then clear that

−a ≤ − 2θAB2

(θ2 + 1)2 ≤ a,

indicating that the second condition of (B.3) compatible, due to the fact

−a ≤ g′′(0) ≤ 0. This shows there exist properly selected constants AB2

and θ such that the last two conditions of (B.3) are satisfied. Once these

two constants are given, we can use the first condition to completely

determine A, B, and θ. The constant C is simply determined by g̃(0) =

g(0) = 0. Hence, we have a function g̃(x) = A arctan(Bx + θ) + C,

∀x ≤ 0, that is a C2 extension of the original function g(x) to negative

real line with g̃′′(x) ≤ a, and bounded from below by a finite constant

c0 := infx≤0 g̃(x). Since g̃(0) = g(0) = 0 and g̃′(0) = g′(0) > 0, we have

c0 < 0. Then similar to the second case, we shift both g(x), ∀x ≥ 0 and

g̃(x), ∀x < 0 upwards by −c0, and hence arrive at the same result as

(B.2) together with the same estimate following it as in the second case.

Next, for the other scenario −∞ < g′′(0) < −a, before the concatenation

with the arctan function as depicted above, it is necessary to shift the

second order derivative g′′(0) back to the region [−a, 0]. Precisely, we

achieve this by introducing

g̃(x) = −a+ 2g′′(0)
24 x4 + 1

2g
′′(0)x2 + g′(0)x, ∀x ∈ [−1, 0].

It is then easy to verify that g̃(x), ∀x ∈ [−1, 0] is a C2 extension of

the original function g(x), ∀x ≥ 0 with g̃′′(x) = −
(
a
2 + g′′(0)

)
x2 +
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g′′(0) ≤ −a
2 , ∀x ∈ [−1, 0]. Now at x = −1, we are back in the scenario

discussed above, since g̃′′(−1) = −a
2 ∈ [−a, 0]. Moreover, g̃′(−1) =

a
6 −

2
3g
′′(0) + g′(0) > 0. Hence, we can construct the function g̃(x) =

A arctan(B(x+1)+θ)+C, ∀x ≤ −1 exactly as in the previous scenario,

after replacing g′(0) and g′′(0) by g̃′(−1) and g̃′′(−1), respectively in

conditions (B.3). It then yields the extended function g̃(x) that is defined

for all x ≤ 0 with desired properties.
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[10] René Carmona. Indifference pricing: theory and applications. Princeton

University Press, 2008.

[11] Alvaro Cartea and Sebastian Jaimungal. A closed-form execution strat-

egy to target volume weighted average price. SIAM Journal on Financial

Mathematics, 7(1):760–785, 2016.

[12] Han-Fu Chen and Lei Guo. Identification and stochastic adaptive control.

Springer Science & Business Media, 2012.

[13] Donald H Chew. The new corporate finance: where theory meets practice.

McGraw-Hill Companies, 1993.

[14] Tarun Chordia, Richard Roll, and Avanidhar Subrahmanyam. Market

liquidity and trading activity. The journal of finance, 56(2):501–530,

2001.

[15] Rama Cont, Arseniy Kukanov, and Sasha Stoikov. The price impact of

order book events. Journal of financial econometrics, 12(1):47–88, 2014.

252



[16] Bruno C Da Silva, Eduardo W Basso, Ana LC Bazzan, and Paulo M En-

gel. Dealing with non-stationary environments using context detection.

In Proceedings of the 23rd international conference on Machine learning,

pages 217–224. ACM, 2006.

[17] James Dow and Sérgio Ribeiro da Costa Werlang. Uncertainty aversion,

risk aversion, and the optimal choice of portfolio. Econometrica: Journal

of the Econometric Society, pages 197–204, 1992.

[18] Robert F Engle and Robert Ferstenberg. Execution risk. The Journal

of Portfolio Management, 33(2):34–44, 2007.

[19] Larry G Epstein and Shaolin Ji. Optimal learning under robustness and

time-consistency. 2018.

[20] Larry G Epstein and Martin Schneider. Recursive multiple-priors. Jour-

nal of Economic Theory, 113(1):1–31, 2003.

[21] Larry G Epstein and Martin Schneider. Learning under ambiguity. The

Review of Economic Studies, 74(4):1275–1303, 2007.

[22] Lawrence C Evans. Partial differential equations. 2010.

[23] Frank J Fabozzi. Institutional investment management: equity and bond

portfolio strategies and applications, volume 177. John Wiley & Sons,

2009.

253



[24] Christoph Frei and Nicholas Westray. Optimal execution of a vwap

order: a stochastic control approach. Mathematical Finance, 25(3):612–

639, 2015.

[25] Antje Fruth. Optimal order execution with stochastic liquidity. PhD

thesis, TU Berlin, 2011.
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