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Faced with uncertainty of future electricity generation supply, many regional elec-

tricity markets have adopted or considered adopting capacity markets for electricity. We

study the structure of these markets and in particular capacity supply auctions such as

the one implemented by PJM Interconnection (PJM), a regional transmission organization.

Participants bid generation capacity into the auction, and those that win receive a capac-

ity payment in return for having this capacity available for generation at a future delivery

date. The auctions can be classified as multi-unit uniform price auctions, though price is

set according to a demand curve rather than by participants’ bids. We find closed-form

solutions for the optimal bids as a function of cost, study welfare impacts of the auction, and

show how the results can be extended numerically for more complex situations. We then use

these optimal bid functions in an agent-based simulation of electricity markets, comparing

energy-only markets to capacity markets and measuring the impact on both the generators

and consumers of electricity. Lastly we use our agent-based simulation model coupled with

reinforcement learners to determine whether or not the optimal bid strategy discovered in
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the beginning can be learned over time by agents participating in the energy and capacity

markets.
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Chapter 1

Introduction

Faced with uncertainty of future electricity generation supply, many regional elec-

tricity markets have adopted or considered adopting capacity markets for electricity. The

standard wholesale electricity markets widely used around the world consist of a real-time

and day-ahead spot market that allows supply and demand to schedule load and meet defi-

ciencies. Unfortunately, there have been situations in which these energy-only markets have

been unable to efficiently clear for various reasons when demand is very high and further

generating capacity is unavailable. Some of these include the introduction of artificial price

caps by regulators, insufficient quantities of real-time demand response, and various other

actions taken by the independent system operator (ISOs) that would be considered out of

market (Joskow (2008)).

These high demand situations only happen for a few hours a year (usually in the

hottest summer months, or coldest winter months), but generation capacity must be built to

be able to supply electricity during these times. Unfortunately, this capacity is only earning

money for a small portion of the available hours in a year, and could even go a year or

more without being called upon to generate. For a power plant to recover their fixed costs,

the price must be very high during the few hours that they operate. Base load generation

has higher capital costs and lower operating costs, while peaking units tend to have lower
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capital costs but higher operating costs. The base load generation may make a large amount

of its revenues by operating during the peak demand times; the peakers, however, must earn

nearly all their revenue during this time. If the price is too low, because of price caps or

otherwise, the revenues will be too low for these peaking units, and generation investment

will fall. This of course will lead to inadequate capacity to deal with high demand, and in

turn increase the probability of a loss of load event.

There have been a few suggestions to help alleviate the inefficiencies in the energy

only market such as those presented by Joskow (2007). The price caps that are currently

in place in most markets are lower than what the clearing price would be in a competitive

market. Raising these price caps would allow the peakers to recover their costs when called

upon. Whenever out of market actions are taken, the price should rise to the price cap.

Tools like rolling blackouts or voltage reductions are used by the system operator but are

not correctly reflected in the real-time market. Joskow notes that care must be taken to

ensure that market power is mitigated. Those with market power can artificially induce

scarcity, forcing the price to the price cap and receiving considerable sums of money.

In addition to reforming the wholesale energy markets, forward capacity markets have

been proposed as a way to eliminate this missing money gap. In markets where there is a

price cap or other barriers to prevent price reaching the optimum price during peak times

(this would be a price that allows peaking units to recover their costs), then a capacity

payment should be provided to cover the difference. Implementing this in practice is a

different challenge.

In the early to mid 2000s, capacity payments mechanisms were implemented based

on a target reserve margin which was determined by the ratio of generating capacity over
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peak demand. Unfortunately, the capacity payments calculated were too low to make up

for the gap in revenue from participating in the wholesale electricity market. Additionally,

based on a target reliability estimate and thus a target generation capacity, the price paid

was zero when capacity was over the target generation, and a fixed, flat payment when below

the target. This led to volatility in the capacity payment from year to year. Many system

operators introduced a demand curve which made the capacity price a smooth decreasing

function of target generation capacity. This type of demand curve style auction is what we

will examine in this paper. In particular, we focus on the type of auction run by PJM In-

terconnection (PJM), which can be described as a sealed-bid, single-price, multi-unit supply

auction.

The basics of the PJM auction are as follows. Each year an auction is held for elec-

tricity capacity delivery three years in the future (that is, the auction in 2015 will be for the

2018 delivery year). The ISO sets certain auction parameters, the two most important being

the total peak forecast demand and the reliability requirement. The reliability requirement

ensures that there is some excess percentage of capacity during peak demand. These two

numbers form the basis for the quantities of PJMs demand curve for capacity. Prices are

based on the cost of new entry, and set to represent the payment a new combustion turbine

would need yearly to break even. PJM publishes a demand curve each year for the auction.

On the supply side, bids are submitted by generators indicating the capacity payment

they would receive in exchange for the generation capacity provided. These bids are aggre-

gated and a supply curve is formed. The intersection of this supply curve and PJMs demand

curve determine the capacity payment received by those clearing in the market. There are

more specifics, such as price differentials between regions, and further auxiliary auctions,
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but this simplified representation is all that will be necessary for framing the context of the

problem.

The literature in standard auction theory is well-established. The seminal work by

Vickrey (1961) showed that in a standard first price auction, participants have an incentive

to shade their bids, while a second price auction is incentive compatible. Engelbrecht-

Wiggans and Kahn (1998) examine the multi-unit uniform price auction. They find that

when there are M units of goods for sale, each bidder wants to purchase two units, and not

all bidders can be satisfied, bidders underbid for the second good and thus pay very low

prices. Gretschko et al. (2014) prove that any equilibrium in a strictly descending multi-

unit auction is inefficient. Swinkels (2001) shows that in discriminatory and uniform price

auctions for multiple units, as the number of participants grows very large, the inefficiency

in these auctions goes to zero. These auctions are the more common single seller, multiple

buyer auctions, whereas we will discuss a single buyer, multiple seller auction.

The single buyer, multiple seller auctions presented in the rest of this paper resemble

the three common types of multi-unit auctions (discriminatory, uniform-price, and Vickrey)

as described by Krishna (2009); they differ in that the price is not determined entirely by

bidders’ bids, but rather it also depends on an exogenous demand curve specified by the

auction holder. This acts as a reserve price that is unknown to the bidders. Ausubel and

Cramton (2004) generalize the multi-unit Vickrey auction to allow for reserve pricing. They

find that truthful bidding is a dominant strategy in this scenario. Failure to set a reserve price

correctly, however, can lead to poor outcomes as described in Klemperer (2002). Blume et al.

(2009) observe that for any positive reserve price bidders bid truthfully when their valuation

exceeds the reserve price in the buyers auction. In a seller’s auction this would mean that
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suppliers would bid truthfully when their cost is higher than the minimum allowable capacity

price. Other work has been done to determine the optimal level of the reserve price, such as

that by Larsen et al. (2004) and Cramton and Stoft (2007).

Both Hortasu and Puller (2008) and Schwenen (2015) analyze a multi-unit supplier

auction such as the ones considered here. However, both assume perfect information on the

part of the participants, both about payoffs and costs of other generators. Contrasted with

the standard auction participant who receives their perceived value minus their cost, the

auction participant in our paper receives some unknown payment that is a function of all

bids minus their cost. This added uncertainty complicates the problem and has not been

analyzed fully but has a large impact on bidding behavior as we will show. In their paper,

Hobbs et al. (2007) show that the decreasing price auction results in lower costs to consumers

and more stability in long term capacity prices than the flat price auction.

In Chapter 2, we analyze the capacity auction described above as a game in the

economic sense. We begin with a simple example and work our way through progressively

more complicated auction structures ending with the single buyer, multiple seller uniform-

price auction. By the end of the chapter we will have analyzed a mechanism that is quite

close in theory to that used by independent system operators in practice. We begin by first

introducing the game of chicken in the context of a capacity auction to demonstrate the core

concepts of bidding above and below cost, as well as the impact of multiple bidders. From

there we begin the brunt of the analysis. In the second section we analyze a single generator

in isolation in three scenarios. The first scenario is that when the clearing price is known,

the second when it is unknown, and the third scenario when it is unknown and the game is

repeated over multiple time periods. We find that in all cases truthful bidding is the optimal

5



strategy, and furthermore, in multi-stage games, bidding 0 for every period after the first is

optimal.

In the third section we introduce other bidders. At first, we consider a situation

where the price is unknown and a single winner is chosen. The optimal bid is calculated in

closed form as a function of the number of participants and a generators true cost. From

there, the restrictions are lifted and multiple winners are permitted. This time however, a

closed form solution is unable to be found, and a numerical solution is presented instead.

The results are presented as a function of the number of winners holding total participants

fixed, and as a function of the number of participants while holding the number of winners

fixed. We find that when more bidders are present, the degree of bid-shading increases, and

conversely, when the number of bidders is fixed and the number of winners is increased, the

degree of bid-shading decreases.

We conclude the optimal bid functions section with a game where the price is not

fixed, but is determined by the intersection of a demand curve set by the ISO and the

bidders bids. We find a closed form solution for the optimal bid as a function of the number

of participants and the slope of the demand curve. Here we find that the severity of bid-

shading is less than before but still dependent on the number of participants and the slope

of the demand curve.

In Section 4, the bid functions found in Section 3 are used to analyze the health and

welfare of the market. The probabilities that the ISO receives new capacity at any given price

is compared across the different scenarios described previously. Analogously, the probability

that any individual generator clears as a function of clearing price is also presented. To

compare the differing mechanisms, both the demand curve auction and a fixed price with
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fixed number of winners auction are analyzed. A reasonable scenario in which an ISO needs

new generation capacity serves as the basis for calculating total costs to the system. Both

capacity price payouts and costs as a result of lost load are measured and contrasted.

In Chapter 3 we aim to take the analysis performed in Chapter 2 using the theoretical

model and apply it to a simulation model of electricity markets to see whether the theory

holds at scale. To do so, we turn to a simulation model where each generator is modeled

by a single agent. These agents can then be given a set of behaviors to follow and set

off to interact with each other in a simulation of an electricity market. Researchers at

Iowa State University developed the Agent-based Model of Electricity Systems (AMES) to

perform such analyses on a day-ahead electricity market. Additionally, each generator in

the simulation is equipped with a reinforcement learner module, allowing it to optimize

its bids in this day-ahead market. Sun and Tesfatsion (2007) first use the model to test

the performance of the wholesale power market platform (WPMP) proposed by the Federal

Energy Regulatory Commission (FERC) in 2003. They implement a simple 5-node model

to showcase the modeling framework and to examine the ability of generators to exercise

market power under the WPMP rules. They find that when allowed to bid strategically, the

generators do submit higher than true marginal costs to the ISO, and that overall costs are

three times higher than if they had reported truthfully. However, there is lower volatility

during peak periods and reduced congestion on the transmission lines.

The model developed by Sun and Tesfatsion does not allow for competitive market

entry nor does it have any form of capacity market, only the day-ahead market. Therefore,

it is not ideal for investigating the long-term impacts of or abilities for electricity markets

to adapt to changing demand conditions and increasing load growth over time. We seek
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to add these components as modules to the existing AMES day-ahead market and learning

framework.

The competitive market-based entry uses a levelized avoided cost of electricity (LACE)

vs. levelized cost of electricity (LCOE) comparison to determine market entry criterion. This

approach has been modeled in the National Energy Modeling System (NEMS) model of the

Energy Information Administration (EIA) (Namovicz (2013)) and has been used in the Full

Cost of Electricity report from the Energy Institute (Mann et al. (2017)). Every generation

source has a LCOE associated with producing a MWh of electricity. Similarly, each source

also has an average revenue LACE from producing a MWh of electricity. If the LACE is

greater than the LCOE, that is to say the revenue is greater than the costs, the generator

will choose to enter the market.

The capacity market uses a demand function of the kind implemented by PJM in their

own capacity market. This type of capacity market has a target reserve margin set by the

ISO. The reserve margin represents the amount of capacity held in reserve in case of outages.

Each year PJM projects a peak demand number, and the total amount of capacity installed

in the system divided by the peak demand is the reserve ratio. Subtracting 1 from this gives

the reserve margin. Most ISOs aim to have a reserve margin in the range of 10-15%.

Capacity is paid a higher price when the installed reserve margin is low relative to the

target and is paid less when the installed reserve margin is high relative to the target. The

capacity auction is held yearly, and both existing and new generation bid in to the market.

The price paid is the intersection of the demand curve and the aggregated capacity supply

offers from all generators. Those that clear in the auction are paid this price per MW of

capacity they submit into the market that year. There are penalties for non-performance,
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but we do not address such details here.

Because our analysis focuses on the impact of a capacity market on energy markets,

we must give our agents a set of rules to follow when bidding into the auction. Generators

bid in according to the rules determined in Chapter 2. Recall that this means truthfully

for new generation and 0 for existing generation. We begin with the case of an energy-only

market. The only way new generators can enter the market is when the necessary economic

conditions (LACE > LCOE) are met. A very loose approximation to the Texas energy

market is constructed, and the simulation run for a period of 10 years. The performance of

the market is observed, from average electricity prices and generator revenues to installed

reserve margins and loss of load events. The simulation is then repeated at various levels of

maximum price caps.

Following the energy-only case analysis, a market with a capacity auction is tested.

The results of this are compared with those of energy-only markets. We find that although

capacity auctions are costlier at providing similar levels of electricity, the reliability that they

provide can offset this cost at small relative cost to the consumer.

In Chapter 4 we return to the learner mentioned earlier. Our goal for this chapter is

to examine whether or not the results found in Chapter 2 can arise naturally using a model

for human behavior and the model of electricity markets presented in Chapter 3. Rather

than taking the results from Chapter 2 as given, we allow generators to bid from a pool of

actions (ranging from -100% to +100% of their actual cost). We use a reinforcement learner,

which means that actions that result in favorable outcomes are more likely to be played in

the future. Conversely, those that lead to unfavorable outcomes are less likely to be played.

Each learner starts out with a prior distribution over the actions, and as the game is iterated,
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updates the actions according to some reward function that maps rewards to changes in the

probabilities. We develop a reward function to appropriately model the returns of clearing

or not clearing in the capacity auction. Each year in our model represents an iteration in

the game. We hope to find that the probability distribution over the actions at the end of

our simulation correspond closely to the behaviors we defined in Chapter 2.

Roth and Erev (1995) first employ this reinforcement learner to study repeated games.

Their implementation of this learner is influenced by aspects of learning discussed in the

psychology literature. They aim to show that a simple model of behavior can closely match

the observed behavior of humans. The simulation model of the learner is compared with

that of experimental data and shown to closely approach the observed behavior from the

experiments. In a later paper (Erev and Roth (2007)) they again revisit the ability of agent-

based learners to accurately model human behavior. They conclude that even simple agent-

based learners such as the one implemented in this paper can capture numerous aspects of

human behavior. It is with this endorsement that we feel confident in using the reinforcement

learner to model generator bidding behavior in capacity auctions.

We begin the chapter by introducing the Roth-Erev learning algorithm and the as-

sumptions made to support it. Afterward, our variation on the algorithm is introduced. The

reward function and its multiple sources of signal updates are described in detail. Addition-

ally, a simple example is provided so that the reader may follow along and fully comprehend

the mechanism by which the signal updates occur. Following this exposition, the simulations

are run. First, we permit only new generators to learn strategies, while existing generators

must bid 0 as before. Subsequently, we then allow both existing and new generation to learn

the optimal bidding behavior. The results of this Chapter show that the optimal strategies
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found in Chapter 2 and used in Chapter 3 hold true. The structure of the auction lends itself

to truthful bidding as an optimal strategy for new entrants, and 0-bidding holds for existing

entrants. We conclude with some final words and recommendations based on the research

completed, as well as future directions and extensions that would be possible.
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Chapter 2

Capacity Auctions as a Mechanism

2.1 A Simple Game

To motivate our development we consider two players in a market. These can be

interpreted as the marginal bidders in the full supply auction. Both are offering in the same

amount of generation capacity, and both have the same costs. For now, we ignore any price

submitted with their bids, assuming that both will be accepted if they enter. If a generator

does not enter, then obviously it will not receive a capacity payment and its total payoff is

0. If one enters and the other does not, the entrant’s payoff is the capacity payment minus

their cost, which we denote with h. If both enter, both receive the net amount l < h; the

price is lower than when only a single generator enters, as more capacity is supplied to the

market, moving further down the demand curve. The game can be seen in Figure 2.1. If

l is positive, then the dominant strategy is to enter no matter what. The interesting case

is when l is negative. This could be the case that the capacity payments minus their costs

results in a financial loss. Then this becomes the well known game of chicken described by

Rapoport and Chammah (1966).

Enter Don’t Enter
Enter l, l h, 0

Don’t Enter 0, h 0, 0

Figure 2.1: A simple game for two firms
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This game has two pure strategies and one mixed strategy equilibrium. The two pure

strategy equilibria are enter/don’t enter for firm 1 and vice-versa for firm 2. The mixed

strategy for either entrant has the probability of entering equal to

h

h− l
, for h > 0 > l. (2.1)

The expected capacity additions would then be

2sh

h− l
, for h > 0 > l, (2.2)

where s is the amount of generation capacity being entered into the market per participant.

For a market operator to ensure acquisition of new capacity it would be best to set market

parameters such that h is high and l is as small as possible. This can lead to high capacity

payments, which in the end are passed on to the consumer. There is a balance that needs

to be struck between total capacity payments and capacity acquired.

2.2 Preliminaries

In the previous section, we assumed the bidders had identical costs, and did not

account for the bidding in of costs that occur in actual capacity auctions. In this section

we will define frequently used terms and the basic structure of the auctions. Henceforth,

bidders will bid w in dollars per megawatt that represents their cost of producing capacity

to generate electricity. The capacity price p in $/megawatt is paid to bidders who win the

auction for the amount of capacity they bid into the auction. We will commonly refer to

capacity price and capacity payment as the same thing throughout this paper. Bidders also

submit a quantity q of capacity supply along with their bid w, but in this paper we will not

be focusing on the quantity portion of bids, choosing to model bidders of identical sizes.
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The ISO has a demand curve for capacity, with which they determine the price for

capacity. This acts in essence like a reserve price: if the supply of capacity offered is at too

high a price, then there will be no winners and no capacity payments awarded. The supply

bid/quantity pairs are aggregated into a supply curve, and the intersection of this with the

demand curve determines the amount of new capacity added and the capacity payment that

each bidder receives. We call this a multi-unit uniform price auction since the number of

winners is variable but the price paid to each winner is the same, regardless of whether or

not their bid was lower than the clearing price. On the bidder’s side, winning the auction

awards payment p and costs c, the levelized cost of that new capacity, for a return of p− c.

Entering the auction and not winning costs nothing since the obligation to provide capacity

is not present. In this paper we do not consider other costs from entering the auction such

as administrative costs.

The goal for the holder of the auction is to acquire capacity to ensure the reliability

of their system at the lowest possible price. It is not to acquire as much capacity as possible

or to acquire it as cheaply as possible. The demand curve set by the auction holder is

essentially their willingness to pay for varying amounts of capacity, and it is possible that

they “overpay” for capacity when the supply price at a given quantity is lower than the

demand price at that quantity. This overpayment is less apparent when allowing for bids

that are not single price/quantity pairs, but rather a full supply curve offer.

In Section 2.3 we examine the optimal behavior of a single bidder playing against the

“system.” We observe how her behavior changes under information uncertainty and with

multi-period games. In Section 2.4 we introduce multiple bidders and competition. We start

with a simple single winner auction, then extend to the multiple winners case, and end with
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a multiple winners, decreasing price auction. In Section 2.5 we address the welfare impacts

that the models in Section 2.4 have on the bidders and the system operators. We find the

average probability of winning and the average total additions to the market as a means of

calculating value to bidders and system operators respectively. Total cost to the system is

analyzed by weighing the cost to acquire capacity versus the cost incurred from loss of load.

We finish with some extensions and conclusions in the final two sections.

2.3 Single Bidder

We first assume a single bidder in the system. We assume that the capacity payment

is dependent on the other actors in the system, but exogenous in this model. That is to

say, a single bidder will observe a payment p or have a prior distribution on p that reflects

the behavior of all other participants in the market, but whose own bid does not affect the

payment.

2.3.1 Known price

We begin by addressing the known price case and assume that the single bidder knows

what the market clearing price will be. In other words, the bidder cannot affect the price, but

can predict it. To ensure receipt of a capacity payment, the bidder will bid below the market

clearing price p. Thus the optimal strategy in this case is to submit some bid w ∈ [0, p).

However, if the cost of entry is c, the strategy changes. The optimal bid is then

w(c, p) =

{
c if c > p

x ∈ [0, p] if c ≤ p
(2.3)

The payoffs would be 0 if the cost c is greater than p or p − c if the cost c is less than the

clearing price p. So, the bidder should always bid their true cost c. If it is lower than p,

15



she will clear the auction and receive payment p. If the bid does not clear, then she will not

have to pay the cost of entry c.

There is no incentive to shade bids. Suppose w < p < c. This means the bid would

clear the auction and the bidder would receive payment p. However p− c < 0 and the bidder

would be worse off than if her bid had not cleared. There is also no incentive to inflate the

bid. If c < p < w, that is the costs are lower than the price p but the bid is higher than p.

This bid will not clear in the auction and there will be no payoff, whereas a bid of the true

cost c provides a positive return of p− c. There is also the trivial case of c < w < p, where

the bidder clears in the auction with a bid higher than their cost, and doing so confers no

benefit.

2.3.2 Unknown price

Now assume the price is unknown. There is still a single bidder with cost c, and

all other bidders and their behaviors are represented with a probability distribution F over

the interval [a, b] with a ≥ 0 that represents the range of feasible price, so p ∈ [a, b]. For

simplicity, we assume that if the generator’s bid w is less than p, then she receives the

payment.

The value function for this generator is a function of its bid w, and is

V (w) =

∫ b

a

1w≤p(p− c)f(p) dp. (2.4)

The indicator function determines when the bid is less than the capacity payment. If it is,

the payoff is the capacity payment minus the cost of construction p− c. If the bid is higher

than the capacity payment, the payoff is 0.
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Equation (2.4) is equivalent to

V (w) =

∫ b

w

(p− c)f(p) dp, (2.5)

where we have replaced the indicator function by rewriting the bounds of the integral in

equation (2.4). To maximize V (w), we differentiate (2.5):

d

dw

∫ b

w

(p− c)f(p) dp = −(w − c)f(w) (2.6)

It is easy to see that there is a critical point where w = c. We check the second order

conditions and determine that the critical point occurs at a maximum, and the optimal

strategy is to bid the true cost, as that maximizes the expected payoff to the bidder. Again,

regardless of the distribution of F , truth-telling yields the highest expected payoff.

2.3.3 Two periods

Now consider the case where the bidder must pay the costs over the lifetime of the

plant, in this case, two periods. For now we assume the distribution of prices remains the

same across periods. There are two decision variables, the bid in the first period w1 and the

bid in the second period w2. If we make the simplifying assumption that the bidder can only

build capacity in the first period the value function is

V (w1, w2) =

∫ b

w1

(p1 − c)f(p1) dp1 +

∫ b

w1

[∫ b

w2

p2f(p2) dp2 − c
]
f(p1) dp1 (2.7)

There are two components to this. The first is the expected value in the first period. The

bid either clears the market or does not, and the bidder receives the payoff p1− c or nothing.

The second period payoff is conditional on the first. If the bidder cleared the auction in the

first period, then the bidder is required to build and to provide the capacity, and thus must
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pay the costs associated with entering the market. This is why the cost is moved out of the

integral in the second period. Taking derivatives we see

d

dw1

V (w1, w2) = −(w1 − c)f(w1)−
(∫ b

w2

p2f(p2) dp2 − c
)
f(w1) (2.8)

and

d

dw2

V (w1, w2) = 0−
∫ b

w1

w2f(w2)f(p1) dp1

= −w2f(w2)−
∫ b

w1

f(p1) dp1

= −w2f(w2) [F (b)− F (w1)]

= −w2f(w2) [1− F (w1)] (2.9)

Setting equation (2.9) to 0, there is a critical point at w2 = 0. Substituting w2 = 0 and

setting equation (2.8) to 0 gives

−f(w1) [(w1 − c) + E[p2]− c] = 0

It is easy to confirm that at w1 = 2c− E[p2] and w2 = 0, we have a maximum.

For n periods the optimal bid in the first period would be w1 = nc−(n−1)p̄ where p̄ is

the expected value of the capacity payment, and we define the total cost as C = nc. Similarly,

for different distributions of prices in each of the periods we have: w1 = nc −
∑n

i=2 E [pi]

and the optimal bid in the first period is still the total cost minus the sum the of expected

payments from future auctions. However, for very large total cost C or low p̄, a large bid w1

could result in a project that is never constructed since it may never clear in the auction.
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Thus the optimal bidding strategy for n periods is

wt =

{
nc−

∑n
i=2 E[pi] if t = 1

0 otherwise

Historical bids from PJM auction data support this strategy. The majority of existing

capacity entered in the auction is bid in at a price of $0 because once a plant is built, the

generator wants its bid to clear in every subsequent capacity auction.

2.4 Multiple Bidders

2.4.1 Single winner

We now introduce competition into the model. Each bidder i has some cost ci of

entry, which follows a common distribution Ci ∼ F (·). The costs are independent. Again

there is a capacity payment p and a single winner who will receive it if they are (1) the lowest

bidder, and (2) bid lower than payment p. Each bidders’ bid is some function of their cost.

Assume that each bidder j 6= i uses the same bidding strategy wj = w(cj). We will ignore

asymmetric equilibrium in this model.

The value function of bidder i is then

Vi(ci, wi) = (p− ci) · Pr [wj > wi, ∀j 6= i] · 1wi≤p (2.10)

This value function represents the expected value of the bid wi and the cost ci. The payoff

the bidder receives is equal to the capacity payment received less the cost if they win, or

zero otherwise. Since there is no obligation to provide capacity if the bidder does not win,

there will be no costs incurred. Again, we ignore administrative costs.
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Bidder i wants to choose wi such that

max
wi

(p− ci)
(
1− F

(
w−1(wi)

))n−1 · 1wi≤p (2.11)

Calculating the distribution of bids would require transforming the distributions, which is

why in Equation (2.11) we transform the probability statement Pr [wj > wi] into Pr [cj > w−1(wi)],

for which the distribution is assumed known.

In this example, since the bidders know p, and they will know their ci, then wi needs

to be either 0 or greater than p. If the payment is higher than the cost (p > ci), then one

should bid as low as possible to beat out the other bidders and win the auction. (Here

there is bid shading since the actual cost of entry will almost certainly be non-zero which

is different from the case where there was a single bidder acting alone.) If the payment is

lower than the cost, then a bidder should bid higher than p to avoid winning the auction.

Now let us assume that all bidders have a common prior distribution P ∼ H(·) on

the payment. The expected payoff becomes:

Vi(ci, wi) =

∫
(p− ci) · Pr [wj > wi, ∀j 6= i] · h(p) · 1wi<p dp (2.12)

Bidder i wants to choose wi such that it maximizes

max
wi

Vi(ci, wi) =

∫ b

wi

(p− ci)
(
1− F

(
w−1(wi)

))n−1
h(p) dp (2.13)

The first order condition is

− (wi − ci)h(wi)
(
1− F

(
w−1(wi)

))n−1

+

∫ b

wi

(p− ci)(n− 1)
(
1− F

(
w−1(wi)

))n−2 −f (w−1(wi))

w′ (w−1(wi))
h(p) dp = 0
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Replacing wi with w(c) and dropping subscripts we have

− w′(c)(w(c)− c)h(w(c)) = (n− 1)
f(c)

1− F (c)

∫ b

w(c)

(p− c)h(p) dp. (2.14)

Equation (2.14) will be difficult to solve without making some additional assumptions.

For simplicity, we assume each bidder has some cost ci drawn independently from a uniform

distribution U(0, 2) and the prior distribution on the price p is also a uniform distribution

U(0, 2). In the context of a capacity auction for electricity, a cost of 1 would be equivalent

to one times the cost of new entry (CONE), a commonly used value that represents the

levelized cost of a new combustion turbine plant, usually reported in dollars per megawatt-

year (around $121,000/MW-year (PJM (2014)). Thus, in this example, the possible costs of

bidders and the possible capacity payments both range from zero to twice the cost of new

entry, and their means are equal to the cost of new entry.

The optimal bid differential equation then becomes

w′(c) = −(n− 1)(w(c)− 2)(2c− w(c)− 2)

2(c− 2)(c− w(c))

The solution to this differential equation with boundary condition w(2) = 2 is:

w(c) =

{
2(nc−(n−1))

n+1
if c > (n− 1)/n

0 if c ≤ (n− 1)/n

In actuality, the solution is not a piecewise function; we have truncated the lower end of the

range at 0 since negative bids are not allowed. Figure 2.2 shows the optimal bids as functions

of cost for various numbers of bidders n and a gray dashed line representing truthful bidding

where w(c) = c. We observe bid shading at every realization of cost; i.e. every bid function

lies below the truthful bidding line. Regardless of whether your cost is above or below the
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cost of new entry, you will bid less than your cost (with the exception of a single point at the

upper limit of the cost, w(2) = 2). Additionally, the amount by which you shade your bid

decreases as your cost increases. For n = 2 bidders, a cost of c = 0.75 (or $90,750/MW-year),

the optimal bid is w = 0.33 (or $40,333/MW-year), a 55% decrease. A cost of c = 1.5 results

in a bid of w = 1.33, only an 11% decrease.

When there is more competition, or bidders, the severity of the bid shading in-

creases. For example, with two bidders, and a cost equal to the cost of new entry c = 1 or

($121,000/MW-year), the optimal strategy would be to bid w = 0.66. With n = 3 bidders,

the same cost results in a bid of 0.5, and with n = 4, a bid of w = 0.4. There are two

probabilities acting as opposing forces, the probability that you beat out the other bidders

making you want to lower your bid, and the probability that you clear in the auction but at

a clearing price that is lower than your true cost c, suffering a loss.

Another way to look at this is to say that the region of 0 bidding increases as n

increases, since the probability that a competitor’s bid cj will be lower than the bidder’s cost

ci increases with n. Therefore one bids 0 to ensure that one has the lowest offered price.

It should be noted that this region of 0 bidding will always be some region c ∈ [0, t] where

t ≤ 1. This is because the expected value of the payment is equal to 1. By bidding 0 when

your true cost is below 1, your expected gain is still positive.
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Figure 2.2: Optimal bid functions in the single winner case. Note the upper most gray line
on the diagonal represents truthful bidding, e.g. w(c) = c.

In Appendix 1 we analyze a case with a less “convenient” choice of bounds on the

uniform distribution to show that the result still generalizes.

2.4.2 Multiple Winners

2.4.2.1 Fixed price

We extend the analysis to have k > 1 winners, but still a fixed price unaffected by

the number of bidders. We can consider this as a proxy for elastic or nearly elastic demand

curves or minuscule supply additions such that the total added capacity does not change

the capacity payment to winners. PJM’s earlier capacity credit market was similar to this

(Sener and Kimball (2007)). Capacity up to a certain level was paid a fixed price, and any

capacity over that benchmark received nothing.
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In this model, rather than needing to be the lowest bidder, a winning bidder only

needs to (1) bid lower than the payoff, and (2) be one of the k lowest bidders. The value

function for a bidder is

Vi(ci, wi) =

∫
(p− ci) · Pr

[
W(k) > wi}

]
h(p) · 1wi<p dp. (2.15)

We assume that all bidders share a prior distribution h(p) on the payoff. We define W(k) to

be the kth order statistic of the n − 1 other bids. Because we are looking for a symmetric

equilibrium, and the bidding function should be monotone, we can rewrite this in terms of

the order statistic of unknown costs C, for which a distribution can be easily found:

Vi(ci, wi) =

∫
(p− ci) · Pr

[
C(k) > w−1(wi)}

]
h(p) · 1wi<p dp (2.16)

If we assume again that the distribution of costs and the common prior on p follow a U(0, 2)

distribution, we obtain the following first order condition

w′(c) =
(w − 2)ck−1(2c− w − 2)(2− c)n−1−k

2n(c− w)B(k, n− k)(1− I c
2
(k, n− k))

(2.17)

whereB is the beta function and I c
2

is the regularized incomplete beta function (B(x; a, b)/(B(a, b)).

A closed form solution cannot be found, so the differential equation solver LSODA was used.

The shapes of the optimal bid functions can be seen in Figure 2.3. Note that in Figure 2.3a,

for a fixed number of bidders n = 5, as the number of winners k increases the optimal bid

function approaches w(c) = c. Because the likelihood of clearing the auction increases with

the number of accepted winners, one does not have to submit such lowball bids in an effort

to beat out other bidders. However, the function alternates between convex and non-convex

due to large portion of almost surely 0 probability in the Beta distribution when n and k

are close.
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For a fixed number of winners k, we see that bidders have the incentive to bid a smaller

and smaller fraction of their true costs as competition increases. As n increases the 0 region

of bids will increase up to 1 times CONE, as costs below 1 have a positive expected profit.

This is very reminiscent of the single winner case. Figure 2.3b shows that misrepresentation

of costs is less of an issue as n approaches k = 3; the intensity of competition decreases as

n approaches k. With more chances to win a payment, having a bid that more accurately

represents the true cost minimizes the chance of a net loss.
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(a) Optimal bid function for various k, n = 6.
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(b) Optimal bid function for various n, k = 3.

Figure 2.3: Optimal bid functions in multiple winner, uniform price auction. Note the upper
most gray line on the diagonal represents truthful bidding, e.g. w(c) = c.

2.4.2.2 Decreasing demand curve

The previous section dealt with the analysis of a typical auction with a constant

payout. Now we extend the game to have a uniform payout as a function of the offers.

The more winners the lower the payout. We approximate the demand curve with a linear

function with slope α. Since all suppliers are identical, each unit supplied will move along

the demand curve an equal amount. We simplify this by fixing some base price p1 = p for 1
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accepted unit, and pi+1 = p− iα for additional cleared supply.
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Figure 2.4: Supply and demand curves

Some examples will help illustrate the auction clearing mechanism. In Figure 2.4, we

have a demand curve and a supply curve created from sorted and stacked bids. The price

for a single unit of capacity is p; for two, p − α; for three, p − 2α and so on. The supply

curve intersects the demand curve between two and three units; because we do not allow

fractional capacity additions only two units clear, and they clear at a price of p − α, even

though the supply costs less. Table 2.1 has various possible scenarios of bids and outcomes

for three bidders X1, X2, and X3, and their respective bids W1, W2, and W3.

Let p1 = 1.6, α = 0.4, p2 = 1.2, p3 = 0.8, etc.

Note that in the second row of Table 2.1, though X2 and X3 are less than p1, only the

lower bid W3 receives the payoff. For n suppliers to receive a payment, those n bids must
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W1 W2 W3 Outcome
1.10 0.60 1.60 Two winners, X1 and X2, receiving p2 = 1.2.
1.80 1.50 1.40 One winner, X3, receiving p1 = 1.6.
0.40 0.80 0.60 Three winners, X1, X2, and X3 , receiving p3 = 0.8.
1.74 1.80 1.62 No winners.

Table 2.1: Example payments to bidders.

all be less than or equal to pn.

If we repeat our assumption that bidders are identical, and that the price is random

according to some distribution P ∼ H(·), our value function is now much more complicated:

Vi(ci, wi) =

∫
(p− ci) · Pr

[
W(1) > p− α}

]
h(p) · 1wi<p−α dp

+

∫
(p− ci) · Pr

[
W(1) > wi}

]
h(p) · 1p−α<wi<p dp

+

∫
(p− α− ci) · Pr

[
W(1) ≤ p− α ∩W(2) > p− 2α

]
h(p) · 1wi<p−2α dp

+

∫
(p− α− ci) · Pr

[
W(1) ≤ p− α ∩W(2) > wi

]
h(p) · 1p−2α<wi<p−α dp

+

∫
(p− 2α− ci) · Pr

[
W(2) ≤ p− 2α ∩W(3) > p− 3α

]
h(p) · 1wi<p−3α dp

+

∫
(p− 2α− ci) · Pr

[
W(2) ≤ p− 2α ∩W(3) > wi

]
h(p) · 1p−3α<wi<p−2α dp

+

...

+

∫
(p− nα− ci) · Pr

[
W(n) ≤ p− nα

]
h(p) · 1wi<p−nα dp

where W(j) is the order statistic of the n− 1 other bids. Whereas before we only compared
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bids against other bids, here we must also compare bids against unknown prices, which

depend on offers of other market participants. As seen in the example, there are two ways

for a bidder to realize a price pt: either ensure that the t − 1 lowest competitors’ bids are

less than pt and the others are bids higher than pt+1 if her bid is less than pt+1, or that the

t− 1 lowest competitors’ bids are less than pt and the other bids are higher than her bid if

her bid is less than pt.

For n bidders and a demand curve slope −α, we obtain the differential equation

w′(c) =
n− 1

4

(
α2 + 2α(w(c)− c)

c− w(c)

)
, (2.18)

which has solution

w(c) =
a2(−(n− 2)) + 2ac(n− 1) + 4c

2a(n− 1) + 4

when w(2) = 2− a2(n−2)
2a(n−1)+4

. Unlike the multiple winners uniform price auction, the optimal

bid function again has the kinked shape from the single winner auction seen in Figure 2.2.

Figure 2.5 shows optimal bid functions for various bidders with α = 0.3. It is not as apparent

in the figure, but for lager α levels there is more separation between the bid functions for

various n and higher n values shift the x-intercept to the right. The n = 2 line is the topmost.

This α value represents a demand curve steeper than that used by PJM and there

is not much sensitivity to a change in the number of bidders. As the number of bidders

increases, the bid function shifts rightward along the x-axis. As α increases, there is a larger

impact on the shift of the curve and there variability in the prices increases. The severity

of the bid shading is reduced, since each bidder is now much more likely to receive a low

payment, even if the starting price p is high.

28



n=2

n=3

n=4

n=5

n=6

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Cost c

B
id
w
(c
)

Figure 2.5: Descending price auction with α = 0.3.

2.5 Welfare

We now study the impacts of this auction on the welfare of the bidders and the auction

holders, the ISOs. What separates this auction from many other auctions is the inclusion

of a demand curve that is functioning similarly to a reserve price. Every capacity payment

is willingly paid by the ISO, as set by their demand curve, to add additional megawatts

of capacity. The results produced in this section are obtained from simulation where exact

results could not be computed, especially in the multiple winner cases. Costs are drawn from

a Uniform(0, 2) distribution, and the optimal bid function is applied to these costs for every

bidder. Ties are broken randomly. Clearing prices and payoffs are calculated and 200,000

iterations were run to obtain convergence.

We begin this section by discussing the simplest cast, where there are n entrants and
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one winner, and the price paid is randomly drawn from a Uniform(0,2) distribution. We

then extend this case to have k winners. The price paid is still randomly drawn from the

Uniform(0,2) distribution, but now up to k units that clear get that price. Lastly we examine

the case where an initial price for one unit of generation is drawn from the Uniform(0,2)

distribution, but the price paid decreases as a function of additional generation. We conclude

the section with a comparison example of the multiple winners, flat price case and multiple

winners, decreasing demand curve case. The total costs to the system are broken down in

terms of costs due to potential outages, and costs of acquiring new capacity.

In all scenarios, the auction is inefficient. An efficient auction is one where the winners

are those with the highest valuations, or in this case, the ones with the lowest costs. Because

there are regions of zero bids in each optimal bid function, there can be a situation where

multiple bidders bid zero. In this case, the winner would be determined randomly, which

could result in a bidder with a higher true cost winning the auction.

2.5.1 One winner

For the one winner case, the bidders have an incentive to misrepresent their costs.

We can calculate the average winning bid in the single winner case.

∫
w dW1(c) =

∫ 1

n−1
n

nc− (n− 1)

n+ 1
n
(

1− c

2

)n−1

dc =

(
1
n

+ 1
)n

2n−1(n+ 1)
(2.19)

where n is an integer and greater than 1. As the number of participants increases, the

average winning bid approaches zero. Equation 2.19 has two intuitive implications as the

number of participants increases: (i) the higher the probability that some participant has a

low cost; (ii) the optimal bid function has a larger region of 0 bids. Because the winning bid
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goes to zero, for any given n the probability of having a unit of capacity accepted approaches

1 since the actual payment p is in the interval [0, 2].

The probability that the ISO receives new capacity at a given price is equal to

Pr
[
C(1) < w−1(p)

]
= Fn

(
(n+ 1)p+ 2(n− 1)

4n

)
. (2.20)

In Equation 2.20, Fn is the CDF of the beta distribution with parameters (1, n). As the price

increases, the probability that the ISO acquires a unit increases. In the two player case, the

average probability that a bid gets accepted is 50% when the price is 0, and goes to 1 as

the price goes to 1. As n increases, for any given price p, and {n1, n2 |n2 > n1}, there is a

higher chance of accepting a unit at any given price level, that is Fn2(w
−1
n2

(p)) > Fn1(w
−1
n1

(p)).

This is a result of the inverse bid functions w−1 increasing in n and Beta(1, s) stochastically

dominating Beta(1, t) for 1 ≤ s < t. Figure 2.6 shows the average probability of winning for

an individual and the mean number of units accepted in the auction at varying realizations

of p.

As more participants enter the market, each individual bidder becomes less likely to

win (see Figure 2.6a), but the ISO is more likely to come away with a unit of generation

(see Figure 2.6b). It is in the auction holder’s best interests to encourage more participa-

tion as this results in greater overall system stability from the acquisition of new capacity.

Conversely, the generator would prefer fewer participants since this increases the chance of

winning. However, because entry is costless and the cost c is only incurred if the bidder wins,

there is little downside to entering the auction in these situations. There is a balance between

the ISO, who wants to obtain capacity, and thus a higher number of entrants, whereas the

generators want to clear in the auction and thus a lower number of entrants.

31



n=2

n=3

n=4

n=5

n=6

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Price p

W
in
P
ro
ba
bi
lit
y

(a) Individual probability of winning
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(b) Mean number of units accepted

Figure 2.6: Single winner.

2.5.2 Multiple winners, flat price

As in the single winner case, when there are multiple winners the average winning

bids decrease as the number of participants n increases. That is to say, the average lowest

bid in the two bidder case is higher than the average lowest bid in the ten bidder case. This

is true for all the accepted bids. However, the highest bid that gets accepted is increased

because there are more bidders.

The number of bidders clearing in the auction increases as the price increases, as

expected. The higher the price, the more likely it is that there are k winners below that

price. If the clearing price is low there might be less than k bidders accepted, even though

there are up to k winners. Figure 2.7 is a graph of a bidder’s probability of winning. The

interesting point here is that the probabilities are not monotonic in k. Recall in Figure 2.3a

that the bid function begins with the kinked shape similar to the single winner case, but

approaches the more linear shape as k approaches n. Thus at low values of p, even though
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there can be more winners, the bid function has changed such that the chance of submitting

a bid below p is reduced. For high values of p we see the expected probability of winning is

k/n in Figure 2.7a. This is much like the win probability in the single winner case from the

previous section, except the asymptotes were at 1/n. Another interesting byproduct of the

unconventional bid functions is the win probability as a function of cost seen in Figure 2.7b.

At costs greater than 1 the probability of winning increases in k, but no such generalizations

can be made at the lower costs.
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(a) Win probability against price
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(b) Win probability against cost

Figure 2.7: Individual probability of winning, uniform price with five bidders, (n = 6).

2.5.3 Multiple winners, decreasing demand curve

For the descending demand curve case, Figure 2.8a shows the average clearing price

in the auction when p1 starts at the level given on the x-axis. Note that the clearing price

can never be higher than the initial price, indicated by the dashed line y = x. With more

bidders, there are more chances for cheaper generators to enter, thus driving down the price.

At p1 = 2, α = 0.3, and n = 6, the average clearing price is a little under 1.2 as seen in

Figure 2.8a. This indicates that on average, a little over 3 units were accepted at that price
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as corroborated by the output in Figure 2.8b. The average number of additions of units of

capacity increases as n increases, but it should be noted that the proportion of winners to

entrants decreases. These values are dependent on the α level; a steeper demand curve would

mean fewer additions of units of capacity and vice-versa. The amount of new additions is

heavily limited by α. At p1 = 2 and α = 0.4, the possible prices are {2.0, 1.6, 1.2, 0.8, 0.4, 0}.

This means that for more than 5 bidders to be accepted, all entrants must be bidding in a

cost of 0.
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Figure 2.8: Demand curve based auction, α = 0.3.

As expected, when the number of participants increases, the individual probability of

winning decreases. We see this in Figure 2.9a. When the auction is settled, the price from

the demand curve may be above the highest clearing bid. This results in an overpayment

to the marginal producer (an example can be seen in Figure 2.4). This is less of an issue

in a situation where bidders can submit piecewise cost curves rather than flat prices or

when fractional capacity can be accepted. In Figure 2.9b we see that there is a limit to the

total over-payment. We define over-payment as (clearing price - marginal bidder) × total
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units accepted. From earlier, we know that more bidders increases the amount of accepted

capacity (Figure 2.8b) and the total cost of paying the winners. However, the increase in

bidders also creates more competition and tightens the gap between the demand curve and

the marginal bidder.
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(a) Individual probability of winning auction
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(b) Total overpayment

Figure 2.9: Demand curve based auction, α = 0.3.

2.5.4 Comparison Example

Let us construct a simple example to examine the effectiveness of different types of

auctions. We can determine the total cost to the system by adding the capacity payments

for procuring capacity and the expected cost due to loss of load events (LOLE). Using data

from PJM, we fit a curve to model the relationship between the installed reserve margin

(IRM) and the LOLE. The installed reserve margin is set by PJM so that the loss of load

probability (LOLP) is 1 day in 10 years. At a level of 3% below the target reserve margin,

the LOLP is about 4 days in 10 years, and at a level of 5% above, the LOLP is a little under

1 day in 100 years. 1 day in 10 years is equivalent to 0.1 days in a single year, 5 days in

10 years is 0.5 days in a year, and so on. The relationship is closely approximated by the
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equation LOLP = 0.1011× IRM−49.01 as shown in Figure 2.10.
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Figure 2.10: Regression to determine relation between IRM and LOLP

Assume that the market reserve margin currently sits at 97% of the IRM, and that

each new unit would add 1% of the desired reserve margin, so to reach the desired LOLP

of 1 day in 10 years (1-in-10), three units would need to be accepted. In the flat auction,

we would choose three winners from n bidders, and in the decreasing demand curve case,

the slope is set to to α = 0.1 to most closely resemble PJM’s demand curve. Here, we set

n = 6 bidders. The results can be seen in Figures 2.11 and 2.12. The lowest lines represent

a value of lost load (VOLL) of $5,000/MWh, a common value used by ISOs (Frayer et al.

(2013)). We calculate the total cost to the system as VOLL × LOLP + units clearing × p

where p is the capacity payment. For a 1-in-10 LOLP, this is equivalent to a VOLL cost of

$12,000/MW-year (=$5,000/MWh × 24 h/day × 0.1 day/year). Compared to a net cost

of new entry of approximately $121,000/MW-year (PJM (2014)) it is easy to see that it is
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cheaper to have a higher probability of loss of load and less capacity than it is to pay for

new capacity to reduce the loss of load probability. Each additional percentage increase in

installed reserve margin has diminishing returns on the reduction in LOLP based on the

model fit earlier.
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(b) Expected cost from capacity payments

Figure 2.11: Comparison of auction formats with IRM = 97%, α = 0.1, and n = 6.

The number of units clearing and the capacity payments to generators are unaffected

by the VOLL, which is why there are only two curves in Figure 2.11. Looking at the results

of the simulation, we turn our attention to Figure 2.11a. This figure shows the average units

accepted in both the flat price and sloped demand curve cases assuming an initial clearing

price. In the flat case, the initial clearing price is the price that is given to all units that

clear. Because of the hockey stick shape of the bidding functions in the flat-price case,

a significant amount of capacity clears at low prices, almost two units when the capacity

payment is zero. Conversely, in the sloped demand curve case, an initial price of zero means

that for any number of units to clear they must be bid in at a price of zero, which is much

less likely given the optimal bid function for sloped demand curves. Because we started at

37



97% of the installed reserve margin and we seek to reach 100%, in the flat price case only

three units(=(100 − 97)%/1%) will be accepted, which is why the units clearing tapers off

at three in Figure 2.11a. All units could clear in the sloped case which is why the average

number of units accepted increases up to five at the highest initial price of 2.

Figure 2.11b shows the expected cost of capacity payments in the two cases. The

capacity payment is equal to the number of units clearing times the final clearing price.

Again, in the flat price case the final price is the same as the initial price, but in the sloped

case it depends on the number of units clearing. If five units clear in the sloped case at an

auction that started with the initial price at 2, then the final price is 2− 4× α = 1.6. The

capacity payment would then be 8 total for the ISO. In contrast with the flat case, at a

price of 2, only 3 units are being accepted, resulting in a lower total capacity payment of 6.

For low initial prices, the sloped case results in lower total capacity payments in comparison

to the flat price case due to the fewer number of units accepted. As initial price increases,

the total payment curves cross and the sloped case becomes more expensive. Even though

the capacity price is lower in the sloped price case than the flat price case, the more units

accepted increases the total payment by the ISO to generators.
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Figure 2.12: Expected VOLL costs with IRM = 97%, α = 0.1, and n = 6
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Looking now at the costs as a result of lost load, we see in Figure 2.12 that expected

VOLL costs decrease as initial price increases in all cases and scenarios. Recall from Figure

2.11a that the number of units clearing was increasing as a function of initial price. The

formula for VOLL costs is VOLL× LOLP, and since VOLL is fixed the only thing affecting

this cost is the LOLP, which is a function of how many units clear in the auction. The

more units that clear, the higher the installed reserve margin, and the lower the loss of load

probability. Again, at low prices, because few units clear in the sloped price case, the VOLL

cost is very high when compared to the flat price case for any given level of VOLL. However,

as initial price rises, more units clear in the sloped case, while the flat price case is capped

at three units, allowing the IRM to increase beyond 100%. This in turn results in a lower

LOLP which is why the curves cross and even leads to the sloped price case with a 100K

VOLL having a lower VOLL cost than the flat case with only a 50K VOLL.
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Figure 2.13: Total expected costs with IRM = 97%, α = 0.1, and n = 6

Combining the VOLL cost and capacity cost graphs, we have Figure 2.13. At low

prices, the capacity payments to generators were low in the sloped case, but this is offset by

the high VOLL costs at these low prices. The rapid decrease in the VOLL costs in the sloped

case cannot overcome the increasing capacity payments as initial price increases resulting
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in the subsequent dip and then rise in the sloped price case. Contrasted with the flat case

which has a brief dip at low prices and then a steady rise as we reach the threshold for having

three units clear in the auction. It is interesting to note that the range of prices at which

the sloped case results in lower total costs for a given level of VOLL decreases as VOLL

increases. At large values of VOLL it would never be optimal to use a sloped curve auction.

However, the initial prices cannot be guaranteed, so an average was taken for comparison’s

sake (Table 2.2). For a 5K VOLL, the sloped case is cheaper on average, but ends up more

expensive at greater values of VOLL. The high costs at the fringes of the domain of initial

prices outweighs the savings in the middle. At higher initial IRMs, the weaknesses of the

sloped case at low prices would disappear, as the penalty from VOLL cost for having a low

IRM is greatly reduced. Further analysis would be needed to examine all possibilities and

scenarios.

VOLL ($/MWh) Sloped Flat
5,000 2.79 3.01

50,000 4.26 4.04
100,000 5.88 5.18

Table 2.2: Average total expected costs over possible initial prices.

For the commonly accepted value of lost load of 5,000 $/MWh, the sloped case is on

average a cheaper means of procuring reliability, or a little under 8% less than the flat case.

Since in the end the costs are passed on to the consumers, such an auction scheme would be

preferable as it would result in lower electricity prices. However, the true VOLL can be much

higher for certain customers Frayer et al. (2013) and in this situation the flat case average

cost is 12% lower than the sloped case when the VOLL is 100,000 $/MWh. Many ISOs
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have regulations in place that don’t allow generators to report anything but their true costs,

thus the optimal bidding behavior would not be possible. The sloped demand curve results

in nearly truthful bidding, and would perhaps be beneficial to ISOs by reducing resources

dedicated to compliance.

2.6 Extensions

The models presented in this paper provide a basic understanding of the behaviors

of participants in a capacity market. However, outside the scope of this paper are many

extensions to the basic model which would add value. The most relevant may be that of

asymmetric bidders. In an actual capacity market, many different types of capacity are being

bid in; e.g. coal, natural gas, nuclear, etc. These different types have different costs and also

different capacities. Relaxing the identical bidders assumption would more clearly reflect

actual market conditions. Similarly, the choice of a prior distribution or the incorporation

of Bayesian updating in a repeated auction framework would also shed light on generator

behavior. The capacity price that settles in year t could be used to obtain a prior distribution

to use in year t+ 1, affecting a generator’s decision to bid in a given year or to delay to the

next.

Bidders were treated as risk neutral, and thus were content to shave their bids since

the probability of the price being greater than their costs was 1 − c. The assumption of

risk averse utility functions for the bidders would better reflect observed market participant

behavior, and would certainly impact the degree that bidders under report their cost.

Most demand curves used in these auctions are not linear. They are often piecewise

functions with differing slopes at differing levels of installed capacity, reflecting the need for
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additional capacity. Recently PJM has discussed changing the shape of their demand curve

(it currently is concave, a feature not often seen in demand curves) to a more traditional

convex curve Ott (2014).

2.7 Conclusions

In this section we analyzed the strategic behavior of firms competing in electricity

capacity auctions. We began with a simple case with no competition and expanded to

multiple bidders. In the no-competition situation with only a single time period, bidders

were honest about their costs. However, once in a multi-period horizon, a bidder who had

won in the first period would bid 0 in every subsequent period. Such bidding makes it more

difficult for new capacity to enter as it pushes the installed capacity higher and thus the

capacity price downward. Under imperfect information, participants have an incentive to

underbid in attempts to win the auction.

With multiple bidders, we were able to find closed form symmetric equilibrium optimal

bid functions for each bidder. Under the private information and common prior assumptions,

we found that participants would shave their bids to beat out the other participants. The

severity of this underbidding depended on the payoff structure, with the demand curve

auction having the closest to truthful bids. The uncertainty of the payment is what drives

the untruthful bidding. If it is known, then respondents truthfully report their costs.

From the perspective of the auction holder, more participants led to greater additions

of capacity in all permutations of the auction. Because the capacity price comes from the

ISOs own demand curve, the prices settled in the auction are “fair” to the auction holder.

Nonetheless, the auction holder overpays when the supply curve is not smooth. Compared
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to the flat price auction, the demand curve auction results in lower expected gains to the

winners, and lower overall procurement of capacity.

In the simulated scenario comparing the two auction types, fixed winners and de-

creasing demand curve, we see that at higher VOLLs, the flat demand curve results in lower

expected costs across all possible prices compared to the sloped demand curve. At low prices

and very high prices the fixed winner auction results in lower costs. Were the VOLL to grow

ever higher, the sloped curve would eventually result in lower costs compared to the flat case

at high prices. Conversely, at low prices, the sloped case would result in astronomically high

costs to the system.
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Chapter 3

Simulation

3.1 Introduction

Now that a theoretical analysis of a demand curve based capacity auction has been

discussed, this chapter analyzes this behavior on a larger scale, that is, with more participants

and over an extended period of time. Contrast this with the work in chapter two that only

dealt with a few players and was a single period game. An agent-based simulation model of

electricity markets will be used to model such an auction as this continues the bottom-up

style approach of the second chapter, where each generator acts independently of others in

maximizing its objective. Here the generator’s objective is to maximize their revenues from

operating in electricity markets. The model framework is developed on top of an existing

open-source model called AMES (Agent-Based Modeling of Electricity Systems) developed

out of Iowa State University. The AMES model simulates an electricity market with a day-

ahead electricity market where economic conditions-based market entry is permitted, as well

as a demand-curve based capacity market. For more detailed information on the workings of

the AMES model, see Sun and Tesfatsion (2007). A quick introduction to the energy system

and mechanics will follow below.
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3.2 Transmission Grid

The transmission grid itself consists of at least two nodes and at least one branch. A

node can have a multiple generation sources, a demand sink, or both. The nodes must all

be connected by branches, but a node does not need to be connected to every other node by

a branch. Each node is connected in the network such that power can flow from one node

to any other node, that is, there are no islands. See Figure 1 for an example of various grids

allowed in the model.

Figure 3.1: Example grids in the AMES model

The branches have a capacity constraint that limits how much power can be transmit-

ted, leading to situations where certain branches cannot transmit any more power, affecting

prices and generation. Cheaper generation that could have been dispatched may be bot-

tlenecked due to transmission constraints, forcing more expensive generation from a source

that is not bottlenecked to produce power.
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3.3 Generators

The generators are also located at nodes in the grid, and it is possible to have multiple

generators at the same node. Each generator i has a minimum and maximum hourly power

production capacity. For each generator, hourly production level r must be between

CapLi ≤ r ≤ CapUi

Each generator has a total cost function that gives the total cost of production per hour

($/hr) for an hourly production level r. ai and bi are constants, and ci is the fixed cost for

generator i.

TCi(r) = ai · r + bi · r2 + ci

The constants are given exogenously by the user. The marginal cost is then given by

MCi(r) = ai + 2bi · r

At each day D the generators submit their marginal cost function over a production interval

(lower limit and upper limit of production) for each hour of day D + 1. The offers the

generators submit can be different from the true production limits and marginal cost curve.

If the agents are allowed in the model to learn strategic behavior, then they can report

untruthful marginal costs and production limits. For now we consider the no-learning case.

Only truthful reporting of costs is permitted. The price of electricity in the system is deter-

mined by the marginal cost required to produce the last unit of electricity required to meet

demand. Because of transmission constraints, it is possible that the lowest cost generation

available cannot be used to meet supply at all nodes. Thus the Locational Marginal Prices

(LMPs) were given their name. LMPs can be different at different nodes. If there were no

transmission constraints, then there would be a single electricity price in the system.
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3.4 LSEs

The load serving entities are located at different nodes in the grid (not every node

has an LSE, and a node doesn’t have more than one LSE) and submit a daily load profile

each day D for day D + 1. The profile consists of the demand for electricity that each LSE

must serve for each of the 24 successive hours in day D+1. The demand can be either fixed,

or have a price-sensitive component enabled.

Figure 3.2: Example load shape in the AMES model

Figure 3.2 shows a plot of demand profiles for an LSE. The demand is lowest in the

middle of the night, between 2 am and 6 am, and peaks at 5 pm as people return home and

begin to use appliances, TVs, water heaters, etc. In the original AMES model, load is fixed,
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and the generation resources are sufficient to meet the load. To test the efficacy of capacity

markets and energy-only markets, the load must increase to put pressure on reserves and

generation resources. In our modification of the AMES model, demand for each hour is

assumed to grow at rate τ per day.

3.5 Unit Commitment

The Independent System Operator (ISO) must determine for each dayD+1 a schedule

of power production and prices from the information on day D. Many factors go into the

creation of this schedule, including generator supply curves, load serving entity demand bids,

limits on transmission branches, and the balance of supply and demand at each node. The

ISO then must solve an optimization problem that results in the electricity demand being

met for the lowest possible total cost to the system.

The optimization problem is one that is common in actual wholesale electricity mar-

kets. While the market itself is an alternating current (AC) optimal power flow problem

(OPF), in practice this is quite difficult to solve. Thus it is common to instead use a direct

current (DC) approximation to the AC power flow optimization problem. In the DC OPF,

certain constraints are simplified allowing other constraints to be relaxed or removed. This

makes for a problem that can be solved more efficiently.

The optimization’s objective function is to minimize the total production cost of

all generators throughout the system while meeting electricity demand at all nodes. The

constraints in the problem are the generator production constraints, both minimum and

maximum production levels, and the supply-demand power balance constraint. The opti-

mization problem is a convex quadratic program, for which there are many available solvers.
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Sun and Tesfatsion make a small modification to the objective function by allowing for a

penalty term on the squared voltage angle differences. See Sun and Tesfatsion (2007) for the

full details of their algorithm for solving the DC optimal power flow problem; the algorithm

is unchanged in this modified version of AMES.

3.6 New Entrants

As demand in the electricity market grows, the existing generation capacity will be

insufficient to serve load. As more expensive generation gets dispatched to meet load, prices

rise. A prospective entrant to the market would observe such high price signals, and, should

prices be high enough, decide to build a new power plant in the market. The market price

would need to remain high enough after entry to allow the newly constructed plant to recover

its capital costs.

One way to measure the competitiveness of such plants is with the levelized cost of

electricity (LCOE). This is a dollar per megawatt-hour cost of constructing and operating

a power plant over its serviceable lifetime. Different generation technologies have different

levelized costs, but those with the same primary movers (i.e. steam generator, gas turbine,

internal combustion, combined cycle, etc.) and fuel sources are similar. The inputs to LCOE

are capital costs, fuel costs, operation and maintenance costs (both fixed and variable), and

the generator’s utilization rate. Renewable technologies tend to have lower or negligible fuel

costs. Nuclear power has low fuel costs but extremely high capital costs, in comparison to

gas-fired combustion turbines which have a low capital costs and a fuel cost that in recent

years has been quite low as well.

49



The computation of levelized cost on a yearly basis can be simplified as follows:

LCOE =
CapCost+ FOM

ExpectedGeneration
+ V OM + Fuel (3.1)

For the purposes of this paper we ignore the discount rate. FOM and VOM are the fixed

and variable operations and maintenance costs, respectively. The expected generation is an

estimate of megawatt-hours that a particular plant will run during the year. The capital

cost described here will be defined as the overnight cost (the cost of building the plant in a

single moment, were it possible) divided by the operating lifetime of the plant.

The LCOE can be considered the average cost of a megawatt-hour of energy generated

by a power plant. We can turn our efforts toward conditions for market entry and attempt to

determine when expected future revenues exceed expected future costs. Recently, the Energy

Information Administration has developed a metric for comparing the cost of a power plant

and the revenues of that power plant (Namovicz (2013)). This metric is called the levelized

avoided cost of energy (LACE). The LACE of a plant can be considered the potential revenue

per MW. It represents the amount and cost of generation displaced. To that end, LACE can

be computed as

LACE =

∑
t pt · dispatcht + CapacityPayment

ExpectedGeneration
. (3.2)

The expected generation in the denominator is defined as seen before in the LCOE

formula. The numerator represents the price of electricity p times the dispatched generation

in hour t for an entire year. The capacity payment is added as an additional source of

revenue. It is important to recognize that the capacity payment is not guaranteed until

the generator submits a bid into the capacity auction and clears in the auction. Thus the
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generator won’t receive any capacity payments for the current calendar year when entering

at any time other than during the capacity auction itself.

If the LACE is greater than the LCOE, then it is a net positive to construct the

plant and enter the market, since its revenues outweigh its costs. Each new power plant

that enters the market lowers the LACE of a subsequent plant, since the first plant displaces

more expensive generation. This will continue until the LCOE of any new plant is higher

than the LACE, and new entry stops. The LACE can increase as demand grows or existing

plants retire, and again new plants will enter until equilibrium is reached. A competitive

market will have LACE=LCOE holding everything constant.

As discussed earlier, dispatch and marginal prices are calculated using the DC approx-

imation of optimal power flow. For our LACE and LCOE calculations, we must calculate an

estimate of generation and marginal prices. Unfortunately, running the quadratic program

to compute day ahead hourly dispatch for a year in advance would be computationally ex-

pensive. Therefore, a simplified approach was developed based upon the idea of merit order

dispatch.

In the model there are three generation technologies: coal, combined cycle, and com-

bustion turbines. The marginal cost for each plant of a given technology is the same. Fur-

thermore, the marginal cost as a function of fractional generator output is non-overlapping

for each technology. That is to say, all coal will be dispatched before any combined cycle, and

all combined cycle will be dispatched before any combustion turbine generation. Because of

this, an extremely simple merit order dispatch model can be applied. The algorithm is as

follows:
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Sum installed capacity (IC) for each generation type making sure to include the

prospective plant’s capacity, ICcoal, ICCC , and ICCT . For a given load level, subtract from

it the cheapest generation source, in this scenario, coal. If the coal is sufficient to meet all

demand, the marginal cost can be calculated from the fraction of coal dispatch required over

installed coal capacity. If the coal was not sufficient the leftover load is distributed amongst

the combined cycle resource, and marginal price calculated. This repeats until all generation

types are exhausted. An example will make this more clear.

A generation technology’s variable fuel cost can be represented as

V FC = Aq2 +Bq + C (3.3)

where q is the fraction of power output as opposed to output in MW. A 10 MW plant is the

same as ten 1 MW plants. Generating 8 MW with a 10 MW plant costs as much as 0.8 MW

each from ten 1 MW generators.

Imagine there are 200 MW of coal generation available, 350 MW of combined cycle

generation available, and 50 MW of combustion turbine generation available. A prospective

plant hopes to add 50 MW of combined cycle generation. If the total load is 400 MW, then

200 MW of coal are dispatched and 200 MW of combined cycle are dispatched. 200 MW of

CC generation is 50% of the installed generation (including the prospective plant). Because

every generator of a particular technology has the same marginal cost in terms of fractional

output, then each plant that makes up the 400 MW will be dispatched at 50%. The marginal

cost would be 2A(.5) +B. This procedure as a whole is a fast computation and is performed

for each of the next 8760 hours to obtain the expected generation and LMP inputs to both

LACE and LCOE.
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The predicted capacity price is based on the ISO demand curve for capacity, with

installed capacity set at the current level plus the prospective generator’s added capacity,

and the peak demand set to be the next year’s peak. An illustration of the process with

PJM’s demand curve can be seen in Figure 3.

Figure 3.3: Predicting capacity price.

A capacity market is not the only way that generators can enter the auction. If market

conditions indicate that it would be profitable to enter the market, then the model allows for

a generator to enter. Of course, entrants based on market conditions can still participate in

the capacity market as an existing generator. They did not need the guarantee of a capacity

payment to provide the necessary subsidy to enter the market. Once the generator enters, it
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participates in the day-ahead market like any other existing generator, and is free to enter

the subsequent calendar year’s capacity auction.

3.7 Capacity Market Overview

Every year, a capacity auction is held by the ISO. In such an auction, every year all

existing and potential new generators bid a price-capacity pair. A supply curve is constructed

from these bids and intersected with a demand curve for capacity set by the ISO. This demand

curve is piecewise linear and decreasing. The kinks in the demand curve occur at reserve

margin targets set by the ISO, such that capacity levels below the target margin have a very

high capacity price (almost double the cost of new entry), while capacity levels that exceed

the target reserve margin by a large amount have a price of 0.

Those clearing the auction receive the capacity price for that year for each unit of

capacity supply they entered into the auction. All generators currently active in the system

must participate. At the moment in the model, existing generation bids in a capacity supply

offer of $0/MWh. Historically, it has been observed in PJM that existing generation bids in

their capacity at a price of 0, so this is not an unreasonable assumption. Within this model,

the demand function is easily modified and multiple shapes of curves can be compared to

determine their efficacy.

In addition to the existing generation participation, there are new prospective gener-

ators that would agree to be built if the capacity clearing price is high enough. The number

of new potential entrants is set to a fixed number. The costs and size of the generator are

normal random variables. The new generation bids in their cost of new entry minus the

ISO-set expected revenues. They are, in effect, bidding their true net cost of new entry.
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When the auction clears, if one or more of the new entrants cleared, they come online that

year. They then behave like any other generator.

Every day, those that cleared in last year’s auction receive a capacity payment. Since

unforced outages are not implemented in the model there is no check for whether or not a

generator is able to meet its obligation to the capacity market; it is assumed to do so.

3.8 Texas Energy Market

The electricity market in Texas is managed primarily by the Electric Reliability Coun-

cil of Texas (ERCOT). ERCOT serves about 90% of the load in Texas, and its grid covers

about 75% of land area in Texas. There are over 570 generation units in ERCOT, and in

2016, generation capacity was 52% natural gas, 22% coal, 20% wind, 6% nuclear, and 1%

solar, hydroelectric, biomass, and other sources.

We make a number of simplifications of the ERCOT grid to ease computational

requirements. Generator data from ERCOT and the Energy Information Administration

were analyzed and aggregated into three main zones, represented by nodes in our model, with

three generators in each zone, representing coal, combined cycle, and combustion turbine

generation sources. The generator sizes are proportional to the total generation of that type

in that zone.

A rough estimate of generation capacity in megawatts (MW) by type by zone is given

in Table 3.1.

In the model the three types of generators with their sizes in MW appear at the

three nodes representing Houston, North, and South as shown in Table 3.2. The sizes have
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Coal CC CT
Houston 2504 7948 1987
North 10589 13724 3431
South 5466 9543 2386

Table 3.1: Generation capacity by type in select ERCOT zones

been scaled so that in the model they can each be represented by one generator, to save on

computational load. This gives an initial installed capacity of 5750.

Coal CC CT
Houston 250 800 200
North 1050 1370 340
South 550 950 240

Table 3.2: Scaled capacity by type in select ERCOT zones

Seasonal demand was calculated by averaging maximum daily load relative to January

1st, for the years 2011-2016. Electricity demand usually has a sinusoidal shape-demand and

is higher in winter months due to heating and summer months due to air conditioning.

Because Texas has much hotter summers and milder winters, the summer peak is almost 1.5

times as high as the winter peak. The maximum load on January 1st, 2016 was 41171 MW,

for reference. Electricity demand was fit to the model

Demandt
DemandJan1

= a
sin
(
π(t−b)
w

)
π(t−b)
w

+ c (3.4)

In Figure 3.4 we see the fitted curve overlaid on top of the averaged historical data.
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Variable Estimate
a -7.51
b -824.76
w 138.50
c 1.29

Table 3.3: Coefficient estimates

Figure 3.4: Historical versus modeled load relative to January 1st

The parameters were adjusted so that the first and last day of the year had similar

levels of electricity demand. The curve is shifted by +19 days so that the 1st and last days

of the year are more similar, better representing the cyclical temperatures. This function

peaks at about 1.6 times the value of the initial load on the first day of the year. It should

be noted that the ends do not match up exactly, and so there are small jumps every year

from December 31st to January 1st of the next year.

Moving to daily granularity, the hourly load peaks at hour 17 as seen in the last

section, and the actual load at each bus is as follows in Table 3.4:
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Hour 0 Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7
Houston 787.58 726.67 686.41 666.11 646.17 656.15 666.11 706.73
North 1837.69 1695.56 1601.63 1554.27 1507.75 1531.01 1554.27 1649.04

Hour 8 Hour 9 Hour 10 Hour 11 Hour 12 Hour 13 Hour 14 Hour 15
Houston 807.52 888.39 908.69 918.66 908.69 888.39 878.42 878.42
North 1884.21 2072.92 2120.28 2143.54 2120.28 2072.92 2049.66 2049.66

Hour 16 Hour 17 Hour 18 Hour 19 Hour 20 Hour 21 Hour 22 Hour 23
Houston 918.66 1009.50 969.24 958.91 948.95 928.65 878.42 817.87
North 2143.54 2355.50 2261.57 2237.47 2214.21 2166.85 2049.66 1908.36

Table 3.4: 24 hour load data for the model

Coal CC. CT
A 0.6697 9.7259 2.259
B 17.115 19.094 41.538
C 1.3555 11.015 9.9821

Table 3.5: Variable fuel cost parameters in the model

Though there does exist load in ERCOT’s South zone, we choose not to have any here

for modeling purposes. The reasoning is two-fold. One, to simplify the model for computing

purposes. Two, in the case of transmission constraints, it would be possible with that South

zone generation capacity goes under-utilized without a demand sink present at that bus.

At hour 17, the peak demand is around 3300 MW on the first day of the model. This

means that in the first year, the maximum demand will be around 3300× 1.6 = 5280. The

installed reserve margin is then about 9% (5750 MW/5280 MW). Again, using historical

data, demand growth in ERCOT has been about 1.1% per year, so this reserve margin will

shrink as time goes on unless new supply is added to the market. The transmission grid

connects all three nodes pairwise, with a maximum capacity of 9999 MW per line. A diagram

of the initial grid can be seen in Figure 5.
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Figure 3.5: Overview of generation in the model

A 9.7259 a 0.014
B 19.094 b 19.094
C 11.015 c 7159.75

Table 3.6: Parameters for a 650 MW combined cycle plant

Generators have the variable fuel cost curve parameters shown in Table 3.5 where

V FCi(q) = Aiq
2 + Biq + Ci is given in $/h/MW capacity and q is the fraction of generator

output. Recall that the model uses cost curves of the form

TCi(r) = ai · r2 + bi · r + ci (3.5)

where total cost is given in $/hr. To convert this variable fuel cost to a fractional output form

the model can use, we have to transform the parameters A,B and C. Noting that q = r/Cap,

we can set ai = A
Capi

; bi = Bi; ci = Ci · Capi For example, for a 650 MW combined cycle

plant, Table 3.6 shows how the parameters translate.

The average cost per hour per megawatt at different fractions of output is shown in
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Figure 3.6: Average cost per MWh as a function of output fraction for three generation
technologies.

Figure 3.6, obtained by multiplying the average heat rate by the fuel price for each technology.

Note that the plants become more efficient the closer they operate to full output. The

combined cycle and combustion turbines have very high startup costs, as can be seen by the

dominating effect it has at low levels of output. Coal is relatively cheap compared to the

two natural gas fired plants. In the current model, the coal price is $2.18/mmbtu and the

natural gas price is $6.29/mmbtu. The two natural gas technologies are very costly at low

levels of output, and while they do not overtake coal, they do become more competitive.

The incremental cost curves or marginal cost curves for the three technologies can be

seen in Figure 3.7. It is easy to see how the fast dispatch described in the previous section

is accomplished. Since none of the marginal cost curves overlap, one can determine the

marginal price as if reading the below graph from bottom to top. First, coal is dispatched
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Figure 3.7: Marginal costs for three generation technologies in the model.

up to 100%, then we move to the right as we dispatch CC, and then finally CT. In the absence

of transmission constraints, it is always cheapest to dispatch coal before any combined cycle,

and any combined cycle before combustion turbine.

It can be noted from this figure and the one preceding it that the marginal prices that

come out of the model will cap out around $45/MWh. Any combined cycle plant operating

at under 50% output, and a combustion turbine plant at any level of output will be operating

at a loss. Note also that this is at peak prices, meaning the economics are much worse when

demand is at lower than peak levels. We will see the impact of these curves in the scenarios

to follow.

3.9 Base Case

In the base case, the demand grows at a rate of 1.1% per year, or about 0.03% daily.

There are no transmission constraints, so we will not expect to see any differentiation in
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the locational marginal prices at the three nodes. New entrants are not permitted to enter.

The price for electricity when demand cannot be met is set to be $47, just higher than the

marginal cost of the most expensive generation available (the combustion turbine).

Figure 3.8a illustrates an initial benchmark run of the first day shows the typical load

profile with generation peaking at hour 17. Coal is represented by dots, combined cycle by

squares, and combustion turbine by triangles. As expected, coal is dispatched steadily, as it

is the cheapest resource available. The combined cycle generation rises and falls to meet the

demand as necessary. The combustion turbines are never dispatched, as the demand is not

high enough in January when the model is initialized.

(a) Commitments on day 0 (b) Commitments on day 188

Figure 3.8: Generator commitments on day 0 and day 188. Coal is represented by circles,
combined cycle by squares, and combustion turbine by triangles.

Contrasted with the Figure 3.8b on the right, which is the generation commitment
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Figure 3.9: Locational marginal price at hour 17

schedule for the highest load of the year (day 188, meant to approximate the hottest days of

the summer). At hours 17 through 21, even the combined cycle is at its maximum, requiring

the combustion turbine peaker units to come online for four hours. We can see the location

marginal price at hour 17 for the year reflect this, shown in Figure 3.9. Recall that in the

marginal cost curves earlier there was a gap between the CC and the CT curves, a gap that

is reflected in the graph of the LMPs for hour 17 for the year.

In Figure 3.10, the profits for one year can be seen. Recall that in the average costs

diagram natural gas fired plants would operate at a loss unless the price was very high.

We do see that the profit for combined cycle (bottom 3 lines) per day is higher during the

summer, but even though it may be positive during peak hours (hours 17-21), the other

hours of the day still net a negative return for the day as a whole. The combustion turbines
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Figure 3.10: Generator profit by day. Dotted lines represent coal, dashed CC, and solid CT.

(middle three lines) lose money when they come online as even though their marginal costs

are being cover, their fixed costs are not. The coal plants make a profit every day (top 3

lines).

Beginning in year 7, the 1.1% per year demand growth causes peak load to be higher

than installed capacity. There are 24 straight days of outages at hour 17 in year 7. A total

of 168 hours did not meet electricity demand, which was, in total, 17.7 GWh of unsatisfied

demand.

The total cost of supplying as much energy as possible was $9.93B. At a current value

of lost load in ERCOT of $9,000 per MWh (Surendan et al. (2016)), the impact of the loss

was $158M. Should a more pessimistic view be taken, and assume that the loss results in a

system-wide blackout for that hour, the total served electricity costs would be $9.89B and
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the value of the lost load $8.85B. The reserve margins are expectedly poor, starting at 6%

and decreasing steadily by a little over 1% per year.

3.10 Energy Only Entrants

To incentivize new generators to enter, we change the maximum price paid from

$47/MWh to various levels, including $1,000, $5,000, $10,000, and $20,000 when load cannot

be met. At a value of $1000 no generators enter the market, resulting in a situation identical

to the base case, with the exception that more money is paid (since the cap is now $1000 vs

$47), resulting in a higher overall system cost. In all, this is not a worthwhile change to be

made to the system.

For the remaining cases, the net value to a generator (LACE − LCOE) doesn’t

become positive until very late in the simulation. In the $5,000, $10,000, and $20,000 cap

scenarios, the first generators are built before any loss of load event. Table 3.9 at the end of

this section with the key metrics for the different scenarios shall shed some light. For now,

we will discuss the $20,000 price cap scenario.

In this scenario, 10 new combined cycle generators are built. There are 2 hours where

demand cannot be met, accompanied by a loss of just under 4 MWh of demand. Compared

to the 17.7 GWh from the base case, consumers and the system operator should be much

more satisfied. In addition, while the cost to serve the load is higher, it is not by much, a

difference of $131 million.

Instead, should we consider the pessimistic scenario where all load is lost in that

hour, the total impact of the loss is only $131M, with a cost of serving load of $9.83B for the
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Year Reserve Margin Installed Capacity Peak Demand
1 5.7% 5750 5440
2 4.6% 5750 5500
3 3.4% 5750 5559
4 2.3% 5750 5618
5 1.3% 5750 5677
6 0.2% 5782 5737
7 0.5% 5851 5796
8 0.4% 5905 5855
9 0.2% 5955 5914

10 0.4% 6021 5973
11 0.5% 6061 6033
12 0.4% 6139 6092
13 0.1% 6187 6151
14 0.0% 6246 6210
15 0.1% 6301 6270

Table 3.7: Reserve margin for a 15-year run, $20,000/MWh price cap.

remaining hours. This is not surprising since there are 2 hours of lost load in this scenario

compared to the 168 hours lost in the base scenario. It should also be noted that this price

cap achieves a less than 1 day in 10 year loss of load expectation, commonly held as a

benchmark by many system operators (citation).

The reserve margins for a 15-year run at the $20,000/MWh cap is shown in Table

3.7. The system enters a steady-state, reserve margin holds steady at around the 0.5% mark,

varying slightly due to the randomly drawn capacity of new generators.

Note that in Table 3.7, the reserve margin is not actually less than 0%. While enough

capacity is built to handle the peak demand in the year, the outages occur a few days before

new generation is built for those peak days. One may wonder why, at a price cap of $20,000,

there are still outages? In fact, the price cap could be set arbitrarily high, and some load
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would still be lost. This is because for the price to ever actually hit this cap, the demand

must be greater than the supply. If this is not the case, then generators will not actually

ever receive the massively inflated prices and would not have chosen to enter the market.

Because we assume that generators can perfectly anticipate demand and act accordingly,

prices will always be anticipated to hit the cap for there to be new entry in an energy only

market.

The cash holdings of each generator may help illuminate this point. All the natural gas

technologies lose money. The 6 starting generators have no say in the matter; a prospective

generator knows this and will not enter as doing so would only guarantee a loss. If, however,

every summer the prices skyrocket, those brief periods of operation will allow the generator

to recover some of those costs. In the graph seen in Figure 3.11a, we see that the coal plants

have no problem generating a profit (the three topmost lines), as their total costs of operating

are lower than all LMPs throughout the simulation period. All other generators incur losses

as a result of prices not rising high enough. You can see two small jumps in Figure 3.11a

and Figure 3.11b after day 2500 where the outages occurred and prices hit $20,000/MWh.
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(a) Generator cash holdings for entire run (b) Generator 10 cash holdings since entry

Figure 3.11: Generator cash holdings

Focusing on a single new entrant, the first generator that enters the market does so

on day 2018, at a total cost of $34M. By day 3650, they are at holdings of -$41M, a net loss

of -$7M. It is clear from this figure that there is no hope of ever earning a positive return on

this investment.

If this is the case, then why did so many generators enter? A total of 10 in this

$20,000 cap case. The reasoning is that when a generator is considering entering, it looks

one year ahead and computes the operating and capital costs it must pay and subtracts that

from its projected earnings. In all these situations, the generator foresees the outage and

the high price being paid out, which more than covers the rest of the year. The price caps

are orders of magnitude greater than the average LMP the rest of the year. The problem is

that once this generator enters and is waiting for excess demand and the price cap, another

prospective generator is doing the same calculation and makes the same decision to enter,
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predicting shed load sometime in the next year. So, it enters and unfortunately, this happens

before the first generator ever experiences prices hitting the cap. With the addition of two

generators in that original year time period, demand does not outpace supply. This happens

for every generator that enters, with the exception of two hours in the 10-year period, which

as we saw in the cash holdings graphs, is not enough to make a significant impact.

A large part of this is that the generators entering have capacities drawn from a

normal distribution with a mean of 30 MW. At a growth rate of 1.1% per year, and peak

demand in the mid-5000 MW range, that equates to a growth in peak demand of 60 MW,

requiring about two generators to enter, which is just enough when staggered to cause the

leapfrogging effect we see. At the end of this chapter we will investigate a different new

generator default size to gauge what impacts it has on the system.

3.11 Capacity Market

With the capacity market active, there is not a single day of load shed. The LMPs

at hour 17 seen in Figure 3.12 get high but not quite as high in the other two cases, and

never hit the price caps. The small caps are the points at which the combustion turbines

were dispatched. Note that they shrink as more combined cycle is built.

The market initially starts at a 5% reserve margin, and the ISO in our example has

a target reserve margin of 0%. The target of 0% is set so that the capacity market case

is similar to the energy only market cases. In reality, ISOs have a target well above 0%,

to account for unforced outages. Because we do not have any supply shocks in our cases,

we treat the target reserve margin of 0% as sufficient for lossless generation. We see in this

model that the capacity market does its job in raising the reserve margins to be at or slightly
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Figure 3.12: LMPs for hour 17 over entire run
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Year Reserve Margin Installed Capacity Peak Demand
1 5.6% 5750 5446
2 4.5% 5750 5505
3 3.3% 5750 5564
4 2.2% 5750 5624
5 1.2% 5750 5683
6 0.7% 5780 5742
7 0.9% 5855 5801
8 1.0% 5917 5861
9 0.5% 5952 5920

10 0.5% 6014 5979

Table 3.8: Reserve margins in capacity market case

above the 0% level; the results can be seen in Table 4.

The interesting thing to note is that because the LACE considers potential capacity

revenues, no generators came online in the capacity auction. The results are quite stable

and would repeat indefinitely. Small variations in generator size could potentially cause dips

but nothing that would disrupt or destabilize the system. The main purpose of the capacity

market is to bridge the gap between the revenues gained in the energy market and the total

costs associated with new entry such as fixed costs and capital costs. In this model, we

set the net CONE to be the difference between the LCOE and the LACE, adjusted by the

capacity factor.

NetCONE = (LCOE − LACE) · ExpectedGeneration
Capacity · 8760

(3.6)

We see in Figure 3.13a on the left that the price is relatively steady around $13.5/MWh.

On the right in Figure 3.13 we see a generator that enters the market as a result of clearing

in the capacity auction. Their initial cash holdings are around -$32.5 million because of the
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capital costs incurred. However, the net gain from capacity revenues and operating in the

energy market begins to slowly pull the generator out of debt.

(a) Capacity clearing prices for all model years
run.

(b) Combined cycle generator holdings from
entry to end of model run.

Figure 3.13: Impact of capacity prices on generator holdings

The capacity payment sets the generator on track to make back its capital costs by

the end of the 20-year payback period. After 5 years in the market, this generator has about

$-24 million in debt. That’s a rate of about $8.5 million every 5 years, which means that at

the end of its 20-year life, it will have earned enough money to pay off its initial costs.

A total of 10 generators enter the system when the capacity market is in place. The

increasing amount of combined cycle suppresses the more expensive combustion turbines,

lowering the overall average price. Of course, once the approximately $13.5/MWh capacity

price is added on, the advantage of having lower locational marginal prices in this case

compared to the others disappears. The capacity payments made in this scenario amount
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to $5.027B, more than half the amount paid to generators in the day-ahead markets in the

same time frame.

Contrasted with the energy-only case, the expensive combustion turbines are dis-

patched much less. There is no loss of load, so there is no direct comparison to the energy

only markets. A 0 day in 10 year loss of load probability is extremely good.

3.12 Comparison

Below are the results of the 5 scenarios run. All dollar amounts are in billions. We

compare two methods of accounting, an optimistic version and a pessimistic version. The

optimistic case serves as much load as possible, and only that extra demand that could not

be met in each hour is shed. In the pessimistic case, if demand could not be met in a given

hour, the entire load for that hour is dumped, equivalent to a blackout.

As can be seen from Table 3.9, the higher the allowable price for electricity, the fewer

the outages incurred by the system. Looking at the price cap vs. hours lost, extrapolating,

a price cap higher than $20,000 would result in a single hour of lost load in 10 years. There

is a local minimum in the optimistic case at a price cap of $22,000 where the price cap is

high enough to encourage new generation resources to be built but not so high that paying

this price cap for an hour in 10 years results in extremely high payments.

Regardless of the price, this still requires load to be shed for these generators to be

willing to enter. If the costs of the lost load can be absorbed by the system, then this would

be preferable to the astronomical costs of the capacity market. Moreover, this model has

deterministic demand. There is no guarantee that the one hour the new entrant needs will
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Base $5,000 $10,000 $20,000 Cap Market
Hours Lost 168 78 29 2 0
MWh Lost 17,658 1,245 219 4 0

Optimistic
Cost to serve
allowable load

9.940 12.130 11.539 10.071 9.821

Total Value of
Lost Load
(@$9000/MWh)

0.159 0.011 0.001 0.000 -

Capacity Payments - - - - 5.027
Total 10.099 12.141 11.541 10.071 14.848

Pessimistic
Cost to serve
complete hours

9.895 9.843 9.835 9.836 9. 821

Cost of complete
lost hours

8.853 4.128 1.535 0.106 -

Capacity Payments - - - - 5.027
Total 18.748 13.970 11.370 9.942 14.848

Table 3.9: Comparison of scenarios run
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ever occur in the time period needed. There is a tradeoff between lower prices and more

steady outages and a low probability event and a high spiking price. The capacity market

is designed to mitigate any and all of that risk, allowing for a guaranteed payment.

A common measure of risk or reliability used by system operators worldwide is the

concept of Loss of Load Expectation (LOLE). The most commonly implemented target LOLE

is 1 day in 10 years, meaning that the ISO hopes to only have a single interruption in power

delivery once in a 10-year period, on average. The earliest reference to the LOLE target of 1

day in 10 years was can be found in 1947, though the exact origin and determination of the

target is unknown as mentioned in Milligan et al. (2011). Nonetheless, 1 day in 10 years

has continued to be used as a benchmark for an acceptable level of risk.

The base scenario, in which the price cap is set just higher than the highest possible

marginal cost at $47/MWh, results in 168 days of lost load over 10 years. Increasing the price

cap decreases the amount of outages as expected; higher prices incentivize more generators

to enter and ensures higher supply of generation in the market. A graph of the number of

days lost relative to the price can be seen in Figure 3.14. We measure the risk as ?Days

Lost.? The higher the level of risk we assume the more days of outages we face. There is a

tradeoff here with the price cap. As opposed to an expected return, the price cap is a cost,

so we invert the y-axis. A lower price cap represents a lower cost, or higher ?savings,? with

the tradeoff of more risk. The higher price caps result in lower ?savings? but lower risk as

well.

The $5,000/MWh and $10,000/MWh price cap case result in 78 and 29 days lost

over 10 years, respectively. While these represent a significant improvement over the base

case, they are a far cry from the widely accepted 1 day in 10 years. For the $20,000/MWh
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Figure 3.14: Days of Outages vs Price Cap

price cap scenario, the model achieves a 2 day in 10-year LOLE, a 15-fold reduction from

the $10,000 case for a two-fold increase in the cap. The price cap that was found to result in

the lowest total cost to the system, $22,000/MWh, is also the smallest price cap to achieve

the 1 day in 10-year LOLE target, showing that it is possible to have lower costs of serving

electricity as well as higher reliability (see Table 3.9, row 3).

It is hard to recommend the base case, as even though it is cheapest in the generous

accounting method, having one’s power go out every single day for a month straight every

year would no doubt be problematic. The best option then is to remove artificial price caps

put in place by system operators. As we have seen with ERCOT, the price cap has risen from

$2,500/MWh in 2011 to $9,000/MWh in 2015, as ISOs realize that artificially suppressing

prices reduces the incentives for new investment. A healthy market would have an uncapped
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price or at the very least a high price ceiling. The high prices would allow generators to

recover their costs.

It should be noted here, however, that no new generators actually recovered their

costs. Only in the capacity market did any generation resource (outside of coal) recover

from their fixed operating costs. Recall that the size of the generation resources entering

played a part in this. If instead we set mean capacity size for a new generator to 60MW, less

generators enter: 4 compared with 10 at a price cap of $20,000/MWh. Additionally, more

hours are lost, 24 as opposed 2, and as a result more MWs go unserved.

(a) All generators (b) New combined cycle generator

Figure 3.15: Cash holdings when new entrants are 60MW plants.

Importantly for the generators themselves, capital costs are on track to be recovered

by the 20-year period, as evidenced in Figure 3.15a. The large combined cycle generators

in the bottom portion of the graph exhibit a sawtooth pattern that drifts upward. The new
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60 MW 30 MW
Year Peak Demand Margin Capacity Margin Capacity

1 5440 5.7% 5750 5.7% 5750
2 5500 4.6% 5750 4.6% 5750
3 5559 3.4% 5750 3.4% 5750
4 5618 2.3% 5750 2.3% 5750
5 5677 1.3% 5750 1.3% 5750
6 5737 0.2% 5750 0.2% 5750
7 5796 0.0% 5795 0.5% 5827
8 5855 0.0% 5853 0.4% 5880
9 5914 -0.2% 5902 0.2% 5927

10 5973 -0.3% 5955 0.4% 5998

Table 3.10: Reserve margin comparison with new entrants of size 60MW and 30MW.

combined cycle generator shown in Figure 3.15b enters with a -$47.5M debt, but in four

and a half years has earned $10M, bringing debt to -$37.5M. If the model were extended

another 15 years, we would see the plant end the simulation with positive cash holdings. In

the table of reserve margins compared below (Table 6), we see that the 60 MW generator

case consistently has periods of outages, as the reserve margins are below 0% on the peak

days of the year.

Furthermore, the 60 MW has a total cost of serving demand $12.7B, $2.5B more

than the 30 MW generator size case with the same price cap of $20,000/MWh due to the

twenty-two additional hours of maximum prices.

Analyzing the impact on all stakeholders, we conclude that while this is good for

generator revenues and operations, it is bad for the consumers of electricity. Having more

outages and higher prices is not preferable to the scenario where generators entered and

cannibalized their own profits. Of course, that situation is obviously not preferable for the
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generators, and, would likely not occur in real markets as generators would shut down after

continually suffering losses year after year. Likewise, it is also unlikely that a single new

generator would be able to serve all of the demand growth in a market. Regardless, let use

the 60 MW case in our comparison with the capacity market scenario from earlier. The

total costs for the energy only market were $12.7B and for the capacity market $14.8B. This

averages out to an LMP of $40/MWh and $47/MWh. While a seven dollar difference seems

high, consider that at the consumer level, where electricity prices are seen in dollars or cents

per kilowatt-hour, this is a difference of 0.7 cents per kilowatt hour. For an average household

using 11,700 kwh per year, this is an additional $82 per year for 0 hours of outages in 10

years. For generators, it is a stable and reliable source of income that guarantees recovery

of capital and fixed operating costs.
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Chapter 4

Learning

In this chapter we combine the theoretical work done in chapter two on optimal

bidding strategies with the simulation model of chapter three. We have seen how the market

behaves and performs when generators are bidding optimally (as defined in Chapter 2, where

existing generation bids 0 and new generation bids their true cost of entry), we now wish

to allow generators that are bidding into a capacity market the ability to use their own

strategies for bidding. The question we address in this chapter is: If generators are not

imbued with the optimal bidding strategy, will they learn how to bid optimally so that their

behavior is consistent with Chapter 2 and the system outcomes are similar to Chapter 3?

A model in which participants learn about the game and the other players over

repeated experiences is thus fitting. In such a game, a single decision maker acting in isolation

is not applicable. There are other players in this strategic environment which affects the

information gained by the individual. Furthermore, the information and experience gained

by the other players lead to changes in those players’ behaviors as well.

The relevant literature uses the term “learner” to describe an algorithm utilized by

simulated decision makers that can be updated as the outcome of decisions is experienced

over time. A suitable learner as described by Roth and Erev (1995) then has three main

criteria. The first is that choices that lead to good outcomes are more likely to be chosen
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again in the future; this feature is referred to as reinforcement. Second, only the choices

of other participants are available to an individual, not their entire strategy. Finally, the

model should not depend on observations about the players that cannot be observed from

the data itself. Though this may seem similar to the previous point, the distinction here is

that while the second point dealt with strategies, the third point deals with attributes such

as prior beliefs, or the updating of beliefs, or distribution of choices, for example. These are

not modeled by the learner. Such a simple model allows for application to a wide variety of

games without the need to fit parameters for each game. In this model, we use the same type

of reinforcement learner for both capacity market auctions and day-ahead market auctions.

Here we focus on the application of the learner for capacity auctions. It meets all

of the criteria outlined in the paragraph above. First, a good outcome in the case of a

capacity auction would be receipt of a capacity payment that meets or exceeds the necessary

payment required for new entry. Second, the choices of the other participants are observed

by an individual in the forms of auction clearing capacity amounts and clearing prices. This

is closely tied to the third point, in which we do not need to make any observations on the

participants in the auction that would be considered private information, such as finances

or true costs.

4.1 Roth-Erev Learning Algorithm

The basic model as described in Roth and Erev has each player i with a fixed number

of actions, Mi. in the action domain Mi. At time t = 1, each player has an initial propensity

to play the mth action qim(1). A propensity is a real number, which, relative to the propen-

sities on the other actions, determines how likely a player is to play that particular action.
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So, if a player i plays action m and receives a payoff x (in dollars), the propensity to play

action m is updated according to the formula

qim(t+ 1) = qim(t) + x. (4.1)

Propensities increase as positive rewards are received. The probability that a player i plays

action m is given by pim(t) = qim(t)/
∑
qij(t). The sum in the denominator is over all the

actions j ∈Mi. Over time, the rewards x have less marginal impact on the propensities and

probabilities. Roth and Erev mitigate this by introducing a “forgetting” parameter into the

model. This parameter φ ∈ [0, 1] is used to limit how flat the learning curve can become.

By “forgetting” some prior experience, rewards will continue to have a significant impact

on propensities over time. Each propensity is multiplied by 1 − φ at the end of a period t,

giving the new formula

qim(t+ 1) = (1− φ)qim(t) + x. (4.2)

The forgetting parameter also prevents the denominator
∑
qij(t) term from approaching

infinity.

A second modification that Roth and Erev introduce is that of an experimentation

parameter. This parameter prevents certain actions from dominating the domain space. It is

possible that for low initial propensities, an extremely high payoff could skew the probabilities

greatly, creating an instance where the player may never choose a different action from the

one originally chosen. This would prevent the player from fully having a chance to learn

about the decision context. To counter this, the experimentation parameter ε ∈ [0, 1] is

introduced. For an action m the propensity is updated according to the formula
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qim(t+ 1) = qim(t) + (1− ε)x. (4.3)

The remaining quantity εx is distributed evenly across the remaining actions’ propensities

qik(t+ 1) = qik(t) +
ε

M − 1
x for k ∈Mi, k 6= m. (4.4)

4.2 Generator Offer Curve Learning

Generators in the model have the option to engage in both economic capacity with-

holding and physical capacity withholding. Economic capacity withholding is the overstate-

ment of marginal costs, while physical capacity withholding is the understatement of maxi-

mum generating capacity. Sun and Tesfatsion’s AMES model features a modified version of

Roth and Erev’s reinforcement learning algorithm (Roth and Erev (1995); Erev and Roth

(1998)). Each generator has a set of possible actions called an action domain. For simplicity

and tractability, the action domain is finite. Each generator agent i has a propensity to

choose a particular action m given by qim(t). The initial propensity is set exogenously to

qim(1), and furthermore, qim(1) = qi(1), that is, all initial propensity levels for actions are set

equal for the first day of the model. Using the formulation of Roth and Erev, for a generator

i who choses action m, the propensity is updated according to

qim(t+ 1) = (1− φ)qim(t) + (1− φ)x (4.5)

and

qik(t+ 1) = (1− φ)qik(t) +
ε

M − 1
x for k ∈Mi, k 6= m (4.6)

In electricity markets payoffs can be negative as operating the power plant would lose money

if electricity prices are lower than costs. Similarly, in capacity markets, a low bid might result
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a capacity payment that does not cover the net cost of new entry. While the propensity

updating equations are unaffected by negative payoffs, the probability calculation for player

i’s action m,

pim(t) =
qim

(
∑
qij(t)

, (4.7)

are no longer valid probabilities if any propensity qim is negative. While there are several

possible solutions, we choose to modify the choice probability calculation to leave the reward

function intact and easily parsed. In our model, negative rewards represent losses, which

should not be shifted to become positive. In the AMES model, the probability that an action

m is selected by generator i is given by

pim(t) =
exp (qim(t)/Ti)∑Mi

j=1 exp (qij(t)/Ti)
(4.8)

The parameter Ti is a cooling parameter that affects the impact propensities have on

Generator i’s choice probabilities. If Ti is large, then the choice probabilities go to 1/Mi,

and if Ti is small then the choice probabilities are heavily loaded over the choices with the

highest propensities in the domain. Exponentiation ensures that any negative propensities

are transformed to positive values, giving positive choice probabilities. The model with

the cooling temperature and exponential probability calculation is a variant of the original

Roth-Erev reinforcement learner and is referred to by Sun and Tesfatsion as the VRE-RL

algorithm. All references to learner henceforth refer to the VRE-RL algorithm used in the

AMES model.
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4.3 Capacity Offer Learning

Using the modified Roth-Erev learning model described above a learning component

will be added for the capacity bidding in the yearly capacity auction. The action domain

will be a percentage αi in the range αi ∈ [−1, 1], with a finite number of increments. This

parameter αi is the factor by which each generator adjusts and reports their levelized cost

of electricity C resulting in a bid of (1 +αi)C. Recall from Chapter 3 that the levelized cost

of electricity (LCOE) was defined as

LCOE =
CapCost+ FOM

ExpectedGeneration
+ V OM + Fuel (4.9)

For new entrants, there are multiple ways to implement capacity bid learning, each with

positives and negatives.

We devise an approach where each new entrant belongs to one of a set of holding

companies. The approach here is meant to represent a company having a portfolio of gener-

ation, both existing and prospective. Each holding company therefore has a learner for their

existing generation, and one for new plants they are planning to submit into the capacity

auction. The number of new entrants in a given year is fixed and the number of prospective

new entrants is less than the number of holding companies. Each new entrant is assigned to

a holding company and has access to the new entrant learner of the holding company.

Every year, every action chosen by prospective new entrants of a holding company are

drawn from the same distribution. This does not mean that they choose the same action, just

that they have access to the same body of knowledge and propensities. After the conclusion

of the auction, each of these generators would provide information back to the single learner
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of their holding company. We are able to gather information at a faster rate than if each

entrant had its own learner.1

Should any generators clear in the auction, they are moved into the pool of existing

generators, and after updating the holding company’s new entrant learner, are removed from

that pool. Instead, they now choose actions and update propensities based on that same

holding company’s existing generator learner. Those that do not clear must wait until next

year’s auction to try again. The number of prospective new entrants is fixed every year, so

new generators enter the pool to replace those that cleared in the auction. The manner in

which each learner processes the results of the auction is discussed next.

4.3.1 Signal Updating

At the conclusion of a capacity auction, the clearing price is revealed. Each generator

then updates the propensity qi for action αi with the resulting reward. Additionally, the

clearing price provides more information than just whether or not the generator’s particular

bid cleared. The structure of the market also allows it to provide information on what reserve

margin cleared. This will allow us to update more than one action αi per auction, as we will

now describe in more detail.

Upon model initialization, N new entrants are created with normally distributed

random generator capacity size and annualized cost C. All are assigned to one of H holding

1Other learners were tested. One of which was a single global learner. In this scenario, for any given year
there are a fixed number of entrants. Every entrant shares the same learner. Each auction allows for fast
learning on account of there being a single learner with multiple updates per auction. In tests, the shared
learner resulted in quick convergence, however the idea that every prospective generator shares the same
knowledge is not very credible. A second option was that of each generator having its own learner. This
results in slow convergence in the time frame allowed by the model and computational resources.
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companies hi. All entrants have the same initial propensities over the actions in the action

domain, and thus equal probabilities. When the auction begins, each new entrant submits

a bid equal to (1 + αi)C. All bids are sorted and stacked to form a supply curve, then

intersected with the demand curve set by the ISO. The clearing price is paid to all entrants

whose bids were to the left of the intersection point, in exchange for a commitment to

be available for unit commitment in the day-ahead and real-time markets. Each entrant’s

propensity is updated with the appropriate reward (0 if not clearing the auction and clearing

price minus fixed cost p∗−C if clearing the auction) for the action αi they chose. If k of the

new entrants cleared, then they are removed from the new entrant pool, and k new entrants

are added to the pool, again with randomly distributed capacity and size, and the same

initial propensities and randomly assigned holding company. The entrants moved out of the

new entrant pool are marked as existing generators, and use the holding company’s existing

generator learner as opposed to the holding company’s new entrant learner. This process

continues until the simulation is over. It is possible that a new entrant never clears in any

of the capacity auctions and is never replaced.

4.3.2 Low Bids

To increase the amount of learning occurring in a given year’s auction, additional

signals were considered. If a bidder does not clear in the auction they cannot observe other

bidder’s bids, but they can observe the clearing price. Let us introduce a new price p′ that

is equal to the price given by the demand curve for the quantity of cleared capacity plus the

additional capacity of Generator i.

p′ = D(capcleared + capi) (4.10)
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Each losing bidder updates each action m that would have resulted in a bid lower

than the clearing price ((1 + αi)C < p′) with the reward for clearing in the auction, p′ − C.

In other words, this assumes that, had the bidder bid something lower than their original

bid, they would have cleared in the auction and received the clearing price p′ and paid cost

C. More often than not, this results in negative rewards on extremely low bid factors. This

result is not unreasonable; at the extreme, one would assume that bidding a cost of 0 when

one’s true cost is nonzero would not be in one’s best interests.

4.3.3 High Bids

Similarly, consider the case of every bidder whose true cost was less than the clearing

price C < p∗. Every action i that would have resulted in a bid higher than the clearing price

(1 +αi)C > p∗ is given the reward −(p∗−C). Since p∗−C is positive, this negative reward

is meant to represent the opportunity cost of bidding too high, not clearing in the auction,

and having to wait another year for the next auction. By failing to clear in the capacity

market, the generator is missing out on potential revenue that could have been earned that

year.

4.3.4 Examples

The examples presented below will be broken into two parts for clarity. The first part

will provide a simple example of the Roth-Erev learning algorithm in action, and the second

part will provide an example of the reward functions described in the capacity offer learning

section.

Consider this basic application of the Roth-Erev learner with a simple ultimatum
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game for two players. There are 10 dollars available to split between two players. Only

integer denominations are allowed. One player is assigned the role of offer maker (player

one), and one player the role of offer taker (player two). Player one presents a dollar amount

for themselves to keep to player two, and if player two accepts, player two gets the remaining

funds. If player two rejects the offer, then both parties get 0. Player one begins with a

demand d1, an integer between 1 and 9 inclusive. Player two reports a maximum allowable

demand m2 that is also an integer between 1 and 9 inclusive. If d1 ≤ m2 then player one

receives d1 and player two receives 10− d1. Otherwise, if d1 > m2 then both players receive

0.

We will set up an example where player one always has the role of offer maker, and

player two that of offer taker. The game will be repeated multiple times to show the effects

on propensities and action probabilities. We will leave experimentation at 0 and recency at

0, and all initial propensities on actions are 1 as well. For each player there is an action

domain of size 9 (integers 1 through 9) which we will label aki where i is the integer chosen

and k is the player number. Assume in the first game that player one chooses d1 = 4(action

a14) and player two chooses m2 = 6 (action a28). Then player one receives 4 and player two

receives 10− 4 = 6. The propensities are then updated for both player one and two on the

respective actions that they chose. In player one’s case

q14(1) = q14(0) + 4 = 1 + 4 = 5, (4.11)

and in player two’s case

q26(1) = q26(0) + 6 = 1 + 6 = 7. (4.12)

89



Now player one has a higher chance of playing action 4 in the next period, and player two has

a higher chance of playing action 8 in the next period. The probability that player two plays

action 8 is higher than the probability that player one plays action 4, since the propensity

is higher. The other actions propensities remain at their initial values of one.

Now we reintroduce the recency and experimentation parameters φ and ε. We will

let recency be φ = 0.5 and experimentation ε = 0.25. If we take the exact same game and

moves as before, the difference in propensities is now

q14(1) = (1− φ)q14(0) + (1− ε)4 = (0.5)(1) + (0.75)(4) = 3.5 (4.13)

for action 4, and

q1j(1) = (1− φ)q1j(0) +
ε

8
4 = (0.5)(1) +

(0.25)(4)

8
= 0.625 (4.14)

for all other actions j 6= 4. Similarly, for player two:

q26(1) = (1− φ)q26(0) + (1− ε)4 = (0.5)(1) + (0.75)(6) = 5 (4.15)

for action 6, and

q2j(1) = (1− φ)q2j(0) +
ε

8
4 = (0.5)(1) +

(0.25)(6)

8
= 0.6875 (4.16)

for other actions j 6= 6. In a situation where the maximum acceptable demand is lower than

the amount demanded, both players get nothing. The reward payout is 0, and in models

where recency φ is zero, there is no change to the propensities and thus no change to the

probabilities. When recency is non-zero, the propensities are reduced by a factor of φ, which

results in a change in the probabilities.
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Let us now consider the extra signal information described in the low bids and high

bids sections above. We consider the same two player offering game with a few slight modi-

fications and are only concerned with the reward function for player two. Now, rather than

setting a demand for their own payoff, player one offers an amount o1 for player two to

receive. Player two has a minimum acceptable offer f2, and if this minimum is less than

the amount offered by player one, player two receives the offered amount. Furthermore, any

amount received by player two is subject to a “gambler’s tax” of 4 dollars. The reward

function then for player two is o1 − 4 if f2 ≤ o1 and 0 otherwise. Suppose that player one

plays action 6 (o1 = 6) and player two plays action 3 (f2 = 3). The updated propensity for

player two’s action 3 is

q23(1) = q23(0) + 6− 4 = 1 + 2 = 3 (4.17)

To utilize the extra information, player two now considers the other bids that could have

been made: the low and high bids discussed previously. For the “low bids”, all minimum

acceptable offers that would have been less than o1are updated. These other offers are actions

1,2,4,5 and 6.

q21(1) = q21(0) + 6− 4 = 1 + 2 = 3 (4.18)

q22(1) = q22(0) + 6− 4 = 1 + 2 = 3 (4.19)

q24(1) = q24(0) + 6− 4 = 1 + 2 = 3 (4.20)

q25(1) = q25(0) + 6− 4 = 1 + 2 = 3 (4.21)

q26(1) = q26(0) + 6− 4 = 1 + 2 = 3 (4.22)

91



For “high bids”, all minimum acceptable offers that are higher than o1 are considered. In

this case, that would be actions 7,8, and 9. The goal behind updating these actions is to

consider whether or not playing a lower minimum would have resulted in positive reward.

If that would be the case, then the propensities are updated with the opportunity cost of

having missed that reward. An example should make things clearer.

q27(1) = q27(0) +−(6− 4) = 1− 2 = −1 (4.23)

Here, the reward received had a lower action been played would be 2 (6-4), but because

player two was “greedy” they missed out on receiving this reward, hence the -2 in the

equation above. The same logic applies to actions 8 and 9.

q28(1) = q28(0) +−(6− 4) = 1− 2 = −1 (4.24)

q29(1) = q29(0) +−(6− 4) = 1− 2 = −1 (4.25)

We conclude this section with one final example that illustrates one interesting (and common

case in our capacity markets). We will continue the previous example, so we are now in period

2. Here the offer played is o1 = 3 and the minimum acceptable offer chosen is f2 = 4.

q24(2) = q24(1) + 0 = 3 + 0 = 3 (4.26)

Because the minimum acceptable offer was greater than the offered amount, the reward

received was 0 and the previous propensity from the last period is carried over with no

change.

For a lower minimum acceptable offer (actions 1, 2, and 3) the amount offered is

received and subject to the “gambler’s tax”, thus resulting in net gain to player two of −1
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(= 3− 4). The propensities would be updated thusly:

q21(2) = q21(1) + (−1) = 3− 1 = 2 (4.27)

q22(2) = q22(1) + (−1) = 3− 1 = 2 (4.28)

q23(2) = q23(1) + (−1) = 3− 1 = 2 (4.29)

Higher minimum offers would not have resulted in a positive reward (the reward will always

be 3− 4 = −1), and so those propensities are not updated according to our high bids rules.

q25(2) = q25(1) = 3 (4.30)

q26(2) = q26(1) = 3 (4.31)

q27(2) = q27(1) = −1 (4.32)

q28(2) = q28(1) = −1 (4.33)

q29(2) = q29(1) = −1 (4.34)

At the end of this step we have actions 4, 5, and 6 as the highest propensity actions,

and 7, 8, and 9 as the lowest. We note that the actions 1, 2, and 3 are lower due to the

gambler’s tax, and those actions should not be played as part of an optimal strategy. Were

this exercise to continue, we would see the gap in propensities between the more mid-range

actions and low minimums widen.

4.4 Learning results

The model setup for the results that follow is now described. There are two holding

companies and a total pool of 10 prospective generators per year. This allows for a balance
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between faster convergence and the ability to run multiple learners in parallel. There is a

10 year “burn-in” period in which the simulation runs unrestricted, after which all results

with the exception of the holding companies’ propensities are wiped out. These propensities

can be thought of as priors. The simulation then begins anew, as if on day 0, with initial

demand levels and only the initial existing generation described in Chapter 3 and runs for 10

years. The reasoning behind the burn-in period is that in preliminary testing, more than 35

generators would be added in the first 5 years of a twenty-year simulation. Generators were

bidding wildly, having started with equal probability of every action. With such a massive

buildup of excess capacity in the early periods, the consequent learning results and their

applicability to energy markets in the United States must be questioned. The simulation no

longer represents a realistic energy market as there would not be situations where a market

develops a 100% reserve margin. The decision was made to take 10 years of this learning and

use it as prior propensities for the learners in a 10-year simulation immediately following, to

more align with and better compare to the models run in Chapter 3.

The forgetting parameter is set to 0.2 so that the reward received from an action is

added to 80% of the existing propensity for that action. This means that rewards associated

with the oldest actions chosen are worth less and less as time goes on. In early years, since

the actions start with equal probability of being chosen, there is a high amount of variance in

the rewards. The agents are still learning the best action or actions to play. As a dominant

strategy emerges in later years, however, the weight given to these early actions and rewards

should be lessened. The early actions can be thought of as feelers or test bids before more

educated bids can be made. We slowly phase out their contribution in favor of rewards

from more informed actions. Experimentation is set to 25%, such that 75% of the reward
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gets applied to the chosen action and 1.25% (25%/20) gets applied to every other action.

Experimentation is not set too high so as to allow for a dominant strategy to emerge, but

not so low that a local minimum cannot be exited.

4.4.1 Optimal Bid in Learning Case

There are two bid profiles to consider, both with different optimal strategies. One is

the bid profile of new entrants, and the other the bid profile of existing entrants. Recall from

Chapter 2 that it is in the best interests of existing generators to bid 0, as anything higher

results in a potential loss of capacity market payments. Because the generator is already

online; costs are sunk. Should the generator not clear in the auction, they do not have the

option to “give back” the generator, or to not pay that years’ capital cost. It is in their best

interest to try and receive any capacity payment, regardless of the amount, which would

mean bidding as low as possible. Attempting to clear at a higher price by submitting an

inflated bid runs the risk of not clearing at all.

The new entrants optimal bid is their true cost. Any lower and they too do not recover

the entirety of their capital costs. Any higher and they have a lower probability of clearing

in the auction and receiving nothing at all, except a year of waiting and the opportunity

costs associated with the waiting. In this case that represents the lost income from entering

and operating in the energy market.

We first run a case where we only “turn on” one set of the learners: the new entrants.

We set existing generators to always bid 0, and the prospective generators use the learner

described in the previous section. This scenario is run for 10 years (after the 10 “priming”

years). No generator ever enters in any of the capacity auctions that are held. However,
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Figure 4.1: Averaged probabilities for different bids

nine generators are built though out the 10-year period as a result of favorable economic

conditions. A big part of these favorable economic conditions comes as a result of predicted

capacity payments. Recall that the LACE calculation takes into consideration both the

predicted peak demand and the current level of installed capacity. With the two numbers, a

reserve margin is calculated and from the reserve margin the capacity price that would arise

from the demand curve set by the ISO.

Figure 4.1 is the result of the average of the holding companies for one such run.

Because the new entrants will bid almost entirely at or above the true cost of entry, the

probability of clearing in the auction with this strategy is very low.

As seen in Table 4.1, The reserve margin always hovers around 1.5%, with new en-

trants coming online as reserve margin drops lower and predicted capacity price rises. We
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Year Reserve Margin Installed Capacity Peak Demand
1 5.6% 5750 5446
2 4.5% 5750 5505
3 3.3% 5750 5564
4 2.2% 5750 5624
5 1.7% 5778 5683
6 1.7% 5838 5742
7 1.6% 5896 5801
8 1.5% 5946 5861
9 1.6% 6016 5920

10 1.7% 6081 5979

Table 4.1: Reserve margins for the case when only prospective generators learn

know the new entrants are coming online as a result of predicted capacity prices because

in the scenarios with no capacity market from Chapter 3, prices do not get high enough in

the electricity markets (when they are not allowed to spike to $20,000/MWh) to alone meet

total costs. We see that the capacity prices stabilize at the price of around $12.5/MW-day

after year six in Figure 4.2.

Figure 4.3 below shows a graph of the levelized cost of electricity and levelized avoided

cost of electricity for the 10 years (non-benchmark) for a 30MW combined cycle generator.

When LACE is greater than LCOE a new entrant enters the market. The gap between

LACE and LCOE is what we use as our proxy for the net cost of new entry (CONE) that is

the basis for all capacity payments. The sawtooth shape in the graph can be explained in a

few steps. The initial gentle slope of the LACE is revenues from a market in which the only

payments made to generators are the revenues earned in the day-ahead market. The first

year has no capacity payments since a capacity auction has not been held. In the second

year, because the initial model state has excess capacity, the predicted capacity price is 0
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Figure 4.2: Capacity prices in the case when only prospective entrants learn
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dollars, and the markets in general function as they did in the first year. The gentle rising

slope is a result of demand growth and in turn higher prices due to heightened capacity

utilization. We see the first portion of increased slope when the predicted capacity price is

nonzero around day 730, or year 3. Around this time demand is high enough that the initial

capacity existing in the model is not sufficient, pushing the reserve margin downward. It is

also the first time predicted reserve margin drops below 5% and with it a non-zero capacity

price is predicted.

Figure 4.3: LACE and LCOE comparison in the case where only prospective generators learn

The drop that is seen around day 1099 is not because new capacity was built, but

because a new year begins. A capacity auction is held on the first day of every year, and

those that clear in it are paid the clearing price for that year. When calculating the LACE
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for the next year forward, a new entrant entering after the capacity auction, on day 2 for

example, has 363 days of no capacity payments received, before they can bid into the auction

the following year.

In subsequent years the LACE rises enough that the predicted capacity price, coupled

with the days that price will be received, is sufficient to encourage new entrants 30-60 days

before the start of a new year, on average. New capacity not only lowers predicted capacity

prices but also lowers LMPs and thus generator revenues. Each year after the capacity

auction the LACE value drops and slowly works its way back up again. There is a small

kink in an otherwise smooth line around day 3478, where a generator enters the market

through competitive entry rather than by clearing in the capacity auction. Also note that

the two peaks with the highest LACE correspond exactly with the highest capacity prices,

as expected.

All generators in the market are able to begin paying off their total costs, both variable

and fixed, from the capacity payments received in the auctions. All existing generators clear

in the auction with 0-dollar bids and the capacity price is always positive. Most, if not all

(due to variability in initial capital costs), generators are on track to make back their initial

construction costs before the end of their assumed 20-year lifetime.

4.4.2 Existing Capacity Bids According to Learned Strategy

If we now also let the existing generators learn how to bid in the capacity auction

using the same format as before the results of the two learners look very different. A slight

modification was made to the base set up of the model. The nine existing generators were

each split into two equivalent generators, each half the size of the original and with the same
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cost structure. The reason for this is that when one of the very large generators failed to clear

in the auction, this had the adverse of effect of at times removing more than 15% of capacity

from the auction. The resulting reserve margin and clearing price led to scenarios where

excessive amounts of new generation were built, causing a massive oversupply of generation

resources. Though the doubling of the number of initial generators increased run time, the

model more closely approximates both the theorized scenario in Chapter 2 and real-world

scenarios. Observing the holding companies’ propensities for existing generators at the end

of the model run, and, averaging each action propensity across the entire set of runs, we see

in the figure below that 99% of the mass is on bids in the range α ∈ [−1,−0.6], or a strategy

of 60% or less of one’s true cost.

The average probability on actions taken from 25 runs and 2 holding companies per

run is given by the probability mass function in Figure 4.4.

For new entrants, a different picture is painted. Here, bidding low increases the chance

of clearing in the auction, with the caveat that, if cleared, the generator is expected to be

online and entered into the day-ahead market. Because the capacity payment is designed to

meet the difference between the cost of new entry minus the payments from participating in

the energy market, a low bid can result in the difference not being met. For example, say

that it costs $100,000/MW-year for a new combustion turbine. It can be expected to make

$25,000/MW-year from participating in the energy and ancillary services market. Thus,

$75,000/MW-year must be covered by capacity payments. If, instead the generator bids in

at $40,000/MW-year, and the market clears at that price, there is still $35,000/MW-year

that is missing. In Chapter 2, recall that the optimal bid for new entrants was just shy of

truthful bidding.

101



Figure 4.4: Averaged probabilities for existing generator learners

Figure 4.5: Averaged action probabilities for new entrants when all parties learn
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Year Reserve Margin Installed Capacity Peak Demand
1 5.6% 5750 5446
2 6.2% 5846 5505
3 5.5% 5872 5564
4 5.5% 5932 5624
5 4.4% 5932 5683
6 3.3% 5932 5742
7 2.3% 5932 5801
8 1.2% 5932 5861
9 1.4% 6001 5920

10 1.3% 6059 5979

Table 4.2: Reserve margin for market when all parties learn

From the distribution in Figure 4.5, we see that result is backed by simulation. It is

not advantageous to bid low, as the capacity payments are not high enough to be rewarding.

There is high mass on both truthful bidding and just shy of truthful bidding. The two

combine for almost 50% of the entire mass function.

How does this affect the market? The usual metrics we look for, such as reserve

margin and capacity clearing prices, look very similar to those in Chapter 3 as evidenced by

Table 4.2 and Figure 4.6. The reserve margin hovers just above the target of 0%, at 1%.

The reasoning for this being that the demand curve defined by the ISO is set to pay out the

net CONE when reserve margin is 1% above the target level. Since the 0 bids from existing

generators and the truthful bids from prospective generators create a situation where there

is no supply being withheld, and no opportunistic entry, the equilibrium point stabilizes to

where the capacity market covers the difference when necessary.

The capacity clearing prices for the first three years are high as the cleared reserve

margin is less than 0%. In later years however, the price settles around $13. An interesting

103



Figure 4.6: Capacity clearing prices when all parties learn
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Year Capacity Price Cleared Capacity Installed Capacity
1 10.12730 5626 5750
2 14.05059 5597 5846
3 19.84752 5407 5872
4 9.94348 5812 5932
5 11.67052 5832 5932
6 9.75118 5932 5932
7 12.26465 5932 5932
8 11.71958 6001 5932
9 11.84386 6059 6001

10 11.85249 6119 6059

Table 4.3: Mismatch when cleared capacity is lower than installed capacity

thing to note is that at the start of the model, the cost of new entry (which is based off of

the difference of LACE and LCOE) for an average sized combined cycle generator is roughly

$13/MWh. Observe in Figure 4.6 that in the third year the clearing price is close to the

maximum of 1.5 times the CONE. This means that the cleared reserve was significantly less

than the target level. Even though there exists sufficient installed capacity in the market,

not all of it clears in the auction; existing generators’ bids in the first few years have not yet

converged to the optimal strategy, resulting in bids that are too high. Table 4.3 highlights

this disparity between installed capacity and cleared capacity.

We see evidence of the downside of not bidding 0 (shown to be optimal in Chapter

2) as an existing generator in Figure 4.7 below. Two generators have entered the market

through projected LACE > LCOE.
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Figure 4.7: Generator cash holdings for two selected new entrants

The generator represented by the red line loses money at first but then, by clearing

in the subsequent capacity auction, begins receiving capacity payments. The generator

represented by the blue line enters but fails to clear in the auction held on day 1825. The

cash holdings continue to decline until the second auction held after their entrance date, at

which point they clear in all subsequent auctions and continue to earn a profit. We can all

see the red generator fail to clear in that same auction, at which point they operate at a loss

until the next year.
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4.5 Learning Takeaways

When allowing generators to learn bidding strategies in a basic capacity auction, the

results corroborate what was theorized in Chapter 2 and implemented in Chapter 3. For

new generators, we see that it is optimal to bid truthfully. Doing so minimizes losses and

opportunity costs of waiting. For existing generators, the lower the bid, the better. For

existing generators, it is optimal to bid 0. Otherwise the fixed costs are never recouped

under standard operating conditions. Any capacity payment, no matter how small, is better

than none.

Comparing the final probability distributions of new entrants when existing genera-

tion is allowed to learn and when it is not we note that the actions are more closely centered

around truthful bidding in the former case.

(a) Existing generation learns (b) Existing generation does not learn

Figure 4.8: Comparison of action probabilities for new entrants

The reason for this is that when the existing generation cannot learn, the high bids
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rarely result in in offers that clear. The propensities mostly go untouched, as they did in

simple example presented earlier in this chapter. Hence the rather uniform distribution

across those actions above truthful bidding. When existing generators are allowed to learn,

the capacity clearing in the auction no longer defaults at a minimum to the installed capacity

in the market. Now the existing generation too has a chance to bid too high and not clear.

Because of this, there is a higher chance of higher bids from new generation clearing. This

also means that the opportunity cost penalties are more variable. Before, since reserve

margins were always near the target, truthful bidding was the maximum allowable bid, and

everything higher would incur the penalty. Now, a higher bid can still clear, essentially

shifting the bids that receive that penalty.

From the perspective of the ISO, existing generation bidding in at 0 helps curb ca-

pacity payments, as without the base existing generation supply for “free”, we see the wild

spikes due to insufficient reserve margins when large plants do not clear. So too, we assume,

would generators prefer the smoother, more predictable capacity payments seen in the sim-

ulation than the variability in prices exhibited in real life capacity auctions such as those of

PJM.
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Chapter 5

Discussion and Further Research Directions

The subject of capacity markets has been a hotly studied issue in electricity markets.

Questions as to their viability or overall beneficence are debated by industry professionals

and by academics alike. Though this analysis seeks only to clear a small portion of the

haze surrounding capacity markets, it is our hope that the research can cast some light

on the auction formats and provide a useful tool for evaluating different scenarios. In the

theoretical framework of Chapter 2 we analyzed variations on the multi-unit, discriminatory

supply auction. Starting from a single bidder playing against “the market,” working our way

towards the multiple bidder multiple winner demand curve-based auction. When modeled

as a single player playing against a random capacity clearing price, it was optimal for the

generator to bid in their true cost in the first period. For each subsequent period after the

first period in which they clear in the auction, the optimal strategy is to bid 0. At this point,

it does not matter what the clearing price is, the generator has to pay its capital costs and

any amount of capacity price will help to offset those.

From there we consider single period games where multiple bidders compete for the

right to supply one unit of generation into the market. Here we found that generators were

likely to shade bids at every cost. Unsurprisingly, the more bidders present, the more severe

the level of bid shading, as every generator participates in a race to the bottom to be able to
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supply the one unit of generation. The generator costs that result in 0 bids varies with the

number of participants in the auction, but asymptotically approaches the mean of the price

distribution. That is to say, when one’s cost is below the mean of the unknown capacity

price, bid 0, otherwise, bid one’s cost adjusted downward relative to the distance from the

mean price.

Acknowledging that having a single winner is not how the majority of capacity auc-

tions work, we extend the multiple bidder model to multiple winners. A single price is paid

to all winners, and the number of winners is known prior to the auction. As before, when

holding the number of winners fixed, increasing numbers of participants lead to increased

levels of bid shading. 0 bids are again apparent, with the same asymptote of 0 bids for any

cost below the mean price. An interesting, but perhaps not unexpected result is that if the

number of bidders is held fixed, but the number of allowable winners is varied, the higher

the number of winners the less the degree of bid shading. Intuitively this makes perfect

sense, there is less need to aggressively underreport your cost if you are likely to win just by

participating.

Lastly, we modify the number of winners and clearing price to be dependent on the

bids submitted. This is closest to the auction structure that is used by many ISOs in their

capacity auctions. In this auction, in contrast with the others studied, the slope of the bid

as a function of cost has the same slope regardless of the number of participants. What

changes with an increasing number of participants is the translation of the biding function

to the right, resulting in more 0 bids. Relative to our other bid functions, the optimal bid

functions were much closer to truthful bidding.

In comparing the different auctions to each other we note a few key differences. When
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a flat price is paid to a fixed number of winners there are higher costs to the system, but

more capacity procured to go with it. On the other hand, the decreasing price auction does

not acquire as much generation capacity, but pays lower costs per unit overall. The lower

levels of procurement could lead to outages, however we found that only at very high values

of lost load ($100,000/MWh) did the cost of an outage make the flat price auction cheaper

in terms of average expected costs.

We then took our theoretical analysis and applied it to an agent-based simulation

model of a day ahead electricity market, where each generator is modeled by an agent. An

approximation of the Texas energy market was constructed, and the simulation run over

various parameters to test sensitivities. Additionally, the model was extended to include

both market-based competitive entry and capacity auction-based entry. In all scenarios with

an energy-only market, the system experienced multiple consecutive days of load, sometimes

for multiple hours. By increasing the maximum price cap, these lost hours are able to be

reduced. Perhaps counter-intuitively, it is not possible to reduce the lost hours to 0; for

the price to hit the cap, there must be some constraint or outage. Generators deciding to

enter the market factored this into their calculations, knowing that they would recoup a

good portion of their costs for that single hour of high prices. Consider the cost of serving

electricity and the cost of load together, we found an optimal price cap that resulted in the

minimum possible total costs to the system.

With the capacity market, we used the rules from the theoretical section to have new

entrants bid at cost, and existing generation bid at 0. In this scenario, it was possible to

achieve 0 hours lost, as generators no longer needed to receive extremely high prices from the

day-ahead market when they received capacity payments for providing generation resource
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into the system. Average prices throughout the system were also lower due to increased

availability of supply. When factoring in the cost of the capacity payments, the total cost,

however, was 40% higher than the optimum found in the energy-only market.

Rather than feeding the optimal bid strategies to the generators as we did earlier,

we then let them learn the optimal strategies using a simple reinforcement learner. A few

changes were made to the classical agent-based learners seen in the literature. We gave

multiple generator agents the same learner, which we called a holding company. This enabled

a learner to receive multiple updates per period, since each generator was playng an action

and receiving an associated payoff. Because of the nature of our model and the information

revealed in the capacity auction we went a step further with the reward function by also

updating actions that were not played. This hypothetical reward function coupled with the

joint learners allowed us to speed up the convergence of action probabilities.

When the model was run with existing capacity bidding 0 and new entrants learning

how to bid, the results were somewhat conclusive. It was very clear that bidding below cost

was not beneficial, but there was an even distribution of mass on bids above true cost. The

reason for this being that high bids all had an equally unlikely chance of clearing in the

auction, thus leading to the same reward payoff. New generation is only built as a result of

the capacity auction; no competitive entry occurs. The reserve margin hovers above 1.5%

for the duration of the run.

Allowing both new and existing generation to learn the optimal bids provides a rather

different distribution over actions of new learners. In this case the distribution peaks at

truthful bidding, with the next most likely action being 90% of true costs. This matches up

with our findings in Chapter 2, where in the decreasing price auction, the optimal strategy
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was to bid just shy of the truth. Existing generation had the majority of its probability mass

in the 0% to 40% of true costs range. In this scenario, bids and capacity prices in the early

years were much more volatile, with some existing generation not clearing in the market

from bidding too high. However, as time went on, both the bids and capacity clearing prices

stabilized to levels seen in prior runs.

For future analysis there are many modifications that can be made to these scenarios.

Different auction structures, such as a discriminatory price auction (where the price paid

is equivalent to the bid) could potentially reduce costs to the system but result in wildly

different bidding strategies. Here, as we have close to truthful bidding, not much governance

or oversight is needed. In a system where results could be manipulated, much more care

would need to be taken to ensure actors are playing fair.

The shape of the demand curve used in the capacity auction model is concave, a

shape that is rarely seen in classic economics literature. Modifying the shape of the demand

curve or adjusting the parameters and observing the effects these have on the market would

be an insightful sensitivity analysis.

The original AMES model was used to examine reported marginal supply offers if

profit maximizing generators are allowed to bid strategically. They may alter their available

capacity or their costs. It was found that generators universally reported higher marginal

costs. This version of the AMES model had no new entry or capacity markets. Analysis

of what a capacity market does to generator marginal cost reporting would be a valuable

addition to the original contributions of the AMES model.

In this paper we found that in a decreasing price style capacity auction results in
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participants misrepresenting their true costs. We found that when generators behave in

this way, capacity markets achieve 100% reliability at a negligible cost to the consumer.

Additionally, while good for the consumer, the capacity markets also provided a stable

source of income for generators. In the energy only markets, generators were unable to

recover their fixed costs, continuously losing money except in the rare hours of the year

when prices spiked. Finally, we verified through simulation that generators would learn to

bid optimally as we had theorized in the first part of the paper. Thus a complete package is

provided for anyone who wishes to do so to utilize the model to run their own analyses, or

build upon it as we did.
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Appendix A

Generalization of the Single Winner Case

In this section we modify the bounds of the single winner auction to show that the

result in the single winner case the bidders undereport their costs is not dependent on a

Uniform distribution with the same parameters for both price and costs. We set possible

clearing price to be Uniform(0, 1.5) and the costs of the generators to be Uniform(0.75, 1.25).

This setup is more similar to the way the current PJM auction is structured. Possible prices

in the auction range from 0 to 1.5 times the levelized cost of new entry (CONE). We assume

new plants will be mostly centered around this cost of new entry, but with some variation.

For n bidders, we have

w′(c) = −(n− 1)(2w(c)− 3)(4c− 2w(c)− 3)

2(4c− 5)(c− w(c))
,

which again does not have an analytical solution, but does have a numerical solution.
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Figure A.1: Optimal bid functions in the single winner case with clearing prices [0, 1.5] and
costs [0.75, 1.25].

As n gets large, the bid at the lowest possible cost, c = 0.75, goes to 0. The bid at the

highest potential cost, c = 1.25, is 1, which ensures an expected clearing price of 1.25, since

the only way the auction will be won by the bidder will be a price on the interval [1,1.5],

and an expected profit of 0.

Generally speaking, there are two cases: one where the maximum possible clearing

price is higher than the maximum cost, and one where the maximum possible clearing price

is lower than the maximum cost. In the former case, the bid at the maximum cost is equal

to the expected clearing price at that bid. The bid is the value w[c̄] that satisfies

c̄ =

∫ b

w(c̄)

ph∗(p) dp

where h∗(p) is the PDF truncated on the domain [w(c̄), b] of the original clearing price

distribution. In the latter case, where the maximum possible clearing price is lower than the

maximum possible cost, the optimal bid at the maximum clearing price is w[b] = b. For any

costs above b, the best strategy is to bid above b, as any possible clearing price would incur
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a loss. For presentation purposes we will say that w(c) = c when c > b. In both cases, there

is incentive to under report costs with nearly all distributions.
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