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Abstract

Simulation-Based Verification of EM Side-Channel

Attack Resilience of Embedded Cryptographic Systems

Amit Kumar, M.S.E.

The University of Texas at Austin, 2017

Supervisor: Michael Orshansky

Electromagnetic (EM) fields emanated due to switching currents in

crypto-blocks can be an effective non-invasive channel for extracting secret

keys. Accurate design-time simulation tools are needed to predict vulnerabil-

ities and improve resilience of embedded systems to EM side-channel analysis

attacks. Modeling such attacks is challenging, however, as it requires a multi-

tude of expensive simulations across multiple circuit abstraction levels together

with EM simulations. In this work, a simulation flow is developed to study the

differential EM analysis (DEMA) attack on the Advanced Encryption System

(AES) block cipher.

The proposed flow enables design-time evaluation of realistic DEMA

attacks for the first time. The major challenge is accurately computing signals
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received by a nearby probe at various positions above the chip surface for a

large number of AES encryptions. This requires rapidly generating spatial

distribution and transient EM radiation of on-chip current waveforms. Com-

mercial CAD tools are used to generate space-time samples of these waveforms

and a custom EM simulator to radiate them. The computations are sped up

by focusing on information-leaking time windows, performing hybrid gate- and

transistor-level simulations, radiating only the currents on top metallization

layers, and generating traces for different encryptions in parallel. These meth-

ods reduce simulation time to a manageable ∼ 20 hrs wall-clock time/attack

allowing a previously impossible level of vulnerability analysis.

The proposed flow also allows pinpointing critical regions on the chip

most susceptible to EM attacks. We demonstrate that exploiting the spatial

profile of circuit elements can reveal cryptographic keys with significantly fewer

number of traces than DPA , guiding designers to the most critical areas of the

layout. This enables targeted deployment of counter-measures to the highest

information-leaking design components.
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Chapter 1

Introduction

This thesis introduces a simulation flow that enables rapid and ac-

curate design-time prediction of Electromagnetic side-channel analysis (EM-

SCA)resilience of cryptographic modules for the first time. The simulation

costs are reduced without sacrificing predictive value as follows. Step 1: Com-

mercial CAD tools are used to run highly-optimized transistor-level simula-

tions only during critical time windows when information leakage happens.

Steps 2-3: The Electromagnetic (EM) radiation is limited to the currents dis-

tributed on the top-metallization layer power/ground interconnects and traces

for different encryptions are generated in parallel. Using the proposed method-

ology, various differential attacks on Advanced Encryption Standard (AES)

block cipher are simulated.

The rest of this thesis is arranged as follows. Chapter 2 discusses about

AES block cipher and differential attacks in detail. In Chapter 3, prior work

and current simulation methodologies are discussed along with their limita-

tions. In Chapter 4, the proposed simulation flow for circuit analysis and EM

radiation has been described. In Chapter 5, the system setup and Differential

EM Attack (DEMA) results are discussed and it is shown how different design
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choices lead to a vulnerable system. Chapter 6 summarizes the work with its

limitations and discusses future work to be done in this direction.
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Chapter 2

AES and Differential Attacks

The simulation of EM SCA attacks on block ciphers requires TEM

traces, observable via a nearby EM field probe, to be computed during critical

cipher execution steps. Once the traces are obtained, the vulnerability of the

design to various EM SCA attacks can be investigated. To demonstrate the

proposed simulation flow, this work focuses on the simulation of a differential

analysis attack using the EM side channel to extract the secret key, termed

the differential EM attack (DEMA) [1], [2], on an ASIC implementation of the

Advanced Encryption Standard (AES) [3]. This chapter discusses AES block

cipher and differential attacks on block ciphers.

2.1 AES Cipher

AES is based on a substitution-permutation network and has been

widely used since 1999 for symmetric cryptography applications; it has a fixed

block size of 128 bits and key sizes of 128, 192 or 256 bits [3]. The key size

determines the number of transformation rounds input (known as plain text)

goes through to generate encrypted data also known as cipher text. There

are 10, 12 and 14 rounds required for 128, 192 or 256 bits respectively. Each
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transformation round uses a Round Key derived from the secret key using Key

Expansion function.

Figure 2.1: Top-level Diagram of AES

Fig. 2.1 shows the shows the order in which bytes are written into the

state as plaintext and read from the state as ciphertext. The numbers in the

matrices for plain text and cipher text represent the byte number with 0 being

the most significant and 15 being the least significant byte. As shown in Fig.

2.5, AES is a round-based block cipher, where each round consists of four steps

(the final round does not have MixColumns).

1. SubBytes: The SubBytes operation independently transforms each byte

of the state. It can be implemented by a simple table lookup or can

be implemented using dedicated hardware. The 16 × 16 matrix of byte

values is called an S-Box as shown in Fig. 2.2. As an example, Byte

0x00 is mapped to 0x63, 0x01 to 0x7C and so on. The upper nibble is
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used as the row value and lower nibble is used as column value to index

into the S-Box.

Figure 2.2: S-Box

2. ShiftRows: ShiftRows transformation shifts the bytes present in each

row of the state matrix. Fig. 2.3 depicts this transformation. The first

row is not altered. For the second row, a 1-byte circular left shift is

performed. For the third row, a 2-byte circular left shift is performed.
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For the fourth row, a 3-byte circular left shift is performed. ShiftRows

provides horizontal diffusion in the state matrix.

Figure 2.3: ShiftRows Transformation

3. MixColumns: MixColumns transformation maps the bytes present in

each column of the state matrix to a new value. Fig. 2.4 depicts this

transformation. Each byte of a column is mapped into a new value that is

a function of all four bytes in that column. MixColumns provide vertical

diffusion in the state matrix.

6



Figure 2.4: MixColumns Transformation

4. AddRoundKey: In the AddRoundKey transformation, the state matrix

is bitwise XORed with the round key. The round keys are derived from

the secret key using AES key expansion algorithm. For 10 rounds of

transformation, the algorithms uses 128-bit secret key and 11 128-bit

round keys which are used in intial round and 10 rounds of transforma-

tion.

Each round uses a Round Key derived from the secret key; hence,

attackers who can get their hands on a Round Key can reverse-engineer the

secret key. It is thus essential to protect the keys used in every round. In

hardware implementation, the AES state is stored in a register at the end

of each round. AES has been shown to leak information while computing

intermediate values dependent on the secret key. One such intermediate value

is present in the last round of transformation when the state register gets

loaded with a new value [4].
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Figure 2.5: Block Diagram of 128-bit AES Cipher

2.2 Differential Side-channel Attacks

In side-channel attacks, an attacker tries to exploit the unwanted leak-

age information from a cryptographic device in the form of timing, power

or EM emanations to extract the secret key used for encryption/decryption.

Side-channel attacks are difficult to detect since the device under attack is

passively observed while operating normally. EM side channel attacks occur

when an adversary uses sensitive information from EM signals radiated from

cryptographic devices. EM side channel attacks are categorized in two classes:

Simple EM attacks (SEMA) and Differential EM attacks (DEMA).
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1. Simple EM Attacks (SEMA): Simple EM attacks make use of a single

EM voltage trace to visually inspect and look for large scale differences

which can correlate the behavior to secret key. If a computation makes

use of conditional branches based on secret key, this can be observed on

an EM signal during a time interval. E.g. conditional branches depen-

dent on key bit as 0 or 1 will radiate different EM signals and can be

deduced by attacker using a single EM trace.

2. Differential EM Attacks (DEMA): In some cases, SEMA does not pro-

vide enough information about the secret key and extracting the key

would require many more traces. Differential EM attacks require multi-

ple traces and extract secret keys by establishing a statistical relationship

between the measured signal and a hypothetical model used to estimate

the signal value.

Differential attacks can be broadly categorized into two groups: parti-

tion based and comparison based.

1. Partition-based attacks: In a partition-based attack, the measured traces

are grouped based on different key hypotheses and then the statistics

of these groups are compared. Only the grouping that is done with the

correct key guess should reveal a significant statistical difference. For ex-

ample, assume that the AES EM traces are partitioned into two groups

0 and 1 (for all different key guesses) based on the value of the last bit.

For the correct key guess, the group 1 will have signals with a higher
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hamming weight on average, thus there will be a EM voltage difference

than group 0. For wrong key guesses, the traces will be wrongly par-

titioned and randomly placed in two bins. Thus, the hamming weights

of the two groups will be very similar. There are different techniques

based on (1) how to partition the groups and (2) how to extract the EM

voltage difference. Difference of Means (DoM) and V-test fall into this

category.

2. Comparison-based attacks: In a comparison based attack, the adversary

generates a table for each key guesses. A row of this table stores the

input message, the corresponding intermediate value for the key guess,

a EM voltage model (eg. Hamming weight or Hamming distance) based

on this intermediate value, and the actual observed trace. The adversary

then tries to find a correlation between the EM voltage model and the

actual observed trace. The key guess that has the highest correlation

value is selected as the correct key. There are different techniques that

are based on (1) how to generate the EM voltage model and (2) how

to estimate the correlation. Correlation and Mutual Information based

attacks fall into this category.

The generalized flow for a differential attack is summarized in Fig.

2.6. An intermediate state of the algorithm is used to build a hypothesis.

Specifically, because AES is byte-based, the hypothesis is based on an 8-bit

guessed key with 256 possible values. The model assumes that the EM emission
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of AES circuit depends on the number of transitions on the state register. The

Hamming distance of state registers at the beginning and the end of the final

round is used as a predictor of EM emission. This is valid because in CMOS

logic the amount of current drawn, and the magnitude of EM field, depends on

the number of transitioning gates. If the guessed key is in fact the correct key,

the guessed value of Hamming distance for all encryptions matches with the

actual number of bit flips. For a wrong key, however, the Hamming distance

has a low correlation with the measured trace. The reason is that the SubBytes

operation maps every byte to a random byte in each round. This correlation

approaches zero as the sample size, i.e., the number of traces TEM , increases.

Because the AES transformations are byte-wise, each byte of the secret key

can be attacked separately. Thus, differential attacks reduce the search space

for the 128-bit secret key from 2128 to 212 by attacking one byte at a time [5].
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Figure 2.6: Differential Attack Methodology

2.3 Attack metric: Pearson’s correlation

The success metric used in this work to evaluate the strength of the

attacks is based on Pearson’s correlation distinguisher [6]. Pearson correlation

checks the linear relationship between two variables based on their covariances.

Mathematically, it is defined as:

ρX,Y =
cov(X, Y )

σX × σX
(2.1)

where,

cov is the covariance between X and Y,

σX is the standard deviation of X and
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σY is the standard deviation of Y

In side-channel attacks, X is a vector containing the hypothetical power

model values (e.g. Hamming Distance (HD)) and Y is a vector containing EM

voltage values at a particular time instant. This correlation is computed at

all time instants, and for all 256 guessed keys. Hence, Pearson’s correlation

coefficient (ρ) determines a linear relationship between a hypothetical value

and measured signal. Specific to AES, the hypothetical power model is the

hamming distance. Let’s take an example where EM voltages (in mV) mea-

sured at a time instant T1 are 10, 20, 30, 40, 50, 60, 70 and 80. Now, we build

power model for each guessed key and computes Pearson’s correlation with

the measured power and power model. For the correct key, as an example the

hamming distances can be 1, 2, 3, 4, 5, 6 and 8 and the linear dependence

between the two variables is going to be high resulting in high correlation

whereas in the case of wrong guess key, estimated hamming distances could

be 5, 8, 1, 3, 2, 7, 4 and 6 leading to low correlation value.

Let’s take a case where AES is run for Ne different encryptions and volt-

age traces corresponding to each encryption are collected, for T time samples.

We denote voltage trace corresponding to first encryption as {V1(t1), V1(t2), ..., V1(tT )},

for second encryption as {V2(t1), V2(t2), ..., V2(tT )} and so on...

We build hypothesis for all 256 guess keys and for each guess key, we compute

Hamming distance corresponding to each encryption. Let’s denote Hamming

Distances computed using guessed key 0 as {HDK0(1), HDK0(2), ..., HDK0(Ne)},
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for guessed key 1 as {HDK1(1), HDK1(2), ..., HDK1(Ne)} and for guess key 255

as {HDK255(1), HDK255(2), ..., HDK255(Ne)}. Let’s represent these two vari-

ables as matrices.

X =


HDK0(1) HDK0(2) HDK0(3) . . . HDK0(Ne)
HDK1(1) HDK1(2) HDK1(3) . . . HDK1(Ne)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HDK255(1) HDK255(2) HDK255(3) . . . HDK255(Ne)

 (2.2)

Y =


V1(t1) V1(t2) V1(t3) . . . V1(tT )
V2(t1) V2(t2) V2(t3) . . . V2(tT )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VNe(t1) VNe(t2) VNe(t3) . . . VNe(tT )

 (2.3)

Now, Pearson’s correlation is computed between each row of X and

each column of Y i.e. between hamming distances for each key guess (X)

and voltage values at each time instant (Y). Hence, we denote the correlation

between row vector [HDK0(1), HDK0(2), HDK0(3), ..., HDK0(Ne)] and column

vector [V1(t1), V2(t1), ..., VNe(t1)] as ρK0,t1 and so on ... Thus, at the end we get

a correlation matrix as shown below:

ρ =


ρK0,t1 ρK0,t2 ρK0,t3 . . . ρK0,tT

ρK1,t1 ρK1,t2 ρK1,t3 . . . ρK1,tT

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρK255,t1 ρK255,t2 ρK255,t3 . . . ρK255,tT

 (2.4)

The coefficients are values from the interval [-1,1] that give an indica-

tion about the linear relationship between hypothetical model and measured

traces. The key guess corresponding to highest correlation at some time in-

14



stant is the secret key.
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Chapter 3

Related Work

The potency of side-channel attacks, which extract secret keys by ex-

ploiting unintended information leakage from physical implementations of cryp-

tographic algorithms with mathematically proven security, has been repeat-

edly demonstrated over the last two decades [1],[2],[7],[8]. In particular, at-

tacks that analyze the information leaking through power [5] and electromag-

netic (EM) [9] side channels present a formidable challenge to ensuring the

security of existing cryptographic applications. Effective simulation tools are

needed to help designers predict vulnerabilities and improve resilience of cryp-

tographic systems to such SCA attacks. While simulation frameworks that rely

on commercial CAD tools to enable design-time prediction of SCA resilience

of an implementation to the power side channel are relatively well established

[4],[10],[11],[12], only a few attempts have been made at developing them for

the EM side channel [13],[14],[15].

Switching activity within the datapath of an implementation during the

execution of a cipher can cause information leakage through both the power

and EM side channels [5],[9]. Analyzing variations in EM fields received by a

probe near the surface of a chip is generally a more effective attack compared
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to analyzing the chip’s total power consumption. This is in large part because

the EM channel, which has access to spatially localized emanations, is less

influenced by non-cryptographic computations obfuscating the critical activity

in crypto-blocks. Indeed, various experiments confirm that EM SCA attacks

using near-field sensors retrieve secret keys more efficiently than power SCA

attacks [1],[2],[16].

To simulate an EM side-channel attack on a specific IC design, the set

of voltage signals (“traces”) that will be observed by nearby EM field probes

or attached oscilloscope probes during critical cipher execution steps must be

computed. This requires modeling across multiple levels of circuit abstraction,

transient circuit analysis, and a multitude of similar computations to obtain

the many (typically ∼ 103 − 105) traces corresponding to the cipher texts

that an attacker can observe. Compared to power SCA simulation, EM SCA

simulations further require (i) modeling of EM (capacitive, inductive) cou-

pling along the on-chip power/ground/ data/clock interconnects and through

the substrate, (ii) transistor-level SPICE analysis to account for information-

bearing indirect (modulated) emanations that arise from coupling (e.g., of

data signals to clock signals) and the non-linearity of transistor I-V charac-

teristics [9],[13], (iii) linking current/voltage signals found in transistor-level

circuit abstraction to layout information, and (iv) using an EM simulator to

radiate space-time samples of currents and find the fields that will be received

by EM probes. Because of the costs of accurately (i) modeling coupling ef-

fects, (ii) analyzing transient signals on transistor-level non-linear circuits, (iii)

17



matching circuit netlists to physical layouts, and (iv) computing EM fields em-

anated from distributed transient currents, it is significantly more challenging

to compute the traces needed for EM SCA attack simulations compared to

those needed for power SCA attack simulations.

The computation of each trace used in EM SCA attack simulations can

be separated into three steps:

Step 1: Perform a multiple-abstraction-level circuit analysis to deter-

mine (time samples of) transient currents on circuit branches during critical

cryptographic operations.

Step 2: Extract (space-time samples of) a reduced set of distributed

currents on the chip layout from the branch currents found in Step 1.

Step 3: Perform an EM radiation analysis to determine (time samples

of) the trace(s) observed by a probe due to currents found in Step 2.

Previous studies [13],[14],[15] use a variety of simplifications to reduce

the aforementioned costs of these steps. In [13], the magnetic field radiated

near the chip is assumed proportional to the total current and thus the ob-

served voltage (trace) is assumed proportional to the current’s time derivative.

While this effectively nullifies the costs of Steps 2 and 3, it also reduces the

simulations’ predictive value; e.g., the simulated trace becomes independent

of the probe position. In fact, SCA attack simulations based on this simpli-

fication would essentially reduce to predicting vulnerabilities to a power side

channel (one that observes the time-derivative of the total current consump-

18



tion) rather than an EM side channel. In [15], it was proposed to generate

switching current models for each cell, represent the currents drawn by the

different cells with (impressed) short electric dipoles placed according to the

layout of the cells, and find EM fields by radiating these dipoles in free space.

This simplifies Step 1 by not modeling the interconnect network and by find-

ing the current drawn by each cell independently; Step 2 by placing a single

source for each cell; and Step 3 by radiating point-wise sources. Unlike in [13],

the approach in [15] would yield position dependent fields; yet, its predictive

value is also expected to be rather limited because it ignores on-chip coupling

effects and thus indirect (modulated) emanations. In [14], a commercial dy-

namic IR drop estimation tool (Apache RedHawk) was used to find signals on

the power/ground interconnect network, regularly spaced virtual probes were

introduced along the rails to extract the current in the small interconnect

pieces between these probes, and the Biot-Savart law was used to find and su-

perpose the magnetic fields from the pieces that are near the EM field probe.

This simplifies Step 2 because the extracted currents have specific locations on

the interconnect network and Step 3 by using a quasi-static approximation to

find EM fields, by only keeping sources on power/ground interconnects, and

by discarding emanations from distant sources. Unfortunately, the RedHawk

tool used in Step 1, which performs a statistical vector-less analysis of the

switching activity to support power delivery network optimization, does not

allow event-driven simulation using vector patterns and thus cannot be used

to find currents corresponding to different cipher texts observed by an attacker.

19



This thesis introduces a simulation flow that enables rapid and accu-

rate design-time prediction of EM SCA resilience of cryptographic modules

for the first time. Simulation costs are reduced without sacrificing predic-

tive value as follows. Step 1: We use commercial CAD tools to run highly-

optimized transistor-level simulations only during critical time windows when

information leakage happens. Steps 2-3: We limit the EM radiation to the cur-

rents distributed on the top-metallization layer power/ground interconnects

and generate traces for different encryptions in parallel. Using the proposed

methodology, various differential attacks are simulated on AES block cipher.
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Chapter 4

Efficient DEMA Simulation Flow

This chapter presents the proposed design-time simulation flow for eval-

uating EM SCA attack vulnerability, the details of the three steps (see Chapter

1) used to compute the traces, and the methods used to combat the high costs

of accurate simulations without compromising their predictive value. The flow

chart in Fig. 4.1 depicts the proposed simulation flow of taking an RTL de-

scription of an IC implementation through various simulation steps to extract

the secret key.
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Figure 4.1: Proposed simulation Flow
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4.1 Circuit Analysis

Many steps required to produce the traces needed to perform DEMA

simulations are obtained directly via standard commercial CAD tools. We

reduce runtime significantly by focusing the high-accuracy transient-circuit

simulation only on the cipher-execution phase during which the intermediate

computations leak information. In the case of AES, this happens in the last

round. We propose a hybrid flow of gate-level and transistor-level simulations

to take advantage of this fact. Gate-level simulations are performed to compute

the state of the circuit at the beginning of the last round and only the critical

last round is simulated at transistor level with SPICE.

The simulation flow will be discussed in detail now.

1. Design Implementation

� Logic Synthesis: The RTL level description of a design is synthe-

sized using Synopsys Design Compiler. The implementation is tar-

geted at 32nm technology library. User can specify constraints like

target library cells, clock frequency, power and area etc. at this

stage. Once these constraints are met, the tool generates a gate

level netlist in verilog (.v) format.

� Place & Route: The synthesized gate-level netlist (.v format) is

passed to Synopsys IC Compiler Place & Route tool. The user

specifies various parameters like design of power grid, target voltage

23



drop, metal layers for routing etc.. Once these constraints are met,

the database is saved in .mw format.

� Parasitics Extraction: Now, the layout database is used as an in-

put to extract parasitics and generate a spice compatible file in .spf

format. Synopsys StarRC tool is used for RC extraction. This step

allows the user to dump geometry information of parasitic nodes

using EXTRA GEOMETRY INFO option during the extraction.

Various settings for extraction like extraction of via resistors/ca-

pacitors, power-grid parasitic extraction etc. can be utilized at this

step. The parasitics file isa saved in .spf format which is compatible

with SPICE simulators.

2. Circuit Simulation: This steps performs fast SPICE simulations using

Synopsys FineSim FastSpice engine. The design file generated in .spf

format in the previous step is used as input for SPICE simulations and

a stimulus file instantiates the design to perform circuit simulation. The

parasitics extraction of the standard cells are taken from reference library

files. The user specifies the nodes for which the voltage needs to be

printed and the branches for which the current needs to be printed.

This step will be discussed in detail in Section 4.2. As discussed earlier,

gate-level simulation is performed to generate initial conditions for the

SPICE simulation.

An important challenge in circuit simulation is to identify optimal ac-

curacy level for transistor-level simulations. It is important to realize
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at this point that the accuracy required for DEMA far exceeds that of

power analysis. This is because critical EM signatures come from EM

coupling of information-leaking signals to other signals on the chip as

well as the fact that the radiation stage computes derivatives of time-

varying current signals, a dependence that tends to amplify the impact

of small error in current estimation. To identify sufficient/optimal circuit

simulation settings, designers must run the attack scenario with different

parameters and investigate the convergence of the results as the circuit

simulation is made more accurate (see Section 5.2).

The output of the transient circuit analysis is the temporal samples of

branch currents during the critical time interval (the last AES round),

tstart ≤ t ≤ tend. To simplify the EM radiation step, these are gener-

ated by constraining the SPICE simulation to uniformly sample the time

interval with a time-step size of ∆t, i.e., Nt =
⌈
(tend − tstart)/∆t

⌉
+ 1

temporal samples are produced for each branch current at the end of

Step 1, where dxe rounds its argument up to the nearest integer.

4.2 Model Simplification

As detailed in Section 4.3, the cost of finding the transient EM radiation

scales proportionally to the number of space-time samples of current elements

that are radiated; thus, radiating all the currents on all the branches quickly

becomes a computational bottleneck as the number of branches in the netlist

increases; e.g., the RTL implementation of AES investigated in Chapter 5,
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has a total of 255728 branches. To limit this cost, in this work, the radiation

is computed from a reduced set of currents; specifically, currents only on top

metallization layers of the on-chip power-delivery network are radiated. This

is a reasonable simplification because the larger dimensions (width, length,

thickness) and spacing (pitch) of top-layer interconnects and their proximity

to an EM field probe above the chip make them the strongest contributors

to the detected signals. As computational capabilities increase, more of the

branches can be included in the EM radiation to estimate and reduce the errors

introduced by this simplification. Note that a similar simplification was made

in [14] and the simulated spatial EM cartographies appeared to be in good

agreement with measured data [17].

To identify geometry information for branches corresponding to the top-

metallization layer interconnects, the parasitics extractor is used to annotate

all the parasitics elements during the CAD flow and to generate a detailed

parasitics file in the DSPF format. Then, parsing this file, all but the Nb

planar resistive branches at top metallization layers are removed; e.g., for the

design in Chapter 5, Nb = 798. Next, using the annotations, we attach the

coordinates of the four corners of a rectangular patch—a planar surface in 3-D

space—and a direction to each of these Nb branch currents. In Step 3, each

branch current is assumed to be tangential to and uniformly distributed over

the corresponding patch’s surface. The patches are assumed to be located

at the top surfaces of the metallization layers. Thus, a data file that contains

NbNt temporal current samples, distributed onto Nb different patches in space,
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is generated at the end of Step 2.

4.3 EM Radiation

The EM radiation step finds (space-time samples of) the transient fields

that would be received by a probe at Np different positions near the surface of

a chip, given the space-time samples of the transient current distribution on

the chip. Let ~J(~r, t) denote the current density at all points ~r on the surfaces

S of the (reduced) interconnect network, whose samples are found in Step 2.

Then, the magnetic field emanated by these currents in a homogeneous back-

ground is given as [18]

~H(~r, t) = ∇×
∫∫

S

~J(~r′, t−R/c)
4πr

ds′ (4.1)

~H(~r, t) =
1

4π

∫∫
S

ds′R̂×
[

1

cR

∂ ~J(~r, t′)

∂t′
+
~J(~r, t′)

R2

]
t′=t−R

c

(4.2)

Here, c is the speed of light in the background medium, R and R̂ are

the magnitude and direction of the vector ~R = ~r − ~r′ that is directed from

the source point at ~r′ to the observer point ~r . In the near field of the source,

the ~H field is determined mainly by the second term on the right-hand side,

which decreases quadratically with distance—this is the physical basis for the

simplification proposed in Step 2. Assuming the field is received by a probe
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that is a single-turn loop of wire encircling the surface Sp, which is centered

at position ~rp and has three possible orthogonal orientations identified by

the loop’s normal direction û ∈ {x̂, ŷ, ẑ}, the voltage signal (an EM trace)

detected at the loop terminals (determined by the magnetic flux through the

loop’s surface according to Faraday’s law) is given as:

V u
p (t) = − d

dt

∫∫
Sp

µ ~H(~r, t) · µ̂ds (4.3)

where µ is the magnetic permeability of the loop core. Clearly, the con-

tribution of a current element to the trace received by the probe depends on its

direction relative to the probe orientation as well as its distance to the probe.

If the Np different positions of the probe are simulated over the chip surface

to obtain a spatial cartography, a total of 3Np EM traces (V x,y,z
1 , ..., V x,y,z

Np
) are

generated.

To numerically calculate the detected voltages, ~J(~r, t) is discretized

using space-time basis functions as:

~J(~r, t) ≈
Nb∑
k=1

Nt∑
l′=1

Ik,l′ ~Sk(~r)Tl′(t) (4.4)

Here, Nt temporal basis functions T1, ..., TNt and Nb spatial basis func-

tions ~S1, ..., ~SNb
are used to approximate the current density. As is common,

piecewise polynomial (sub-domain) interpolatory functions are used as tem-

poral basis functions. The spatial basis functions are constant (vector) pulse

functions on rectangular patch surfaces that are parallel to one side of the
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patch and normal to the other. Thus, each expansion coefficient corresponds

one-to-one to a current sample extracted in Step 2, scaled by a constant equal

to the width of Sk′ .

Once the current discretization is substituted into the above integrals,

the EM trace at each probe position p, orientation û, and time tl is given as

V u
p (tl) =

Nb∑
k=1

Nt∑
l′=1

Zu
p,l,k,l′Ik,l′ (4.5)

where

Zp,l,k,l′ = − µ

4π

∫∫
Sp

µ̂ ·
∫∫

Sk

R̂× ~Sk(~r)

[
T̈l′(tl − R

c
)

cR
+
Ṫl′(tl − R

c
)

R2

]
ds′ds (4.6)

Ṫl′ and T̈l′ are the first and second derivatives of the temporal basis

functions and the inner integrals are over the patch k surface. To compute

the above integrals, numerical quadrature rules with Nq,s points on each source

patch and Nu
q,o points over the observer surfaces is used. Let Nq = (Nx

q,o+N
y
q,o+

N z
q,o)XNq,s, then filling all Zu

p,l,k,l′ entries requires O(NpNbNq) operations as

the interactions are sparse and most Zu
p,l,k,l′ are zero. Still, these are expensive

computations (with a large constant in front) that should be performed once

and amortized over allNe encryptions. To simplify the book keeping, a uniform

time discretization is assumed for the currents, i.e., Tl(t) = T (t − l∆t), and

the received voltages are assumed to be recorded at the same time instances

as the currents. Other algorithms [18] can also be adopted as NpNb increases.
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Once Zu
p,l,k,l′ are filled and stored, computing the 3Np EM traces requires

O(3NpNbNt) floating-point multiply-add operations for each encryption.

4.4 Computation Costs and Parallelization

To simulate DEMA, the circuit analysis and EM radiation steps are

performed Ne times, each time corresponds to a different encryption that can

be observed by an attacker. To reduce simulation times, we propose to gen-

erate the EM traces corresponding to each encryption in parallel. The circuit

analysis computations are assumed to be distributed among PCKT processes,

which may be limited by the number of available licenses when commercial

CAD tools are used. The custom EM radiation simulations are assumed to be

distributed among PEM processes. Table 4.1 summarizes the dominant com-

putational costs for performing a DEMA simulation for Ne encryptions. In

the table, tCKT
1enc denotes the circuit analysis time needed for 1 encryption and

tEM
core denotes the time needed for finding the contribution of each branch to

the voltage signal for 1 probe positionand 1 encryption. Table 4.1 also shows

the speedups we observed when using the proposed methodology for the simu-

lations in Chapter 5. Here, using HSPICE for circuit simulation at all rounds

of the AES is denoted as the näıve approach and radiating all branch currents

in the EM simulation is denoted the brute-force approach.
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Simulation Step Dominant Cost (Wall-clock time) Observed Simulation Times
tCKT
1enc ≈ 20hr(naive)
tCKT
1enc ≈ 0.1hr(proposed)

Circuit Analysis tCKT
1enc ×

⌈
Ne

PCKT

⌉
Sample Attack:

Ne = 5000
PCKT = 30
total ≈ 20hr
tEM
core = 12µs
Nb = 255728(bruteforce)
Nb = 798(reducedmodel)

EM Radiation Analysis tEM
core ×Nb ×Np ×

⌈
Ne

PEM

⌉
Sample Attack:

Ne = 5000, Np = 36
PEM = 1
total ≈ 0.5hr

Table 4.1: Simulation Times for computing an attack on Ne encryptions using
the proposed flow
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Chapter 5

Results

In this chapter, the proposed simulation flow is evaluated by applying

it to various EM SCA attack vulnerability analysis of an ASIC implementation

of AES.

5.1 System Setup

The RTL implementation of AES is from [19] . The design is imple-

mented using 32 nm CMOS technology library and occupies a 230µm × 230µm

region of the chip. The interconnect networks were placed using orthogonal

(HVH) routing and the P/G networks were routed in the top two metal layers

M7 and M8. The design is supplied by 8 VDD and 8 VSS sources present at

the ends of straps and symmetrically distributed around the ring in M8 to keep

the IR-drop in check. We use the circuit simulation methodology described

in Section 4.1 to generate branch currents typically for Ne = 5000 different

encryptions. Gate-level simulations were performed for all but the last AES

round using the VCS tool and transistor-level simulations were performed for

the last round using the FineSim tool from Synopsis. A time resolution of

∆t = 10ps was used in transient circuit analysis, which resulted in Nt = 1501
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time samples in the last round of the AES cycle. Only Nb = 798 branch cur-

rents that correspond to the P/G network in the top two metal layers M7 and

M8 were passed on to the EM radiation step. Importantly, the wires in M7,

which are along the x-direction generate EM radiation in a different orientation

compared to the emission from M8 wires, which are along y-direction.

In EM simulations, the probe was modeled as a square loop of 25µm side

length. Consistent with the behavior of the physical probes used in [2],[14],[17],

the signal at the output of the probe was processed using a low-pass 5th order

Chebyshev filter with a 1-GHz cut-off frequency and 0.002-dB passband ripple.

The probe was located at different positions over the chip, in three orientations,

and its distance from the top surface of M8 layer was varied from 10-µm to

1-mm to observe how attack results change. To demonstrate the flow, we

first perform a spatial cartography by moving a y-oriented loop placed, whose

center was placed 30 µm above the chip with a displacement step size of 46

µm. The results are produced using 1 transmitter quadrature point and 1

receiver quadrature point. Fig. 5.1 shows the strength of EM signal recorded

at time step 500.
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Figure 5.1: EM spatial cartography above the AES block. The detected volt-
ages are shown at a time instant corresponding to the rising edge of the clock
at the end of the last round of AES.

5.2 Circuit Analysis Accuracy

We evaluate the accuracy needed in circuit simulations by computing

the confidence ratio as a function of number of traces in a DPA attack and

a DEMA attack. The confidence ratio is a simple metric of attack success

and is defined as the ratio of the highest and the second-highest differential

peaks among all 256 key guesses. In the following experiments, the EM traces
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(a) Current waveforms

(b) EM Voltage waveforms

Figure 5.2: Effect of accuracy level on current and EM voltage traces.
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were generated using the y-oriented loop at a single position 500 µm above

the center of the chip, i.e., the number of EM traces generated is the same as

the number of encryptions.

The first task is to identify the level of accuracy required for predictive

simulation. To realize this, we look at the current and EM voltage traces for

three different simulations: tx-level high accuracy, tx-level low accuracy and

gate-level simulations. It is clearly seen that gate level simulation is not as

accurate as tx-level as shown in Fig. 5.2a. Further, looking at EM voltage

traces, we say that low accuracy tx-level might be sufficient for DPA, but not

for DEMA since small differences in current waveforms lead to derivative terms

in EM voltage waveforms which lead to big differences as visible in Fig. 5.2b.

First, we look at the effect of parasitic extraction granularity on the

attack and coarsen the minimum resolution of parasitic elements in the simu-

lation from 1mΩ to 1Ω , which speeds up the circuit simulation due to fewer

parasitic nodes. Fig. 5.4 shows that this does not impact the simulation of

DPA attack and designers can choose to go with higher granularity values for

extraction to avail speedup. However, this trend does not hold true in case of

EM analysis attack.

Another crucial optimization parameter for the analysis is the accept-

able accuracy level for various circuit components. Fig. 5.3 shows the confi-

dence ratio for differential analysis when high (H) or low (L) accuracy settings

are used for three different components. The results indicate that simulating

standard cells at the relaxed accuracy affects DPA results much less compared
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Figure 5.3: Dependence of DPA and DEMA’s convergence on simulation ac-
curacy.
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Figure 5.4: Dependence of DPA and DEMA’s convergence on minimum resis-
tance.
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MINRES Simulation Time
Interconnect(H) Interconnect(L) Interconnect(L)

+Cells(H) +Cells(L)+Flops(H) +Cells(H)
0.001 723 391 401
0.01 715 385 397
0.1 637 217 232

Table 5.1: Simulation Time vs Accuracy Parameters

to DEMA ones, e.g. the red curves in Fig. 5.3 that correspond to the sce-

nario where only flip-flops are simulated at SPICE accuracy is not sufficient

for EM analysis but acceptable for power analysis. Based on these results,

we conclude that all standard cells must be simulated at SPICE level accu-

racy to accurately predict DEMA attacks. Speed up is achieved by simulating

interconnect at lower accuracy and by utilizing FineSim’s muti-core/multi-

machine simulation capability. This is especially useful while generating data

to perform differential attacks, which can require several thousands of traces.

From Table 5.1, it is evident that using high accuracy mode for interconnect is

much more expensive than using high accuracy mode for standard cells. This

is, however, due to an algorithmic difference rather than an indication of nodes

in the interconnect. Also, going down to 1Ω parasitic extraction does not lead

to a significant reduction simulation time, but hampers the simulation accu-

racy a lot.
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5.3 Spatial EM Attacks

This section demonstrates the capabilities that the proposed simulation

flow provides to designers. We perform various DEMA experiments and com-

pare the results at different spatial locations for the probe. First, we show how

a probe can be moved to identify the maximally correlating areas. Next, we

show that this helps in identifying trade-offs during physical implementation

of such ciphers.

The success metric used to evaluate the strength of the attacks is based

on Pearson correlation distinguisher [6]. Pearson correlation coefficient(ρ) de-

termines a linear relationship between a hypothetical value and measured sig-

nal. The metric was discussed in Section 2.3. To determine the number of

traces required to break the secret key, we use a null hypothesis as ρ=0 and

a confidence level of 99.999% to reject the hypothesis. Rejecting the null hy-

pothesis leads to a successful attack. To demonstrate the use of this success

metric, we simulate a DEMA attack using the y-oriented loop at a single po-

sition 10 µm above the chip near its center; the number of EM traces is again

the same as the number of encryptions. Fig. 5.5 depicts a successful attack

where we plot ρ for all 256 guessed keys with 5000 traces. Black dotted line

represents the 99.999% confidence for the null hypothesis. The figure shows

one of the guessed keys (shown in black) rejects the null hypothesis and crosses

the confidence level, leading to a successful attack after ∼ 1000 traces.
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Figure 5.5: Evolution of Pearson correlation coefficient with number of EM
traces.

Next, we perform spatial cartography using a probe whose center is at

10µm, 100µm, and 1000µm from the chip surface and identify spots where high

correlation is observed. Fig. 5.6 shows this trend when the attack is repeated

at 36 probe positions. The critical revelation is that at closer distances to the

chip, the points of successful attack (the darker spots in Fig. 5.6) are localized.

Moreover, the attack requires much smaller number of traces to succeed when

the probe is closer to the chip surface (see Table 5.2).
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(a) Byte I: 10um (b) Byte II: 10um

(c) Byte I: 100um (d) Byte II: 100um

(e) Byte I: 1000um (f) Byte II: 1000um

Figure 5.6: Spatial attack on two different bytes of secret key.
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To further explore this dependence, a different byte of the secret key

was attacked and the analysis was repeated as shown in Fig. 5.6b, 5.6d and

5.6f. It was found that placing the probe closer to the chip still leads to higher

correlation values. The positions corresponding to successful attacks shift to

different locations in space, as opposed to the case where the probe is farther

from the chip when the positions of success stay roughly the same.

Figure 5.7: Noise source added to AES chip
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The effect of proximity of EM probe was further studied by recording

the number of traces for a successful attack as the probe height is modified

under noisy conditions. To show how DEMA performs under the influence

of noise, we introduce a Gaussian noise source to model the impact of the

rest of the SOC. The noise source is modeled with a mean current of 1000

mA and a standard deviation of σ = 0.5% of the mean. The dimensions

of the SOC are assumed to be 2 × 2mm2, whereas the AES dimensions are

0.23× 0.23mm2 as depicted in Fig. 5.7. Fig. 5.9 summarizes the findings and

shows the effect of noise sources on DEMA and DPA. The blue threshold lines

in Fig. 5.9 represent the number of traces required for a successful DPA attack

on AES. Fig. 5.8 shows one such instance where DPA fails with even 5000

traces; notice that DPA was successful with only 300 traces when no other

source was modeled. In contrast, Fig. 5.9 shows that EM attack results did

not get affected as much, since the EM signals from the noise source decay

rapidly within a few µm from the surface of the chip when we are at closer

distances. Indeed, when the probe is placed 10µm above the chip, the number

of traces required to succeed increased meagerly from 1025 to 1030 when the

noise source was modeled. This confirms that DEMA can isolate information

leaking circuit elements from the rest of the chip. Fig. 5.9 shows that as the

distance of the probe from the chip increases, however, the interference from

the noise source starts to affect DEMA performance.
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Figure 5.8: Effect of noise on DPA and DEMA attacks when σ = 0.5%.
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Figure 5.9: Effect of noise on DEMA and DPA

Next we show how early-stage planning is essential and how designers

can make critical design choices while implementing the cipher. One of the

aspects that is not critical for evaluating power attack resilience is the on-chip

power distribution network. This design feature becomes critical, however, for

determining EM attack vulnerability as the EM emanations of the hardware

depends heavily on it. To study this impact, we simulate DEMA attacks on

two different physical implementations of AES. In the first case, the design

is implemented (possibly to satisfy routing constraints) by using uniformly
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spaced VDD and VSS metal lines, which is expected to cause significant EM

emanations. The actual layout of power grid network is shown in Fig. 5.11.

This is achieved using the following command: set fp rail constraints -spacing

interleaving

In the second case, the layout is done by placing the two metal lines

close to each other, which is expected to reduce the emanations, especially

farther away from the chip. This layout is shown in Fig. 5.10. We perform

DEMA attacks over 36 spatial points and record the least number of traces

required to break AES under noise-free conditions; the results are shown in

Table 5.2, which confirms that a uniformly spaced P/G network is a poor

design choice that can lead to a highly vulnerable implementation of AES.

Indeed, when VSS and VDD segments are close, the overall signal strength is

reduced leading to a higher number of traces required to break the key.
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Figure 5.10: Non-uniformly spaced P/G network
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Figure 5.11: Uniformly spaced P/G network
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Number of Traces
Probe Distance from chip (µm) Non-uniform spacing Uniform spacing
10 85 76
100 950 240
1000 1470 310

Table 5.2: Traces required for a successful attack on two implementations of
AES
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Chapter 6

Summary & Limitations

This chapter summarizes the work, addresses limitations of current

research and possible future improvements.

6.1 Summary

This thesis presented a methodology for accurately predicting vulner-

abilities of crypto-systems against EM side-channels at design time. The pro-

posed method employs industry-standard CAD tools to extract critical infor-

mation required to generate EM signatures. This enables designers to simulate

differential EM attacks by considering full chip parasitic elements for the first

time. The work also demonstrated the benefits of monitoring EM channels as

compared to power because of its localization effects. It was shown that cer-

tain optimizations in the simulation flow allow designers to assess security in

a highly efficient manner. With the preliminary analysis and simple modeling

techniques, it has been shown that points of success are more localized at closer

distances to the chip and attack becomes successful with fewer traces. This

automated design flow allows designers to replace standard CMOS libraries

with protected logic and validate the security features of the hardware block.
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6.2 Limitations & Future Improvements

This approach is the first step towards building a predictive verification

environment for studying simulated EM attacks. Now, we will discuss about

the limitations of current work.

1. Limited quadrature points: The results presented in this work were ob-

tained using 1 transmitter quadrature-point and 1 receiver quadrature-

point. A convergence study needs to be done to find out the optimal

number of source and receiver quadrature points for small and big probe

sizes. The results presented in this work are subject to change when

more quadrature points are used for EM radiation.

2. Modeling more metal layers: Current work focuses on radiating from top

two metal layers of power grid interconnect and neglects signals/power

grid parasitics present in lower metal layers with the assumption that

top metal layers contribute the most to EM radiation. Further studies

need to be done in this regard. This would require faster algorithms to

be adopted for EM simulations.

3. Modeling VIA resistors: We did not include via parasitics for EM radia-

tion and since the orientation of vias is different from the other parasitics

elements present in with M7 or M8, these should be included to study

the effect.

4. Shielding/packaging: Further, the effect of shielding and packaging could

be considered and the effect of these factors should be observed.
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5. Predictability of results: Finally, real silicon experiments should be per-

formed to validate the simulations and to stdy the predictability of re-

sults using the proposed simulation tool flow.

6. Unprotected design: Currently, the attack results are shown for an un-

protected design of AES cipher which requires few hundred thousands

traces. We sould consider protected implementations of ciphers which

would require several hundred thousand traces. Foor such analysis, fur-

ther speedup needs to be investigated in circuit and EM simulations.
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