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This report investigates methods for solving the problem of compressed sensing, in which 

the goal is to recover a signal from noisy, linear measurements. Compressed sensing techniques 

enable signal recovery with far fewer measurements than required by traditional methods such as 

Nyquist sampling. Signal recovery is an incredibly important area in application domains such as 

consumer electronics, medical imaging, and many others. 

While classical methods for compressed sensing recovery are well established, recent 

developments in machine learning have created wide opportunity for improvement. In this report 

I first discuss pre-existing approaches, both classical and modern.  I then present my own 

contribution to this field: creating a method using untrained machine learning models. This 

approach has several  advantages which enable its use in complex domains such as medical 

imaging. 
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Chapter 1

Introduction

We consider the well-studied compressed sensing problem of recovering an

unknown signal x∗ ∈ Rn by observing a set of noisy measurements y ∈ Rm of the

form

y = Ax∗ + η. (1.1)

Here A ∈ Rm×n is a known measurement matrix, typically generated with random

independent Gaussian entries. Since the number of measurements m is smaller

than the dimension n of the unknown vector x∗, this is an under-determined sys-

tem of noisy linear equations and hence ill-posed. There are many solutions, and

some structure must be assumed on x∗ to have any hope of recovery. Pioneering

research [26, 13, 15] established that if x∗ is assumed to be sparse in a known basis,

a small number of measurements will be provably sufficient to recover the unknown

vector in polynomial time using methods such as Lasso [83].

Sparsity in a known basis has proven successful for multiple signals of

interest, but more complex models with additional structure have been recently

proposed such as model-based compressive sensing [6] and manifold models [42,

41, 30]. Recently Bora et al. [9] showed that deep generative models can be used as

excellent priors for images. They also showed that backpropagation can be used to

solve the signal recovery problem by performing gradient descent in the generative

latent space. Bora et al. [9] were able to reconstruct images with significantly fewer

measurements compared to Lasso for a given reconstruction error. Compressed
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sensing using deep generative models was further improved in very recent work [86,

36, 47, 81, 34, 3]. Additionally a theoretical analysis of the nonconvex gradient

descent algorithm [9] was proposed by Hand et al. [39] under some assumptions on

the generative model.

Inspired by these impressive benefits of deep generative models, we chose

to investigate the application of such methods for medical imaging, a canonical

application of compressive sensing. A significant problem, however, is that all

these previous methods require the existence of pre-trained models. While this has

been achieved for various types of images, e.g. human faces of CelebA [56] via

DCGAN [76], it remains significantly more challenging for medical images [96, 79,

72]. Instead of addressing this important problem in generative models, we found an

easier way to circumvent it.

Surprising recent work by Ulyanov et al. [89] proposed Deep Image Prior

(DIP), which uses untrained convolutional neural networks to perform inpainting

and denoising. In DIP a convolutional neural network generator (e.g. DCGAN)

is initialized with random weights; these weights are subsequently optimized to

make the network produce an output as close to the target image as possible. This

procedure is image-agnostic, using no prior information from other images. The

prior is enforced only by the fixed convolutional structure of the generator network.

Our Contributions: Our novel contribution in this report is DIP for com-

pressed sensing (CS-DIP). The basic method is as follows: initialize a DCGAN

generator with random weights and optimize them using gradient descent to make

the network produce an output which agrees with the observed measurements as

much as possible. This method includes a novel learned regularization technique

which regularizes the DCGAN weights throughout the optimization process.

Our results show that we require significantly fewer measurements to ob-
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tain similar reconstruction error compared to classical Lasso methods and even

outperform unlearned BM3D-AMP and TVAL3 when the number of measurements

is small. However, for a high number of measurements, BM3D-AMP tends to

outperform our method.

We note that our reconstruction quality is not as high as the gains achieved

by Bora et al. [9], but we have the advantage of not requiring a generative model

pre-trained over a large dataset. We only require access to measurements from

a small number of images for hyperparameter tuning and learned regularization.

This is significantly easier than training a generative model on medical imaging

tasks [96, 79, 72].
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Figure 1.1: Reconstruction results on retinopathy images for m = 2000 measurements
(of n = 49152 pixels). From top to bottom row: original image, reconstructions
by our algorithm, then reconstructions by baselines BM3D-AMP and Lasso. In
this case the number of measurements is much smaller than the number of pixels
(roughly 4% ratio) and our algorithm successfully reconstructs the whole image.
BM3D-AMP produces sharp reconstructions but fails to converge on some parts of
the image, as demonstrated by erroneous green and purple pixels. We recommend
viewing in color.
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Chapter 2

Background

2.1 Compressed Sensing: Classical Sparsity Approaches

Recall Eqn. 1.1, y = Ax∗ + η, where the goal is to solve for x∗ ∈ Rn

given measurements y ∈ Rm such that m � n. Compressed sensing leverages the

convenient fact that many natural signals have concise representations in some basis.

Consider, for example, the wavelet transform of a natural image. Most wavelet

coefficients are small, and the few large coefficients capture most of the information.

Thus a classical assumption made in compressed sensing is that the vector x∗

is k-sparse in some basis such as wavelet or discrete cosine transform (DCT). The

problem then becomes finding the sparsest solution to the underdetermined linear

system of equations, i.e.

x∗ = argmin
x

�Φx�0
s.t. y = Ax,

(2.1)

where Φ is the basis transformation. Solving this optimization problem is NP-

hard in general; however, this objective can be relaxed to the �1-norm. Minimizing

�1 with respect to linear constraints can be recast as a linear program, leveraging a

rich history of convex programming methods. Candes et al. [14] prove that if Φx

is sufficiently sparse, then recovery via �1-minimization is exact given sufficient

number of measurements m.
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Another fundamental result in compressed sensing is a condition on the

measurement matrix, A ∈ Rm×n, called the Restricted Isometry Property (RIP) [15].

Matrix A satisfies RIP if

(1− δk)�v�22 ≤ �Av�22 ≤ (1 + δk)�v�22 (2.2)

for all k-sparse vectors v, where the isometry constant δk ∈ [0, 1) is not too

close to one. This implies that k-sparse vectors cannot be in the null space because

A preserves the length of k-sparse vectors. Similar conditions on the measurement

matrix exist, such as the Restricted Eigenvalue Condition (REC) [26, 83].

While initial work in compressed sensing utilized convex programs, these

methods are computationally prohibitive for recovering large signals such as images.

Thus less expensive iterative methods were developed, such as matching pursuit [61],

orthogonal matching pursuit [87], compressive sampling matching pursuit [70],

approximate message passing [27], iterative hard-thresholding [8], and iterative soft-

thresholding [33], among others. These methods have been compared in different

application domains, e.g. face recognition [97]. Below we provide a brief discussion

of these methods that are relevant in current state-of-the-art recovery algorithms.

With these developments x∗ can be provably recovered in polynomial time

via convex relaxations [88] or iterative methods. Another name for this problem

is high-dimensional sparse linear regression, for which there is extensive literature

regarding assumptions on A, numerous recovery algorithms, and variations of RIP

and REC [7, 71, 1, 5, 57].

We will now discuss recent state-of-the-art unlearned methods for com-

pressed sensing recovery, BM3D-AMP [68, 67] and TVAL3 [99, 54], as these meth-

ods are baselines against which we later compare our proposed method, compressed
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sensing with deep image prior (CS-DIP).

2.2 Compressed Sensing: Modern, Unlearned Approaches

While sparsity has proven successful for compressed sensing recovery of

many signals, this assumption is not as effective for imaging applications because

natural images do not have sparse representations in any known basis. For example

given a natural image, the majority of wavelet coefficients are non-zero; many of

these non-zero coefficients have large magnitude. Thus sparsity-based algorithms

are not equipped to recover this signal of natural images exactly.

2.2.1 BM3D-AMP

Recent work has used other priors to solve linear inverse problems. Plug-and-

play priors [91, 18] and Regularization by Denoising [77] have shown how image

denoisers can be used to solve general linear inverse problems. A key example

of this is BM3D-AMP, which applies a Block-Matching and 3D filtering (BM3D)

denoiser to an Approximate Message Passing (D-AMP) algorithm [68, 67]. We will

begin our discussion of BM3D-AMP by providing relevant background as to how

Approximate Message Passing (AMP) connects to iterative soft-thresholding (IST)

before introducing the BM3D denoiser.

With the goal of recovering xo, IST algorithms take the form

xt+1 = ητ (A
∗zt + xt),

zt = y −Axt,
(2.3)

where ητ (y) = (|y|− τ)+sign(y) is a thresholding non-linearity, xt is the estimate

of xo at iteration t, and zt denotes the residual estimate y − Axo at iteration t.
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AMP extends IST by adding an Onsager correction term to the residual:

xt+1 = ητ (A
∗zt + xt),

zt = y −Axt + n
m
zt−1�η�τ (A∗zt−1 + xt−1)�. (2.4)

where �·� represents the average of a vector, η�τ denotes the derivative of ητ , and
n
m
�η�τ (A∗zt−1 + xt−1)� is the Onsager correction term. The inclusion of this term

imposes the effective noise at each iteration of AMP to be approximately Gaussian.

This feature enables linear convergence of xt [60], accurate algorithm analysis [27,

27], and optimal parameter tuning [69].

BM3D-AMP [68, 67] now aims to leverage the rich history of denoising

algorithms to enhance signal recovery. This assumes that any denoiser Dσ, when

applied to a signal xo plus Gaussian noise, will return an estimate closer to xo than

the original corrupted signal. This denoiser Dσ is henceforth treated as a black box,

where knowledge of the algorithm’s interworkings is not required for analysis. Thus

D-AMP employs a denoiser from the previous AMP (Eqn. 2.4) in the following way:

xt+1 = Dσ̂t(xt +A∗zt),

zt = y −Axt + zt−1divDσ̂t−1(xt−1 +A∗zt−1)/m,

(σ̂t)2 =
�zt�22
m

. (2.5)

Here again we have that xt and zt are estimates of xo at iteration t and of the residual,

respectively. The Onsager correction term is zt−1divDσ̂t−1(xt−1 + A∗zt−1)/m,

where divDσ̂t−1 is the divergence of the denoiser.

At a high level, D-AMP applies an existing denoising algorithm to obtain

a better estimate of xo at every iteration and eventually converge to the signal of

interest. Empirically it has shown to outperform classical sparsity-based approaches

while also being robust to measurement noise [68, 67].
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2.2.2 TVAL3

Another related algorithm is TVAL3 [99, 54] which leverages augmented

Lagrangian multipliers to achieve impressive performance on compressed sensing

problems. Instead of the �1-norm, TVAL3 uses total variation (TV), which more

accurately preserves high-frequency components such as edges or boundaries. Here

the main assumption behind TV regularization is that natural images have sparse

gradients. Over the past few decades, this approach has become very popular for tasks

such as image denoising [78, 17], deconvolution [18, 92], and restoration [11, 98].

The model for total variation can be written as

minx TV (x) =
�

i �Dix�p s.t. y = Ax, (2.6)

where Dix is the discrete gradient of x at the ith pixel. Note that the �p-norm

could be either anisotropic if p = 1, or isotroptic if p = 2. Here we will focus on the

isotropic case, thus � · � refers to the �2 norm.

To account for noise in the measurements, we place the constraint of Eqn. 2.6

into the objective, i.e.

min
x

TV (x) =
�

i

�Dix�+
µ

2
�Ax− y�2. (2.7)

Now our goal is to separate the non-differentiable TV term to achieve an easily

solvable augmented Lagrangian function. This can be accomplished by introducing

a splitting variable qi = Dix. Thus Eqn. 2.7 is equivalent to:

min
qi,x

�

i

�qi�+
µ

2
�Ax− y�2

s.t. qi = Dix ∀ i.

(2.8)

This framework presents an efficient Lagrangian method for total variation

minimization. Empirically this has delivered improved image reconstruction com-

9



pared to classical sparsity-based methods and also various iterative soft-thresholding

algorithms [99].

2.3 Compressed Sensing: Learned Approaches

While sparsity in some chosen basis is well-established, recent work has

shown better empirical performance when neural networks are used [9]. This success

is attributed to the fact that neural networks are capable of learning image priors

from very large datasets [35, 48]. There is significant recent work on solving linear

inverse problems using various learned techniques. Mardani et al. [63] propose

recurrent generative models while Dave et al. [24] apply auto-regressive models.

Additionally approximate message passing (AMP) has been extended to a learned

setting by Metzler et al. [66].

Bora et al. [9] is the closest set-up to our proposed algoirthms. In this

work the authors assume that the unknown signal is in the range of a pre-trained

differentiable generative model like a generative adversarial network (GAN) [35] or

a variational autoencoder (VAE) [48]. The recovery of the unknown signal is then

obtained via gradient descent in the latent space to search for a generated signal that

satisfies the measurements. This can be directly applied for linear inverse problems

and more generally to any differentiable measurement process. Chang et al. [20]

solve a problem similar to Bora et al. but with a different optimization technique.

Very recent work has built upon the method of Bora et al. using amortized variational

compressed sensing [36], modelling sparse deviations [25], and task-aware generator

training [47].

The key point is that all this prior work requires pre-trained generative models.

In contrast, as we discussed, our proposed algorithm applies DIP [89] which uses an
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untrained model and optimizes the network weights for linear measurements taken

from an individual image. We further leverage access to measurements from only

a few (roughly 5 – 10) similar images to learn the prior distribution of the weights

of network layers. This results in an informative prior using much less data than

would be required to train a GAN or a VAE over a large image dataset. As such, we

compare our algorithm to all these unlearned methods: BM3D-AMP, TVAL3, and

Lasso in various bases. We perform this comparison with different datasets, different

measurement processes, and various levels of measurements.

2.4 Compressed Sensing: Applications

Compressed sensing methods have many applications such as data compres-

sion, channel coding, and inverse problems. It has led to profoud developments in

imaging, for example the single-pixel camera (SPC) [29] where micro-mirrors create

measurements from a single light sensor that subsequently are used to reconstruct

images using compressed sensing reconstruction algorithms. Bell Labs leveraged

this technique to take still photographs using repeated snapshots of randomly chosen

apertures from a grid. Medical tomographic applications include x-ray radiography,

microwave imaging, magnetic resonance imaging (MRI), and computed tomogra-

phy (see e.g. [95, 21, 58] and references therein). The overarching goal in developing

new compressed sensing recovery methods is to reduce the number of measurements

while maintaining good reconstruction quality. Obtaining measurements can often

be costly, time-consuming, and in some cases dangerous, e.g. exposing a patient to

harmful x-ray radiation [75].

Our method is unlearned, requiring little or no measurements to tune the

network; as such we choose to place emphasis on the field of medical imaging

for which learned models are currently infeasible. This lack of feasibility can be

11



attributed to two different characteristics of learned models: (1) they require a large

amount of training data (2) they are not able to reconstruct complex signals such as

chest x-rays or retinopathy images. We circumvent these undesirable characteristics

by using a model that is unlearned and also often outperforms many of the unlearned

methods proposed in Section 2.2.
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Chapter 3

Methods

Let x∗ ∈ Rn be the signal that we are trying to reconstruct, A ∈ Rm×n be

the measurement matrix, and η ∈ Rm be independent noise. Given the measurement

matrix A and the observations y = Ax∗+ η, we wish to reconstruct an x̂ that is close

to x∗.

A generative model is a deterministic function G(z;w): Rk → Rn which

takes as input a seed z ∈ Rk and a set of parameters (or “weights”) w ∈ Rd,

producing an output G(z;w) ∈ Rn. These models have shown excellent performance

generating real-life signals such as images [35, 48] and audio [90]. We investigate

deep convolutional generative models, a special case in which the model architecture

has multiple cascaded layers of convolutional filters [49]. In this paper we apply a

DCGAN [76] model and restrict the signals to be images.

3.1 Compressed Sensing with Deep Image Prior (CS-DIP)

Our approach is to find a set of weights for the convolutional network such

that the measurement matrix applied to the network output, i.e. AG(z;w), matches

the measurements y we are given. Hence we initialize an untrained network G(z;w)

with some fixed z and solve the following optimization problem:

w∗ = argmin
w

�y − AG(z;w)�2. (3.1)

13



This is, of course, a non-convex problem because G(z;w) is a complex feed-

forward neural network. Still we can use gradient-based optimizers for any generative

model and measurement process that is differentiable. Ulyanov et al. observed that

generator networks such as DCGAN are biased toward smooth, natural images due

to their convolutional structure; thus the network structure alone provides a good

prior for reconstructing images in problems such as inpainting and denoising [89].

Our finding is that this applies to general linear measurement processes. We restrict

our solution to lie in the span of a convolutional neural network, and if a sufficient

number of measurements m is given, we obtain an output such that x∗ ≈ G(z;w∗).

Note that this method uses an untrained generative model and optimizes

over the network weights w. In contrast previous methods, such as that of Bora

et al. [9], use a trained model and optimize over the latent z-space, solving z∗ =

argminz �y − AG(z;w)�2. We instead initialize a random z with Gaussian iid

entries and keep this fixed throughout the optimization process.

Note that DIP must be tuned to avoid overfitting; we rely on early stopping

and also on two different regularizaton terms: LR(w), a novel learned regularization

technique and also TV (G(z;w)), the well-established total variation norm [78, 92].

Thus the final optimization problem becomes:

w∗ = argmin
w

�y − AG(z;w)�2 +R(w;λL,λT ). (3.2)

Where the regularization term contains hyperparameters λL and λT for learned

regularization and total variation: R(w;λL,λT ) = λLLR(w) + λTTV (G(z;w)).

We discuss our regularization techniques below.

14



3.2 Learned Regularization

Without regularization CS-DIP relies only on linear measurements taken

from one unknown image. We now introduce a novel method which leverages a

small amount of training data to optimize regularization. In this case training data

refers to measurements from additional ground truth of a similar type, for example

other x-ray images.

To leverage this additional information, we pose Eqn. (3.2) as a Maximum a

Posteriori (MAP) estimation problem and propose a novel prior on the weights of

the generative model. This prior then acts as a regularization term, penalizing the

model toward an optimal set of weights w∗.

For a set of weights w ∈ Rd, we model the likelihood of the measurements

y = Ax, y ∈ Rm, as a Gaussian distribution given by

p(y|w) = 1�
(2π)mλ

exp

�
−�y − AG(z;w)�2

2λ

�
, (3.3)

and the prior on the weights w as a Gaussian given by

p(w) =
1�

(2π)d|Σ|
exp

�
−1

2
(w − µ)T Σ−1 (w − µ)

�
, (3.4)

where µ ∈ Rd and Σ ∈ Rd×d.

In this setting we want to find a set of weights w∗ that maximize the posterior

on w given y, i.e.,

w∗ = argmax
w

p(w|y),

= argmax
w

p(y|w)p(w)
p(y)

,

≡ argmin
w

�y − AG(z;w)�2 + λL (w − µ)T Σ−1 (w − µ) . (3.5)
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This gives us the learned regularization term

LR(w) = (w − µ)T Σ−1 (w − µ) , (3.6)

where the coefficient λL in Eqn. (3.5) controls the strength of the prior.

Notice that when µ = 0 and Σ = Id×d, this regularization term is equivalent

to �2-regularization. Thus this method can be thought of as a more strategic version

of standard weight decay.

3.2.1 Learning the Prior Parameters

In the previous section we introduced the learned regularization term:

LR(w) = (w − µ)T Σ−1 (w − µ) .

However we do not yet know good values for (µ,Σ) that will give high

quality reconstructions. For a fixed set of measurements m and a measurement

Algorithm 1 Estimate (µ, Σ) for a distribution of network weights W ∗

input Set of optimal weights W ∗ = {w∗
1, w

∗
2, · · · , w∗

K} obtained from L-layer
DCGAN run over K images; number of samples S; number of iterations T .

output mean vector µ ∈ RL; covariance matrix Σ ∈ RL×L.
1: for t = 1 toT do
2: Sample k uniformly from {1, ..., K}
3: for l = 1 toL {for each layer} do
4: Get v ∈ RS , a vector of S uniformly sampled weights from the lth layer of

w∗
k

5: Mt[l, :] ← vT where Mt[l, :] is the lth row of matrix Mt ∈ RL×S

6: µt[l] ← 1
S

�S
i=1 vi

7: end for
8: Σt ← 1

S
MtM

T
t − µtµ

T
t

9: end for
10: µ ← 1

T

�T
t=1 µt

11: Σ ← 1
T

�T
t=1 Σt

16



matrix A, we now propose a way to estimate (µ,Σ) such that prior knowledge of the

network weights can be incorporated.

Assume we have a set of measurements SY = {y1, y2, · · · , yK} from K

different images SX = {x1, x2, · · · , xK}, each obtained with a different measure-

ment matrix A. For each measurement yi, i ∈ {1, 2, ..., K}, we run CS-DIP to

solve the optimization problem in Eqn. (3.2) and obtain an optimal set of weights

W ∗ = {w∗
1, w

∗
2, · · · , w∗

K}. Note that when optimizing for the weights W ∗, we only

have access to the measurements SY , not the ground truth SX .

The number of weights d in deep networks tends to be very large. As such,

learning a distribution over each weight, i.e. estimating µ ∈ Rd and Σ ∈ Rd×d,

becomes intractable. We instead use a layer-wise approach: with L network layers,

we have µ ∈ RL and Σ ∈ RL×L. Thus each weight within layer l ∈ {1, 2, ..., L} is

modeled according to the same N(µl, Σll) distribution. For simplicity we assume

Σij = 0 ∀ i �= j, i.e. that network weights are independent across layers. The

process of estimating statistics (µ,Σ) from W ∗ is described in Algorithm (1), where

we find different (µ,Σ) for each measurement number m.

We use this learned (µ,Σ) in the regularization term LR(w) from Eqn. (3.6)

for reconstructing measurements of images. We refer to this technique as learned reg-

ularization. While this technique may seem analogous to batch normalization [44],

note that we only use (µ,Σ) to penalize the �2-norm of the weights and do not

normalize the layer outputs themselves.

3.2.2 Discussion

The proposed CS-DIP algorithm is data-agnostic if no learned regularization

is used. That is, given measurements for any single unknown image x∗ ∈ Rn, we

can search for good weights w∗ such that the generator network produces an output
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which approximately satisfies these measurements. Learned regularization utilizes a

small amount of prior information, as it only requires access to measurements from

a small number of images (roughly 5− 10). In contrast, other pre-trained models

such as that of Bora et al. [9] require access to ground truth from a large number of

similar images (tens of thousands for CelebA). If such a large dataset is available and

if a good generative model can be trained on that dataset, we expect that methods

which use pre-trained models [9, 36, 47, 63] would outperform our method. Our

approach is instead more suitable for reconstructing problems where large amounts

of data or good generative models are not readily available.

3.3 Total Variation Regularization

In addition to our novel learned regularization method, we also leverage total

variation (TV) norm [78, 92, 55] regularization in our objective function. TV loss

penalizes the sum of absolute difference for neighboring pixel values. This makes

reconstructions smoother and reduces high frequency noise in the reconstructed

image. Note also that in parallel to our work, total variation regularization was

proposed as a method to improve DIP very recently by Liu et al. [55].
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(a) MSE - Chest X-ray (65536 pixels) (b) MSE - MNIST (784 pixels)

Figure 3.1: We compare the performance of our algorithm with baselines on the
x-ray and MNIST datasets, plotting per-pixel reconstruction error (MSE) vs. number
of measurements, where vertical bars indicate 95% confidence intervals. Notice that
when the number of measurements is below 4000, BM3D-AMP frequently fails to
converge. This is demonstrated in the graph since its reconstruction error values are
large and hence far above our vertical axis.
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(a) Reconstructions - Chest X-ray
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(b) Reconstructions - MNIST

Figure 3.2: Reconstruction results on x-ray images for m = 2000 measurements
(of n = 65536 pixels) and MNIST for m = 75 measurements (of n = 784 pixels).
From top to bottom row: original image, reconstructions by our algorithm, then
reconstructions by baselines BM3D-AMP, TVAL3, and Lasso. For x-ray images the
number of measurements obtained are 3% the number of pixels (i.e. m

n
= .03), for

which BM3D-AMP often fails to converge.
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Chapter 4

Experiments

To replicate these experiments or run new experiments using our method,

please see our GitHub repository at https://github.com/davevanveen/

compsensing_dip.

4.1 Experimental Setup

Measurements: We evaluate our algorithm using two different measure-

ments processes, i.e. matrices A ∈ Rm×n. First we set the entries of A to be

Gaussian iid, such that Ai,j ∼ N(0, 1
m
). Recall m is the number of measurements,

and n is the number of pixels in the ground truth image. This measurement process

is standard practice in compressed sensing literature, and hence we use it on each

dataset. Additionally in Section 4.2 we use a Fourier measurement process common

in MRI applications [64, 62, 37, 51, 59] and evaluate it on the chest x-ray dataset.

In that case measurements obtained are Fourier coefficients sampled according to a

radial pattern shown in Figure 4.2 of the appendix.

Datasets: We use our algorithm to reconstruct both grayscale and RGB

images. For grayscale we use the first 100 images in the test set of MNIST [50]

and also 60 random images from the Shenzhen Chest X-Ray Dataset [46], selecting

a 512x512 crop and then downsampling to 256x256 pixels. For RGB images we

use the Structured Analysis of the Retina (STARE) dataset [43] with 512x512 crops
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downsized to 128x128 pixels.

Baselines: We compare our algorithm to state-of-the-art unlearned methods

such as BM3D-AMP [68, 67], TVAL3 [52, 54, 99], and Lasso in a DCT basis [2].

We also evaluated the performance of Lasso in a Daubechies wavelet basis [22, 94]

but found this performed worse than Lasso - DCT on all datasets. Thus for simplicity

we refer to Lasso - DCT as “Lasso” and do not include results of Lasso - Wavelet. To

reconstruct RGB retinopathy images, we must use the colored version CBM3D-AMP.

Unfortunately an RGB version of TVAL3 does not currently exist, although similar

TV algorithms such as FTVd can performs similar tasks such as denoising RGB

images [92].

Metrics: To quantitatively evaluate the performance of our algorithm, we

use per-pixel mean-squared error (MSE) between the reconstruction x̂ and true

image x∗, i.e. �x̂−x∗�2
n

. Note that because these pixels are over the range [−1, 1], it’s

possible for the MSE to be greater than 1.

Implementation: To find a set of weights w∗ that minimize Eqn. (3.2), we

use PyTorch [73] with a DCGAN architecture. For baselines BM3D-AMP and

TVAL3, we use the repositories provided by the authors Metzler et al. [65] and Li et

al. [53], respectively. For baseline reconstructions Lasso, we use a scikit-learn [74]

implementation. Experimental details are discussed in the paragraphs below to

provide heuristic intuition for those wishing to implement our work.

Our algorithm CS-DIP is implemented in PyTorch using the RMSProp

optimizer [85] with learning rate 10−3 and momentum 0.9. We take 1000 update

steps for every set of measurements. On larger images such as xray (n = 65536)

and retinopathy (n = 49152), we found no difference using random restarts of the

initial seed z. However for smaller vectors such as MNIST (n = 784), restarts did
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provide some benefit. As such our experiments utilize 5 random restarts for MNIST

and one initial seed (no restarts) for x-ray and retinopathy images.

The convergence, i.e. Error vs. Iterations, of CS-DIP with RMSProp could

be unstable for some learning rates, even though error gradually decreased. As

such we implemented a stopping condition which chooses the reconstruction with

least error over the last 20 iterations. Note we choose this reconstruction based off

measurement loss and do not look at the ground truth image.

4.2 Results

We first compare our algorithm (CS-DIP) to baselines on all three datasets

using a measurement matrix with Gaussian iid entries. Then we also demonstrate

CS-DIP with a Fourier measurement process on the x-ray dataset.

MNIST

In Figure 3.1b we plot reconstruction error with varying number of measure-

ments m of n = 784. This demonstrates that our algorithm outperforms baselines

in almost all cases. Figure 3.2b shows reconstructions for 75 measurements, while

remaining reconstructions are in the appendix.

Chest X-Rays

In Figure 3.1a we plot reconstruction error with varying number of measure-

ments m of n = 65536. Figure 3.2a shows reconstructions for 2000 measurements,

while the remaining reconstructions are in the appendix. On this dataset we out-

perform all baselines except BM3D-AMP for higher m, which produces sharp

reconstructions. However for lower m, e.g. when the ratio m
n
≤ 3%, BM3D-AMP

23



(a) MSE - Retinopathy with Gaussian mea-
surements

(b) MSE - Chest X-ray with Fourier mea-
surements

Figure 4.1: Per-pixel reconstruction error (MSE) vs. number of measurements,
where vertical bars indicate 95% confidence intervals.

often doesn’t converge. This finding seems to support the work of Metzler et al. [67]:

BM3D-AMP performs impressively on higher m, e.g. m
n
≥ 10%, but recovery at

lower sampling rates are not demonstrated.

Retinopathy

In Figure 4.1a we plot the reconstruction error with varying number of

measurements m of n = 49152. On this RGB dataset we quantitatively outperform

all baselines except BM3D-AMP on higher m; however, even at these higher m,

patches of green and purple pixels corrupt the image reconstructions as seen in

Figure 1.1. Similar to x-ray for lower m, BM3D-AMP fails to produce anything

sensible as demonstrated by additional reconstructions located in the appendix.

Fourier Measurement Process

All previous experiments in this section used a measurement matrix A con-

taining Gaussian iid entries. We now consider the case where the measurement
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Figure 4.2: This figure shows a radial sampling pattern of coefficients Ω in the
Fourier domain. The measurements are obtained by sampling Fourier coefficients
along these radial lines.

matrix is a subsampled Fourier matrix. That is, for a 2D image x and a set of indices

Ω, the measurements we receive are given by y(i,j) = [F(x)](i,j), (i, j) ∈ Ω, where

F is the 2D Fourier transform. In our experiments we choose Ω to be indices along

radial lines, as shown in Figure 4.2. This choice of Ω is common in literature [13]

and has also been used in MRI applications [62, 59, 32]. We run our algorithm along

with BM3D-AMP and TVAL3 baselines on the chest X-ray dataset for {3, 5, 10, 20}
radial lines in the Fourier domain, which corresponds to {381, 634, 1260, 2500}
Fourier coefficients, respectively.

In Figure 4.1b we plot the reconstruction error with varying number of

Fourier coefficients. In the appendix we show reconstructions obtained by our

algorithm versus BM3D-AMP and TVAL3.
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ALGORITHM 1000 2000 4000 8000
CS-DIP 15.7 17.2 20.6 30.1
BM3D-AMP 51.1 54.0 67.8 71.2
TVAL3 13.8 22.1 31.9 56.7
LASSO DCT 27.1 33.0 52.2 96.4

Table 4.1: Runtime (seconds) for each algorithm with varying number of measure-
ments.

Runtime

In Table 4.1 we show runtime of CS-DIP on the x-ray dataset. Our algorithm

has the capability of utilizing GPU, as we run experiments on an NVIDIA GTX

1080-Ti. The other baselines are implemented in MATLAB or sci-kit learn [74] and

as such are restricted to CPU. Comparisons aside, this demonstrates that our method

executes in a reasonable amount of time.
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Chapter 5

Conclusion and Future Work

We first discuss the landscape of compressed sensing algorithms: classical

sparsity-based approaches, modern unlearned approaches, and learned approaches

using neural networks. We then demonstrate compressed sensing recovery using

untrained, randomly initialized convolutional neural networks. Our method outper-

forms previous state of the art unlearned methods in several cases, especially when

the number of obtained measurements is small.

There are several interesting directions for future work. We suspect im-

proved performance from data-driven network initialization, e.g. initializing network

weights according to the learned distribution for W ∗. Another extension could be

to apply our method multiple times over patches within an image, e.g. similar to

PatchGAN proposed by Isola et al. [45]. These Deep Image Prior techniques may

be applicable to other inverse problems e.g. phase retrieval, inspired by Hand et

al. [38]. Further, very recent work showed that convolutions can be replaced by

linear interpolation for Deep Image Prior [40]; it would be interesting to combine

the deep decoder with our methods of regularization.

Overall we believe that the inductive benefits of convolutional neural net-

works will provide significant impact in the future of inverse problem reconstruc-

tion algorithms. We are now working to apply the proposed method to improve

the performance of signal recovery for rapid MRI imaging. As discussed in Sec-

tion 2.4, measurements for medical imaging (e.g. MRI, CT, x-ray), can be costly,
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time-consuming, and in some cases dangerous by exposing the patient to harmful

radiation. Hence there is great incentive to obtain quality reconstructions with fewer

measurements.

To this end we have recently begun a collaboration with Dr. Tom Yankeelov,

a professor who is an expert in quantitative MRI for clinical breast cancer imaging.

With his domain knowledge, we intend to make impact in medical imaging by

utilizing generative neural networks. Specifically we plan to show that CS-DIP will

allow for similar spatial and temporal resolution with fewer MRI measurements.

Beyond MRI, this project will provide intuition for how these compelling algorithms

can be applied to real world problems.

Apart from methods developed with my collaborators at the University of

Texas, I am further exploring how machine learning models can improve medical

imaging. This fall 2019 I will be working as a Research Scientist Intern at Subtle

Medical. Subtle is a start-up that develops deep learning models to reduce the number

of measurements required to reconstruct a particular signal. MRI is a particularly

interesting modality as there are opportunities to reduce both the temporal and three-

dimensional spatial resolutions at which measurements must be acquired. Subtle is

the first company that has obtained FDA clearance to implement their algorithms

in a clinical setting; it will be exciting to work with a company who is making real

impact in that space. Skills I gain in this work experience will be useful for academic

research upon my return to UT-Austin.

Another research goal upon returning to UT is to theoretically analyze various

descent algorithms for this family of non-convex optimization problems under

assumptions of the deep generative model G(z). The proposed signal reconstruction

requires minimizing a non-convex loss �y − AG(z;w)�2. Empirically gradient

descent delivers excellent performance minimizing this loss; however, we have little
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theoretical understanding of how or why it actually works. Investigating this would

be very useful for improving the algorithm and also knowing when we can trust

the reconstructions. I intend to investigate conditions on both the generative model

and measurement process that allow us to establish performance bounds for solving

this non-convex problem. Exciting recent work [39] has developed results for this

problem with random independent weights. I plan on extending these results to

models with more structure or different assumptions.

Overall I believe this proposed method has great potential, and I look forward

to building upon this research in the future.
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(a) 500 measurements
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(b) 1000 measurements

Figure A.1: Reconstruction results on retinopathy images for m = 500, 1000 mea-
surements respectively (of n = 49152 dimensional vector). From top to bottom row:
original image, reconstructions by our algorithm, then reconstructions by baselines
BM3D-AMP and Lasso.
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(b) 50 measurements

Figure A.2: Reconstruction results on MNIST for m = 25, 50 measurements respec-
tively (of n = 784 pixels). From top to bottom row: original image, reconstructions by
our algorithm, then reconstructions by baselines BM3D-AMP, TVAL3, and Lasso.

31



�
��
�
��
�
�

�
�
��

�
�
�
�
��
�
�

�
�
�
�
�

�
�
�
�
�

(a) 100 measurements

�
��
�
��
�
�

�
�
��

�
�
�
�
��
�
�

�
�
�
�
�

�
�
�
�
�

(b) 200 measurements

Figure A.3: Reconstruction results on MNIST for m = 100, 200 measurements
respectively (of n = 784 pixels). From top to bottom row: original image, reconstruc-
tions by our algorithm, then reconstructions by baselines BM3D-AMP, TVAL3, and
Lasso.

32



�
��
�
��
�
�

�
�
��

�
�
�
�
��
�
�

�
�
�
�
�

�
�
�
�
�

(a) 500 measurements

�
��
�
��
�
�

�
�
��

�
�
�
�
��
�
�

�
�
�
�
�

�
�
�
�
�

(b) 1000 measurements

Figure A.4: Reconstruction results on x-ray images for m = 500, 1000 measurements
respectively (of n = 65536 pixels). From top to bottom row: original image, recon-
structions by our algorithm, then reconstructions by baselines BM3D-AMP, TVAL3,
and Lasso.
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(a) 4000 measurements
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(b) 8000 measurements

Figure A.5: Reconstruction results on x-ray images for m = 4000, 8000 measure-
ments respectively (of n = 65536 pixels). From top to bottom row: original image,
reconstructions by our algorithm, then reconstructions by baselines BM3D-AMP,
TVAL3, and Lasso.
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Figure A.6: Reconstruction results on retinopathy images for m = 4000 (of n = 49152
pixels). From top to bottom row: original image, reconstructions by our algorithm,
then reconstructions by baselines BM3D-AMP and Lasso.
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Figure A.7: Reconstruction results on retinopathy images for m = 8000 (of n = 49152
pixels). From top to bottom row: original image, reconstructions by our algorithm,
then reconstructions by baselines BM3D-AMP and Lasso.
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Figure A.8: Reconstruction results on x-ray images for m = 1260 Fourier coefficients
(of n = 65536 pixels). From top to bottom row: original image, reconstructions by
our algorithm, then reconstructions by baselines BM3D-AMP and TVAL3.
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