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Video games, Virtual Reality (VR), Augmented Reality (AR), and Smart

appliances (e.g., smart TVs) all call for a new way for users to interact and

control them. This thesis explores high precision acoustic motion tracking sys-

tem which aims to replace traditional control devices such as mouse and let

the user play games, interact with VR/AR headsets, and control smart appli-

ances. We develop a lightweight system which can achieve mm-level tracking

accuracy using inaudible sounds.

At the heart of our system lies a distributed Frequency Modulated Con-

tinuous Waveform (FMCW) which is able to accurately estimate the absolute

distance between a receiver and a transmitter that are separate and unsyn-

chronized. We further develop an optimization framework to combine FM-

CW estimation with Doppler shifts and Inertial Measurement Unit (IMU)

measurements to enhance the accuracy, and efficient algorithm to solve the

optimization problem.
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We develop several interesting applications on top of our motion tracking

technology, including audio ruler, drawing in the air, and playing motion-

controlled games.

vii



Table of Contents

Acknowledgments iv

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2. Our Approach 7

2.1 Estimating Velocity . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Estimating Propagation Delay . . . . . . . . . . . . . . . . . . 9

2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1.1 Traditional FMCW . . . . . . . . . . . . . . . . 11

2.2.1.2 Our FMCW . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Optimization Framework . . . . . . . . . . . . . . . . . 20

2.2.3 Leveraging IMU Sensors . . . . . . . . . . . . . . . . . . 24

2.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3. Implementation and Applications 27

3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Applications Built on Top of CAT . . . . . . . . . . . . . . . . 30

3.2.1 Audio Ruler . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Drawing in The Air . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Controlling Game . . . . . . . . . . . . . . . . . . . . . 32

viii



Chapter 4. Evaluation 33

4.1 Micro Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Estimating Distance . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Estimating the Reference Position . . . . . . . . . . . . 38

4.1.3 Estimating FMCW Peak Shift . . . . . . . . . . . . . . 40

4.2 2D Tracking Accuracy . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Impact of The Speaker Separation . . . . . . . . . . . . 41

4.2.2 Number of Intervals . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Impact of Weights . . . . . . . . . . . . . . . . . . . . . 44

4.2.4 Leveraging the Sensors . . . . . . . . . . . . . . . . . . 45

4.3 3D Tracking Accuracy . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 3D Tracking Performance . . . . . . . . . . . . . . . . . 46

4.3.2 Error Accumulation . . . . . . . . . . . . . . . . . . . . 48

4.3.3 Robustness to Ambient Sound . . . . . . . . . . . . . . 48

Chapter 5. User Study 50

5.1 Target Pointing Evaluation . . . . . . . . . . . . . . . . . . . . 51

5.2 Drawing Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Mobile Phone Implementation . . . . . . . . . . . . . . . . . . 56

Chapter 6. Related Work 57

6.1 Audio Based Schemes . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 RF-Based Schemes . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Other Sensor Based Schemes . . . . . . . . . . . . . . . . . . . 59

6.4 FMCW-Based Schemes . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 7. Conclusion 63

Index 64

Bibliography 65

Vita 73

ix



List of Tables

x



List of Figures

2.1 Chirp signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Pseudo-transmitted signals. . . . . . . . . . . . . . . . . . . . 10

2.3 Correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Estimating reference position. . . . . . . . . . . . . . . . . . . 17

2.5 The frequency offset problem. . . . . . . . . . . . . . . . . . . 19

2.6 Estimating FMCW peak shift. . . . . . . . . . . . . . . . . . . 21

3.1 Audio Ruler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Drawing in The Air . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Experiment setup. . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Microphone orientation. . . . . . . . . . . . . . . . . . . . . . 35

4.3 The error of estimating distance. . . . . . . . . . . . . . . . . 37

4.4 Results for estimating the reference position. . . . . . . . . . . 39

4.5 Estimating peak shift rate. . . . . . . . . . . . . . . . . . . . . 40

4.6 Errors with various speaker separations. . . . . . . . . . . . . 42

4.7 2 speakers vs 3 speakers. . . . . . . . . . . . . . . . . . . . . . 43

4.8 Number of intervals used in the optimization. . . . . . . . . . 44

4.9 Varying the weights. . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Comparison between with and without IMU. . . . . . . . . . . 46

4.11 3D tracking accuracy. . . . . . . . . . . . . . . . . . . . . . . . 47

4.12 Error over time. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.13 Impact of ambient sound . . . . . . . . . . . . . . . . . . . . . 49

5.1 Target pointing evaluation. . . . . . . . . . . . . . . . . . . . . 51

5.2 Trajectories for pointing target. . . . . . . . . . . . . . . . . . 53

5.3 CDF of drawing error. . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Patterns drawn by CAT (2 speakers) and AAMouse (2 speakers)
corresponding to the median error. . . . . . . . . . . . . . . . 55

xi



Chapter 1

Introduction

Virtual Reality (VR), Augmented Reality (AR), Video games, and Smart

appliances all call for a new way for users to interact and control them. For

example, motion games (i.e., the games played by movement) are popular

across the world. On the other hand, through interviewing 100+ game play-

ers, we have found many of them are unsatisfied with the existing tracking

technologies in the motion games: (i) they often complain about the tracking

accuracy, and (ii) the coarse-grained tracking only supports limited types of

motion games, such as sports and dancing games. However, many players

prefer motion games that require more fine-grained movement, such as first

person shooter (FPS).

In addition, the current interfaces of VR/AR are rather constrained (e.g.,

relying on tapping, swiping, or voice recognition). This significantly limits its

potential applications. Moreover, smart appliances are becoming increasingly

popular. For example, smart TVs offer a rich set of controls and it is important

This thesis is based on the work [22, 23]
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for users to easily control smart TVs. More and more appliances will become

smart, and allow users to control them remotely.

Since mobile devices, such as smartphones and smart watches, are becom-

ing powerful and ubiquitous, they can potentially serve as universal motion

controllers. To turn a mobile device into an effective motion controller, its

movement should be tracked accurately - within a centimeter.

There have been a number of very interesting works on motion tracking

and localization ( e.g., audio-based schemes [28, 32, 49, 51], RF-based schemes

[41, 43, 47, 48], and vision-based schemes [2, 3]). Recent works reduce the track-

ing error significantly by using many antennas and new spectrum (e.g., 60

GHz). Despite significant work on localization and tracking, achieving mm-

level tracking on commodity devices remains an open challenge. Therefore,

we aim to achieve high tracking accuracy, minimize error accumulation over

time, and remove the need of special hardware.

1.1 Our Approach

In this work, we develop a novel system, called high-preCision Acoustic

motion Tracker (CAT), which turns a mobile phone into a motion controller.

CAT can be potentially used to control game consoles, VR/AR, and smart

appliances. A unique feature of our approach is that it uses existing hardware

already available, while achieving high accuracy and ease of use.

We use audio signals for our tracking system because (i) it propagates s-
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lowly, which makes it possible to achieve high accuracy, (ii) it can be supported

by commodity devices thanks to widely available speakers and microphones,

and (iii) its processing cost is low due to its low sampling rate.

In our system, the speakers serve as anchor points and play specially de-

signed acoustic signals. Our system then estimates the distances and velocities

with respect to the speakers based on the received signals using a distributed

Frequency Modulated Continuous Waveform (FMCW) and Doppler shifts. It

then fuses the distances and velocities in an optimization framework to accu-

rately track the movement.

Doppler shift is a well known phenomenon where the signal frequency

changes as a sender or a receiver moves. By tracking the amount of frequency

shift, we can estimate the speed of the mobile with respect to the speakers.

To determine its position, the speed needs to be integrated over time, which

incurs error accumulation.

To minimize error accumulation, we develop a novel FMCW-based ap-

proach to directly estimate the distance between the mobile and the speakers.

Our FMCW differs from existing approaches due to the distributed nature of

our system: the speakers (i.e., transmitters) and the microphone on the mobile

(i.e., receiver) are separate and unsynchronized. In this case, the transmission

time, which is required by traditional FMCW approaches, is not known by the

receiver. Our distributed FMCW addresses the issue using the following steps:

i) find a reference point and determine its absolute position, ii) estimate the

distance change with respect to the reference point when a mobile moves, 3)
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derive the absolute distances between the current point and speakers. In this

way, we no longer need the transmission time. Moreover, a separate trans-

mitter and receiver have different sampling frequencies. To address the issue,

we develop a simple procedure to calibrate and compensate for the frequency

offset.

Furthermore, we develop an optimization framework to incorporate FM-

CW measurements and Doppler shifts over time for accurate tracking. These

two types of measurements are complementary: the former gives distance es-

timation, which does not incur error accumulation, while the latter provides

more accurate distance change in a short term, which helps smooth the esti-

mated trajectory. The framework can further incorporate IMU measurements

(e.g., accelerometers and gyroscopes) to improve the accuracy.

We implement our approach on two platforms: (i) one consisting of a

desktop and a smartphone, where the desktop processes the audio signals fed

back from the smartphone to track the smartphone, and (ii) another consisting

of just speakers and a smartphone, where the smartphone tracks its location

in real time based on the received audio signals. Our evaluation also uses

different settings, which reflect scenarios of console games and VR/AR. For

2D tracking, we show that CAT can achieve median tracking error of 7 mm

in a PC-like setup and 12 mm in a VR-like setup with two speakers. The

corresponding errors under three speakers reduce to 5 mm and 7 mm in 2D,

respectively. For 3D, the error is 8 mm - 9 mm. In comparison, our distributed

FMCW alone has 2 cm error in 2D, and the Doppler alone [49] has 2 cm error in
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the first few seconds but its error increases over time due to error accumulation

(e.g., 8 cm after 30 seconds in our experiments).

Our major contributions include:

• a distributed FMCW approach that achieves highly accurate distance

estimation without requiring synchronized and co-located sender and

receiver,

• an optimization framework to combine distance and velocity estimation

over multiple time intervals to accurately track motion, and an efficient

algorithm to solve it on a mobile device,

• Applications

– First, we enable audio ruler. We let a speaker continuously transmit

specific acoustic signals. We invite a user to place a smartphone at

an arbitrary distance away from the speaker. The smartphone will

analyze the acoustic signal to compute and display the distance

from the speaker. The user can easily evaluate the accuracy of

our tracking system by comparing the readings displayed by the

smartphone with the readings measured by the ruler.

– Second, we will apply our tracking to drawing in the air. We let a

user hold a smartphone and draw in the air. The smartphone will

display the trajectory of its movement by analyzing the received

audio signals using CAT.

5



– Third, we enable motion based computer gaming. We make the

smartphone running CAT serve as a motion controller for video

games by mapping the phone.s movement into a cursor movement

in games using Windows API mouse event. We invite a user to

play a motion-based game using the smartphone. The smartphone

acts as a game controller and analyzes the audio signal transmitted

by several speakers to determine its location in real-time and feeds

back to the computer, which will update the cursor position in the

game. Users can assess the accuracy of CAT based on their gaming

experience (e.g., whether the cursor in the game moves as they

intend).

In the evaluation, our CAT system can achieve 5-7mm error in 2D and

8-9mm error in 3D.

1.2 Outline:

The rest of this thesis is organized as follows. We describe our approach in

Chapter 2, and present implementation details and applications in Chapter 3.

We evaluate its performance in Chapter 4. We review related work in Chapter

6, and conclude in Chapter 7.
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Chapter 2

Our Approach

In our system, multiple static speakers (e.g., those on TV, computer,

VR headset) transmit audio signals to a mobile. The mobile continuously

estimates its velocity (Section 2.1) and distance (Section 2.2) to the speakers,

and uses an optimization framework to combine these estimates to track its

location (Section 2.2.2). We can further incorporate the IMU measurements in

our optimization framework to improve the tracking accuracy (Section 2.2.3).

2.1 Estimating Velocity

The Doppler effect is a well known phenomenon where the frequency of a

signal changes as a sender or a receiver moves [25]. Without loss of generality,

we consider only the receiver moves while the sender remains static. The

frequency changes with the velocity as follows:

v =
F s

F
c, (2.1)

where F is the original frequency of the signal, F s is the amount of frequency

shift, v is the receiver’s speed towards the sender, and c is the propagation

speed of sound waves. Therefore, by measuring the amount of frequency shift
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F s, we can estimate the receiver’s velocity, which can further be used to get

distance and location.

We use the approach described in [49] to estimate the mobile’s velocity

as follows:

• Each speaker continuously emits sine waves at inaudible frequencies. D-

ifferent speakers use different frequencies to distinguish from each other.

• The mobile samples the received audio signals at 44.1 KHz (the standard

sampling rate), applies Hanning window to avoid frequency leakage, and

then uses Short-term Fourier Transform (STFT) to extract frequencies.

We use 1764 samples to compute STFT, which corresponds to the audio

samples in 40 ms. Then, we find a peak frequency and compare it with

the frequency of the original sine wave. The difference between the two

is the frequency shift F s

• In order to enhance the accuracy, we let each speaker emit multiple sine

waves at different frequencies and let the mobile estimate the frequency

shift at each of the frequencies and combine these estimates by removing

outliers and averaging the remaining estimates. We translate the final

estimated frequency shift to the velocity based on Formula 2.1.
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Figure 2.1: Chirp signals.

2.2 Estimating Propagation Delay

2.2.1 Motivation

As shown in [49], the Doppler shift alone can be used to provide reasonable

tracking for a short time. However, since the Doppler shift gives a velocity es-

timate, it has to be integrated over time to get a distance estimate. Therefore,

the error grows over time. For tracking over a long time interval, the accuracy

of the Doppler shift based tracking degrades. In fact, error accumulation is

common in many localization schemes (e.g., dead reckoning [35, 40]).

This motivates us to develop a method to overcome the error accumu-

lation problem. One possibility is to directly estimate distance between the
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Processing interval of the receiver

Figure 2.2: Pseudo-transmitted signals.

speakers and the mobile based on the propagation delay. Unlike velocity, which

needs to be integrated over time and suffers from error accumulation, distance

measurements can be used to directly determine the mobile’s location and

have no error accumulation. One way to estimate the propagation delay is to

send a pulse signal and compute the difference between transmission time and

arrival time. There are two practical challenges with this simple approach: (i)

Due to the time-frequency uncertainty principle, we need large bandwidth in

order to send a sharp pulse signal with good time resolution. Otherwise, the

arrival time estimate will be inaccurate. (ii) Even if we can perfectly detect the

start of the received signal, it is still challenging to estimate the propagation

delay because (1) the sender and receiver’s clocks are not synchronized and

(2) there is non-negligible and variable processing delay at both ends; in com-

mercial devices like smartphones, it is difficult to separate these delays from

the propagation delay. In this section, we develop a new distributed FMCW
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Figure 2.3: Correlation.

based approach to address these challenges.

2.2.1.1 Traditional FMCW

To accurately estimate the propagation delay, instead of sending a sharp

pulse or pseudo-random sequence using large bandwidth [4, 51], we leverage

a FMCW-based approach, which can achieve high estimation accuracy with

moderate bandwidth usage [4].

FMCW approach lets each speaker transmit a chirp signal every period.

Figure 2.1 shows periodic chirp signals, whose frequency sweeps linearly from

fmin to fmax in each period. The frequency within each sweep is f = fmin +

Bt
T

, where B is the signal bandwidth, T is the sweep time. We integrate

the frequency over time to get the corresponding phase: u(t) = 2π(fmint +

B t2

2T
). Therefore the transmitted signal during the n-th sweep is vt(t

′) =

11



cos(2πfmint
′ + πBt′2

T
), where t′ = t− nT .

Consider a chirp signal propagates over the medium and arrives at the

receiver after a delay td. The received signal is attenuated and delayed in time,

and becomes:

vr = α cos(2πfmin(t′ − td) +
πB(t′ − td)2

T
),

where α is the attenuation factor.

The receiver mixes (i.e., multiplies) the received signal with the transmit-

ted signal. That is, vm(t) = vr(t)vt(t). Thus, vm(t) is a product of two cosines.

By using cosA cosB = (cos(A−B) + cos(A+B))/2 and filtering out the high

frequency component cos(A+B), vm(t) becomes:

vm(t) = α cos(2πfmintd +
πB(2t′td − t2d)

T
). (2.2)

Suppose the mobile is at distance R from the speaker initially and moves at a

speed of v. Then td is given by (R+ vt′)/c. Plugging td into Formula 2.2 gives

us

α cos(2πfmin
R + vt′

c
+ (

2πBt′(R + vt′)

cT
− πB(R + vt′)2

c2T
)).

If we analyze the frequency components of the above signal by taking the

derivative of the phase, the constant term can be ignored and the terms

quadratic with respect to (1/c)2 are too small and can also be ignored. The

remaining frequency component, denoted as fp, becomes:

fp =
1

2π

δPhase

δt′
=
BR

cT
+
fminv

c
+
Bv

c
,
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since mean(t′) = T/2. When v is close to 0, there is a peak at BR
cT

in the fre-

quency spectrum. If there are multiple propagation paths between the trans-

mitter and the receiver, multiple peaks are observed in the spectrum of the

mixed signal. In this case, fp is determined by the first peak, which should

correspond to the direct path. Based on measured fp, the distance R can be

derived as:

R =
fpcT

B
. (2.3)

2.2.1.2 Our FMCW

Traditional FMCW assumes that the transmitter and receiver are co-

located and share the same clock. However, in our system, the speakers and

microphone are separate and unsynchronized. Thus, we develop a distributed

FMCW approach to support this situation. In our approach, we apply FM-

CW technique to derive the change of distance to the speaker when the mobile

moves from one position to another. Moreover, we propose a scheme to find a

reference point and leverage this point to convert the distance change to the

absolute distance to the speaker. Also, we explicitly take into account the im-

pact of movement on FMCW to improve its accuracy. We further account for

the impact of sampling frequency offset between the speaker and microphone

to get more accurate distance estimation. Below we elaborate each of these

techniques.

Supporting a separate sender and receiver: In traditional FMCW

technique, the transmitter and receiver have a shared clock. However, in our

13



setup the transmitter (i.e., speaker) and receiver (i.e., microphone) are separate

and have unsynchronized clocks. Precise synchronization between the speaker

and microphone in our scenario is challenging. Even a small synchronization

error of 0.1 ms will lead to 0.1 ms×c ≈ 3.46 cm error, where c is the propagation

speed of sound and around 346 m/s.

We estimate the propagation delay between a separate sender and receiv-

er as follows. First, we perform approximate synchronization on the received

signals to ensure that every processing interval (when we fetch and process au-

dio samples) is aligned with a single chirp signal, as shown in Figure 2.2, since

FMCW requires an almost complete received chirp. Approximate synchro-

nization can be achieved by correlating the received signals with the original

chirp signal. The maximum correlation indicates the best alignment. We se-

lect the time when the highest correlation peak is detected as the start time of

the first processing interval. This synchronization only needs to be performed

once at the beginning. Afterwards, we fetch received signals every 40ms (our

processing interval) for FMCW processing. Note that the synchronization

is approximate since the cross correlation usually shows multiple peaks with

similar magnitude as shown in Figure 2.3.

After synchronization, we need to mix a received signal in each interval

with a transmitted signal. However, the exact start time of a transmitted signal

is unknown to the receiver. So we introduce a notion of pseudo-transmission

time, i.e., the time when the receiver assumes the transmission begins. Let t0

denote the difference between the pseudo transmission time and actual trans-

14



mission time of the first chirp signal. t0 is an unknown constant to the receiver.

At each interval, our estimated distance has a constant offset from the actual

distance due to t0. Since the offset is constant, we can estimate the distance

change over time. To get an absolute distance at any time, we need to know

the absolute distance at some point (called a reference point) and use the

distance change to get the absolute distance at a new location.

Based on the pseudo transmission time, the receiver can construct a pseu-

do transmitted signal, which starts at that time, as shown in Figure 2.2. By

mixing (i.e., multiplying) the received signals with the pseudo transmitted

signals and applying a similar procedure as Section 2.2.1.1, we have:

Rn =
cTfpn
B

+ ct0, (2.4)

where Rn is the distance between the transmitter and receiver during the n-th

interval, fpn is the peak frequency of the mixed signals, c is the propagation

speed of the audio signal, T is the chirp duration, and B is the bandwidth of

the chirp signal, which is equal to fmax−fmin. Considering the above equations

for two intervals, we can derive

Rn −R1 = (fpn − f
p
1 )
cT

B
.

If the distance between the transmitter and the receiver in the first interval

(denoted as R1) is known, Rn can be determined based on:

Rn = (fpn − f
p
1 )
cT

B
+R1. (2.5)
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Reference position estimation: To obtain the distance Rn, we need

to know the absolute distance between the speaker and mobile at some point

(i.e., R1), also called a reference point. One way is to measure using a ruler.

This could be cumbersome and error-prone. We develop the following simple

yet effective calibration scheme to quickly obtain a reference position.

Consider there are two speakers. Without loss of generality, we assume

the two speakers are at (0, 0) and (A, 0), respectively. We let a user move the

mobile device back and forth parallel to the x-axis (i.e., the line connecting

two speakers). As the mobile is moving towards the speaker 2, it experiences

a positive Doppler shift with respect to the speaker before reaching x = A

and experiences a negative Doppler shift after departing from it. Therefore,

we can detect the time when the Doppler shift changes its sign, and at that

time the mobile moves to a point on x = A, which is our reference point.

Now we need to determine the distance between the reference point and

speakers: D1 and D2 in Figure 2.4. We can apply FMCW to estimate the

difference between D1 and D2, denoted as ∆D, by having the two speakers

transmit at the same time and adopting the same pseudo-transmission time.

In this case, t0, the difference between the pseudo-transmission time and the

actual transmission time, is the same for both speakers. Thus, by subtracting

Formula 2.4 for the two speakers, we have

∆D = D1 −D2 =
cT (fp,1 − fp,2)

B
,

where fp,1 and fp,2 denote the peak frequencies detected by FMCW technique
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for the two speakers, respectively.

Besides D1 − D2 = ∆D, we also know that D2
1 − D2

2 = A2 due to the

property of a rectangular triangle. Then we can determine D1 and D2 based

on these equations. To improve the accuracy, we can sweep the mobile cross

the reference position multiple times, and use the mean as the estimation for

D1 and D2.

(A,0)

Speaker 1 Speaker 2

(0,0)

Figure 2.4: Estimating reference position.

When there are three or more speakers, the mobile can choose any position

as the reference point. In this case, we can use the method discussed above to

determine ∆Dij between speakers i and j. Based on these ∆D’s, we can solve

the coordinate of the reference position, denoted as (x, y), by minimizing the

following objective function:

(
√

(x− x1)2 + (y − y1)2 −
√

(x− x2)2 + (y − y2)2 −∆D12)
2

+(
√

(x− x1)2 + (y − y1)2 −
√

(x− x3)2 + (y − y3)2 −∆D13)
2
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+(
√

(x− x2)2 + (y − y2)2 −
√

(x− x3)2 + (y − y3)2 −∆D23)
2,

where (xi, yi) is the position of i-th speaker.

Impact of movement: For clarity, we omit the impact of the receiver’s

movement when deriving Formula 2.5. But a non-negligible velocity will lead

to an additional shift to the peak frequency of the mixed signals. In this case,

the peak frequency is at:

fpn =
B(Rn − ct0)

cT
+
fminvn
c

+
Bvn
c
, (2.6)

where vn is the receiver’s velocity with respect to the transmitter in the n-th

interval. For ease of explanation, we assume the receiver is static in the first

interval. Thus, Rn becomes:

Rn = (fpn −
fminvn
c
− Bvn

c
− fp1 )

cT

B
+R1, (2.7)

According to the equation, the absolute distance Rn can be determined by

measuring the FMCW peak frequencies in the first and n-th interval (fpn and

fp1 ), the velocity during the n-th interval (vn) based on the Doppler shift, and

the reference distance (R1).

Frequency offset: Due to imperfect clocks, the sampling frequencies

at the transmitter and receiver are not exactly the same [13]. The frequency

offset makes the sender and receiver experience different time when sending

or receiving the same number of samples. This introduces an error in esti-

mating the peak frequency of the mixed signals. Figure 2.5 shows an example

to illustrate the issue, where a sender transmits a chirp consisting of 1764
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1764 samples at the receiver

1764 samples at the transmitter

Delay 1

Delay 2 Delay 3

Chirp 1 Chirp 3Chirp 2

Figure 2.5: The frequency offset problem.

samples. After a propagation delay (e.g., Delay 1), the chirp arrives at the

receiver. Since the receiver has a slightly different clock rate, it takes slightly

longer for the receiver to accumulate these 1764 samples. Therefore, Delay 2

not only includes the propagation delay but also the difference between the

transmission time and receive time for chirp 1 caused by different clock rates.

Similarly, Delay 3 includes the propagation delay and the difference between

the transmission and receive time for chirps 1 and 2. In general, if the sender

and receiver are static and their sampling frequency offset is constant, the

estimated delay will increase linearly over time.

To compensate for this effect, we introduce a short calibration phase at

the beginning. We fix the receiver’s location during the calibration. Without

a sampling frequency offset, the peak frequency detected by FMCW should be

fixed. The frequency offset will introduce a steady shift in the peak frequency

over time. We can estimate the shift by plotting the peak frequency over time

as shown in Figure 2.6. We then apply a least square fit to the measurement

data. The slope of the line, denoted as k, captures how fast the peak changes

over time due to the frequency offset. Given the estimated slope, we process
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the raw measurements as follows:

fadjusted
p = f rawp − kt, (2.8)

where fadjusted
p and f rawp are the adjusted and raw peak frequencies, respec-

tively, t is the time elapse from the start, and k is the slope of the fitted line.

Figure 2.6(b) shows fadjusted
p is stable over time after the compensation.

The sampling frequency offset may slowly change over time. Our experi-

ments show that the initial estimation is valid for at least a few minutes. We

can further improve the accuracy over a longer duration by re-calibrating the

frequency offset whenever the receiver is stationary, which can be detected

based on IMU.

2.2.2 Optimization Framework

We propose the following optimization framework that combines the Doppler

shift and FMCW measurements for accurate motion tracking. Specifically, we

minimize the following function:∑
i∈[k−n+1..k]

∑
j

α(|zi − cj| − |z0 − cj| − di,jFMCW )2+

∑
i∈[k−n+2..k]

∑
j

β(|zi − cj| − |zi−1 − cj| − vdoppleri−1,j T )2, (2.9)

where k is the current processing interval, n is the number of intervals used

in the optimization, zi denotes the mobile’s position at the beginning of the

i-th interval, z0 denotes the reference position, cj denotes the j-th speaker’s

position, di,jFMCW denotes the distance change from the reference location with
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Figure 2.6: Estimating FMCW peak shift.

respect to the j-th speaker at the i-th interval, vdoppleri,j denotes the velocity with

respect to the j-th speaker during the i-th interval, T is the interval duration,

and α and β are the relative weights of the measurement from FMCW and
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Doppler shifts.

The only unknowns in the optimization are the mobile’s position over time

(i.e., zi). The speakers’ coordinates cj can be determined using the method

proposed by [49]. di,jFMCW and vdoppleri,j are derived from FMCW and Doppler

shift measurement, respectively.

Essentially, the objective reflects the goal of finding a solution zi that

best fits the FMCW and Doppler measurements. The first term captures

the distance calculated based on the coordinates should match the distance

estimated from the FMCW, and the second term captures the distance traveled

over an interval computed from the coordinates should match with the distance

derived from the Doppler shift. Our objective consists of terms from multiple

intervals to improve the accuracy. The above formulation is general, and can

support both 2-D and 3-D coordinates. zi and cj are both vectors, whose sizes

are determined by the number of dimensions.

This optimization problem is non-convex, which means that there is no

guarantee on convergence and the computation cost can be high. To efficiently

solve the problem, we develop an algorithm based on convex optimization.

The unknowns in the original optimization problem are the node’s coordinates

over time. This yields a complicated objective involving
√
.. To simplify the

objective, we use the node’s distances to different speakers over time (denoted

as Di,j) as unknowns (i.e., replacing |zi − cj| with Di,j in Formula 2.9), which

is a convex function in terms of Di,j. However, not all distances are feasible

(i.e., there may not exist coordinates that satisfy the distance constraints). We
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need to derive additional constraints to enforce feasibility. In the first step, we

solve a convex relaxation of the original problem by using the distances as the

unknowns and replacing feasibility constraints of the distances with triangular

inequality constraints. Triangular inequality constraints are necessary in order

for the distances to be realizable in a low-dimensional Euclidean space. They

are also sufficient to guarantee feasibility in a 2D space, but not sufficient

in a 3D space. Therefore, in the next step we project the solution obtained

from the first step into a feasible solution space. This projection is related to

network embedding, which embeds network hosts into a low-dimensional space

while preserving their pairwise distances as much as possible. We develop

a embedding method based on Alternating Direction Method of Multipliers

(ADMM) [5] to efficiently solve the problem.

Our optimization has following nice properties. First, it combines FM-

CW with Doppler measurement, where the former gives distance estimation

without error accumulation while the latter provides more accurate distance

change in a short term. Effectively combining the two allows us to achieve

high tracking accuracy. Second, it uses measurements from multiple time in-

tervals to improve the accuracy. Third, we develop an efficient algorithm to

solve it. Fourth, other types of measurement can be easily incorporated in the

framework to enhance the accuracy, as shown below.
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2.2.3 Leveraging IMU Sensors

Next we leverage Inertial Measurement Unit (IMU) sensors along with

audio signals to improve the tracking accuracy by synchronizing measurements

from IMU with the audio and adding them into our optimization framework.

Accelerometer is cheap in terms of hardware cost, processing overhead, and

battery consumption. However, it is inaccurate for long-time tracking because

double integration is needed. To limit error accumulation, we first estimate

the initial velocity based on Doppler shifts and then integrate accelerations

over only a short time (e.g., 360 ms in our implementation) to get the distance

traveled during this period. Moreover, we use the gyroscope to measure the

rotation and translate the accelerometer readings to the direction consistent

to our tracking coordinate.

We add additional terms to the optimization objective and new opti-

mization variables to incorporate the error with respect to the IMU sensors.

Formula 2.10 shows the final objective. The first two terms are the same as

above. Let k denote the current interval. The third term reflects the difference

between the distance traveled during the past n− 1 intervals calculated based

on the mobile’s coordinates versus the distance estimated from the initial ve-

locity vinitk−n+1 and IMU sensor readings, where vinitk−n+1 is the new optimization

variable and represents the initial velocity at the (k−n+1)-th interval. dIMU
k−n+1,k

is the displacement from the start of (k − n + 1)-th interval to the start of

k-th interval, which is calculated based on IMU sensor readings assuming the

initial velocity is zero. The fourth term reflects the difference between the
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average velocity in the (k − n + 1)-th interval estimated based on the IMU

sensors versus based on the Doppler shift, where vdoppleri is the velocity in the

i-th interval estimated based on the Doppler shift and is a vector, and ∆vIMU
k−n+1

captures the velocity change in the (k−n+ 1)-th interval calculated based on

IMU. σ and γ are the weights of the two new terms.

∑
i∈[k−n+1..k]

∑
j

α(|zi − cj| − |z0 − cj| − di,jFMCW )2+

∑
i∈[k−n+2..k]

∑
j

β(|zi − cj| − |zi−1 − cj| − vdoppleri−1,j T )2+

σ(zk − zk−n+1 − vinitk−n+1(n− 1)T − dIMU
k−n+1,k)

2+

γ(vinitk−n+1 + 1/2 ·∆vIMU
k−n+1 − v

doppler
k−n+1)2. (2.10)

2.2.4 Summary

Putting everything together, Procedure 1 shows the pseudo code of our

final system.
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Algorithm 1 CAT tracking system

1: Estimate speakers’ positions as in [49];

2: Perform approximate synchronization to align the processing intervals with

the received chirps;

3: Find a reference point;

4: Estimate the peak shift rate due to sampling frequency offset;

5: while TRUE do

6: Fetch next 40 ms audio signals (1764 samples);

7: Apply FFT to estimate Doppler shifts at various frequencies;

8: Combine multiple Doppler shift estimates to derive velocity;

9: Mix the received signals with the pseudo transmitted signals;

10: Apply FFT on the mixed signals;

11: Derive the distance based on peak frequency in the mixed signal, peak

shift rate, reference position, and velocity;

12: Combine velocity and distance estimates (optionally with IMU) to derive

the coordinates based on optimization.

13: end while
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Chapter 3

Implementation and Applications

In this chapter, we present implementation details and the applications

built on top of our motion tracking technology.

3.1 Implementation

We implement CAT on two platforms. Our first platform consists of a PC

with speakers and an Android phone. The phone collects audio samples and

inertial sensor data, and sends back to the PC through Android debug bridge.

Our tracking program running on the PC analyzes the collected measurements

to track the phone in real time. Our second platform consists of external

speakers playing audio sound and a mobile phone analyzing the received audio

signal to track its location in real time. We use the first platform to perform

all our evaluations and use the second platform to demonstrate the feasibility

of running CAT on a smartphone.

Our system separately estimates Doppler shift and propagation delay us-

ing sine waves and saw-shape chirp signals (as shown in Figure 2.1) on different

frequency bands. Each Doppler measurement takes 1 KHz, which includes five
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sine waves at five different frequencies separated by 200 Hz to avoid mutual

interference. For each FMCW measurement, the chirp signal with 2.5 KHz

bandwidth is used. These signals are generated by Matlab and saved in a

standard wav audio file, which can be played directly from a general-purpose

speaker.

We implement three different frequency allocations. The first one is a

two-speaker system for 2D tracking. We allocate 1 KHz for each of the two

speakers to continuously measure the Doppler shift. We allocate 2.5 KHz for

FMCW estimation, and let two speakers alternatively send chirp sequences to

share that frequency band. One speaker transmits chirps swiping from 17 KHz

to 19.5 KHz, while the other transmits chirps sweeping from 19.5 KHz to 17

KHz. This helps to differentiate signals from different speakers. In addition.

there is a 500 Hz guard band between the frequencies used for Doppler shift

measurement and FMCW estimation. In this way, the audio signals in the two-

speaker system occupy 14.5-19.5 KHz, which are virtually inaudible to most

people [15]. Moreover, another benefit is that such frequency is not interfered

by ambient sound. As reported in the measurements from [26], the ambient

interference is almost close to noise levels beyond 6KHz and becomes negligible

beyond 8KHz. Note that when the speakers alternate sending chirps, for each

interval we remove the error term associated with the silent speaker during

that interval from the optimization objectives (i.e., Formula 2.9 and 2.10).

The second is a three-speaker system for 2D tracking to further improve

the accuracy. We let each speaker continuously send sine waves for the Doppler
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shift estimation and chirp sequences for the FMCW measurement. In this

case, each speaker occupies 4 KHz frequency band (i.e., 1 KHz for Doppler,

2.5 KHz for FMCW, and 0.5 KHz guard band). Including guard bands between

speakers, the audio signals altogether occupy 6.5 - 19.5 KHz, which is audible.

As shown in Section 4, the accuracy of our two-speaker system is comparable

to that of the three-speaker system when the speakers are separated by 90

cm. When the separation reduces to 30 cm, the three-speaker system becomes

substantially better.

The third is a four-speaker system for 3D tracking. In this case, the

first two speakers share a 2.5 KHz frequency band for FMCW measurement

by alternatively sending chirp signals. Similarly, the other two speakers use

another 2.5 KHz band for FMCW estimation. In addition, each speaker is

allocated 1 KHz for Doppler shift measurement. Thus, including the guard

band, the audio signals occupy 9.5 KHz - 19.5KHz, which is audible.

There are several ways of fitting the audio signals from three or more

speakers into inaudible band. One option is to let them alternate in sending

chirp sequences and sine waves. Another option is to use ultrasound speakers

and microphones, which can send and receive audio signals with frequencies

higher than 20 KHz and have much wider available bandwidth. A third option

is to swap the transmitters and receivers in our implementation, i.e., have the

mobile transmit and use the received signals by the microphones connected to

PC for tracking. The new challenge is to get separate audio streams from in-

dividual microphones since many systems output combined signals from all its
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microphones. We verify it is feasible to use splitter and cable to get separate

audio signals from each microphone. In this way, we can simply use 4 KHz

for both the Doppler and FMCW estimation, which can easily fit into inaudi-

ble spectrum supported by the existing hardware. We can further apply the

techniques in [18] to smooth transitions and make the sound even less audible.

3.2 Applications Built on Top of CAT

Based on the CAT system, we build several practical applications.

3.2.1 Audio Ruler

Audio Ruler is a distance-measuring-app which is installed on an Android

smartphone. We let one speaker continuously transmit acoustic signals which

we described in section 3.1. Then, users could place the smartphone at an

arbitrary distance away from the speaker. The app will display the distance

between the smartphone and the speaker by combining FMCW estimation

with Doppler shifts and Inertial Measurement Unit. Figure 3.1 shows an ex-

ample of comparing the distance displayed by Audio Ruler and the readings

measured by a ruler.

3.2.2 Drawing in The Air

We also apply CAT to drawing in air. We let a user hold a smartphone and

draw shapes in the air, the smartphone will draw the trajectory of its movement
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Figure 3.1: Audio Ruler

by analyzing acoustic signals received by our tracking system. Figure 3.2 shows

an example of trajectory.

Figure 3.2: Drawing in The Air
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3.2.3 Controlling Game

We further develop our tracking system as a motion controller for playing

video games. In this system, we map the phone’s movement into a cursor

movement in games. The smartphone acts as a game controller and analyzes

the audio signal transmitted by several speakers to determine its location in

real-time and feeds back to the computer, which will update the cursor position

in the game. There is a demo video, which shows we play a popular Android

game Fruit Ninja using CAT, in [1]
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Chapter 4

Evaluation

We evaluate CAT using Dell XPS X9100 desktop with Intel i7 CPU and

8GB memory as a main processor. This desktop supports at most 6 speakers.

We use Logitech S120 2.0 speakers ($10 each). The speakers’ volume is set to

30 out of 100 to ensure it works in a normal range. We use Nexus 4 as our

mobile device, which moves within 1m/s in our experiments.

For 2D tracking, we randomly move our hand with various speeds in a

horizontal plane. We compare the tracking accuracy of CAT when using 2

speakers versus 3 speakers. In addition, we also compare with the Doppler

shift based approach using 2 speakers [49] and camera-based approach, the

latter of which serves as the ground truth. To facilitate the camera to get the

ground truth, we put a blue marker on the phone and let the camera track

the blue marker. Camera is not a general tracking solution because it requires

good lighting condition, a visually distinct target, and line-of-sight. We ensure

all these requirements are satisfied for the vision based tracking to work well.

In our two-speaker system, the default separation between the speakers is

0.9 m. In the three-speaker system, the third speaker S3 is added as shown in

Figure 4.1. The mobile device is 1.1 m away from the line defined by the two
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Figure 4.1: Experiment setup.

speakers. Moreover, the microphone located at the bottom of the smartphone

faces the speakers, as shown in Figure 4.2(a).

For 3D tracking, we use four speakers. The placement of these speakers

are indicated by S1, S2, S4, and S5, as shown in Figure 4.1, where S4 (S5)

is fixed at 0.7m above S1 (S2). Since it is difficult to get the precise ground

truth location in 3D space with a camera, we conduct experiments for 3D

tracking in the following way. We print the trajectory of a given shape (e.g.,

triangle or circle) on a paper, and attach the paper to a tilted surface. As

the slope of the surface is known, the position of the trajectory in 3D space

can be determined. In the experiments, we move the smartphone following
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Figure 4.2: Microphone orientation.

the trajectory on the paper and use our scheme to track the movement in the

3D space. The tracking results are compared with the printed trajectory to

compute the tracking errors.
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4.1 Micro Benchmark

First, we present micro benchmarks.

4.1.1 Estimating Distance

In this experiment, the distance between the speaker and the mobile is

estimated based on Formula 2.7, assuming the reference point (i.e., R1) is

known in advance. Figure 4.3(a) plots the estimated distance for a portion of

our trace. As we can see, the estimated results closely follow the ground truth.

The median error is less than 4 mm, and 90-th percentile error is 9 mm.

Figure 4.3(b) further plots the error in the distance estimation as we vary

the separation between the speaker and mobile, while the speaker volume

remains unchanged (30 out of 100). The estimation error increases when the

separation is larger than 3 meters, and reaches 1 cm when the separation is 7

meters. Further increasing the separation may lead to the failure of detecting

FMCW peaks (i.e., fpn in Formula 2.7). In this case, we need to increase the

speaker volume to increase the operating range.

We further evaluate the proposed scheme under no light-of-sight (LOS)

between the speaker and microphone. First, we use a piece of cloth to cover

the microphone to emulate the mobile is in the pocket (case 1), and find the

tracking error is 4.4 mm, similar to that under LOS. In this case, the signals

from all paths are attenuated by a similar amount and we can detect the

correct FMCW peak and Doppler shift to accurately estimate the distance
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Figure 4.3: The error of estimating distance.

and velocity. Next, we put a small cardboard box (8 cm×5 cm×2 cm) at the

middle point of the line connecting the speaker and the microphone, while

the active region of our speaker is 10 cm tall and 2 cm wide (case 2). The

tracking error increases to 5.9 mm, slightly higher than that under LOS. In
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this case, the direct path between the speaker and microphone is blocked but

the signal can arrive at the microphone through a path close to the direct

path. So our system can estimate the distance and velocity with a reasonable

accuracy. Then we turn the mobile 90o away from the speaker (case 3), as

shown in Figure 4.2(b). In this case, we can barely see the microphone from

the speaker. The tracking error becomes 5.1 mm due to a reason similar to

case 2. Further increasing the cardboard size or turning the mobile away from

the speaker will degrade the tracking accuracy since both the direct path and

nearby paths are blocked, which may cause an incorrect detection of FMCW

peaks. As part of our future work, we plan to enhance the accuracy for these

most challenging cases.

4.1.2 Estimating the Reference Position

Next we evaluate the error in estimating the reference position. Each

time when we swipe across the speaker, we get one estimation of the reference

position. When we swipe multiple times, the reference point is estimated as

the average across all sweeps. The more times we sweep, the more accurate

the estimation is. We collect a trace from 969 swipes. Then we compute the

average estimation error as we vary the number of sweeps S and report the

average across S sweeps. As shown in Figure 4.4(a), the error bar is centered

at the mean with the length set to its standard deviation of sampled mean.

The error reduces considerably as we increase the number of sweeps from 1 to

2. It continues to decrease until 4 sweeps. Afterwards, additional sweeps do

38



not significantly reduce the error.
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Figure 4.4: Results for estimating the reference position.

Figure 4.4(b) compares the median tracking error as we inject a varying

amount of error to the reference position. We compute the trajectory error by

shifting the entire trajectory by the error in the reference position and com-

puting the difference between the estimated and ground-truth trajectories. To
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compute the trajectory difference, for each point on the estimated trajectory,

we identify the point on the ground-truth trajectory from the camera that

has the closest timestamp, compute the Euclidean distance between the two

points, and average over all points on the trajectory. Even with 4 cm error

in the reference position, we can still achieve around 7 mm trajectory error,

which demonstrates that the trajectory tracking is robust to the error in the

reference position.

4.1.3 Estimating FMCW Peak Shift

Figure 4.5 shows the estimated peak shift rate (due to the sampling fre-

quency offset) as we increase the number of chirps used for estimation. As we

can see, the estimation converges when we use 50 chirps, which take 2 s in our

implementation, since the chirp duration is 40 ms.
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Figure 4.5: Estimating peak shift rate.
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4.2 2D Tracking Accuracy

In this section, we quantify the tracking accuracy by varying a few pa-

rameters to understand their impacts. We compute the error by comparing

with the ground truth obtained from the camera.

4.2.1 Impact of The Speaker Separation

We first examine the impact of the speaker separation. Figure 4.6 plots

the median error as we vary the separation between the two speakers. Different

separations represent various application cases: the larger separations corre-

spond to the home theater/smart TV/ game console scenarios, whereas the

small separation corresponds to VR/AR settings. For example, in the VR/AR

setting, the ratio of the distance between the hand and head vs. the distance

between the two speakers on the headset is around 3-4, which corresponds to

the setting in the left most bar. As the figure shows, the error reduces as we

increase the separation between the speakers. For example, the median error

using 2 speakers is 12 mm under 30 cm separation, and reduces to 7 mm under

90 cm separation.

Figure 4.7 further plots the tracking accuracy under 3 speakers. We con-

sider two settings. The first setting is shown in Figure 4.1. The other setting

is similar but the distance between S1 and S2 and that between S2 and S3

both reduce to 30 cm. The median error reduces to 5 mm in the first setting,

and to 7 mm under the second setting. Compared with the results from the

two-speaker setup, the three speakers bring larger improvement under a small-
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Figure 4.6: Errors with various speaker separations.

er separation, because the additional speaker helps to reduce ambiguity in the

two closely located speakers.

4.2.2 Number of Intervals

Figure 4.8(a) and (b) plot the median error and running time as we vary

the number of processing intervals used in our optimization, respectively. The

error bars in Figure 4.8(b) are centered at the mean and the bar length reflects

its standard deviation of sampled mean. For the running time, we compare

two optimization solvers: 1) general non-linear solver NLopt [29] to optimize

Formula 2.9 in Section 2.2.2; 2) embedding-based solver on the converted

problem as proposed in Section 2.2.2. The two solvers yield the same error, but

the embedding is more efficient especially under a larger number of intervals.

With 10 intervals (the default value in our evaluation), the optimization time

is 2 ms. In additional, it takes 2 ms to measure Doppler shift, and 3 ms to
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Figure 4.7: 2 speakers vs 3 speakers.

measure FMCW. The total time to compute the position is 8 ms, well below

our processing interval 40 ms.
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Figure 4.8: Number of intervals used in the optimization.

4.2.3 Impact of Weights

We examine the impact of the weights (α, β) in our objective function

(Formula 2.9 in Section 2.2.2). Figure 4.9 plots the CDF of errors under differ-

ent weights. With weight (0,1), only Doppler shift is used in our scheme. This
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is essentially AAMouse [49]. With (1,0), only FMCW measurement is used

and the optimization becomes finding the intersection of circles whose sizes are

the distance estimates from FMCW. The other weights all use both Doppler

and FMCW. As we would expect, the tracking error of using both information

is significantly lower than using one of them. The weight (1,40) performs the

best because it makes the two terms (after multiplying the weights) in our

optimization objective have similar magnitude. However, the tracking error

is not sensitive to the exact weights: a wide range of weights offer similar

performance, as shown in the figure.
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Figure 4.9: Varying the weights.

4.2.4 Leveraging the Sensors

Figure 4.10 plots the median errors with or without using IMU sensors in

our two-speaker tracking system. As it shows, using IMU sensors is beneficial
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to improve the tracking performance. When two speakers are separated by

90 cm, the tracking error is reduced by 3%. When the separation between

the speakers decreases to 30 cm, using IMU reduces the tracking error by 6%.

We expect the benefit of incorporating IMU increases as the accuracy of IMU

improves. Moreover, our optimization framework is flexible to leverage other

types of measurements to further improve the performance.
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Figure 4.10: Comparison between with and without IMU.

4.3 3D Tracking Accuracy

In this section, we evaluate CAT with four speakers in 3D space.

4.3.1 3D Tracking Performance

In this experiment, we evaluate the tracking performance for drawing a

triangle and a circle in the 3D space. In Figure 4.11, the graphs on the left
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show the trajectories tracked by CAT versus the ground truth, and the graphs

on the right show the corresponding tracking errors. As we can observe, the

median error for 3D tracking is about 8 mm - 9 mm, which is slightly larger

than those in 2D experiments because of larger degree of freedom.
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Figure 4.11: 3D tracking accuracy.
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4.3.2 Error Accumulation

To check if our scheme has error accumulation, we compare the track-

ing errors for drawing triangles in 3D space with AAMouse [49] (using four

speakers). The experiment lasts for 180 s. During this period, we keep moving

the smartphone following the printed triangle trajectory. As shown in Figure

4.12, the 3D tracking error of CAT is stable over time, and significantly out-

performs AAMouse. This demonstrates our method effectively addresses error

accumulation problem.
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Figure 4.12: Error over time.

4.3.3 Robustness to Ambient Sound

To evaluate the robustness of our scheme to ambient sound, we continu-

ously play music when using CAT to track the smartphone. We play several

different genres of music (e.g., Jazz, Pop, and Classic) together to emulate

different ambient sound. The speaker for playing music is placed near S1 as
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shown in Figure 4.1. The music volume is the same as the acoustic signals for

tracking. Figure 4.13 compares the tracking error with and without playing

music. We observe no significant difference between two cases, which indicates

that our scheme is robust to ambient sound.
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Figure 4.13: Impact of ambient sound
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Chapter 5

User Study

We recruit 10 users and report evaluation results from our user study.

We conduct two types of experiments. In the first experiment, we let users

touch targets shown on a screen and measure the distance traveled. A shorter

distance indicates more accurate tracking and easier to use. In the second

experiment, users are asked to draw some shapes on the screen and we com-

pare the measured trajectories versus the original trajectories to quantify the

accuracy. We use our 2D tracking systems for user study.

In the evaluation, we run each experiment 10 times involving different

users. Each user has 10-minute training for each scheme (i.e., CAT and AA-

Mouse). When using CAT, the users are asked to hold the device in such a way

to avoid their hands blocking the microphone. The overall experiment lasts

about 1 hour for each user. The distances of our ground truth trajectories

used for pointing and drawing experiments are 41.37 cm for pointing, 73.26

cm for drawing a triangle, 60.67 cm for drawing a double-circle, and 153.1 cm

for drawing a loop back, as shown in Figure 5.4. The tracking and visualiza-

tion are both done online in real-time. Meanwhile, we also store the complete

traces to compute various performance metrics offline. For touching point, we
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Figure 5.1: Target pointing evaluation.

compare the distance traveled in order to touch a target, which reflects the

amount of user effort. For drawing shapes, we measure the error by comparing

the actual pointer trajectory with the ground-truth trajectory.

5.1 Target Pointing Evaluation

We evaluate the usability of CAT as a pointing device based on the distance

traveled in order to touch several targets. We let a user start from a middle

point in a line, move to the right end, and then come back to the left end.

Figure 5.1 shows the average distance traveled by our scheme and AA-

Mouse, which is a Doppler shift-based method. As a reference, we plot the

exact path length to touch these points. We consider a pointer touches the
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target if it is within 10 pixels (around 1.38 cm) of the target. As another

reference, we also plot the minimum possible trace length, which corresponds

to the exact distance - 2×1.38 = 41.37 - 2.76 = 38.62 cm. CAT with two or

three speakers (labeled by “CAT 2S” and “CAT 3S”, respectively in the figure)

both have smaller distance than the Doppler shift based approach. We expect

the gap between CAT and Doppler based scheme will increase as the number

of points to touch increases due to error accumulation in the latter.

Figure 5.2 plots the trajectories that correspond to the median perfor-

mance for each scheme. Even though the distances traveled by both schemes

do not differ significantly, there is a clear difference between their trajectories.

CAT closely follows the ideal trajectory. The trajectory of CAT under 3 speak-

ers (not shown) is even better. In comparison, even though the Doppler based

scheme is already close to the ideal trajectory, there is still clear deviation.

5.2 Drawing Evaluation

Next we ask a user to draw simple shapes: a double-circle, triangle, and

loop back, shown on the screen using the pointer controlled by CAT or AA-

Mouse [49]. We measure the quality of the drawings by calculating the distance

between the drawn figure and the original shape. For each point in the orig-

inal figure, we calculate its distance to the closest point in the drawing, and

average across all points. While this does not perfectly capture the quali-

ty of the drawing, it provides reasonable distinction between well-drawn and

poorly-drawn figures.
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Figure 5.2: Trajectories for pointing target.

Figure 5.3 shows the CDF of the drawing error. CAT yields significantly

lower error than AAMouse. For example, the median error for drawing loop

back with CAT are 3.8 mm (3 speakers), 4.3 mm (2 speakers), while that for

Doppler-based tracking is 11.2 mm. It is interesting to see that the tracking

errors in user study are usually smaller than those presented in Section 4.2.

This is because that in the user study users can adjust their movement when

they see the trajectory deviate from the ground-truth.

Figure 5.4 further plots trajectories drawn by the two schemes correspond-

ing to the median error. As before, it is evident that CAT consistently follows
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the original shapes much closer than the Doppler based scheme.
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Figure 5.4: Patterns drawn by CAT (2 speakers) and AAMouse (2 speakers)

corresponding to the median error.
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5.3 Mobile Phone Implementation

We also implement CAT on a mobile phone (Nexus 4). The phone uses

CAT to efficiently track its own location using fast signal processing in [24]

and the optimization solving algorithm mentioned in Section 2.2.2. The total

time required to process audio samples and determine the position is 31 ms,

lower than our processing interval (40ms). The CPU usage is around 35%.

The tracking accuracy of the mobile phone is the same as that of the desktop

version, because the only difference between the two versions is where the

signal processing and computation are performed.

We make the phone running CAT to serve as a motion controller for video

games, including Crossy Road [45] and Fruit Ninja [37] by mapping the phone’s

movement into a cursor movement in games using Windows API mouse event.

We ask 5 users to use our motion controller to play these games, and they find

the performance is comparable to a traditional mouse.
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Chapter 6

Related Work

We classify the related work based on the types of the signals and under-

lying techniques used for tracking and localization.

6.1 Audio Based Schemes

Audio signals are attractive for localization and tracking due to its slow

propagation speed, which improves accuracy. Cricket [36] uses a combination

of RF and ultrasound, and achieves a median error of 12 cm with 6 beacon

nodes. Compared with Cricket, CAT improves the accuracy, and removes the

need of dense deployment and special hardware. [32] develops a novel scheme

that can estimate the propagation delay by having both ends send and receive

audio signals to cancel out the processing time and clock difference. Based

on [32], [51] develops a series of system approaches to make accurate distance

ranging for mobile gaming. Similar to [32], [51] relies on cross-correlation

to determine the propagation delay. To achieve high accuracy, 10-16 KHz

bandwidth is used in [51]. In comparison, FMCW can achieve more accurate

estimation of propagation delay using more narrow bandwidth (e.g., 2.5 KHz).

FingerIO [28] develops a novel device-free tracking scheme to track a moving
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finger near a smartphone or a smartwatch. CAT differs from FingerIO in that it

is a device based tracking and works for a larger distance (e.g., a few meters),

but faces synchronization problem that does not exist in device-free tracking.

AAMouse [49] is closest to this paper. Different from [49], we estimate the

distance using a new FMCW-based approach in addition to velocity measure-

ment and fuse the two using an effective optimization framework to enhance

the accuracy and minimize error accumulation.

6.2 RF-Based Schemes

RF has been widely used for localization and tracking. ArrayTrack [47] is

a pioneering fine-grained tracking system based on WiFi by using an array of

antennas. It achieves a median error of 23 cm using 16 antennas. RF-IDraw

[41] achieves high resolution and low ambiguity by placing 8 RFID antennas

with different spacing. Its median error is 3.7 cm. WiDraw [38] enables hand-

free drawing in the air by estimating angle of arrival (AoA) based on CSI. Its

median error is within 5 cm when using 25 WiFi transmitters. mTrack [43]

achieves high tracking accuracy by leveraging the phase of 60 GHz RF signals

as well as sophisticated hardware (e.g., highly directional and steerable 60 GHz

antennas). Tagoram [48] uses commercial off-the-shelf RFID for localization

and tracking. When the target moves along an unknown track (as in our

context), the median error is 12 cm. In comparison, our system can run on

commodity hardware and achieve higher accuracy.
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6.3 Other Sensor Based Schemes

IMU sensors can also be used for motion tracking. However, its tracking

error accumulates rapidly over time due to noisy measurements and the need of

double integration [49]. Kinect [2] uses depth sensors and Wii [3] uses infrared

cameras to track movement. They both require line-of-sight and have limited

accuracy. LeapMotion [19] uses sophisticated vision techniques to recognize a

wide range of gestures. Compared with the vision based techniques, audio-

based approaches are generally more efficient and flexible: its signal processing

cost is low and it works under different lighting conditions and often without

line-of-sight (e.g., under small obstacles since there exists a detour path close

to the direct one or obstacles that do not significantly attenuate the audio

signal, such as cloth and paper).

6.4 FMCW-Based Schemes

FMCW based technique has been used for localization and motion track-

ing. Most existing schemes use co-located transmitter and receiver sharing

the same clock. For example, [4] applies RF FMCW signals to 3D device-free

tracking and achieves the tracking error of 10-20 cm. [27] leverages acoustic

FMCW to detect chest and abdomen movements, which is used to identify

sleep apnea.

FMCW has also been applied to the systems with separate transmitter-

s and receivers. Such systems tend to have larger range and stronger SNR.
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However, most of these systems assume strict time synchronization between

the transmitter and the receiver without studying how to achieve synchroniza-

tion (e.g., [11, 17, 21]). [42, 44] study synchronization for distributed FMCW

systems. GPS signals have been considered for synchronization, which is very

expensive. In general, synchronization significantly complicates the design and

implementation of a distributed system. Therefore, we use relative distance

change and reference point localization to avoid the need of synchronization.

There are a couple of schemes that do not need synchronization. In [8, 46],

a separate transmitter and receiver use FMCW to track another moving tar-

get. In this case, chirp signals arrive at the receiver via two paths: the direct

path from the transmitter to the receiver, and the reflected path from the

transmitter to the target and finally reaching the receiver. FMCW is used to

estimate the difference between the propagation delay of the two paths. The

length of the reflected path via the target is determined based on the length

of the direct path, which is assumed to be known. When multiple receivers

exist, the target’s position can be estimated based on the length of reflected

paths to different receivers. In our scenario, the target to be tracked is the

receiver itself and the above scheme is not applicable. [7, ?] develop FMCW

to measure the time difference of arrival (TDOA) from different transmitters

to the receiver. Since such methods give the difference between the distances

to different anchors, they require more anchor nodes than the number of di-

mensions for localization, whereas our approach derives absolute distance from

each anchor and the number of anchor nodes required is equal to the number
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of dimensions. [12] measures the round-trip time by letting one node send and

another node respond upon receiving the signals. This approach may lead to

significant errors in many systems, including smartphones, since they cannot

precisely control the transmission time or determine the exact receiving time.

Moreover, since the scheme in [12] requires both nodes to send, receive, and

process signals whereas our approach only requires a node to either transmit

or receive and process the signals, our approach is more widely applicable.

Some radars use a triangular chirp based FMCW for joint distance and

velocity estimation [33], where the chirp frequency increases over time in the

first half and then decreases in the second half. The first and second halves

of the received chirp signal experience different frequency shifts. When we

observe two peak frequencies in the spectrum of the mixed signal, we can derive

distance based on the average of the two frequencies and derive velocity based

on their difference. However, when the chirp duration is short, the frequency

domain resolution is limited and two peaks may merge together, which makes

the joint estimation impossible. Based on our experiments, we find that two

peaks will merge together when the chirp is within 200 ms, and become fully

separated when the chirp is longer than 1 s. Such a long chirp duration is not

acceptable for tracking, since it leads to significant processing delay. Therefore,

joint estimation is not applicable to our context. Moreover, our distributed

FMCW and optimization framework are general, and can support different

waveforms, including the triangular waveform.

61



6.5 Gesture Recognition

The goal of gesture recognition is to determine which gesture best matches

the current measurement. Hence it requires training data collected from pre-

defined gestures. IMU sensors are widely used for gesture recognition [6, 16,

20, 31]. They can also be combined with other measurements, such as EMG

sensors [50] and ultrasound [30], to further improve the performance. WiSee

[34] proposes a novel device-free gesture recognition based on WiFi signals.

[9, 10, 14, 39] use the Doppler shift of the audio signal for gesture recognition.

In general, continuous tracking is more challenging due to the lack of training

data or patterns to match against.
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Chapter 7

Conclusion

This paper presents a novel tracking system. At its core is a new dis-

tributed FMCW-based distance estimation that (i) supports a separate sender

and receiver, (ii) localizes a reference point to translate the relative distance

to the absolute distance at new locations, (iii) explicitly takes into account

the additional frequency shift caused by the movement, and (iv) takes into

account the sampling frequency offset between the sender and receiver. We

further combine FMCW with the Doppler shift and IMU sensors over multi-

ple time intervals to continuously track the mobile. We further develop three

applications based on CAT: (i) an app can measure the distance between the

speaker and the phone, (ii) an app for drawing in air, (iii) and an app serv-

ing as a controller for video games. Our evaluation shows that CAT achieves

mm-level accuracy and ease of use using existing hardware.

Our future work includes further enhancing the robustness of our track-

ing system for a wide range of usage scenarios including varying degrees of

multipath, and developing applications that leverage such capabilities.
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