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A novel methodology for optimizing nuclear fuel cycle transitions that captures 

interactions between a policy maker and electric utility company is presented. The 

methodology is demonstrated using a two-person general-sum sequential game with 

uncertainty that is implemented using a nuclear fuel cycle simulator capable of calculating 

a material- and technology-constrained material balance, coupled to a multi-objective 

optimization solver. The solver explicitly treats uncertainties using a stochastic 

programming approach with chance nodes depicted as a Nature player who moves 

randomly. The methodology is demonstrated through a Transition Game that features 

tradeoffs between investments in competing reprocessing and waste disposal technologies, 

dynamic reactor deployment responses to resolutions in reactor capital cost uncertainty, 

and the influence of capital subsidies on the future nuclear technology mix. Each player in 

the game uses a unique set of decision criteria to identify optimal near-term hedging 

strategies that consider all of Nature’s possible moves as well as the other player’s 

available decisions. These hedging strategies balance the exchange between the risk of 
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immediate action and delay and maintain flexibility to allow for intelligent recourse 

decisions once uncertainties are resolved. Results from the Transition Game indicate that 

early transition to high-temperature gas-cooled reactors is preferred, with the option to 

abandon the transition following a learning period if capital costs are unfavorable. Under 

these conditions, transition to used fuel recycling in sodium-cooled fast reactors may be 

spurred by policy incentives under some certain decision criteria weightings. Otherwise, 

operating with a baseline set of decision criteria weightings, transition to a closed fuel is 

never observed when players hedge optimally against Nature’s moves. It is only when 

players have perfect information regarding Nature’s future moves will transition to a closed 

fuel be observed.  
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CHAPTER 1:  INTRODUCTION 

The U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) has been 

researching technology to shape the nuclear fuel cycle to better balance the need for energy, 

economic and proliferation security, environmental sustainability, and the risks associated 

with development and deployment of new fuel cycle technologies. Previous fuel cycle 

analysis tools have been constrained by human and computer resources. Many studies have 

opted for a less detailed, but more expansive view of the fuel cycle due to the tradeoff 

between depth and breadth of modeling. As a result, some key features in fuel cycle 

transition analysis have suffered, including:  

1. Treatment of transients, instead examining the fuel cycle operating equilibrium 
where facilities are continually built, operated and decommissioned as needed. 

2. Simultaneous optimization across multiple objective functions, instead focusing on 
specific areas of interest to the researchers conducting the study. 

3. A robust treatment of uncertainties, instead examining uncertainties through 
sensitivity or scenarios analysis that varies parameter values within a deterministic 
model.  

As more computing resources become available, DOE-NE fuel cycle studies have better 

addressed these issues. The Dynamic Systems Analysis Report for Nuclear Fuel Recycle 

(DSARR) examines the time-dependent exchanges between fuel cycle technologies 

resulting from transitioning to a closed fuel cycle where used fuel is recycled 

(Dixon et al., 2009). Specifically, the DSARR considers the effect of timing and 

constraints on fuel cycle technology on uranium resource utilization and transuranic (TRU) 

inventories. High-level parameters such as the installed reprocessing capacity and the TRU 

conversion ratio in fast reactors are identified using sensitivity analysis. The Evaluation 

and Screening Study (E&S Study) reviewed the largest collection of fuel cycle options, 
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grouping them into similar physics-based evaluation groups and assessing their 

performance based on nine DOE-specified evaluation criteria (Wigeland et al., 2014). The 

E&S Study treated uncertainties in fuel cycle performance by binning the data ranges for 

each evaluation metric resulting in a coarser investigation. In this way, the DSARR and the 

E&S Study complement one another. The DSARR examines the effects of transitioning 

from one fuel cycle to another, while only considering effects of the transition on 

economics and waste management. The E&S study looked at many fuel cycle evaluation 

criteria, while only considering fuel cycles operating at equilibrium. Both studies 

acknowledge and handle uncertainties in some way, though neither offer guidance on how 

to best evolve the fuel cycle in light of these uncertainties. 

Recently, the DOE-NE Fuel Cycle Research & Development (FCR&D) program 

has identified the need for a next-generation fuel cycle simulation tool to support decision 

making and communication and education on the multiple attributes of potential fuel 

cycles. The envisioned tool, now developed as the Cyclus code, is designed to employ 

modularity in order for users to specify the level of detail at which to model the fuel cycle 

– or even part of the fuel cycle. The work presented here complements these efforts, 

developing a proof-of-concept preconditioner tool that employs:  

1. A lightweight systems model of the nuclear fuel cycle to capture dynamic effects.  
2. Multiple decision criteria and fuel cycle metrics to create a complex decision space. 
3. A stochastic programming approach for explicitly handling uncertainties.  

The VEGAS simulator is used as the platform for this work due to its reduced runtime. The 

primary advantage of the VEGAS simulator is its ability to calculate a material- and 

technology-constrained material balance, which has been shown to have a large effect on 
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the mix of reactor technology at the end of a transition. Developing algorithms capable of 

calculating a constrained material balance has proven a challenging task in past fuel cycle 

analyses. Still, the VEGAS simulator is limited in its lack of discrete facility modeling, 

physical fidelity at the isotopic level, and time-dependencies arising from radioactive 

decay. Given the material balance, multiple objective function values may be rapidly 

solved using a variety of fuel cycle metric calculations. When uncertainties are input prior 

to runtime, they may be propagated to the calculated objective function values. Lastly, an 

explicit treatment of uncertainties in the fuel cycle transition is achieved using a stochastic 

programming approach, where uncertainties are explicitly accounted for in the strategic 

decisions that collectively define the transition evolution. Using a stochastic programming 

approach, near-term hedging strategies can be identified that balance tradeoffs between the 

risk of immediate action and delay and allow flexibility to adapt future decisions based on 

new information.  

Unique to this work in the realm of fuel cycle transition analysis is application of a 

game theoretic approach to depict interactions between key participants in a nuclear 

project: a government entity and a utility generating company. Previous transition 

optimizations have assumed a single “benevolent dictator” shaping the future of the nuclear 

fuel cycle, acting with a single set of decision criteria. Instead, each participant shapes the 

transition based on his or her unique decision criteria, and each responds uniquely to 

uncertainty resolutions as well as the other’s previous decisions as time moves forward. 

Incorporating these players and a Nature player that moves randomly brings autonomous 

decision making into the fuel cycle simulator. 
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A game theoretic approach to energy systems modeling is not in itself new, nor is 

the explicit treatment of uncertainties in nuclear fuel cycle transition analysis through a 

stochastic programming approach. The novelty of the work presented here is their merger, 

coupled with a sophisticated fuel cycle simulation tool, allowing for rich transition 

scenarios to be analyzed using a diverse set of competing fuel cycle metrics.  This work 

demonstrates a proof-of-concept systems analysis approach to optimization of a fuel cycle 

transition strategy. The methodology presented here addresses the previously identified 

short-comings of past fuel cycle analyses. 

This document is structured into three major sections. Chapter 2 provides a survey 

of the existing literature in nuclear fuel cycle analysis pertaining to the treatment of 

uncertainty in fuel cycle transition analyses, multi-objective decision making, game theory 

and the primary fuel cycle simulators that have been used in DOE-NE studies. Chapters 3 

through 5 detail the methodology used for this work. Chapter 3 describes the nuclear fuel 

cycle simulator used here, including its material balance and reactor ordering algorithms 

and unique features that enhance its ability to act as a qualified preconditioner tool for rapid 

fuel cycle transition strategy scoping. Chapter 4 gives background for the decision criteria 

used in this study, the chosen fuel cycle metrics that are used to score these criteria and 

their calculations. Chapter 5 describes a fuel cycle transition game including players and 

their decision criteria, available strategies and payoff calculation, as well as uncertainties 

incorporated into the game, with results presented in Chapter 6. Chapter 7 summarizes the 

most important findings of this research and identifies areas of future work.  
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CHAPTER 2:  LITERATURE REVIEW 

This chapter overviews treatment of uncertainty in past fuel cycle transition 

analyses and introduces the stochastic programming approach employed here for explicitly 

handling uncertainties. Challenges and the need for multi-objective optimization and its 

implementation in recent fuel cycle transition studies are discussed. By examining multiple 

objectives and ascribing unique decision criteria to prime participants in a nuclear project 

allows nuclear fuel cycle transitions to be analyzed using a game theoretic lens. Past work 

coupling multi-agent interactions in a fuel cycle context are described. Finally, a summary 

of the primary past and current fuel cycle simulators used for DOE-NE fuel cycle analysis 

efforts are summarized. The methodology presented in this dissertation is a merger of game 

theory and decision analysis and fuel cycle simulation and modeling with the primary goal 

of optimizing a nuclear fuel cycle transition subject to uncertainty. Through this merger, 

autonomous decision making is brought into the fuel cycle simulator. 

2.1 UNCERTAINTY IN NUCLEAR FUEL CYCLE TRANSITION ANALYSES 

More comprehensive nuclear fuel cycle transition studies have recently been made 

possible through use of complex fuel cycle simulations coupled with increased 

technological capabilities. All nuclear fuel cycle transition studies determine natural 

resource and technology requirements for changeover from one (typically the current) 

nuclear fuel cycle to another. For instance, many transition studies have examined the 

changeover from the current U.S. open fuel cycle consisting of a light water reactor (LWR) 

fleet to a closed fuel cycle comprised of fast reactors (FRs) burning recycled used fuel from 

LWRs (Yacout et al., 2004; Dixon et at., 2009; Djokic et al., 2015). Uncertain parameters 
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abound in these transitions – technology costs and availability dates, demand growth for 

nuclear electricity and promise of government loan guarantees and tax credits, to name a 

few. Previously, nuclear fuel cycle transition studies have handled these uncertainties using 

sensitivity and scenario analysis. Newer work has taken a stochastic programming 

approach in order to explicitly handle uncertainties, formulating robust transition strategies 

(Carlsen, 2016; Phathanapirom and Schneider, 2016; Pierpoint, 2017). Kann and Weyant 

(2000) offer a thorough description of these approaches to uncertainty analysis, which are 

summarized here.  

Sensitivity analysis may help allocate uncertainty in model output to different 

sources of uncertainty in its input. Sensitivity analysis is performed by recalculating 

outcomes of the model while varying uncertain input parameters over their possible ranges. 

When variation of an input parameter produces relatively small alteration in model output, 

that output is considered robust, while if a large variation is observed, it is considered 

sensitive. Given its straightforward nature requiring zero modifications of the model, this 

type of analysis is commonly used. While simple, sensitivity analysis is useful in that it 

allows increased understanding of relationships between model inputs and outputs that may 

aid in future investigations by reducing computational burden by identifying inputs that 

cause rise to larger uncertainty in model outputs that should be the focus of future 

investigations (Bistline, 2013; Wian, 2013).  

Scenario analysis is roughly similar to sensitivity analysis – no model 

modifications are required, and input parameters are varied across their possible ranges. 

The crucial distinction of scenario analysis is its construction of different states of the world 

through some combination of uncertain parameter values, which represent a plausible 
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description of how the system and its driving forces may develop in the future 

(Walker et al., 2003; Gabbert et al., 2010). Solutions of a deterministic optimization model 

are unique to each individual scenario and offer a set of coherent, internally consistent 

futures. 

Sensitivity and scenario analysis treat uncertainties as exogenous to a deterministic 

model. The central issue of these approaches is the assumption that decision makers have 

perfect information about the state of the world that will prevail. In reality, decision makers 

must act before uncertainties are resolved, and in many situations to resolve those 

uncertainties.  

Stochastic programming explicitly handles uncertainties by simultaneously 

considering all possible states of the world, offering a systematic approach to decision 

making under uncertainty. Stochastic programming requires a decision maker to make 

some decision now that minimizes the (usually) expected cost or consequence of that 

decision. Considering stochastic programs in this way gives rise to a recourse model, where 

information available to the decision maker is updated in each sequential stage 

(Golub et al., 2014; Leibowicz, 2018). The simplest form of a stochastic program is the 

two-stage linear program with recourse, however, due to the complex, dynamic nature of 

the nuclear fuel cycle, linear programming is insufficient. Instead, the nuclear fuel cycle 

simulator is treated as a black-box that a solution algorithm can invoke to obtain an 

objective function value.  

Fig. 2.1 below depicts a two-stage stochastic program. The cost (or objective 

function value) 𝐹(𝑑$, 𝜔, 𝑑') is dependent on the first stage decision 𝑑$, the outcome of the 

stochastic variable 𝜔, and the second stage decision 𝑑'. 𝑑' is termed a recourse decision, 
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as it is taken after obtaining information on the value of 𝜔. The first stage decision (𝑑$) 

represents a near-term hedging strategy that is chosen by minimizing the expected cost of 

that decision through a probability weighted sum of 𝐹(𝑑$, 𝜔, 𝑑'∗), where 𝑑'∗(𝑑$, 𝜔) is the 

optimal recourse decision that minimizes the costs given 𝑑$ and 𝜔 initial conditions.  

Fig. 2.1 depicts two decision makers acting at 𝑑$ and 𝑑', represented by the 

differently colored decision nodes. Binsbergen and Marx (2007) examined the relationship 

between decision analysis and game theory and concluded that some sequential games can 

be analyzed using a decision analysis approach. The sequential game considered in this 

dissertation is solved through the method of backward induction, where the behavior of 

multiple players is handled by considering multiple decision trees. The notion of payoffs 

in game theory is equivalent to gains in decision theory.  

 
Figure 2.1:  Two-stage stochastic program. 

Consider the Centipede Game, depicted in Fig. 2.2: a pile of silver dollars is on a 

table, and two players (I and II) alternate turns taking either one or two coins from the pile, 
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keeping the coins they take (Ferguson, 2014). As soon as either player takes two coins, the 

game stops, and the rest of the coins are cleared away. As long as both players take only 

one coin at each of their turns, the game continues until the pile is exhausted. The game 

has a finite number of moves, which is known in advance to both players. In Fig. 2.2, I (II) 

at the first black circle (decision node) indicates that it is Player I’s (II’s) turn. The ordered 

pair from following a decision node “down” represents (Player I’s payoff, Player II’s 

payoff). Player I plays first: if she chooses “down”, both players get 1, and if she chooses 

“across”, II gets an opportunity to make a decision. On II’s move, if he chooses “down”, I 

gets payoff of 0 and he gets 3, but if he chooses “across”, the turn passes to I, and so on. If 

both players always choose “across”, they both receive payoff of 100 at the end of the 

game.  

 

Figure 2.2:  The Centipede Game. Figure source: (Ferguson, 2014). 

Solution by the method of backward induction is as follows: At the last move, 

Player II will go down instead of across since that gives him 101 instead of 100. Therefore, 

at the next to last move, Player I will go down since that gives her 99 instead of 98. This 

continues until reaching the initial position, where I will go down rather than across 

because she receives 1 instead of 0. While the backward induction seems to give rise to 

“irrational” behavior in the Centipede Game, it is used here for illustrative purposes.  
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Pierpoint (2017) constructs an optimization “wrapper” that invokes the FANTSY 

fuel cycle simulator to examine how uncertainties in the nuclear power demand growth 

rate and reactor capital costs affect the decision to close the fuel cycle. The wrapper 

enumerates each branch of the decision tree and obtains objective function values for each 

branch. Once each branch is scored, the method of backward induction is used to find 

optimal hedging strategies. Similarly, Carlsen (2016) examines time-wise uncertainties 

such as disruption in fuel supply to devise optimal hedging strategies in reactor deployment 

strategies. Due to the fidelity of the Cyclus simulator, coupled with the fine decision space 

examined, Carlsen relied on a custom PSwarm optimizer to obtain an approximate solution.   

2.2 MULTI-OBJECTIVE DECISION MAKING 

Selection of an “optimal” nuclear fuel cycle transition is complicated by external 

costs – those costs that are paid by society as a whole rather than exclusively by consumers 

of nuclear power. The terms “full cost” and (less frequently) “real cost” of electricity 

generation have been borne from consideration of these externalities (Hubbard, 1991; 

UTEI, 2018; OECD, 2018). The challenge in examining these externalities arises when 

deriving a mechanism for estimating the costs of the impacts and identifying appropriate 

importance weightings.  

Several aspects of nuclear energy often identified as external costs (both positive 

and negative) include liabilities from decommissioning nuclear facilities, security of 

supply, health and environmental impacts and radioactive waste disposal. Multi-objective 

optimization allows for trade-offs between these objectives, offering robust decisions. 

Flicker et al. (2014) reviewed 20 published fuel cycle systems analyses to determine the 
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most widely used quantitative metrics for comparing fuel cycle options. These metrics were 

grouped into 5 evaluation criteria: (1) economics, (2) safety, (3) waste management, (4) 

proliferation and (5) sustainability.  

One challenge of multi-objective optimization is combining quantitative and 

qualitative metrics through utility function mapping for comparison of competing metrics. 

This translation requires expert knowledge, and often multiorganizational working groups. 

Another complication arises when considering the appropriate importance weightings of 

the different decision criteria, and even the traditional choice to simply linearly combine 

utility values from the different decision criteria (Marler and Aurora, 2004). Charlton et al. 

(2017) demonstrate this complexity in their development of a multiattribute utility analysis 

for the assessment of proliferation resistance in the nuclear fuel cycle. When an expert 

panel has been unavailable, utility functions are often taken as the min-max normalization 

of a quantitative objective function, with sensitivity of the criteria weightings considered 

by varying these parameters over their appropriate space (Pierpoint, 2011; Carlsen, 2013).  

2.3 EXTENSION TO GAME THEORY 

The no-data problem arising from decision making under uncertainty may be 

viewed as a special variety of two-person games, in which Nature moves (“chooses” a 

strategy) without considering payoffs, or whose payoff is zero, and so plays randomly. The 

second rational player chooses strategies that maximize his or her expected payoff using 

information available about Nature’s strategies. This class of games is termed Games 

against Nature (Milnor, 1951), though Nature is not against the rational player. In general, 

games against nature may have any number of stages and players.  
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Binsbergen and Marx (2007) examine the relationship between decision analysis 

and game theory, identifying the key features of both analysis approaches (Table 2.1). 

Binsbergen and Marx conclude that some sequential games can be analyzed by considering 

multiple decision trees, with each tree corresponding to an individual player. These trees 

must also account for the dependence of the payoffs on the actions of the other players. A 

key difference in a game theoretic approach is the allowance of mixed strategies – optimal 

strategies as long as the decision maker randomizes over actions that each maximize his or 

her expected payoff. When this situation arises in a pure decision analysis framework, the 

decision maker is instead indifferent between the two strategies. For this situation, 

Binsbergen and Marx developed extended decision analysis. While the two may be 

mathematically equivalent in some cases, insights into the strategic interaction between 

decision makers can be gained by examining nuclear fuel cycle transition using a game 

theoretic lens. 

Table 2.1:  Key features of decision analysis and corresponding counterparts in game 
theory. 

Decision Analysis Game Theory 
Set of alternatives Strategy set 
Chance and unknown events Moves of Nature 
Results Payoff mapping 
Solution concept Equilibrium concept 

Pierpoint (2011) proposed and briefly examined a Government-Industry interaction 

model. Pierpoint examined industry response to an increase in the 1 mill per kWh nuclear 

waste fee under the Nuclear Waste Policy Act of 1982. In her work, Pierpoint assumes that 
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the government absolutely benefits from the transition to fast reactors as the obligation of 

the government stops at waste management. The variable waste fee is exogenously applied 

in the simulation. Under a different guise, the variable waste fee could be viewed as a first 

stage strategy.  

Resource allocation in safeguards and security applications to nuclear facilities 

have been examined using a game theoretic approach. Avenhaus (2013), 

Butler et al. (2013), and Ward and Schneider (2016) each examine a facility operating with 

static material flows, independent of the dynamics of material flow resulting from the 

nuclear fuel cycle system in which the facilities are emplaced. However, in addition to 

individually examining an enrichment and reprocessing facility, Ward explores a systems 

approach to optimization across the two facilities. Ward considers a Cournot game, aimed 

at optimal safeguards such as random inspections against a proliferation scenario. An 

“efficient frontier” is identified that depicts payoff as a function of budget. Butler et al. 

incorporate uncertainties in a sequential decision making model, though do not examine 

recourse decisions following uncertainty resolutions, which is equivalent to solving for the 

expected value solution.  

2.4 FUEL CYCLE SIMULATION 

Nuclear fuel cycle simulators are systems dynamics models, consisting of a 

network of levels and flows. Generally, the flows between levels are static properties of 

the system. The key utility of fuel cycle simulators is achieved when dynamic flows or 

connections between levels are incorporated, allowing for analysis of transient periods 

during technology changes (Piet et al., 2009). Such analyses help develop a comprehensive 
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understanding of the fuel cycle. Many fuel cycle simulators are currently in existence 

(Juchau et al., 2010; Huff and Dixon, 2010; Feng et al., 2016). While all are developed for 

similar purposes, large variations are seen in physical fidelity and processing time. In 

general, lower fidelity simulators achieve a reduction in required processing power while 

losing physical distinction between fuel cycle scenarios. Conversely, higher fidelity 

simulators sacrifice processing time in order to track constituent components of material 

flows.  

According to Jacobson et al. (2010), “the real value of a model is how many ‘Aha!’ 

moments it gives you”. Fuel cycle simulators model the dynamic transition from an initial 

state to an end state, providing natural resource needs and technology requirements, 

material flows and their compositions, and other time-dependent fuel cycle data. The 

minimum requirements to define the initial state of the nuclear fuel cycle are the nuclear 

electricity generating capacity, including reactor types and their fuel requirements. Then, 

users define a transition scenario that typically includes reactor deployment and 

reprocessing capacity deployment schedules to meet a set nuclear electricity demand by 

the end of the simulation (end state).  

DYMOND was first developed at Argonne National Laboratory for the Gen IV 

Fuel Cycle Crosscut Group and is the predecessor for many systems dynamics codes in use 

today (Yacout et al., 2004). Materials are lumped into fission products, minor actinides and 

several types of U and Pu, and radioactive decay is not implemented. Typical run times are 

less than a minute for scenarios lasting over a century with month-long time steps, which 

users may vary. Easy interpretation of results from the DYMOND code are prioritized over 

model sophistication and complex algorithms, leading to allowance of scenario failure. For 
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instance, a scenario failure may occur when there is insufficient feed material to fulfill 

reactor demand, resulting in unmet user-defined energy demand. 

VISION was developed at Idaho National Laboratory for the U.S. DOE Advanced 

Fuel Cycle Initiative as an evolution of the DYMOND code (Yacout et al., 2005; 

Jacobson et al., 2010). VISION has been used as the campaign’s primary analysis tool for 

several years. Similarly, VISION simulates a nuclear fleet, though the fleet may be 

composed of multiple reactor types, each with a user-specified fuel cycle and reprocessing 

strategy. VISION allows a fair amount of flexibility for the user to define material routing 

between fuel cycle facilities and material transformations occurring when material passes 

through facilities. 81 individual isotopes are tracked and radioactive decay is modeled 

along with up to 5 different fuel compositions for a single type of fuel to more accurately 

reflect the isotopic evolution of fuel through multiple passes through a reactor. Typical run 

times for VISION are less than 5 minutes.  

Most recently, the Cyclus fuel cycle simulator was developed as a next-generation 

fuel cycle simulation tool as part of the DOE FCR&D program (Huff et al., 2016). Of the 

simulators developed for DOE initiatives, the Cyclus code offers the highest physical 

fidelity in representing the nuclear fuel cycle, with the ability for users to select an 

acceptable tradeoff between physical fidelity and computation time for their needs. This 

ability is due to Cyclus’s modular ecosystem of loadable, interchangeable, plug-in libraries 

of fuel cycle component process physics. For instance, users interested in waste impacts 

may select detailed modules for separations facilities and track material at the isotopic 

level. Typical run times for transition scenarios such as those examined by Djokic et al. 

(2015) are 2-3 minutes.  
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METHODS 

The methods used in this dissertation are presented in the following three chapters: 

Nuclear Fuel Cycle Simulation, Multi-Objective Decision Criteria, and the Nuclear Fuel 

Cycle Transition Scenario. The VEGAS nuclear fuel cycle simulator is described in 

Chapter 3. Its performance is compared to the Verifiable Fuel Cycle Simulation Model 

(VISION) code, originally developed as part of the U.S. Department of Energy Advanced 

Fuel Cycle Initiative studies. Documented are enhancements to the original VEGAS code 

that allow for added realism and distinction between fuel cycle transition strategies. The 

preconditioner capability of the VEGAS code is discussed. Chapter 4 introduces the decision 

(fuel cycle evaluation) criteria and associated fuel cycle metrics with which each player in 

the nuclear fuel cycle transition game chooses his or her strategies. Each player chooses 

his or her strategy based on a unique set of decision criteria, introducing complex 

interactions between the two. The calculation of each fuel cycle metric considered here is 

documented. Finally, Chapter 5 describes the nuclear fuel cycle transition scenario (the 

Transition Game) examined in this dissertation. VEGAS simulation inputs, including 

high-level scenario parameters and fuel cycle metric coefficients, are documented in this 

chapter. The Transition Game’s players, their available strategies and corresponding 

payoffs, and the solution concept are also documented.  
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CHAPTER 3: VEGAS NUCLEAR FUEL CYCLE SIMULATOR 

VEGAS is a dynamic nuclear fuel cycle simulation tool. The alpha version was 

originally developed as a lightweight, fast-executing platform for scoping and selection of 

certain nuclear fuel cycle transition scenarios for more detailed analysis using a higher-

fidelity simulator such as NFCSim (Schneider et al., 2005). The VEGAS code is chosen here 

as the analysis platform as it provides a physical material- and technology-constrained 

model of the nuclear fuel cycle while offering a reduced runtime over more detailed fuel 

cycle systems tools. Performance of a nuclear fuel cycle transition strategy is calculated 

using the general methodology depicted in Fig. 3.1. Fuel cycle transition paths are input to 

the VEGAS simulator, that then computes a material balance for each path. Objective 

function values (which measure the performance of a nuclear fuel cycle transition path) are 

then obtained using objective function calculators that require the material balance. These 

calculators are described in Chapter 4. 

 

Figure 3.1: Basic objective function value calculation method. Input and output data in 
pink; calculation processes in blue. 
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Benchmark comparisons of the VEGAS code against the Verifiable Fuel Cycle 

Simulation Model (VISION) code, developed at Idaho National Laboratory 

(Jacobson et al., 2010), are documented and presented in Section 3.1. The material balance 

and reactor deployment algorithms utilized by VEGAS are summarized from 

Schneider and Phathanapirom (2016) in Section 3.2. Unique to the VEGAS simulator is a 

roll-back feature that undoes reactor build decisions if material- or technology-constraints 

are violated. Section 3.3 catalogs several enhancements to the VEGAS code that have been 

added to further distinguish and add richness to fuel cycle transition strategies. These 

enhancements include modifications to VEGAS’s original material balance and reactor 

deployment algorithms. 

3.1   VALIDATION 

To test the performance of the VEGAS simulator, reactor deployment and used fuel 

inventories calculated from VEGAS are compared to those published in the Dynamic 

Systems Analysis Report for Nuclear Fuel Recycle (DSARR) by the Idaho National 

Laboratory (Dixon et al., 2009). Analyses in the DSARR were performed using the 

VISION code, originally developed as part of the U.S. Department of Energy Advanced 

Fuel Cycle Initiative studies. VISION is a systems tool of the nuclear fuel cycle 

programmed in the commercial system dynamics tool PowerSim Studio. The VISION 

model tracks 81 isotopes and chemical elements. A key difference between the two 

simulators is its use of reprocessing capacity – VISION always utilizes installed capacity 

to its fullest extent and inventories of separated used fuel are allowed to accumulate, 

whereas in the original version of VEGAS, used fuel is reprocessed annually only as reactor 

fuel is demanded, discussed further in Section 3.2.1.   
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Presented in the DSARR are three scenarios: once-through, nominal 1-tier, and 

nominal 2-tier. Complete description of the scenarios reviewed in the DSARR can be found 

in its Appendix C and validation of the VEGAS simulator is further illustrated by 

Schneider and Phathanapirom (2016). In the 1-tier scenario, reprocessed light water reactor 

(LWR) used fuel supports commercial fast reactors (FR), while in the 2-tier scenario, 

reprocessed LWR fuel is burned in mixed U/Pu oxide (MOX)-fueled LWRs, with FRs 

following as fuel residency and cooling times allow. Each scenario tracks the nuclear fuel 

cycle beginning in 2000 with 86 GWe-year of nuclear electricity generation, ending in 

2100. No nuclear electricity demand growth is observed until 2015, when demand growth 

is assumed to resume at a rate of 1.75 percent per year.  

3.1.1   ONCE-THROUGH SCENARIO 

All nuclear electricity generated in the once-through scenario is assumed to come 

from LWRs using standard uranium oxide (UOX) fuel. Fig. 3.2 shows the annual 

electricity generated during the simulation time period, with cumulative used fuel 

quantities in Fig. 3.3. Dashed and solid lines represent results from the VISION and VEGAS 

fuel cycle simulators, respectively. In the DSARR scenario, a geologic repository is 

assumed to begin accepting commercial used fuel beginning in 2017, with the repository 

filled to 63,000 tIHM with legacy UOX used fuel by 2038. At the beginning of the VEGAS 

simulation, a lump sum of ~45,000 tIHM legacy UOX used fuel is placed in dry storage to 

replicate the DSARR conditions. Fuel in reactors at start-up have a residency time of 

5 years, after which used fuel enters wet storage.    
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Figure 3.2:  Nuclear electricity generation for once-through scenario. 

 

 

Figure 3.3:  Used fuel quantities for the once-through scenario.  
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3.1.2   ONE-TIER AND TWO-TIER CLOSED FUEL CYCLE SCENARIOS 

Total nuclear electricity demand growth for the 1-tier and 2-tier scenarios follow 

the same growth curve shown in Fig. 3.2. FR deployment is limited to less than 1 GWe 

installed capacity per year for the first 5 years of commercial availability (2032 to 2036 for 

the 1-tier scenario, 2047 to 2051 for the 2-tier scenario) and again limited to less than 

2 GWe installed capacity per year for the next 5 years.  

In the DSARR scenarios, LWR used fuel reprocessing begins in 2020 with a small 

pilot plant (800 tIHM per year capacity) with additional plants added (1600 tIHM per year 

capacity) as needed in order to ensure excess stores of used fuel are eliminated by 2100. 

Deployment of commercial LWR reprocessing is limited to less than 3,000 tIHM per year 

in a given year, and total capacity deployed by 2060 is less than 6,000 tIHM per year. In 

the 2-tier scenario, where LWR used fuel makes a pass in MOX-fueled LWRs before being 

used as FR fuel, a pilot MOX reprocessing facility has a capacity of 89 tIHM per year, with 

follow-on commercial plants at 178 tIHM per year. Since fuel is only reprocessed when 

reactors demand fuel in a VEGAS simulation, capacity added before 2031 goes entirely 

unutilized as FRs are only built in 2032. As a result, capacity added before 2031 in the 

DSARR scenarios is delayed for the VEGAS simulations such that the total amount of used 

fuel reprocessing capacity, integrated over time, is equivalent in both cases. 

Fig. 3.4 shows the FR electricity generation in both scenarios in absolute and 

percentage terms. In the DSARR scenarios, FR deployment is restricted to less than 

1 GWe capacity per year (i.e., 2 reactors at 380 MWe) for the first 5 years (2032 to 2036), 

and less than 2 GWe capacity per year (i.e., 5 reactors at 380 MWe) for the next 5 years 

(2037 to 2041) after commercial availability. FR deployment constraints are employed 

similarly for the VEGAS case. For both the 1-tier and 2-tier cases, general agreement is seen 

from both simulators. A lesser number of FRs are built in the nominal 1-tier VEGAS 
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simulation due to differences in installed reprocessing capacity utilization between the two 

simulators. A large amount of installed capacity goes underutilized until 2041 when the FR 

build constraint is lifted, since VEGAS reprocesses fuel on demand. 

 

Figure 3.4:  Fast reactor electricity generation in absolute and percentage terms for 1-tier 
and 2-tier scenarios (shared legend).  
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Used fuel quantities for the 1-tier scenario are shown in Fig. 3.5. The used fuel 

quantities for the 2-tier scenario are very similar, and so are not depicted. The total amount 

of used fuel generated using the VISION and VEGAS fuel cycle simulators follow the same 

trend, though the VEGAS simulator shows more used fuel generated through the lifetime of 

the simulation. The discrepancy in total used fuel generated between the two simulations 

is again due to their differences in handling reprocessing capacity. The VISION simulator 

always reprocesses fuel at the maximum capacity of the reprocessing plants, storing any 

excess actinides which are not used to fuel other reactors, while the VEGAS simulator only 

reprocesses fuel on demand. For this reason, a large portion of the installed capacity from 

2031 to 2041 is underutilized for the VEGAS scenario, since FRs builds are limited in this 

time period. 

 

 
Figure 3.5:  Used fuel quantities for the 1-tier scenario. 
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Fig. 3.6 shows the result of varying LWR reprocessing capacity on the number of 

FRs built in a simulation. The legend in the figure gives the total reprocessing capacity 

deployed in 2031 for the VEGAS cases. The precise deployment scheme for the data shown 

in Fig. 3.6 is not given in the DSARR report, so could not be matched exactly. Here, the 

limit on FR deployment is lifted for the VEGAS scenarios. When this restraint is no longer 

applied, the VEGAS simulator builds more FRs early in the simulation than the VISION 

simulator, with the difference becoming more pronounced with higher amounts of installed 

capacity. The number of FRs ultimately deployed by both simulators, on the other hand, is 

quite similar. VEGAS continues to deploy FRs even after the final increment of reprocessing 

capacity is built, while it appears that VISION ceases to do so.  This may be related to the 

conservatism of the algorithm applied by VISION to determine whether a reactor which 

uses recycled fuel will have sufficient feed available to warrant being built. The “stair-step” 

pattern in the number of FRs predicted by the VEGAS simulator is likely due to the 

requirement for used fuel to accumulate in sufficient quantities prior to FR deployment. If 

sufficient quantities are unavailable, VEGAS does not build FRs due to its roll-back 

algorithm as material constraints occur (described in Section 3.2).  

3.2   MATERIAL BALANCE AND REACTOR DEPLOYMENT CALCULATIONS 

The reactor ordering algorithm creates a material- and technology-constrained 

electricity generation profile for each VEGAS simulation. The resultant material balance 

characterizes the flow of resources through the nuclear fuel cycle and its calculation 

includes a roll-back feature that ensures all reactor fuel requirements are met each year. 

The root purpose of the VEGAS simulator is this material balance calculation, which allows 

for quantifying the performance of fuel cycle transition strategies through the use of 

objective function coefficients. The material balance calculation is simplified by foregoing  
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Figure 3.6: Impact of varying UOX reprocessing capacity on total fast reactor electricity 
generating capacity installed. 

distinctions between reactors and fuel cycle facilities of the same general type, tracking 

material as continuously flowing streams rather than discrete batches, consolidating 

material flows into U, Pu, minor actinides (MA) and fission products (FP) components and 

omitting radioactive decay, allowing the VEGAS code to achieve a reduced runtime. Each 

simulation operates with a yearly time step, with seven primary processes carried out 

(Fig. 3.7). At the beginning of each year, old reactors are retired upon reaching their full 

lifetime. Then, new reactors are built to fulfill remaining electricity demands according to 

a user-input build strategy which may vary over time. A VEGAS simulation is defined by 

user-input files for reactor and nuclear fuel cycle parameters.  
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The number of reactor types is fully customizable. For each reactor type in a VEGAS 

simulation, an input fuel recipe is defined by the input U, Pu and MA mass fractions 𝑥+, 

𝑥,- and 𝑥./ and the corresponding output fuel recipe is defined by the output mass 

fractions 𝑦+, 𝑦,- and 𝑦./. The output FP mass fraction is obtained through Eq. 3.1: 

 𝑦1, 	= (𝑥+4 + 𝑥,- + 𝑥./) − (𝑦+ + 𝑦,- + 𝑦./) Eq. 3.1 

The annual demand for reactor fuel of each type is calculated, and using the input mass 

fraction for each specified fuel component 𝑥+,,-	78	./, the demand for U, Pu, or MA fuel 

components is obtained (Step 3, Fig. 3.7). Likewise, multiplying the annual mass of 

discharged fuel from each reactor type by the output mass fraction for the specified fuel 

component, 𝑦+,,-	78	./, gives the amount of U, Pu, or MA contained in the used fuel for a 

given reactor type in that year.   

Reactor types are subcategorized by their recycling tier: tier 0 reactors use virgin 

feed only, tier 1 reactors operate on a thermal neutron spectrum and at least some feed 

comes from tier 0 or 1 fuel discharges, and tier 2 reactors operate on a fast neutron spectrum 

with at least some feed coming from tier 0, 1 and/or 2 fuel discharges. Generally, recycled 

material flows upwards through tiers (e.g. recycled material from tier 1 reactors are burned 

in tier 2 reactors, but material from tier 2 reactors is assumed to be unsuitable for recycle 

into tier 1). Fig. 3.8 shows an example of the preferred methods for obtaining fuel for a 

tier 2 reactor. If a reactor is capable of using separated actinides, it first attempts to pull 

from existing stockpiles of Pu and MA (Circle 1). Then, if demand remains, it reprocesses 

used fuel, typically starting from the highest tiered reactors’ used fuel, denoted “T2” for 

used fuel discharged from tier 2 reactors, to the lowest (Circles 2-4, typically in that order, 

although the user can specify any priority order).  
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Figure 3.7:  Primary processes comprising a VEGAS simulation. 

The order in which a reactor type obtains feed from reprocessed used fuel is a 

user-defined reprocessing preference ‘hierarchy’. This hierarchy is a list that determines 

the order in which a reactor type tries to issue reprocessing commands. The list may have 

any number of members (up to the number of reactor types in the simulation), and a reactor 

type is allowed to reprocess its own spent fuel. The “Check for Violation” step in Fig. 3.7 

evaluates whether or not the demand for Pu or MA for each reactor type can be fulfilled 

through these means. If it cannot, then the simulation clock is rolled back to the year that 

the most recently added offending reactor type was built and removes it from the 

simulation. The simulation resumes from that point in time, with a reactor of another type 

(specified by user input) ordered to fill the demand gap. Otherwise, the simulation 

progresses to the next year. 
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Figure 3.8:  Typical tier 2 reactor used fuel reprocessing hierarchy. To fulfill their fresh 
fuel demand, Tier 2 reactors (‘T2’) pull from Pu and MA stores, followed by 
reprocessed T2, T1 and T0 used fuel, in that order. 

3.2.1   MATERIAL BALANCE 

The primary output from a VEGAS simulation is the material balance. By default, 

the VEGAS simulation has five front end (U mining and milling, conversion to UF6, 

enrichment, fuel fabrication, and transportation to reactor site) and seven back end (SNF 

storage, transportation, and disposal; used fuel reprocessing; and high-level waste (HLW) 

vitrification, storage, and disposal) fuel cycle technologies. A user-defined mass flow in 

kg of throughput for the technology per kgIHM of reactor fuel for each reactor type must 

be specified. In this way, the number and type of front and back end fuel cycle technologies 

available to a VEGAS simulation are fully customizable. 

The demand for reactor fuel of each type in kgIHM is calculated each year from 

user-input reactor power parameters and the total installed generating capacity of each 

reactor type that year. Input mass flows in kg of throughput for each front and back end 

technology per kgIHM of reactor fuel is then applied to the demand for reactor fuel to 
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obtain the total mass flow between each technology in kg of throughput per year in order 

to fulfill the total reactor fuel demand during the VEGAS simulation.   

Each year, reactor fuel demand is processed starting from the highest tiered reactors 

to the lowest. If a reactor is capable of using separated actinides, it pulls from existing 

stockpiles of Pu and MA, respectively, to fulfill its Pu and MA demand. The amount of Pu 

and MA required to fulfill the demand for the reactor is decremented from stores; these 

stores are taken from the oldest first. If all stores are depleted and demand remains, used 

fuel is reprocessed according a reactor’s reprocessing hierarchy. The hierarchy lists 

reactors in the order in which each type attempts to issue reprocessing commands to fulfill 

the remaining demand for Pu and MA. The amount of separated actinides required to fulfill 

the remaining reactor fuel demand through reprocessing of the available used fuel 

inventory of a reactor type in the hierarchy is obtained by applying output mass fractions 

for the specified fuel component. The oldest stores of used fuel are reprocessed first. Then, 

if the used fuel inventory of the first reactor in the hierarchy is depleted, the used fuel 

inventory of the next reactor type in the hierarchy is reprocessed.  

Upon reaching the last reactor type in the hierarchy, two types of material balance 

violations may occur when attempting to satisfy fuel demand: (1) all used fuel stores for 

each reactor type in the hierarchy are depleted or (2) the reprocessing capacity is 

insufficient to reprocess the requisite used fuel. If a reactor type causes either of these 

material balance violations to occur, the VEGAS roll back feature is employed in order to 

conserve the material balance. Using the roll back feature, the VEGAS simulation reverts 

back to the year in which the last instance of the offending reactor type was built. Then, 

that reactor type is replaced with equivalent1 generating capacity from a different 

                                                
1 If the generation gap between installed capacity and capacity demand is less than half the plant size of 
reactor type, then no reactor is built. 
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user-specified type of reactor and the simulation continues from that point on. Typically, 

the replacement reactor type is of a lower tier than the offending type but is not restricted 

to be so. Each reactor type should ultimately be replaced by a tier 0 reactor if necessary. 

Tier 0 reactors use U fuel, of which there is an unlimited supply. 

Using the roll back feature, the VEGAS simulator is capable of maximizing the 

material and technology resources available. A user is able to input a build strategy that is 

100 percent2 of the highest tier reactor in the simulation, which would likely cause many 

material balance violations to occur, but the roll back feature replaces these reactors with 

lower tier reactors that will ultimately satisfy electricity demand. However, since only the 

last reactor added that causes the material balance violation to occur is removed, the 

maximum amount of reprocessing capacity or used fuel (and subsequently Pu and/or MA 

content) that remains within material- and technology-constraints is utilized, whichever is 

limiting. Currently, technology constraints are limited to a user-defined deployment 

schedule for used fuel reprocessing capacity, which is customizable for each reactor tier. 

3.2.2   REACTOR DEPLOYMENT 

The number and type of reactors in a VEGAS simulation are fully customizable. The 

primary inputs needed to specify a unique reactor type include an input/output fuel recipe 

as well reactor power parameters. Coupled with these inputs, an electricity generation 

profile of initial reactor types and a demand growth profile define a VEGAS simulation. The 

way in which VEGAS orders reactors for handling electricity demand, as well as the method 

for calculating demand, is described in Schneider and Phathanapirom (2016) and 

summarized here.  

                                                
2 A typical support ratio might be 4 tier 0: 1 tier 2 MW at equilibrium, depending on the material balance, 
which VEGAS will reach by replacing tier 2 reactors with tier 0 until the material balance violations cease. 
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New reactors are deployed in a VEGAS simulation to handle retirement of old 

reactors and demand changes. Demand changes are generally defined by specifying an 

annual demand growth rate in percentage increase per year, but an option also allows for a 

specific target generating capacity to be met by a certain year. The number of demand 

growth scenarios specified for the VEGAS simulation is only limited by the number of years 

in the simulation.  

The type of new reactors built is determined by the demand growth, parameters 

affecting the initial generation fleet, and a reactor ‘Try to Build’ strategy. A unique ‘Try to 

Build’ strategy is comprised of two components: (1) the year in which the strategy is 

initialized, and (2) the desired build percentage of generating capacity from different 

reactor types in the simulation. For example, the deployment strategy beginning in 2040 

may be 25 percent capacity from FRs and the remaining capacity from LWRs. The number 

of build strategies is again limited by the number of years in the simulation. When there is 

a shortfall between the currently-installed and target generating capacity levels, a reactor 

type specified by the build strategy is deployed only if its size is greater than one-half of 

the shortfall.  

3.3   SUPPLEMENTAL VEGAS CAPABILITIES 

Several enhancements to the VEGAS code have been made and are documented in 

the following subsections. These enhancements allow for added distinction and richness 

between fuel cycle transition strategies, incorporation of realistic uncertainty evolutions as 

well as realistic technology deployment schedules, and closer benchmarking against 

existing, verified simulators. In turn, these enhancements allow for endogenous decision 

making within the simulator itself. Not all of these capabilities are utilized in the analysis 

described in Chapter 6 but are documented here for completeness.   
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3.3.1   REPROCESSING CAPACITY UTILIZATION 

The original VEGAS code determined the amount of used fuel to be reprocessed 

each year solely based upon the Pu and MA requirements of reactors demanding fuel in a 

given simulation year (Section 3.2). Excess annual reprocessing capacity was not utilized 

in order to minimize the amount of separated Pu and MA present in the system. While the 

original reprocessing on-demand feature is a key functionality of the VEGAS code, it is at 

odds with the reprocessing algorithms used in other existing fuel cycle simulators that 

utilize reprocessing capacity to the fullest extent, with inventories of separated actinides 

allowed to accumulate (Schneider et al., 2005; Jacobson et al., 2010; Feng et al., 2016). 

An option to utilize all reprocessing capacity (as used fuel quantities will allow) 

has been added to the VEGAS code, and is implemented with a user-input switch. The 

full-capacity feature may be specified for each year in the simulation and may be switched 

on or off contingent on conditions during a simulation. For instance, during a learning 

period when the 10 first mover FRs are deployed, the reprocess on-demand feature could 

be employed to avoid excess stockpiles of separated Pu and MA. During this period, 

information gained about FRs will drive future decisions based on technology costs and 

performance. If the transition calls to continue FRs builds, then the reprocess at 

full-capacity feature may be selected, allowing for the highest rate of FR deployment based 

on material- and technology-constraints.  

The added feature allows for improved benchmarking against existing simulators. 

Fig. 3.9 shows the installed FR electricity generation when the LWR used fuel reprocessing 

capacity is limited to 800 tIHM per year, as calculated by the VISION simulator and as 

calculated using the reprocessing on-demand and full-capacity features from the VEGAS 

simulator. While both reprocessing options of the VEGAS simulator follow the same trend 

as the VISION simulator, the number of FRs installed with the on-demand feature is 
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consistently less than predicted results from either the VISION simulator or, as expected, 

the full-capacity feature. Using VEGAS’s full-capacity feature, excess capacity (installed 

capacity less the requirement to fuel separated actinide demand) is utilized and stockpiles 

of Pu and MA are allowed to accumulate. Later in the simulation, if a reactor demands Pu 

and MA at a rate slightly more than the annual installed capacity, it can pull Pu and MA 

from stockpiles rather than being removed from the simulation.   

 

Figure 3.9:  Comparison of fast reactor electricity generation as calculated using VISION 
and VEGAS’s on-demand and full-capacity features for DSARR 1-tier 
scenario when reprocessing capacity is constrained to 800 tIHM per year. 

3.3.2   UNIT-BASED LEARNING 

The “learning by doing” phenomenon, was originally observed by Wright (1936) 

in the manufacturing sector. The concept reflects the increase (decrease) in productivity as 

experience is gained, leading to decreasing (increasing) costs for a good over time. 

One-factor learning curves (or “experience curves”) are incorporated using Eq. 3.2 for used 
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fuel and HLW waste disposal technologies as well as reactor capital costs in the VEGAS 

simulator. In Eq. 3.2, 𝐶: is the unit cost of the first unit and 𝐶 is the unit cost of the 

technology after 𝐺 cumulative experience.  

 𝐶 = 𝐶: ⋅ 𝐺= Eq. 3.2 

Here, 𝛼 is related to the learning rate by Eq. 3.3, where the term 2= is the “progress ratio” 

which indicates the fractional reduction in cost after a doubling of cumulative capacity (or 

production). 
 𝐿 = 1 − 2= Eq. 3.3 

For reactor capital costs, 𝐺 represents the cumulative installed capacity (MWe) and 

𝐶 represents the total overnight capital cost of the nth reactor of a given type. The 

relationship between the nth-of-a-kind (NOAK) total overnight capital cost (TOC) for a 

reactor of type 𝑟 and the first-of-a-kind (FOAK) reactor of type 𝑟 is shown in Fig. 3.10, 

along with the calculated learning exponent for a range of relative NOAK TOCs; since 

reactors in VEGAS are deployed in increments of the plant size (MWe), the relative TOC is 

given in relation to the number of reactors of type 𝑟 deployed. It is assumed that the NOAK 

TOC is the lowest realized cost of reactor construction and is reached once 9 units of 

reactor type 𝑟 are deployed; the TOC for subsequent units is equal to the cost of the 9th unit 

(EMWG, 2007). VEGAS takes the input FOAK and NOAK reactor TOC and computes the 

learning rate using Eq. 3.2 and 3.3.  

Learning effects in SNF and HLW disposal were examined by Schneider and 

Phathanapirom (2015). For SNF and HLW disposal, learning is meant to capture aspects 

of waste disposal such as endogenous and regulatory learning which could cause the 

decline or rise as more waste is disposed. Such behavior has been seen in solid waste 

disposal in the U.S., where landfills charge a “tipping fee” per ton of garbage that has 
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increased over time (Braathen, 2004). Users input the unit cost of the first unit of SNF or 

HLW disposal 𝐶: (in $ per kg IHM or $ per kg IHM in HLW, respectively) as well as the 

progress ratio 𝛼.  

 

Figure 3.10:   Learning effects on reactor costs as generating capacity is installed. 

3.3.3   PRECONDITIONER PROOF OF CONCEPT 

A key application of VEGAS is its ability to act as a preconditioner, offering an 

iterative method for accelerating the convergence of fuel cycle optimization problems. 

Operating as a preconditioner, VEGAS uses the results of a parameter sweep over a domain 

of interest to generate a fully-determined input to a more sophisticated fuel cycle simulator. 

The fuel cycle input information describes a reactor fleet that satisfies material balance and 

reprocessing capacity constraints while also maximizing a user-defined objective function.  

The preconditioner application of VEGAS has been demonstrated by 

Schneider and Phathanapirom (2016). Two optimized UOX reprocessing capacity 

deployment schemes were selected from a suite of 16,384 VEGAS simulations, each with a 
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different UOX reprocessing capacity deployment scheme. Each of these deployment 

schemes is unique in its penetration of FR generating capacity due to VEGAS’s material 

balance calculation. The two deployment strategies that were selected represent (1) the 

lowest time-integrated installed reprocessing capacity and (2) the latest possible start date 

for reprocessing capacity deployment, both while achieving the same target system TRU 

level at the end of the simulation, see Fig. 3.11. Using this preconditioner application of 

VEGAS removes the requirement of the user to define a reprocessing deployment scheme 

that obeys material and technology constraints, including the (in)ability of users to optimize 

such a deployment scheme. Jacobson et al. (2010) state that “balancing the amount of 

(used) fuel available from LWR reactors as a feed fuel to FRs with an aggressive growth 

rate is very difficult”.  

The enhancements to the VEGAS simulator described in this section allow for 

further distinction between fuel cycle transition strategies, adding richness and realism, 

furthering VEGAS’s value and versatility as a preconditioner tool. Most notably, the 

reprocess used fuel at full-capacity feature, supplemental to the reprocess on-demand 

feature, and its allowed adjustments during a simulation allow realism during an initial 

learning period when building advanced reactor technology. Above all, VEGAS offers a 

reduced runtime (less than 5 s for simulations involving recycle in FRs) opposed to 

Cyclus’s 2-3 min runtime for simulations such as those examined by Djokic et. al. (2015) 

or VISION’s 5 min runtime for simulations such as those examined by 

Jacobson et. al. (2010). The comparison to Cyclus and VISION is chosen as they are the 

currently chosen DOE investigative fuel cycle simulators. In particular, Cyclus is under 

continuous development from users freely contributing modules that fit their fuel cycle 

analysis needs. This VEGAS preconditioner tool could be inserted as a module in Cyclus, 
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Figure 3.11:  Optimized UOX reprocessing capacity deployment schemes. 

allowing a larger solution space to be analyzed rapidly, and then input to the higher fidelity 

simulator for further realistic analyses. The potential coupling targets several short-

comings of the VEGAS simulator, such as its lack of discrete facility modeling, physical 
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fidelity through tracking materials at the isotopic level and time-dependencies arising from 

radioactive decay. 
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CHAPTER 4:  MULTI-OBJECTIVE DECISION CRITERIA 

The fuel cycle evaluation criteria and associated metrics that are used to measure 

the performance of a fuel cycle transition path are documented in the following chapter. 

Fig. 4.1 summarizes the calculation of a transition path performance. ORIGEN is invoked 

for each reactor type prior to the VEGAS simulations to perform burn-up and decay 

calculations for reactor fuel. Isotopics from ORIGEN are rolled up into U, Pu and MA fuel 

components for VEGAS’s input and output fuel recipes. Detailed isotopics from ORIGEN 

are used to calculate objective function coefficients when necessary. Then, fuel cycle 

transition paths are input to the VEGAS simulator to calculate a material balance. This 

material balance is fed to metric calculators that ultimately score the performance of the 

transition path. Reactor modeling using ORIGEN is discussed in Section 4.1. In 

Section 4.2, the fuel cycle evaluation criteria are described, and the calculation of the 

metrics used to quantify these criteria is documented. The evaluation criteria chosen here 

are economics, waste management and proliferation resistance. 

4.1   REACTOR MODELING 

Reactor fuel burnup calculations were performed using the Oak Ridge Isotope 

Generation (ORIGEN) code included in the SCALE 6.2 package (Rearden and 

Jessee, 2016). ORIGEN tracks 2,237 isotopes and allows for the explicit simulation of all 

pathways of transmutation from neutron interactions, fission and decay. Spent nuclear fuel 

(SNF) is then characterized by (1) nuclide concentrations, (2) activities, (3) radiotoxicity, 

(4) decay heat, and (5) gamma-ray emission rates.  
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Figure 4.1:  Overview for calculation of transition path performance using ORIGEN, 
VEGAS fuel cycle simulator and metric calculators. 

Fuel depletion calculations in ORIGEN solve the Bateman equations (Eq. 4.1) that 

describe nuclide concentrations for the radioactive decay case of an n-nuclide series in 

linear chain (Gauld et al., 2011; Cetnar, 2006). In a transmutation system (reactor core 

during operation) nuclides are constantly transmuted due to interaction with a particle flux, 

consisting mainly of neutrons. The decay constants that govern the Bateman equations for 

a decay case are then substituted by transmutation constants, calculated using Eq. 4.2. The 

transmutation constant 𝜆D,E is interpreted as the probability of the 𝑖GH nuclide production 
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per unit time from the destruction of the 𝑗GH nuclide as a result of nuclear interaction with 

the particle flux or through nuclear decay. 

 d𝑁$
d𝑡 = −𝜆$ ⋅ 𝑁$ 

(4.1) 

 
d𝑁D
d𝑡 = −𝜆DM$ ⋅ 𝑁DM$ − 𝜆D ⋅ 𝑁D 

• 𝑁D is the concentration of the 𝑖GH nuclide 
• λD is the decay constant of the 𝑖GH nuclide and 𝐼 = 2, …, 𝑛 

 𝜆D,E = 𝑏D,ER ⋅ 𝜆ER + SΦ ⋅ 𝜎D,E(𝐸) ⋅ d𝐸 (4.2) 

• 𝜆ER is the decay constant of the 𝑖GH nuclide 
• 𝑏D,ER  is the branching ratio of the 𝑗GH nuclide decay into the 𝑖GH nuclide 
• ΦW is the neutron flux 
• 𝜎D,E is the cross-section for production of nuclide 𝑖 during interaction with nuclide 𝑗 

Fuel depletion calculations are dependent on nuclear decay data and neutron cross 

sections3, as well as user input initial nuclide concentrations and an input power that defines 

the neutron flux and irradiation time. One-group cross section data is obtained from reactor 

libraries that contain burnup-dependent cross sections. A coupled transport and depletion 

calculation is used to generate one-group cross sections that remove energy and spatial 

dependencies of the cross section. The interpolated one-group cross section is then 

obtained through flux-weighting of neutron energies and averaging of geometry and 

                                                
3 While decay data are well known, cross section data have larger uncertainties and are problem dependent 
for a system, which is (not limited to being) characterized by fuel type, enrichment, burnup, assembly design, 
fuel temperatures, moderator properties, etc. Then, accuracy of ORIGEN is determined by the accuracy of 
the nuclear data. 
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material masses. As operation continues, these one-group cross sections must be 

recalculated due to material transmutations; therefore, a library of 1-group cross sections 

are constructed and interpolated using ORIGEN’s Automated Rapid Processing (ARP) 

module (Bowman and Gault, 2010).  

A number of pre-generated reactor libraries are available in SCALE 6.2. For 

instance, a reactor library is available for a Westinghouse PWR 17x17 fuel assembly, with 

enrichments from 0.5 to 6.0 weight percent 235U, and burnups up to 70.5 GWd per MTU. 

The ARP utility code then interpolates between pre-generated cross-sections to obtain 

appropriate cross sections based on user-defined parameters, such as burnup, enrichment 

and 239Pu, depending on reactor type. When a pre-generated reactor library is unavailable 

for a given reactor type and burnup, a custom library is obtained by executing a coupled 

multigroup transport and depletion calculation using SCALE’s TRITON code, a modular, 

general-geometry, reactor physics sequence (DeHart and Bowman, 2017). Decay 

calculations are performed using the Bateman equations to obtain the fuel compositions 

following a specified cooling (decay) time.   

Relevant reactor modeling parameters for each reactor type are given in Table 4.1. 

Selection of these reactor types is based on the 2014 DOE-NE Evaluation and Screening 

Study (Wigeland et al., 2014). Calculated reactor fuel recipes are given in Table 4.2. 

ORIGEN simulations as well as guidance on reactor modeling methodology were 

performed and provided by staff research scientist Kenneth Dayman at Oak Ridge National 

Laboratory.  
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4.1.1 REPROCESSING METHODOLOGY 

Used fuel from each reactor type may be reprocessed. For simplicity, the 

methodology for obtaining the isotopic composition of recycled U and TRU elements and  

Table 4.1:  Primary reactor modeling parameters from Appendix B of DOE’s Evaluation 
and Screening Study (Wigeland et al., 2014). 

A. EG01 – LWR  

Nuclear Power Plant 
Core Thermal Power (MWth) 3000 
Core Power Density (MWth/tIHM)a 30.84 
Net Thermal Efficiency (%) 33 

Nuclear Fuel Composition 
Average Discharge Burn-up (GWd/tIHM) 50 
Fuel Composition Initial Nuclear Material LEU 

235U/Total U (%) 4.21 
B. EG02 – HTGR 

Nuclear Power Plant 
Core Thermal Power (MWth) 350 
Core Power Density (MWth/tIHM)a 74.07 
Net Thermal Efficiency (%) 50 

Nuclear Fuel Composition 
Average Discharge Burn-up (GWd/tIHM) 120 
Fuel Composition Initial Nuclear Material LEU 

235U/Total U (%) 15.5 
C. EG24 – SFR  

Nuclear Power Plant 
Core Thermal Power (MWth) 1000 
Core Power Density (MWth/tIHM)a 55.55 
Net Thermal Efficiency (%) 40 

Nuclear Fuel Composition Average Discharge Burn-up (GWd/tIHM) 73 
Fuel Composition Initial Nuclear Material U-TRU-Zr 

a Core power density is calculated using 3 power cycles at 540 days each, with a 30 day refueling time 

core power density X
MWd

tIHMY  = β X
GWd

tIHMY ⋅
1

	Total days in operation [d] ⋅
1000 MW

GW  

separated fission products is given here in generic form. The method is referred to as 

reprocessUF(). The isotopic composition (isotopics) for fresh reactor fuel is input to 
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ORIGEN and a depletion calculation with the appropriate reactor library is performed 

using the (1) core power density, (2) fuel discharge burnup and (3) reactor operating time 

(online and offline time periods). The depletion calculation outputs the isotopic 

composition of irradiated, used fuel at discharge and performs a decay calculation to a user-

specified cooling time. The decay calculations yield the isotopic composition at the 

specified cooling time(s), decay heat and gamma emission spectra of the used fuel. 

Table 4.2:  Reactor fuel recipes from ORIGEN fuel depletion and decay calculations. 

Reactor Type LWR HTGR SFR 
Mass Fraction Fuel Input Recipe (g per gIHM) 

𝑥+  1.00000 1.00000 0.66610 
𝑥,-  0.00000 0.00000 0.29571 
𝑥./  0.00000 0.00000 0.03819 

 Fuel Output Recipe (g per gIHM) 
𝑦+  0.93439 0.92446 0.58709 
𝑦,-  0.01198 0.01242 0.23899 
𝑦./  0.05168 0.00278 0.02516 

After a specified cooling time, used fuel is reprocessed and separated into two 

streams: (1) U, Pu4 and TRU (product) and (2) FPs and MAs (waste). While ORIGEN 

gives the decay heat and gamma emission rate for each isotope contained in the used fuel, 

its constituents are not readily separable. The isotopic composition of the used fuel product 

                                                
4 For this work, reactor input and output recipes in VEGAS consist of only U, TRU and waste streams. U 
consists of NU for fabrication of fresh fuel for LWR or HTGR reactors, or for top off following FP and MA 
removal in SFRs. For higher fidelity reactor modeling, some optimization of input isotopics may be 
performed in which case disaggregating fuel components may be desired. Here, since no optimization is 
performed and all product streams of U and TRU are assumed to be input into FRs, Pu is not carried forward 
as its own material flow.    
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stream at discharge is then manually separated, on which a decay calculation is performed. 

The decay heat and gamma emission rate for the used fuel product stream are then obtained. 

The decay heat and gamma emission rate for the used fuel waste stream can then be taken 

as the remainder of the total used quantity and the product stream (Eq. 4.3).  

 𝑊 = 𝐹 − 𝑃 (4.3) 

• 𝐹 is the decay heat or gamma emission rate of the feed fuel per kg IHM 
• 𝑃 is the decay heat or gamma emission rate of the fuel product stream per kg IHM 
• 𝑊 is the decay heat or gamma emission rate of the fuel waste stream per kg IHM 

In summary, reprocessUF() comprises the following steps: 

1. Obtain used fuel isotopic composition by performing a depletion calculation on 
fresh reactor fuel in ORIGEN 

a. Run decay calculations for used fuel isotopics to 10 years5 
i. Store decay heat and gamma emission rates 

2. Separate U, Pu and TRU elements (product) from MA and FPs (waste) 
a. Run decay calculations for product and waste streams to 10 years  

i. Store decay heat and gamma emission rates 
3. U, Pu and TRU elements are refabricated into reactor fuel on demand 

a. If excess U, Pu or TRU is produced from reprocessing, then store until 
demanded for fresh fuel 

b. Perform reprocessUF() again as needed 

                                                
5 The E&S Study assumes a 5-year cooling time, after which reprocessing is promptly completed and time 
required from fuel fabrication to fuel charging is 2 years. Dixon et al. (2009) assume a 10-year cooling time 
based on the decay heat wattage limits of current shipping cask designs, which can accept full loads of used 
fuel at current burnup levels approximately 6 or more years after discharge. Here, a “10-year cooling time” 
refers to time from discharge in LWR and HTGR reactors, reprocessing of used fuel, and fuel fabrication to 
fuel charge. Dixon et al. (2009) do propose a “efficiently functioning” system with variable cooling times. 
More TRU may be tied up in used fuel not yet available for reprocessing, but fuel handling costs could be 
minimized, with a tradeoff on fuel quality.  
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Fig. 4.2 depicts the sequence in which reprocessUF() is used for the tier 1 recycling 

scenario. ORIGEN input files used for reactor modeling in this dissertation are available 

from the author upon request.  

 

Figure 4.2: Iterative reprocessUF() method as applied to tier 1 recycling scenario, 
where ORIGEN is invoked for fuel depletion calculation (fresh fuel to used 
fuel); decay calculated performed for used fuel separated into product (U, Pu 
and TRU) and waste (FPs and MA) streams; product stream refabricated and 
fuel depletion calculation performed. 

4.1.2   LWR AND HTGR MODELING 

LWRs are modeled using ORIGEN’s built in generic Westinghouse 17x17 PWR 

reactor library. HTGRs are modeled using a custom reactor library for 

uranium-oxycarbide (UCO) fuel, with a burnup to 120 GWd per tIHM. The fuel residency 
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time for both reactor types is approximated at 5 years, with 3 batches per core. The ratio 

between reactor up and down times is taken to yield a capacity factor 90 percent. Decay 

calculations to 10 years are then performed. The reactor fuel schedule from initial charge 

to recycle and disposal is summarized in Table 4.3A. 

4.1.3   SFR MODELING 

For simplicity, the following methodology for reactor fuel recipes for SFRs is given 

only for utilizing discharged used fuel from LWRs. The methodology for obtaining reactor 

fuel recipes from recycled used fuel from HTGRs is identical. All calculations are 

performed assuming a base unit of 1 tIHM fuel. 

Discharged used fuel from LWRs is recycled into SFRs, assuming a cooling time 

of 10 years6. Gram quantities of Pu and TRU isotopes, 𝑚D, from discharged LWR fuel are 

obtained via the reprocessUF() method. Wigeland et al., (2014) give the weight 

percentage of TRU in SFRs as 13.9 percent. Then, the input of isotope i in g per tIHM of 

SFR fuel is given as follows: 

 𝑚D,7-]

∑ 𝑚D,7-]
_
D

⋅
10a g
tonne ⋅

13.9
100 = 𝑚D,De (4.3) 

• 𝑚D,7-] is the mass of isotope i per tIHM of discharged used fuel from LWR fuel (g)  
• 𝑚D,De is the mass  of isotope i input to SFR per tIHM (g per tIHM)  

Zr cladding is assumed at 10 weight percent per tIHM (Lee et al., 2016). NU is assumed to 

comprise the remaining mass of input fuel to SFRs. Fuel residency time as given in 

                                                
6 Decay calculations of TRU isotopes include 17,18O (LWR used fuel) and 13C (HTGR used fuel) isotopes. 
During decay, these isotopes are pathways for (a,n) reactions. This calculation must be performed when 
disaggregating the neutron dose rates of actinides and fission products. 
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Wigeland et al. (2014) is 3.6 years. Assuming a capacity factor of 90 percent, fuel 

irradiation times are given in Table 4.3B.  

Table 4.3:  Reactor fuel residency and decay time periods. 

 Duration Unit 
A. LWR and HTGR 

Up Time (Cycle 1) Subcycle 1:2 270 days 
Subcycle 2:2 270 days 

Down Time 54 days 

Up Time (Cycle 2) Subcycle 1:2 270 days 
Subcycle 2:2 270 days 

Down Time 54 days 

Up Time (Cycle 3) Subcycle 1:2 270 days 
Subcycle 2:2 270 days 

Fuel Discharge Immediate  
Decay Time 10 years 
B. SFR 
Up Time (Cycle 1) 395 days 
Down Time 65 days 
Up Time (Cycle 2) 395 days 
Down Time 65 days 
Up Time (Cycle 3) 395 days 
Fuel Discharge Immediate  
Decay Time 10 years 

To approximate continuous recycle in SFRs, the method reprocessUF() is 

performed following fuel irradiation at each reactor cycle’s up time. The total FP and MA 

masses and their isotopics are collected and aggregated following each call of 

reprocessUF(). These mass flows are averaged over the three irradiation cycles (and 

between LWR- and HTGR-seeded SFRs) to obtain an average reactor output recipe for 
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SFRs. SFR used fuel and vitrified high-level waste (HLW) enter wet storage for 10 years 

prior to disposal.  

4.2   EVALUATION CRITERIA AND METRICS 

A group of Massachusetts Institute of Technology (MIT) faculty issued the study 

on The Future of Nuclear Power in 2003 (with a 2009 update) that identified four important 

challenges to ensuring that nuclear power remains a viable marketplace option at a time 

and at a scale that could materially mitigate climate change risks (Deutch et al., 2003; 

Deutch, 2009). The challenges examined were (1) cost, (2) safety, (3) waste management, 

and (4) proliferation risk. Flicker et al. (2014) reviewed twenty published fuel cycle 

systems analyses to determine the most widely used quantitative metrics for comparing 

fuel cycle options. Flicker et al. group the metrics into 5 evaluation criteria: (1) economics, 

(2) safety, (3) waste management, (4) proliferation and (5) sustainability. The first four 

evaluation criteria are analogous to those identified in the 2003 and 2009 MIT study. The 

metrics identified by Flicker et al. for the overlapping four challenging evaluation criteria 

are listed in Table 4.4. When possible, the evaluation criteria chosen here are guided by the 

Evaluation and Screening Study. Their importance is highlighted in their prevalence in past 

fuel cycle analyses.  

The safety evaluation criterion is not examined in this work. As stated in the 

Evaluation and Screening Study., “promising fuel cycles are capable of safe deployment, 

with many having safety challenges comparable to the current U.S. fuel cycle. Enhanced 

safety is not provided by choice of fuel cycle but may be provided by the choice of fuel 

cycle but may be provided by the choice of implementing technologies and facility design.”  
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Table 4.4:  Summary of overlapping evaluation criteria identified by MIT (2003) and 
Flicker et al. (2014) with common quantitative metrics as identified by 
Flicker et al. 

Metric Units per MWhe (unless specified) 
Economics 
Cost of Electricity $ 
Fuel Cycle Costs Transportation Cost; Fuel Cycle Cost 

Difficulty of Fuel Handling Mass consumed by fission
Mass mined

  

Back End Costs Marginal Cost of Avoiding TRU Disposal 
Safety 
Public or Occupational Dose mSv 
Fission Product Mass Flow tonnes 
Risk of Severe Core Damage Risk for Reactor per year 
Waste Management 

Quantity 
Mass of Waste tonnes 
Volume of Waste m3 

Quality 

Radiotoxicity Bq or Sv 
Decay Heat watts 
TRU Mass Flow tonnes 
HM Mass Flow tonnes 
FP Mass Flow tonnes 

Proliferation 
Enrichment Required Fuel Loads Requiring Enrichment 

Material Attractiveness Bathke FOM 
FOM1 
FOM2 

Stored or Disposed Weapons Useable Material tonnes per year 
Weapons Useable Material Throughout Fuel Cycle tonnes 
Transport Required Distance Traveled by Fuel 
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The cost of electricity is impacted by these choices in technology and facility design, and 

so influence the decision in fuel cycle option through the economics criteria. For example, 

ensuring adequate safety for nuclear reactors is folded into the design of the reactor, which 

is accounted for in its capital costs. Further, the sustainability evaluation criterion is not 

examined here. Carbon emissions of nuclear and renewables is favorable to that of 

traditional fossil fuel generators (Sathaye et al., 2011), making the argument between 

nuclear and fossil fuel generators evident from a sustainability standpoint.  

4.2.1   ECONOMICS 

The Evaluation and Screening Study evaluated relative differences in financial risk 

and economics among nuclear fuel cycle options, not the economic viability of nuclear 

power in the U.S. Likewise, a fixed demand for nuclear energy production is assumed, 

independent of the technology’s economic viability in comparison with other energy 

generation technologies.  

The economics evaluation criterion is evaluated by examining the levelized cost of 

electricity7 (LCOE), which is the constant dollar (“real”) price of electricity that would be 

necessary over the life of the plant to cover all operating expenses, interest and principal 

repayment obligations on project debt, and taxes and provide an acceptable return to equity 

investors over the economic life of the project. The VEGAS nuclear fuel cycle simulator 

outputs the annual LCOE; a summary of the calculation follows.   

The LCOE consists of three components: front end fuel cycle charges, back end 

fuel cycle charges, and reactor charges. Default unit costs are assigned to each fuel cycle 

                                                
7 The E&S Study evaluated the levelized cost of electricity at equilibrium (LCAE), which is the cost of 
electricity which renders the net present value of the project cash flow equal to zero.  
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process in VEGAS, which are provided in Chapter 5. Reactor cost inputs are broken into 

capital costs (dollars) and annual operations and maintenance costs (dollars per year).  

Front-end and back-end mass flows are used to calculate the total fuel cycle cost 

(𝐶1f) using Eq. 4.4. The present value function discounts the charge to the year the 

technology was employed through lead and lag times input to the VEGAS simulation. Back 

end costs are ascribed to the year that fuel was discharged and are calculated using a 

zero percent discount rate. These costs are assumed to be covered by a sinking fund from 

revenues generated while the fuel is in reactors producing electricity. 

 
C1f = 	h𝑀D ⋅ 𝑈CD ⋅ PVFD

_

Dn$

 (4.4) 

• 𝑖 indexes over all 𝐼 fuel cycle technologies   
• 𝑀D is the mass throughput of the 𝑖GH technology 
• 𝑈𝐶D is the unit cost of the 𝑖GH technology 
• 𝑃𝑉𝐹D is the present value function of the 𝑖GH technology 

Reactor costs (𝐶8pqr]78) are calculated using Eq. 4.5 and are the sum of the annual capital 

cost and fixed operations and maintenance (FOM) charges. 

 
C8pqr]78 = uTOC + h TOC × 𝑓D[(1 + 𝑟)z{MD − 1

z{M$

Dn:

]} ×
𝑟

1 − (1 + 𝑟)Mz~
+ FOM (4.5) 

• TOC is the total overnight cost ($ per kWe)  
• FOM is the fixed operations and maintenance cost ($ per year) 
• Tc is the duration (years) of construction  
• 𝑇7 is the duration (years) of operation 
• fi is the fraction of TOC expended in year i of construction (summing fi over Tc equals 1.0) 
• r is the real discount rate (percent per year) 
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Given 𝐶1f  and 𝐶8pqr]78, the annual LCOE is then given by Eq. 4.6 where E is the 

total amount of electricity produced in that year in kWh. 

 
LCOE =

C1f + C8pqr]78
𝐸  (4.6) 

Here, the total cost of electricity is the chosen metric for the economics decision criterion 

(and the decision criterion will be referred to as the Cost of Electricity criterion from this 

point forward). The total cost of electricity is calculated using Eq. 4.7 and is then the total 

cost of producing nuclear electricity to meet demand requirements during the simulation. 

 COE = h 𝐸] ⋅ LCOE]

z

]n]�

 (4.7) 

• 𝐸] is the total amount of electricity produced in year 𝑡 in kWh 
• LCOE] is the levelized cost of electricity in year 𝑡 in cents per kWh 

4.2.2   WASTE MANAGEMENT 

The radioactive waste repository size is controlled by radioactive decay heat 

(Hardin et al., 2011; Wigeland et al., 2006). Waste packages must be spread out 

underground in tunnels to keep repository temperatures within allowable limits. Further, 

the amount of SNF per waste package is limited by individual heating limits. The decay 

heat of SNF is dominated by fission products for approximately 50 years after discharge 

(for LWRs with burnups to 50 GWd per tIHM). Major contributions during this period are 

from 137Cs and 90Sr, which reduce in decay power by 40 percent from 10 years to 30 years. 

More advanced reprocessing technologies may reduce short-term heat load to the 

repository (Shropshire et al., 2009). Later times see decay heat dominated by 241Am, with 



54 

 

its 430-year half-life (Forsberg, 2015). Given the importance of the decay heat on the 

repository size, the waste management criterion is evaluated using the decay heat metric 

(and the waste management decision criterion will be referred to as the Decay Heat 

criterion from this point forward). The decay heat H in watts, of SNF and HLW is given as 

a weighted sum of its heat generating isotopes, given as: 

 
𝐻 =h𝑚D ⋅ ℎD

_

Dn$

 (4.8) 

• ℎD is the decay heat of isotope i in watts per gram 
• 𝑚D is the mass of isotope i in grams 

The isotopic composition of SNF and HLW to be disposed is obtained from 

ORIGEN reactor models (Section 4.1). The decay heat intensities per tIHM of reactor fuel 

(post burnup according to parameters in Table 4.1) are calculated using Eq. 4.9. In Eq. 4.9,  

𝑀8,] ⋅ �1 − 𝑟8,]� and 𝑀8,] ⋅ 𝑟8,] are the mass of fuel (kgIHM) from reactor type 𝑟 in year 𝑡 

ultimately disposed and reprocessed, respectively. 𝑦1,� is the mass fraction of FPs from 

reactor type 𝑟, which when multiplied by 𝑀8,] ⋅ 𝑟8,] gives the mass of FPs – the mass 

ultimately vitrified in HLW – in SNF from reactor type 𝑟 in year 𝑡. Multiplying both the 

disposed and recycled fuel constituents by their respective decay heat constants and 

summing over every year in the simulation yields the total decay heat load to the repository.  

The decay heat constant of reactor fuel constituents (𝑑8��1 and  𝑑81, in watts per tIHM) is 

obtained using the reprocessUF() method described in Section 4.1. These decay heat 

constants are taken as the static decay heat rate at 10 years for both SNF and HLW, 

assuming a 10-year cooling time. Dynamic calculation of decay heat to the repository is 
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limited by VEGAS’s omission of decay calculations. Then, the decay heat load to the 

repository is taken as the static decay following the 10-year cooling time. 

 
𝐷 =h h 𝑀8,] ⋅ ��1 − 𝑟8,]� ⋅ 𝑑8��1 + 𝑦1,� ⋅ 𝑟8,] ⋅ 𝑑8

1,�
8

z

]n]�
 (4.9) 

• 𝑀8,] is the mass throughput of reactor type 𝑟 in year 𝑡 
• 𝑟8,] is the fraction of fuel discharged from reactor type 𝑟 in year 𝑡 ultimately reprocessed 
• 𝑦1,� is the output FP mass fraction from reactor type 𝑟 
• 𝑑8��1 is the decay heat constant of reactor type 𝑟 from SNF 
• 𝑑81, is the decay heat constant of reactor type 𝑟 from FPs 

Calculated decay heat intensities are given in Table 4.5. These values are 

approximately consistent with values calculated by Burgelson et al. (2005), which 

calculated the decay heat for FPs and TRU for the time period between fuel discharge and 

300,000 years for LWR SNF fuel with burnup of 40 MWd per tIHM. On a per kgIHM 

basis, SNF generated from LWRs contains less than half the decay heat power of HTGRs 

and SFRs. However, the fuel efficiency (burnup) of LWRs is less than half HTGRs. 

Further, used fuel from SFRs is continuously recycled, with a relatively low amount of 

HLW generated per kg IHM. Due to these factors, of the three technologies, LWRs perform 

the least well in terms of decay heat on a per MWde produced. This can later be seen in 

Chapter 6.   

Table 4.5:  Calculated decay heat intensities for used fuel and vitrified high-level waste. 

 LWR HTGR SFR 
SNF Disposal (watts per tIHM) 1.849E+03 4.145E+03 8.929E+03 

HLW Disposal (watts per tFP in HLW) 1.322E+03 3.396E+03 2.738E+03 
SNF Disposal (watts per GWdt produced) 1.109E+02 6.908+01 3.058E+02 
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4.2.3   PROLIFERATION RESISTANCE 

The Evaluation and Screening Study defines Proliferation Risk as: 

Proliferation Risk – A broad definition of proliferation risk includes the risk of a 
nation (“host-state”) obtaining nuclear weapons where that nation currently does 
not possess nuclear weapons. Proliferation risk involves a number of factors, both 
technical and non-technical, including considerations such as facility location and 
host state intent. 

Two technical considerations in the assessment of proliferation risk from the civilian 

nuclear fuel cycle are: 

1. Material Attractiveness – the usefulness of a material for proliferant activities 
2. IAEA Safeguards – a series of technical measures designed to provide credible 

assurances to the international community that nuclear material remains in 
peaceful use 

Then, the proliferation resistance as defined by Charlton et al. (2017) is: 

Proliferation Resistance – a measure of the relative increase in barriers [both 
intrinsic to the material or process and extrinsic (or engineered)] to impede the 
proliferation of nuclear weapons either by diversion of material by a state in 
possession of a system or theft of material by a terrorist or sub-national group. 

Charlton gives commonly agreed upon attributes that increase these barriers and as a 

consequence, the proliferation resistance: 

1. Extraordinary reduction in the quantity of special nuclear material (SNM), which 
includes plutonium and high enriched uranium 

2. Avoidance of separated SNM streams (e.g., maintaining the plutonium physically 
mixed with minor actinides and/or fission products) 

3. Designing the material or process such that it can be more readily safeguarded (in 
terms of both material accountancy and containment/surveillance) 

The Evaluation and Screening Study does not assess the proliferation risk, stating 

that most factors were beyond the scope of the study such as the facility location, facility 



57 

 

design and socio-political considerations. Further, the Evaluation and Screening Study 

reviewed evaluation groups and their corresponding fuel cycles when attractive materials 

(for proliferant activities) were used and determined that in principle these fuel cycles could 

be developed and implemented using unattractive materials by making different choices 

for fuel cycle operating parameters (e.g., reactor refueling interval and fuel burnup at 

discharge). While the E&S Study did not ultimately include a quantified proliferation 

resistance metric, it is included here to ensure a rigorous evaluation method and avoid 

a posteriori interpretation of the data.  

Evaluation of the proliferation resistance of a given fuel cycle transition follows the 

methodology developed by Charlton et al. (2017)8. The key advance of Charlton’s 

methodology is focus on the proliferation resistance on the material moving through the 

fuel cycle, allowing for assessment of the fuel cycle as a dynamic process, with material 

constantly in a state of change (either chemically, physically or radiologically). A series of 

attributes are used to determine a proliferation resistance value, and each attribute has some 

importance weighting and associated utility function that relates the changes in the value 

of the attribute to its effect on the proliferation resistance value. The static proliferation 

resistance value of process 𝑖 is given by Eq. 4.10. The time- and mass-weighted average of 

the static proliferation resistance values for a fuel cycle comprising of 𝑖 = 1, 2, …, 𝐼 

processes is termed the total nuclear security measure for a single fuel cycle, given by 

Eq. 4.10.  

                                                
8 The methodology was developed based on work performed in collaboration with Sandia and Los Alamos 
National Laboratories, and the Amarillo National Resource Center as part of an Accelerator Transmutation 
of Waste, Advanced Accelerator Applications, and the Advanced Fuel Cycle Initiative. The attributes and 
weights were developed through that effort were modified as part of collaboration with Oak Ridge National 
Laboratory in order to include a greater degree of safeguards-related metrics. 
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𝑁𝑆 =

∑ 𝑚D ⋅ 𝛥𝑡D ⋅ 𝑃𝑅D_
Dn$

∑ 𝑚D ⋅ 𝛥𝑡D_
Dn$

 (4.10) 

• 𝑚D is the amount of material in process 𝑖 in significant quantities 
• 𝛥𝑡D is the time the material is in process 𝑖 at the static proliferation resistance value for 

process 𝑖 
• 𝑃𝑅D is the static proliferation resistance value for process 𝑖 

 

𝑃𝑅D =h𝑤E ⋅ 𝑢E(𝑥DE)
�

En$

 (4.11) 

• 𝑤E is the weight for attribute 𝑗 
• 𝑢E is the utility function for attribute 𝑗 
• 𝑥DE is the input value for the utility function for attribute 𝑗 in process 𝑖 

The average nuclear security measure during the decision making time period (calculated 

using Eq. 4.12) is the chosen metric for the Proliferation Resistance decision criterion.   

 
NS =

1
𝑇 ⋅ h 𝑁𝑆]

z

]n]�

 (4.12) 

• 𝑁𝑆] is nuclear security measure in year 𝑡  
• NS is the average nuclear security measure for a given fuel cycle transition path during the 

decision making time period 

Each attribute with corresponding measures and weighting factors as given in 

Charlton et al. (2017) are given in Table 4.6. Significant quantities (SQs) of special nuclear 

material as defined by the International Atomic Energy Agency (2001) are 8 kg for Pu, 

25 kg for HEU, 75 kg for LEU, 25 kg for 237Np, 25 kg for elemental Am, and 20,000 kg 
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for elemental Th. Use of SQs allows for normalization of a variety of possible weapons 

material.  

 
Table 4.6:  Nuclear security attributes and weighting factors from Charlton et al. (2017). 

Weighting (Left wj column) in Charlton et al. (2017) and (Right wj column) 
re-normalized weighting used due to omitted attributes. 

𝑗 Attribute 𝑤E  Included 
A. Material Attractiveness Level 

1 DOE attractiveness level (IB through IVE) 0.10 ü 
2 Heating rate from Pu in material (W) 0.05 ü 
3 Weight fraction of even Pu isotopes 0.06 ü 

B. Concentration 
4 Concentration (SQs per tonne) 0.10 ü 

C. Handling Requirements 
5 Radiation dose rates (rem per hr at distance of 1 m) 0.08 ü 
6 Size/weight 0.06 û û 

D. Type of Accounting System 
7 Frequency of measurement 0.09 û û 
8 Measurement uncertainty (SQs/yr) 0.10 û û 
9 Separability 0.03 ü 

10 Percentage of processing steps that use item 
accounting 0.05 û û 

E. Accessibility 
11 Probability of unidentified movement 0.07 û û 
12 Physical barriers 0.10 û û 
13 Inventory (SQs) 0.05 û û 
14 Fuel load type (batch or continuous reload) 0.06 û û 

This work only considers intrinsic barriers to proliferation (inherent to the material itself); 

correspondingly, eight attributes are not examined here, for reasons as follows. When an 
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attribute relies on assumptions on eventual safeguards9 and their performance, it is not 

included here. These attributes include: (1) the frequency of measurement, 

(2) measurement uncertainty, (3) percentage of processing steps that use item 

accountability, (4) probability of unidentified movement and (5) physical barriers; (7, 8, 

10, 11 and 12 respectively in Table 4.6). When an attribute relies on specific design 

parameters, especially those pertaining to advanced reactor types, it is not included here. 

These attributes include: (6) size or weight, (7) inventory and (8) fuel load type; (6, 13 and 

14 respectively in Table 4.6). In the case of size or weight, the proliferation resistance is a 

binary function with the threshold being a single unit being greater than 2 ft3 or 200 lbs. 

Specifically for advanced reactor types (FRs), the design of fuel loading is unsure. 

Recently, much work has investigated the performance of molten salt reactors, with 

aqueous fuel; the decision between molten salt or more traditional fuel assemblies is not 

presumed here. Lastly, VEGAS is incapable of tracking SQs of fissile materials at individual 

facilities. VEGAS aggregates facilities of the same general type, and tracks materials as 

continuously flowing streams rather than discrete batches. Especially in the case of 

co-located reprocessing and fuel fabrication facilities, SQs of material would be confined 

to the reactor facility in which they were produced. Instead, VEGAS aggregates this material 

as one stockpile, from which each reactor’s fuel demand is fulfilled. Further, this issue may 

be complicated by decisions for reprocessing capacity deployment. Reprocessing facilities 

may be operated at full capacity, allowing for stockpiles of fissile material to accumulate 

to a greater degree than if facilities are operated on an on-demand basis, where only 

                                                
9 If the proliferation resistance of a given fuel cycle underperforms compared to another fuel cycle, the 
difference in metrics may give an indication of how heavily safeguards must be implemented in order to 
account for the inequality, see (Ward, 2012).  
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sufficient fuel to fulfill demand for Pu and MA is reprocessed. In the latter case, less 

reactors that operate on separated fuel are brought online (see Chapter 3). The tradeoff 

between the two operating procedures for reprocessing facilities may be the subject of 

future work. The calculation of static proliferation resistance values for all fuel cycle 

processes is given in Appendix A. 
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CHAPTER 5: NUCLEAR FUEL CYCLE TRANSITION SCENARIO 

Results from the VEGAS nuclear fuel cycle simulator are used to inform a 

two-person general-sum multi-stage sequential game (Transition Game) where the two 

players represent two of the prime participants in a nuclear project: a government entity 

(Player G) and a utility generating company (Player U). These players and their 

interactions create complexity, posing a major challenge in the development of nuclear 

infrastructure, specifically in a de-regulated electricity market. In the Transition Game, 

both players choose their strategies with complete information, that is, each knows the 

other’s available strategies and corresponding payoffs. Players act sequentially, with G 

acting first with the option to offer incentives to alter U’s actions in a way that benefits G. 

Due to the sequential property of the game, each player makes their decision anticipating 

the influence of that decision on all subsequent decisions, both his or her own and the other 

player’s. In this sense, the outer optimization problem of the first player is constrained by 

the inner optimization problem of the second player (and for each sequential sub-game). A 

key characteristic of the Transition Game is that one player’s wins do not equal another’s 

losses; this type of game is termed a general-sum game. Further, Nature is present as a 

player that moves randomly, representing uncertain parameters in the fuel cycle evolution. 

G and U are assumed to know the true probability of Nature’s moves. 

The fuel cycle Transition Game is documented here. Section 5.1 gives the 

simulation parameters and available reactor technologies for the Transition Game. 

Section 5.2 describes the players (as well as Nature) in the Transition Game and their 

available strategies, including their interactions. The calculation of payoffs and the 

weighting between different decision criteria for the individual players is also documented. 
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Section 5.3 gives the scenario tree-based approach to stochastic programming solution 

concept to the Transition Game.  

5.1   TRANSITION GAME 

A VEGAS simulation is defined by user-input files for nuclear fuel cycle and reactor 

parameters. An ordering algorithm deploys reactor to fulfill an electricity generation profile 

for each simulation. These inputs are described in this subsection and text input files are 

available upon request from the author.  

5.1.1   VEGAS SIMULATION PARAMETERS 

A summary table of the Transition Game input parameters for the VEGAS simulator 

is given in Table 5.1. The WNA (2017a) projects an aggressive 2.3 percent10 annual 

demand growth rate for nuclear electricity due to overall increasing electricity demands 

and the desire to reduce greenhouse gas emissions. The legacy used fuel stockpile is set to 

0 tIHM for simulation purposes only. The transition assumes the current stockpile of SNF 

is sent directly to disposal, only considering the plan for future used fuel produced from 

the operation of nuclear reactors. The scenario begins in 2018 with an initial nuclear 

electricity generating fleet of 100 GWe of LWRs, and VEGAS simulations are carried out 

through 2160, an additional lifetime of the longest operating facility, to ensure liability 

costs are accounted for. Objective function values are only computed through 2100, the 

end of the decision making period.  

 

                                                
10 The WNA estimates this demand growth rate until 2040. 
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Table 5.1:  Summary of Transition Game electricity generation profile input parameters. 

Fuel cycle unit cost data was primarily obtained from Shropshire et al. (2009)11, 

with costs adjusted to current 2018-dollar amounts using the Bureau of Labor Statistics 

CPI Inflation Calculator. The value of unit costs for fuel cycle processes and their sources 

                                                
11 While dated, the 2009 Advanced Fuel Cycle Cost Basis represents the largest collection of fuel cycle cost 
estimates from a single economic working group. 

Year Item Value Unit Reactor Type 
A. Simulation Parameters 

2018 Start Year 2018 yr - 
2018 Decision Making Start Year 2018 yr - 
2100 Decision Making End Year 2100 yr - 
2160 Simulation End Year 2160 yr - 
2018 Legacy Used Fuel Stockpile 0 tIHM - 
2018 Electricity Demand Growth Rate 2.3 %/yr - 

B. Reactor fleet data 
2018 Initial Generation Capacity 100 GWe - 
2018 Initial Capacity Data 100 % LWR 
2018 Year Initial Fleet Begins Retiring 2018 yr - 
2040 Year Initial Fleet Finishes Retiring 2040 yr - 

- New Reactor Lifetime 60 yr - 
- Reactor Construction Time 4 yr - 

C. Reactor “Try to Build” Strategies 
 Reactor Type (Primary | Replace With) Value Unit 

2035, 2045, 2055 

LWR 100 % 
HTGR 100 % 
SFR | LWR 100 | 0 % 
SFR | HTGR 100 | 0 % 
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are provided in Table 5.2. If a parameter is uncertain, the nominal value appears in 

Table 5.2, and its range of values and probability distribution is given in Section 5.2. 

Table 5.2:  Fuel cycle unit cost input data. 

Technology Value Unit Source 
Uranium Mining & Milling 89 $/kg U as U3O8 [1] 
Conversion to UF6 12 $/kg U as U3O8 [1] 
Enrichment 131 $/SWU [1] 
Fuel Fabrication (LWR) 298 $/kg IHM [1] 
Fuel Fabrication (HTGR)  3335 $/kg IHM [2] 
Fuel Fabrication (SFR) 2668 $/kg IHM [2] 
SNF Storage 358 $/kg IHM [1] 
Reprocessinga (LWR and HTGR) 1850 $/kg IHM [1] 
Reprocessing (SFR) 4002 $/kg IHM [2] 
SNF Disposal 650 $/kg IHM [1] 
HLW Disposal 6500 $/kg IHM in HLW [1] 
Separated Actinide Storage 1050 $/kg/yr [1] 
Separated Actinide Vitrification & Disposal 5967 $/kg FP [1] 
a Includes HLW storage and vitrification 
Sources: [1] (Shropshire et al., 2009), [2] private correspondence, Erich Schneider, former member 

of the AFCI Economic Working Group 

5.1.2   REACTOR TECHNOLOGIES 

During the Transition Game, U may choose to adopt one of two advanced reactor 

technologies during the simulation: sodium-cooled fast reactors (SFR) or 

high-temperature, helium-cooled, graphite-moderated thermal reactors (HTGR). 

Transition to SFR technology closes the fuel cycle, while transition to HTGR technology 

continues operation of an open fuel cycle. These technologies are based on the 
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identification by the Evaluation and Screening Study (the Study) of promising fuel cycles 

with the potential for achieving substantial improvements compared to the current U.S. 

nuclear fuel cycle (DOE, 2014). If U determines the transition to either advanced 

technology is expected to be unfavorable, he may instead choose to continue building 

LWRs. Reactor modeling parameters are provided in Chapter 4, Table 4.1. In all cases U 

builds reactors to meet a user-specified nuclear electricity demand.  

The Study groups fuel cycles into evaluation groups (EG) that represent groupings 

of fuel cycle options with similar physics-based performance. While the Study identified 

several promising EGs of nuclear fuel cycles, two are chosen for examination here, both of 

which rely on less proven, advanced reactor technology: EG02 (once-through HTGRs) and 

EG24 (recycle in SFRs). These technologies have been identified among six advanced 

reactor concepts by the Generation IV International Forum believed to represent the future 

shape of nuclear energy. About $6 billion over 15 years has been expended for further 

development of these technologies (WNA, 2017b). 

The currently existing U.S. nuclear fuel cycle is represented by EG01, the 

once-through commercial LWR fuel cycle with direct disposal of spent nuclear fuel (SNF) 

in a geologic repository. EG01 is modeled under the assumption that existing LWRs are 

able to receive power upgrades through use of higher enrichment UOX fuel. 

Correspondingly, VEGAS’s initial nuclear capacity is taken to be A(dvanced)LWRs with 

higher enrichment and burnup than their Gen II/III counterparts.  

At equilibrium, EG02 is comprised of an HTGR fleet, requiring enriched NU to 

fabricate uranium oxy-carbide (UCO) fuel. The discharge burnup of HTGR fuel is assumed 

at 120 GWd per tIHM and is a significant improvement on even advanced LWRs. Fuel is 
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irradiated in fuel particles containing enriched U in a graphite matrix12. After irradiation, 

SNF is sent to disposal in a geologic repository.  

EG24 considers recycle of metallic fuel consisting of transuranic elements (TRU) 

in SFRs. A U-TRU-Zr driver fuel is used in SFRs to achieve a break-even TRU conversion 

ratio in the equilibrium state. Following irradiation, discharged used fuel is reprocessed to 

recover TRU and recovered uranium that are recycled into the same SFR. FPs (as HLW) 

are sent to disposal. Fuel electrochemical13 reprocessing and fuel fabrication facilities are 

co-located in a Consolidated Fuel Treatment Center14; interim storage and waste 

stabilization facilities may also occur in the same plant. During fuel reprocessing, fuel is 

separated electrochemically into waste and product streams via a molten salt electrolyte, 

and the fuel fabrication step is likely to be totally integral to the reprocessing technology. 

Fuel reprocessing employs the Multistep UREX+15 separations process, involving molten 

salt chemistry at elevated temperatures, releasing many of the FPs, with the remaining 

material undergoing a final reduction step to create the necessary composition for use in 

                                                
12 General Atomics has the Modular High-Temperature Gas-cooled Reactor design with prismatic blocks 
with smaller graphite cylinders or “compacts” imbedded in vertical holes in the block, which contain the fuel 
particles. Another HTGR concept relies on UCO fuel in the form of billiard-ball sized graphite spheres or 
“pebbles” with the fuel particles imbedded within. The latter design is used in the HTR under construction 
in Shidaowan. 
13 Electrochemical reprocessing is used here as a blanket term for those reprocessing technologies that 
employ the “dry” process (e.g., pyrochemimcal, pyroprocessing and molten salt methods); that is, processes 
that do not employ aqueous solution chemistry. 
14 Co-located facilities are the preference for nonproliferation, radiation safety, and cost minimization 
purposes (Shropshire et al., 2009).  
15 The Plutonium-Uranium Extraction (PUREX) aqueous reprocessing technology produces two primary 
streams: U and Pu, and fission products and minor actinides (the primary HLW stream). The UREX+ process 
is a modified version of the PUREX process which has more product or by-product streams tailored to meet 
specific fuel cycle by-product objectives, such as a U/TRU product that can be used ins actinide burning fuel 
in FRs (Shropshire et al., 2009).  



68 

 

recycled fuel. The Multistep UREX+ separations process produces a U/TRU product that 

can be used as actinide burning fuel in fast reactors. In the Transition Game scenario, the 

SFR reprocessing hierarchy is set to prioritize HTGR fuel, as HTGR fuel has a higher Pu 

concentration at discharge. As a result, greater penetration of the SFR technology is 

expected. 

5.2 PLAYER DESCRIPTIONS AND INTERACTIONS 

Each decision node is characterized by (1) the player acting and (2) that player’s 

available decisions (strategies). For each player’s decision node (and Nature’s chance 

nodes) depicted in Fig. 5.1, the available strategies are listed in Table 5.3. These decisions 

are made sequentially, allowing each player to observe the other’s previous decisions and 

Nature moves, anticipate the other’s future moves, and account for his or her own recourse 

opportunities.  Descriptions of Players G and U, who represent a government entity and a 

utility generating company, follow, which include their available decisions at each stage 

and the decision criteria upon which these decisions are made. 

At each decision node, the acting player aims to maximize his or her expected 

payoff. The expected payoff must be computed due to uncertainty in Nature’s moves, 

though other decision criteria exist that do not require a probability distribution on Nature’s 

moves. The expected payoff is calculated using Eq. 5.1. Each player’s payoff is a function 

of their unique decision criteria and corresponding weights. This distinctive feature is 

responsible for introducing the complexity of interaction between the two players. 
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Figure 5.1: Transition Game decision tree with G’s decision nodes (pink), U’s decision 
nodes (blue) and Nature’s chance nodes (grey). See Table 5.3 for text. 
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Table 5.3: Ordering of sequential player decisions (and available strategies at 
appropriate decision node) and Nature’s moves (and possible outcomes at 
appropriate chance node) during Transition Game. Supplement to Fig. 5.1. 

Stage No. Player Available Strategies 

1 G 
• Process R&D (reprocessing technology) level 
o Outcome of reprocessing cost 

• Product R&D (waste disposal technology) level 

Chance Nature • Outcome of waste disposal cost  
o Probability affected by product R&D 

2 U 

• Build LWRs 
• Build HTGRs 
• Build SFRs 
• Build HTGRs and SFRs 

Chance Nature • Learning curve outcomes for HTGRs and SFRs  
o nth of a kind cost realized if advanced technology built 

3 G 
• Capital Subsidy for HTGR 
• Capital Subsidy for SFR 
• Capital Subsidy for LWR 

4 U 

• Build LWRs 
• Build HTGRs 
• Build SFRs 
• Build HTGRs and SFRs 

Chance Nature • Learning curve outcomes for HTGRs and SFRs  
o nth of a kind cost realized if advanced technology built 

5 U 

(Filtered by U’s upstream strategies) 
• Build LWRs 
• Build HTGRs 
• Build SFRs 
• Build HTGRs and SFRs 
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 P, =hSr� 	 ⋅ 𝑤r,
r

 (5.1) 

Sr� is the score of (fuel cycle transition) path 𝜗 for criterion 𝑐, where 𝑐 indexes over the 

criteria listed in Table 5.4 and 𝑤r, is the weight of criterion 𝑐 for Player P. Fig. 5.2A depicts 

a single path 𝜗, defined by G’s and U’s chosen strategies at their respective decision nodes 

(pink and blue squares, respectively, in Fig. 5.1) and all of Nature’s moves at his chance 

nodes (grey circles in Fig. 5.1). Then, 𝜗 is one path from root to leaf of the Transition Game 

decision tree, see Fig. 5.2A, and the set 𝜗 ∈ Θ produces the entire tree depicted in Fig. 5.1. 

The criterion score Sr� for criterion 𝑐 and path 𝜗 is calculated using Eq. 5.2 if 

seeking to maximize the objective function (Proliferation Resistance) or using Eq. 5.3 if 

seeking to minimize the objective function (Cost of Electricity or Decay Heat). 𝑓r� is the 

objective function value for criterion 𝑐 and path 𝜗. The objective function value for each 

criterion is computed identically for both players (Chapter 4, Section 4.2), though this is 

not always the case. Then the score (and subsequent payoff constituent) for criterion 𝑐 and 

path 𝜗 is the min-max normalization of 𝑓r�over all objective function values. Using the 

min-max normalization avoids a posteriori interpretation of the data. 

 
Sr� =

𝑓r� −min� 𝑓r�

max
�

𝑓r� − min� 𝑓r�
 (5.2) 

 
Sr� = 1 −

𝑓r� −min� 𝑓r�

max
�

𝑓r� − min� 𝑓r�
 (5.3) 
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Table 5.4: Evaluation criteria and reference case baseline weighting factors. 

 Criterion Weighting 
Evaluation Criterion (c) Player G Player U 
Cost of Electricity  0.3  1.0 
Decay Heat  0.3  0.0 
Proliferation Resistance  0.3  0.0 

The Transition Game is a special case where only U’s strategies affect the material 

balance since only U decides which reactors to build16.  This feature allows for a significant 

reduction in the amount of VEGAS simulations required to analyze a large number of 

uncertainties. The VEGAS simulator is called for all U-paths 𝜗+, where 𝜗+ are all 

combinations of U’s strategies at each of his decision nodes (Fig. 5.2B depicts a single 𝜗+). 

In the Transition Game, G’s strategies and Nature’s moves determine fuel cycle technology 

unit costs and reactor capital costs, and their associated probabilities.  

Fig. 5.3 depicts the method for calculating payoffs. First, ORIGEN (described in 

Chapter 4) is used to simulate generic reactor types identified in the Study to obtain isotopic 

vectors for discharged reactor fuel. These isotopics are summed over U, Pu and MA 

constituents to obtain reactor input and output recipes for VEGAS. The VEGAS simulator is 

called for all 𝜗+ ∈ Θ with the simulation parameters listed in Table 5.1, resulting in a 

unique material balance. The material balance characterizes the flow of materials through 

the nuclear fuel cycle, in units of kg U, SWU or IHM. After VEGAS calculates the material  

                                                
16 In other transition games, G might be responsible for the deployment of reprocessing facilities, or Nature 
might determine losses in reprocessing, in which case this condition would not apply due to VEGAS’s 
technology and material constraints. Even if G’s strategies or Nature’s moves alter the material balance, only 
the subset of paths 𝜗 ∈ Θ that result in a unique material balance must be simulated. 
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Figure 5.2: (Top) Depiction of single path 𝜗 through Transition Game decision tree 
consisting of all of G’s and U’s selected strategies at their respective decision 
nodes and Nature’s moves at his chance nodes. (Bottom) Depicted of a single 
U-path 𝜗+ through Transition Game decision tree consisting only of U’s 
selected strategies at his decision nodes. 

balance, the Cost of Electricity, Decay Heat and Proliferation Resistance calculators are 

invoked. These calculators take the material balance, G’s strategies and Nature’s moves as 

inputs and determine metric scores for each criterion and paths in Θ. In addition, the Decay 
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Heat and Proliferation Resistance calculators require the isotopic breakdown of SNF and 

HLW from burnup of reactor fuel.  

 

 

Figure 5.3: Overview of payoff calculation method and selection of optimal transition 
and hedging strategies. 

5.2.1    PLAYER G 

G’s payoff is comprised of the Cost of Electricity, Decay Heat and Proliferation 

Resistance criteria scores. In the reference case, G’s three criteria are assumed of equal 

importance.  Ensuring that nuclear power remains a viable marketplace option with other 

electricity generation technologies is advantageous if climate change policy is enacted. The 
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international consensus is that geologic repositories represent the best-known method for 

permanently disposing of SNF and HLW generated from nuclear power production. Siting, 

construction and licensing of a geologic repository is assumed federal responsibility 

(DOE, 2013). Since the decay heat from SNF and HLW ultimately determine the size of 

the repository needed, minimizing the heat load is favorable. Lastly, from a national 

security standpoint, the need for developing a proliferation resistant fuel cycle is apparent.   

G’s Decisions (Available Strategies) 

G’s intent is to influence U to adopt reactor technologies that benefit her. The 

available strategies to influence the transition are process research and development 

(R&D), product R&D and capital subsidies.  

Strategy 1: Process R&D 

The initial unit cost for a technology is 𝑐:. G may choose an investment level, 

𝑏¡87rp¢¢, into process R&D which reduces the unit cost of a technology through 

improvements in efficiency. The technology examined here is the UREX+ aqueous 

reprocessing technology that separates U, Pu and MA for recycle in higher tiered reactor 

types. Due to difficulties in correctly parameterizing the result of process R&D, the result 

is assumed known in the Transition Game for demonstration purposes only 

(Balachandra and Friar, 1997).  

Used fuel separation proceeds using aqueous reprocessing that isolates used fuel 

into its elemental components. The traditional Plutonium-Uranium Extraction (PUREX) 

process has been utilized for commercial Mixed-Oxide (MOX) thermal reactors, however 

the UREX+ process may be tailored to meet specific fuel cycle by-product objectives, such 
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as a U/TRU product that can be used as actinide burning fuel in FRs (such as those in 

EG24). Several aqueous reprocessing facilities connected with military programs have 

been built though little cost information available for them. Cost data from the two 

commercial reprocessing sites are limited as the information is proprietary. Cost estimates 

from Shropshire et al. (2009) of the UREX+ reprocessing technology are given in 

Table 5.5; the triangular distribution between low, nominal and high estimates was used to 

determine estimates at the quartiles. It is assumed that, given past experience, R&D efforts 

aimed at reprocessing technologies would successfully yield a target cost.  

Table 5.5: Reprocessing process R&D outcomes for all 𝑏¡87rp¢¢ investment levels. 

 Cost ($ per kg IHM) 
Investment Level (𝑏¡87rp¢¢) 0 1 2 

(Shropshire et al., 2009) 2,387 2,171 1,964 

Strategy 2: Product R&D 

G may also choose an investment level, 𝑏¡87£-r], into product R&D which allows 

new technologies to be developed which may significantly reduce costs. The result of 

product R&D is to alter the probability distributions on which the waste disposal 

technology unit costs are defined. Product R&D allows the initially non-zero probabilities 

of certain waste disposal unit costs to become positive. New products offering great cost 

savings may include improved waste canisters allowing the fuel load density to increase in 

the repository, or entirely new waste disposal technologies to be successfully developed 

such as deep borehole disposal. Costs estimates are summarized in Table 5.6 and are 

obtained from Shropshire et al. (2009) for conventional geologic disposal and from 



77 

 

Driscoll et al. (2015) for deep borehole disposal. The probability distribution associated 

with each product R&D investment level is highly uncertain and difficult to define and is 

chosen here only for demonstration purposes. This issue of partial perfect information may 

be the subject of future work. All costs are normalized to 2018-dollar amounts. 

Table 5.6:  SNF and HLW disposal cost estimates and probability distributions 
associated with all 𝑏¡87£-r] levels of product R&D. 

 Cost 
SNF Disposal ($/kg IHM) 144 602 801 987 

HLW Disposal ($/kg FP in IHM) 933 4,133 6,359 8795 
Investment Level (𝑠¡87£-r]) Probability 

0 0.00 0.25 0.50 0.25 
1 0.05 0.30 0.45 0.20 
2 0.10 0.35 0.40 0.15 

The investment level (𝐵) across process and product R&D is fixed at 2, see Eq. 5.4:  

 𝐵 = 𝑏¡87rp¢¢ + 𝑏¡87£-r] == 2 (5.4) 

Here, 𝐵 is the total units of “budget” allotted for investment. Again, 𝐵 is a quantity that is 

extremely difficult to determine; its fixed quantity and constraint across R&D investment 

in the two competing technologies is for demonstration purposes only. 

Strategy 3: Capital Subsidy 

If policies are implemented that are meant to incorporate the external costs of 

electricity production, such as production of CO2 emissions, the economic benefit of 

nuclear power would become more visible to potential investors. The MIT Future of 

Nuclear Power study issued by Deutch et al. (2003; 2009) recommend three actions to 
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increase the economic viability of nuclear power. The preferred incentive is the production 

tax credit of up to $200 per kWe of the construction of up to 10 “first mover” plants which 

bear the burden of one-time risks and provide followers with valuable information and 

experience. The production tax credit offers the greatest incentive for projects to be 

completed, and further, may be extended to other carbon-reducing technologies. Here, the 

production tax credit is implemented as a capital subsidy17. While the capital subsidy is 

meant to encourage the move to advanced reactor technologies by subsidizing first mover 

plants, U may still choose not to adopt these technologies. In this case, following the 

allotted 10-year timeframe in which the capital subsidy is reserved for advanced 

technologies, the equivalent subsidy is instead provided to future LWRs. 

5.2.2    PLAYER U 

Player U’s payoff is simply the Cost of Electricity score. Utilities are typically 

businesses in many respects, and increased electricity sales result in increased revenues 

and therefore profits, specifically in an unregulated electricity market.   

Historically, under the Nuclear Waste Policy Act of 1982, utilities were charged 

1 mill per kWh of nuclear electricity paid to a Nuclear Waste Fund, which was to fund 

development of repositories for the disposal of used fuel high-level waste disposal 

(DOE, 2004). Yucca Mountain was designated as the first site for a geologic repository for 

nuclear waste in 1987 and was originally approved in 2002. However, the federal 

                                                
17 The production tax credit to be paid out at 1.7 cents per kWe-hr- over a year and a half of full-power plant 
operation. Based on operation of a 1000 MWe plant with capacity factor of 90 percent, the production tax 
credit is equivalent to a $200 per kWe government subsidy. The dollar amount is adjusted to 2018-dollar 
values for consistency. The production tax credit is implemented as a capital subsidy in this work, due to its 
lessened modeling complexity in the VEGAS framework. In addition, new nuclear plants are assumed to be 
successfully built and operated in VEGAS, voiding the incentive for completing a nuclear project. 
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government has failed to meet its obligation to dispose of nuclear waste, due to DOE shut 

down of the Yucca Mountain project in 2010, leaving 39 states to store radioactive waste 

on-site (NEI, 2018). Due to the issues surrounding licensing, constructing and operating a 

nuclear waste repository, utilities may be responsible for long-term storage of their nuclear 

waste. In Chapter 6, the effects of introducing this obligation for U are examined through 

alternative weighting of U’s decision criteria to include the Decay Heat decision criterion.  

U’s Decisions (Available Strategies) 

U builds reactors to meet an exogenously specified power demand. Currently 

existing LWR technology is available to U, as well as advanced SFR and HTGR 

technology. U’s strategies are then his decisions on which reactor technology to employ to 

meet power demand and are referred to as:  

• LWR strategy build only LWRs 

• HTGR strategy build only HTGRs 

• SFR strategy build SFRs at material-constrained maximum limit, relying 
on reprocessed used fuel from LWRs – if electricity 
demands unmet by SFRs, build LWRs 

• HTGR-SFR strategy build SFRs at material-constrained maximum limit, relying 
on reprocessed used fuel from HTGRs, then LWRs – if 
electricity demands unmet by SFRs, build HTGRs 

U’s upstream strategies act to filter his future available strategies (recourse decisions); 

Fig. 5.4 gives an example of this filtration. Advanced HTGR and SFR technologies are 

only available at U’s final decision node if these technologies were chosen at either the first 

or second decision node. This can be seen by following the lowermost branch in U’s 

decision tree, depicted in Fig. 5.4. Fig. 5.4 shows only a portion of U’s decision tree, where  
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Figure 5.4:  Filtration examples for U’s sequential reactor technology choices. 

U has chosen the LWR strategy at his first decision node. At the second decision node, 

following the lower branch indicates that HTGR and SFR technologies are chosen. Then, 

at the final decision node, only that branch allows for these two technologies to be chosen. 

Note that this does not preclude delaying and then later resuming the transition. The first 
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and second decision nodes occur in years 2035 and 2045, respectively, with the final 

decision node occurring in 2055, with that decision propagated until the end of the 

simulation. U-Paths 𝜗+ where U chooses the same strategy at each of his decision nodes 

are termed Absolute U-Paths whereas a Partial U-Path is one where U chooses different 

strategies at minimum two of his decision nodes (absolute and partial paths, for 

simplicity). If 𝑑D is U’s strategy at each stage 𝑖, then the absolute HTGR path is denoted 

𝜗¦z§¨+ ∈ 𝜗£©,£ª,¦z§¨
+  for simplicity. U’s absolute paths are a special case of his partial 

paths. A partial path could be 𝜗�1¨,¦z§¨-�1¨,�1¨+ . 

HTGR and SFR prototype reactors are built with first-of-a-kind (FOAK) 

construction costs. As the next units are built, the final nth-of-a-kind (NOAK) cost is 

realized. See Chapter 3, Section 3.3 for implementation of learning curves for reactor 

capital costs within the VEGAS simulator. Table 5.7 gives the FOAK and possible NOAK 

reactor capital costs, converted to 2018-dollar amounts and their sources. FOAK HTGR 

capital costs are obtained from Shropshire et al. (2009) for the Fort St. Vrain reactor, while 

NOAK capital costs are obtained from estimates of China’s HTR-PM unit, currently under 

construction in Shandong province (WNA, 2018). The FOAK SFR cost is taken as France’s 

Superphenix reactor capital cost. Given past issues with the facility leading to inflated costs 

compared to original engineering estimates, the FOAK estimate may be overly pessimistic. 

NOAK SFR capital costs were collected from fuel cycle experts of the Advanced Fuel 

Cycle Initiative Economic Working Group, who also informed updated LWR capital costs. 

If U chooses either advanced reactor technology, then prototype reactors are 

deployed and limited to 1 per year for the first 10 years. If U chooses to recycle used fuel 

(chooses SFR technology), an 800 tIHM per yr pilot reprocessing facility is built that 
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supports SFR reactors deployed during the 10-year learning period. During this period, 

while the available reprocessing capacity follows the ramp-up schedule in Table 5.8, only 

the capacity needed to support the new SFR reactors is used (reprocessing is used on 

demand, see Chapter 3, Section 3.3). After the first 10 years, if U chooses SFR technology, 

reprocessing capacity is utilized at full capacity, and separated actinides are allowed to 

accumulate. If U abandons his SFR strategy, reprocessing capacity is only used on demand 

for previously deployed SFRs. U choosing a recycle strategy, then abandoning it, then 

choosing a recycling strategy again, causes reprocessing capacity to be utilized on demand 

for the time period between decision nodes 1 and 3, and then utilized at full capacity from 

the time period beginning at decision node 3 and onward.  

Table 5.7:  First-of-a-kind reactor capital costs and possible nth-of-a-kind capital costs. 

 Cost ($/kWe) 
Reactor Technology first-of-a-kind Source nth-of-a-kind Source 
LWR 4,177 [1] 4,177 [2] 

HTGR 5,135 [1] 
3,000 

[3] 4,000 
4,500 

SFR 8,870  
3,300 

[2] 4,155 
5.900 

Sources: [1] (Shropshire et al., 2009), [2] private correspondence, AFCI Economic Working Group, 
[3] (WNA,2018) 

If U chooses a path following 𝜗£©,£ª,(�1¨|¦z§¨-�1¨)
+  where his final strategy involves 

recycle of used fuel, additional reprocessing capacity is deployed to bring excess 

inventories of used fuel near zero by the end of the VEGAS simulation. The assumption here 
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is that transition to a nuclear fuel cycle that incorporates recycling of used fuel is aimed at 

minimizing the repository burden and eliminating the need for multiple repositories. A 

reprocessing capacity deployment schedule is chosen that achieves this goal while 

simultaneously minimizing the total integrated reprocessing capacity installed during the 

simulation.  

Each U-path 𝜗+ requires identifying a unique optimal reprocessing capacity 

deployment schedule. For each 𝜗+where U chooses to recycle used fuel at this last decision 

node (𝜗£©,£ª,(�1¨|¦z§¨-�1¨)
+ , totaling 21 strategies), a suite of VEGAS simulations is carried 

out to determine the optimal deployment schedule. Beginning in 2055, and every 5 years 

following until the end of the simulation, reprocessing capacity may be deployed in units 

of 1,500 tIHM per year. In this way, 29 = 512 simulations are performed for all 21 

𝜗£©,£ª,(�1¨|¦z§¨-�1¨)
+ . Reprocessing facilities follow the 4-year capacity ramp-up schedule 

shown in Table 5.8. Table 5.9 shows the optimized reprocessing capacity deployment 

schedule, where ‘0’ indicates no reprocessing facility is built, and ‘1’ indicates a single 

reprocessing facility is built.     

Table 5.8:  Reprocessing facility capacity ramp up schedule. 

 Available Capacity (%) 
Year 1 10 
Year 2 30 
Year 3 60 
Year 4 100 

The optimal reprocessing capacity deployment schedule is chosen to (1) utilize 

90 percent of installed capacity at all times (except during the initial prototype phase) and  
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Table 5.9: Optimized reprocessing capacity deployment schedules for paths 
𝜗£©,£ª,(�1¨|¦z§¨-�1¨
+ . Reprocessing facilities have a 1,500 tIHM per yr capacity 

that follows the ramp-up schedule in Table 5.8: ‘0’ indicates no facility is 
built, and ‘1’ indicates a single facility is built. 
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LWR 
LWR and SFR LWR and SFR 0 0 0 0 0 1 0 1 1 

HTGR and SFR 
LWR and SFR 0 0 0 0 0 1 0 1 1 
HTGR and SFR 0 0 0 0 0 1 1 1 1 

HTGR 
LWR and SFR 

LWR and SFR 0 0 0 0 0 1 0 1 1 
HTGR and SFR 0 0 0 0 0 1 1 1 1 

HTGR and SFR 
LWR and SFR 0 0 0 0 0 0 1 1 1 
HTGR and SFR 0 0 0 0 1 0 0 1 1 

LWR 
and SFR 

LWR LWR and SFR 0 0 0 0 1 0 0 1 1 

HTGR 
LWR and SFR 0 0 0 0 1 0 0 1 1 
HTGR and SFR 0 0 0 0 0 1 1 1 1 

LWR and SFR LWR and SFR 0 0 0 0 0 0 1 1 1 

HTGR and SFR 
LWR and SFR 0 0 0 0 0 0 1 1 1 
HTGR and SFR 0 0 0 1 0 0 0 1 1 

HTGR 
and SFR 

LWR 
LWR and SFR 0 0 0 0 1 0 0 1 1 
HTGR and SFR 0 0 0 0 0 1 1 1 1 

HTGR 
LWR and SFR 0 0 0 0 0 0 1 1 1 
HTGR and SFR 0 0 0 0 1 0 0 1 1 

LWR and SFR 
LWR and SFR 0 0 0 0 0 0 1 1 1 
HTGR and SFR 0 0 0 1 0 0 0 1 1 

HTGR and SFR 
LWR and SFR 0 0 0 0 0 0 1 1 1 
HTGR and SFR 0 0 0 0 0 1 0 1 1 

(2) ensure less than 20,000 tIHM net cumulative waste is stored at the end of the simulation. 

When both conditions are met by more than one deployment schedule, the schedule with 
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the least time-integrated reprocessing capacity is chosen. If both conditions cannot be met 

simultaneously, then the schedule that utilizes 90 percent of installed capacity while 

reaching as close to the 20,000 tIHM goal is chosen.  

5.2.3   NATURE 

Nature’s moves “choose” the outcome of uncertain parameters, determining the 

state of the world that is realized as a response to decisions made by G and U. Uncertain 

parameters include (1) the cost of SNF and HLW disposal, (2) the NOAK capital cost of 

HTGRs, and (3) the NOAK capital cost of SFRs. Possible cost outcomes for these 

technologies are given in Tables 5.5 and 5.6. As all cost data for these technologies are 

limited, the uncertain parameters are modeled as discretized values, though the method 

may be extended to allow for parameters with continuous probability distributions.  

5.3   SOLUTION CONCEPT 

A scenario tree-based approach to stochastic programming is used to analyze the 

sequential multi-stage Transition Game with uncertainty. Stochastic programs are 

mathematical programs that incorporate uncertain variables (here, Nature’s moves or states 

of the world) using their probability distributions. The goal is to identify a feasible solution 

that considers all possible states of the world and performs well on average. Using the 

scenario tree-based approach, variables are assumed to take on discrete values, each with 

an associated probability. The result of solving the stochastic program is identification of 

robust hedging (here, transition) strategies that level negative consequences associated 

with all realizations of the uncertain variables. In contrast, a deterministic program only 

minimizes the negative consequences of one outcome of the uncertain variable. Chapter 2 
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details the backward induction method solution concept for a multi-stage stochastic 

program. This solution concept is employed in this work.  

Each U-path 𝜗+ is simulated in VEGAS obtaining a unique material balance. This 

material balance is provided to the Cost of Electricity, Decay Heat and Proliferation 

Resistance calculators. Then, the payoff for both G and U can be computed for all 𝜗, a 

single path from root to leaf of the Transition Game decision tree. Once the payoff for G 

and U is defined for all 𝜗, the backward induction method is used to find a solution. While 

the method may be computationally costly for problems with many uncertainties, it was 

determined sufficient for the Transition Game examined. By leveraging the physics of the 

Transition Game and determining G’s and U’s payoffs by simulating only a subset of Θ, 

significantly less computational power was needed. 
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CHAPTER 6: TRANSITION GAME RESULTS 

This chapter presents results from solving the Transition Game. Section 6.1 

examines the primary data from simulating the Transition Game in the VEGAS fuel cycle 

simulator. These data include decision criteria metric scores and impacts of material- and 

technology-constraints on metric scores. Tradeoffs in fuel cycle performance due to 

competing decision criteria are illustrated. Electricity generation profiles with 

corresponding SNF generated, as well as cumulative inventories of SNF based on an 

optimized reprocessing technology deployment schedule are illustrated. Section 6.2 

demonstrates the difference in Players G’s and U’s perfect information strategies and their 

optimal hedging strategies based on information available on Nature’s moves under their 

baseline criteria weighting. Finally, Section 6.3 explores the interaction between G and U 

as their criteria weightings are varied. Solving the Transition Game suggests that in the 

absence of a regulated market, or electric utilities expanding their decision criteria beyond 

electricity generating costs, transition to a closed fuel cycle is not observed. Conversely, 

advanced reactor technology that keeps the fuel cycle open is seen to be readily adopted.  

6.1   TRANSITION GAME DATA OVERVIEW 

The decision tree of the Transition Game examined here is described in Section 5.2 

and is depicted in Fig. 6.1. A single path from root to leaf of the Transition Game decision 

tree is defined by G’s and U’s chosen strategies at their respective decision nodes (pink 

and blue squares, respectively, in Fig. 6.1) and all of Nature’s moves at his chance nodes 

(grey circles in Fig. 6.1), with each path through the tree resulting in unique metric scores. 

The evaluation criteria and their chosen metrics for evaluating transition paths are: 
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• Cost of Electricity – total cost of generating electricity 
• Decay Heat – total decay heat load to the repository from SNF and HLW disposal 
• Proliferation Resistance – average time- and mass-weighted nuclear security measure 

The methodology for calculating the scores associated with each criterion is given in 

Section 4.1.  

Recall that U’s upstream strategies act to filter his future available strategies 

(recourse decisions), see Fig. 6.2. For illustration purposes, Fig. 6.2 omits G’s and Nature’s 

moves and U’s first decision is assumed to be deployment of LWRs. Advanced HTGR and 

SFR technologies are only available in U’s final decision node if these technologies were 

chosen at either the first or second decision node, seen by following the lowermost branch 

in U’s decision tree. Only this lowermost branch allows for HTGR and SFR technologies 

to be chosen at U’s final decision node. Note that this does not preclude delaying and then 

later resuming the transition or abandoning a transition when more information is available. 

Instances where transitions are delayed or abandoned are referred to here as partial paths. 

Absolute-paths refer to those in which U chooses the same reactor technology at each of 

his decision nodes. Section 5.2 gives a more detailed definition of these paths and their 

effect on the solution of the Transition Game. U’s paths 𝜗£©,£ª,£­
+  are defined by his 

decisions 𝑑D at each of his decision nodes. For simplicity, U’s partial paths are referred to 

as his (for example) LWR path with 𝜗£©,£ª,®¯¨
+ , though U’s absolute LWR path is defined 

as 𝜗®¯¨
+ = 𝜗®¯¨,®¯¨,®¯¨

+ ∈ 𝜗£©,£ª,®¯¨
+ ,  where at each decision node, U chooses his LWR 

strategy.  
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Figure 6.1:  Transition Game decision tree with G’s decision nodes (pink), U’s decision 
nodes (blue) and Nature’s chance nodes (grey). 
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Figure 6.2: Filtration examples for U’s sequential reactor technology choices. 

The scores for each metric for each path along the Transition Game decision tree 

are shown in Fig. 6.3, with constituent parts in Fig. 6.4. Symbols in Fig. 6.3 and 6.4 are 

defined by 𝑑°; for instance, in Fig. 6.4, the top-right data points are all metric scores for 

U’s HTGR paths, 𝜗£©,£ª,¦z§¨
+ . The first and second decision nodes occur in years 2035 and 

2045, respectively, with the final decision node occurring in 2055, with that decision 

propagated until the end of the simulation in 2100. Due to the longer time horizon of U’s 
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final decision, it is chosen to depict the paths shown in Fig. 6.3 and 6.4. The longer time 

horizon of the final decisions allows greater penetration of the chosen technologies over 

the first two. This effect is further examined in the next subsection.  

 

 

Figure 6.3:  Metric scores for all paths along Transition Game decision tree. 

Differentiation in the transition strategies according to the Cost of Electricity score 

represent different moves by Nature and G’s stage one strategy that determines the cost of 

reprocessing. Combinations of Nature’s moves (as new information is gained depending 

on U’s chosen strategies) are termed states of the world. It is assumed that LWR reactor 
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capital costs are known, while HTGR and SFR reactor capital costs are uncertain (the 

possible values of which are given in Chapter 5, Table 5.6). U’s LWR paths (𝜗£©,£ª,®¯¨
+ ) 

are seen to have middle-of-the-road performance in terms of the Cost of Electricity score, 

though with less uncertainty. In Fig. 6.3, four LWR data points are seen with a Proliferation 

Resistance score of 1.0, corresponding to the absolute LWR path with different realizations 

of the SNF and HLW disposal cost. The absolute LWR path avoids separated actinides 

flowing through the fuel cycle; as well, lower 235U enrichment levels are required for LWRs 

at the cost of lower fuel utilization. The Cost of Electricity score of 1.0 is achieved when 

following the absolute HTGR path, though only under favorable states of the world – 

successful product R&D which develops a new waste disposal technology with superior 

performance and cheap HTGR capital costs. Lastly, the 1.0 Decay Heat score is achieved 

when U follows path 𝜗¦z§¨M�1¨,¦z§¨M�1¨,�1¨+ . In order to reduce inventories of used fuel, 

U takes advantage of HTGR’s greater fuel utilization. By 2055 (U’s last decision node), 

sufficient used fuel is available to continue top-up while achieving burn down of LWR 

used fuel inventories, eventually depleting those stores, so SFRs are chosen at U’s last 

decision node.  

Both HTGRs and SFRs offer an opportunity to improve the Cost of Electricity score 

over traditional LWR technology, though with some risk. Approximately 50 percent of the 

data for U’s paths 𝜗£©,£ª,¦z§¨|�1¨|¦z§¨M�1¨
+  fall under the mid-point in the Cost of 

Electricity score. While a larger uncertainty in the cost of SFR reactor technology exists, 

material constraints limit the installation of new SFRs, and so the effective uncertainty with 

the performance of U’s recycling paths 𝜗£©,£ª,�1¨|¦z§¨M�1¨
+  are less than the uncertainty in 

the HTGR paths 𝜗£©,£ª,¦z§¨
+ .  
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Figure 6.4:  Constituent reactor technology metric scores for all paths along Transition 
Game decision tree. 

The primary contributor to the range of Cost of Electricity scores is due to the 

uncertainty associated with reactor capital costs. Fig. 6.5 shows the range of possible 

metric scores when U follows his HTGR paths (𝜗£©,£ª,¦z§¨
+ ) when reactor capital costs are 

held fixed; then, the spread in data for each subplot is due to uncertainty in SFR capital 

costs that affect scores for  𝜗£©,£ª,¦z§¨
+  with (𝑑$|𝑑') == (𝑆𝐹𝑅|𝐻𝑇𝐺𝑅 − 𝑆𝐹𝑅), as well as 

uncertainties in the cost of SNF and HLW disposal. 
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Figure 6.5:  Uncertainty in Cost of Electricity score for HTGR paths due to uncertainty in 
SNF and HLW Disposal Costs. 

Decay Heat and Proliferation Resistance scores are more readily interpreted using 

Fig. 6.6, where uncertainties in fuel cycle and reactor technology costs have been 

marginalized out. Decay Heat and Proliferation Resistance scores are seen to be strongly 

negatively-correlated. Recycling of used fuel avoids ultimate disposal and heat load to the 

waste repository, though at the cost of separated actinides and significant quantities of 

fissile materials flowing through the fuel cycle. Conversely, a mild improvement in the 

Decay Heat score heat load to the repository is lessened for paths 𝜗£©,£ª,¦z§¨
+  (in comparison 
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Figure. 6.6  Proliferation Resistance and Decay Heat scores with marginalized cost 

uncertainties 

to the case where U chooses 𝜗£©,£ª®¯¨
+ ), due to the higher fuel efficiency of HTGRs. Fuel 

requirements for the different fuel cycle technologies, and relevant reactor performance 

parameters for the calculation, are given in Table 6.1. The Proliferation Resistance score 

of paths 𝜗£©,£ª,¦z§¨
+  is greatly improved over 𝜗�1¨+  and 𝜗£©,£ª,¦z§¨M�1¨

+ . The difference in 

the Proliferation Resistance scores for LWR and HTGR strategies arises from the 235U 

enrichment in fresh fuel. Proliferation resistance and decay heat calculations were assumed 

to have no associated uncertainty. Variations due to ORIGEN inputs (cross sections, 

activities, etc.) are expected to be minor in comparison to the large associated uncertainties 

in fuel cycle and reactor technology costs. Further, in the absence of realistic uncertainties 
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in reactor technology performance, variations in decay heat and proliferation resistance 

could not be calculated as generic reactor types are modeled after those identified in the 

E&S Study. 

Table 6.1:  Reactor fuel requirement calculation parameters. 

Reactor Type LWR HTGR SFR  
Recirculating Power 0.02 0.02 0.02 

MW²	recycled	to	plant	systems
MW²	produced

 

Thermal Efficiency 0.33 0.50 0.40 MW(e)/MW(t) 
Plant Size 1000 150 400 MW(e)  

Discharge Burnup 50 120 73 MWd(t)/kgIHM 
Mass Conversion 1,630 5,880 2,860 MWd(e)/tIHM 

Capacity To Mass 0.020 0.006 0.001 tIHM/MW(e)  
Fuel Requirement 20.1 0.84 4.59 tIHM/reactor 

6.1.1   ABSOLUTE PATHS 

An absolute path is defined as that when U chooses the same strategy at each of his 

decision nodes (for instance, 𝜗¦z§¨,¦z§¨,¦z§¨+ ∈ 𝜗£©,£ª,¦z§¨
+ ). By choosing an absolute path, 

the largest material- and technology-constrained penetration of advanced reactor technology 

may be achieved. Metric scores when U chooses an absolute path are examined here.  

Fig. 6.7 shows the installed electricity generating capacity by each reactor type 

when each absolute path is followed. While transitions begin in 2035, advanced reactor 

technology deployment is limited to one unit per year for the first 10 years (HTGRs and 

SFRs with a capacity of 175 and 400 MWe each, respectively). Relative to the generating 

capacity of the entire nuclear fleet, the installed HTGR and SFR capacity by 2045 is not 

visible in Fig. 6.7. Fig. 6.8 shows a magnified view of Fig. 6.7 during the initial prototype  
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Figure 6.7: Constituent generating capacity [GWe] for Player U’s absolute paths. 

reactor deployment phase, depicting the linear ramp-up of generating capacity. Following 

2045, when the deployment limit on prototype reactor technologies is lifted, penetration of 

the technologies is seen to increase dramatically. By the end of the simulation for both 

𝜗¦z§¨+  and 𝜗¦z§¨M�1¨+  that rely on HTGR instead of LWR technology for tier 0 generating 

capacity, the installed LWR capacity is below 15 GWe. In the Transition Game, the initial  
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Figure 6.8:  Annual electricity generating capacity by reactor type for Absolute U 

HTGR-SFR path (bottom-left) with magnified view of 2035 to 2045 
learning-period with limited advanced reactor deployment. 

100 GWe LWR fleet is set to begin and finish retiring in 2018 and 2040, respectively. Then, 

the remaining LWR generating capacity by the end of the simulation is due to LWRs 

installed during 2035 and 2045 (to make up for electricity demand unfulfilled due to HTGR 

prototype deployment limits) completing their 60-year lifetime.  

Net used fuel quantities for each of U’s absolute paths are shown in Fig. 6.9. Note 

that the net used fuel quantity is the amount of used fuel generated less the total amount of 

used fuel eventually reprocessed during the simulation. The largest amount of used fuel, 

nearly 500,000 tIHM, is accumulated when the absolute LWR path is taken. Due to their 

higher fuel burnup (fuel utilization) and improved electric-to-thermal efficiency, HTGRs 

require approximately one-third less fuel measured in tIHM than LWRs. Then, when U 
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chooses his absolute HTGR path, nearly 200,000 tIHM of this used fuel is avoided, though 

its decay heat content differs. Nearly the entire amount of used fuel is avoided when U 

chooses 𝜗�1¨+  or 𝜗¦z§¨M�1¨+ .  

 

Figure 6.9:  Used fuel quantities for each of Player U’s absolute paths. 

Avoidance of excess used fuel quantities for U’s absolute SFR and HTGR-SFR 

paths is achieved by finding an optimal reprocessing capacity deployment schedule 

(Chapter 5, Section 1). Between 2035 and 2045 (the time period between U’s first and 
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second decisions) used fuel is reprocessed only on demand for prototype reactors built, 

which are limited to 1 per year during this period. Following the learning period, once 

another recycle strategy is chosen, the pilot reprocessing facility (with an annual capacity 

of 800 tIHM per yr) is run at full capacity and separated actinides are allowed to 

accumulate. For both U’s absolute recycle paths, the pilot facility provides sufficient 

capacity until around 2080, when 3 additional 1,600 tIHM per year reprocessing facilities 

are built to achieve the sub-20,000 tIHM cumulative used fuel allowance by the end of the 

simulation. The time-integrated reprocessing capacity is greater for U’s absolute 

HTGR-SFR path. As the HTGR:SFR support ratio is less than the LWR:SFR support ratio, 

HTGR fuel is assumed first in the reprocessing hierarchy. Consequently, the equivalent of 

44 GWe more SFRs are installed when U chooses his absolute HTGR-SFR path. More 

time-integrated reprocessing capacity is needed in this case to account for the larger 

installed SFR generating capacity. The optimal used fuel reprocessing capacity deployment 

and utilization for U’s absolute SFR and HTGR-SFR paths as well as the resulting installed 

SFR generating capacity in percentage quantities of the entire nuclear generating fleet is 

depicted in Fig. 6.10.  

All metric scores for each of U’s absolute paths and each of Nature’s moves are 

shown in Fig. 6.11, with economic costs marginalized out in the bottom subplot. Coupling 

of the uncertainties in HTGR and SFR costs is seen to yield larger uncertainty in the 

eventual Cost of Electricity score when transitioning to SFRs supported by HTGRs, 

opposed to strategies that rely on only one of the advanced technologies. Again, a smaller 

spread in Cost of Electricity score is seen for the absolute SFR path due to the smaller 

penetration of SFR generating capacity. Interestingly, despite requiring larger amounts of 
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reprocessing, the absolute HTGR-SFR path performs better than the absolute SFR path in 

terms of proliferation resistance. Recycling of HTGR used fuel has two favorable 

properties: (1) its self-shielding factor due high radiation dose rates and (2) its higher 

concentration of even:odd Pu isotopes. These attributes are presented in Appendix A.  

 

Figure 6.10:  Fast reactor share of nuclear electricity generating (top) and associated annual 
used fuel reprocessed (bottom) for Player U’s recycle absolute paths. 
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Figure 6.11:  (Top) Decay Heat and Proliferation Resistance scores for each of Player U’s 
absolute paths. (Bottom) Decay Heat and Proliferation Resistance scores with 
Cost of Electricity score marginalized out. 
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6.2    PERFECT INFORMATION AND OPTIMAL HEDGING STRATEGIES 

The perfect information strategies represent those strategies that would be taken if 

the decision maker knew all of Nature’s moves in advance. Additionally, these strategies 

require that each player correctly anticipates the moves of the other player. Each player 

makes their decision based on a unique set of decision criteria, though the objective 

functions associated payoff calculation with these criteria are assumed the same (see 

Chapter 4). The baseline weighting of these criteria for Players G and U are given in 

Table 6.2. The sum of each player’s criteria weighting must sum to unity. 

Table 6.2:  Player G’s and U’s baseline decision criteria weighing. 

 Criterion Weighting 
Evaluation Criterion (c) Player G Player U 
Cost of Electricity  0.3  1.0 
Decay Heat  0.3  0.0 
Proliferation Resistance  0.3  0.0 

Fig. 6.12 compares one path along the Transition Game decision tree, when G and 

U are hedging optimally (top) and when G and U act with perfect information (bottom). 

Both players choose their strategies with their baseline criteria weighting (see radar chart). 

When hedging, G and U consider all 36 possible states of the world (4 possible waste 

disposal costs, 3 possible HTGR capital costs and 3 possible SFR capital costs) and choose 

strategies that perform well on the average.  For illustration, Fig. 6.12 takes one possible 

state of the world, where Nature’s moves are a (1) high waste disposal cost, (2) high HTGR 

capital cost, and (3) low SFR capital cost. In this particular state of the world, transition to 

a closed fuel cycle is favorable for both G and U. 
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Figure 6.12: Player G’s and U’s decisions with perfect information (top) and when hedging 
optimally (bottom). G’s and U’s optimal hedging strategies shown in 
response to one specific example of the evolution of Nature’s moves (high 
disposal costs and high HTGR costs – Nature never moves to reveal SFR 
costs since U never chooses SFR strategy).   

Examining the bottom path in Fig. 6.12, when G and U act with perfect information, 

both have determined that in this particular state of the world, transitioning to a closed fuel 

cycle is favorable. G then chooses her Only Reprocessing R&D strategy at her first decision 

node. By doing so, she drives the cost of reprocessing down, knowing that used fuel will 

be reprocessed instead of disposed. At his first decision node, U readily adopts SFR 

technology, though interestingly, chooses his HTGR-SFR strategy at his second decision 

node, despite high HTGR capital costs. When U follows partial path 𝜗�1¨,¦z§¨M�1¨,�1¨+ , 

less used fuel is eventually disposed during the simulation compared with 𝜗�1¨+  though only 

by approximately 10,000 tIHM (see Fig. 6.13). Cost savings from avoiding disposal of  
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Figure 6.13: Amount of used fuel disposed for absolute U-paths (top-left) 𝜗�1¨+  and 

(top-right) 𝜗¦z§¨&�1¨+ , and partial U-paths (bottom-left) 𝜗�1¨M¦z§¨&�1¨M�1¨+  
and (bottom-right) 𝜗�1¨,¦z§¨&�1¨,¦z§¨&�1¨+ . 

used fuel are in U’s favor. Further, by building only the first 10 HTGR facilities, U is able 

to deploy SFRs at a faster rate, allowing more cost savings to be realized (part of the reactor 

capital cost payment period is cutoff before the decision making time period is over). For 

a similar reason, G is seen to subsidize SFRs, despite U choosing his HTGR-SFR strategy. 

The capital subsidy is calculated such that if a reactor type is subsidized, the discount will 
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be equivalent over the lifetime of the reactor, and across the reactors built during the 

allotted time period. Because of this nature, a small deviation in the Cost of Electricity 

score is seen across G’s options to subsidize HTGRs, SFRs, or HTGRs and SFRs. While 

behavior is nonintuitive, the overall expected trends are consistent.  

Fig. 6.14 shows metric scores for each path along the Transition Game decision 

tree when both players act with perfect information. While there are 36 possible states of 

the world, corresponding to paths along the tree representing every combination of 

Nature’s moves, some metric scores overlap and cannot be differentiated in Fig. 6.14. For 

instance, if U’s perfect information strategies result in his absolute LWR path, then 

Nature’s moves choosing HTGR and SFR capital costs have no effect on the metric scores. 

Of the 36 states of the world, only 3 yield conditions where SFR technology is chosen: 

(1) moderate disposal costs, high HTGR capital costs, and low SFR capital costs (2) high 

disposal costs, high HTGR capital costs, and low SFR capital costs and (3) high disposal 

costs, moderate HTGR capital costs and low SFR capital costs. (1) and (2) lead to U’s 

partial 𝜗�1¨,¦z§¨M�1¨,�1¨+  path, while (3) leads to U’s absolute HTGR-SFR path. G’s capital 

subsidy selection is seen to follow the technology that U chooses. Because the expected 

state of the world is unfavorable to SFR technology, U hedges only with his HTGR 

strategy; for 60 percent of the 36 possible states of the world, U chooses his absolute HTGR 

strategy. The dominance of the HTGR hedging strategy is due to the possibility of 

achieving a significantly lesser capital cost (3000 $/kWe) than LWRs (4177 $/kWe), with 

even the most probable HTGR capital cost (4000 $/kWe) still less than LWR capital costs. 

This heavy dominance may be an indicator of an overly optimistic expectation on the 

performance of future HTGRs. 
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Figure 6.14:  Metric scores for Player G’s and U’s perfect information strategies for all 
combinations of Nature’s moves. 

When G and U are hedging optimally, their strategies are fairly different. The state 

of the world is expected to be unfavorable for closing the fuel cycle, so G instead chooses 

to invest all her R&D budget into waste disposal. U observes this decision, and is further 
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unwilling to risk building SFR technology, especially since the cost of reprocessing is high. 

Now, if Nature moves to reveal an expensive HTGR capital cost. All prospects of 

implementing advanced reactor technology are dissolved, and LWR technology is again 

instated.  

 Fig. 6.15 shows metric scores for each path along the Transition Game decision 

tree when both players are hedging optimally. G’s first hedging strategy is always (under 

the baseline criteria weighting) her Only Waste Disposal R&D. Then, regardless of the 

waste disposal cost Nature reveals, U hedges with his HTGR strategy. After Nature makes 

the HTGR capital cost known, G and U will revert to LWR technology if HTGRs are 

expensive or continue deploying HTGR technology if cheap. G’s Proliferation Resistance 

and Decay Heat scores will improve if U chooses his absolute HTGR path, however, G’s 

capital subsidy is insufficient to drive this transition, especially considering her payoff also 

considers the Cost of Electricity criterion. Then, G is seen to simply subsidize whichever 

reactor type U will choose at his next decision node.  

6.3   CRITERIA WEIGHTING SENSITIVITY 

The strategies - both perfect information and hedging strategies – chosen by each 

player in the Transition Game are contingent on their decision criteria weightings. The 

exploration of these weightings allows for identification of robust hedging strategies when 

considering regime changes that may lead to policy makers or utilities taking on different 

character archetypes.  The effect of these weightings is examined here.  

The top-left quadrant of Fig. 6.16 depicts G’s decision matrix for selecting an 

optimal hedging strategy at her first decision node. The triangle-shaped decision matrix 
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Figure 6.15   Metric scores for Player G and U optimally hedging for all combinations of 
Nature’s moves 

 

 



110 

 

represents the space of all possible criteria weighting, under the constraint that the sum of 

the weights equals unity. The bottom-right quantile is shaded yellow, which is interpreted 

as G’s optimal hedging strategy to be her Only Reprocessing R&D when she places all 

importance on the Decay Heat criterion (weights 0.0, 1.0 and 0.0 for the Cost of Electricity, 

Decay Heat and Proliferation Resistance criteria, respectively).  Compare to the bottom-left 

quantile, which is shaded red as G’s optimal stage one hedging strategy is her Only Waste 

Disposal R&D when her Cost of Electricity criterion weight is 1.0. Fig. 6.16 depicts two 

decision matrices for G’s first hedging strategy, differentiated by the criteria weightings in 

their respective radar charts: (left) when G’s weights are varied and U’s weights are fixed 

at his baseline values, and (right) when G’s weights are fixed at her baseline value and U’s 

weights are varied. G’s stage one optimal hedge identified in Section 6.2, Fig. 6.12 is her 

Only Waste Disposal R&D strategy when G and U have their baseline criteria weights. 

Examining the decision matrices in Fig. 6.16, this hedging strategy is seen to dominate the 

decision space, proving to be a robust hedging strategy early in the Transition Game.  

The bottom-left quadrant of Fig. 6.16 shows G’s expected metric scores for each of 

her available stage one strategies when both G and U have their baseline criteria weights. 

The Only Reprocessing R&D strategy has the lowest expected Cost of Electricity and 

Proliferation Resistance scores but the greatest expected Decay Heat score among G’s 

available stage one strategies. If G chooses her Only Reprocessing R&D strategy as her 

stage one hedge, more SFR generating capacity is expected since G influences the possible 

state of the world to be more favorable to SFRs. Though barely visible, the expected 

penetration of SFRs is reflected in the size of the marker in the bottom-left quadrant of 

Fig. 6.15. The size of the markers in Figs. 6.16, 6.17 and 6.19 are each normalized 
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Figure 6.16:  Player G’s weighted decision matrices (top-left when varying G’s criteria 
weighting and top-right when varying U’s criteria weighting) for her stage 
one hedging strategy and expected metric scores and SFR penetration 
(relative marker size) associated with G’s stage one hedging strategy with G 
and U’s baseline criteria weightings. 

identically. Then, since the expected penetration of SFRs is merely 1.3 percent (Fig. 6.16, 

bottom-left, Only Reprocessing R&D), its larger size is barely visible over the 0 percent 

baseline size (Fig. 6.16, bottom-left, Only Waste Disposal R&D and Reprocessing and 
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Waste Disposal R&D). Both expected metric scores and expected SFR penetration are 

affected by G’s and U’s criteria weightings as that determines their strategy plays. 

Fixing G’s stage one hedging strategy as her Only Waste Disposal R&D strategy 

(and in turn choosing an expensive reprocessing technology cost) and assuming that Nature 

moves to choose a high waste disposal cost, Fig. 6.17(left) shows U’s stage one hedging 

strategy as a response based on his criteria weighting. Consistent with Fig. 6.12, at U’s first 

decision node, his optimal hedging strategy is his HTGR strategy (found moving up 4 and 

right 4 quantiles from the bottom-left in U’s decision matrix). Considering the entire 

criteria-weighting space, U’s most frequently chosen hedging strategy at his second 

decision node is his HTGR-SFR strategy, with the tradeoff between the Decay Heat and 

Proliferation Resistance decision criteria evident. Fig. 6.17(right) gives U’s expected 

metric scores for each of his stage one hedging strategies, with the expected SFR 

penetration corresponding to the marker size. Fig. 6.17(right) data points are labeled as the 

(Cost of Electricity score, Proliferation Resistance score, Decay Heat score, expected SFR 

generating capacity penetration). The expected value of each metric score does not differ 

greatly across each of U’s available strategies, reflected in the tight range of each axis in 

Fig. 6.17(right). Fig. 6.18 shows the expected scores relative to the range of possible metric 

scores for each of U’s strategies when U chooses his strategies with his baseline criteria 

weighting. For all cases, the expected score does not correspond with any individual 

outcome. The expected score is a probability-weighted score based on the probability 

distribution of Nature’s moves and each players’ downstream responses. If U chooses his 

SFR or HTGR-SFR strategy at his first decision node, Nature often reveals a state of the 

world that is unfavorable for recycle. Then, U typically chooses either his LWR or HTGR 
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strategy as a recourse decision when choosing his strategy with his baseline criteria 

weighting. The expected scores for U’s recycle strategies at his first decision node then 

reflect the probable downstream adjustment in his strategy.  

 

 

Figure 6.17: Player U’s weighted decision matrix when varying his criteria weighting for 
his stage one hedging strategy (left) and expected metric scores and SFR 
penetration (relative marker size) associated with U’s stage one hedging 
strategy with G’s and U’s baseline criteria weightings. 

Fig. 6.19 shows the expected metric scores for each criterion in the bottom row, 

labeled according to U’s stage two decision. These expected scores are derived assuming 

that at U’s last decision node, he chooses a strategy with his baseline criteria weights. 

Findings depicted in Fig. 6.19 are dependent on the following: (1) G choosing her Only 

Waste Disposal R&D strategy at her first decision node and thereby choosing a high 

reprocessing cost, (2) Nature moving to choose a high waste disposal cost, and (3) U 

choosing his HTGR hedging strategy at his first decision node. From left to right, results in 

Fig. 6.19 are further dependent on Nature moving to choose a low, moderate and high 
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HTGR capital cost after U’s stage one decision. The resulting decision matrices for 

selecting G’s and U’s optimal hedging strategies at their second decision nodes are shown 

in the middle and bottom rows, respectively.  

 

 

Figure 6.18:  Player U’s stage one expected metric scores for each available hedging 
strategy (blue symbols) and possible metric scores following paths in the 
Transition Game decision tree (transparent grey symbols).  
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Figure 6.19:  Metric scores for all available hedging strategies at U’s second decision node 
(top row) with assumed upstream conditions: G’s Only Waste Disposal R&D 
stage one hedge, Nature revealing high waste disposal cost and U’s HTGR 
stage one hedge. Marker size reflects expected penetration of SFR generating 
capacity. Columns from left to right correspond to Nature choosing a low, 
moderate and high HTGR capital cost. Players G’s (middle row) and U’s 
(bottom row) decision matrices for selecting optimal hedging strategies at 
their respective second decision nodes.  
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Fig. 6.19 demonstrates tradeoffs between the various decision criteria. As one 

moves from the bottom right to top left corners for any of U’s stage two decision matrices 

(bottom row), the optimal hedging strategy moves from recycling used fuel to direct 

disposal. In fact, following from bottom right to top left corner along each of the matrices’ 

(top row for G and bottom row for U) hypotenuse yields the same determined optimal 

hedging strategies for U as the Cost of Electricity criterion weight is 0 (and Proliferation 

Resistance and Decay Heat scores are fixed for a U-path 𝜗+). Generally, as U’s criteria 

weights shifts towards Decay Heat, U’s optimal hedging strategy adopts SFR technology 

(choosing either his SFR or HTGR-SFR strategy), with the transition occurring more 

readily as HTGR costs increase. Moving along the y-axis of U’s decision matrix depicts 

the tradeoff between the Cost of Electricity and Proliferation Resistance scores. Moving 

along this axis, U is seen to abandon HTGR technology as the importance of proliferation 

resistance increases to him, with the abandonment occurring quicker as HTGR capital costs 

increase. Finally, traveling along the x-axis reveals the Decay Heat criterion weighting 

quickly encourages U to transition toward a closed fuel cycle. Expectedly, G subsidizes the 

technology that is built at U’s next decision node. In some cases, G is seen to subsidize 

HTGRs and then U chooses his HTGR-SFR strategy. Due to the implementation of the 

capital subsidy, where the total integrated discount is equivalent across reactor types, the 

effect of subsidizing HTGRs, SFRs or both is identical. Then, the strategy that is first in 

the selection order is returned as the strategy with the greatest expected payoff despite all 

three being equal. 
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6.3.1   DEMONSTRATION CASE 

For illustration, examine the case where G and U have the decision criteria weighting 

given in Table 6.3. In this situation, U is influenced by his unanticipated commitment to 

onsite storage of used fuel with G failing to provide an acceptable waste repository. While 

G chose her Only Waste Disposal R&D strategy, delays in siting and construction 

ultimately drove waste disposal costs up (Nature moves to choose a high disposal cost) and 

accumulated waste quantities during delays suggest the need for an additional repository. 

The following narrative describes the particular path through the Transition Game decision 

tree depicted in Fig. 6.20. All of G’s and U’s strategies may be determined by examining 

the decision matrices in Figs. 6.16, 6.17 and 6.19, which are derived with the assumption 

that Nature moves to choose a high disposal cost.  

Table 6.3: Player G’s and U’s alternate decision criteria weighing for Demonstration Case. 

 Criterion Weighting 
Evaluation Criterion (c) Player G Player U 
Cost of Electricity  0.3  0.9 
Decay Heat  0.3  0.1 
Proliferation Resistance  0.3  0.0 

The example illustrates the robustness of G’s Only Waste Disposal R&D hedging 

strategy. G chooses this strategy both when U hedges with his baseline weights and when 

U hedges with the alternative weights in Table 6.3. By examining G’s decision matrix in 

Fig. 6.16 when varying U’s weights (top-right), G can choose a hedging strategy that will 

perform well over a range of U’s weights. This proves valuable as U’s weights shift based 

on the Nature’s move following G’s first decision (where U is now concerned with the 
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Decay Heat criterion due to his onsite storage commitment). Given these upstream 

conditions, U’s optimal hedging strategy is found using the decision matrix in Fig. 6.17 

and applying U’s weights. By doing so, U chooses his HTGR strategy.  

 

Figure 6.20: Optimal path through Transition Game decision tree for the Demonstration 
Case when Players G and U hedge optimally with alternate criteria weighting.  
Assumes Nature determines (1) high disposal costs and (2) high HTGR 
capital costs.  

After U chooses his HTGR strategy, Nature moves to reveal the HTGR capital cost. 

Each of G’s optimal hedging strategies as a response to this move by Nature can be 

determined using the middle-row of Fig. 6.19, moving from left to right gives G’s strategy 

based on a low, moderate and high HTGR capital cost. Assuming that Nature determines 

a high HTGR capital cost, G subsidizes SFRs and U chooses his SFR strategy. If Nature 

then determines a high SFR capital cost, all advanced reactor technologies are abandoned, 

and U chooses his LWR strategy at his last decision node. However, if Nature determines 

a low or moderate SFR capital cost, U continues the SFR transition. Notice that the 
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conditions up until G’s capital subsidy play are identical to those portrayed in Fig. 6.12. 

Now however, G can influence U to adopt SFR technology by offering the appropriate 

subsidy given U’s new criteria weighting. 

The decision matrices depicted in Figs. 6.16, 6.17 and 6.19 may be constructed for 

all combinations of Nature’s moves, and as well, one may be constructed for U’s final 

decision which he makes with complete information.   
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CHAPTER 7:  CONCLUSIONS 

This work presents a novel methodology for optimizing nuclear fuel cycle 

transitions that captures interactions between a policy maker and electric utility company. 

The methodology couples a nuclear fuel cycle simulator with multiple objective function 

calculators and a stochastic and game theoretic optimization solver and is demonstrated 

using a two-person general-sum sequential game with uncertainty (the Transition Game). 

Fuel cycle transition strategies are input to the VEGAS simulator to calculate a material- and 

technology-constrained material balance, which is input to multiple fuel cycle metric 

objective function calculators. Objective function values are then translated into payoffs 

for each player in the Transition Game using their unique set of decision criteria and 

weightings. The optimization solver explicitly handles uncertainties using a stochastic 

programming approach with chance nodes depicted as a Nature player who moves 

randomly. The input data and selected player strategies and decision criteria are by no 

means entirely comprehensive or exhaustive; the transition examined, and its resulting 

analysis are intended as a proof-of-concept game theoretic approach to nuclear fuel cycle 

transition analysis and optimization.  

The Transition Game is informed by the VEGAS nuclear fuel cycle simulator. While 

not the focus of the work, many enhancements to the VEGAS code are documented in this 

dissertation. These changes allowed for further distinction between fuel transition 

strategies and add richness and realism to those strategies, furthering VEGAS’s value and 

versatility as a preconditioner tool. Most notably, the reprocess used fuel at full-capacity 

feature, supplemental to the reprocess on-demand feature, and its allowed adjustments 

during a fuel cycle transition allow realism during an initial learning period when building 
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advanced reactor technology. The two reprocessing schemes affect the material balance 

calculation, which results in changes in the calculated fuel cycle metric objective function 

values. This feedback between decisions and objective function values is the root cause for 

the development of fuel cycle simulators.  

The Transition Game features a policy maker that must choose R&D investments 

in competing used fuel reprocessing and waste disposal technologies and capital subsidies 

for available reactors in the transition scenario; and an electric utility company that chooses 

reactor technologies to deploy in order to fulfill a fixed demand for nuclear electricity. Two 

advanced reactor technologies are available, HTGR and SFR technologies, though are 

subject to uncertain capital costs. The game theoretic optimization solver finds near-term 

hedging strategies that balance the exchange between the risk of immediate action and 

delay and maintain flexibility to allow for intelligent recourse decisions once uncertainties 

are resolved. These hedging strategies are shown to react to changes in decision criteria 

weighting, though robust hedging strategies that appear for many combinations of decision 

criteria weighting are found.   

Results from the Transition Game indicate that transition to a closed fuel cycle 

relying on recycling used fuel in SFRs is only favorable (under a baseline set of decision 

criteria weightings) if players have perfect information regarding Nature’s future moves. 

Then, under a limited set of conditions, transition to a closed fuel is observed. However, 

when players act with imperfect information and hedge against Nature, transition to a 

closed fuel cycle is never observed.   

One of the more compelling results from the Transition Game is the identification 

of a robust near-term hedging strategy being adoption of HTGR technology over 
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approximately 80 percent of the utility generating company’s space of possible decision 

criteria weightings. A subset of this time (an estimated 44 percent) suggest HTGR 

technology be adopted concurrently with SFR technology. After a learning period, either 

technology may be abandoned if capital costs are unfavorable. When only HTGR 

technology is chosen and later abandoned, transition to used fuel recycling in SFRs may 

be spurred by capital subsidies under certain criteria weightings. This change in fuel cycle 

strategies as a response to information gained during the transition illustrates autonomous 

decision making within the fuel cycle simulator.     

FUTURE WORK 

Many components of the analysis presented in this dissertation may be expanded.  

Briefly, these expansions may be:  

• Inclusion of additional policy incentives, such as an adjustment of the Nuclear Waste 
Fund fee 

• Inclusion of additional decision criteria, such as safety or resource utilization and 
additional fuel cycle metrics within these criteria 

• Inclusion of more decisions or refinement on those decisions, such as the rate at 
which to build SFRs  

• Inclusion of simultaneous decisions, where multiple utility companies compete to 
fulfill a fixed demand for nuclear electricity  

• Inclusion of the selection of reprocessing capacity deployment schedule and 
utilization methods as a player decision   

• Better parameterization of the effects of R&D on technology cost estimates 

• Different scalarization methods for multi-objective optimization 



123 

 

A large criticism of this area of research is its heavy reliance on accurate input data. 

In this work, most cost estimates are dated, and in some cases rely on the private 

judgements of only a handful of fuel cycle experts. The latest cost estimates are taken from 

private industry reports that may be overly optimistic, and in fact results show a tendency 

towards these technologies. Better informed cost estimates would greatly increase the value 

of the analysis presented here. Further, the assumption used in this dissertation is that the 

preferences of a decision maker respond linearly and are therefore risk neutral. 

Alternatively, a decision maker may choose to examine temporal effects where, for 

instance, they are averse to the cost of electricity surpassing some threshold value during a 

portion of the simulation.   

Most importantly, while this dissertation addresses several short-comings of past 

fuel cycle analysis studies, many of its own short-comings arise from the limitations of the 

fuel cycle simulator chosen. Some potential capabilities of more detailed fuel cycle 

simulators include the ability to model discrete facilities and materials, allowing for 

determination of fresh fuel isotopic requirements and disruption analysis through tracking 

the operations status of individual facilities. The potential coupling of VEGAS as a 

preconditioner tool to a higher-fidelity simulator (for simplicity, H-SIMULATOR) is depicted 

in Fig. 7.1. H-SIMULATOR initializes the fuel cycle transition scenario given a set of 

user-input parameters. At each chosen time-step when a decision of interest must be made, 

H-simulator invokes VEGAS, inputting the current state of the fuel cycle. VEGAS uses input 

from H-SIMULATOR and the defined player strategies, decision criteria and uncertainties to 

optimize a fuel cycle transition over a user-defined “forecast” period. The optimized 

transition strategy is then returned to H-SIMULATOR, which marches the outer optimized 
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transition forward in time. When another decision of interest must be made, the process is 

repeated. The VEGAS preconditioner subroutine procedure is iteratively called until 

H-SIMULATOR reaches its designated end time.   

 

 

Figure 7.1: Potential coupling of VEGAS as a preconditioner tool for scoping promising 
fuel cycle transition strategies for higher-fidelity simulators. 

Outside the realm of fuel cycle transition analysis, the work presented here has 

further applications in nuclear safeguards and security, where a fuel cycle simulator may 

be used to identify vulnerabilities in the fuel cycle. The novel coupling of a fuel cycle 

simulator to an adversarial game offers the ability to more realistically calculate objectives 

such as the time requirement for significant diversion of special nuclear material, idle 

capacity, or quantities of stockpiled separated actinides. A temporal cross section in a fuel 

cycle simulation may give initial conditions for a breakout scenario where an aggressive 
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strategy to produce or divert large quantities of high-value special nuclear material is 

pursued, or at worst, a regime change where a civilian nuclear power program is abandoned 

in favor of a nuclear weapons-production program.  
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APPENDIX A:  PROLIFERATION RESISTANCE CALCULATION 

Charlton et al. (2017) derived the nuclear security measure metric for evaluating 

the proliferation resistance of a nuclear fuel cycle. Novel to the methodology is focus on 

the temporal evolution of the proliferation resistance as material moves through the fuel 

cycle, which allows for a dynamic assessment of proliferation resistance with material 

constantly in a state of change. The methodology relies on a dynamic material balance 

(provided either through process flow sheets or a fuel cycle simulator) and a series of 

attributes (for instance, material attractiveness level and radiation dose rates), and their 

associated weights and utility functions that relate the change in the value of the attribute 

to its effect on the proliferation resistance value.  

ATTRIBUTES 

The attributes included in this work are only those capable of being evaluated 

through measurement of intrinsic barriers to proliferation resistance. These intrinsic 

barriers are resultant from inherent properties of the materials themselves. For instance, the 

material handling requirements become more complex as the (measurable) heat rate from 

Pu increases. Table A.1 lists the attributes identified by Charlton et al., with those included 

in this work indicated. More information on the exclusion of certain attributes is given in 

Section 4.2.  
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Table A.1:  Nuclear security attributes and weighting factors from Charlton et al. (2017). 
Weighting (Left wj column) in Charlton et al. (2017) and (Right wj column) 
re-normalized weighting used due to omitted attributes. 

𝑗 Attribute 𝑤E  Included 
A. Material Attractiveness Level 

1 DOE attractiveness level (IB through IVE) 0.10 ü 
2 Heating rate from Pu in material (W) 0.05 ü 
3 Weight fraction of even Pu isotopes 0.06 ü 

B. Concentration 
4 Concentration (SQs per tonne) 0.10 ü 

F. Handling Requirements 
5 Radiation dose rates (rem per hr at distance of 1 m) 0.08 ü 
6 Size/weight 0.06 û û 

G. Type of Accounting System 
7 Frequency of measurement 0.09 û û 
8 Measurement uncertainty (SQs/yr) 0.10 û û 
9 Separability 0.03 ü 

10 Percentage of processing steps that use item 
accounting 0.05 û û 

H. Accessibility 
11 Probability of unidentified movement 0.07 û û 
12 Physical barriers 0.10 û û 
13 Inventory (SQs) 0.05 û û 
14 Fuel load type (batch or continuous reload) 0.06 û û 

 

Utility functions for each attribute as given by Charlton et al. (2017), each requiring 

user input, are given below. The output composition of the material at each fuel cycle 

process is the evaluated material to obtain a given utility function for the next downstream 

process. For example, the utility function value of the U conversion process is evaluated 

for solid NU as U3O8. 
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Attribute 1: DOE Attractiveness Level 

Categories of material with their description and category corresponding to form and 

quantity of material from DOE M474.1-1 (DOE, 2000) are given in Table A.2. Materials 

with lower qualities rank higher on the proliferation resistance scale and are less likely to be 

stolen and diverted by a proliferation. DOE attractiveness level IA is not included, as it was 

assumed that category IA, material as assembled weapons and test devices, would never be 

present in a civilian fuel cycle. The DOE attractiveness level determined for each fuel cycle 

process is given in Table A.3, along with its utility function value.  

Attribute 2: Heating Rate from Pu 

Materials with a high heat source require careful management, resulting in 

increased difficulty of designing an explosive device (NRC, 1995). The utility function of 

this metric is given by Eq. A.1. 

 
𝑢(𝑥) = 1 − 𝑒𝑥𝑝 À−3Á

𝑥
𝑥ÂqW

Ã
:.Ä
Å (A.1) 

where 𝑥  = heating rate from Pu in watts per kg  
 𝑥ÂqW  = maximum heat rate (heat rate of pure 238Pu, 570 watts per kg) 

If the quantity of Pu in the material is zero, the utility function value is set to unity. 

The utility function values for this attribute for each reactor type and fuel cycle process are 

given below. Heat rate of Pu was altered based on private correspondence for normalization 

purposes (William Charlton, 2018). The calculated heat rate from Pu for each fuel cycle 

process is given in Table A.4 with corresponding utility function value given in Table A.5. 
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Table A.2:  DOE special nuclear material categories and attractiveness levels with 
corresponding utility function values (A) and definitions (B). 

A. Utility Function for DOE Attractiveness Level 
 Category 

I II III IV 

 

A
ttr

ac
tiv

en
es

s B 0.00 0.05 0.10 0.15 

C 0.15 0.25 0.34 0.45 

D NA 0.40 0.65 0.90 

E NA NA NA 1.00 

B. DOE Safeguarded Terms from DOE M474.1-1 
 Pu/233U Category  

[235U Category] (kg) 
Weapons: Assembled weapons and 
test devices 

A
ttr

ac
tiv

en
es

s  

A All 
[All] 

NA 
[NA] 

NA 
[NA] 

NA 
[NA] 

Pure products: Pits, major 
components, button ingots, 
recastable metal, directly 
convertible materials 

B ≥2 
[≥5] 

≥0.4<2 
[≥1<5] 

≥0.2<0.4 
[≥0.4<1] 

<0.2 
[<0.4] 

High-grade materials: Carbides, 
oxides, solutions (≥25 g/!) nitrates, 
etc., fuel elements and assemblies, 
alloys and mixtures, UF4 and UF6 
(≥50% enriched)  

C ≥6 
[≥20] 

≥2<6 
[≥6<20] 

≥4<2 
[≥2<6] 

<0.4 
[<2] 

Low-grade materials: Solutions (1 to 
25 g/!), process residues requiring 
extensive reprocessing, moderately 
irradiated material, 238Pu (except 
waste), UF4 and UF6 (≥20%<50% 
enriched) 

D NA 
[NA] 

≥16 
[≥50] 

≥3<16 
[≥8<50] 

<3 
[<8] 

All other materials: Highly 
irradiated forms, solutions (<1 g/!), 
uranium containing <20% 235U (any 
form, any quantity) 

E NA 
[NA] 

NA 
[NA] 

NA 
[NA] 

All 
[All] 
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Table A.3:  Determined DOE Attractiveness Level and Material Category for each fuel 
cycle process and corresponding utility function values. 

 DOE Attractiveness Level | Utility Function Value 
Fuel Cycle Process LWR HTGR SFR 

U Mining and Milling IVE 1.00 IVE 1.00 IVE 1.00 
Conversion IVE 1.00 IVE 1.00 IVE 1.00 
Enrichment IVE 1.00 IVE 1.00 NA NA 

Fuel Fabrication IVE 1.00 IVE 1.00 IIID 0.65 
Fuel Fabrication (SFR) NA NA NA NA IC 0.15 

SNF Storage IVE 1.00 IVE 1.00 IVE 1.00 
SNF Disposal IVE 1.00 IVE 1.00 IVE 1.00 
Reprocessing IC 0.15 IC 0.15 IC 0.15 

HLW Disposal IVE 1.00 IVE 1.00 IVE 1.00 

 

 

Table A.4:  Calculated heat rate of Pu and corresponding utility function values. 

 Heat Rate from Pu (watts per tIHM) | Utility Function Value 
Fuel Cycle Process LWR HTGR SFR 

U Mining and Milling 0.00 1.00 0.00 1.00 0.00 1.00 
Conversion 0.00 1.00 0.00 1.00 0.00 1.00 
Enrichment 0.00 1.00 0.00 1.00 NA NA 

Fuel Fabrication 0.00 1.00 0.00 1.00 269.92 0.32 
Fuel Fabrication (SFR) NA NA NA NA 4150.99 0.92 

SNF Storage 261.49 0.25 568.08 0.41 3533.41 0.90 
SNF Disposal 246.11 0.24 539.61 0.40 3821.47 0.91 
Reprocessing 0.62 0.24 539.61 0.40 4150.99 0.92 

HLW Disposal 0.00 1.00 0.00 1.00 0.00 1.00 



131 

 

Attribute 3: Weight Fraction of Even Pu Isotopes 

Construction of a nuclear explosive is complicated by the concentration of even Pu 

isotopes (NRC, 1995). In particular, 240Pu has a high rate of spontaneous fission and can 

increase the probability of a preinitiation in a nuclear explosive device. The weight fraction 

of Pu isotopes is the utility function value and is calculated using Eq. A.2. If the quantity 

of Pu in the material is zero, the utility function value is set to unity.  

 
𝑥 =

sum of even Pu isotopes (g)
sum of all Pu isotopes (g)  

(A.2) 

The calculated attribute and corresponding utility function value, for each reactor type and 

fuel cycle process, are given in Table A.5. 
 

 

Table A.5:  Calculated weight fraction of even Pu isotopes and corresponding utility 
function values. 

 
Weight Fraction of Even Pu Isotopes  

Utility Function Value 
Fuel Cycle Process LWR HTGR SFR 

U Mining and Milling 0.00 1.00 0.00 1.00 0.00 1.00 
Conversion 0.00 1.00 0.00 1.00 0.00 1.00 
Enrichment 0.00 1.00 0.00 1.00 NA NA 

Fuel Fabrication 0.00 1.00 0.00 1.00 0.36 0.43 
Fuel Fabrication (SFR) NA NA NA NA 0.36 0.43 

SNF Storage 0.34 0.40 0.44 0.56 0.35 0.41 
SNF Disposal 0.36 0.43 0.45 0.56 0.36 0.43 
Reprocessing 0.36 0.43 0.46 0.58 0.36 0.43 

HLW Disposal 0.00 1.00 0.00 1.00 0.00 1.00 
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Attribute 4: Concentration 

A higher concentration of fissile materials is considered more attractive, as a lower 

mass (or volume) of material must be diverted or stolen in order to acquire a useable mass 

of SNM or alternate nuclear material (ANM; defined as separated 237Np or Am). The 

computed significant quantities of SNM or ANM for each reactor type and fuel cycle 

process and its corresponding utility function values (Eq. A.3) for this attribute are given 

in Table A.6. 

 
𝑢(𝑥) = Æ

1 if	𝑥 < 0.01

exp À−3 Á
𝑥

𝑥ÂqW
Ã
:.Ä
Å if	𝑥 ≥ 0.01 (A.3) 

where 𝑥  = concentration of the material in SQs per tonne  
 𝑥ÂqW  = maximum possible concentration (125 SQs per tonne of pure Pu metal) 

Table A.6: Calculated concentration of special nuclear material of each fuel cycle process 
and corresponding utility function values. 

 
Concentration of Special Nuclear Material  
(SQs per tIHM) | Utility Function Value 

Fuel Cycle Process LWR HTGR SFR 
U Mining and Millinga 0.095 0.998 0.095 0.998 0.095 0.998 

Conversiona 0.095 0.998 0.095 0.998 0.095 0.998 
Enrichmentb 0.768 0.985 2.186 0.957 NA NA 

Fuel Fabrication 0.560 0.989 2.067 0.960 33.072 0.516 
Fuel Fabrication (SFR) NA NA NA NA 20.850 0.659 

SNF Storage 0.560 0.989 2.067 0.960 20.850 0.659 
SNF Disposal 0.560 0.989 2.067 0.960 20.850 0.659 
Reprocessing 0.560 0.989 2.067 0.960 20.850 0.659 

HLW Disposal 0.000 1.000 0.000 1.000 0.000 1.000 
a SQ per tU as U3O8 
b SQ per tSWU (SWU required for enrichment to 4.21 and 15.5 percent 235U is calculated) 
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Attribute 5: Radiation Dose Rates  

The utility function for the radiation dose rate attribute was developed based on 

acute biological effects of whole-body radiation dose to the potential proliferator. 

High-dose rates are more hazardous, a danger to the physical well-being of the proliferator 

and may require the use of expensive and unique equipment for remote handling. Above a 

threshold of 200 mrem per hr per SQ, the proliferation resistance includes a small credit 

for the costs of specialized equipment and a larger effect on proliferation resistance for 

high dose rates which would quickly incapacitate a proliferator. Above a threshold of 600 

rem per hr per SQ, there is no continued increase in proliferation resistance since death is 

certain in all cases. The utility function for radiation dose rate is given by Eq. A.4. The 

methodology for obtaining radiation dose rates is given in Section 4.1. The calculated 

attribute values for each reactor type and fuel cycle process and corresponding utility 

function values are given in Table A.7.  

 

𝑢(𝑥) =

⎩
⎪
⎨

⎪
⎧ 0 if	𝑥 ≤ 0.2
0.0520833𝑥 − 0.010416 if	0.2 < 𝑥 ≤ 5
0.0035714𝑥 + 0.232143
0.00095238𝑥 + 0.428571

1

if	5 < 𝑥 ≤ 75
if	75 < 𝑥 ≤ 600
if	𝑥 > 600

 (A.4) 

where 𝑥  = dose rate concentration in rem per hr per SQ for the unshielded material 

ORIGEN’s depletion and decay calculations output gamma-ray emission rates, in 

gamma-rays released per second, for specified energy windows in MeV, from a point 

source. Emission rates are translated into particles released per second per cm2 assuming a 

distance of 10 m. Dose intensity values (mrem per hr per MeV) were obtained from the 
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ICRP 21, data from which are used in MCNP 6.2, part of ORNL’s SCALE 6.2 package. 

The radiation dose rate is then given by Eq. A.5. 

 
𝐷 = h 𝜙Ö,p ⋅ 𝑑Ö,p

×

pn×�

 (A.5) 

where 𝑑Ö,p = dose in mrem per hr from gamma-ray emission rates [particles/cm2×s] for 
energy window e 

 𝜙Ö,p = gamma-ray emission rates [particles/cm2×s] for energy window e 

Table A.7: Calculated gamma-ray dose rate in rem per hr per SQ at 1m for each fuel cycle 
process and corresponding utility function values. 

 
Dose Rate (rem/hr/SQ) at 1 m 

Utility Function Value 
Fuel Cycle Process LWR HTGR SFR 

U Mining and Milling 1.16E-01 0.000 1.16E-01 0.000 1.16E-01 0.000 

Conversion 1.16E-01 0.000 1.16E-01 0.000 1.16E-01 0.000 

Enrichment 4.43E-02 0.000 3.36E-04 0.000 NA NA 

Fuel Fabrication 4.43E-02 0.000 3.36E-04 0.000 2.31E+05 1.000 

Fuel Fabrication NA NA NA NA 6.27E+03 1.000 

SNF Storage 1.01E+04 1.000 5.53E+05 1.000 2.26E+05 1.000 

SNF Disposal 2.50E+04 1.000 3.00E+04 1.000 6.27E+03 1.000 

Reprocessing 2.50E+04 1.000 3.00E+04 1.000 6.27E+03 1.000 

HLW Disposal 4.82E+13 1.000 3.09E+13 1.000 2.97E+13 1.000 

 

Attribute 6: Separability 

Table A.8 gives the utility function values for special nuclear material in various 

fuel forms, and Table A.9 gives the determined fuel form for each fuel cycle process and 

its utility function value. As material is separated further into its constituents, it is more  
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Table A.8: Utility function values for special nuclear material in various fuel forms as 
defined by Charlton et al. (2017). 

Fuel Form (𝑥) Utility Function Value 
Pu/HEU metal solid (a) 0.00 
Separated Pu/HEU solution (b) 0.20 
Mixed Pu solution (contains minor actinides, U, and/or 
fission products) or LEU solution (c) 0.50 

Solid fuel without structural materials (d) 0.75 
Solid fuel with structural materials (e) 1.00 

conducive for production of weapons, and the proliferation resistance value decreases. The 

utility function values for this attribute, for each reactor type and fuel cycle process, are 

given below. Both LWRs and HTGRs, while requiring vastly different 235U enrichment, 

perform the same on this attribute. Fuel is proceeds in the same form from cradle to grave. 

However, SFRs (are assumed to) require some form of aqueous fuel, though still containing 

minor actinides, that allows for continuous recycle and separation during operation. 

 
Table A.9: Determined fuel form of materials at each fuel cycle process and 
corresponding utility function values. 
 Separability | Utility Function Value 

Fuel Cycle Process LWR HTGR SFR 
U Mining and Milling d 0.75 d 0.75 d 0.75 

Conversion d 0.75 d 0.75 d 0.75 
Enrichment d 0.75 d 0.75 NA NA 

Fuel Fabrication e 1.00 e 1.00 c 0.50 
Fuel Fabrication (SFR) NA NA NA NA c 0.50 

SNF Storage e 1.00 e 1.00 e 1.00 
SNF Disposal e 1.00 e 1.00 e 1.00 
Reprocessing c 0.50 c 0.50 c 0.50 

HLW Disposal e 1.00 e 1.00 e 1.00 
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