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In this thesis we explore two novel resource allocation models. The first

addresses challenges associated with dynamic sharing of network resources

by multiple tenants/services via network slicing. The second focuses on a

data-driven approach to the optimization of resource allocation in interactive

human-machine processes.

In our first thrust we investigate how to allocate shared storage, com-

putation, and/or connectivity resources distributed amongst multiple ten-

ants/virtual service providers which have dynamic loads. It is expected that

next generation of wireless network will be shared by an increasing number

of data-intensive mobile applications (e.g., autonomous cars, IoT, interactive

360◦ video streaming), and tenants/service providers. A key functional re-

quirement for such infrastructure is enabling efficient sharing of heterogeneous

resource among tenants/service providers supporting spatially varying and dy-

namic user demands, both from the point of view of enabling the deployment
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and performance management to diverse service providers and/or tenants, as

well as means to increase utilization and reduce CAPEX/OPEX associated

with deploying possible new infrastructures.

To that end, we propose a novel dynamic resource sharing policy,

namely, Share Constrained Proportional Fair (SCPF), which allocates a pre-

defined ‘share’ of a pool of (distributed) resources to each slice. We provide

a characterization of the achievable performance gains over General Proces-

sor Sharing (GPS), and Static Slicing (SS), i.e., fixed allocation of resources to

slices. We also characterize the associated share dimensioning problem, asking

when a particular set of load profiles and QoS requirements are feasible, as well

as what should be an appropriate pricing strategy. We further consider possi-

ble slice-based admission control scheme where slices engage in an underlying

game to maximize their carried loads subject to performance requirements.

In order to accommodate settings where one would wish to provision

different types of resources which are coupled through user demands, we gen-

eralize SCPF to a more general resource allocation criterion, namely, Share

Constrained Slicing (SCS), which extends traditional α−fairness criterion, by

striking a balance among inter- and intra-slice fairness vs. overall efficiency.

We show that SCS has several desirable properties including slice-level pro-

tection, envyfreeness, and load-driven elasticity. In practice, mobile users’

dynamics could make the cost of implementing SCS high, so we also study the

feasibility of using a dynamically weighted max-min fair policy as a surrogate

resource allocation scheme. For a setting with stochastic loads and elastic user
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requirements, we model the user dynamics under SCS as a queuing network

and establish the stability condition. Finally, and perhaps surprisingly, we

show via extensive simulation that while SCS (and/or the surrogate weighted

max-min allocation) provides inter-slice protection, they can also achieve im-

proved job delay and/or perceived throughput, as compared to other weighted

max-min based allocation schemes whose intra-slice weight allocation is not

share-constrained, e.g., traditional max-min and/or discriminatory processor

sharing.

In our second thrust we study how to optimize resource allocation in

the context of human-machine interactions. Examples of such processes could

include systems aimed at assisting humans in interactive learning, workload

allocation, or web-search advertising. We devise an innovative framework to

enable the optimization of a reward over an interactive process in a data-driven

manner. This is a challenging problem for several reasons: (1) humans’ be-

havior is not easily modeled and may reflect biases, memory and be sensitive

to sequencing, all of which should/could be inferred from data; (2) because

these interactions are typically sequential and transient, inferring such com-

plex models for human behavior is difficult; (3) furthermore, in order to collect

data on human-machine interactions one must choose a machine policy which

in turn may bias inferences on human behavior. In this thesis we approach

the problem of jointly estimating human behavior and optimizing machine

policies via Alternating Entropy-Reward Ascent (AREA) algorithm. We char-

acterize AREA in terms of its space and time complexity and convergence.
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We also provide an initial validation based on synthetic data generated by an

established noisy nonlinear model for human decision-making.
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Chapter 1

Introduction

Resource sharing and allocation among network tenants and users are a

critical element of the design and optimization of network performance. In this

thesis we study two novel models of resource sharing and allocation. One is

pertinent to the case where customers’ distributions are dynamically changing

across the network and are supported by multiple network tenants (i.e., over-

the-top service providers or applications), which are sharing different types of

resources distributed at the network ‘edge’. The other is pertinent to the cases

where customers and systems are involved in an interactive process, and the

objective is to improve the associated utility.

1.1 Network Slicing

In our first research thrust we consider with network slicing where mul-

tiple tenants share wireless infrastructure via “slices” of resources customized

to specific mobile services needs, e.g., mobile broadband, media, OTT ser-

vice providers, and machine-type communications. Customization of net-

work slices may include the allocation of (virtualized) resources (communi-

cation/computation), per-slice policies, performance monitoring and manage-
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ment, security, accounting, etc. The ability to deploy service-specific slices

is viewed, not only as means to meet the diverse and sometimes stringent

demands of emerging services, e.g., vehicular communications, augmented re-

ality, but also as an approach for infrastructure providers to reduce their costs

while developing revenue streams. The ideal end goal in this setting would be

to reproduce the success of cloud compute/storage providers in the context of

providing virtualized wireless connectivity. Resource allocation in this context

is, however, more challenging than for traditional cloud computing. Indeed,

rather than drawing on a centralized pool of resources, a network slice requires

allocations across a distributed pool of resources, e.g., base stations.

The sharing of spectrum and/or network infrastructure is viewed as

one way of reducing capital/operational costs and is already being consid-

ered by standardization bodies, see [1, 2], which have specified architectural

and technical requirements, but left the sharing criteria and algorithmic issues

open. By aggregating network slices’ traffic on shared resources, it is expected

that operators could realize substantial savings, that might justify/enable new

shared investments in next generation technologies including 5G, mmWave

and massive MIMO. In this thesis we propose a novel sharing scheme, namely,

Share Constrained Proportionally Fair (SCPF), which adjusts resource allo-

cations according to the dynamic customer loads that each network operator

has across the network resources and a pre-allocated share of the pool. The

approach is studied from various perspectives, and is shown to outperform tra-

ditional approaches such as Static Slicing, and Generalized Processor Sharing

2



in a wide range of conditions.

As the wireless communication technology evolves, next generation net-

works also seek to support a variety of data-intensive services and applications

which share different types of resources. Coupling of provisioning across het-

erogeneous resources raises new challenges to our resource sharing scheme by

limiting its flexibility in aligning resource allocations to the spatial variations

of each resource type. To accommodate this, we propose a more general slice-

based resource allocation criterion, namely, Share Constrained Slicing (SCS),

which extends traditional α−fairness criterion to a setting where slices are

assigned shares of resource pools. We demonstrate that SCS succeeds in pro-

viding slice level protection, envyfreeness, and load-driven elasticity, and it

also allows a low-complexity surrogate allocation policy based on (dynamically

weighted) max-min fair. SCS, and/or the surrogate max-min fair, is shown to

outperform prevailing sharing criterion, e.g., Dominant Resource Fair [3] and

Discriminatory Processor Sharing [4, 5] in many settings.

Part I is devoted to exploring resource allocation in a network slicing

context and introduce a variety of new results in this area. Part of the results

are available in [6], [7], [8] and [9].

1.2 Human-Machine Interactions

In our second thrust we turn from optimizing dynamic sharing process

in networking system to the optimization of interactive processes associated

with human-machine interactions. For example, in a sequential web search

3



setting, the placement and timing of advertisements and/or information may

attract customers’ attention and can potentially influence their decisions, i.e.,

impact the convergence process to a decision; in an educational context, the

sequencing of learning material and/or problems may significantly affect stu-

dents’ experience and the final learning outcomes. Because the nature of hu-

man decision making/learning process may be not available to the system, it is

desirable to allow the system to try different allocation schemes iteratively and

make adjustments based on the observed outcomes. The adjustment of the

system, together with customers’ responses, form an interactive process, where

the machine can influence the human over time based on his/her responses to

date. The optimization of such process is challenging in many ways. First, hu-

mans’ decision-making processes are complex, biased and typically transient,

i.e., humans’ preferences might change over time. Thus the customers’ deci-

sions might be highly dependent on previous interactions. Also, the sequential

nature of the interactive process naturally leads to exponential complexity. In

this thesis, we use a data-driven approach to solve such problem. We propose

an alternating maximization algorithm, which combines an estimation phase

based on the maximum entropy principle for interactive processes, and an

optimization phase, which modifies the machine behavior/resource allocation

given the estimated model for human behavior/responses. Its performance,

complexity, and convergence properties are discussed.

Part II is devoted to presenting this framework and introducing our

results in this area. Part of the results are available in [10], and is under

4



preparation to submit to Allerton Conference on Communication, Control,

and Computing.
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Part I

Resource Sharing in Network
Slicing
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Chapter 2

Network Slicing with Parallel Resources

2.1 Introduction

2.1.1 Background and Motivation

Next generation wireless systems are expected to embrace SDN/NFV

technologies towards realizing slices of shared wireless infrastructure which

are customized for specific mobile services, e.g., mobile broadband, media,

OTT service providers, and machine-type communications. Customization of

network slices may include allocation of (virtualized) resources (communica-

tion/computation), per-slice policies, performance monitoring and manage-

ment, security, accounting, etc. The ability to deploy service specific slices

is viewed, not only as means to meet the diverse and sometimes stringent

demands of emerging services, e.g., vehicular, augmented reality, but also as

This chapter was partially included in the following two papers. J. Zheng, P. Caballero,
G. de Veciana, S. J. Baek, and A. Banchs, Statistical multiplexing and traffic shaping games
for network slicing, in proceeding of WiOpt’17, May 2017, and J. Zheng, P. Caballero, G. de
Veciana, S. J. Baek, and A. Banchs, Statistical multiplexing and traffic shaping games for
network slicing (extended), IEEE/ACM Trans. on Networking, Dec. 2018. The author was
responsible for the major part of developing those analytic results, conducting simulation-
based evaluation, and writing the paper.
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an approach for infrastructure providers to reduce costs while developing new

revenue streams. Resource allocation virtualization in this context is more

challenging than for traditional cloud computing. Indeed, rather than draw-

ing on a centralized pool of resources, a network slice requires allocations across

a distributed pool of resources, e.g., base stations. The challenge is thus to

promote efficient statistical multiplexing amongst slices over pools of shared

resources.

Network slices can be used to enable the sharing of network resources

amongst competing (possibly virtual) operators. Indeed, the sharing of spec-

trum and infrastructure is viewed as one way of reducing capital/operational

costs and is already being considered by standardization bodies, see [1, 2],

which have specified architectural and technical requirements, but left the

sharing criteria and algorithmic issues open. By aggregating their traffic onto

shared resources, it is expected that operators could realize substantial sav-

ings, which might justify/enable new shared investments in next generation

technologies including 5G, mmWave and massive MIMO.

The focus of this chapter is on resource sharing amongst slices sup-

porting stochastic (mobile) loads. A natural approach to sharing is complete

partitioning (see, e.g., [11]), which we refer to as static slicing, whereby re-

sources are statically partitioned and allocated to slices, according to a service

level agreement, irrespective of slices’ instantaneous loads. This offers each

slice a guaranteed allocation at each base station, and protection from each

other’s traffic, but, as we will see, poor efficiency. Other approaches include

8



full sharing (where all slices are served on a FCFS basis without resource reser-

vation), generalized processor sharing [12], which pre-assigns a share to each

slice, and allocate resource at each base station proportionally to the shares

among the slices which have active users. Instead, we advocate an alterna-

tive approach wherein each slice is pre-assigned a fixed share of the pool of

resources, and re-distributes its share equally amongst its active customers.

In turn, each base station allocates resources to customers in proportion to

their shares. We refer to this sharing model as Share Constrained Proportion-

ally Fair (SCPF) resource allocation. By contrast with static slicing, SCPF is

dynamic (since its resource allocations depend on the network state) but con-

strained by the network slices’ pre-assigned shares (which provides a degree of

protection amongst slices).

2.1.2 Related Work

There is an enormous amount of related work on network resource shar-

ing in the engineering, computer science and economics communities. The

standard framework used in the design and analysis of communication net-

works is utility maximization (see e.g., [13] and references therein) which has

led to the design of several transport and scheduling mechanisms and criteria,

e.g., the often considered proportional fair criterion. The SCPF mechanism,

described above, should be viewed as a Fisher market where agents (slices),

which are share (budget) constrained, bid on network resources, see, e.g., [14],

and for applications [15, 16, 17]. The choice to re-distribute a slice’s share

9



(budget) equally amongst its users, can be viewed as a network mandated

policy, but also emerges naturally as the social optimal, market and Nash

equilibrium when slices exhibit (price taking) strategic behavior in optimizing

their own utility, see [18].

The novelty of our work lies in considering slice based sharing, un-

der stochastic loads and in particular studying the expected performance

resulting from such SCPF-based resource allocations among coupled slices.

Other researchers who have considered performance of stochastic networks,

e.g., [19, 20], and others, have studied networks where customers are allocated

resources (along routes) based on maximizing a sum of customers utilities.

These works focus on network stability for ‘elastic’ customers, e.g., file trans-

fers. Subsequently [21, 22] extended this line of work, to the evaluation of

mean file delays, but only under balanced fair resource allocations (as a proxy

for proportional fairness). Our focus here is on SCPF-based sharing amongst

slices with stochastic loads and on ‘inelastic’ or ‘rate-adaptive’ customers, e.g.,

video, voice, and more generally customers on properly provisioned networks,

whose activity on the network can be assumed to be independent of their

resource allocations.

Finally there is much ongoing work on developing the network slicing

concept, see e.g., [23, 24] and references therein, including development of ap-

proaches to network virtualization in RAN architectures, e.g, [25, 26, 27], and

SDN-based implementation, e.g., [28]. This chapter focuses on devising good

slice-based resource sharing criteria to be incorporated into such architectures.

10



2.1.3 Contributions

This thesis makes several contributions centering on a simple and prac-

tical resource sharing mechanism: SCPF. First, this thesis considers user per-

formance (bit transmission delay) on slices supporting stochastic loads. In

particular it develops expressions for (i) the mean performance seen by a typ-

ical user on a network slice; and (ii) the achievable performance gains versus

Static Slicing (SS) and Generalized Processor Sharing (GPS). We show that

when a slice’s load is more ‘imbalanced’ than, and/or ‘orthogonal’ to, the ag-

gregate network load, one will see higher performance gains. The analysis of

this thesis provides an insightful picture of the ‘geometry’ of statistical mul-

tiplexing for SCPF-based network slicing. Second, under SCPF, traditional

network dimensioning translates to a coupled share dimensioning problem,

which addresses whether there exist feasible share allocations given slices’ ex-

pected loads and performance requirements. We provide a solution to robust

share dimensioning for SCPF-based network slicing. We further develop some

understanding regarding how one should price shared resources amongst slices

with heterogeneous traffic profiles.

Third, we consider decentralized per-slice performance management un-

der SCPF sharing. In particular, we consider admission control aimed at max-

imizing a slice’s carried load subject to a performance constraint. When slices

unilaterally optimize their admission control policies, the coupling of their de-

cisions can be viewed as a ‘traffic shaping’ game, which is shown to have a

Nash equilibrium. For a high load regime we explicitly characterize the equi-

11



librium and the associated gains in carried load for SCPF versus static slicing.

Finally, we present detailed simulations for a shared distributed infrastruc-

ture supporting slices with mobility patterns different than that assumed in

the theoretical analysis and more practical SINR model. The results match

our analysis well, which further supports our conclusions on gains in both

performance and carried loads of SCPF sharing.
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2.2 Model and Performance Analysis

2.2.1 Network Slices, Resources and Mobile Service Traffic

We consider a collection of base stations (sectors) B shared by a set

of network slices V, with cardinalities B and V respectively. For example, V

might denote slices supporting different services or (virtual) mobile operators,

etc.

We envisage each slice v providing a mobile service in the region served

by the base stations B –generalizations to subsets of base stations are natural.

Each slice supports a stochastic load of users (devices/customers) with an

associated mobility/handoff policy. In particular, we assume that exogenous

arrivals to slice v at base station b follow a Poisson process with intensity

γvb and let γv denote the (column) vector of arrival intensities at each base

station associated with slice v, i.e. γv = (γvb : b ∈ B). Each slice v customer

at base station b has an independent sojourn time with mean µvb after which it

is randomly routed to another base station or exits the system. As explained

below we assume that such mobility patterns do not depend on the resources

allocated to users. We let Qv = (qvi,j : i, j ∈ B) denote a slice-dependent

routing matrix where qvi,j is the probability a slice v customer moves from base

station i to j and 1−
∑

j∈B q
v
i,j is the probability it exits the system.

This model induces an overall traffic intensity for slice v across base

stations satisfying flow conservation equations: for all b ∈ B we have κvb =

γvb +
∑

a∈B κ
v
aq
v
a,b, where κvb is the traffic intensity of slice v on base station

b. Accounting for users’ sojourn times, the mean offered load of slice v on

13



base station b is ρvb = κvbµ
v
b , and ρv := (ρvb : b ∈ B) captures its system load

distribution. Letting µv = (µvb : b ∈ B), the flow conservation equations can

be rewritten in matrix form as:

ρv = diag(µv)(I − (Qv)T )−1γv. (2.1)

If Qv is irreducible, I − (Qv)T is irreducibly diagonally dominant thus

always invertible. Otherwise, we can always find a permutation matrix of B,

say P to make:

P T (I − (Qv)T )P =

A1 B1,2 . . .
. . .

...
AK

 ,
where K is the number of irreducible classes. Moreover, at least one base

station of each irreducible class has a nonzero exiting probability, thus AK

must be invertible. Then the invertibility of I − (Qv)T follows.

This model corresponds to a multi-class network of M/GI/∞ queues

(base stations), where each slice corresponds to a class of customers, see,

e.g.,[29]. Such networks are known to have a product-form stationary distribu-

tion, i.e., the numbers of customers on slice v at base station b, denoted by N v
b ,

are mutually independent and N v
b ∼ Poisson(ρvb). Since the sum of indepen-

dent Poisson random variables is again Poisson, the total number of customers

on slice v is such that N v =
∑

b∈BN
v
b ∼ Poisson(ρv) where ρv :=

∑
b∈B ρ

v
b .

Our network model for the numbers of customers and mobility across

base stations, assumes that customer sojourn/activity/mobility are indepen-

dent of the network state and of the resources a customer is allocated. This
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is reasonable for properly engineered slices where the performance a customer

sees does not impact its activity, e.g., inelastic or rate-insensitive applications

seeing acceptable performance. This covers a wide range of applications in-

cluding voice, video streaming, IoT monitoring, real-time control, and even,

to some degree, elastic web browsing sessions where users are peak rate con-

strained and this constraint typically dictates their performance.

There are several natural generalizations to this model including class-

based routing and user sessions (e.g. web browsing) which are not always

active at the base stations they visit, see, e.g., [29].

2.2.1.1 Network Slice Resource Sharing

In the sequel we consider a setting where the resources allocated to a

slice’s customers depend on the overall network state, i.e., number of customers

each slice has on each base station, corresponding to the stochastic process

described in Section 2.2.1. Let us consider a snapshot of the system’s state

and let Uv
b ,Ub,U

v, and U denote sets of active customers on slice v at base

station b, at base station b, on slice v, and on the overall network, respectively.

Thus, the cardinalities of these sets correspond to a realization of the system

‘state’, i.e., |Uv
b | = nvb and |Uv| = nv, where in a stationary regime nv and nvb

are realizations of Poisson random variables N v and N v
b , respectively.

Each base station b is modeled as a finite resource shared by its asso-

ciated users Ub. A customer u ∈ Ub can be allocated a fraction fu ∈ [0, 1] of

that resource, e.g., of resource blocks in a given LTE frame, or allocated the
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resource for a fraction of time, where
∑

u∈Ub fu = 1. We shall neglect quan-

tization effects. The transmission rate to customer u, denoted by ru, is then

given by ru = fucu where cu denotes the current peak rate for that user. To

model customer heterogeneity across slices/base stations we shall assume cu

for a typical customer on slice v at base station b is an independent realization

of a random variable, denoted by Cv
b , whose distribution may depend on the

slice, since slices may support different types of customer devices (e.g., car

connectivity vs. mobile phone) and depend on the base station, since typi-

cal slice v users may have different spatial distributions with respect to base

station b or see different levels of interference.

Below we consider three resource allocation schemes; the first two are

used as benchmarks, while the third is the one under study in this chapter.

For all we assume each slice is allocated a ‘share’ of the network resources

sv, v ∈ V such that sv > 0 and
∑

v∈V s
v = 1.

Definition 2.2.1. Static Slicing (SS): Under SS, slice v is allocated a fixed

fraction sv of each base station b’s resources, and each customer u ∈ Uv
b gets

an equal share, i.e., 1/nvb , of the slice v’s resources at base station b. Thus the

users transmission rate rSSu is given by rSSu = sv

nvb
cu.

Definition 2.2.2. Generalized Processor Sharing (GPS): [12] Under

GPS, each active slice v at base station b such that nvb > 0 is allocated a

fraction of the base station b’s resources proportionally to its share sv. Thus
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a user u ∈ Uv
b sees a transmission rate rGPSu given by

rGPSu =
sv

nvb
∑

v′∈V s
v′1{nv′b >0}

cu. (2.2)

Definition 2.2.3. Share Constrained Proportionally Fair (SCPF): Un-

der SCPF each slice re-distributes its share of the overall network resources

equally amongst its active customers, which thus get a weight (sub-share)

wu = sv

nv
for u ∈ Uv,∀v ∈ V. In turn, each base station allocates resources to

customers in proportion to their weights. So a user u ∈ Uv
b gets a transmission

rate rSCPFu given by

rSCPFu =
wu∑

u′∈Ub wu′
cu =

sv

nv∑
v′∈V

nv
′
b s

v′

nv′

cu. (2.3)

A simple example illustrating the differences among three schemes is

as follows. Suppose there are two base stations, i.e., B = {b1, b2}, and two

slices V = {1, 2} each with an equal share of the network resource. Consider

a snapshot of the system where Users u1, u2 are on Slice 1 and u3, u4 are on

Slice 2. Also, u1, u2, and u3 are at base station b1 and u4 is at base station

b2. Let us assume for simplicity that cu = 1,∀u ∈ U. In this case, under SS

at b1 the two users on Slice 1 need to share 1
2

of the resource while u3 on Slice

2 is allocated the other 1
2
, while at b2, half of the resource is wasted due to

the absence of active users on Slice 1. By contrast, GPS utilizes all resources

at b2 by allocating all of them to u4, and it makes the same allocation as SS

at b1. Under SCPF, because each user is allocated the same weight 1
4
, at b1,

three users are allocated the same rate 1
3

and at b2 all bandwidth is given to
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u4. This example shows how SCPF achieves better network-wide fairness than

GPS and SS, while ensuring that resources are not wasted.

Indeed, under SCPF the overall fraction of resources slice v is allocated

at base station b is proportional to
nvb
nv
sv, i.e., its share times its relative number

of users at the base station. This provides a degree of elasticity to variations

in the slice’s spatial loads. However, if a slice has a large number of customers,

its customers’ weights are proportionally decreased, which protects other slices

from such overloads. Note that SCPF requires minimal information exchanges

among base stations and is straightforward to implement, e.g., using SDN-

like framework. In addition, as mentioned in Section 2.1, SCPF resource

allocations are socially optimal for certain types of budget-constrained Fisher

Markets.

Theorem 2.2.1. When base stations allocate resources to their associated

users proportionally to users’ weights (sub-shares), equal weight (sub-share)

assignments are socially optimal in the sense that they maximize the following

surrogate network utility, which is a weighted sum of logs of user perceived

transmission rates.

max
w�0

∑
v∈V

sv

|Uv|
∑
u∈Uv

log(ru) (2.4)

such that: sv =
∑
u∈Uv

wu ∀v ∈ V

ru =
wu∑

u′∈Ub wu′
cu ∀u ∈ U.

Alternatively, the above optimization (and thus resource allocation) can
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be recognized as the Eisenberg Gale program characterizing the equilibrium of

a Fisher market and thus the allocations reached under a variety of response

dynamics, see e.g., [30].

Proof. A w induces a probability distribution at resource b as:

pb(w) =

(
pu(w) ,

wu∑
u′∈Ub wu′

: u ∈ Ub

)
,

Suppose the equal weight allocation is w∗ =
(
w∗u = sv

|Uv | : u ∈ U
)

, where u ∈

Uv. Let us define the objective function of Problem (2.4) as U(w). For an

arbitrary w we have:

U(w∗)− U(w) =
∑
v∈V

∑
u∈Uv

sv

|Uv|

(
log

(
w∗ucu∑
u′∈Ub w

∗
u′

)
− log

(
wucu∑
u′∈Ub wu′

))

=
∑
b∈B

(∑
u′∈Ub

w∗u′

)∑
v∈V

∑
u∈Uvb

pu(w
∗) log

(
pu(w

∗)

pu(w)

)

=
∑
b∈B

(∑
u′∈Ub

w∗u′

)
D (pb(w

∗)||pb(w))

≥ 0,

where D (pb(w
∗)||pb(w)) denotes the Kullback-Leibler divergence between

pb(w
∗) and pb(w). The second equality holds true by repartitioning users by

the base stations they are associated with. The last inequality comes from

the nonnegativity of the Kullback-Leibler divergence. Thus w∗ has a higher

utility than any other arbitrary weight allocation thus is optimal.
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2.2.2 Performance Evaluation

In this section we study the expected performance seen by a slice’s typ-

ical customer. Given our focus on inelastic/rate adaptive traffic and tractabil-

ity, we choose our customer performance metric as the reciprocal transmission

rate, referred to as the Bit Transmission Delay (BTD), see, e.g.,[31]. This cor-

responds to the time taken to transmit a ‘bit’, so lower BTDs indicate higher

rates and thus better performances. BTD is a high-level metric capturing the

instantaneous QoS perceived by a user, e.g., short packet transmission delays

are roughly proportional to the BTD. By guaranteeing a good BTD we can

guarantee that the user perceived QoS is acceptable all the time, instead of

in an average sense. Alternatively, the negative of the BTD can be viewed as

a concave utility function of the rate, which in the literature (see, e.g., [32])

was referred to as the potential delay utility. Concave utility functions tend to

favor allocations that exhibit reduced variability in a stochastic setting. Given

the stochastic loads on the network, we shall evaluate the average BTD seen

by a typical (i.e., randomly selected) customer on a slice, i.e., averaged over

the stationary distribution of the network state and transmission capacity seen

by typical users, e.g., Cv
b , at each base station. Such averages naturally place

higher weights on congested base stations, where a slice may have more users,

best reflecting the overall performance customers will see.
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2.2.2.1 Analysis of BTD Performance

Consider a typical customer on slice v and let Ev denote the expectation

of the system state as seen by such a customer, i.e., under the Palm distribution

[33].

For SCPF, we let Rv be a random variable denoting the rate of a typical

customer on slice v, and Rv
b that of such customer on slice v at base station b.

Similarly, let Rv,SS, Rv,SS
b , Rv,GPS, and Rv,GPS

b denote these quantities under

SS and GPS, respectively. Thus, under SCPF the average BTD for a typical

slice v customer is given by Ev[ 1
Rv

]. The next result characterizes the mean

BTD under SCPF, SS, and GPS under our traffic model. We introduce some

further notation in Table 2.1.

We use 〈x1,x2〉M := xT1Mx2 to denote the weighted inner product of

vectors, where M is a diagonal matrix. Also, we use ‖x‖M :=
√
xTMx to

denote the weighted norm of a vector, where M is a diagonal matrix. In both

cases, when M is the identity matrix I we simply omit it. In addition, ‖x‖2

and ‖x‖1 denote the L2-norm and L1-norm of x, respectively.

Theorem 2.2.2. For network slicing based on SCPF, the mean BTD for a

typical customer on slice v is given by

Ev
[

1

Rv

]
=
∑
b∈B

ρ̃vbδ
v
b

(
1− ρ̃vb + (ρv + 1)

(
g̃′b
sv

+ e−ρ
v

ρ̃vb

))
. (2.5)

If (ρ̃v : v ∈ V) are fixed, and (ρv : v ∈ V) are large, then the mean BTD has
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Table 2.1: Key notation used in Chapter 2.

Notation Definition Interpretation
ρv E [N v] Overall load of slice v.
ρv (ρvb := E [N v

b ] : b ∈ B) Load distribution of slice v.

ρ̃v
(
ρ̃vb :=

ρvb
ρv

: b ∈ B
)

Relative load distribution of slice v.

g̃
(
g̃b :=

∑
v∈V s

vρ̃vb : b ∈ B
) Overall share weighted relative

load distribution.

g̃′
(g̃′b : b ∈ B), where
g̃′b =

∑
v∈V s

v(1− e−ρv)ρ̃vb .

Overall active share weighted relative
load distribution, i.e., weighted by
probability of a slice being active
(1− e−ρv).

s̄v

(s̄vb : b ∈ B), where

s̄vb = Ev
[∑

v′ 6=v s
v′1{Nv′

b =0}

]
=
∑

v′ 6=v s
v′e−ρ

v′
b .

Average idle share distribution seen
by a typical user on slice v.

δv
(
δvb := Ev

[
1
Cvb

]
: b ∈ B

)
.

Mean reciprocal capacity of slice v
at each base station.

∆v diag(δv)
Diagonal matrix of mean reciprocal
capacity of slice v.

the following asymptotic form:

Ev
[

1

Rv

]
u
ρv

sv
〈ρ̃v, g̃〉∆v +O(1). (2.6)

For network slicing based on SS, the mean BTD for a typical customer on

slice v is given by

Ev
[

1

Rv,SS

]
=
∑
b∈B

ρ̃vbδ
v
b

(
ρvb + 1

sv

)
. (2.7)

For network slicing based on GPS, the mean BTD for a typical customer on

slice v is given by

Ev
[

1

Rv,GPS

]
=
∑
b∈B

ρ̃vbδ
v
b

(
ρvb + 1

sv

)
(1− s̄vb) . (2.8)
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Remark: BTD under all 3 schemes increases with the overall load

ρv and decreases with the share sv when (ρ̃v : v ∈ V) are fixed. Their

dependencies on relative loads (ρ̃v : v ∈ V) are different, implying that they

exploit statistical multiplexing differently.

Proof. Recall that Poisson arrivals see time averages, i.e., see the remaining

users in the product-form stationary distribution, given in Section 2.2.1. Thus

the distribution as seen by a typical user on slice v at base station b is the

same as the product-form distribution plus an additional customer on slice v

at base station b. Using this fact and SCPF resource allocations as given by

Eq. (2.3), the mean BTD of a typical slice v user at base station b can be

expressed as follows:

Ev
[

1

Rv
b

]
= Ev

[
1

Cv
b

]
E


sv

Nv
b +1

Nv+1
+
∑
v′ 6=v

sv
′
Nv′
b

Nv′ 1{Nv′>0}

sv

(Nv+1)


= δvbE

[
(N v

b + 1) +
N v + 1

sv

∑
v′ 6=v

sv
′
N v′

b

N v′
1{Nv′>0}

]

= δvb

(
ρvb + 1 +

ρv + 1

sv

∑
v′ 6=v

sv
′
(1− eρv

′

)ρ̃v
′

b

)

= δvb

(
1− ρ̃vb +

(ρv + 1)

sv
g̃′b + (ρv + 1)e−ρ

v

ρ̃vb

)
,

where the second equality follows by noticing that (i) N v is independent

of N v′

b and N v′ and (ii) E

[
Nv′
b

Nv′ 1{Nv′>0}

]
= P (N v′ > 0)E

[
Nv′
b

Nv′

∣∣∣∣N v′ > 0

]
=

ρv
′
b

ρv′
P (N v′ > 0). The latter result is given by the following lemma:
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Lemma 2.2.3. If N1, N2, . . . , Nn are independent Poisson random variables,

such that Ni ∼ Poisson(ρi), i = 1, 2, . . . , n. Then for all i we have that:

E

[
Ni∑n
j=1 Nj

∣∣∣∣∣
n∑
j=1

Nj > 0

]
=

ρi∑n
j=1 ρj

.

Proof. Suppose all ρi’s are rational, and for some ε small enough, for all i,

we have that mi = ρi
ε

is integer valued. Let Xi,j, i = 1, . . . , n, j = 1, . . . ,mi

be i.i.d. Poisson random variables with parameter ε. Since Poisson random

variables are infinitely divisible we have that Ni ∼
∑mi

j=1 Xi,j. Then

E

[
Ni∑n
j=1 Nj

∣∣∣∣∣
n∑
j=1

Nj > 0

]
= E

[ ∑mi
j=1 Xi,j∑n

i=1

∑mi
j=1Xi,j

∣∣∣∣∣
n∑
j=1

Nj > 0

]

= mi · E

[
Xi,1∑n

i=1

∑mi
j=1Xi,j

∣∣∣∣∣
n∑
j=1

Nj > 0

]
=

mi∑n
j=1mj

=
ρi∑n
j=1 ρj

,

where the second and third equalities follow from the symmetry among Xi,j.

Since the conditional expectation will be a continuous function of the parame-

ter vector ρ, the equality follows more generally for the case where ρ is a real

valued vector.

The asymptotic form given in Eq. (2.6) follows by noting that when ρv

is large for all v ∈ V, g̃′ u g̃, and only the term scaling with ρv matters.

Under static slicing we have that for a typical user on slice v at base

station b,

Ev
[

1

Rv,SS
b

]
= Ev

[
1

Cv
b

]
E
[
N v
b + 1

sv

]
= δvb

ρvb + 1

sv
.
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Similarly, under GPS we have that,

Ev
[

1

Rv,GPS

]
= Ev

[
1

Cv
b

]
Ev

N
v
b

∑
v′∈V

sv
′
1{Nv′

b >0}

sv


= δvb

(
ρvb + 1

sv

)
(1− s̄vb) .

The theorem follows by taking a weighted average across base stations –

weighted by the fraction of customers at each base station, i.e., ρ̃vb .

2.2.2.2 Analysis of Gain

Using the results in Theorem 2.2.2 one can evaluate the gains in the

mean BTD for a typical slice v user under SCPF vs. SS, defined as,

GSS
v :=

Ev
[

1
Rv,SS

]
Ev
[

1
Rv

] .

In general, one would expect GSS
v ≥ 1 since under SCPF typical users should

see higher allocated rates and thus lower BTDs. One can verify that is the

case when slices have uniform loads across base stations but the general case

is more subtle. Similarly, we define the gain of SCPF vs. GPS by

GGPS
v :=

Ev
[

1
Rv,GPS

]
Ev
[

1
Rv

] .

By taking the ratio of the mean BTD perceived by a typical customer under SS

and that under SCPF given in Theorem 2.2.2, we have the following corollary.

Corollary 2.2.4. The BTD gain of SCPF over SS for slice v is given by

GSS
v =

ρv‖ρ̃v‖2
∆v + 〈δv, ρ̃v〉

sv〈δv, ρ̃v〉 − sv (1− (ρv + 1)e−ρv) ‖ρ̃v‖2
∆v + (ρv + 1)〈g̃′, ρ̃v〉∆v

. (2.9)
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For fixed relative loads (ρ̃v : v ∈ V), when slice v has a light load, i.e., ρv → 0,

the gain is greater than 1 and given by:

GSS,L
v =

〈δv, ρ̃v〉
sv〈δv, ρ̃v〉+ 〈g̃′, ρ̃v〉∆v

> 1.

Furthermore, GSS
v is a nonincreasing function of ρv, and if all slices have high

overall loads, i.e., ρv →∞, ∀v ∈ V, the gain is given by:

GSS,H
v =

‖ρ̃v‖2
∆v

〈g̃, ρ̃v〉∆v

.

Proof. From Theorem 2.2.2 we have that for SCPF

Ev
[

1

Rv

]
= 〈δv, ρ̃v〉 −

(
1− (ρv + 1)e−ρ

v) ‖ρ̃v‖2
∆v

+
ρv + 1

sv
〈g̃′, ρ̃v〉∆v , (2.10)

while for SS we have that

Ev
[

1

Rv,SS

]
=

1

sv
(
ρv‖ρ̃v‖2

∆v + 〈δv, ρ̃v〉
)
. (2.11)

Taking the ratio of the overall mean BTDs we have Eq. (2.9) in Corollary 2.2.4.

Now setting ρv = 0, it is easy to see that

GSS,L
v =

〈δv, ρ̃v〉
sv〈δv, ρ̃v〉+ 〈g̃′, ρ̃v〉∆v

=
1

sv + 〈g̃′,ρ̃v〉∆v

〈δv ,ρ̃v〉

≥ 1

sv + 1− sv
= 1,
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Note that when ρv u 0, g̃′b ≈
∑

v′ 6=v s
v′(1− e−ρv

′
)ρ̃v

′

b . Therefore, the inequality

follows from

〈g̃′, ρ̃v〉∆v

〈δv, ρ̃v〉
=

∑
b∈B

(∑
v′ 6=v s

v′
(

1− e−ρv
′)
ρ̃v
′

b

)
δvb ρ̃

v
b∑

b∈B δ
v
b ρ̃

v
b

≤

∑
b∈B

(∑
v′ 6=v s

v′ ρ̃v
′

b

)
δvb ρ̃

v
b∑

b∈B δ
v
b ρ̃

v
b

≤
∑

v′ 6=v s
v′
(∑

b∈B ρ̃
v
bδ
v
b

)∑
b∈B δ

v
b ρ̃

v
b

= 1− sv.

The last inequality follows from swapping the order of summation and ρ̃v
′

b ≤

1,∀b ∈ B, v′ ∈ V.

Let g̃′−v =
∑

v′ 6=v s
v′(1− e−ρv

′
)ρ̃v

′
+ svρ̃v. Eq. (2.9) can be written as:

GSS
v =

‖ρ̃v‖2
∆v

〈g̃′−v, ρ̃v〉∆v

+〈δv, ρ̃v〉
1−

(
‖ρ̃v‖2∆v

〈δv ,ρ̃v〉 +
(

1− ‖ρ̃
v‖2∆v

〈δv ,ρ̃v〉

)
sv‖ρ̃v‖2∆v

〈g̃′−v ,ρ̃v〉∆v

)
(ρv + 1)〈g̃′−v, ρ̃v〉∆v + sv(〈δv, ρ̃v〉 − ‖ρ̃v‖2

∆v)
. (2.12)

Note that 〈δv, ρ̃v〉 ≥ ‖ρ̃v‖2
∆v . Then because

sv‖ρ̃v‖2∆v

〈g̃′−v ,ρ̃v〉∆v
≤ 1, the numer-

ator of the second term is nonnegative. Therefore, GSS
v is decreasing in ρv.

When ρv →∞,∀v ∈ V, the second term in Eq. (2.12) vanishes, and g̃′−v → g̃.

Then GSS,H
v is given by GSS,H

v =
‖ρ̃v‖2∆v

〈g̃,ρ̃v〉∆v
.

The result indicates that when the relative loads are fixed, the gain

decreases with the overall load ρv, thus if GSS,H
v > 1 SCPF always provides

a gain. Let us consider the heavy load gain under the following simplifying

assumption.
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Assumption 1. Base stations are said to be homogeneous for slice v if for all

b ∈ B: Ev
[

1
Cvb

]
= δv.

Assumption 1 only requires the average reciprocal capacity a given

slices’ customer sees across base stations is homogenous. In this case, the

BTD gain for slice v under heavy load simplifies to

GSS,H
v =

‖ρ̃v‖2

‖g̃‖2

× 1

cos(θ(g̃, ρ̃v))
, (2.13)

where θ(g̃, ρ̃v) denotes the angle between the slice’s relative load and the

overall share weighted relative load on the network. A sufficient condition for

gains under high loads is that ‖g̃‖2 ≤ ‖ρ̃v‖2. Since ‖g̃‖1 = ‖ρ̃v‖1 = 1, this

follows when the overall share weighted relative load on the network is more

balanced than that of slice v. One would typically expect aggregated traffic to

be more balanced than that of individual slices. This condition is fairly weak,

i.e., it does not depend on where the loads are placed, but on how balanced

they are. The corollary also suggests that gains are higher when cos(θ(g̃, ρ̃v))

is smaller. In other words, a slice with imbalanced relative loads whose relative

load distribution is ‘orthogonal’ to the shared weighted aggregate traffic, i.e.,

cos(θ(g̃, ρ̃v)) ≈ 0, will tend to see higher gains. This is due to that SCPF can

achieve sharing elasticity by aligning resource allocations with demands, i.e.,

load distributions. Thus when the load distributions are nearly orthogonal,

sharing under SCPF is much better than that under SS, which is completely

inelastic. Note that, if the aggregated traffic across all slices is more imbalanced
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than that of an individual slice, it is possible for that slice to observe negative

BTD gain. The simulations in Section 2.5 further explore these observations.

Similarly, for the BTD gain of SCPF over GPS, we have the following

result:

Corollary 2.2.5. The BTD gain of SCPF over GPS for slice v is given by

GGPS
v =

ρv (‖ρ̃v‖2
∆v − ‖ρ̃v‖2

∆vSv) + 〈ρ̃v,1− s̄v〉∆v

sv〈δv, ρ̃v〉 − sv (1− (ρv + 1)e−ρv) ‖ρ̃v‖2
∆v + (ρv + 1)〈g̃′, ρ̃v〉∆v

.(2.14)

For fixed relative loads (ρ̃v : v ∈ V), and fixed overall loads for other slices

(ρv
′
: v′ 6= v), the gain for slice v under low overall load, ρv → 0, is given by:

GGPS,L
v =

〈ρ̃v,1− s̄v〉∆v

sv〈δv, ρ̃v〉+ 〈g̃′, ρ̃v〉∆v

.

Furthermore, if all slices have low load ρv → 0,∀v ∈ V, then

GGPS,L
v → 1.

Also, if all slices have high loads, i.e., ρv → ∞,∀v ∈ V, the BTD gain over

GPS for slice v is given by:

GGPS,H
v =

‖ρ̃v‖2
∆v − ‖ρ̃v‖2

∆vSv

〈g̃, ρ̃v〉∆v

.

Note that when (ρ̃v : v ∈ V) are fixed and ∀v, b, ρ̃vb > 0, under heavy

load, i.e., ρv → ∞, ∀v ∈ V, we have s̄v → 0, thus ‖ρ̃v‖2
∆v − ‖ρ̃v‖2

∆vSv →

‖ρ̃v‖2
∆v , which means GPS obtains a similar performance as SS under heavy

load. However, unlike the gain over SS, GGPS,L
v might not be strictly greater

than 1 and GGPS
v might not be monotonic in ρv.
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Proof. The BTD under SCPF is given in Eq. (2.10). Similarly for GPS we

have that

Ev
[

1

Rv,GPS

]
=

1

sv
(
ρv(‖ρ̃v‖2

∆v − ‖ρ̃v‖2
∆vSv) + 〈ρ̃v,1− s̄v〉∆v

)
. (2.15)

Taking the ratio of the overall mean BTDs gives Eq. (2.14).

Setting ρv = 0, we have that GGPS,L
v = 〈ρ̃v ,1−s̄v〉∆v

sv〈δv ,ρ̃v〉+〈g̃′,ρ̃v〉∆v
. If we further

have ρv → 0,∀v ∈ V, then g̃′ → 0 and

GGPS,L
v =

〈ρ̃v,1− s̄v〉∆v

sv〈δv, ρ̃v〉
=
〈δv, ρ̃v〉 − (1− sv)〈δv, ρ̃v〉

sv〈δv, ρ̃v〉
= 1.

When ρv →∞,∀v ∈ V, all the terms without ρv vanishes and the gain

becomes GGPS,H
v → ‖ρ̃v‖2∆v−‖ρ̃v‖2∆vSv

〈g̃,ρ̃v〉∆v
. Note that even we have ρv → ∞, we

cannot guarantee that ρvb →∞,∀b ∈ B if for some b ∈ B, ρ̃vb = 0. Thus ‖ρ̃v‖2
Sv

might not approach 0.

One can observe that, different slices may experience different BTD

gains, depending on the share and load distributions. However, to compare

the performance of different sharing criteria, a network-wide metric of gain

needs to be defined. To be able to compare scenarios with different load

distributions and shares, it is of particular interest to consider a metric which

accounts for differences in slices’ shares sv, loads ρv, and base-station capacities

δv. Note that users experiencing a low average capacity from their associated

base stations, 1
δvb

, and/or are allocated a small share per user, i.e., sv

ρv
, are

expected to experience higher BTDs. Thus to account for these differences,
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let us define the normalized BTD for a typical user on slice v at base station

b under SCPF as

Ēv
[

1

Rv
b

]
:=

1

δvb

sv

ρv
Ev
[

1

Rv
b

]
, (2.16)

and thus the normalized BTD for a typical user on slice v under SCPF is given

by

Ēv
[

1

Rv

]
=
∑
b∈B

ρ̃vb Ēv
[

1

Rv
b

]
. (2.17)

Similarly, one can define Ēv
[

1

Rv,SSb

]
, Ēv

[
1

Rv,SS

]
, and Ēv

[
1

Rv,GPSb

]
, Ēv

[
1

Rv,GPS

]
.

For the overall performance of the system, let us consider the share weighted

sum of the normalized BTD since the system should be tuned to put more

emphasis on the slices with higher shares, and define the overall weighted

BTD gain of SCPF over SS as

GSS
all :=

∑
v∈V s

vĒv
[

1
Rv,SS

]∑
v∈V s

vĒv
[

1
Rv

] , (2.18)

and the overall weighted BTD gain of SCPF over GPS as

GGPS
all :=

∑
v∈V s

vĒv
[

1
Rv,GPS

]∑
v∈V s

vĒv
[

1
Rv

] , (2.19)

The following results capture the overall weighted BTD gains.

Corollary 2.2.6. When ρv →∞, ∀v ∈ V, the overall weighted BTD gains of

SCPF over SS and GPS under heavy load are given by

GSS,H
all =

∑
v∈V s

v‖ρ̃v‖2
2∑

v∈V s
v〈g̃, ρ̃v〉

, GGPS,H
all =

∑
v∈V s

v‖ρ̃v‖2
I−Sv∑

v∈V s
v〈g̃, ρ̃v〉

, (2.20)

and

GSS,H
all ≥ 1, GGPS,H

all ≥ 1.
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It is easy to see that if ρ̃v are the same for all v ∈ V, then both GSS,H
all

and GGPS,H
all are 1 when the loads are heavy. By contrast, if the relative loads

of different slices are (approximately) all orthogonal, i.e. , 〈ρ̃v, ρ̃v′〉 u 0, v 6= v′

and each slice has the same share sv = 1
V
,∀v ∈ V, the overall gain can be as

high as V .

Proof. From Theorem 2.2.2, one can express the overall weighted BTD gain

over SS under heavy load as

GSS,H
all =

∑
v s

v‖ρ̃v‖2
2∑

v s
v〈g̃, ρ̃v〉

=

∑
v

∑
b s

v(ρ̃vb)
2∑

v s
v
∑

b(
∑

v′ s
v′ ρ̃v

′
b )ρ̃vb

=

∑
b

∑
v s

v(ρ̃vb)
2∑

b(
∑

v′ s
v′ ρ̃v

′
b )(
∑

v s
vρ̃vb)

=

∑
b

∑
v s

v(ρ̃vb)
2∑

b(
∑

v s
vρ̃vb)

2
.

According to Jensen’s inequality, we have ∀b ∈ B,
∑

v s
v(ρ̃vb)

2 ≥ (
∑

v s
vρ̃vb)

2.

Thus GSS
all ≥ 1.

Similarly, for GPS, we have

GGPS,H
all =

∑
v

∑
b s

v(ρ̃vb)
2
(

1−
∑

v′ 6=v s
v′e−ρ

v′
b

)
∑

v

∑
b s

vρ̃vb
∑

v′ s
v′ ρ̃v

′
b

=

∑
b

∑
v s

v(ρ̃vb)
2 −

∑
b

∑
v s

v(ρ̃vb)
2
∑

v′ 6=v s
v′e−ρ

v′
b∑

b(
∑

v s
vρ̃vb)

2
.

As ρv → ∞, for each base station b ∈ B, if ρvb → ∞, e−ρ
v
b → 0, otherwise

ρ̃vb =
ρvb
ρv
→ 0. Based on such observation, let us define a set of slices at each

base station b, whose local loads approach infinity, Vinf
b , {v ∈ V : ρvb → ∞}.
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Then the above equation can be rewritten as:

GGPS,H
all =

∑
b

(∑
v∈Vinf

b
sv(ρ̃vb)

2(1−
∑

v′ /∈Vinf
b
sv
′
e−ρ

v′
b )
)

∑
b(
∑

v∈Vinf
b
svρ̃vb)

2

=

∑
b

(
(1−

∑
v′ /∈Vinf

b
sv
′
e−ρ

v′
b )(
∑

v∈Vinf
b
sv)
∑

v∈Vinf
b
s̃v(ρ̃vb)

2
)

∑
b(
∑

v∈Vinf
b
sv)2(

∑
v∈Vinf

b
s̃vρ̃vb)

2
,

where for v ∈ Vinf
b , s̃v , sv∑

v∈Vinf
b
sv

. Therefore
∑

v∈Vinf
b
s̃v = 1. Now for each

base station b ∈ B, we have

(1−
∑

v′ /∈Vinf
b
sv
′
e−ρ

v′
b )(
∑

v∈Vinf
b
sv)
∑

v∈Vinf
b
s̃v(ρ̃vb)

2

(
∑

v∈Vinf
b
sv)2(

∑
v∈Vinf

b
s̃vρ̃vb)

2

=
(1−

∑
v/∈Vinf

b
sve−ρ

v
b )
∑

v∈Vinf
b
s̃v(ρ̃vb)

2

(
∑

v∈Vinf
b
sv)(

∑
v∈Vinf

b
s̃vρ̃vb)

2

≥
(1−

∑
v/∈Vinf

b
sv)
∑

v∈Vinf
b
s̃v(ρ̃vb)

2

(
∑

v∈Vinf
b
sv)(

∑
v∈Vinf

b
s̃vρ̃vb)

2
=

∑
v∈Vinf

b
s̃v(ρ̃vb)

2

(
∑

v∈Vinf
b
s̃vρ̃vb)

2
,

where the last equality holds true because
∑

v s
v = 1. Then by Jensen’s

inequality, for all b ∈ B, the above ratio is no less than 1, thus GGPS,H
all ≥ 1.
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2.3 Share Dimensioning in Network Slicing

2.3.1 Feasibility of Share Dimensioning

In practice each slice v may wish to provide service guarantees to its

customers, i.e., ensure that the mean BTD does not exceed a performance

target dv. Below we investigate how to dimension network shares to support

slice loads subject to such mean BTD requirements.

Henceforth we shall assume the following assumption is in effect.

Assumption 2. The network is said to see high overall slice loads, if for all

v ∈ V we have ρv � 1.

Consider a network supporting the traffic loads of a single slice, say

v, so sv = 1 and g̃ = ρ̃v. Note that 〈ρ̃v, δv〉 is the minimum average BTD

achievable across the network when a slice gets all the base station resources,

so a target requirement satisfies dv > 〈ρ̃v, δv〉. For slice v to meet a mean

BTD constraint dv, it follows from Eq. (2.6) that:

ρv ≤ l(dv, ρ̃
v, δv) ,

dv − 〈ρ̃v, δv〉
‖ρ̃v‖2

∆v

.

We can interpret l(dv, ρ̃
v, δv) as the maximal admissible carried load ρv given a

fixed relative load distribution ρ̃v, BTD requirement dv, and mean reciprocal

capacities δv. As might be expected, if the relative load distribution ρ̃v is

more balanced (normalized by the mean base station capacity), i.e., ‖ρ̃v‖2
∆v

is smaller, or if the BTD constraint is relaxed, i.e., dv is higher, or the base

station capacities scale up, i.e., δv is smaller, the slice can carry a higher overall

load ρv.
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Next, let us consider SCPF based sharing amongst a set of slices V each

with its own BTD requirements. It follows from Eq. (2.6) that to meet such

requirements on each slice the following should hold: for all v ∈ V

sv ≥ 1 + ρv

l(dv, ρ̃v, δv)− ρv
∑
u6=v

su
〈ρ̃v, ρ̃u〉∆v

‖ρ̃v‖2
∆v

. (2.21)

This can be written as: ∑
v∈V

svhv � 0, (2.22)

where we refer to hv = (hvu : u ∈ V) as v’s share coupling vector, given by

hvu =

{
1 v = u,

− 1+ρu

l(du,ρ̃u,δu)−ρu
〈ρ̃u,ρ̃v〉∆u

‖ρ̃u‖2∆u
v 6= u.

We can interpret hvv = 1 as the benefit to slice v of allocating unit share to

itself. When v 6= u, hvu depends on two factors. The first 1+ρu

l(du,ρ̃u,δu)−ρu captures

the sensitivity of slice u to the ‘share weighted congestion’ from other slices.

If ρu is close to its limit l(du, ρ̃
u, δu), its sensitivity is naturally very high. The

second term, 〈ρ̃
u,ρ̃v〉∆u

‖ρ̃u‖2∆u
captures the impact of slice v’s load distribution on slice

u. Note that if two slices load distributions are orthogonal, they do not affect

each other.

The following result summarizes the above analysis.

Theorem 2.3.1. There exists a share allocation such that slice loads and

BTD constraints ((ρv, ρ̃v, dv) : v ∈ V) are admissible under SCPF sharing if

and only if there exists an s = (sv : v ∈ V) such that ‖s‖1 = 1, s � 0 and∑
v∈V s

vhv � 0.
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Admissibility can then be verified by solving the following maxmin

problem:

max
s�0
{ min

i

∑
v∈V

svhvi : ‖s‖1 = 1 }. (2.23)

If the optimal objective function is positive, the traffic pattern is admissible.

Moreover, if there are multiple feasible share allocations, then the optimizer is

a ‘robust’ choice in that it maximizes the minimum share given to any slice,

giving slices margins to tolerate perturbations in the slice loads satisfying

Eq. (2.22).

2.3.2 Pricing in Share Dimensioning

2.3.2.1 Motivation

So far, we studied a novel resource sharing criterion in network slicing,

which can be viewed as achieving a service level agreement (SLA) on the

algorithm for mapping the parameter – share of overall network resources

(sv : v ∈ V) to resource provisioning at each base station. Such SLA provides

an efficient and elastic way to better accommodate requirements of mobile

users. However, how to determine the share for each slice/tenant based upon

their individual load distribution and/or service requirement remains an open

problem.

In this section we will discuss an price-based approach where each slice

is charged a certain amount of ‘money’ according to their allocated share.

This is similar to the current usage-based pricing scheme in nowadays network
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service. By charging based on share of overall network resources instead of

usage of resources at each base station, we reduced the complexity of the

scheme and allow the system to scale up, where pricing based on actual usage

requires us to keep track of the dynamic user distribution and their interaction

with base stations, which will put an excessive computational overhead on the

network operation.

A desirable pricing scheme shall provide incentive for each slice to pur-

chase an appropriate share of resource, given its service requirement and load

distribution, in order to achieve social welfare. Implicitly, it also encourages

individual slices to manage their traffic so that their service requirement is

achievable within limited resource provisioned, thus inter-slice protection is

achieved.

2.3.2.2 Share Dimensioning Revisit: An Optimization Perspective

In Section 2.3.1, we discussed how to determine the feasibility of a

(loads, shares, QoS requirements)-tuple, as the Share dimensioning problem.

In this section, we would like to revisit this problem, to discuss from an eco-

nomic perspective. First we consider the parallel resource case, as in [7], in

which we obtain the closed-form expression for the resource allocation.

To be consistent, we shall consider the utility of each slice to be propor-

tional to its average BTD, e.g., load times BTD, and the social welfare/utility

as the negate of the weighted sum of BTDs. In view of this, we assume that

there is a central entity controlling the allocation of share s := (sv : v ∈ V), in
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order to minimize the social cost.

Social Optimal:

max
s

−
∑
v∈V

ρv
ρv

sv
〈ρ̃v, g̃〉∆v (2.24)

such that
∑
v∈V

sv ≤ 1

sv ≥ ρv

dv − ρv‖ρ̃v‖2
∆v

∑
u6=v

su〈ρ̃v, ρ̃u〉∆v ,∀v ∈ V.

In general, such problem is nonconvex, due to the bilinear objective

function. However, through a geometric programming transformation we have

the following result.

Theorem 2.3.2. There is a unique solution s∗ such that
∑

v∈V s
v,∗ = 1, and

s∗ can be obtained by solving the KKT condition associated with Prob. (2.24)

after changing the first inequality constraint to equality.

Proof. By transformation bv = log sv, the above problem is equivalent to

min
b:=(bv :v∈V)

log

(∑
v∈V

∑
u∈V

(ρv)2〈ρ̃v, ρ̃u〉∆vebu−bv

)
(2.25)

such that
∑
v∈V

ebv ≤ 1

ρv
∑
u∈V

〈ρ̃v, ρ̃u〉∆vebv−bu ≤ dv,

which is a convex optimization problem. Thus its solution can be obtained by

solving the KKT conditions. The following proposition provides some insight
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on the share allocations at the minimum even the objective function is not

strongly convex.

Proposition 2.3.3. There is a unique solution b∗ to the above problem such

that
∑

v∈V e
b∗v = 1.

Proof. First, the Hessian of log-sum-exp function is given in [34], and it is PSD.

We have for a direction vector v := (vu,v : u, v ∈ V) ∈ R|V|2 , vT∇2f(x)v = 0,

only when it is such that ∀v, u ∈ V, ebu−bv ‖ ebu−bvv2
u,v. That implies v ‖ 1.

Therefore, if we have two different optimal solutions, they must be of the form

b∗ = b∗0 + C1, where b∗0 is fixed and C ∈ R can be different for different

solutions.

Therefore, among the family of the solutions there is a unique one such

that
∑

v∈V e
b∗v = 1.

Because the associated constraints in Problem (2.24) are all affine, the

KKT condition provides at least local minimum. Say the actual minimizer for∑
v∈V s

v = 1 is s∗ and that given by the KKT conditions is s′. Then, if s∗ 6= s′,

by Proposition 2.3.3, the objective function at s∗ is strictly less than that at

s′. By a convex combination of form s = λs∗+ (1−λ)s′ with λ small enough,

one can find a point obtaining a smaller objective value in the neighborhood

of s′, violating the definition of local minimum. Therefore, by contradiction

we have the optimal s∗ can be obtained via KKT condition.
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Moreover, if the BTD constraints are loose, we have a closed form

expression for the optimal solution.

Corollary 2.3.4. If we assume homogeneous resources, that is ∆v = δvI, and

all the BTD constraints are inactive, by solving the KKT conditions, we can

show that the optimal share allocation is such that

sv,∗ ∝
√
δvρ

v.

Proof. This is straightforward to show by setting µv = 0,∀v ∈ V, and setting

the gradient of the Lagrangian to 0.

2.3.2.3 Pricing Strategy

We are interested in a pricing scheme that assigns a price πv for a unit

share purchased to slice v. Suppose each slice views the negate of its BTD, less

the price paid for its share, i.e., −BTDv−πvsv as its own utility and wishes to

maximize it subject to the BTD constraint. Such pricing scheme introduces

a game among slices. Formally, the joint strategy is s := (sv : v ∈ V), and

s−v := (su : u 6= v) denotes the strategy of slices other than v. Then each slice

solves the following problem

Slice-based optimization:

min
sv

φv(s
v; s−v) :=

ρv

sv
〈ρ̃v, g̃〉∆v + πvs

v (2.26)

such that: sv ≥ ρv

dv − ρv‖ρ̃v‖2
∆v

∑
u6=v

su〈ρ̃v, ρ̃u〉∆v ,
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where πv is the price per share central entity charges to slice v. One can see

that the strategic space for different slices are coupled together through the

BTD constraint. However, we can still use the notion of generalized Nash

equilibrium (GNE) as in [7]

Theorem 2.3.5. The game induced by Problem (2.26) has GNE.

Proof. This is a direct result following Theorem 3.1 in [35].

In practice, the right of specifying the amount of share sv should be

delegated to slice v instead of being dictated by the central entity due to pri-

vacy reason, and also providing each slice the ability to conduct performance

management. Thus, the central entity shall devise a pricing strategy, repre-

sented as π := (πv : v ∈ V), in order to motivate a share allocation s that

achieves desirable global performance, e.g., low weighted average BTD. Such

pricing strategy is provided by the following theorem.

Theorem 2.3.6. If we set πv =
∑

u6=v h
v
uµ
∗
u +

∑
u6=v

ρu

su,∗
〈ρ̃v, ρ̃u〉∆u, where

hvu := ρu

du−ρu‖ρ̃u‖2∆u

〈ρ̃v, ρ̃u〉∆u, and µ∗u is the optimal dual variable associated

with the BTD constraint of slice u in Problem (2.24), the solution to Problem

(2.24) is a GNE induced by Problem (2.26)

Proof. The Lagrangian associated with Problem (2.24) is given by

L(s;λ,µ) :=
∑
v∈V

ρv

sv
〈ρ̃v, g̃〉∆v + λ

(∑
v∈V

sv − 1

)

+
∑
v∈V

µv

(
ρv

dv − ρv‖ρ̃v‖2
∆v

∑
u6=v

su〈ρ̃v, ρ̃u〉∆v − sv
)
. (2.27)
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By noting that only the ratio between sv matters, we conclude that relaxing the

constraint that
∑

v∈V s
v ≤ 1 does not change the solution to the problem, thus,

the optimal dual λ∗ should be 0. Therefore, the social optimum of Problem

(2.24) satisfies the following conditions:

∀v ∈ V :
∂L(s;λ,µ)

∂sv
= − ρv

(sv)2

∑
u6=v

〈ρ̃v, ρ̃u〉∆vsu

+
∑
u6=v

ρu

su
〈ρ̃v, ρ̃u〉∆u − µv +

∑
u6=v

hvuµu, (2.28)

∀v ∈ V : µv

(∑
u6=v

huvs
u − sv

)
= 0, (2.29)

Also the BTD constraints are satisfied. According to Thm. 2.3.2, optimal s∗

satisfies above conditions with optimal dual variable µ∗.

For slice v, the Lagrangian of Problem (2.26) is

Lv(sv;µv) =
ρv

sv
〈ρ̃v, g̃〉∆v + πvs

v + µv

(∑
u6=v

huvs
u − sv

)
. (2.30)

Then the optimal sv should satisfy following conditions:

∂Lv(sv;µv)

∂sv
= − ρv

(sv)2

∑
u6=v

〈ρ̃v, ρ̃u〉∆vsu + πv − µv = 0,

and

µv

(∑
u6=v

huvs
u − sv

)
= 0.

If πv =
∑

u6=v h
v
uµ
∗
u +

∑
u6=v

ρu

su,∗
〈ρ̃v, ρ̃u〉∆u , one can easily verify that s∗ and

µ∗ satisfies the combination of above conditions across v ∈ V, thus the social

optimum is also a NE induced by Problem (2.26).
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2.3.2.4 Two Slice Case

One critical question regarding the pricing strategy is to study how the

price π depend on the performance requirements and the load distribution of

each slice. Because of the dependency on the optimal dual variables, generally

it is hard to find a closed form expression for the pricing scheme when there

are multiple slices and the load distributions are complex. However, if there

are only two slices things can be simplified significantly.

Theorem 2.3.7. When |V| = 2, we have following cases:

1. If both slices are not bound by their BTD constraints, µ1 = µ2 = 0, then

we have

π1 =
√
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2 + ρ2〈ρ̃1, ρ̃2〉∆2 ,

π2 =
√
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2 + ρ1〈ρ̃1, ρ̃2〉∆1 . (2.31)

2. If both slices are bound by their BTD constraints, then s is given by

solving linear equations, and the price is given by

π1 =
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2

d2 − ρ2‖ρ̃2‖2
∆2

(
1 +

ρ2〈ρ̃1, ρ̃2〉∆2

d2 − ρ2‖ρ̃2‖2
∆2

)
,

π2 =
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2

d1 − ρ1‖ρ̃1‖2
∆1

(
1 +

ρ1〈ρ̃1, ρ̃2〉∆1

d1 − ρ1‖ρ̃1‖2
∆1

.

)
(2.32)

3. W.L.O.G., assume slice 1 is bound by the BTD constraint but slice 2 is

not, then one can show that the pricing should be

π1 = ρ2〈ρ̃1, ρ̃2〉∆2

(
1 +

ρ1〈ρ̃1, ρ̃2〉∆1

d1 − ρ1‖ρ̃1‖2
∆1

)
,

π2 =
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2

d1 − ρ1‖ρ̃1‖2
∆1

(
1 +

ρ1〈ρ̃1, ρ̃2〉∆1

d1 − ρ1‖ρ̃1‖2
∆1

)
. (2.33)
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Remark: We can summarize following interpretations of the pricing

strategy. First, in all three cases, both π1 and π2 increases with ρ1, ρ2 and the

inter-slice intervention 〈ρ̃1, ρ̃2〉∆1 , 〈ρ̃1, ρ̃2〉∆2 ,

1. In case 1, besides the common price
√
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2 , which

increases with the overall level of congestion of the system, π1 has an

additional term ρ2〈ρ̃1, ρ̃2〉∆2 , which can be viewed as the sensitivity of

slice 2’s BTD against slice 1’s share. If the load distribution of slice 1

is such that it causes a lot of congestion to slice 2’s users, the central

entity tends to charge more to slice 1.

2. In case 3, both price increase with ρ1, ρ2, inter-slice contention 〈ρ̃1, ρ̃2〉∆1 ,

〈ρ̃1, ρ̃2〉∆2 and decrease with d1. It is independent of d2 because d2 is not

binding. Moreover, when ρ1〈ρ̃1, ρ̃2〉∆1 ≤ d1−ρ1‖ρ̃1‖2
∆1

, we have s2 ≥ s1.

Such condition requires that the contention brought by slice 2 to slice 1

is upperbounded. Specifically, if we assume ∆1 = I, it is equivalent to

‖ρ̃2‖ cos θ(1, 2) ≤ ( l
1

ρ1
− 1)‖ρ̃1‖, where l1 := d1

‖ρ̃1‖2 is the maximal allowed

traffic on slice 1.

Proof. When there are two slices, we have s2 = 1 − s1. Then setting the

gradient to s1 of the Lagrangian to 0 we have

s1,∗ =

√
ρ1〈ρ̃1, ρ̃2〉∆1(1− s1,∗)

−µ∗1 + ρ2

1−s1,∗ 〈ρ̃1, ρ̃2〉∆2

.

Rearranging terms we have

µ∗1 =
ρ2〈ρ̃1, ρ̃2〉∆2

1− s1,∗ − ρ1〈ρ̃1, ρ̃2〉∆1(1− s1,∗)

(s1,∗)2
. (2.34)
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Similarly we can have µ∗2.

1. When both BTD constraints are inactive, we know µ∗1 = µ∗2 = 0, then

we have si,∗ ∝
√
ρi〈ρ̃1, ρ̃2〉∆i

. Plugging in Eq. (2.34) we have

π1 =
√
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2 + ρ2〈ρ̃1, ρ̃2〉∆2

π2 =
√
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2 + ρ1〈ρ̃1, ρ̃2〉∆1

2. By solving the BTD constraint for slice 1 we have

s1,∗ =
ρ1〈ρ̃1, ρ̃2〉∆1

d1 − ρ1‖ρ̃1‖2
∆1

+ ρ1〈ρ̃1, ρ̃2〉∆1

,

and plugging in Eq. (2.34), we have the µ∗1. Similarly we can obtain µ∗2,

then π1, π2 follow.

3. In case 3, we know the BTD constraint of slice 1 is active. By solving it

we have

s1,∗ =
ρ1〈ρ̃1, ρ̃2〉∆1

d1 − ρ1‖ρ̃1‖2
∆1

+ ρ1〈ρ̃1, ρ̃2〉∆1

.

Therefore we have the price

π1 =
ρ2

1− s1,∗ 〈ρ̃
1, ρ̃2〉∆1

= ρ2〈ρ̃1, ρ̃2〉∆2

(
1 +

ρ1〈ρ̃1, ρ̃2〉∆1

d1 − ρ1‖ρ̃1‖2
∆1

)
,

π2 = h2
1µ
∗
1 +

ρ1

s1,∗ 〈ρ̃
1, ρ̃2〉∆1

=
ρ1ρ2〈ρ̃1, ρ̃2〉∆1〈ρ̃1, ρ̃2〉∆2

d1 − ρ1‖ρ̃1‖2
∆1

(
1 +

ρ1〈ρ̃1, ρ̃2〉∆1

d1 − ρ1‖ρ̃1‖2
∆1

)
.
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If a set of network slice loads and BTD constraints are not admissible,

admission control will need to be applied. We discuss this in the next section.
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2.4 Admission Control and Traffic Shaping Games

A natural approach to managing performance in overloaded systems

is to perform admission control. In the context of slices supporting mobile

services where spatial loads may vary substantially, this may be unavoidable.

Below we consider admission control policies that adapt to changes in load.

Specifically, an admission control policy for slice v is parameterized by av ,

(avb : b ∈ B) ∈ [0, 1]B where avb is the probability a new customer at base

station b is admitted. Such decisions are assumed to be made independently

thus admitted customers for slice v at base station b still follow a Poisson

Process with rate γvb a
v
b . Based on the flow conservation equation Eq. (2.1) one

can obtain the carried load ρv induced by admission control policy av via

ρv = (M v)−1av = diag(µv)(I − (Qv)T )−1diag(γv)av

where M v , diag(γv)−1(I−(Qv)T )diag(µv)−1 is invertible because I−(Qv)T

is irreducibly diagonally dominant.1 By contrast with Section 2.2.1, note that

ρv now represents the load after admission control, which may have a reduced

overall load and possibly changed relative loads across base stations–i.e., shape

the traffic on the slice. We also let g̃ be the overall share weighted relative

loads after admission control, see Section 2.2.2.1. Note that we have assumed

only exogenous arrivals can be blocked, thus once a customer is admitted it

will not be dropped–the intent is to manage performance to maintain service

continuity.

1If γv is not strictly positive one can reduce the dimensionality.
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Below we consider a setting where slices unilaterally optimize their ad-

mission control policies in response to network congestion, rather than a single

joint global optimization. The intent is to allow slices (which may correspond

to competing virtual operators/services) to optimize their own performance,

and/or enable decentralization in settings with SCPF based sharing.

For simplicity we assume that Assumption 1 holds true throughout this

section, and define the capacity normalized mean BTD requirement d̃v , dv
δv

.

Suppose each slice v optimizes its admission control policy so as to maximize its

overall carried load ρv, i.e., the average number of active users on the network,

subject to a normalized mean BTD constraint d̃v. Under Assumption 1 the

optimal policy for slice v is the solution to the following optimization problem:

max
ρ̃v ,ρv

ρv (2.35)

s.t. av = ρvM vρ̃v, av ∈ [0, 1]B, 〈1, ρ̃v〉 = 1 (2.36)

(ρv + 1)

sv
〈g̃, ρ̃v〉 −

(
1− (ρv + 1)e−ρ

v) ‖ρ̃v‖2
2

≤ d̃v − 1 (2.37)

Note that Equation (2.36) establishes a one-to-one mapping between

(ρ̃v, ρv) and av. We will use ρ̃v and ρv to parameterize admission control

decisions for slice v. The BTD constraint in Eq. (2.37) follows from Eq. (2.6).

Also note that this admission control policy depends on both the overall share

weighted loads on the network g̃, the slice’s load and its customer mobility

patterns (i.e., M v). Unfortunately, for general loads ρv, this problem is not
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convex due to the BTD constraint Eq. (2.37); however, for high overall per

slice loads it is easily approximable by a convex function.

Under Assumption 2 we have that 1 + ρv ≈ ρv and the left hand side

of Eq. (2.37) becomes:

(ρv + 1)

sv
〈g̃, ρ̃v〉 − ‖ρ̃v‖2

2 ≈
ρv

sv
〈g̃, ρ̃v〉 = (svxv)

−1〈g̃, ρ̃v〉 (2.38)

where we have defined xv , (ρv)−1. Further defining ρ̃−v , (ρ̃v
′
: v′ ∈ V\{v}),

Equation (2.37) can be replaced by:

fv(ρ̃
v; ρ̃−v) , 〈g̃, ρ̃v〉 ≤ sv(d̃v − 1)xv. (2.39)

Thus, by defining yv , (ρ̃v, xv), which is equivalent to (ρ̃v, ρv), together with

y−v , (yv
′

: v′ ∈ V\{v}), each slice can unilaterally optimize its admission

control policy by solving the following problem:

Admission control for slice v under SCPF (ACv): Given other slices’ ad-

mission decisions y−v, slice v determines its admission control policy yv =

(ρ̃v, xv) by solving

min
yv
{ xv | yv ∈ Y v(y−v) } (2.40)

where Y v(y−v) denotes slice v’s feasible policies and is given by

Y v(y−v) , { yv | 〈1, ρ̃v〉 = 1, 0 �M vρ̃v � xv1,

fv(ρ̃
v; ρ̃−v) ≤ sv(d̃v − 1)xv }. (2.41)

Note that ACv is coupled to the decisions of other slices through the

feasible set Yv(y
−v). Thus, one cannot independently solve each slice’s admis-

sion control problem to obtain an efficient solution. Furthermore, devising a
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global optimization for all slices brings both complexity and nonconvexity from

the BTD constraints. A natural approach requiring minimal communication

and cooperation overhead is to consider a game setup where network slices are

players, each seeking to maximize their carried loads (and the corresponding

revenue) subject to BTD constraints.

We formally define the traffic shaping game for a set of network slices

V as follows. We let y , (yv : v ∈ V) denote the simultaneous strategies of

all slices (given by the respective admission control policies). As in ACv, each

slice v picks a feasible strategy, i.e., yv ∈ Y v(y−v) to minimize its objective

function θv(y
v,y−v) , xv. Note in the sequel we will modify θv(·, ·) to ensure

the games convergence. A Nash equilibrium is a simultaneous strategy y∗ such

that no slice can unilaterally improve its carried load, i.e., for all v ∈ V

θv(y
v,∗,y−v,∗) ≤ θv(y

v,y−v,∗), ∀yv ∈ Y v(y−v,∗).

The following result follows from Theorem 3.1 in [35].

Theorem 2.4.1. The traffic shaping game defined above has a Nash equilib-

rium.

Note that at the Nash equilibrium, no slice can unilaterally improve its

performance. Therefore, finding the Nash equilibrium is also a way to achieve

fairness under our sharing scheme. In the next subsection, we will design an

algorithm to achieve such allocation.
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2.4.1 Algorithm

In our setting finding the Nash equilibrium is not a simple matter. The

difficulty arises from the fact that slices’ strategy spaces depend on other’s

choices, so oscillation is possible. In the literature such settings are specifi-

cally referred to as Generalized Nash Equilibrium Problem (GNEP), see, e.g.,

[36] and [37]. However, the algorithm proposed in [36] assumed an algorithm

capable of solving a penalized unconstrained Nash Equilibrium Problem, which

satisfies a set of conditions, and that in [37] relies on the convexity of the joint

strategy space. Thus none of them can be directly applied in our setting.

Below we propose an algorithm involving slices and a central entity which is

guaranteed to converge to the equilibrium.

We summarize the main ideas as follows. To decouple dependencies

among strategy spaces, we shall move slice v’s BTD constraint into its objective

function as a penalty term with an associated multiplier λv. Let λ , (λv :

v ∈ V). By adjusting the value of λ according to y at each iteration, one can

determine a setting such that, at the induced Nash Equilibrium, all slices meet

their BTD constraints, and the equilibrium is identical to that of the traffic

shaping game. In addition, in order to prevent overshooting, at each iteration

each slice’s objective function is regularized by the distance to the previous

reciprocal carried load xv.

Specifically, the admission control strategy of slice v in response to
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other slices is now given as the solution to the following optimization problem:

Lvε (y;λv) = argmin
(yv)′∈Ȳ v

θv((y
v)′,y−v;λv) +

ε

2
(xv − x′v)2, (2.42)

where we define a BTD penalty function for slice v as

hv(y) , fv(ρ̃
v; ρ̃−v)− sv(d̃v − 1)xv.

and the objective function for slice v is now (different from what is previously

defined): θv(y
v,y−v;λv) , exv + λv[hv(y)]+, with [x]+ , max(0, x). The last

term in Eq. (2.42) serves as a regularization term. The strategy space is now

Ȳ v , {yv|〈1, ρ̃v〉 = 1,0 � M vρ̃v � xv1} and xv is substituted by exv to

ensure strong convexity, which is required for convergence (note that due to

the monotonicity, exv and xv should result in the same optimizer).

We propose to use the inexact line search update introduced in [37]. In

order to make sure the iteration is proceeding towards the equilibrium, we use

Ωε(y;λ) ,
∑
v∈V

θv(y
v,y−v;λv)− θv(Lvε (y;λ),y−v;λv)

− ε

2
(xv − x′v)2 ≥ 0

as a metric, observing that the equilibrium is given by y∗ if and only if

Ωε(y
∗;λ) = 0. Therefore we seek to decrease Ωε(y;λ) by a sufficient amount

at each iteration. The task executed by each slice v is given in Algorithm 1,

while the central entity, which is responsible for collecting and delivering infor-

mation and updating λ, executes Algorithm 2. This then follows the algorithm

proposed in [36].
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Algorithm 1 Algorithm of Slice v

1: Set k ← 0 and collect ε from central entity.
2: Receive λv(k) and y(k) from central entity.
3: Compute Lvε (y(k);λ) and transmit it back to the central entity. Set k ←
k + 1. Go to step 2

Algorithm 2 Penalized Update in Central Entity

1: Choose a starting point y(0), λ(0) � 0, ηv ∈ (0, 1), for v ∈ V, β, σ ∈ (0, 1),
ε > 0 but small enough (see following theorem for convergence) and set
k ← 0.

2: If a termination criterion is met then STOP. Otherwise, communicate y(k)
together with λv(k) to all slices.

3: All slices compute Lvε (y(k);λ) and feedback to central entity.
4: Compute t(k) = max{βl|l = 0, 1, 2, . . . } such that if we assume ξ(k) =

(Lvε (y(k);λ(k)) : v ∈ V)− y(k):

Ωε(y(k) + t(k)ξ(k)) ≤ Ωε(y(k))− σ(t(k))2‖ξ(k)‖. (2.43)

Then set y(k + 1) = y(k) + t(k)ξ(k).
5: Set I(k) = {v|hv(y(k)) > 0}. For every v ∈ I(k), if

exv(k) > ηv(λv‖∇yvhvy(k))‖), (2.44)

then λv(k + 1) ← 2λv(k). Set k ← k + 1. Broadcast y(k) and λ(k) to
slices and go to step 2.
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Theorem 2.4.2. Let {y(k)} be the sequence of admission control decisions

generated by Algorithm 1 and Algorithm 2, then every limit point of this se-

quence is a Nash equilibrium of the traffic shaping game induced by ACv.

Proof. First we need to verify the Assumption 5.1 in [37] to guarantee that

for a given λ, step 4 in Algorithm 2 converges to a Nash equilibrium. The

non-constant part of Ψε(y,y
′;λ) (defined in [37]) when y′ is fixed is:

∑
v e

xv +

λv[hv(y)]+ − ε
2
‖xv − x′v‖2. If ε is small enough, the concavity of the last term

will be canceled out by exv . Then the non-constant part is always convex in y.

Hence, the Assumption 5.1 holds true together with the propositions 2.1(a) -

(d) in [37]. Therefore, the proposed algorithm generates Nash equilibrium of

the game.

One can easily verify that the EMFCQ condition given by Definition

2.7 in [36] is satisfied. Thus for all v, λv gets updated a finite number of times.

According to Theorem 2.5 in [36], the claim is true.

2.4.2 Characterization of Traffic Shaping Equilibrium

Next we study the characteristics of the resulting traffic shaping Nash

equilibrium. To make this tractable we consider networks which are satu-

rated and subsequently (in Section 2.5) provide simulations to evaluate other

settings.

Assumption 3. (Saturated Regime) Suppose the system is such that for each
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network slice, the optimal admission control for both SCPF and SS 2 in re-

sponse to other slices’ loads is such that for all v ∈ V, av ≺ 1.

Assumption 3 depends on many factors including the BTD constraints,

the mobility patterns, and network slices’ shares, but it is generally true when

the exogenous traffic of all slices at all base stations γvb is high. When this is

the case we have the following result:

Theorem 2.4.3. Under Assumptions 1, 2 and 3, the relative load distributions

at the Nash equilibrium of the traffic shaping game ρ̃∗ , (ρ̃v,∗ : v ∈ V) are the

unique solution to:

min
(ρ̃v∈Γv :v∈V)

∥∥∥∥∥∑
v

svρ̃v

∥∥∥∥∥
2

2

+
∑
v

(sv)2‖ρ̃v‖2
2, (2.45)

where Γv , { ρ̃v | 〈1, ρ̃v〉 = 1,M vρ̃v � 0 }, and the associated carried load

for slice v is ρv,∗ = sv(d̃v−1)
〈g̃∗,ρ̃v,∗〉 , where g̃∗ corresponds to the overall share weighted

relative loads distributions at the equilibrium.

Remark: Theorem 2.4.3 also holds true under a more general traffic

model, see, for example, Section 2.6.2.

Proof. Under the saturated regime, BTD constraint of each v ∈ V must be

binding because we are blocking traffics. Thus we have: xv = fv(ρ̃v ;ρ̃−v)

sv(d̃v−1)
, Also

2Admission control under SS is defined in the sequel.
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Assumption 3 guarantees that for all v ∈ V, M vρ̃v � xv1 is not binding then

the ACv can be reformulated as:

min
ρ̃v∈Γv

svfv(ρ̃
v; ρ̃−v), (2.46)

A constant factor sv in the objective function has no impact to the minimizer.

We can show that the optimality condition of Problem (2.45) is the same as

each slice v optimizing its own problem given by Eq. (2.46). Dividing the

objective function by 2, the Lagrangian of Problem (2.45) is:

L(ρ̃; ζ,χ) =
1

2
(

∥∥∥∥∥∑
v

svρ̃v

∥∥∥∥∥
2

2

+
∑
v

(sv)2‖ρ̃v‖2
2)

+
∑
v∈V

ζv(〈1, ρ̃v〉 − 1)−
∑
v∈V

(χv)TMvρ̃
v, (2.47)

where ρ̃ , (ρ̃v : v ∈ V), dual variables ζ , (ζv : v ∈ V), and χ , (χv : v ∈ V).

According to the KKT condition, the solution ρ̃∗ must be such that, for all

v ∈ V:

∇ρ̃vL(ρ∗; ζ∗,χ∗) = (sv)2ρ̃v,∗ + svg̃ + ζ∗v1− (M v)Tχv,∗ = 0, (2.48)

and χv,∗ � 0, ρ̃v,∗ ∈ Γv. The Lagrangian of Problem (2.46) is:

Lv(ρ̃
v; ζv,χ

v) = 〈g̃, svρ̃v〉+ ζv(〈1, ρ̃v〉 − 1)− (χv)TMvρ̃
v. (2.49)

If slice v’s relative load ρ̃v,∗ optimizes Problem (2.46) given other slices’ ρ̃−v,∗,

following KKT condition should be met:

∇ρ̃v,∗Lv(ρ̃v,∗; ζ∗v ,χv,∗) = (sv)2ρ̃v,∗ + svg̃ + ζ∗v1− (M−1
v )Tχv,∗ = 0, (2.50)
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and χv,∗ � 0, ρ̃v,∗ ∈ Γv, which is exactly the same as the KKT condition

of Problem (2.45). Therefore, Problem (2.45) is solved at the Nash equilib-

rium. Moreover, we could compute the total carried load of slice v by setting

fv(ρ̃
v,∗; ρ̃−v,∗) = sv(d̃v − 1)/ρv,∗, which gives us ρv,∗ = sv(d̃v−1)

〈g̃∗,ρ̃v,∗〉 .

The first term in the objective function in Eq. (2.45) rewards balanc-

ing the overall share weighted relative loads on network. The second term

rewards a slice for balancing its own relative loads. The Nash equilibrium

in the saturated regime is thus a compromise between those two objectives

while constrained by the network slices mobility patterns and feasible admis-

sion control policies. Note that as long as ρ̃vb > 0,∀v ∈ V, b ∈ B, GPS and

SS are approximately the same under heavy load. Therefore, we use SS as

the benchmark to characterize the carried load at the Nash equilibrium under

SCPF.

Admission control for slice v under SS (ACSSv): Under SS slice v can

determine its optimal admission control yv by solving:

max
ρ̃v ,ρv

ρv

s.t. av = ρvM vρ̃v, av ∈ [0, 1]B

〈1, ρ̃v〉 = 1 and ρv‖ρ̃v‖2
2 ≤ (svd̃v − 1).

Note slices’ admission control decisions are clearly decoupled under SS, but

paralleling Theorem 2.4.3 we have following result.
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Theorem 2.4.4. Under Assumptions 1 and 3, the optimal admission control

policy under SS are decoupled. The optimal choice for slice v, ρ̃v,SS,∗, is the

unique solution to:

min
ρ̃v∈Γv

‖ρ̃v‖2
2, (2.51)

and the associated carried load is given by ρv,SS,∗ = sv d̃v−1
‖ρ̃v,SS,∗‖22

.

Proof. Under the saturated regime, BTD constraint of each v ∈ V must be

binding. Thus we have: ρv = sv d̃v−1
‖ρ̃v‖22

. Moreover, the constraint av � 1 should

be satisfied with strict inequality, thus the optimal policy ρ̃v,SS,∗ under SS is

given by:

min
ρ̃v
{ ‖ρ̃v‖2

2 |M vρ̃v � 0, 〈1, ρ̃v〉 = 1}.

Then the optimal load is obtained by plugging the result in the BTD con-

straint.

By comparing Eq. (2.45) and Eq. (2.51), one can see that under SS,

slices simply seek to balance their own relative loads on the network. By taking

the ratio between ρ∗v and ρSS,∗v given in Theorem 2.4.3 and 2.4.4, one can show

that under Assumptions 1, 2, and 3 the gain in carried load for slice v is given

by

Gload
v ,

ρv,∗

ρv,SS,∗
=
‖ρ̃v,SS,∗‖2

2

〈g̃∗, ρ̃v,∗〉
× sv(d̃v − 1)

svd̃v − 1
. (2.52)

The first factor captures a traffic shaping dependent gain for slice v. The

second factor is a result of statistical multiplexing gains. A simple special case

is highlighted in the following corollary.
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Corollary 2.4.5. Under Assumptions 1, 2 and 3, if user mobility patterns are

such that 1
B

1 ∈ Γv for all v ∈ V, the gain in the total carried load under the

SCPF traffic shaping Nash equilibrium vs. optimal admission control for SS is

given by:

Gload
v =

svd̃v − sv

svd̃v − 1
≥ 1, ∀v ∈ V. (2.53)

Proof. Under SS, it is obvious that the optimal relative load distribution of

slice v is ρ̃v,SS,∗ = 1
B

1. Plugging it in the BTD constraint one can get ρv,SS,∗ =

B(svd̃v − 1), thus ρv,SS,∗ = (svd̃v − 1)1. Dividing the objective function by

sv and discarding the routing constraints, the Lagrangian of Eq. (2.46) is:

〈g̃v, ρ̃v〉+ν(〈1, ρ̃v〉−1), where ν is the dual variable. Solving its KKT condition

we have:

ρ̃v,∗ = − 1

2sv

(
ν1 +

∑
v′ 6=v

sv′ρ̃
v′

)
. (2.54)

Substituting in 〈1, ρ̃v,∗〉 = 1 we have ν = − sv+1
B

. When 1
B

1 ∈ Γv,∀v ∈ V,

Eq. (2.54) implies that if all other slices v′ 6= v pick their relative loads as

1
B

1, then (
∑

v′ 6=v s
v′ρ̃v

′
) ‖ 1, meaning that this is the Nash equilibrium of the

game. Note that since ρ̃v,∗ is feasible and optimal for a relaxed feasible set,

it will still be optimal if we put back the routing constraints. Thus we have

that: 〈g̃∗, ρ̃v,∗〉 = 1
B
. Then the carried load gain is obtained by plugging the

result in Eq. (2.52).

Note that in order for a BTD constraint to be feasible under SS, one

must require svd̃v > 1. It can be seen that the gain exhibited in Corollary 2.4.5

can be very high when sv ↓ 1/d̃v. Furthermore, if sv ↑ 1 we have that Gload
v ↓
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1, i.e., no actual gain. This result implies that slices with small shares or

tight BTD constraints will benefit most from sharing, coinciding with our

observations in Corollary 2.2.4.
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2.5 Performance Evaluation Results

In this section, we validate the theoretical results in previous sections,

and provide quantitative characterizations via numerical experiments. We

simulated a wireless network shared by multiple slices supporting mobile cus-

tomers following the IMT-Advanced evaluation guidelines [38]. The system

consists of 19 base stations in a hexagonal cell layout with an inter site dis-

tance of 200 meters and 3 sector antennas, mimicking a dense ‘small cell’

deployment. Thus, in this system, B corresponds to 57 sectors. Users asso-

ciate to the sector offering the strongest SINR, where the downlink SINR is

modeled as in [39]:

SINRub =
PbGub∑

k∈B,k 6=b PkGuk + σ2
,

where, following [38], the noise σ2 = −104dB, the transmit power Pb = 41dB

and the channel gain between user u and BS sector b, denoted by Gub, accounts

for path loss, shadowing, fast fading and antenna gain. Letting dub denote the

current distance in meters from the user u to sector b, the path loss is defined

as 36.7 log10(dub) + 22.7 + 26 log10(fc)dB, for a carrier frequency fc = 2.5GHz.

The antenna gain is set to 17 dBi, shadowing is updated every second and

modeled by a log-normal distribution with standard deviation of 8dB, as in

[39]; and fast fading follows a Rayleigh distribution depending on the mobile’s

speed and the angle of incidence. The downlink rate cu currently achievable

to user u is based on discrete set modulation and coding schemes (MCS) and

associated SINR thresholds given in [40]. This MCS value is selected based on

the averaged SINRub, where channel fast fading is averaged over a second.
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We model slices’ with different spatial loads by modeling different cus-

tomer mobility patterns. Roughly uniform spatial loads are obtained by simu-

lating the Random Waypoint model [41], while non-uniform loads obtained by

simulating the SLAW model [42]. Instead of the open network assumed in the

theoretical analysis, in the simulations we use a closed network where the total

number of users on each slice keeps fixed. Moreover, the simulated mobility

models would not induce Markovian motion amongst base stations assumed

in our analysis, yet the analytical results are robust to these assumptions.

2.5.1 Statistical Multiplexing and BTD Gains

We evaluated the BTD gains of SCPF vs. both SS and GPS for four

simulation scenarios, each including 4 slices, each with equal shares but dif-

ferent spatial load patterns. For each scenario, we provide results for simu-

lated BTD gains, and results from our theoretical analysis (Corollary 2.2.4

and Corollary 2.2.5) based on the empirically obtained spatial traffic loads.

More detailed information regarding simulated scenarios and resulting empir-

ical spatial traffic loads for high load regime are displayed in Table 2.2 and a

snapshot of locations for the 4 slices’ users in a network with a load of 4 users

per sector is displayed in Figure 2.1.

The results given in Figure 2.2 show the BTD gains over SS for each

scenario as the overall network load increases. In Scenario 3, the aggregate

network traffic is ‘smoother’ than the individual slice’s traffic, and the gains are

indeed higher. This is also the case for Slice 1 and 2 in Scenario 4, since these
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Scenario Slices Spatial loads ‖ρ̃v‖2 ‖g̃‖2 θ(g̃, ρ̃v) GSS,H
v

1 Homogeneous uniform. 0.27 0.27 7.09 1.01
2 Homogeneous non-uniform 0.32 0.32 6.18 1.01
3 Heterogeneous orthogonal 0.36 0.26 41.78 1.83
4 Mixed Slices 1&2 non-uniform 0.36 0.23 25.52 1.70

3&4 uniform 0.19 0.23 48.00 1.24

Table 2.2: Measured normalized slice and network traffic norms and angles for
highest load case of each scenario.

Figure 2.1: Snapshot of users positions per slice and scenario exhibiting the
different characteristics of traffic spatial loads. Left to right: Scenarios 1 to 4.

slices loads are more ‘imbalanced’ than the other two slices, they experience

higher gains. In Scenario 2, where slices non-homogenous spatial loads are

‘aligned’, aggregation does not lead to smoothing and the gains are least.

Similarly, the results given in Figure 2.3 show the BTD gains over GPS

for each scenario as the overall network load increases. As can be seen, the

gain is not necessarily monotonic in the load. In Scenario 4, the Slice 1 and

2 have significant gains because their loads are more imbalanced, while Slice

3 and 4 see negative gains. However, the overall gain defined in Eq. (2.19) is

still positive, ranging from 1.26 to 1.5 for varying overall load. As discussed
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Figure 2.2: BTD gain over SS for our 4 different scenarios.

in Section 2.2.2.2, Slice 3 and 4 observe negative gains. Intuitively in this

setting this is due to the slices with homogeneous loads not being sufficiently

protected (under SCPF) of slices with concentration of loads on a small set of

base stations.

As can be seen in Figures 2.2 and 2.3 the simulated and theoretical gains

(dashed lines) of Corollary 2.2.4 are an excellent match. The theoretical model

has been calibrated to the mean reciprocal capacities seen by slice customers

(i.e., δvb ’s) and the measured induced loads resulting from the slice mobility

patterns.

In addition to performance averaged over time, to illustrate the dynamic
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Figure 2.3: BTD gain over GPS for our 4 different scenarios.

of the BTD perceived by a typical user, we plot the BTD vs. time for a

randomly picked user on Slice 1 in Scenario 1, as shown in Fig. 2.4, where the

left/right part is under light/heavy load regime, respectively. Note that under

heavy load, GPS and SS are approximately the same. SCPF outperforms for

most of the time. Under light load, the mean BTD under SCPF is 4.2044,

while that under SS (GPS) is 6.6157 (5.2862), respectively. The standard

deviation of BTD under SS (GPS) is 3.9011 (3.0449), and SCPF reduces it to

1.93. Similar phenomenon is observed under heavy load, when both SS and

GPS provide mean BTD of 19.65 and associated standard deviation of 13.79,

SCPF reduce them to 16.79 and 13.45, respectively. Therefore, SCPF can

effectively improve the perceived BTD and also ‘smooth’ the user perceived
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Figure 2.4: BTD vs. time for a randomly picked user under Scenario 3

QoS.

2.5.2 Traffic Shaping Equilibrium and Carried Load Gains

In order to study the equilibria reached by the traffic shaping game,

we measured the underlying user mobility patterns in Section 2.5.1, and mod-

eled it via a random routing matrix. We further assumed uniform intensity

of arrivals rates at all base stations and uniform exit probabilities of 0.1. The

mean holding time at each base station was again calibrated with the simu-

lations in Section 2.5.1. We considered a traffic shaping game for a network

shared by 3 slices, where Slice 1 has uniform spatial loads and Slice 2 and 3
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Figure 2.5: Gain in carried load for various arrival rates.
Subfigure: Balancing in relative load.

have different non-uniform spatial loads. All slices have equal shares and their

capacity normalized BTD requirements are set to d̃1 = 10, d̃2 = 12, d̃3 = 15

respectively. The Nash equilibrium was solved via the algorithm included in

Section 2.4.1. The convergence is reached within 3 rounds of iterations under

the parameters ηv = β = 0.5,∀v ∈ V, σ = 0.1, ε = 0.01.

The results shown in Figure 2.5 exhibit dashed lines corresponding to

the theoretical carried load gains in the saturated regime. As can be seen,

these coincide with the Nash equilibria of the simulated traffic shaping games

for high arrival rates. For lower arrival rates the gains can be much higher, e.g.,
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almost a factor of 1.6, for slices with non-uniform mobility patterns. This was

to be expected since for lower loads we expect higher statistical multiplexing

gains from sharing, and thus relatively higher carried loads to be admitted.

For very low loads, as expected, there are no gains since all traffic can be

admitted and BTD constraints are met.

Also shown in Figure 2.5(subfigure) is the degree to which the relative

loads of slices, and the weighted aggregate traffic on the network g̃ are bal-

anced, as measured by || · ||2, as the arrival rates on the network increase. As

expected, based on Theorem 2.4.3, as arrivals increase relative loads of slices

and the network become more balanced, showing the compromise the traffic

shaping game is making, balancing slices relative loads and that of the overall

network.
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2.6 Extensions and Generalizations

The results in this chapter can be generalized in several ways. In this

section we discuss some possibilities.

2.6.1 General User Activity Model

Our framework so far considered dynamic user arrivals where users

were active throughout their sojourn in the system. A possible extension

is to consider user activity models which alternate between active/inactive

states during their sojourn as long as this is independent of their service,

e.g., the activity patterns in an ongoing voice call experiencing adequate QoS.

For example if all customers on slice v are active with probability pv, the

previously developed results hold true with the additional thinning of slice

loads on various base stations by pv.

Another alternative is to consider network slices that support fixed

collections of users which exhibit on-off behavior. This might be the case for

slices provisioned to support fixed Internet of Things (IoT) devices/users. We

can model each user on slice v as having an on-off process which is independent

to all other users and at a given time t, the probability of being active is pv for

all slice v users. Each user is associated with a fixed base station. Assuming

that the total number of users on slice v at base station b is denoted by ρvb , the

number of active user on slice v at base station b can be modeled by a random

variable N v
b ∼ Binomial(ρvb , pv). Since the sum of two independent Binomial

random variables with the same ‘success probability’ is again Binomial, the

69



result in Lemma 2.2.3 still holds true. The results regarding BTD and gains

follow with loads thinned by the activity factor pv. In this setting a slice

operator may do network dimensioning by deciding how many devices its slice

might support on each base station, i.e., ρvb for each b. A simple admission

control policy can also be studied wherein when a user wakes up from the

inactive mode, the slice determine if it may access the network (independently

of the state of the system) based on an admission probability avb for slice v

at base station b. In this setting performance management of all slices in the

network can be similarly modeled as a game as before.

2.6.2 Multi-Class Routing

The proposed framework can also be developed for a more general rout-

ing model to capture user mobility. In general the mobility pattern of users

can be more complex, exhibiting dependencies across base stations, e.g., a user

may be driving along a highway. The random routing model studied so far

might not be accurately reflecting the movement of such customers including

dependency introduced by the underlying traffic infrastructure, or commuting

patterns of different customers. However more complex routing behavior that

is not state dependent can in general be addressed using a multi-class routing

model.

In the multi-class setting, for each slice, say v, we can define a set of user

classes Kv, where a class k user will traverse a specific sequence of base stations,

denoted by Rk = (bk,1, bk,2, . . . , bk,|Rk|) – we will assume for simplicity each
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class traverses a given base station at most once. Upon finishing traversing

the base stations in Rk, the user can randomly change to another class or

leave the system. Paralleling the random routing scenario, we can redefine

the routing matrix Qv with components Qv
ij corresponding to the probability

of a customer completing the path for class i becomes a class j customer.

Letting γv = (γvk : k ∈ Kv) denote the arrival rate to slice v for each class.

Following our previous framework, we can define an admission control vector

āv for arriving customers in each class. Then (I − (Qv)T )−1diag(γv)āv is the

vector of intensities of customer flow of each class. Thus if we define µvb,k as

the mean sojourn times of class k customer at base station b, and a matrix

µv = (µvb,k : b ∈ B, k ∈ Kv), we have that ρv = µv(I − (Qv)T )−1diag(γv)av =

M̄ vav is the induced load at each base station after admission control. Here

we use the convention that if a base station b /∈ Rk, µ
v
b,k = 0, thus the flow

of customers belonging to class k will not place any load at base station b.

Clearly random routing is simply a special case of this more general model

wherein each Rk contains one base station.

Also note that M̄ v is a fat matrix thus it might be the case that multiple

āv can result in one ρv. However, we can still work with ρv in order to get a

convex problem.

Multi-class routing admission control for slice v under

SCPF (MultiACv): Given other slices’ load distribution decisions ρ−v, slice
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v determines its load distribution policy ρv by solving

max
ρv
{ 1Tρv | ρv ∈ Y v(ρ−v) } (2.55)

where Y v(ρ−v) denotes slice v’s feasible policies and is given by

Y v(ρ−v) , { ρv | ρv ∈ Ξv, g̃Tρv ≤ sv(d̃v − 1) }, (2.56)

where Ξv is defined as following set of load distributions:

Ξv = { ρv | ∃āv s.t. 0 � āv � 1 and

ρv = M̄ vāv }. (2.57)

The set Ξv is actually the projection of a cube to a lower dimension hyperplane,

thus must be convex. Therefore the resulting admission control problem is a

convex one. Each slice can solve such convex problem by any existing algo-

rithm, then find the corresponding admission control policy āv through solving

a (possibly underdetermined) linear system.

As discussed above, adding multi-class routing can increase the accu-

racy of the model in the sense that it can better predict the load distribution

after admission control. However it is at the cost of increasing the complexity

of the problem: Ξv can be hard to determine and mapping from ρv back to āv

might take extra efforts.
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Chapter 3

Network Slicing in Generalized setting -

Coupled Resources

3.1 Introduction

3.1.1 Background and Motivation

In the previous chapter we studied the network slicing problem in

a setting where users’ resource demands are decoupled, i.e., users only re-

quire a single resource type. However as the wireless communication tech-

nology evolves, next generation networks seek to support a variety of data-

intensive services and applications, such as self-driving cars, infotainment,

augmented/virtual reality [43], Internet of things [44, 43], and mobile data

analytic [45, 46], which, probably require the availability of heterogeneous

resources at the network “edge”. Thus, our previous setup needs to be gener-

alized to more complex settings where heterogeneous resources are provisioned

simultaneously. Still, shared resources are provisioned in slices to different ser-

This chapter was partially included in the following paper. J. Zheng and G. de Veciana,
Elastic multi-resource network slicing: Can protection lead to improved performance? in
proceeding of WiOpt’19, 2019. The author was responsible for developing those analytic
results, conducting simulation-based evaluation, and writing the paper.
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vices/applications, so that customization could be performed in accordance to

service providers’/tenants’ requirements.

The ability to support slice-based provisioning is central to enabling

service providers to take control of managing performance of their own dy-

namic and mobile user populations. This also improves the scalability by

reducing the complexity of performance management on multi-service plat-

forms. The ability to efficiently share network/compute resources is also key

to reducing the cost of deploying such services. By contrast with today’s cloud

computing platforms, our focus is on provisioning slices of edge resources to

meet mobile users/devices requirements. In general, shared edge resources will

have smaller overall capacity resulting in reduced statistical multiplexing and

making efficiency critical. Perhaps similarly to cloud computing platforms,

providers/tenants will want to make long-term provisioning commitments en-

abling predictable costs and resource availability, yet benefit, when possible,

of elastic resource allocations aligned with spatial variations in their mobile

workloads but not at the expense of other slices. Thus a particularly desirable

feature is to enable slice-level provisioning agreements which achieve inter-slice

protection, load-driven elasticity and network efficiency.

These challenges distinguish our work from previous research in areas

including engineering, computer science and economics. The standard frame-

work used in communication networks is utility maximization (see e.g., [13]

and references therein), which has led to the design of several transport and

scheduling mechanisms and criteria, e.g., the widely discussed proportional
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fairness. When considering dynamic/stochastic networks, e.g., [20], [19], re-

searchers have studied networks where users are allocated resources based on

utility maximization and studied requirements for network stability for ‘elas-

tic’ user demands, e.g., file transfers. This body of work emphasizes user-level

resource allocations, without specifically accounting for interactions among

slices. Thus, it does not directly address the requirements of network slicing.

Instead in this chapter, we propose a novel approach, namely, Share

Constrained Slicing (SCS), wherein each slice is assigned a share of the overall

resources, and in turn, distributes its share among its users. Then the user level

resource allocation is determined by maximizing a sharing criterion. When

SCS is applied to a setting where each user only demands one resource, for

example, slices sharing wireless resources in cellular networks [17, 47, 7], it can

be viewed as a Fisher market where agents (slices), which are share (budget)

constrained, bid on network resources, see, e.g., [14], and for applications

[15, 16, 17]. However, those works do not deal with settings where users

require heterogeneous resources, and how to orchestrate slice-level interactions

on different resources is not clear yet.

When it comes to sharing on heterogeneous resources, a simple solution

is static partitioning of all resources according to a service-level agreement, see,

e.g., [11]. It offers each slice a guaranteed allocation of the network resources

thus in principle provides ideal protection among slices. However, it falls

short from the perspective of providing load-driven elasticity to a slice’s users,

possibly resulting in either resource under-utilization or over-booking. Other
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natural approaches include full sharing [4], where users from all slices are served

based on some prioritizing discipline without prior resource reservation. Such

schemes may not achieve slice-level protection and are vulnerable to surging

user traffics across slices.

Additionally, many resource sharing schemes have been proposed for

cluster computing where heterogeneous resources are involved, including Dom-

inant Resource Fairness (DRF)[3], Competitive Equilibrium from Equal In-

come (CEEI) [48][49][50], Bottleneck Max Fairness (BMF) [51], etc. These

allocation schemes are usually based on modelling joint resource demands of

individual users, but lack of the notion of slicing, thus it is not clear how to

incorporate the need to enable slice-level long-term commitments. In these

works, inter-slice protection and elasticity of allocations have not been charac-

terized. Furthermore, most of these works are developed under the assumption

that users are sharing a centralized pool of resources. In this chapter we focus

on a settings where resources are distributed, and mobile users are restricted

to be served by proximal edge resources.

3.1.2 Contributions

The novelty of our proposed approach lies in maintaining slice-level

long-term commitments defined by a service-level agreement, while enabling

user-level resource provisioning which is driven by dynamic user loads. We con-

sider a model where users possibly require heterogeneous resources in different

proportions, and the processing rate of a user scales linearly in the amount of
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resources it is allocated. Such a model captures tasks/services which speeds

up in the allocated resources, which is discussed further in the sequel.

We show that SCS can capture inter- and intra-slice fairness separately.

When viewed as a resource sharing criterion, SCS is shown to satisfy a set of

axiomatically desirable properties akin to those in [52], and can be interpreted

as achieving a tunable trade-off among inter-slice fairness (which can be seen

as a proxy of protection), intra-slice fairness, and overall utilization. Fair-

ness is connected to load-driven elasticity through share constrained weight

allocation. The merits of SCS are demonstrated in both static and dynamic

settings. In static settings, we prove a set of desirable properties of SCS as

a sharing criterion, including slice-level protection and envyfreeness, and we

demonstrate the feasibility of using a simpler (dynamically) weighted max-

min as a surrogate resource allocation scheme for the cases where the cost of

implementing SCS is excessive. In a dynamic settings, we consider the elastic

traffic model where each user carries a fixed workload, and leaves the system

once the work is processed. We model such system as a stochastic queuing

network, and establish its stability condition.

Finally, and perhaps surprisingly, we show via extensive simulations

that while SCS provides inter-slice protection, it can also achieve improved

average job delay and/or perceived throughput, as compared with multiple

variations of traditional (weighted) max-min fair allocations but without share-

constrained weight allocation. We provide a heuristic explanation of such im-

provement that SCS can separate the busy-periods of different slices, thus
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reduces inter-slice contention, and validate the explanation through simula-

tions.
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3.2 Fairness in Network Slicing

In this section we will briefly introduce the overall framework for re-

source allocation to network slices, namely, Share Constrained Slicing (SCS)

where each slice manages a possibly dynamic set of users. Specifically, we

will consider resource allocation driven by the maximization of an objective

function geared at achieving a trade-off between overall efficiency and fairness

[52].

To begin, we consider the set of active users on each slice to be fixed.

Let us denote the set of slices by V, the set of resources by R, each with a

capacity normalized to 1. Each slice v supports a set of user classes, denoted

by Cv, and the total set of user classes is defined as C := ∪v∈VCv. For simplicity,

we let v(c) denote the slice which supports class c. We let Uc denote the set

of users of class c, and the users on slice v is denoted by Uv := ∪c∈CvUc. Also,

the overall set of users is U := ∪v∈VUv. For each user, possibly heterogeneous

resources are required to achieve certain processing rate. Let us denote the

processing rate seen by user u by λu. We also define the resource demand

vector of user class c as dc := (drc : r ∈ R), where drc is the fraction of resource

r required by user u ∈ Uc for a unit processing rate, i.e., to achieve λu = 1, we

need to allocate fraction d1
c of the total amount of resource 1 to u, d2

c of the

total amount of resource 2 to u, and so on. If a user class c does not use a given

resource r then drc = 0. Note that if two slices support users with the same

requirements, we will distinguish them by defining two distinct user classes

one for each slice. In other words, it is possible to have more than one user
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classes with exactly the same dc. Also, we let Rc denote the set of resources

required by users of class c, and in turn, let the set Cr denote user classes

using resource r. Among Cr, the set of classes on slice v is Cvr := Cr ∩ Cv. The

number of active users of class c at time t is denoted by a random variable

Nc(t), and that on slice v by N v(t). N v(t) =
∑

c∈Cv Nc(t). Realizations of

these are denoted by lower case variables nc and nv, respectively.

This model captures the services/applications where tasks speed up

with more allocated resources, e.g., a file download is faster when allocated

more communication resources, or computation task that can be parallelized,

e.g., typical MapReduce jobs [53], and mobile data analytics when additional

compute resources are available [45]. For more complex applications involv-

ing different types of stages, the stages conducting massive data processing

might be parallelizable, making it possible to accelerate by allocating more re-

sources. For example, in mobile cloud gaming [54], the most time-consuming

and resource-consuming stage is usually the cloud rendering where computing

cluster renders the frames of the game. The rendering procedure can be ac-

celerated by allocating more GPUs, and thus, can be viewed as a quantized

version of our model.

Example: Let us consider an example where there are two autonomous

vehicle service operators, say Slice 1 and Slice 2, coexisting in the same area,

and supported by two edge computing nodes equipped with fronthaul connec-

tivity and computational resources (e.g., edge GPUs), as shown in Fig. 3.1.

Both nodes are connected to the same backhaul node. Different resources at
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User 1, Slice 1
Data transmission

User 2, Slice 1
Data analytic

User 3, Slice 2
Data analytic

Node 1 Node 2

Figure 3.1: Example: network slicing in edge computing with autonomous
cars.

different locations are indexed as in the figure. There are 3 vehicles (users) in

this area, each of which corresponds to a user class. Users 1 and 2 are on Slice 1,

and User 3 is on Slice 2, respectively. Each autonomous vehicle can run either

of two applications. User 1 is conducting simple data transmission, with the

resource demand vector d1 = (1, 1, 0, 0, 0), meaning that User 1’s application

involves only connectivity resources, and to achieve a unit transmission rate

for User 1, the system needs to allocate all the connectivity resources at both

Node 1 and the backhaul. Meanwhile, User 2 and 3 are performing mobile

data analytics, with demand vectors d2 = d3 = (0.6, 0, 0, 1, 1), meaning that

to achieve a unit processing rate for Users 2 or 3, the system needs to allocate

60% of the backhaul resource, all the fronthaul resource, together with all the

computational resource at Node 2. Then, for example, if the resource alloca-
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XXXXXXXXXXXXUser
Resource

1 2 3 4 5 Rate

user 1 0.4 0.4 0 0 0 λ1 = 0.4
user 2 0.3 0 0 0.5 0.5 λ2 = 0.5
user 3 0.3 0 0 0.5 0.5 λ3 = 0.5

Table 3.1: Example resource allocation

tion is as given in Table 3.1, the system can achieve user service/processing

rates given by λ1 = 0.4, λ2 = λ3 = 0.5.

Next, we introduce the concept of network share. We assign each

slice v a positive share sv representing the fraction of overall resources to

be committed to slice v. The share allocations across slices are denoted by

s := (sv : v ∈ V). Without loss of generality we assume
∑

v∈V sv = 1. In

turn, each slice distributes its share sv across its users u ∈ Uv according to a

Share-constrained weight allocation scheme, defined as follows.

Definition 3.2.1. Share-constrained weight allocation (SCWA): A

weight allocation across users w := (wu : u ∈ U) is a share-constrained weight

allocation if for each slice v,

∑
u∈Uv

wu = sv. (3.1)

If we consider the weight of each class c as qc :=
∑

u∈Uc wu, Eq. (3.1)

implies
∑

c∈Cv qc = sv. As a result, a slice can increase its users’ weight by

purchasing more shares. Also, note that if the number of users on a slice surges

without increasing the associated share, on average each of its users should be

given less weight. Two examples of SCWA are
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1. equal intra-class weight allocation, where user weights are the same

within a user class, i.e., wu = qc
nc

, for u ∈ Uc with
∑

c∈Cv qc = sv; and

2. equal intra-slice weight allocation, where user weights are the same

within a slice, i.e., wu = sv
nv

, for u ∈ Uv. As a result, qc =
sv(c)nc

nv(c)
.

One can see that equal intra-slice allocation is a further special case of

equal intra-class allocation. When each user only demands one resource,

such allocation emerges naturally as the social optimal, market and Nash

equilibrium when slices exhibit (price taking) strategic behavior in opti-

mizing their own utility, see [18].

In turn, the resources are ultimately committed to users, so a user-

level resource allocation criterion is necessary. Let us denote the user rate

allocation by λ := (λu : u ∈ U). In this paper, we assume equal intra-class

weight allocation is used, resulting in equal rate allocation within a user class.

Thus a class-level allocation criterion can be easily converted to a user-level

one. For simplicity, the aggregated rate allocation across user classes is then

denoted by φ = (φc : c ∈ C), where φc := ncλu, u ∈ Uc, and the weight

allocation across user classes by q = (qc : c ∈ C). For each slice v, the weight

allocation (across user classes) is qv := (qc : c ∈ Cv), and the rate allocation

is φv := (φc : c ∈ Cv). In view of Eq. (3.1), we define the normalized weight

allocation for slice v as q̃v := (q̃c := qc
sv

: c ∈ Cv). The rate allocation across

slices is γ := (γv :=
∑

c∈Cv φc : v ∈ V). The overall rate across the system is

λ := ‖λ‖1 = ‖φ‖1 = ‖γ‖1, where ‖ · ‖1 is the L1-norm. SCS is thus defined as

follows.
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Definition 3.2.2. α−Share Constrained Slicing (α−SCS): Under equal

intra-class weight allocation with class weights q, a class-level rate allocation

φ corresponds to α−SCS if it is the solution to the following problem

max
φ
{Uα(φ; q) :

∑
c∈Cr

drcφc ≤ 1,∀r ∈ R}, (3.2)

where α > 0 is a pre-defined parameter and

Uα(φ; q) :=

{
e
∑
v∈V U

v
α(φv ;qv) α = 1,∑

v∈V U
v
α(φv; qv) α > 0 and α 6= 1,

where U v
α(φv; qv) represents the utility function of slice v and is given by

U v
α(φv; qv) :=

{ ∑
c∈Cv qc log

(
φc
qc

)
α = 1,∑

c∈Cv qc
(φc/qc)1−α

1−α α > 0 and α 6= 1.

The criterion underlying SCS is different from class-level (weighted)

α−fairness proposed in [55] and [20], which is defined as follows.

Definition 3.2.3. Class-level α−fairness: Under equal intra-class weight

allocation, given q, a class-level rate allocation φ corresponds to (weighted)

α−fairness if it is the solution to Problem (3.2) with utility function of slice v

given by

U v
α(φv; qv) :=

{ ∑
c∈Cv qc log (φc) α = 1,∑
c∈Cv qc

(φc)1−α

1−α α > 0 and α 6= 1.

As shown in [55], α−fairness is equivalent to (weighted) proportional

fairness as α = 1 and unweighted maxmin fairness as α → ∞, while the

asymptotic characterization of α−SCS is given as follows.
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Corollary 3.2.1. α−SCS is equivalent to (weighted) proportional fairness as

α = 1, and weighted max-min fairness as α→∞.

Here under equal intra-class weight allocation, weighted proportional

fairness is defined as the solution to the following problem:

max
φ

{∑
c∈C

qc log φc :
∑
c∈Cr

drcφc ≤ 1,∀r ∈ R

}
, (3.3)

and weighted max-min fairness is defined as the solution to the following prob-

lem:

max
φ

{
min
c∈C

φc
qc

:
∑
c∈Cr

drcφc ≤ 1, ∀r ∈ R

}
. (3.4)

The persistence of weight is important, especially when α increases.

Otherwise, the notion of share does not matter when α is large, undermining

inter-slice protection. To the best of our knowledge, SCS is the first variation

of α−fairness incorporating user weighting in a consistent manner.

Proof. When α = 1, one can see that the maximum is assumed when
∑

c∈C qc log
(
φc
qc

)
assumes maximum. Due to the concavity, a rate allocation φ∗ := (φ∗c : c ∈ C)

is the maximizer if and only if∑
c∈C

qc
φ∗c

(φ′c − φ∗c) ≤ 0,

for any feasible φ′. Also, for α−SCS with weight q, when α 6= 1, φ∗ is the

maximizer if and only if∑
c∈C

(
φ∗c
qc

)−α
(φ′c − φ∗c) ≤ 0,
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for any feasible φ′. One can see that two optimality conditions coincide when

α = 1.

The asymptotic behavior when α → ∞ is a direct corollary of the

Lemma 3 in [55].

Let us define function fα(x; y) of two positive vectors x,y ∈ Rn
+ such

that ‖x‖1 = ‖y‖1 = 1 as

fα(x; y) =


e−DKL(y‖x) α = 1,(∑

i yi

(
xi
yi

)1−α
) 1

α

α > 0, α 6= 1,
(3.5)

whereDKL(·‖·) represents the Kulback-Leibler (K-L) divergence. The function

fα(x; y) can be viewed as a measure of how close a normalized resource alloca-

tion x is to a normalized weight vector y in that, for example, when α = 1, it

decreases with the K-L divergence between x and y, thus assumes maximum

when x = y, meaning that the rate allocation is aligned with the specified

weights. Thus fα(x; y) can be interpreted as a measure of y−weighted fair-

ness of allocation x.

One can easily show that fα(x; y) is continuous. Moreover, for general

α and a given y, the following claim can be shown by setting the partial

derivative of the associated Lagrangian to 0.

Proposition 3.2.2. fα(x; y) assumes maximum when the rate is aligned with

the weight when no constraint is imposed, i.e.,

fα(y; y) = max
x

fα(x; y) (3.6)
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One can show that for a given α, α−SCS criterion can be factorized as

follows.

Proposition 3.2.3. For the α−SCS criterion,

Uα(φ; q) = Eα(λ)
(
F inter
α (γ)F intra

α (φ; q)
)α
, (3.7)

where Eα(λ), F inter
α (γ) and F intra

α (φ; q) can be interpreted as the overall net-

work efficiency, inter-slice and intra-slice fairness, respectively.

In Eq. (3.7), the efficiency is captured by a concave non-decreasing

function of λ given by

Eα(λ) :=

{
λ α = 1,
λ1−α

1−α α > 0 and α 6= 1.

The inter-slice fairness function is given by

F inter
α (γ) := fα(γ̃; s),

where γ̃ := (γ̃v := γv/λ : v ∈ V) is the normalized aggregated rate across

slices. Let us define the normalized rate allocation across user classes on slice

v as φ̃v := (φ̃c := φc
γv

: c ∈ Cv). The intra-slice fairness term is then given by

F intra
α (φ; q) :=

 e
∑
v∈V t

v
α(γ̃;s) log fα(φ̃v ;q̃v) α = 1,(∑

v∈V t
v
α(γ̃; s)(fα(φ̃v; q̃v))α

) 1
α

α 6= 1,

where tvα(γ̃; s) can be viewed as the weight for the fairness of each slice v:

tvα(γ̃; s) :=
sv(

γ̃v

sv
)1−α∑

v′∈V sv′(
γ̃v′

sv′
)1−α

. (3.8)
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One can see that Eq. (3.7) captures a trade-off among overall net-

work efficiency, inter-slice fairness, which can be seen as a proxy of inter-slice

protection, and intra-slice fairness. The significance of fairness increases as

α increases. When α → 0, α−SCS is maximizing the overall rate allocated,

regardless of the weights. In order to achieve desirable resource utilization, a

sharing criterion should realize load-driven elasticity, i.e., the amount of re-

sources provisioned to a user class increases in the number of its users. Under

equal intra-slice weight allocation, from Eq. (3.7) one can observe that, due to

the fairness terms, the relative resource allocation of a slice tends to be aligned

with q̃v = (nc
nv

: c ∈ Cv), i.e., its relative load distribution. Thus the elastic-

ity of α−SCS is achieved as a result of weighted fairness. Specifically under

SCS and parallel resource assumption, i.e., each user only uses one resource,

|Rc| = 1, ∀c ∈ C, one can show the following result.

Theorem 3.2.4. Under equal intra-slice weight allocation, assuming |Rc| =

1,∀c ∈ C, α−SCS is such that φc is a monotonically increasing function of nc,

when nc′ is fixed for c′ 6= c.

Specifically in the setting of Theorem 3.2.4, each resource r will provi-

sion its resource across user classes in proportion to
sv(c)nc

nv(c)
.

Such elasticity is key to achieving a sharing scheme that is aware of the

inter-slice protection, while still improves the resource utilization by accom-

modating dynamic user loads on different slices.
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3.3 Properties of SCS: A Utility-Based Perspective

3.3.1 System Model

In this section we will take a closer look at the characterization of SCS

slice level rate allocations.

The SCS criterion (Problem (3.2)) is equivalent to the solution to the

following problem

max
φ

{∑
v∈V

U v
α(φv; qv) :

∑
c∈Cr

drcφc ≤ 1, ∀r ∈ R

}
. (3.9)

We shall explore two key desirable properties for a sharing criterion,

namely, protection and envyfreeness. In our setting, protection means that

no slice is penalized under SCS sharing vs. static partitioning. Envyfreeness

means that no slice is motivated to swap its resource allocation with another

slice with a smaller share. These two properties together motivate the choice

of α−SCS sharing, and at least partially purchasing a larger share in order to

improve performance.

3.3.2 Protection

Formally, let us characterize protection among slices by how much per-

formance deterioration is possible for a slice when switching from static par-

titioning to α−SCS sharing. Note that under static partitioning, slices are

decoupled, so inter-slice protection is achieved possibly at the cost of effi-

ciency. To be specific, the rate allocation for slice v under static partitioning

89



is given by the following problem.

max
φv

U v
α(φv; qv) :

∑
c∈Cvr

drcφc ≤ sv, ∀r ∈ R

 , (3.10)

From now on, for a given α, let us denote the rate allocation for slice

v under α−SCS by φv,S := (φSc : c ∈ Cv), and that under static partitioning

by φv,P := (φPc : c ∈ Cv). The parameter α is suppressed when there is no

ambiguity. The following result demonstrates that α−SCS with α = 1 achieves

inter-slice protection in that any slice achieves a better utility under α−SCS

sharing.

Theorem 3.3.1. For a given q, when the resource allocation is performed

according to α−SCS, difference in slice v’s utility compared to that under static

partitioning is upper-bounded by (when α 6= 1)

Uα
v (φv,P ; qv)− Uα

v (φv,S; qv) ≤ sv

(∑
c∈Cv

q̃c(
∑
r∈Rc

drcν
∗
r )

α−1
α −

∑
c∈C

qc(
∑
r∈Rc

drcν
∗
r )

α−1
α

)
,

where q̃c := qc/sv(c) is the normalized weight of class c, and ν∗r is the optimal

dual variable associated with the capacity constraint at resource r in Problem

(3.9), also known as the shadow price of resource r.

Remark: The right hand side characterizes how the protection changes

with α.
∑

c∈Cv q̃c(
∑

r∈Rc d
r
cν
∗
r )1− 1

α can be viewed as the average of the (1 −
1
α

)−order moment of ‘charged’ resource usage of slice v’s user, while∑
c∈C qc(

∑
r∈Rc d

r
cν
∗
r )1− 1

α is that of the overall users. When 0 < α < 1, sharing
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tends to benefit slices with greater average user usages, at the cost of other

slices, while when α > 1, slices with smaller average user prices are preferred.

When α→ 1, the utility of slice v, Uα
v (φv; qv) = 1

1−α×
∑

c∈Cv qc

(
φc
qc

)1−α

tends to be non-changing with φ, so the result in Theorem 3.3.1 seems to be

trivial. However, due to the factor 1
1−α , the utility function is not well-defined

at α→ 1. Thus the exact result for α = 1 need to be discussed on its own, as

in Theorem 3.3.2.

Also, note that when SCWA constraint Eq. (3.1) is voided, another

form of the theorem can be written as

Uα
v (φv,P ; qv)− Uα

v (φv,S; qv) ≤ wv(pv − sv
w0

wv
p̄0),

where wv :=
∑

c∈Cv qc is the total weight of users of slice v, w0 :=
∑

c∈C qc is the

total weight of all users, pv :=
∑

c∈Cv q̃c
(∑

r∈Rc d
r
cν
∗
r

)1− 1
α is the average 1− 1

α

power of the prices of slice v’s users, and p̄0 :=
∑

v
wv
w0
pv is the weighted average

of pv across all slices. One could see that, if wv is not limited, as wv → ∞,

as long as pv 6= p̄0, the gap can be arbitrarily bad, implying significant utility

loss when slice-level sharing is used. In comparison, if we use SCWA, i.e.,

constrained by Eq. (3.1), the right hand side equals to sv(pv − p̄0). This

quantity is small when sv is small, or slice v’s users do not use many ‘expensive’

resources.

Proof. Under sharing scheme, the rate allocation for each slice v should be the
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same as the solution to the following problem:

max
φv

U v
α(φv; qv)

such that
∑
c∈Cvr

drcφc ≤
∑
c∈Cvr

drcφ
S
c , ∀r ∈ R. (3.11)

Problem (3.11) yields solution φv,S. In comparison, under static partitioning

scheme, the rate allocation for slice v is given by

max
φv

U v
α(φv; qv)

such that
∑
c∈Cvr

drcφc ≤ sv, ∀r ∈ R, (3.12)

which can be regarded as a perturbed version of Problem (3.11), and yields

solution φv,P. It is a well known result in convex optimization [56] that the

change in the optimal objective function value due to perturbation of the

constraints can be bounded by:

Uα
v (φv,P; qv)− Uα

v (φv,S; qv) ≤
∑
r∈R

ν∗r

∑
c∈Cvr

drcφ
S
c − sv

 . (3.13)

The Lagrangian of Problem (3.11) is

Lα(φv;ν) = − 1

1− α
∑
c∈Cv

qc

(
φc
qc

)1−α

+
∑
r∈R

νr(
∑
c∈Cvr

drcφc −
∑
c∈Cvr

drcφ
S
c ). (3.14)

Setting the partial derivative against φv to 0, we obtain the dual function as:

gα(ν) = − 1

1− α
∑
c∈Cv

qc

(∑
r∈Rc

drcνr

)1− 1
α

+
∑
r∈R

νr

∑
c∈Cvr

drcqc

(∑
r′∈Rc

dr
′

c νr′

)− 1
α

−
∑
c∈Cvr

drcφ
S
c

 .
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Also,

φSc = qc

(∑
r′∈Rc

dr
′

c ν
∗
r′

)− 1
α

. (3.15)

By swapping the order of summation, one can show that

∑
r∈R

νr
∑
c∈Cvr

drcqc

(∑
r′∈Rc

dr
′

c νr′

)− 1
α

=
∑
c∈Cv

qc

(∑
r∈Rc

drcνr

)1− 1
α

.

Due to strong convexity of Problem (3.11), we know

gα(ν∗) = − 1

1− α
∑
c∈Cv

qc

(
φSc
qc

)1−α

.

Plugging in Eq. (3.15) we have

∑
c∈Cv

qc

(∑
r∈Rc

drcν
∗
r

)1− 1
α

−
∑
r∈R

ν∗r
∑
c∈Cvr

drcφ
S
c = 0. (3.16)

Note that if a resource is binding, the sum of resource allocated should equal

to 1. Otherwise it has 0 shadow price. Summing above across v ∈ V, we have

∑
c∈C

qc

(∑
r∈Rc

drcν
∗
r

)1− 1
α

−
∑
r∈R

ν∗r = 0. (3.17)

Plugging in the right hand side of Eq. (3.13) to substitute
∑

r∈R ν
∗
r , and also

plugging in Eq. (3.15), the theorem is proved.

Following is the result specifically for the case when α = 1.

Theorem 3.3.2. For a given q, when the resource allocation is performed ac-

cording to 1−SCS, slice v’s utility exceeds that under static partitioning (Prob-

lem (3.10)), i.e.,

U v
1 (φv,P ; qv) ≤ U v

1 (φv,S; qv). (3.18)
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Remark: It is a straightforward observation that under α−SCS, the

global utility
∑

v∈V U
v
1 (φv; qv) is improved since it can be viewed as relax-

ing the system constraints. However, Theorem 3.3.2 asserts that this holds

uniformly on a per slice basis.

Proof. Similar to the argument for general α, we have that the gap between

sharing and static partitioning satisfies Eq. (3.13). Also, by solving the first

order condition, one can obtain that φSc = qc∑
r∈Rc d

r
cν
∗
r
. By plugging in this

expression and swapping the order of summation we have

U v
1 (φv,P ; qv)− U v

1 (φv,S; qv) ≤ sv(1−
∑
r∈R

ν∗r ), (3.19)

where ν∗r is the shadow price of resource r under SCS, or the dual variables

associated with the capacity constraints.

Then if we have
∑

r∈R ν
∗
r = 1, the proof is complete. For α = 1, the

Lagrangian is given by

L1(φv;ν) = −
∑
c∈Cv

qc log φc +
∑
r∈R

νr(
∑
c∈Cvr

drcφc −
∑
c∈Cvr

drcφ
S
c ).

By setting the derivative against φv to 0, we have the dual function as

g1(ν) = −
∑
c∈Cv

qc log
qc∑

r∈Rc d
r
cνr

+ sv −
∑
r∈R

νr
∑
c∈Cvr

drcφ
S
c ,

and

φSc =
qc∑

r∈Rc d
r
cν
∗
r

. (3.20)
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By strong duality, maximal dual should be minimal primal function. And

optimal dual is achieved at the shadow price ν∗. Thus,

g1(ν∗) = −
∑
c∈Cv

qc log φSc ,

which gives us

sv −
∑
r∈R

ν∗r
∑
c∈Cvr

drcφ
S
c = 0. (3.21)

Summing above across v ∈ V we have 1−
∑

r∈R ν
∗
r = 0. Because if a resource

is binding, the sum of rate allocated should be equal to 1. Otherwise it has 0

shadow price. Plugging above result into Eq. (3.19), the theorem is proved.

3.3.3 Envyfreeness

Formally, envyfreeness is defined under the assumption that, for two

slices v and v′, if they swap their allocated resources, slice v’s associated utility

will not be improved if sv′ ≤ sv. Before swapping, the rate allocation for slice

v is given by φv,S, while after swapping with slice v′, its rate allocation is

determined by solving following problem:

max
φv
{U v

α(φv; qv) :
∑
c∈Cvr

drcφc ≤
∑
c∈Cv′r

drcφ
S
c , ∀r ∈ R}.

Note that
∑

c∈Cv′r
drcφ

S
c corresponds to the fraction of resource r provi-

sioned to slice v′. Let us denote the solution to such problem for slice v as

φv↔v
′
. Then we have the following result.

Theorem 3.3.3. The difference between the utility obtained by slice v under

α−SCS with SCWA, and that under static partitioning within the resource

95



provisioned to another slice v′ is upper-bounded by the following inequality:

U v
α(φv↔v

′
; qv)− U v

α(φv,S; qv) ≤∑
c∈Cv′

qc

(∑
r∈Rc

drcν
∗
r

)α−1
α

−
∑
c∈Cv

qc

(∑
r∈Rc

drcν
∗
r

)α−1
α

.

Remark: As a special case, when α = 1, the right hand side of the

inequality becomes sv′ − sv, and thus a slice has no incentive to swap its allo-

cation with another with a less or equal share, which implies SCS is envyfree.

Envyfreeness implies that α−SCS achieves desirable resource utilization in

that the right portion of resource is provisioned to the right slice.

Proof. Still by the sensitivity of convex optimization problem [56], we have

U v
α(φv↔v

′
; qv)− U v

α(φv,S; qv) ≤
∑
r∈R

ν∗r

∑
c∈Cv′r

drcφ
S
c −

∑
c∈Cvr

drcφ
S
c

 . (3.22)

Then by substituting Eq. (3.16) the theorem is proved.

3.3.4 Using ∞−SCS As a Surrogate for 1−SCS

From previous discussions, one can see that it is of particular inter-

est to use 1−SCS as the fairness criterion, for it achieves strict protection

and envyfreeness. When α = 1, α−SCS becomes weighted proportional fair-

ness, whose solution usually involves iterative methods, and the complexity

increases rapidly with the number of user classes as well as the accuracy

requirement, see, e.g., [57], making it hard to implement in large-scale. In

comparison, weighted max-min is relatively easy to implement in distributed
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manner, see [3] for example. Specifically a progressive water-filling algorithm

[57] has O(|C|maxc∈C |Rc|) complexity. Thus, in our work we will discuss the

feasibility of using ∞−SCS, which is equivalent to a (dynamically) weighted

maxmin, as a surrogate to 1−SCS. If the resulted utility function is not far

from the optimum of 1−SCS criterion, we shall assert∞−SCS achieves similar

performance as 1−SCS.

For simplicity, we consider the original form of weighted-log utility,

given by

Ψ(φ; q) :=
∑
c∈C

qc log φc. (3.23)

Then for the overall utility achieved, we have following theorem.

Theorem 3.3.4. For a given weight allocation q, if drc ≥ 1,∀r ∈ R, c ∈ C, we

have

Ψ(φ∗,1; q)−Ψ(φ∗,∞; q) ≤
∑
c∈C

qcDc − 1, (3.24)

where φ∗,α := (φ∗,αc : c ∈ C) is the optimal rate allocation under α−SCS, and

Dc :=
∑

r∈Rc d
r
c.

Remark: First note that the condition drc ≥ 1 can be easily satisfied

by rescaling the unit of rate without loss of generality. Also by rescaling,

one can show that such bound vanishes when each user class is associated

with only one resource, i.e., |Rc| = 1,∀c ∈ C, and drc are the same, e.g.,

drc = 1. Such bound implies that, the suboptimality due to using a surrogate

solution to achieve weighted proportional fairness depends on the diversity in
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the users’ requirements on resources. Also, this gap of suboptimality cannot

be arbitrarily bad because under SCWA, we have
∑

c qc = 1, thus the right

hand side of Eq. (3.24) is at most maxcDc − 1.

Proof. Note that when α→∞, SCS approaches weighted maxmin, which can

be solved by a progressive water-filling algorithm. Let us denote the resource

where class c is bottlenecked under weighted maxmin by r(c), and in turn, the

set of users being bottlenecked at resource r by C̃r . Let us define ν∗r as the

shadow price for resource r when α = 1. According to the definition we have

Ψ(φ∗,1; q)−Ψ(φ∗,∞; q) =
∑
c

qc(log φ∗,1c − log φ∗,∞c )

≤
∑
c

qc

log
qc∑

r′∈Rc d
r′
c ν
∗
r′
− log

 qc∑
c′∈Cr(c) d

r(c)
c′ qc′


=
∑
r∈R

∑
c∈C̃r

qc log

(∑
c′∈Cr d

r
c′qc′∑

r′∈Rc d
r′
c ν
∗
r′

)
.

The first inequality follows from the form of solution of sharing problem when

α = 1, and the fact that φ∗,∞c ≥ qc∑
c′∈Cr(c)

d
r(c)

c′ qc′
, since the worst rate user

u could obtain is when there is no other users get saturated before it at its
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bottleneck resource. Because log x ≤ x− 1 we have

Ψ(φ∗,1; q)−Ψ(λ∗,∞; q)

≤
∑
r∈R

∑
c∈C̃r

qc

∑
c′∈Cr d

r
c′qc′∑

r′∈Rc d
r′
c ν
∗
r′
− 1

=
∑
r∈R

(∑
c′∈Cr

drc′qc′

)∑
c∈C̃r

qc∑
r′∈Rc d

r′
c ν
∗
r′
− 1

≤
∑
r∈R

(∑
c′∈Cr

drc′qc′

)∑
c∈Cr

qc∑
r′∈Rc d

r′
c ν
∗
r′
− 1

≤
∑
r∈R

(∑
c′∈Cr

drc′qc′

)∑
c∈Cr

drcqc∑
r′∈Rc d

r′
c ν
∗
r′
− 1

≤
∑
r∈R

(∑
c′∈Cr

drc′qc′

)
− 1.

The penultimate inequality holds true because drc ≥ 1,∀c ∈ Cr. The last

inequality comes from the capacity constraint, by plugging in φ∗,1c = qc∑
r∈Rc d

r
cν
∗
r

into
∑

c∈Cr d
r
cφ
∗,1
c ≤ 1, we have

∑
c∈Cr

drcqc∑
r′∈Rc d

r′
c ν
∗
r′
≤ 1. Then by swapping the

order of summation, we have

∑
r∈R

(∑
c′∈Cr

drc′qc′

)
=
∑
c∈C

qc
∑
r∈Rc

drc =
∑
c∈C

qcDc.
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3.4 Elastic Traffic Model

3.4.1 System Model

In this section we switch gears to study a scenario where the user traffic

is elastic, i.e., each user carries a certain amount of work and leaves the system

once it is finished. Specifically, for a class-c user, we assume that its service

requirement is drawn from an exponential distribution with mean 1
µc

indepen-

dently, and its arrival follows a Poisson process with intensity νc. Then the

traffic intensity associated with user class c is given by ρc = νc
µc

.

Let us first consider a given time instant, when the size of Uc and Uv

are given by nc and nv respectively. Also, for simplicity we assume equal intra-

slice weight allocation, thus qc =
sv(c)nc

nv(c)
. Substituting qc into Problem (3.2),

the α−SCS criterion can be rewritten as follows.

max
φ

∑
c∈C

(sv(c)nc
nv(c)

)α (φc)
1−α

1− α
(3.25)

such that
∑
c∈Cr

φcd
r
c ≤ 1, ∀r ∈ R.

3.4.2 Stability

Problem (3.25) characterizes the rate allocation across classes when the

numbers of users in the network are fixed. However, it is natural to study the

evolution of the system when user distributions are random processes. Note

that while [20] studied the stability condition for α−fairness when weights are

introduced, their weights do not depend on the dynamic distribution of users

in the network. By using the fluid system theory established in [58],[59] and
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[60], one can show that SCS stablizes the system as long as no resource is

overloaded.

Theorem 3.4.1. Assume that under equal intra-slice weight allocation, the

rate allocation is given by Problem (3.25). Then, when the following effective

load conditions are satisfied:∑
c∈Cr

ρcd
r
c < 1, ∀r ∈ R, (3.26)

the network is stable.

Remark: Theorem 3.4.1 is significant in that the system might become

transient under specific sharing criterion even when Eq. (3.26) is satisfied,

e.g., Example 1 in [20] when strict priorities are designated in favor of the

system throughput. Moreover, Example 2 in the same literature demonstrates

that even no strict priority is designated, instability is still possible under Eq.

(3.26). Those examples implies the importance of SCS sharing and associated

weight allocation schemes.

The result in [20] is under the assumption that each user has a fixed

weight. Thus the overall resources committed to a slice increases with the

number of its active users, possibly compromising inter-slice protection. The-

orem 3.4.1 shows that even when inter-slice protection is maintained, SCS can

still stablize the system through efficient utilization.

Proof. This can be proved by studying the “fluid system” associated with

the service discipline proposed. Briefly, the “fluid system” associated with
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a queuing system is its asymptotic version when the transition frequency is

very high and the change of the queue length in one transition is infinitesimal.

Such limiting is approached by rescaling the time axis. The stability of the

original queuing system can then be examined by studying the associated

“fluid system”, see, for example, [59], [60], and [58].

According to [59] and [60], if one can show that such fluid system gets

empty eventually, the associated original queuing system is positive recurrent.

In view of this result, the outline of the proof is as follows. Firstly we establish

two functionsK(t) andH(t) such thatK(t) ≥ H(t) ≥ 0, whereH(t) only takes

0 value when all the fluid limits equal to 0. Then we find a lower bound on the

negative drift rate of K(t) so that we can conclude that K(t)→ 0 eventually.

Therefore H(t), together with all the fluid limits tend to 0 eventually.

Let us define the vector of users’ distribution as N(t) = (Nc(t) : c ∈ C).

Consider the set of “fluid limits” defined by:

x(t) = lim
ω→∞

N(ωt)

ω
, with

∑
c∈C

Nc(0) = ω, (3.27)

where x(t) := (xc(t) : c ∈ C) is the vector of the fluid limit for each class. If

such limit exists, we have
∑

c∈C xc(0) = 1. According to the Lemma 4.2 in [59],

from Strong Law of Large Number one can derive that, x(t) is deterministic

and the dynamic of such fluid limits system is actually determined by the rate

allocation problem associated with the fluid limits. That is, x(t) follows the

differential equations:

d

dt
xc(t) = νc − µcφ̃c(t), when xc(t) > 0, (3.28)
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where φ̃c(t) is the aggregated rate allocated to the fluid limit of class-c, which

should be given by the following problem:

max
φ̃:=(φ̃c:c∈C)

∑
c∈C

 sv(c)xc(t)∑
c′∈Cv

xc′(t)

α

φ̃1−α
c (t)

1− α
(3.29)

such that
∑
c∈Cr

φ̃c(t)d
r
c ≤ 1, ∀r ∈ R.

Let us assume that φ̃(t) achieves the maximum of Problem (3.29). Then

the concavity of the objective function, together with the first-order optimality

condition gives us

G′(ζ) · (ζ −Λ) ≤ 0,

where G(·) is the objective function of Problem (3.29), for any feasible rate

allocation vector ζ. Also note that, if the capacity constraints Eq. (3.26) are

satisfied by ρ, there exists ε > 0 such that (1 + ε)ρ also satisfies Eq. (3.26).

Plugging in (1 + ε)ρ as ζ to the above inequality we have:∑
c∈C

(
sv(c)xc(t)∑
c′∈Cv xc′(t)

)α
ρ−αc (ρc − φ̃c(t)) ≤ −ε

∑
c∈C

(
sv(c)xc(t)∑
c′∈Cv xc′(t)

)α
ρ1−α
c .(3.30)

If we define function K(t) as

K(t) :=
∑
v∈V

(sv)
α
∑
c∈Cv

∫ t
0

(
xc(τ)∑

c′∈Cv
xc′ (τ)

)α

(ρc−φ̃c(τ))
(ρc)α

dτ

+ 1
µ̄ρ̄α

∑
v∈V

(sv)
α|Cv|−

α2

α+1‖xv(0)‖α+1, (3.31)

where µ̄ = maxc µc, and ρ̄ = maxc ρc are the maximal processing rate and

effective load across user types, respectively, and we define the fluid limit
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vector of slice v at time t as xv(t) := (xc(t) : c ∈ Cv), with its Lk−norm

denoted by ‖xv(t)‖k. We have that Eq. (3.30) is equivalent to

d

dt
K(t) ≤ −ε

∑
c∈C

(
sv(c)xc(t)∑
c′∈Cv xc′(t)

)α
ρ1−α
c . (3.32)

The right hand side of the above inequality can be bounded by:∑
c∈C

(
sv(c)xc(t)∑
c′∈Cv xc′(t)

)α
ρ1−α
c

≥ sαminρ
1−α
bound

∑
v

∑
c∈Cv

(
xc(t)∑

c′∈Cv xc′(t)

)α
≥ sαminρ

1−α
bound min{1, (max

v
|Cv|)1−α},

where smin = minv sv, ρbound takes ρ̄ when α > 1 and takes minc ρc when

0 < α < 1. The inequality is due to that for each active slice (a slice is said to

be active if
∑

c∈Cv xc(t) > 0), we have two possible cases:

1. When 0 < α ≤ 1, we have

∑
c∈Cv

 xc(t)∑
c′∈Cv

xc′(t)

α

≥

∑
c∈Cv

xc(t)∑
c′∈Cv

xc′(t)

α

= 1,

due to the concavity of power-α.

2. When α > 1, we have

∑
c∈Cv

 xc(t)∑
c′∈Cv

xc′(t)

α

=

∑
c∈Cv

xαc (t)(∑
c∈Cv

xc(t)

)α ≥ |Cv|1−α.
The inequality is due to that ‖xv(t)‖α|Cv|1−

1
α ≥ ‖xv(t)‖1 when α > 1,

see [61].
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Thus we found a lower bound for each v. By noting that there should be at

least one active user type before the fluid system gets emptied, we can get the

last factor by taking the minimum across all slices.

Thus, we have

d

dt
K(t) ≤ −εsαminρ1−α

bound min{1, (max
v
|Cv|)1−α}

K(t) ≤ K(0)− εsαminρ1−α
bound min{1, (max

v
|Cv|)1−α}t. (3.33)

In order to find a lower bound of K(t), we observe that for each slice

v ∈ V we have

∑
c∈Cv

∫ t

0

(
xc(τ)∑

c′∈Cv xc′(τ)

)α
ρ−αc (ρc − φ̃c(τ))dτ

≥ 1

µ̄ρ̄α

∑
c∈Cv

∫ t

0

(
xc(τ)∑

c′∈Cv xc′(τ)

)α
dxc(τ),
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and

∑
c∈Cv

∫ t

0

(
xc(τ)∑
c∈Cv xc(τ)

)α
dxc(τ)

yc(t):=(xc(t))α+1

=========
1

α + 1

∑
c∈Cv

∫ yc(t)

yc(0)

 1∑
c′∈Cv

(yc′(τ))
1

α+1


α

dyc(τ)

=
1

α + 1

∑
c∈Cv

∫ yc(t)

yc(0)

(∑
c′∈Cv

(yc′(τ))
1

α+1

)α+1
− α

α+1

dyc(τ)

=
1

α + 1

∑
c∈Cv

∫ yc(t)

yc(0)

(
‖yv(τ)‖ 1

α+1

)− α
α+1

dyc(τ)

≥ 1

α + 1

∑
c∈Cv

∫ yc(t)

yc(0)

(|Cv|α‖yv(τ)‖1)−
α
α+1 dyc(τ)

=
|Cv|−

α2

α+1

α + 1

∫ ‖yv(t)‖1

‖yv(0)‖1
(‖yv(τ)‖1)−

α
α+1 d (‖yv(τ)‖1)

= |Cv|−
α2

α+1

(
(‖yv(t)‖1)

1
α+1 − (‖yv(0)‖1)

1
α+1

)
= |Cv|−

α2

α+1 (‖xv(t)‖α+1 − ‖xv(0)‖α+1) ,

where the inequality comes from the relation between L1−norm and L( 1
α+1

)−norm,

and the following equality is by moving the summation into the integral. Plug-

106



ging the above inequality into the definition of K(t), we have

K(t) ≥ 1

µ̄ρ̄α

∑
v∈V

(sv)
α
∑
c∈Cv

∫ t

0

 xc(τ)∑
c′∈Cv

xc′(τ)

α

dxc(τ)

+
1

µ̄ρ̄α

∑
v∈V

(sv)
α|Cv|−

α2

α+1‖xv(0)‖α+1

≥ 1

µ̄ρ̄α

∑
v∈V

(sv)
α|Cv|−

α2

α+1 (‖xv(t)‖α+1 − ‖xv(0)‖α+1)

+
1

µ̄ρ̄α

∑
v∈V

(sv)
α|Cv|−

α2

α+1‖xv(0)‖α+1

=
1

µ̄ρ̄α

∑
v∈V

(sv)
α|Cv|−

α2

α+1‖xv(t)‖α+1.

Let us define

H(t) :=
1

µ̄ρ̄α

∑
v∈V

(sv)
α|Cv|−

α2

α+1‖xv(t)‖α+1. (3.34)

Thus, we can conclude K(t) ≥ H(t) ≥ 0, where the non-negativity of

H(t) is straightforward, and H(t) = 0 only when xc(t) = 0,∀c ∈ C. Therefore,

if we take

T =
K(0)

εsαminρ
1−α
bound min{1, (maxv |Cv|)1−α}

,

K(t) = H(t) ≡ 0 when t ≥ T , implying xc(t) ≡ 0 eventually for all c ∈ C.

Thus the system is positive recurrent.
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3.5 Performance Evaluation

One might think by introducing inter-slice protection, SCS effectively

imposes additional constraints to the service discipline, thus is compromised in

users’ performance. However, this needs not to be true, as we will demonstrate

via extensive simulations in this section. We compare the performance of SCS

versus several benchmarks, including:

1. Dominant Resource Fairness (DRF) [3], which is a variation of weighted

maxmin fairness where users’ weights are associated with their resource

demands. Here to incorporate network slicing, we use its variation where

a user’s weight is also associated with equal intra-slice weight allocation,

i.e., wu = sv
Nv
· δu, u ∈ Uv, where δu is the dominant share of user u and

is given by δu := 1
maxr∈R drc

, u ∈ Uc.

2. (Discriminatory) Processor Sharing (DPS)[4, 5]. To apply to the multi-

resource case, we implement DPS as a variation of maxmin fairness where

user u’s weight is wu = sv, u ∈ Uv, without the notion of per-slice share

constraint and inter-slice protection.

Note that because SCS might be hard to scalably compute for general α, we

propose the use of ∞−SCS, as a surrogate resource allocation scheme.

In our simulations, we focus on two performance metrics: mean delay

and mean throughput. The delay is defined as the sojourn time of each user,

i.e., how long it takes for a user to complete service. The throughput is defined
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as the workload divided by the sojourn time of each user. The performance of

different sharing schemes were compared in a range of settings, from a simple

single resource setting, to more complex cases where different services/tasks

are coupled together through shared resources.

3.5.1 Single-Resource Case

Since for more complicated network setup, the system performance (for

example, processing rate) is often determined by resource allocations at certain

‘bottleneck’ resources, we first consider single-resource setting. Note that,

under such circumstances, SCS coincides with Generalized Processor Sharing

(GPS) [62] as well as DRF because all classes of users c ∈ C are associated

with the same resource, and have the same demand.

To begin with, we consider a simple scenario where |V| = 2, and each

slice only supports one user class, so in this setting, a user class corresponds to a

slice. Two slices shares one resource, referred to as Resource 1 with capacity 1,

and d1
1 = d1

2 = 1. Their traffic models are assumed to be symmetric, with mean

arrival rates ν1 = ν2 = 0.45 and mean workloads 1
µ1

= 1
µ2

= 1. Their shares,

however, are tuned to achieve different performance trade-offs. The share of

Slice 1, s1, ranges from 0.01 to 0.99, while s2 = 1 − s1. The achieved mean

user perceived delay and throughput are illustrated in Fig. 3.2. One can see

that while the average delays are marginally better under ∞−SCS, ∞−SCS

clearly outperforms DPS on the average throughput. For example, when two

slices have the same share s1 = s2 = 0.5, SCS increases the throughput of
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Figure 3.2: Performance trade-offs of single-resource case under symmetric
traffic.

users on both slice by ∼10%.

This phenomenon was widely observed under different traffic assump-

tions. For example, when the traffics are asymmetric, with mean arrival rates
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ν1 = 0.6, ν2 = 0.3 and mean workload 1
µ1

= 1
µ2

= 1, the results are illustrated

in Fig. 3.3. Also, for symmetric traffics with arrival rates of 0.45 and the

workloads are set to a constant 1, the results are shown in Fig. 3.4. In gen-

eral, while the mean delay achieved by SCS is marginally better than DPS,

the mean throughput achieved is improved significantly.

To explain the somewhat surprising result, we conjectured that due

to the inter-slice protection built into SCS, under stochastic traffic, the slice

with fewer customers tends to see higher processing rate than other sharing

criterion, as a result the customers leave the system faster. Overall, SCS tends

to separate the busy periods of slices, so that the level of inter-slice contention

is reduced. We validated our conjecture by measuring the busy period under

the symmetric traffic pattern, where the arrival rates of both slices are the

same, and are tuned from 0.05 to 0.45, with s1 = s2 = 0.5. Other parameters

are the same as in the setting in Fig. 3.2. We plot the fraction of times when

there is only one busy slice and both slices are busy, vs. the effective traffic

intensity ρ = ν1
µ1

+ ν2
µ2

in Fig. 3.5. One can see that, for both SCS and DPS,

the time fraction when both slices are busy increases with ρ, and that when

only one slice is busy first increases when ρ is low due to underutilization, but

decreases when ρ is high because the inter-slice contention becomes inevitable.

However the time fraction when both are busy is always smaller under SCS

than that under DPS.
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Figure 3.3: Delay and throughput trade-offs of single-resource case under
asymmetric traffic.

3.5.2 Multi-Resource Cases

We also test the performance of SCS under a more complex setting

where a simple cellular networks with both fronthaul and backhaul resources
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Figure 3.4: Delay and throughput trade-offs of single-resource case under sym-
metric M/D/1 traffic model.

are simulated.

Let us consider a setting with 6 fronthaul resources, 3 backhaul re-

sources, and a cloud computing resource. This system supports two slices,
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Figure 3.6: Association between user classes and resources.

each containing 3 user classes. Slice 1 includes Classes 1,2 and 3, while Slice

2 includes Classes 4, 5 and 6. The association between user classes and re-

sources is demonstrated in Fig. 3.6, and the demand vectors, as well as the

arrival rates and mean workloads, are given in Table 3.2. Slice 1’s share is

ranged from 0.1 to 0.9, while s2 = 1 − s1. The achieved performance trade-
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User
Demand vector

Mean Arrival
class workload rate

Class 1 (5
6
, 0, 0, 0, 0, 0, 0.5, 0, 0, 0.217) 1 0.7

Class 2 (0, 5
6
, 0, 0, 0, 0, 0.5, 0, 0, 0.217) 1 0.7

Class 3 (0, 0, 1, 0, 0, 0, 0, 0.625, 0, 0.217) 1 0.7
Class 4 (0, 0, 0, 1, 0, 0, 0, 0.625, 0, 0.217) 1 0.7
Class 5 (0, 0, 0, 0, 1, 0, 0, 0, 0.625, 0.217) 1 0.7
Class 6 (0, 0, 0, 0, 0, 1, 0, 0, 0.625, 0.217) 1 0.7

Table 3.2: Example resource allocation in simulation

offs under different sharing criteria are illustrated in Fig. 3.7. One can see

that both SCS and DRF outperform DPS in throughput, with similar mean

delays under all 3 criteria. Similar results are observed in a range of settings

with different traffic patterns and resource demands. Moreover, in Fig. 3.8,

we adjust the weighting schemes used in DRF by voiding SCWA. Instead,

wu = svδu, u ∈ Uv, and the resources are provisioned according to DPS with

weight wu. The results show that without SCWA, DRF is similar to DPS

in both throughput and delay. Therefore, we can conclude that SCWA is the

root cause of the desirable performance, and SCS can even improve the system

performance while providing inter-slice protection.
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Figure 3.7: Performance trade-offs of multi-resource case.

116



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Slice 1

0.1

0.2

0.3

0.4

0.5
S

lic
e 

2

Throughput trade-off

SCS
DPS
DRF-weighted DPS

(a)

2 4 6 8 10 12 14 16
Slice 1

2

4

6

8

10

12

14

S
lic

e 
2

Delay trade-off
SCS
DPS
DRF-weighted DPS

(b)

Figure 3.8: Performance trade-offs with DRF-weighted DPS.
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Chapter 4

Conclusion and Future Work on Network

Slicing

This thesis discussed a sharing-based resource allocation scheme for

network slices, which accommodates the dynamic user distributions and dis-

tributed resources characteristic of today’s mobile services and/or applications.

The approach specifies shares of distributed resource pools to be allocated to

network slices via a slice-level agreement. Each slice can then distribute its

share to its users, and in turn the user level resource allocations are based on

the users’ subshares.

There is still a long way to go before an efficient and practical im-

plementation of a distributed resource sharing mechanism is established for

network slicing context. Some aspects that will need further attention are

discussed below.

Comparison with other network slicing mechanisms. This thesis stud-

ied share-based resource allocation mechanisms. There are, of course, other

alternatives. For example, a mechanism could allocate resources to users on

This chapter is partially based on the results developed in previous publications. Please
see Chapters 2 and 3 for details.
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different slices in a FCFS manner, then apply admission control according to

quotas of different slices, or charge slices at different prices according to the

level of congestion. We believe that share-based slicing mechanisms such as

those described in this thesis provide a better interface towards making longer

term service level agreements, which provide inter-slice protection while en-

abling efficient sharing of distributed resources. However it is still of interest to

discuss under what conditions the share-based resource allocation is superior

to other possibilities.

Adaptive share dimensioning. This thesis discussed share dimensioning

problem and pricing strategy associated to SCPF for fixed network loads.

However specifying shares across slices is a broad topic per se. When service

requirements and/or user traffic are changing, share dimensioning could be

adapted. Developing a systematic approach to adapting slice shares to changes

in the underlying service traffic profiles or tenant demands would be of interest.

Alternative share specification approach. Besides defining a single share

parameter for the overall network resources for each slice, slice shares could be

specified in a more fine-grained manner. Slices may wish to request different

shares of different types of resources pools and/or different regions, due to

imbalanced user loads. Thus, effectively, multiple resource pools should be

defined, which are coupled through users’ service requirements. Also, it would

be of interest to devise schemes where each slice is guaranteed specific shares of

network resources (when needed), yet has the option to reallocate these when

traffic on other slices permits.
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Data-driven performance management. In our study of per-slice per-

formance management, knowledge of user traffic patterns was assumed to be

available. However in practice, load distributions and dynamics need to be es-

timated based on collecting user data. Thus, it is of interest to explore the use

of machine learning techniques to model traffic and manage user performance

on slices.

Mixed traffic patterns. In this thesis, one implicit but important un-

derlying assumption was that the users were either all inelastic or all elastic.

In practice, one would expect to have both types of traffic sharing network

resources. For example, some slices might support rate-adaptive applications

such as video streaming and live chatting while others support elastic services

like file transfers and/or web browsing. Alternatively, a single slice could have

both elastic traffic and inelastic traffic. Therefore, it would be of interest

to study how to allocate resources among slices supporting different traffic

types, or, even address a more fundamental question as whether to define

slices supporting mixed traffic or to split them up to allow better performance

management.

Mapping slice-based virtual resources to actual resources. SCPF, as well

as SCS specify a policy for how network slices might dynamically share virtual

resources. This can be directly applied when distributed resources are homo-

geneous and can be shared in a manner as simple as TDMA. However, when

multiple resource types are involved, one must develop flexible mappings of vir-

tual resource allocation to physical resources. Thus different interfaces need
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to be defined to interact with different underlying technologies. For example,

a mobile data analysis application may require edge computing resources as

well as connectivity resources. Thus a scheduler will need to orchestrate the

provisioning of different types of resources in the time domain.
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Part II

Human-Machine Interactive
Processes
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Chapter 5

Modeling and Optimization of

Human-Machine Interactions

5.1 Introduction

5.1.1 Background and Motivations

Computing and information systems are increasingly prevalent in our

daily lives, forming a variety of human-in-the-loop systems. Many such sys-

tems are interactive in the sense that, humans and machines take decisions/actions

in response to each other, forming a sequence driven by unknown dynamics

associated with human behavior. For instance, one can view web searches

as an interactive process, where humans’ search history, attention, and even-

tual decisions reflect an interaction with the machine’s sequencing, placement

and timing of advertisements. The industry refers to such interactive pro-

cesses as ‘convergence paths’ and is increasingly interested in optimizing their

outcomes [63]. Such problems involving interactions are usually studied un-

der the context of Markov decision processes (MDP) and its variants, see, e.g.,

[64, 65, 66]. However, the actual problem associated with interactive processes

presents several challenges which remain unsolved, including the following.

Complexity of inferring interactive human behavior. In this chapter we

will focus on structured human-machine interactions where one has modeled
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both human and machine behaviour/choices over time, and the setting arises

repeatedly either by the same person or by a large population. The outcomes

of such interactions can depend subtly on the history thus one can expect

exponential complexity to be a challenge–unless the underlying processes have

a ‘nice’ structure. Such assumptions are essential for widely studied problems

including MDP [64, 65, 66], reinforcement learning [67, 68], and multi-armed

bandit problem [69], where human decision-making processes are assumed to

be independent across time, or have one-step Markov property. However,

those assumptions are questionable according to studies on human cognition,

see, e.g., [70].

One recent work considering long-term dependency is deep Q-learning

[71], where authors used a complex neural network to capture the potential

value of a state-action pair, where the state may incorporate complex historical

information. However, because most interactive processes are transient, as

both human and machine accumulate a history of decisions over time, one

might expect the data requirements of carrying out deep Q-learning is quite

high.

Biases in collecting data in interaction processes. Inferring a model

for human behavior in the context of human-machine interaction process is

also challenging because to collect data one must choose a machine policy

to ‘interact’ with humans. This may in turn lead to ‘biased’ inferences of

human behavior. In particular, a machine policy that focuses on ‘rewarding’

actions may preclude exploration/observation of other interaction modalities.
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Similar considerations have been explored in partially observable MDP [72] to

improve the efficiency of the solution, and in multi-armed bandit problem [69,

73] to achieve better exploration-exploitation trade-off. However, data-driven

models and inferences should respect the causal nature of human-machine

interactions, but how to model/promote the randomness of a causal model

remains unknown.

Robustness and exploration in optimizing machine interactions. A gen-

eral data-driven framework for modeling and optimizing human-machine in-

teraction processes might be viewed as involving two concerns. On one hand,

engaging humans in interaction to collect data to infer models of human be-

havior, and on the other, using models of human behavior to choose machine

policies optimizing interaction ‘rewards,’ i.e., the effectiveness of the sequence

of machine actions in nudging human towards desirable outcomes. To that

end, it is desirable to choose machine policies which are not overly sensitive to

sampling noise in data collection and/or variability in human behavior. Also,

of interest are policies that are not overly deterministic/predictable, as in some

settings, such policies may be poor in keeping humans ‘engaged’, see, e.g., [74],

and poor in eliciting rich human-machine data sets.

5.1.2 Contributions

In this chapter, we propose a data-driven framework to jointly solve

the estimation and optimization problems associated with human-machine in-

teraction processes. We adopt an inference technique based on a constrained
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maximum entropy principle for interactive processes, see [75, 76]. This allows

one to incorporate prior knowledge of the (possibly) relevant features of hu-

man behavior, via moment constraints associated with interaction functions.

We consider optimizing machine policies based on an interaction reward func-

tion with an entropy-based regularization term. This aims to find machine

policies which maximize rewards, are robust to estimation noise, and maintain

a degree of exploration when interacting with humans. Our proposed Alter-

nating Reward-Entropy Ascent (AREA) Algorithm, alternates between data-

collecting, estimation of human behavior, and the optimization of machine

policy, with a view on reaching a consistent fixed point. We provide a char-

acterization of various properties of AREA. In particular, for decomposable

and/or path-based feature and reward functions, we devise a computationally

efficient approach to estimation and optimization steps. The approach takes

advantage of defining a stopping time over the interaction and the conditional

Markov property of the estimated human model, to significantly reduce space

and time complexity. We provide a theoretical characterization of the AREA

algorithm in terms of its convergence, along with simple preliminary evalua-

tion results based on synthetic data obtained from a noisy nonlinear model for

human decision-making.
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5.2 Problem Formation

We shall consider a structured discrete time human-machine interac-

tion process over a period of time 1, 2, . . . , T , which can be viewed as a pair

of sequences of random variables, (H1, . . . , HT ) corresponding to human ac-

tions/responses if any, and (M1, . . . ,MT ) denoting those of the machine. We

shall assume the random variables Ht,Mt capture discrete human and machine

actions at time t, and, without loss of generality, that for all t, Ht ∈ H, where

H denotes the human’s action space, and Mt ∈ M, where M corresponds to

the machine’s action space1. Throughout this paper we assume that |H| and

|M| are finite. To simplify notation, we let H t = (H1, . . . , Ht) for t = 1, . . . , T ,

and similarly define M t. When t = 0, H t or M t contains no elements. We

assume that the human and the machine take turns, such that the machine’s

action at time t+ 1, i.e., Mt+1 depends on H t,M t while that of the human at

time t+1, i.e., Ht+1 depends on H t,M t+1. The joint distribution of (HT ,MT )

captures the interplay between the human and machine. Depending on the

setting, the human refers to a particular individual or a population, where the

behavior can be captured via a stable distributional model.

We shall assume that when a human and machine interact, the ma-

chine’s policy is known and captured by a collection of conditional distributions

Q, for succinctness denoted byQ(mt|ht−1,mt−1) := pMt|Ht−1,Mt−1(mt|ht−1,mt−1)

for t = 1, . . . T. Similarly human behavior is denoted by conditional distribu-

1Note both the human and/or machine could choose to do nothing in their turn. This
can be included in our model by including null action in both M and H.
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tions P given by P (ht|ht−1,mt) := pHt|Ht−1,Mt(ht|ht−1,mt) for t = 1, . . . T.

It is easy to show that joint distribution of (HT ,MT ), denoted by PQ, re-

sulting from a human model P interacting with a machine policy Q, can be

decomposed as PQ(hT ,mT ) = P (hT ||mT )Q(mT ||hT ), where

P (hT ||mT ) :=
T∏
t=1

P (ht|ht−1,mt) and Q(mT ||hT ) :=
T∏
t=1

Q(mt|ht−1,mt−1),

(5.1)

correspond to the causally conditioned distributions of the human and the ma-

chine, i.e., products of sequentially conditioned distributions. We will assume

that data of human-machine interactions can be collected by fixing a machine

policy, and keeping track of the realizations of such interactions.

We let P ∗(hT‖mT ) denote the true human behavior and P̂ (hT‖mT )

an estimated model thereof. We let PQ(A) denote the probability of an

event A measurable w.r.t. (HT ,MT ) and we let EPQ[f(HT ,MT )] denote

the expectation of a function f(hT ,mT ) : HT × MT → R under the joint

distribution PQ. When we collect interaction data of the human with a

machine policy Q(mT‖hT ) we denote expected value under the associated

empirical distribution by ÊP ∗Q where in the ideal case (no noise) we have

ÊP ∗Q[f(HT ,MT )] = EP ∗Q[f(HT ,MT )].

Those notations are summarized in Table 5.1.

5.2.1 Data-Driven Human Model Estimation

A brute force approach to modeling human behaviour would be to

directly estimate the conditional distributions {P ∗(ht|ht−1,mt), t = 1, . . . , T}
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Table 5.1: Key notation used in Chapter 5.

Sequence of human actions H t = {H1, H2, · · · , Ht}, 0 ≤ t ≤ T
Specific realization of human action

ht = {h1, h2, · · · , ht}, 0 ≤ t ≤ T
sequence
Sequence of machine actions M t = {M1,M2, · · · ,Mt}, 0 ≤ t ≤ T
Specific realization of machine action

mt = {m1,m2, · · · ,mt}, 0 ≤ t ≤ T
sequence
Joint PMF of MT , HT pHT ,MT (hT ,mT )
Causally conditional distribution of

pHT ‖MT (hT‖mT ) or P (hT‖mT )
human actions given machine actions
Causally conditional distribution of

pMT ‖HT (mT‖hT ) or Q(mT‖hT )
machine actions given human actions
Joint PMF when the human model is

PQ(hT ,mT )P (hT‖mT ) and machine model is
Q(mT‖hT )
Probability of event A when the human

PQ(A)model is P (hT‖mT ) and machine model
is Q(mT‖hT ).
Expectation of function of interactions

EPQ[f(HT ,MT )]f(HT ,MT ) w.r.t. the joint PMF
given by PQ(hT ,mT )
The actual human behavior model P ∗(hT‖mT ) or P ∗

The estimated human behavior model
P̂ (hT‖mT ) = h(Q) or P̂ = h(Q)

if the machine model is Q
The machine model if the estimated

Q̂(mT‖hT ) = m(P ) or Q̂ = m(P )
human model is P
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based on the collected data which is clearly not scalable. Instead, in this

paper we embrace the extension of constrained maximum entropy estimation

to interactive processes developed in [76, 77].

In this setting, one defines a set of feature functions ideally known to

capture relevant characteristics of human behavior which become equality and

inequality constraints in the estimation process. The choice of such features

would be motivated by known frameworks for understanding human behavior

in dynamic environments, e.g, the effort accuracy [78], exploration-exploitation

[79], soft constraints [80], and specific character of the human-machine inter-

action. The equality constraints are based on matching the moments of a

set of feature functions F denoted by f(hT ,mT ) := {f i(hT ,mT ), i ∈ F},

and their moments based the empirical distribution when interacting with

a given machine policy Q, which are denoted by cf := ÊP ∗Q[f(HT ,MT )].

Below we will neglect sampling errors by assuming that ÊP ∗Q[f(HT ,MT )] =

EP ∗Q[f(HT ,MT )]. The set of inequality constraints are denoted by g(hT ,mT ) :=

{gi(hT ,mT ), i ∈ G}, where G is another set of feature functions whose mo-

ments are constrained not to exceed pre-specified thresholds cg = {cig, i ∈ G}.

Formally, for a given machine policy Q(mT‖hT ), we are interested in

models for human behaviour P (hT‖mT ) satisfying the following constraints

P
Q
F,G ={P (hT‖mT ) | EPQ[f(HT ,MT )] = cf , and EPQ[g(HT ,MT )] ≥ cg}.

(5.2)

The maximum entropy estimation principle chooses the model for hu-

man behaviour in P
Q
F,G with maximum entropy. In the case of interactive
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processes, since the machine policy Q(mT‖hT ) is known we shall maximize

the entropy of the causally conditioned distributions of the human behavior

model. In particular, the causally conditioned entropy of human behaviour

model P (hT‖mT ) given machine policy in use is Q(mT‖hT ), is given by

HPQ(HT‖MT ) := EPQ
[
− log

(
P (HT‖MT )

)]
=

T∑
t=1

HPQ(Ht|H t−1,M t).

(5.3)

In the sequel we consider optimizing functionals of the causally condi-

tioned distributions for the human (and the machine). Doing so means opti-

mizing over a set of conditioned distributions {P (ht|ht−1,mt) | t = 1, . . . , T},

which for simplicity we also denote by P (hT‖mT ). It can be shown that these

collections of distributions belong to a convex polytope denoted by CH (resp.

CM). Indeed, according to [75], P (hT‖mT ) ∈ CH is equivalent to the re-

quirement that P (hT‖mT ) can be factorized into a product of conditional

distributions as in (5.1). Similar result holds true for Q(mT‖hT ). This gener-

alizes the notion of optimizing over a set of distributions with a given support,

e.g., over the simplex. In the sequel for the sake of simplicity, we will omit

the constraints P (hT‖mT ) ∈ CH and Q(mT‖hT ) ∈ CM when they appear in

optimization problems–it is assumed to be understood that one is optimizing

over causally conditioned distributions that must be properly normalized. The

overall human estimation problem can thus be expressed as follows.

Definition 5.2.1. (Human estimation problem) Given a known machine

policy Q(mT‖hT ) and a set of moments cf associated with human-machine in-
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teraction for equality constraints, the constrained maximum entropy estimate

model for human behavior, say P̂ (hT‖mT ) is the solution to the following

problem:

max
P (hT ‖mT )

{ HPQ(HT‖MT ) | P (hT‖mT ) ∈ P
Q
F,G }. (5.4)

Note that since this problem is convex, the solution P̂ (hT‖mT ) is unique.

However, it depends on underlying machine policy Q both through the cost

function and the constraints.

5.2.2 Machine Optimization

We assume one has defined a reward function r(hT ,mT ) over human-

machine interactions. This function might reflect both desirable human out-

comes/decisions as well as machine costs for taking certain sequences of ac-

tions. Given an estimated model for the human behaviour, P̂ (hT‖mT ), one

can in turn consider choosing a reward maximizing machine policy, i.e.,

max
Q(mT ‖hT )

EP̂Q[r(HT ,MT )].

A direct optimization of the reward as above would result in machine poli-

cies that take deterministic actions associated with the ‘best’ choices. Such

policies are likely to be vulnerable to the error in the estimated human be-

haviour model due to the sampling noise. This has also been observed in the

context of reinforcement learning, see, e.g., [81, 82]. Such machine policies

may also be limited in the degree to which ‘explore’ interaction with the hu-

man, and thus subsequently the obtained interaction data may lead to poor
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estimates of human behavior and sub-optimal results. Further, we also posit

that deterministic machine policies have poor characteristics from a human

interaction perspective, e.g., might also be boring/too predictable, leading to

poor engagement [74], and/or in certain settings may be unfair. For example,

in an advertising setting, one might want to incorporate randomness in placing

advertisements to ensure fairness and/or encourage competition.

To address these concerns we propose adding a ‘regularizing’ entropy

term to the reward function. Thus given an estimated model for human be-

havior P̂ , the machine’s policy is obtained as the solution to the following

problem.

Definition 5.2.2. (Machine policy optimization problem) Given an esti-

mated model for human behavior P̂ (hT‖mT ), the reward maximizing machine

policy is given by the solution to

max
Q(mT ‖hT )

HP̂Q(MT‖HT ) + γEP̂Q[r(HT ,MT )], (5.5)

where γ > 0 controls the degree to which one weighs entropy versus

reward in the machine policies. We shall realize that this formulation is in fact

similar to human estimation problem introduced earlier.

5.2.3 Closing the Loop: Alternating Reward-Entropy Ascent (AREA)
Algorithm

Note that the optimized machine policy obtained via (5.5) depends

on a estimated model for human behavior, which in turn was estimated by
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   Data Collection
(feature moment estimation)

    Inference
(model for human behavior)

      Optimization 
(of machine behavior)

Human-Machine Interaction

Figure 5.1: Overview of framework for the optimization of human-machine
interactions.

solving (5.4) based on data obtained from human-machine interactions using

the previously selected machine policy. The two machine policies need not

to be the same, possibly making the estimation and optimization steps in-

consistent. To resolve this, we propose Alternating Reward-Entropy Ascent

(AREA) algorithm exhibited in Figure 5.1. We begin with a default machine

policy (for example, the machine might choose actions at random), denoted

by Q̂(0)(mT‖hT ). Under this machine policy we collect data/realizations of

human machine interactions. Then from the data, we can estimate the feature

moments, which, in turn, enable estimation of a model for human behavior

P̂ (0) through our inference phase, i.e., (5.4). Based on the estimated model of

human behavior we generate a new machine policy through the machine op-

timization phase, where the optimization is based on P̂ (0), obtaining the next

machine policy Q̂(1). This alternating process generates a sequence of causally

conditioned distributions given by Q̂(0) → P̂ (0) → Q̂(1) → P̂ (1) → . . . , which

we refer to as AREA iterations.
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5.3 Related Work

Markov decision processes and reinforcement learning: The optimiza-

tion of human-machine interactions can in principle be modelled as a Markov

Decision Process (MDP), where the human behavior can be viewed as driven

by a transition kernel among a set of states, and the machine behavior cor-

responds to a sequence of actions taken in response to the human’s behavior.

The underlying assumptions are that there exists a state space for the hu-

man and an action space such that the distribution of future states depends

only on the current state (say of the human) and chosen action (say of the

machine). In such a setting, one can define a reward function and consider

optimizing the associated machine policy, see e.g., [64, 65, 66]. When the

transition kernel is unknown, but assumed Markov, the resulting problem is

known as reinforcement learning, see e.g., surveys [67, 68]. Both model-based

and model-free reinforcement learning approaches (and methods that combine

both approaches) have been studied in the literature. Model based methods

combine estimation of the environment and optimization of machine actions,

while model-free methods aim to directly optimize the machine without first

estimating a model the environment. For example, Q-learning aims to directly

estimate the value of state-action pair, denoted by Q(s, a), where the s is the

current state and a is the candidate action. The Q-function can be used to

select the optimal sequence of machine actions [67, 68]. The traditional frame-

work of reinforcement learning relies heavily on the assumption that the under-

lying environment is Markov. However as deep learning technologies emerge,
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deep Q-learning [71] have been devised to approximately solve this problem.

Indeed to overcome the difficulties brought by non-Markov environments, an

option is to first enlarge the state space of the underlying environment signif-

icantly, for example, to include all possible history of the system. Then use a

deep neural network to encode the Q-function, and fit the neural network to

the observed data. This approach also has its challenges in terms of demanding

data requirements and might not be applicable to some use cases.

In our framework, when the reward function is decomposable over time

i.e. r(hT ,mT ) =
∑T

t=1 r(ht,mt), and the estimated human model P̂ (hT ||mT )

is one-step Markov, the machine optimization program reduces to a traditional

MDP setting, with a possible time-inhomogeneous transition kernel and the

reward function is regularized by an entropy term to promote exploring dif-

ferent actions.Some recent literature suggests that model based methods may

be preferred to model free methods in terms of sample complexity [81, 82].

In the special case of a Markov model, our approach may be considered as a

variation of model-based reinforcement learning, where the model is learned

by maximizing causal entropy subject to moment constraints, and the machine

behavior is regularized using the causal entropy of the machine process. As

discussed, this analogy no longer holds for the general case.

We are aware of only a few cases where (relative) entropy regularization

has been combined with Markov decision processes and related models. [83]

consider a generalization of the Markov decision process where, instead of im-

pacting the process through some actions, the agent can directly manipulate
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the transition matrix of the system state. However, such manipulation would

incur some cost which is proportional to the relative entropy between the tran-

sition probability after manipulation, and the transition matrix of a ‘passive’

process which models the ‘natural’ system evolution. In [72], the authors pro-

pose an entropy-regularized cost function to approximately solve a partially

observable Markov decision process (POMDP) model efficiently. Due to the

absence of knowledge of the exact system state (i.e. partial observation), the

agent must estimate it through the reward it receives and a noisy observation

of its current state. Therefore, there is a trade-off between gaining more profit

based on current belief – which requires focusing on the most profitable action,

and improving the quality of estimation – which requires exploring different

actions. The authors of [72] used the expectation of entropy in the agent’s

belief state as a proxy of how well it explored different actions. The main

challenge associated with MDP is that the human’s behavior transition ker-

nels may have long term dependencies – and an extremely large state space

may be required state to remain in the Markov setting.

Bandit problem: The state-of-the-art approach to solving the problems

with such sequential and interactive context also includes multi-armed bandit

problem and its variants [69], which are widely discussed and used in use cases

including computational advertising. In such context, the search engine uses

the user feature including gender, age and searching history as the context,

to pick up an ad, which is modeled as the arm, after each user’s query, such

that the user will have a good chance of clicking through the ad. The most

137



representative method is the ILOVETOCONBANDITS algorithm proposed in

[73], where it is assumed that the reward received for each attempt depends

on some observable random ‘context’. However the approach depends heavily

on the i.i.d. assumption on the environment, in order to improve the quality

of the estimation by accumulating samples. Therefore when the user does not

make independent decisions or has a long-term memory, the performance of

such contextual bandit based solutions will not be acceptable.

The most general way to model such problems in a multi-armed bandit

way is continuum armed bandit, for example, [84], where the arms to pick can

be a vector of real numbers instead of discrete index. We can directly model

the machine’s policy Q(mT‖hT ) as arms. However when the support of the

arm is big, the convergence of the algorithm is slow, and also it requires a prior

knowledge of the number of iterations we need, thus cannot be implemented

in a fully online manner.

5.4 Solution to AREA’s Optimization Problems

The Lagrangians for the optimization problems (5.4) and (5.5) have

similar forms. We shall begin our discussion of the solution approach, based on

[76], for the human estimation problem and subsequently that of the machine

optimization, pointing out some key results and notation that will be critical

for our development in the sequel.
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5.4.1 Solution to Human Estimation Problem

It has been shown in [76] that the human estimation problem is concave

in P (hT‖mT ) given Q(mT‖hT ), and the solution can be found by its dual.

Theorem 5.4.1. [76] The dual form of the human estimation problem (5.4)

is given by:

min
λ=(λf ,λg),
λg≤0

∑
m1

Q(m1) logZλ(m1)− λTf cf − λTg cg (5.6)

where

Zλ(ht,mt+1) =
∑
ht+1

Zλ(ht+1|ht,mt+1), Zλ(m1) =
∑
h1

Zλ(h1|m1) (5.7)

and

Zλ(ht|ht−1,mt) =

{
e
∑
mt+1

Q(mt+1|ht,mt) logZλ(ht,mt+1)
t < T

eλ
T
f f1(hT ,mT )+λTg f2(hT ,mT ) t = T

, (5.8)

The associated human model for dual variables λ is given by Pλ(ht|ht−1,mt) =

Zλ(ht|ht−1,mt)
Zλ(ht−1,mt)

.

The optimal dual λ∗ can be found by subgradient-based method. Theo-

rem 4 in [76] shows the strong duality of Problem (5.4). Therefore, the optimal

dual is the optimal primal solution. Thus, if we find a λ∗ minimizing (5.6), the

estimated human model P̂ is given by Pλ∗ . The dual problem can be solved

via a subgradient-based algorithm. In particular if we use an adaptive learning

rate η(n) ∈ R+, the dual variable should be updated by

λ
(n+1)
f ← λ

(n)
f − η

(n)(EPλQ[f(HT ,MT )]− cf ),

λ(n+1)
g ← max{0,λ(n)

g − η(n)(EPλQ[g(HT ,MT )]− cg)}, (5.9)
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where cf = EP ∗Q[f(HT ,MT )] are the moments of the feature functions asso-

ciated with the equality constraints obtained from the human-machine inter-

action data in the inference step, and the gradients are computed using the

recursive form defined in Theorem 5.4.1. Then the sequence {λ(n)} converges

to the optimal dual λ∗.

In the sequel it will be useful to denote the solution to the human

estimation problem by h∗(Q, cf , cg) to make clear its dependence on Q the

machine policy, cf the feature moments estimated from human-machine inter-

actions, and the constants cg.

The solution given in Theorem 5.4.1 has several interpretations, two of

which are given in following two theorems.

Theorem 5.4.2. [76] Using statistics from the true distribution without sam-

pling error, maximizing the causal entropy subject to feature constraints in

human estimation problem is equivalent to maximizing the log causal likelihood

of the true distribution over the family of causal Gibbs distributions.

max
λ

EP ∗Q[logPλ(HT‖MT )] (5.10)

Theorem 5.4.3. [76] The human estimation problem is equivalent to mini-

mizing the worst case causal log-loss when the true human behavior is chosen

adversarially.

inf
P (hT ‖mT )

sup
P ∗(hT ‖mT )

EP ∗Q[− logP (HT‖MT )]

such that: EPQ[f(HT ,MT )] = EP ∗Q[f(HT ,MT )] (5.11)
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5.4.2 Solution to Machine Optimization Problem

It should be clear at this point that the the objective function in (5.5)

is similar to the Lagrangian of Problem (5.4) with a fixed ‘dual variable’ γ.

Thus the following result is fairly straightforward.

Theorem 5.4.4. For a given model of human behavior P̂ (hT‖mT ) the solution

to the machine optimization problem (5.5), Q̂(mT‖hT ) is given as follows. Let

Yγ(mt|ht−1,mt−1) =

{
e
∑
ht
P̂ (ht|ht−1,mt) log Yγ(ht,mt) t < T

eγ
∑
hT

P̂ (hT |hT−1,mT )r(hT ,mT ) t = T
, (5.12)

where Yγ(h
t,mt) =

∑
mt+1

Yγ(mt+1|ht,mt), Yγ =
∑

m1
Yγ(m1). Then the

optimal machine policy is Q̂(mt|ht−1,mt−1) = Yγ(mt|ht−1,mt−1)

Yγ(ht−1,mt−1)
and Q̂(m1) =

Yγ(m1)

Yγ
.

Proof. The machine optimization Problem (5.5) can be shown to be concave in

Q thus one can directly solve it via first-order optimality conditions. Consid-

ering the variables to be {Q(mt|ht−1,mt−1), t = 1, 2, . . . T, ht−1 ∈ Ht−1,mt ∈

Mt}, the Lagrangian associated with Problem (5.5) can be written as:

Λ(Q, β) =HP̂Q(MT‖HT ) + γEP̂Q[r(HT ,MT )]

−
∑

1≤t≤T
ht−1∈Ht−1

mt−1∈Mt−1

β(ht−1,mt−1)

(
1−

∑
mt

Q(mt|ht−1,mt−1)

)
,

where β(ht−1,mt−1) for t = 1, . . . , T denote dual variables associated with the

respective normalization constraints
∑

mt
Q(mt|ht−1,mt−1) = 1. Now differ-
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entiating the Lagrangian we have

∇Q(mt|ht−1,mt−1)Λ(Q, β) =

β(ht−1,mt−1) + P̂Q(ht−1,mt−1)
(
− logQ(mt|ht−1,mt−1)− 1

+ HP̂Q

(
MT‖HT |ht−1,mt

)
+ γEP̂Q

[
r(HT ,MT )|ht−1,mt

])
,

where HP̂Q(MT‖HT |ht−1,mt) is the further conditioned, causally conditioned

entropy, defined as:

HP̂Q

(
MT‖HT |ht−1,mt

)
:= EP̂Q

[
− logQ(MT‖HT ) | H t−1 = ht−1,M t−1 = mt−1

]
.

Now plugging Yγ defined recursively in Theorem 5.4.4, and setting β(ht−1,mt−1) =

P̂Q(ht−1,mt−1) + log Yγ(h
t−1,mt−1)P̂Q(ht−1,mt−1), we can show that

∇Q(mt|ht−1,mt−1)Λ(Q, β) = 0. Thus the optimal solution is achieved.

In the sequel it will be useful to represent the result stated in Theo-

rem 5.4.4 as follows. In particular the auxiliary function Yγ := {Yγ(mt|ht−1,mt−1),

∀1 ≤ t ≤ T} generated by the procedure given in Theorem 5.4.4 depends on

the human model and so is denoted by Yγ = m(P̂ ). The associated optimal

machine policy Q̂ is in turn a function of Yγ denoted by Q̂ = m∗(Yγ).
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5.5 Complexity of AREA Algorithm

As can be seen, the dual problem of human estimation problem is over

a vector λ of dimension |F| + |G|. The authors of [76] shows that we can

find the optimal dual variables by a recursion only involves computing the

expectation of feature functions, respect to joint distribution PλQ, where Pλ

is the human distributional model associated with λ. However when updating

the dual variables, computing those expectations are intractable in the most

general setting. Specifically, if we define the space complexity as the number

of variables that need to be stored, and the time complexity as the number of

basic math operations (e.g. addition, multiplication and exponential function

evaluation) required to carry out the update, we can see that because the

number of conditioning sequences in (5.8) grows exponentially in T , thus if

we need to put all conditional PMFs into the memory and then compute

the joint PMF accordingly, both space and time complexities required are

exponential in T . Fortunately, when the feature functions have specific forms,

the complexity of computing such updates can be reduced. Specifically, we will

discuss cases where one iteration of AREA algorithm described in Section 5.2.3

has polynomial complexity in T .

Definition 5.5.1. A feature function f(hT ,mT ) is said to be decomposable if

it can be written as f(hT ,mT ) =
∑T

t=1 ft(ht,mt).

Definition 5.5.2. A function f(hT ,mT ) is said to be path-based if it is propor-

tional to the indicator function of a specific realization of the human-machine

interaction, say (h̄T , m̄T ), i.e., f(hT ,mT ) = c1{(hT ,mT )=(h̄T ,m̄T )}.
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Note that it is always desirable to include the reward function in the

equality feature set F to ensure that the estimated human model matches the

true human behavior in terms of the associated mean rewards. Then we have

the following result.

Theorem 5.5.1. Suppose the reward function r(hT ,mT ) can be written as

a sum of a decomposable function and a set Rp of path-based functions, and

the remaining feature functions are either decomposable or path-based, i.e.,

F = Fp∪Fd∪{r(hT ,mT )} and G = Gp∪Gd, where Fp and Gp denote path-based

equality/inequality features, and Fd and Gd decomposable equality/inequality

features, respectively. Suppose further that the initial machine’s policy Q̂(0) is

uniformly random. Then the space complexity of each dual update of human

estimation problem is O ((|Fp|+ |Gp|+ |Rp|)T |H||M|), and the time complexity

of each dual update is O(T (|Fp|+ |Gp|+ |Rp|) max(T, |H||M|)). The time and

space complexity of the machine optimization problem are both O((|Fp|+ |Gp|+

|Rp|)T |H||M|).

Remark: We envisage that the inclusion of path-based and decom-

posable feature and reward functions might allows a fairly rich framework

to capture relevant interaction characteristics. In particular path-based fea-

tures are capable of modeling detailed long-term memory in human-machine

interactions while decomposable features can model short-term dependencies.

As shown in Theorem 5.5.1, for such settings, the solution to (5.4) and (5.5)

require steps with only polynomial space and time complexity.
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Proof. Before proving Theorem 5.5.1, let us first consider a simpler case where

only decomposable features are included in Problem (5.4). The following corol-

lary to Theorem 5.4.1 characterizes a case where the complexity of the solution

is polynomial in T .

Lemma 5.5.2. Suppose the machine’s policy is given by a (possibly time-

inhomogeneous) one-step Markov process, i.e., Q(mt|ht−1,mt−1) = Q(mt|ht−1,mt−1),

∀t,mt−1, ht−1, and all feature functions are decomposable, i.e., f(hT ,mT ) =∑T
t=1 ft(ht,mt), and g(hT ,mT ) =

∑T
t=1 gt(ht,mt). Then the solution to the

human estimation problem is given, by the following procedure over a given

dual λ = (λf ,λg):

Zλ(ht|mt) =

{
e

(λf )T ft(ht,mt)+(λg)T gt(ht,mt)+
∑
mt+1

Q(mt+1|ht,mt) logZλ(mt+1)
t < T

e(λf )T fT (hT ,mT )+(λg)T gT (hT ,mT ) t = T
,

where

Zλ(mt) =
∑
ht

Zλ(ht|mt), and Pλ(ht|mt) =
Zλ(ht|mt)

Zλ(mt)
.

Moreover, both the space and time complexity of establishing the distributional

model is O(T |H||M|). The complexity of carrying out each dual update is

O (T (|F|+ |G|)|H|2|M|2)

Proof. We’ll prove that under such assumption, Zλ(ht|ht−1,mt) in Theorem 5.4.1

is given by:

Zλ(ht|ht−1,mt) = e(λf )T
∑t−1
τ=1 fτ (hτ ,mτ )+(λg)T

∑t−1
τ=1 gτ (hτ ,mτ )

×e(λf )T ft(ht,mt)+(λg)T gt(ht,mt)+
∑
mt+1

Q(mt+1|ht,mt) logZλ(mt+1)
,
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where Zλ(mt+1) is given as in Lemma 5.5.2.

The above equation implies that:

Pλ(ht|ht−1,mt) =
Zλ(ht|ht−1,mt)

Zλ(ht−1,mt)
=
Zλ(ht|mt)

Zλ(mt)
= Pλ(ht|mt),

and the Markov property follows.

For t = T , the identity holds true trivially. Now suppose it is true for

t+ 1. Then according to Theorem 5.4.1, for t < T

Zλ(ht|ht−1,mt)

= e
∑
mt+1

Q(mt+1|ht,mt) logZλ(ht,mt+1)

= e
∑
mt+1

Q(mt+1|ht,mt) log
∑
ht+1

Zλ(ht+1|mt+1)e
(λf )

T ∑t
τ=1 fτ (hτ ,mτ )+(λg)

T ∑t
τ=1 gτ (hτ ,mτ )

= e
∑
mt+1

Q(mt+1|ht,mt) log e
(λf )

T ∑t
τ=1 fτ (hτ ,mτ )+(λg)

T ∑t
τ=1 gτ (hτ ,mτ )

×e
∑
mt+1

Q(mt+1|ht,mt) log
∑
ht+1

Zλ(ht+1|mt+1)

= e(λf )T
∑t−1
τ=1 fτ (hτ ,mτ )+(λg)T

∑t−1
τ=1 gτ (hτ ,mτ )

×e(λf )T ft(ht,mt)+(λg)T gt(ht,mt)+
∑
mt+1

Q(mt+1|ht,mt) log
∑
ht+1

Zλ(ht+1|mt+1)
.

Then when we compute the ratio Zλ(ht|ht−1,mt)
Zλ(ht−1,mt)

the term

e(λf )T
∑t−1
τ=1 fτ (hτ ,mτ )+(λg)T

∑t−1
τ=1 gτ (hτ ,mτ ) cancels out.

For the complexity, it’s easy to see that in total we need to compute

T |H||M| probabilities. Thus the space complexity is O(T |H||M|). If the vector

multiplication is viewed as a basic operation, then computing each Zλ(ht|mt)

involves the sum of at most three vector inner product, and evaluating of its

exponentiation. Therefore, the time complexity involved in establishing the

distributional model is also O(T |H||M|).
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When computing the expectation of the feature functions, note that

since all feature functions are decomposable, for all i:

EPλQ[f i(HT ,MT )] =
T∑
t=1

EPλQ[f it (Ht,Mt)],

and

EPλQ[f it (Ht,Mt)] =
∑
mt∈M

PλQ(mt)
∑
ht∈H

Pλ(ht|mt)ft(ht,mt).

Suppose we already obtained PλQ(mt−1), then

PλQ(mt) =
∑

mt−1∈M

PλQ(mt−1)
∑

ht−1∈H

Pλ(ht−1|mt−1)Q(mt|ht−1,mt−1).

Note that the marginal distribution of m1: PλQ(m1) = Q(m1), which is

already available. Thus we can compute EPλQ[f it (Ht,Mt)] from t = 1 to

t = T and store PλQ(mt),∀1 < t < T,mt ∈ M. Then it is straightforward

that computing EPλQ[f it (Ht,Mt)] involves |H|2|M|2 operations, and comput-

ing EPλQ[f i(HT ,MT )] is of complexity T |H|2|M|2. Each dual update involves

evaluation of EPλQ[f i(HT ,MT )], ∀ i ∈ F, and EPλQ[gi(HT ,MT )], ∀ i ∈ G,

thus has the complexity of O(T (F +G)|H|2|M|2).

Now let us assume that the equality and inequality constraint sets can

be each partitioned into two subsets: F = Fp ∪Fd, and G = Gp ∪ Gd, where Fd

and Gd correspond to the decomposable features and Fp and Gp correspond to

the path-based features. Moreover, the path-based features are:

f i(hT ,mT ) = ci1{(hT ,mT )=(h̄i,T ,m̄i,T )}, i ∈ Fp, and

gi(hT ,mT ) = ci1{(hT ,mT )=(h̄i,T ,m̄i,T )}, i ∈ Gp,
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while decomposable features are:

f i(hT ,mT ) =
T∑
t=1

f it (ht,mt), i ∈ Fd, and gi(hT ,mT ) =
T∑
t=1

git(ht,mt), i ∈ Gd.

Also, the reward function is given by its path-based part ri,p(hT ,mT ) =

ci1{(hT ,mT )=(h̄i,T ,m̄i,T )}, i ∈ Rp,, together with a decomposable part rd(hT ,mT ) =∑T
t=1 r

d
t (ht,mt), giving

r(hT ,mT ) =
∑
i∈Rp

ri,p(hT ,mT ) +
T∑
t=1

rdt (ht,mt).

First let us consider the human estimation problem. Note that if the

conditioning sequence is not a prefix of any path-based feature function (in-

cluding functions in Rp), the backward recursion in Theorem 5.4.1 is equivalent

to the case where we only have decomposable feature functions.

Without loss of generality, consider decomposable feature functions

given by:

fd(hT ,mT ) =
T∑
t=1

fdt (hτ ,mτ ),

and

gd(hT ,mT ) =
T∑
t=1

gdt (hτ ,mτ ).

We shall let λdf be the dual variable corresponding to the decomposable equal-

ity constraints, λdg that corresponding to the decomposable inequality con-

straints, and λr that corresponding to the reward function. Note that when

we establish the distributional model, functions in Rp together with rd(hT ,mT )

can be regarded as individual ‘feature’ functions, which share the same dual
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variable λr. It follows from Lemma 5.5.2 that if (ht,mt) 6= (h̄i,t, m̄i,t), ∀i ∈

Fp ∪ Gp ∪ Rp, we have

Zλ(ht|ht−1,mt) = Zλ(ht|mt)e
(λdf )T

∑t−1
τ=1 fdτ (hτ ,mτ )+(λdg)T

∑t−1
τ=1 gdτ (hτ ,mτ )+λr

∑t−1
τ=1 r

d
τ (hτ ,mτ ),

where Zλ(ht|mt) is given by the recursion specified in Lemma 5.5.2, with

rd(hT ,mT ) as a feature function. Let us denote the set of machine actions

at time t that stay on at least one path-based feature function’s support by

M
p
t (h

t−1,mt−1) = {mt|∃i ∈ Fp ∪ Gp ∪ Rp s.t. h
t−1 = h̄i,t−1,mt = m̄i,t} and

H
p
t (h

t−1,mt) = {ht|∃i ∈ Fp ∪ Gp ∪ Rp s.t. h
t = h̄i,t,mt = m̄i,t}. For h̄i,t, m̄i,t,

the backward recursion in Theorem 5.4.1 becomes following:

Zλ(h̄i,t|h̄i,t−1, m̄i,t)

= e
∑
mt+1

Q(mt+1|h̄i,t,m̄i,t) log
∑
ht+1

Zλ(ht+1|h̄i,t,(m̄i,t,mt+1))

= exp


∑

mt+1∈Mp
t+1(h̄i,t,m̄i,t)

Q(mt+1|h̄i,t, m̄i,t) log
∑
ht+1

Zλ
(
ht+1|h̄i,t, (m̄i,t,mt+1)

)
︸ ︷︷ ︸

:=A

+
∑

mt+1 /∈Mp
t+1(h̄i,t,m̄i,t)

Q(mt+1|h̄i,t, m̄i,t) log
∑
ht+1

Zλ
(
ht+1|h̄i,t, (m̄i,t,mt+1)

)
︸ ︷︷ ︸

:=B


= exp(A+B). (5.13)
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From the result of Lemma 5.5.2,

A =
∑
mt+1

∈Mp
t+1(h̄i,t,m̄i,t)

Q(mt+1|h̄i,t, m̄i,t) log

( ∑
ht+1

∈Hp
t+1(h̄i,t,(m̄i,t,mt+1))

Zλ(ht+1|h̄i,t, (m̄i,t,mt+1))

+
∑

ht+1 /∈Hp
t (h̄i,t,(m̄i,t,mt+1))

Zλ(ht+1|mt+1) exp

(
(λdf )

T

t∑
τ=1

fdτ (h̄i,τ , m̄i,τ )

+(λdg)
T

t∑
τ=1

gdτ (h̄i,τ , m̄i,τ ) + λr

t∑
τ=1

rdτ (h̄
i
τ , m̄

i
τ )

))
.

B =
∑

mt+1 /∈Mp
t+1(h̄i,t,m̄i,t)

Q(mt+1|h̄i,t, m̄i,t)

× log
∑
ht+1

Zλ(ht+1|mt+1)e(λdf )T
∑t
τ=1 fdτ (h̄i,τ ,m̄i,τ )+(λdg)T

∑t
τ=1 gdτ (h̄i,τ ,m̄i,τ )+λr

∑t
τ=1 r

d
τ (h̄i,τ ,m̄i,τ ).

Note that B solely depends on the result of the case where there are only de-

composable features. The additional complexity introduced is in the compu-

tation of A which is determined by the number of nonzero path-based features

after current step. The key insight is that we only need to track A for a prefix

where there is at least one nonzero path-based feature function, and the set of

possible choices of such prefixes forms a tree where the number of leaf nodes is

at most |Fp|+ |Gp|+ |Rp|. Then at each t, we need to compute A for at most

|Fp|+ |Gp|+ |Rp| conditioning prefixes. Thus the complexity of obtaining the

whole distributional model is O((|Fp|+ |Gp|+ |Rp|)T |H||M|).

When computing the mean of a feature function EPλQ[f i(HT ,MT )], we

have two different cases:
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1. If f i(hT ,mT ) is a path-based feature with support h̄i,T , m̄i,T . Then

EPλQ[f i(HT ,MT )] = PλQ(h̄T , m̄T ) = ci
∏T

t=1Q(m̄i
t|h̄i,t−1, m̄i,t−1)P (h̄it|h̄i,t−1, m̄i,t).

This requires at most T multiplications.

2. If f i(hT ,mT ) is a decomposable feature then the associated moment can

be written as

EPλQ[f(HT ,MT )] =
T∑
t=1

EPλQ[f it (Ht,Mt)].

Let us define a stopping time TD w.r.t. (HT ,MT ) such that TD :=

min {t | 1 ≤ t ≤ T, (H t,M t) 6= (h̄i,t, m̄i,t), ∀i ∈ Fp ∪ Gp ∪ Rp}. That

is, TD is the first time when the realization of interaction deviates from

supports of all path-based feature functions. Then based on the value of

TD, we can partition EPλQ[f it (Ht,Mt)] as follows:

EPλQ[ft(Ht,Mt)] = PλQ(TD ≤ t)EPλQ[f it (Ht,Mt)|TD ≤ t]

+PλQ(TD > t)EPλQ[f it (Ht,Mt)|TD > t]. (5.14)

After deviating from all supports, i.e., when TD ≤ t, the distribution is

the same as the case where only decomposable features functions have

been included. Thus EPλQ[f it (Ht,Mt)|TD ≤ t] can be easily obtained

within O(T |H||M|) computations, by taking advantage of the one-step

Markov property. Also, the distribution of the stopping time TD can be
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computed as:

PλQ(TD ≤ t) = 1− PλQ(TD > t)

= 1−
∑

i∈Fp∪Gp∪Rp

PλQ(H t = h̄i,t,M t = m̄i,t)

= 1−
∑

i∈Fp∪Gp∪Rp

t∏
τ=1

Pλ(h̄i,τ |h̄i,τ−1, m̄i,τ )Q(m̄i,τ |h̄i,τ−1, m̄i,τ−1).

At most it requires T (|Fp| + |Gp| + |Rp|) computations. Same com-

putation complexity is expected when computing PλQ(TD > t). For

EPλQ[f it (Ht,Mt)|TD > t], we have:

EPλQ[f it (Ht,Mt)|TD > t]

=
∑

i∈Fp∪Gp∪Rp

f it (h̄i,t, m̄i,t)PλQ(Ht = h̄i,t,Mt = m̄i,t|TD > t)

=
∑

i∈Fp∪Gp∪Rp

f it (h̄i,t, m̄i,t)
PλQ(H t = h̄ti,M

t = m̄t
i)

PλQ(TD > t)
.

It’s easy to observe that it requires O(T (|Fp| + |Gp| + |Rp|)) computa-

tions, too. Then the computation complexity to compute the sum is

O(T 2(|Fp|+ |Gp|+ |Rp|)).

Exactly the same complexity is obtained when computing functions in

G, Rp and rd(hT ,mT ). Then the time complexity of one dual update will be

given by the maximum of the two cases, as well as the the time to establish the

distributional model, thus is given by O(T (|Fp|+ |Gp|+ |Rp|) max(T, |H||M|)).

For the machine optimization problem, we do not need to carry out

the dual update, since γ is fixed throughout the iterations. Therefore we only
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need to establish the distributional model Q̂. By viewing the path-based part

of the reward function as the path-based ‘feature’ in the machine optimization

problem, we can easily conclude that both the space and time complexity in

obtaining the machine’s policy Q̂ is O((|Fp| + |Gp| + |Rp|)T |H||M|). More-

over, as long as the initial machine policy is such that after deviating from

the union of the supports of all path-based feature functions, it is one-step

Markov, i.e. Q̂(0)(mt|mt−1, ht−1) = Q̂(0)(mt|mt−1, ht−1) when (mt−1, ht−1) 6=

(m̄t−1
i , h̄t−1

i ), ∀i ∈ Fp ∪ Gp ∪ Rp, all the assumptions introduced in Theo-

rem 5.5.1 are satisfied throughout the AREA iterations. A uniform random

Q̂(0) is a special case satisfying that condition.

Therefore the complexity of AREA algorithm is polynomial in T as long

as the number of dual updates is limited in the human estimation problem.
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5.6 AREA Convergence

As discussed in previous sections, the AREA Algorithm is aimed at

achieving high rewards through consistency in the estimated human model and

optimized machine policy. In this section, we characterize AREA’s convergence

properties.

The convergence of the algorithm can be guaranteed in two extremal

cases. Clearly if the set of feature functions F and G is rich enough that

the true human behaviour is recovered as the solution to (5.4), then AREA

converges. Or, if the feature set is sufficient to guarantee that the actual human

behaviour along the ‘paths’ that are impactive to reward is perfectly captured

by the estimated human model, then AREA also converges in one iteration.

Following two theorems address those two extremal cases, respectively.

Convergence of AREA under sufficient statistics: An implication of Theo-

rem 5.4.1 is that under our maximum entropy framework estimated human

models will be of the form given in the theorem for a given value of λ. We

refer to such distributions as causally conditioned Gibbs distributions formally

defined as follows:

Definition 5.6.1. Given the set of constraints F, G and underlying machine

policy Q(mT‖hT ), we define the associated causally conditioned Gibbs distri-
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butions as

Pg(Q,F,G) :={ P (hT‖mT ) | ∃λ ∈ R|F| × R|G|−

s.t. P (ht|ht−1,mt) = Pλ(ht|ht−1,mt) for t = 1, . . . .T },
(5.15)

where Pλ(ht|ht−1,mt) is as given in Theorem 5.4.1. That is, each element in

Pg(Q,F,G) is a causally conditioned distribution of the form given in Theo-

rem 5.4.1 for λ = (λf ,λg).

Remark: According to Hammersley-Clifford Theorem in [85], if the

human behavior P ∗(hT‖mT ) has full support, i.e., there is no (hT ,mT ) ∈

HT ×MT such that P ∗(hT‖mT ) = 0, and machine’s policy Q(mT‖hT ) also has

full support, then there exists a pair of finite sets of constraint F∗ and G∗ such

that the true human behavior is in the associated causal Gibbs distribution

set, such that, P ∗(hT‖mT ) ∈ Pg(Q,F
∗,G∗).

Then if the features in human estimation problem are rich enough, the

following theorem captures the convergence of AREA.

Theorem 5.6.1. If the feature sets F and G and initial machine policy Q̂(0)

are such that,

P ∗(hT‖mT ) ∈ Pg(Q̂
(0),F,G) ∩ Pg(m

∗(m(P ∗)),F,G)

AREA algorithm converges after the first iteration.

Proof. When P ∗(hT‖mT ) ∈ Pg(Q̂
(0),F,G), then P ∗(hT‖mT ) can be parameter-

ized for some λ∗ := (λ∗f ,λ
∗
g) and will be the solution to the human estimation
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problem, based on the data produced under machine policy Q̂(0). Now, given

P̂ (0) = P ∗, the machine optimization problem generates Q̂(1) = m∗(m(P ∗)).

However since we have that P ∗(hT‖mT ) ∈ Pg(m
∗(m(P ∗)),F,G), again we can

ensure that P̂ (1) = P ∗. By induction it is easy to see that P̂ (n) = P ∗, ∀n ≥ 0

and Q̂(n) = m∗(m(P ∗)), ∀n ≥ 1. Thus AREA iterations will converge after

the first iteration.

Convergence of AREA when human behavior is perfectly estimated along ‘re-

warding’ path:

Theorem 5.6.2. Suppose the reward function is a path-based, i.e., r(hT ,mT ) =

1{(hT ,mT )=(h̄r,T ,m̄r,T )} and included in the feature set F and the initial machine’s

policy Q̂(0) has full support. Consider a modified version of human estimation

problem which includes the following additional features. For each path-based

feature, i.e., i ∈ Fp, we include T − 1 auxiliary features Fip as follows:

Fip = {f i,t(hT ,mT ) | f i,t(hT ,mT ) = 1{(ht,mt)=(h̄i,t,m̄i,t)}, for t = 1, . . . , T},

ensuring matching of full-length and prefixes for the path based features. For

the modified set of equality features F = Fd ∪

( ⋃
i∈Fp

Fip

)
. and an arbitrary set

of inequality features G AREA converges in one iteration.

Proof. At the nth iteration, when matching the moment of path-based fea-

tures, we have:

P̂ (n)Q̂(n−1)(h̄i,T , m̄i,T ) = P ∗Q̂(n−1)(h̄i,T , m̄i,T ), ∀ i ∈ F1,p.
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After cancelling out Q(n−1)(m̄i,T‖h̄i,T ) on both sides we have

P̂ (n)(h̄i,T‖m̄i,T ) = P ∗(h̄i,T‖m̄i,T ).

If the feature set in problem (5.4) also includes Fip, for all i ∈ Fp, by a similar

argument we have that for all i ∈ Fp and t = 1, 2, . . . , T ,

t∏
τ=1

P (n)(h̄i,t|h̄i,t−1, m̄i,t) =
t∏

τ=1

P ∗(h̄i,t|h̄i,t−1, m̄i,t).

Thus P̂ (n)(h̄i,t|h̄i,t−1, m̄i,t) = P ∗(h̄i,t|h̄i,t−1, m̄i,t) for all i ∈ Fp and 1 ≤ t ≤ T .

When the reward function is a path-based function, a straightforward

observation from Theorem 5.4.1 is that, the resulting machine policy Q̂(mt|ht−1,mt−1)

is uniformly random if (ht−1,mt−1) 6= (h̄r,t−1, m̄r,t−1). The machine policy

along the support of the reward function is induced by:

Yγ(m̄r,t|h̄r,t−1, m̄r,t−1) = e
∑
ht
P̂ (n−1)(ht|h̄r,t−1,m̄r,t) log Yγ((h̄r,t−1,ht),m̄r,t)

= e(1−P ∗(h̄r,t|h̄r,t−1,m̄r,t)) log Y tγ+P ∗(h̄r,t|h̄r,t−1,m̄r,t) log Yγ(h̄r,t,m̄r,t), (5.16)

where Y t
γ := Yγ(h

t,mt) for (ht,mt) 6= (h̄r,t, m̄r,t). The sequence of interac-

tions can be suppressed because from Theorem 5.4.1 we can conclude that,

after leaving the ‘profitable’ path all Yγ will be the same, independent of

corresponding P (hT‖mT ). From Eq. (5.16) we can prove by induction that

Yγ(m̄r,t|h̄r,t−1, m̄r,t−1) does not change after the first iteration. Thus the re-

sulted machine’s policy {Q̂(n)} converges after the first iteration.

For more general cases, the convergence of AREA algorithm is subtle.

Note that the human estimation problem (5.4) depends on the machine policy

157



Q(mT‖hT ) used. Thus given Q(mT‖hT ) at the current iteration one can de-

termine the associated model for human behavior h∗(Q, cf , cg) which may in

turn change the optimal machine policy. This makes the analysis of conver-

gence difficult. In order to facilitate the convergence, we propose introducing

an additional inequality constraint to the human estimation problem (5.4).

During the nth iteration, given the previously obtained P̂ (n−1) and

Q̂(n) we shall include the following step-dependent inequality constraint in

G. Let g0,(n)(hT ,mT ) = − log Q̂(n)(mT‖hT ) + γr(hT ,mT ), and let c
0,(n)
g =

EP̂ (n−1)Q̂(n) [g0,(n)(HT ,MT )], then on AREA iteration n we require that

EPQ̂(n) [g0,(n)(HT ,MT )] ≥ c
0,(n)
g .

Let us define a sequence {L(n)} of entropy regularized expected rewards

across iterations, i.e., L(n) := EP̂ (n)Q̂(n) [g0,(n)(HT ,MT )]. Then we have the

following result.

Theorem 5.6.3. Consider the AREA algorithm optimizing a human-machine

interactive process with a fixed sets of equality/inequality constraints F and G.

Suppose G is modified to G(n) by adding the additional step-dependent inequality

constraint EPQ̂(n) [g0,(n)(HT ,MT )] ≥ c
0,(n)
g . Then the modified AREA iterations

generate a bounded nondecreasing sequence {L(n)}, which must converge.

Remark: Note that when the conditions in Theorem 5.5.1 holds true,

then Q̂(n) takes independent actions once the path deviates from the sup-

port of all path-based feature functions. Thus the introduced step-dependent

feature function can be written as: g0,(n)(hT ,mT ) = −
∑T

t=1 log Q̂
(n)
t (mt) +
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∑
i∈Fp∪Gp

(∑T
t=1 log Q̂

(n)
t (m̄i

t)− log Q̂(n)(m̄i,T‖h̄i,T )
)

1{hT=h̄i,T ,mT=m̄i,T }, which is

still a weighted sum of path-based functions and decomposable functions. This

in turn means that the added constraint is such that iteration steps will still

have the polynomial complexity shown in Theorem 5.5.1.

L(n) can be regarded as a measure of the performance of the associated

machine policy Q̂(n). Indeed if Q̂(n) were a fixed point of AREA recursion,

then the optimal objective function of (5.5) would have converged to L(n).

Also note that by further assuming that the feature and reward functions

are decomposable, we can characterize the performance for the converging

sequence {L(n)}–see Section 5.7.

The solution at nth human estimation step can be written as P̂ (n) =

h∗(Q̂(n), cf (Q̂
(n)), cg(Q̂

(n), P̂ (n−1))). Indeed cf (Q̂
(n)) = EP ∗Q̂(n) [f(HT ,MT )] de-

pends on the true human behavior P ∗, the feature set F and also the machine

policy in use Q̂(n). However, throughout AREA iterations, P ∗ and F are fixed.

Thus for simplicity we write cf as a function of Q̂(n). Similarly, we write cg as

a function of Q̂(n) and P̂ (n−1), where the only dependency on P̂ (n−1) is through

the step dependent feature c
0,(n)
g we have introduced. Moreover, a direct result

of Lemma 2 in [76] showed that cg(Q̂
(n), P̂ (n−1)) is actually a function of Y

(n)
γ ,

which is the Yγ associated with Q̂(n) as defined in Theorem 5.4.4.

Lemma 5.6.4. During the nth iteration of AREA, let us denote the Yγ in the

machine optimization problem by Y
(n)
γ . Then

c0,(n)
g = EP̂ (n−1)Q̂(n)

[
− log Q̂(n)(MT‖HT ) + γr(HT ,MT )

]
= log

∑
m1∈M

Y (n)
γ (m1)
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Proof. This is just a special case of Lemma 2 in [76]. By plugging the recursive

form defined in Theorem 5.4.4 we can prove it is true.

Therefore P̂ (n) is actually a function of Y
(n)
γ , because Q̂(n) is naturally

a function of Y
(n)
γ by Theorem 5.4.4, and cg is independent of P̂ (n−1) given

Y
(n)
γ by Lemma 5.6.4:

P̂ (n) = h∗(Q̂(n), cf (Q̂
(n)), cg(Q̂

(n), P̂ (n−1))) = h∗(m∗(Y (n)
γ ), cf (m

∗(Y (n)
γ )), cg(Y

(n)
γ )).

In order to show convergence it will be easier to study it in terms of the

underlying variables Y
(n)
γ . In the sequel when there is no ambiguity we will

denote it by P̂ (n) = h∗(Y
(n)
γ ).

Let us define the following function of Yγ:

L(Yγ) := Hh∗(Yγ)m∗(Yγ)(M
T‖HT ) + γEh∗(Yγ)m∗(Yγ)[r(H

T ,MT )]. (5.17)

Note that L(n) = L(Y
(n)
γ ). Now we are ready to prove Theorem 5.6.3.

Proof. In order to show the convergence of {L(Y
(n)
γ )}, we define the following

functions of Yγ:

1. c(Yγ|Y ′γ) is the objective function of the machine’s optimization problem,

where Yγ and Y ′γ are as defined in Theorem 5.4.4 and are associated with

Q(mT‖hT ) and previous machine’s policy Q′(mT‖hT ),

c(Yγ|Y ′γ) := Hh(Y ′γ)m(Yγ)(M
T‖HT ) + γEh(Y ′γ)m(Y )[r(H

T ,MT )]. (5.18)
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2. L(Yγ) is defined as

L(Yγ) := c(Yγ|Yγ)

= Hh(Yγ)m(Yγ)(M
T‖HT ) + γEh(Yγ)m(Yγ)[r(H

T ,MT )], (5.19)

Consider the variables associated at nth iteration to be Y
(n)
γ . During

the AREA algorithm there are two possible cases: (1) Q̂(n+1) = Q̂(n), and (2)

Q̂(n+1) 6= Q̂(n). In case (1) it’s straightforward that Q̂(m) will be the same as

Q̂(n), for all m ≥ n. In case (2) we can show the convergence by proving the

strict monotonicity of {L(Ŷ
(n)
γ )} as follows.

L(Y (n+1)
γ ) ≥ c(Y (n+1)

γ |Y (n)
γ ) (5.20)

≥ c(Y (n)
γ |Y (n)

γ ) (5.21)

= L(Y (n)
γ ) (5.22)

Here Eq. (5.21) follows from the optimality of the solution to the

machine’s optimization Eq. (5.5), and Eq. (5.22) follows by the definition of

L(Y
(n)
γ ). Thus we only need to show Eq. (5.20). Based on the definitions of

the associated quantities, we have for all Y
(n+1)
γ :

L(Y (n+1)
γ )− c(Y (n+1)

γ |Y (n)
γ )

= E
h(Y

(n+1)
γ )m(Y

(n+1)
γ )

[
− logQ(n+1)(MT‖HT ) + γr(HT ,MT )

]
− g0(Y (n+1)

γ )

≥ 0.

The inequality holds true because in the human estimation problem, we in-

troduced constraint EPQ̂(n) [g0,(n)(HT ,MT )] ≥ c
0,(n)
g . Also, due to the bound-

edness of both Hh(Yγ)m(Yγ)(M
T‖HT ) and the expected reward function, L(Yγ)
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is also upper bounded. Therefore, the sequence generated by AREA recursion

{L(Y
(n)
γ )} converges monotonically.

An interesting observation we can make is that, {L(Y
(n)
γ )} converges to

a value associated with a fixed point of AREA iterations.

Theorem 5.6.5. {L(Y
(n)
γ )} converges to L∞, and there exists a Y ∞γ such that

L(Y ∞γ ) = L∞, and Y ∞γ is a fixed point of AREA iterations, i.e., m∗(m(h∗(Y ∞γ ))) =

m∗(Y ∞γ ).

Proof. Now if we let the AREA algorithm stops once we observe Q̂(n+1) = Q̂(n),

otherwise proceed to the next iteration, then throughout the iterations of

AREA (except for the last step when we stop), machine optimization problem

is strongly concave, thus obtain a unique maximum at any n+ 1st step, which

is Q̂(n+1) 6= Q̂(n). Therefore, Eq. (5.21) holds true strictly. Then L(Y
(n+1)
γ ) >

L(Y
(n)
γ ) in case (2). We can follow the result in [86], by defining the solution

set as the set of Yγ such that m∗(m(h∗(Yγ))) = m∗(Yγ), i.e., the set of fixed

point of AREA iterations, Corollary 1-1 in [86] shows that one of the following

statement is true:

1. The iteration stops in finite steps. Then we know it corresponds to

the case where we have for some n, Q̂(n+1) = Q̂(n). Thus ∀ m > n,

Q̂(m) = Q̂(n), implying {Q̂(n)} converges.

2. The iteration does not stop. Then according to Corollary 1-1 in [86], any

convergent subsequence of {Y (n)
γ }, say {Ŷ (k)

γ : k ∈ Kj ⊆ Z+} converges
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to an accumulation point Ŷ
(∞),j
γ as k → ∞, such that Ŷ

(∞),j
γ is within

the solution set.

Therefore, due to the convergence of {L(Y
(n)
γ )}, all the accumulation

points of {Y (n)
γ } have the same value of L(Yγ) function, and are fixed points

of AREA iterations.

5.7 One Important Special Case: Decomposable Fea-
tures

In this section we discuss AREA under a special family of features.

Specifically, we will derive performance guarantees for the case where the so-

lution has a special structure.

From now on we shall make the following assumption.

Assumption 4. Reward function r(hT ,mT ) is also used as a feature function

in the estimation phase. Also ∀i ∈ F, fi(h
T ,mT ) is decomposable, including

the reward function r(hT ,mT ).

Then following statements are true.

Lemma 5.7.1. Under Assumption 4, the solution to the machine’s optimiza-

tion phase has no dependency across time t. That is, at the nth iteration:

Q̂(n)(mt|ht−1,mt−1) = Q̂(n)(mt).

Moreover,

Q̂(n)(mt) ∝ e
γE

P̂ (n−1)Q̂(n) [r(Ht,mt)].
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Note that under such assumptions, EP̂ (n−1)Q̂(n) [r(Ht,mt)] only depends on P̂ (n−1).

Proof. This can be proved in a manner similar to Lemma 5.5.2. Specifically,

we can show that when Assumption 4 is true,

Yγ(mt|mt−1, ht−1) =

(
T∏

τ=t+1

Yγ,τ

)
eγ

∑t−1
τ=1 rτ (hτ ,mτ )eγ

∑
ht
P̂ (n−1)(ht|mt)rt(ht,mt),

(5.23)

where Yγ,t :=
∑

mt
eγ

∑
ht
P̂ (n−1)(ht|mt)rt(ht,mt).

The Markov property of P̂ (n−1) follows from Lemma 5.5.2 and this

identity holds true trivially when t = T , and can be proved by induction for

other cases.

Suppose our task is to find a machine’s policy associated with a Yγ to

maximize L(Yγ) defined in Eq. (5.17). In general, such an objective function

is not well-defined in Q because Yγ is not a function of Q. However, when

Assumption 4 takes effect, the causally conditional entropy is not dependent

on P̂ (n−1):

HP̂ (n−1)Q(MT‖HT ) = EP̂ (n−1)Q[− logQ(MT‖HT )]

= EP̂ (n−1)Q[− log
T∏
t=1

Qt(Mt)] =
T∑
t=1

EP̂ (n−1)Q[− logQt(Mt)],

where EP̂ (n−1)Q[− logQt(Mt)] actually does not depend on P̂ (n−1), and we al-

ways have

Eh(Yγ)Q[r(HT ,MT )] = EP ∗Q[r(HT ,MT )]. In the sequel when Assumption 4
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is true we will use the notation HQ(MT‖HT ) where P is suppressed. Then

L(Yγ) is actually a function of Q, where Q = m(Yγ) as it can be written as

L(Yγ) = L(Q) := HQ(MT‖HT ) + γEP ∗Q[r(HT ,MT )].

And still we are able to show the strict monotonicity of {L(Q̂(n))}.

Moreover, we can show such objective function is indeed concave.

Theorem 5.7.2. When Assumption 4 is true, L(Q) is strongly concave with

parameter |M|T in Q(mT‖hT ).

Proof. It’s easy to observe that EP ∗Q[r(HT ,MT )] is affine. We already know

that the causally conditional entropy term is strongly concave in Q when

P̂ (n−1) is fixed. Now we know that when Assumption 4 is true, the causally

conditional entropy term is independent of P̂ (n−1). Then it is a strong concave

function in Q.

Theorem 5.7.3. When Assumption 4 is true, {L(Q̂(n))}, that is, {L(n)} con-

verges to some limit L∞. If Q∗ is the global maximizer of

max
Q(mT ‖hT )

L(Q), (5.24)

then

L(Q∗)− L∞ ≤ γ2|M|2T rmax. (5.25)

Proof. First, according to Theorem 5.6.5, L∞ must be L(Y ∞γ ) where Y ∞γ is a

fixed point.
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The only difference between Eq.(5.5) and Eq.(5.24) is that in Eq.(5.24),

the mean reward is induced by h(Q) which is a function of Q and in Eq.(5.5),

that is induced by P̂ which is fixed. The gradient of L(Q) is given by:

∂L(Q)

∂Q(mT‖hT )
=
∂HQ(MT‖HT )

∂Q(mT‖hT )

+γ

(
∂EPQ[r(HT ,MT )]

∂P (hT‖mT )

∣∣∣∣
P=h(Q)

· ∂h(Q)

∂Q(mT‖hT )
+
∂EPQ[r(HT ,MT )]

∂Q(mT‖hT )

∣∣∣∣
P=h(Q)

)
,

Here we suppress the human model P̂ in the entropy term because the entropy

is independent of the human model.

And for the Eq.(5.5) at a fixed point, we have:

∂HQ(MT‖HT )

∂Q(mT‖hT )
+ γ

∂EPQ[r(HT ,MT )]

∂Q(mT‖hT )

∣∣∣∣
P=h(Q)

= 0. (5.26)

Thus at the fixed point, i.e. when Q = Q∞,

∂L(Q)

∂Q(mT‖hT )
= γ

∂EPQ[r(HT ,MT )]

∂P (hT‖mT )

∣∣∣∣
P=h(Q)

· ∂h(Q)

∂Q(mT‖hT )
.

Also, from the moment-matching constraint and Assumption 4 we know

Eh(Q)Q[r(HT ,MT )] = EP ∗Q[r(HT ,MT )]. Thus we have

∂EPQ[r(HT ,MT )]

∂P (hT‖mT )

∣∣∣∣
P=h(Q)

· ∂h(Q)

∂Q(mT‖hT )

=
∂EPQ[r(HT ,MT )]

∂Q(mT‖hT )

∣∣∣∣
P=P ∗

− ∂EPQ[r(HT ,MT )]

∂Q(mT‖hT )

∣∣∣∣
P=h(Q)

=
(
P ∗(hT‖mT )− PQ(hT‖mT )

)
r(hT ,mT ),

which is also the gradient of L(Q) at the fixed point.
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Then according to the strong concavity, we have

L(Q∗)− L(Q∞) ≤ |M|
T

2

γ ∑
hT ,mT

(P ∗(hT‖mT )− PQ(hT‖mT ))r(hT ,mT )

2

≤ γ2|M|2T rmax
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5.8 Evaluation

In this section, we conduct a preliminary numerical evaluation of AREA

using synthetic human-machine interaction data based on the Leaky Compet-

ing Accumulator (LCA) model, see [87]. This non-linear noisy model is known

to capture common human decision-making processes driven by external stim-

uli.

5.8.1 Numerical Evaluation Set-up

5.8.1.1 Leaky, Competing Accumulator

In the simulation set-up we use a discrete-time version of the original

continuous-time version devised in [87]. The Leaky, Competing Accumulator

model consists of a set of accumulators Xt(h) for h ∈ H at time t, representing

the tendency of picking h. The evolution of Xt(h) is driven by following

parameters: (1) A self decay coefficient α, capturing the forgetting effect of

human memory; (2) An inhibitory coefficient β, capturing the negative impact

of the belief in one option to others; (3) Intensity/strength of the external

stimuli, ρ, modeling the amount of increment an external stimulus can bring

to the associated accumulator. (4) Power of noise σ2, modeling the randomness

in human decisions. At each time t, the recursion of accumulators is given by

∀h ∈ H, Xt+1(h) = max

(
0, Xt(h)− αXt(h)− β

∑
h′ 6=h

Xt(h
′) + ρ1{St=h} + σNt,h

)
,

(5.27)

where St stands for the external stimulus at time t, and Nt,h is an i.i.d. Gaus-

sian noise. Then the human will pick the action with the highest value of
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Xt(h) at t.

In our setting we use α = 0.1, β = 0.2, ρ = 0.4, σ2 = 0.09, and the

accumulators are all initialized at 0, so at the very beginning human pick

responses uniformly randomly.

5.8.1.2 Q-Learning

The detailed update rule for Q function is as follows. After picking mt

and observing human’s response ht at time t, we do

Q((ht−τ , . . . , ht−1,mt−τ , . . . ,mt−1), t,mt)←

(1− α)Q((ht−τ , . . . , ht−1,mt−τ , . . . ,mt−1), t,mt) + α

(
rt(ht,mt)

+δmax
m∈M

Q((ht−τ+1, . . . , ht,mt−τ+1, . . . ,mt), t,m)

)
.

The α in Q-learning is the learning rate and δ is the discount factor to balance

the weight between current and future reward. In our evaluation, we set

α = 0.1 and δ = 0.8, which are values commonly used.

In our simulations, the Q-learning picks its action according softmax of

the associated Q function, which means when it observes the latest interactions

(ht−τ+1, . . . , ht,mt−τ+1, . . . ,mt) and t + 1, it picks a response m ∈ M with

probability

ecQ((ht−τ+1,...,ht,mt−τ+1,...,mt),t+1,mt+1)∑
m′t+1

ecQ((ht−τ+1,...,ht,mt−τ+1,...,mt),t+1,m′t+1)
.

In our simulation we pick c = 10 so that Q-learning achieves a comparable

average reward as AREA after first 100 samples.
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5.8.2 Robustness Against Sampling Noise

Throughout the paper we have assumed no sampling noise when esti-

mating the moments of features. In practice the available data may be limited

or costly and thus noisy estimates are inevitable. The robustness of maximum

entropy inference against such noise is mathematically characterized in The-

orem 6 of [76]. In this section, we will explore the robustness of the AREA

algorithm to noise when the number of samples per iteration are limited. The

detailed set-up of the LCA model for human-machine interactions is included

in Section 5.8.1.

We consider a setting where T = 30, H = {1, . . . , 6}, M = {1, . . . , 6}

and γ = 2. The reward function is r(hT ,mT ) =
∑T

t=1 rt(ht,mt), where

rt(ht,mt) = 1{t mod 5=0}1{ht=1}+1{t mod 56=0}1{ht 6=1}, i.e., we are looking to fun-

nel the human behavior to choosing 1 only at t = 5, 10, · · · , 30. The features

include the reward function itself, together with the number of times human

follows the machine f 1(hT ,mT ) =
∑T

t=1 1{ht=mt}, and a ‘weighted’ number

of times of following occurs emphasizing later times, i.e., t = 5, 10, · · · , 30,

f 2(hT ,mT ) =
∑T

t=1 f
2
t (ht,mt), where f 2

t (ht,mt) = (1{t mod 5=0}

+ 0.251{t mod 5 6=0})1{ht=mt}. The challenge here is for the machine to learn to

drive human (nonlinear model) away from 1 and back to 1 periodically.

The results in Fig. 5.2a exhibit the convergence of the regularized re-

ward function L vs the number of AREA steps, when different numbers of

samples are used to estimate the moments in AREA’s inference step. Clearly,

AREA converges almost immediately although it exhibits variations when
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small samples (≤ 100) are used.
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5.8.3 Performance in Average Reward and Causally Conditioned
Entropy

Next we compare the performance of AREA to a simple Q-learning

algorithm [67] with finite memory. We shall compare the attained reward

and empirical causally conditioned entropy of the optimized machine policies.

In this setting the humans’ actions are viewed as the environment. Thus,

instead of ‘scoring’ each action based on the most recent humans’ response,

Q-learning scores each action based on the most recent τ interactions, together

with t to accommodate the transient nature of the process, i.e., it keeps track

of Q((ht−τ+1, . . . , ht,mt−τ+1, . . . ,mt), t+ 1,mt+1).

At time t, the machine chooses an action using a softmax of the Q

function given the latest interaction history (ht−τ+1, . . . , ht,mt−τ+1, . . . ,mt)

and t + 1, and then updates the Q function accordingly. We shrink the state

space to |H| = |M| = 3 and T = 20 so the Q function fits in the memory

and also change γ to 4 to put more emphasis on reward. We shall consider

the same rewards and features as in Section 5.8.2. of AREA. We will let both

algorithms complete 100 ‘interactions’ with our synthetic human model. For

AREA, we collect 10 human-machine interaction samples per AREA iteration,

and run 10 iterations in total. For Q-learning we also allow a total of 100 in-

teractions. We set τ = 1 since further experiments show that greater τ impairs

the performance of Q-learning for it requires more samples to learn. The de-

tailed setup for Q-learning can be found in Section 5.8.1. We kept track of the

average reward obtained, estimated causally conditioned entropy of machine
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obtained for both algorithms after integrating the first n samples. We run the

simulation 5 rounds to obtain the average, and the results, together with the

90% confidence intervals are shown in Figure 5.2b. These representative re-

sults suggest that typically AREA algorithm is very efficient, delivering higher

rewards than Q-learning while at the same time realizing (as desired) higher

machine policy entropy with a very limited number of samples.
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Chapter 6

Conclusion and Future work on

Human-machine Interactive Processes

This thesis proposes a general data-driven framework to optimize pos-

sibly complex human-machine interaction processes. At the core is the AREA

algorithm which jointly solves the problem of estimating a model for human

behavior and optimizing the machine policy based on a constrained maxi-

mum entropy estimation. An underlying goal is to enable the integration

of domain-specific knowledge regarding relevant interaction characteristics or

known human biases by matching the observed moments of feature functions.

This thesis details the formal optimization problems and solutions underly-

ing the AREA algorithm and explores a modification to significantly reduce

the complexity when the feature and reward functions are path-based and/or

decomposable. The setting considered is fairly general, allowing one to incor-

porate human-machine interactions with long memory. The characterization

of AREA is provided in terms of (i) its space and time complexity, and (ii)

its convergence in various settings. A simple numerical evaluation is used to

demonstrate the robustness of AREA to noise when sample sizes are limited,

along with a performance comparison to Q-learning. The analysis and simple

validation suggest that AREA may achieve most of its gains in one iteration
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particularly if sufficient domain specific features/rewards are properly inte-

grated.

In fact, if long-term dependency and sequential effect need to be taken

into account, exponential complexity is always a substantial challenge in mod-

elling. To accommodate it, different approaches to embedding the exponen-

tial dependencies to a lower-dimension space are proposed, achieving different

trade-offs. For example, in deep Q-learning [71], a deep neural network is

trained on a massive dataset to maintain the most significant information in

the dependency, while in AREA, such embedding is achieved by limiting the

feature functions to path-based and/or decomposable features only, which al-

lows us to get rid of the need of massive data. Therefore AREA is more

suitable in a reinforcement learning context where the interactions might take

a significant amount of time. This is usually the case when the model interacts

with real human.

Beyond the scope of this thesis, AREA can be extended in the following

ways.

1. Choice of feature functions. The performance and complexity of AREA

heavily depend on choice of feature functions. Thus, it is critical to

investigate how to model aspects patterns and/or biases within human

decisions via properly chosen feature functions.

2. Change and transience detection in interactions. AREA, as well as most

of reinforcement learning algorithms, works under the assumption that
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the underlying decision process is stable across iterations. However in

practice, one can expect human behavior to change over time. For ex-

ample, human’s skill level, knowledge, and/or level of interest/attention

might improve or decline as the interactions proceed. Once the underly-

ing decision process deviates from the original one significantly, AREA

needs to re-initialize in order to capture the characterization of the new

underlying model. Presumably this can be done by a significance test,

but further efforts are required in formalizing methods for tracking of

change in human behavior and triggering re-optimization.
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[32] Laurent Massoulié and James Roberts. Bandwidth sharing: objectives

and algorithms. In INFOCOM’99. Eighteenth Annual Joint Confer-

ence of the IEEE Computer and Communications Societies. Proceedings.

IEEE, volume 3, pages 1395–1403. IEEE, 1999.
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